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Abstract

Smooth economies with private ownership of production of the kind
previously considered in the literature are shown to be formally identical
to exchange economies with demand functions that are properly adjusted
for production. Smooth production economies therefore satisfy the same
properties as smooth exchange economies. Some of these properties had
resisted extension to production because of their reliance on properties of
the no-trade equilibria, a concept specific to the exchange model. The
transitivity of consumers’ preferences is not even necessary for those
properties to hold true.

1. Introduction

The study of smooth exchange economies has started with Debreu’s proof of
the generic finiteness and generic continuity of equilibrium allocations and price
equilibria [8]. Properties about the nature and structure of singular and regular
equilibria and economies, the existence of an index number with applications
to the number of equilibria and, more generally, properties of the equilibrium
manifold and its projection map into the parameter space have followed. See,
for example, [1, 2, 6, 9, 11, 18, 19].

Nevertheless, only three properties of the exchange model have been ex-
tended to smooth production economies so far. The generic finiteness and
generic continuity of equilibria is proved by Fuchs and Smale [10, 20]. The
extension of Dierker’s index number is achieved by T. Kehoe [15]. The dif-
feomorphism of the equilibrium manifold with a Euclidean space is partially
extended by Jouini as the pathconnectedness and simple connectedness of the
equilibrium manifold for production economies [13].
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A possible explanation for this relatively small number of extensions to
production in general, and to smooth production in particular, is that sev-
eral important properties of the exchange model depend on several remarkable
properties that are satisfied at the no-trade equilibria as, for example, the regu-
larity and the negative (semi-)definiteness of the Jacobian matrix of aggregate
excess demand and also on the fact that the preimage of the set of Pareto
optima by the natural projection is the set of no-trade equilibria [2]. The lack
of obvious equivalent for production economies of the no-trade equilibria of
the exchange model is therefore a major obstacle to the extension of these
properties to production. The main contribution of this paper is to show that
smooth economies with private ownership of production satisfy essentially the
same properties as exchange economies. All that is required is that production
satisfies smoothness and regularity properties that are usual in this kind of
studies. See [10, 13, 15] and [20].

Our approach to the study of smooth production economies is to adjust
consumers’ demand functions for production. The exchange model defined by
these production adjusted demand functions is then equivalent to the original
production model. The production adjusted demand functions are very close to
satisfy the properties considered in [6] that guarantee that the main properties
of the exchange model are satisfied. Many proofs of [6] readily apply to the
setup defined by these production adjusted demand functions. Only a small
number have to be adapted to the new setup. As a result, the production
model features exactly the same properties as the standard exchange model.
The mathematical prerequisites for reading this paper can be found in the first
chapters of [12] and [17] and are the same as those required by Debreu’s paper
[8].

This paper is organized as follows. Section 2 is essentially devoted to def-
initions and assumptions and to setting the notation. Section 3 defines the
smooth production model and shows its equivalence with an exchange model
defined by demand functions that have been production adjusted. Section 4
shows that smoothness and Walras law for consumers’ demand functions suf-
fice to imply smoothness and Walras law for the production adjusted demand
function from which follows the global structure of the equilibrium manifold
for the smooth production model. Section 5 deals with the properness of the
natural projection and its implications for the smooth production model. Sec-
tion 6 goes one step further by assuming that individual demand functions
satisfy a property of their Slutsky matrices that is roughly equivalent to the
convexity of (not necessarily transitive) individual preferences. This property
then implies the uniqueness of equilibrium at an equilibrium allocation and the
regularity of all equilibrium allocations in the exchange model associated with
the production adjusted demand functions. These properties are essential in
getting a complete picture of the relations between the equilibrium manifold
and the endowment or parameter set. Concluding comments end this paper
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with Section 7.

2. Assumptions, definitions and notation

2.1. Prices and goods

There is a finite number ` of goods. All prices are strictly positive. Depending
on the context, prices are normalized by the numeraire convention p` = 1 (the
default normalization), by the simplex convention p1 +· · ·+p` = 1 (convenient
to deal with prices tending to zero), or simply not normalized in the few cases
where we want to compute derivatives with respect to the numeraire price p`.
The set of numeraire normalized prices is denoted by S = R`−1

++ × {1} while
SΣ denotes the strictly positive simplex and SΣ the closed positive simplex of
R`.

2.2. Consumers and their demand functions

There is a finite number m of consumers. Consumer i is characterized by
a demand function fi : S × R → R` where fi(p, wi) represents consumer
i ’s demand given the (numeraire normalized) price vector p ∈ S and the
consumer’s wealth wi ∈ R. The same notation is used with non normalized
or simplex normalized prices. With non-normalized prices, demand functions
are homogenous of degree zero. Consumption faces no sign restrictions as in
[4, 7, 11] and [13] for example.

We will state in a moment a few properties of these functions viewed as
defined on S×R and taking values in R`. Before that, we recall the definition
of the Slutsky matrix of some arbitrary smooth function fi : S × R→ R`.

Slutsky matrix

The ` × ` Slutsky matrix Sfi(p, wi) =
(
sjk(p, wi)

)
associated with the map

fi : S × R→ R` is defined for non-normalized prices by

sjk(p, wi) =
∂f ji
∂pk

(p, wi) +
∂f ji
∂wi

(p, wi) f
k
i (p, wi) .

Note pTSfi(p, wi) = Sfi(p, wi) p = 0.

Properties of consumers’ demand functions

(S) (Smoothness) fi is smooth.

(W) (Walras law) p · fi(p, wi) = wi for all (p, wi) ∈ S × R.
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(B) (Boundedness from below) For Ki compact subset of R`, there exists
Bi ∈ R` such that Bi ≤ fi(p, p · ωi) for ωi ∈ Ki and p ∈ S.

(A) (Desirability] For any sequence (pq, wqi ) of simplex normalized price vec-
tors and income converging to some (p0, w0

i ) where p0 ∈ SΣ \ SΣ (i.e.,
some coordinates of p0 are equal to zero), then lim ‖fi(pq, wqi )‖ = +∞.

(NQD) (Negative quasi-definiteness of the Slutsky matrix) Assuming (S),
the restriction of the quadratic form z ∈ R` → zTSfi(p, wi) z to the
hyperplane H(p) = {z ∈ R` | pT z = 0} perpendicular to the price
vector p is negative definite for every (p, wi) ∈ S × R.

(NQSD) (Negative quasi-semidefiniteness of the Slutsky matrix) Assuming
(S), zTSfi(p, wi) z ≤ 0 for any z ∈ R` and (p, wi) ∈ S × R.

Comments

The above properties are satisfied by the demand functions that are derived
from the budget constrained maximization of utility functions satisfying stan-
dard assumptions [4].

Differentiability (S) could be weakened to second order differentiability
at almost no cost. Walras law (W) means that the value of consumer i ’s
demand is equal to the consumer’s wealth. It is satisfied whenever the budget
constraint p · xi ≤ wi (where xi ∈ R` is the consumer’s demand) is binding.
From now on, the default assumption will be that all consumers’ demand
functions satisfy (S) and (W).

Property (NQD) is equivalent to the inequality zTSfi(p, wi) z < 0, with
z 6= 0 not collinear with the price vector p. Note that (NQD) is nothing more
than the smooth but slightly stronger version of the strict quasi-concavity of
the utility functions that represent preferences. However, the definition of
(NQD) itself does not require the symmetry of the Slutsky matrix Sfi(p, wi).
Some authors then prefer to talk of quasi-definiteness instead of definiteness
to avoid any involuntary inference of symmetry.

Desirability (A) was introduced for individual demand functions by Debreu
[8]. This property can be weakened without impairing the main properties of
the exchange model. We will do that when we deal with production.

Boundedness from below (B) excludes the possibility for the demand of
some goods to tend to −∞ when endowments are bounded from below. We
need this property because consumption is not restricted to be positive nor
even bounded from below in our setup. The following lemma will be useful:

Lemma 1. Let fi : S × R → R` be a demand function satisfying (B). For
Ki compact subset of R` and L compact interval of [0,+∞), there exists
B′i ∈ R` such that B′i ≤ fi(p, p · ωi + wi) for ωi ∈ Ki , wi ∈ L and p ∈ S.
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Proof. There exist xi and x ′i ∈ R` such that xi ≤ ωi ≤ x ′i for all ωi ∈ Ki . Let
αi > 0 such that 0 ≤ λ ≤ αi for λ ∈ L. Let e` = (0, 0, . . . , 0, 1) be the unit
vector parallel to the `-th coordinate axis. Let x ′′i = x ′i + αie`. The union of
the two line segments K′i = [xi , x

′
i ] ∪ [x ′i , x

′′
i ] is compact. For any p ∈ S, the

intersection K′i ∩ {zi ∈ R` | p · zi = p · ωi + wi} is reduced to a point ω′i and
fi(p, p · ωi + wi) = fi(p, p · ω′i). It then suffices to apply (B) to the compact
set K′i .

2.3. The exchange model

A “consumer” is characterized by a “demand function” fi : S × R → R` and
an endowment vector ωi ∈ R`. The exchange model consists of m con-
sumers whose demand functions are kept fixed while the endowment vector
ω = (ω1, . . . , ωm) is varied in the parameter or endowment set Ω = (R`)m.
An equilibrium of the exchange model is defined as:

Definition 1. The pair (p, ω) ∈ S×Ω is an equilibrium of the exchange model
defined by the m “demand functions” fi , with i = 1, . . . , m, if:∑

i

fi(p, p · ωi) =
∑
i

ωi . (1)

The set E of (p, ω) ∈ S×Ω satisfying Equation (1) is known as the equilibrium
manifold of the exchange model defined by the m demand functions (fi).

The left hand-side of Equation (1) can be interpreted as the aggregate de-
mand and the right hand-side as the aggregate supply in the exchange economy
defined by the endowment vector ω and the demand functions (fi).

We also recall the definition of a no-trade equilibrium.

Definition 2. The pair (p, ω) ∈ S×Ω is a no-trade equilibrium of the exchange
model defined by the m demand functions (fi) if ωi = fi(p, p · ωi) for i =

1, . . . , m. The set of no-trade equilibria is denoted by T .

Recall our default assumption that all consumers’ demand functions satisfy
(S) and (W). The properties of the exchange model and of its equilibrium
equation are studied in [6] for demand functions (fi) satisfying some of the
assumptions listed in Section 2.2.

2.4. Firms and their supply functions

There is a finite number n of firms. The activity of firm j is represented by
a vector yj ∈ R`. Outputs and inputs are represented by the positive and
negative coordinates respectively of the activity vector yj .

The activity of firm j is assumed to be a function gj(p) of the price vector
p ∈ S. That function is known as the firm’s supply function. The same
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notation is used when prices are not normalized or simplex normalized. In the
case of non-normalized prices, the supply function gj(p) is homogenous of
degree zero, i.e., gi(λp) = gi(p) for any λ > 0.

The characterization of firms by their supply functions leads us to consider
more generally the set of continuous functions γ : S → R`. In the case where
γ is differentiable, we denote by Dγ(p) the `×` Jacobian matrix of the map γ
for the non-normalized price vector p = (p1, . . . , p`). We consider in particular
the following properties:

(PS) (Production smoothness) γ is smooth.

(PM) (Profit maximization) p · γ(p) > p · γ(p′) for p′ 6= p ∈ S.

(PP) (Profit positivity) p · γ(p) ≥ 0 for any p ∈ S.

(PC) (Profit convexity) Assuming (PS), the restriction of the quadratic form
z → zTDγ(p) z to the hyperplane H(p) = {z ∈ R` | pT z = 0} is
positive definite for every p.

Comments

All four properties are satisfied by the supply function gj of a firm j whose
production set Yj is convex, contains the zero activity vector 0 ∈ R`, satisfies
the free disposal property and such that the efficient boundary ∂Y eff

j (i.e.,
the set of efficient activity vectors) is a smooth hypersurface with non-zero
Gaussian curvature at its interior points. See [4] and [10].

More specifically, property (PS) results from the strict convexity of the
efficient boundary Y eff

j combined with non-zero Gaussian curvature. Property
(PM) is nothing more than profit maximization. Property (PP) results from
the possibility of inactivity. Property (PC) expresses the smooth strict convex-
ity of the (numeraire normalized) “profit function” p → p ·γ(p), convexity that
results from the production set Yj being strictly convex. See in this respect
Proposition 3 and its corollary in the next section. For more details, see [4].
From now on, the default assumption for the firms’ supply functions is
that (PS) and (PM) are satisfied.

Note that (PS) could be weakened to second order differentiability at no
cost.

2.5. Some properties of firms’ supply functions

The following properties are given here for their contribution to the global
understanding of supply functions. Let γ : S → R` be an arbitrary supply
function, i.e., a map that satisfies (PS) and (PM).
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Proposition 1. We have

p ·
∂γ

∂pk
(p) = 0

for 1 ≤ k ≤ ` (non-normalized price vector).

Proof. Follows from the necessary first order conditions applied to the function
p′ → p · gj(p′) that reaches its maximum at p′ = p by (PM).

Let s(p) = p · γ(p) be the “profit function” associated with the supply

function γ : S → R`. Let Ds =
( ∂s
∂p1

, . . . ,
∂s

∂p`

)
denote the gradient vector of

s with respect to the non-normalized price vector p = (p1, . . . , p`).

Proposition 2. We have γ = Ds.

Proof. The derivative of s(p) = p · γ(p) with respect to pk (non-normalized
price vector) is equal to

∂s

∂pk
= γk(p) + p ·

∂γ

∂pk
(p) = γk(p)

by Proposition 1.

Restrict the “profit function” s(p) = p · γ(p) to numeraire normalized
prices p ∈ S. Let (D2s)`` be the associated (`− 1)× (`− 1) Hessian matrix
of second order derivatives:

Proposition 3. Property (PC) is equivalent to matrix (D2s)`` being positive
definite.

Proof. From Proposition 2 comes γ = Ds, which impliesDγ = D2s computed
with non-normalized prices. Let (Dγ)`` denote the (` − 1) × (` − 1) matrix
obtained from the (` × `) matrix Dγ by deleting the `-th row and column.
It follows from the homogeneity of degree zero of γ with respect to non-
normalized prices that (PC) is equivalent to (Dγ)`` being positive definite
and, therefore, to (D2s)`` also positive definite.

Corollary 1. Assume (PC). The “profit function” p → s(p) = p · γ(p) is a
strictly convex function of the numeraire normalized prices p ∈ S.

Remark 1. The utility of profit positivity (PP) will show up later.
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3. The private production model

3.1. Definition

Recall that there are finite numbers m and n of consumers and firms. Con-
sumer i is endowed with the resources represented by the vector ωi ∈ R`
and the ownership of the fraction θi j of firm j , with 0 ≤ θi j ≤ 1. Let
Θ = {θ = (θi j) ∈ (Rn+)m |

∑
j θi j = 1 for 1 ≤ i ≤ m}. An economy with pri-

vate ownership of production is therefore represented by the pair (ω, θ) ∈ Ω×Θ

where ω = (ωi) ∈ Ω and θ = (θi j) ∈ Θ .

3.2. Equilibrium equation

Let p ∈ S be some price vector. Consumer i ’s wealth is, for the price vector
p ∈ S, equal to wi = p · ωi +

∑
j θi j p · gj(p). Consumer i ’s demand is equal

to fi
(
p, p · ωi +

∑
j θi j p · gj(p)

)
. Aggregate demand is the sum of the m

consumers’ demands.
Aggregate supply consists of two terms: 1) The sum of the individual

endowments
∑
i ωi ; 2) The aggregate supply of the m firms, namely the vector∑

j gj(p).

Definition 3. The price vector p ∈ S is an equilibrium price vector of the
economy with private ownership of production (ω, θ) if there is equality of
aggregate demand and supply:∑

i

fi
(
p, p · ωi +

∑
j

θi j p · gj(p)
)

=
∑
i

ωi +
∑
j

gj(p) (2)

The triple
(
p, (ω, θ)

)
is then called an equilibrium of the private production

model defined by the demand functions fi and supply function gj for 1 ≤ i ≤ m
and 1 ≤ j ≤ n.

The equilibrium analysis of the private production model consists in the
study of the properties of the equilibria

(
p, (ω, θ)

)
as a function of the param-

eter (ω, θ) ∈ Ω×Θ.
We take the ownership structure of production as fixed, which is equivalent

to θ ∈ Θ constant. Only the endowment parameter ω = (ωi) ∈ Ω can vary.
An equilibrium of the private production model for a given ownership structure
θ ∈ Θ is then a pair (p, ω) ∈ S×Ω that satisfies the equilibrium equation (2)
for θ ∈ Θ given. The set of all these equilibria is known as the “equilibrium
manifold” though, at this stage, it is by no means obvious that this set is
indeed a smooth manifold. Establishing this smooth manifold structure will be
one of the properties we prove for the production model.
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3.3. Equivalence between the private production model with fixed
ownership structure and the exchange model

Given the price vector p ∈ S, define γi(p) =
∑
j θi jgj(p). Consumer i receives

from the firms he owns a wealth amount equal to
∑
j θi j p · gj(p), expression

that is equal to p · γi(p). This leads us to define:

Definition 4. The production adjusted demand function of consumer i as-
sociated with the fixed ownership structure of production θ ∈ Θ is the map
hi : S × R→ R` where

hi(p, wi) = fi
(
p, wi + p · γi(p)

)
− γi(p).

We associate with the m production adjusted demand functions hi : S ×
R→ R` an “exchange model” where the m consumers would each be charac-
terized by a demand function equal to hi and an endowment vector equal to
ωi , with i = 1, 2, . . . , m. We then have:

Proposition 4. The pair (p, ω) ∈ S × Ω is an equilibrium of the private pro-
duction model (with θ ∈ Θ given) if and only if it is an equilibrium of the
“exchange model” defined by the m (production adjusted) demand functions
hi : S × R→ R`.

Proof. Let us write the equilibrium equation (2) as∑
i

fi
(
p, p · (ωi + γi(p)

)
=
∑
i

ωi +
∑
j

gj(p),

∑
i

fi
(
p, p · (ωi + γi(p)

)
=
∑
i

ωi +
∑
i

(∑
j

θi jgj(p)
)
,

∑
i

fi
(
p, p · (ωi + γi(p)

)
=
∑
i

ωi +
∑
i

γi(p),

from which follows∑
i

(
fi
(
p, p ·

(
ωi + γi(p)

)
− γi(p)

)
=
∑
i

ωi ,

∑
i

hi(p, p · ωi) =
∑
i

ωi ,

the equilibrium equation of the exchange model defined by the m demand
functions hi : S × R→ R`.

The properties of the “exchange model” for the (production adjusted) de-
mand functions (hi), with i = 1, . . . , m, obviously depend on the properties
of these “demand functions.” We will see shortly that these properties are
very close (when they are not identical) to those required in [6] for the main
properties of the exchange model to be satisfied.
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4. Global structure of the equilibrium manifold of the
production model

In this section, we show that (S) smoothness and (W) Walras law are satis-
fied by the production adjusted demand functions hi . We then describe the
implications of these two (default) properties for the global structure of the
equilibrium manifold of the production model.

4.1. An auxiliary result

We start with:

Lemma 2. Property (PS) (resp. (PM), (PP), and (PC)) is satisfied by any
linear non-negative combination of functions from S into R` satisfying (PS)
(resp. (PM), (PP), and (PC)).

Proof. Obvious.

Proposition 5. Assume that the m supply functions gj : S → R` satisfy (PS)
(resp. (PM), (PP) and (PC)). For θ given, the function γi : S → R` satisfies
(PS) (resp. (PM),(PP) and (PC)) for i = 1, . . . , m.

Proof. Follows readily from Lemma 2.

4.2. Smoothness (S) and Walras law (W) for production adjusted
demand functions

Recall the default assumption that all demand functions fi satisfy (S) and (W)
and all supply function gj (PS) and (PM).

Proposition 6. The production adjusted demand function hi satisfies (S) and
(W) for i = 1, . . . , m.

Proof. Smoothness (S) is obvious. Walras law (W) for hi follows readily from
Walras law (W) for fi by

p · hi(p, wi) = p ·
(
fi
(
p, wi + p · γi(p)

)
− γi(p)

)
,

p · hi(p, wi) = wi + p · γi(p)− p · γi(p),

p · hi(p, wi) = wi .

Note that (S) and (W) are satisfied by hi even if the default assumptions
(PM) is (resp. (PS) and (PM) are) not satisfied.
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4.3. Applications to the global structure of the equilibrium manifold

.
The main global properties of the equilibrium manifold in the exchange

model do not require more than the default assumption that (S) and (W)
are satisfied by all demand functions [4, 6]. This readily implies the following
properties for the production model with fixed ownership structure θ ∈ Θ

and more particularly for its equilibrium manifold E and its subset of no-trade
equilibria T associated with the production adjusted demand functions hi .

Theorem 1.

P1. The equilibrium manifold E is a smooth submanifold of S×Ω of dimension
`m.

P2. The set of no-trade equilibria T is diffeomorphic to S×Rm and, therefore,
to R`+m−1.

P3. The equilibrium manifold E is diffeomorphic to T × R(`−1)(m−1).

Recall that it is not readily obvious from the definition of the equilibrium
manifold by equation (2) that this set is indeed a smooth manifold and, even
more, a smooth submanifold of S ×Ω. This property follows from (P1).

Proof. It follows from Proposition 6 that all production adjusted demand func-
tions hi satisfy (S) and (W). It then suffices to apply the relevant global struc-
ture theorems of [4].

Remark 2. Note that the combination of (P2) and (P3) implies that the equi-
librium manifold E is diffeomorphic to R`m. Property (P3) also gives us a
global coordinate system that is very convenient when it comes to character-
izing sets of equilibria that satisfy properties like being regular or stable for
example. This diffeomorphism is also particularly useful when it comes to an-
alyze properties that are satisfied at the no-trade equilibria but that fail to be
satisfied for large trade vectors.

The only global property known previously for the equilibrium manifold of
smooth production economies was its pathconnectedness and simple connect-
edness proved by Jouini [13].

5. Properness of the natural projection for the produc-
tion model

We have not established that the production adjusted demand functions hi
satisfy desirability (A) or boundedness from below (B) because this does not
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happen under realistic assumptions for the firms’ supply functions gj . These
two properties would require stronger assumptions than those that are gener-
ally accepted. For example, Property (B) would be satisfied if every production
set were bounded from above, which is a rather strong assumption.

The main role of (A) for at least one demand function fi and (B) for
all demand functions (fi) is to imply the properness of the natural projection
π : E → Ω in the exchange model associated with those demand functions
(fi). See [6]. A solution is therefore to substitute a property that would make
more economic sense than (A) and (B) in the production environment. This
leads us to consider the following widely accepted property of the aggregate
supply function.

5.1. The aggregate supply function

The aggregate supply function g : S → R` is the sum
∑
j gj of all net supply

functions. We then have:

Proposition 7. Let the m supply functions gj : S → R` satisfy (PS) (resp.
(PM), (PP) and (PC)). The aggregate supply function g =

∑
j gj : S → R`

satisfies (PS) (resp. (PM),(PP) and (PC)).

Proof. Follows again from Lemma 2.

Let us denote by g+(p) and g−(p) the positive and the opposite of the
negative components of g(p). This definition implies g(p) = g+(p)− g−(p).
The vector g−(p) represents the quantities of inputs (measured positively)
while g+(p) represents the quantities of outputs. We then define the following
property:

(FIFO) (Finite inputs finite outputs) For any A ∈ R`++, there exists B ∈ R`++

such that the inequality g−(p) ≤ A implies the inequality g+(p) ≤ B.

Property (FIFO) simply states the impossibility of producing infinite quan-
tities of some goods with only finite quantities of inputs. This property is often
interpreted as expressing an idea of irreversibility in production. For alternative
formulations of the same idea, see for example [10].

5.2. Properness of the natural projection

Theorem 2. In addition to the default assumptions, all consumers’ demand
functions fi satisfy (B) (boundedness from below), one consumer’s demand
function fi at least satisfies (A) (desirability), all supply functions gj satisfy
(PP) (profit positivity) and the aggregate supply function g =

∑
j gj satisfies

(FIFO) (finite inputs finite outputs).

P4. The natural projection π : E → Ω is a proper map.
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P5. The modulo 2 degrees of the natural projection is defined and equal to
one. The topological degree is also defined and equal to one for suitable
orientations of the equilibrium manifold E and parameter space Ω.

Proof of P4. Let K be a compact subset of Ω. Let us show that the preimage
π−1(K) is a compact subset of the equilibrium manifold E. First, the set
π−1(K) is closed in E as the preimage of a closed set by a continuous map.

The compactness of π−1(K) will be proved by showing that every infinite
sequence (pq, ωq) in π−1(K) has a convergent subsequence. It follows from
the compactness of K that the sequence ωq has a subsequence that con-
verges to ω0 ∈ K. There is no loss in generality in considering directly this
subsequence (pq, ωq).

Let p̃q be the simplex normalized price vector corresponding to the nu-
meraire normalized price vector pq. It follows from the compactness of the
closed price simplex SΣ that there is a subsequence of the sequence p̃q that
converges to p̃0 ∈ SΣ.

If p̃0 belongs to the interior SΣ, then p0, the numeraire normalized price
vector corresponding to p̃0 belongs to S and is the limit of the (sub)sequence
pq. There is nothing more to prove.

Let us show therefore that the limit p̃0 cannot belong to the boundary
∂SΣ = SΣ \ SΣ.

The proof proceeds by contradiction. Assume the contrary. The equilib-
rium equation satisfied by (pq, ωq) is∑

i

fi(p
q, pq · ωqi + pq · γi(pq)) =

∑
i

ωqi + g(pq)

for any q ≥ 0. It follows from pq · γi(pq) ≥ 0 by (PP) combined with Lemma
1 that fi(pq, pq · ωq + pq · γi(pq)) is bounded from below for every i .

There exists therefore Bi ∈ R` such that

Bi ≤ fi
(
pq, pq · (ωqi + γi(p

q))
)
, (3)

for 1 ≤ i ≤ m and any integer q ≥ 0. This implies the inequality∑
i

Bi ≤
∑
i

fi
(
pq, pq · (ωqi + γi(p

q))
)

(4)

for any q ≥ 0.
The image of the compact set K by the map ω →

∑
ωi is a compact set

and, therefore, is bounded from above by some A ∈ R`:
∑
i ωi ≤ A for any

ω ∈ K.
The inequality ∑

i

Bi ≤ A+ g(pq).
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then follows from inequality (4) combined with the fact that (pq, ωq) is an
equilibrium. The sequence g(pq) is therefore bounded from below. This implies
that it is also bounded from above by (FIFO).

The boundedness of the sequence g(pq) has two consequences: 1) Each
sequence fi

(
pq, pq · (ωqi + γi(p

q))
)
is bounded from below and from above,

hence bounded; 2) We can find a subsequence of pq such that the correspond-
ing subsequence g(pq) converges to some limit g0 ∈ R`.

It follows from the second consequence that the inner product pq · g(pq)

tends to the finite limit p0 · g0 and is finite. It follows from the positivity of
profit (PP) satisfied by γi that the inequality 0 ≤ pq ·γi(pq) ≤ pq ·g(pq) implies
that the sequence pq · γi(pq) belongs to a compact interval of the set of real
numbers and, by considering a subsequence, converges to some non-negative
real number w0

i .
There is no loss in generality in assuming that it is the demand function f1

of consumer 1 that satisfies (A). We have seen that the sequence f1
(
pq, pq ·

(ωq1 + γ1(pq))
)
is bounded. We have also seen that pq · (ωq1 + γ1(pq)) tends

to a finite limit. These two conditions are incompatible with (A) if the limit
p̃0 belongs to the boundary ∂SΣ = SΣ \ SΣ, hence a contradiction.

Proof of P5. Smoothness (S) and (P4) (properness) imply that it is possible
to define two concepts of degrees for the natural projection π : E → Ω:
1) the modulo 2 degree that is the remainder of the division by two of the
number of equilibria associated with a regular value of the map π; 2) the
topological or Brouwer degree that counts the number of “oriented” equilibria
above a regular value, a positively oriented equilibrium counting for +1 and a
negatively oriented one for -1.

In order to compute the degrees of the natural projection, it then suffices
to use the invariance of both degrees by proper homotopy combined with the
global coordinate system for the equilibrium manifold given by (P3). The
degree of the natural projection for arbitrary demand functions (hi) is then
the same as for analytically simpler demand functions. Simple computations
then show that it is equal to +1 (for suitable orientations of the equilibrium
manifold E and endowment set Ω in the case of the topological degree) and
to one for the modulo two degree. See [6] for details.

Comments

It is a textbook property that a smooth proper map defines a finite open
covering of its set of regular values. The set of singular values Σ of the map π :

E → Ω is therefore closed by the properness of π and this set has measure zero
in Ω by Sard’s theorem. Its complement, the set of regular values R = Ω \Σ,
is open with full measure. In addition, the number of equilibria associated with
ω ∈ R is then finite and locally constant. An equilibrium price selection map is
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also defined and is smooth in some open neighborhood of every ω ∈ R. These
are essentially the properties established for exchange economies by Debreu in
[8], properties that were extended to smooth production economies by Fuchs
[10]. The degree of a regular exchange economy was defined by Dierker [9]
and generalized to smooth production economies by T. Kehoe [15].

6. Regularity of no-trade equilibria and number of equi-
libria

6.1. Property (NQD) for production adjusted demand functions

Before stating and proving (NQD) for the production adjusted demand func-
tions hi , we begin by a useful lemma with the default assumptions:

Lemma 3. The Jacobian matrix at p′ = p of the map

p′ → fi
(
p′, p′ · (ωi + γi(p

′))
)
− fi

(
p′, p′ · (ωi + γi(p))

)
is equal to 0.

Proof. The only term of row j and column k that is not obviously equal to
zero in the computation of this Jacobian matrix is

∂f ji
∂wi

(
p, p · (ωi + γi(p))

)
p ·

∂γi
∂pk

(p) ·

This term is equal to zero because p ·
∂γi
∂pk

(p) is equal to zero by Proposition

1.

We now address (NQD).

Proposition 8. Assume that all supply functions gj : S → R` satisfy (PP)
and (PC). The production adjusted demand function hi : S×R→ R` satisfies
(NQD) if the demand function fi : S × R→ R` satisfies (NQSD).

Proof. A no-trade equilibrium in the exchange model with production adjusted
demand function (hi) is a pair (p,ω) ∈ S ×Ω such that ωi = hi(p, p · ωi) for
i = 1 to m. We then have :

ωi + γi(p) = fi
(
p, p · (ωi + γi(p))

)
.

Pick some ωi that satisfies that relation and let wi = p · ωi .
The Slutsky matrix Shi(p, wi) of the (production adjusted) demand func-

tion hi at (p, wi) is the Jacobian matrix at p′ = p of the map

p′ → hi(p
′, p′ · ωi) = fi

(
p′, p′ · (ωi + γi(p

′))
)
− γi(p′).
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By writing

fi
(
p′, p′ ·

(
ωi + γi(p

′)
))
− γi(p′) = fi

(
p′, p′ ·

(
ωi + γi(p)

))
− γi(p′)+(

fi
(
p′, p′ ·

(
ωi + γi(p

′)
)
− fi

(
p′, p′ ·

(
ωi + γi(p)

))
,

this Jacobian matrix is the sum of the Jacobian matrices of the maps p′ →
fi
(
p′, p′ · (ωi + γi(p))

)
− γi(p′) and p′ → fi

(
p′, p′ · (ωi + γi(p

′))
)
− fi

(
p′, p′ ·

(ωi + γi(p))
)
.

The Jacobian matrix of the second map at p′ = p is equal to zero by
Lemma 3. The Jacobian matrix of the first map is itself the sum of two
matrices, the Jacobian matrix of the map p′ → fi

(
p′, p′ · (ωi + γi(p))

)
and

of the map p′ → −γi(p′). The restriction to the hyperplane H(p) of R`
perpendicular to p ∈ S of the quadratic form defined by the second matrix
is negative definite by (PC). The first matrix is a standard Slutsky matrix
since ωi + γi(p) = fi

(
p, p · (ωi + γi(p))

)
. The restriction of the quadratic

form it defines to the hyperplane H(p) is again negative quasi-semi-definite
by (NQSD). The sum of a semidefinite negative form and a negative definite
quadratic form is negative definite.

6.2. Relations between T and π(T )

For the following theorem, let J(p, ω) be the ` × ` Jacobian matrix J(p, ω)

of the aggregate excess demand map p →
∑
i hi(p, p · ωi) −

∑
i ωi for non-

normalized prices p ∈ R`++. This aggregate excess demand map is homoge-
nous of degree zero. The matrix J(p, ω) has a determinant equal to zero and
its rank is less than or equal to `− 1. The equilibrium (p, ω) ∈ E is regular if
and only if the rank of J(p, ω) is equal to `−1. See [6]. This characterization
is important because this Jacobian matrix coincides with the sum of individual
Slutsky matrices

∑
i Shi(p, p · ωi) at the no-trade equilibrium (p, ω) ∈ T .

Theorem 3. Let all supply functions gj : S → R` satisfy (PP) and (PC) and
all demand functions fi : S × R→ R` satisfy (NQSD).

P6. We have π−1
(
π(T )

)
= T .

P7. The quadratic form z ∈ R` → zT J(p, ω) z restricted to the hyperplane
H(p) = {z ∈ R` | pT z = 0} is definite negative at every no-trade
equilibrium (p, ω) ∈ T .

Proof. It suffices to reproduce the proofs given in [4].

Comments

Theorem 3 tells us that there is a unique (regular) equilibrium associated with
the endowment vector ω = (ωi) ∈ Ω whenever ωi+γi(p) = fi(p, wi+p ·γi(p))
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for i = 1, . . . , m and (p, w1, . . . , wm) ∈ S×Rm. The set of these endowments
is diffeomorphic to S × Rm. At variance with the exchange model, these
endowment vectors do not coincide with the Pareto optima of the production
model when consumers’ preferences are defined by utility functions.

Properties (P6) and (P7) give us a very simple way of computing the
degrees of the natural projection under the stronger assumptions of (NQSD)
for all demand functions fi : any equilibrium allocation ω ∈ π(T ) is then a
regular value of the natural projection and the preimage of an equilibrium
allocation being unique, the modulo 2 degree is obviously equal to 1 and the
topological degree is also equal to 1 for a suitable orientation of the equilibrium
manifold E and of Ω. See [2].

Property (P6) is considerably stronger than the two theorems of welfare
economics. The latter are only equivalent to the diffeomorphism between
the set of no-trade equilibria T and its image π(T ) (itself identical to the
set of Pareto optima when preferences are representable by utility functions).
Having a diffeomorphism does not exclude the possibility for other points of
the equilibrium manifold to project in π(T ). That possibility is excluded by
(P6) [2].

π

Ω

E

Γ

Σ

T

π(T )

Figure 1: The equilibrium manifold and the natural projection for the smooth
production model

Property (P7) implies that the no-trade equilibria are regular points of the
natural projection. Combined with (P6), this implies that the set π(T ) is
contained in the set of regular values R. In addition, since T is connected by
(P4), the set π(T ) is contained in one connected component of R [2].
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Another consequence of (P7) is that the set of critical points of the natural
projection (i.e., the critical equilibria) is a closed subset with measure zero
of the equilibrium manifold [5]. That property implies in turn that the set of
singular economies is also closed with measure zero. Note that Sard’s theorem
enabled us to prove that property without requiring (NQSD) for all demand
functions (fi).

Property (P7) also implies that the no-trade equilibria are tatonnement
stable [2], which in turn suffices to imply the pathconnectedness of the set of
tatonnement stable equilibria [3].

The relations between the equilibrium manifold E and some of its subsets
and the endowment set Ω and some of its subsets are illustrated by the picture.

7. Concluding comments

The main result of this paper is the extension of the equilibrium manifold and
natural projection approach to the setup of smooth production economies.
This implies far more than the generic finiteness and continuity of equilibria or
the homeomorphism of the equilibrium manifold with a Euclidean space. For
example, this approach underlines the remarkable role played by the amount
of trade in creating discontinuities of equilibrium price selections in situations
of multiple equilibria, a phenomenon that is therefore not limited to exchange
economies. The identification of that phenomenon for smooth production
economies is new.

A goal for future research will be to extend the results of this paper to
production economies that feature convex polyhedral or conical production
sets. The extension of the generic finiteness and continuity of equilibrium
selections by Mas-Colell [16] and of the topological degree by T. Kehoe [14] is a
good omen for the extension of the equilibrium manifold and natural projection
approach to that setup.

References

[1] Y. Balasko. The graph of the Walras correspondence. Econometrica,
43:907–912, 1975.

[2] Y. Balasko. Some results on uniqueness and on stability of equilibrium
in general equilibrium theory. Journal of Mathematical Economics, 2:95–
118, 1975.

[3] Y. Balasko. Connectedness of the set of stable equilibria. SIAM Journal
of Applied Mathematics, 35:722–728, 1978.

[4] Y. Balasko. Foundations of the Theory of General Equilibrium. Academic
Press, Boston, 1988.

18



[5] Y. Balasko. The set of regular equilibria. Journal of Economic Theory,
58:1–9, 1992.

[6] Y. Balasko and M. Tvede. General equilibrium without utility functions:
How far to go? Economic Theory, forthcoming.

[7] G. Debreu. Theory of Value. Wiley, New York, 1959.

[8] G. Debreu. Economies with a finite set of equilibria. Econometrica,
38:387–392, 1970.

[9] E. Dierker. Two remarks on the number of equilibria of an economy.
Econometrica, 40:951–953, 1972.

[10] G. Fuchs. Private ownership economies with a finite number of equilibria.
Journal of Mathematical Economics, 1:141–158, 1974.

[11] C. Ghiglino and M. Tvede. Multiplicity of equilibria. Journal of Economic
Theory, 75:1–15, 1997.

[12] V. Guillemin and A. Pollack. Differential Topology. Prentice-Hall, Engle-
wood Cliffs, N.J., 1974.

[13] E. Jouini. The graph of the Walras correspondence. The production
economies case. Journal of Mathematical Economics, 22:139–147, 1993.

[14] T.J. Kehoe. An index theorem for general equilibrium models with pro-
duction. Econometrica, 48:1211–1232, 1980.

[15] T.J. Kehoe. Regularity and index theory for economies with smooth
production technologies. Econometrica, 51:895–918, 1983.

[16] A. Mas-Colell. On the continuity of equilibrium prices in constant returns
production economies. Journal of Mathematical Economics, 2:21–33,
1975.

[17] J. Milnor. Topology from the Differentiable Viewpoint. Princeton Uni-
versity Press, Princeton, 2nd edition, 1997.

[18] S. Smale. Global analysis and economics IIA: Extension of a theorem of
Debreu. Journal of Mathematical Economics, 1:1–14, 1974.

[19] S. Smale. Global analysis and economics III: Pareto optima and price
equilibria. Journal of Mathematical Economics, 1:107–117, 1974.

[20] S. Smale. Global analysis and economics IV: Finiteness and stability
with general consumption sets and production. Journal of Mathematical
Economics, 1:119–128, 1974.

19


