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Abstract

Recently Kajii and Ui [17] proposed to characterize interim efficient allocations in an
exchange economy under asymmetric information when uncertainty is represented by
multiple posteriors. When agents have Bewley’s incomplete preferences, Kajii and Ui [17]
proposed a necessary and sufficient condition on the set of posteriors. However, when
agents have Gilboa–Schmeidler’s MaxMin expected utility preferences, they only propose
a sufficient condition.

The objective of this paper is to complete Kajii and Ui’s work by proposing a necessary
and sufficient condition for interim efficiency for various models of ambiguity aversion
and in particular MaxMin expected utility. Our proof is based on a direct application of
some results proposed by Rigotti, Shannon and Stralecki [24].
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1. Introduction

We borrow from Kajii and Ui [17] the following model of an exchange economy with
a single good and a finite set of possible states of nature. Finitely many agents ex-
change contingent contracts. There are two stages: ex-ante each agent’s perception of
uncertainty is represented by a family of priors; at the interim stage each agent receives a
private signal about which states will not occur and his interim perception of uncertainty
is then represented by a family of posteriors. Each agent is endowed with a concave utility
index function from which he derives either Bewley’s incomplete preferences or Gilboa–
Schmeidler’s MaxMin expected utility preferences. The set of priors induces preferences
at the ex-ante stage (before agents receive their private signal) and the set of posteriors
induces preferences in the interim stage depending on the private signal agents receive.
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It is well-known that ex-ante efficiency can be characterized through a necessary and
sufficient condition imposed on agents’ priors. Bewley [2] and Rigotti and Shannon [23]
characterized ex-ante efficiency for agents with Bewley’s incomplete preferences.1 Billot,
Chateauneuf, Gilboa and Tallon [4] and Rigotti, Shannon and Stralecki [24] characterized
ex-ante efficiency for agents with Gilboa–Schmeidler’s MaxMin expected utility prefer-
ences.2

In the standard Bayesian models, Morris [21] and Feinberg [13] provided a character-
ization of interim efficiency in terms of agents’ posteriors. Kajii and Ui [17] proposed to
address the same question when agents have multiple posteriors. They identified a key
concept, called the compatible prior set, that plays a crucial role in their analysis. The
compatible prior set of an agent is the collection of all probability measures which, con-
ditional to each private signal, coincides with a posterior.3 When agents have Bewley’s
incomplete preferences, Kajii and Ui [17] succeeded to characterize interim efficiency by
providing a necessary and sufficient condition in terms of compatible prior sets. For the
particular case of linear utility index functions (risk neutral agents), they proved that an
allocation is interim efficient if and only if the compatible prior sets of all agents have a
non-empty intersection.

When agents have Gilboa–Schmeidler’s MaxMin expected utility preferences, Kajii
and Ui [17] proposed a condition that is only sufficient. The objective of this paper is
to show that it is possible to find a necessary and sufficient condition for interim effi-
ciency when agents have Gilboa–Schmeidler’s MaxMin expected utility preferences. The
condition that we propose is closely related to the one introduced by Kajii and Ui [17].
Actually we show that the concept of compatible prior set is central not only for models
where agents have Bewley’s incomplete preferences or Gilboa–Schmeidler’s MaxMin ex-
pected utility preferences, but also for any model with general convex preferences. More
precisely, we provide a general necessary and sufficient condition for interim efficiency
in terms of compatible priors associated to interim subjective beliefs as introduced by
Rigotti, Shannon and Stralecki [24]. All the characterization results in Kajii and Ui [17]
follow as corollaries of our general characterization. In particular, having a complete
characterization of ex-ante and interim efficiency, we can provide conditions under which
there is no speculative trade as first studied by Milgrom and Stockey [20] for standard
Bayesian models.

The paper is organized as follows. Section 2 sets up the formal framework, notation
and some preliminary definitions. The characterization results proposed by Kajii and
Ui [17] are presented in Section 3. Our necessary and sufficient condition for interim
efficiency is stated and proved in Section 4. We illustrate in Section 5 how the results
in Kajii and Ui [17] can be deduced from our general characterization. Section 6 shows
how our results can be extended to encompass general convex preferences. We explore a
slightly different concept of interim efficiency in Section 7 and Section 8 is devoted to no
speculative trade.

1See also Dana [8].
2See also Dana [7], Samet [25], Tallon [27], Chateauneuf, Dana and Tallon [5], Dana [9] and Dana [10].
3Technically, the compatible prior set of an agent is the convex hull of all sets of the agent’s posteriors.
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2. Set up

We consider a model of an exchange economy E under uncertainty with asymmetric
information as presented in Kajii and Ui [17]. There is a finite set Ω of states. The set
of all probability measures over Ω is denoted by Prob(Ω) and we let P be the collection
of all non-empty, convex and closed subsets of Prob(Ω). The expectation of a vector
x ∈ RΩ under a probability measure p ∈ Prob(Ω) is denoted by Ep[x], i.e.,

Ep[x] =
∑
ω∈Ω

p(ω)x(ω).

If P is a set in P then we let
EP [x] = min

p∈P
Ep[x].

There is a finite set I of agents. Each agent i’s information is characterized by a
partition Πi of Ω. Any event π ∈ Πi can be interpreted as a signal received by agent i at
the interim stage. Given a state ω ∈ Ω, the unique event π ∈ Πi containing ω is denoted
by Πi(ω). The information is assumed to be correct in the sense that if the state of nature
is ω, agent i knows that the true state does not belong to Ω \ Πi(ω) but cannot discern
among the states in Πi(ω) which one is the true state. Each agent i has a set of priors
P i ∈ P which represents his prior beliefs, and a set of posteriors Φi(π) ∈ P for each
signal π ∈ Πi, which represents his posterior beliefs after observing π. The collection of
posteriors {Φi(π)}π∈Πi is denoted by Φi.

Assumption 2.1. For every agent i and every signal π ∈ Πi,

(a) there exists at least one prior p ∈ P i such that p(π) > 0;

(b) every posterior r ∈ Φi(π) satisfies r(π) = 1.

For notational convenience, given a subset π ⊂ Ω, we denote by P(π) the subset of
P defined as follows: a set P ∈ P belongs to P(π) if and only if the support of any
probability in P is a subset of π, i.e.,

∀r ∈ P, r(π) = 1.

Observe that for every agent i and every interim signal π ∈ Πi, the set of posteriors
Φi(π) belongs to P(π).

There is a single good in the economy, and agent i has a concave, strictly increas-
ing and continuous differentiable utility index function ui : [0,∞) → R which induces
MaxMin expected utility preferences as defined by Gilboa and Schmeidler [14].

Definition 2.1. Agent i (strictly) prefers the contingent consumption bundle y ∈ RΩ
+

to x ∈ RΩ
+ at the ex-ante stage if

EP i [ui(y)] > EP i [ui(x)].

The set of all contingent consumption bundles that are (strictly) preferred to x at the
ex-ante stage is denoted by PrefiΩ(x).

Similarly, we can define agent i’s preference relation at the interim stage.
3



Definition 2.2. Agent i (strictly) prefers the contingent consumption bundle y ∈ RΩ
+

to x ∈ RΩ
+ at the interim stage with private information π ∈ Πi if

EΦi(π)[u
i(y)] > EΦi(π)[u

i(x)].

The set of all contingent consumption bundles that are (strictly) preferred to x at the
interim stage with private information π ∈ Πi is denoted by Prefiπ(x).

An allocation x is a family x = (xi)i∈I where xi is a vector in RΩ
+ representing a

contingent consumption bundle. We fix from now on an allocation e = (ei)i∈I where ei

can be interpreted as the current endowment of agent i.

Assumption 2.2. For each agent i, the contingent consumption bundle ei is interior in
the sense that

∀ω ∈ Ω, ei(ω) > 0.

A family t = (ti)i∈I where ti is a vector in RΩ is called a feasible trade (from the
allocation e) if

∀i ∈ I, ei + ti ∈ RΩ
+ and

∑
i∈I

ti = 0.

Each vector ti correspond to the net trade of agent i. We follow Kajii and Ui [17] and
introduce the concepts of ex-ante and weak interim efficiency.

Definition 2.3. The allocation e is

• ex-ante efficient if there does not exist a feasible trade t such that each agent i
prefers at the ex-ante stage the contingent consumption ei + ti to ei;

• weakly interim efficient if there does not exist a feasible trade t such that each
agent i prefers at every interim stage π ∈ Πi the contingent consumption ei + ti to
ei.4

In other words, the allocation e is not ex-ante efficient if and only if there exists a
feasible trade t such that

∀i ∈ I, ei + ti ∈ PrefiΩ(ei).

The allocation e is not weakly interim efficient if and only if there exists a feasible trade
t such that

∀i ∈ I, ∀π ∈ Πi, ei + ti ∈ Prefiπ(ei).

In order to provide a characterization of efficiency in terms of primitives it is important
to characterize the set of net trades ti such that the associated contingent consumption
ei+ti is strictly preferred to the initial endowment ei when agents have MEU-preferences.
For that purpose, we need to introduce the concept of active belief.

Definition 2.4. Fix an agent i and a set Q ∈ P of beliefs. We denote by Acti(Q) the
set of beliefs p ∈ Q that minimize Ep[ui(ei)] over Q, i.e.,

Acti(Q) = argmin{Ep[ui(ei)] : p ∈ Q}.

Any belief in Acti(Q) is called an active belief in Q at ei.

4We will introduce a concept of strong interim efficiency in Section 7.
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Since we allow for risk-averse agents, we also need to introduce the concept of risk-
adjusted belief.

Definition 2.5. Fix an agent i and a belief p ∈ Prob(Ω). The risk-adjusted belief RAi(p)
is the probability measure in Prob(Ω) defined by5

∀ω ∈ Ω, RAi(p)(ω) =
p(ω)∇ui(ei(ω))

Ep[∇ui(ei)]
.

Given a set Q ∈ P of beliefs, we denote by RAi(Q) the set of risk-adjusted beliefs defined
by

RAi(Q) =
⋃
q∈Q
{RAi(q)}.

Adapting the arguments in Rigotti, Shannon and Stralecki [24] we can prove the
following lemma. This is the crucial technical result of this paper. We provide a detailed
proof for more general preferences in Section 6.

Lemma 2.1. Fix an agent i, a set of beliefs Q ∈ P and a net trade ti ∈ RΩ such that
ei + ti > 0.

• If ei + ti satisfies EQ[ui(ei + ti)] > EQ[ui(ei)] then

∀p ∈ RAi ◦Acti(Q), Ep[ti] > 0. (1)

• Reciprocally, if ti is such that (1) is satisfied then there exists ε > 0 small enough
such that EQ[ui(ei + ηti)] > EQ[ui(ei)] for every η ∈ (0, ε).

A direct consequence of this lemma and the fundamental theorem of welfare economics
is the following characterization of ex-ante efficiency.6

Proposition 2.1. The allocation e is ex-ante efficient if and only if⋂
i∈I

RAi ◦Acti(P i) 6= ∅.

It is natural to investigate whether a similar characterization is possible for weak
interim efficiency.

3. The characterization proposed by Kajii and Ui

Kajii and Ui [17] introduced the key concept of compatible priors which is a natural
way to construct a family of priors when starting from a family of posteriors.

5If f : [0,∞)→ R is differentiable on (0,∞), we denote by ∇f(α) the differential of f at α > 0.
6See Proposition 2 and Proposition 7 in Rigotti, Shannon and Stralecki [24] or Proposition 5 in Kajii

and Ui [17]. We also refer to Dana [7], Samet [25], Tallon [27], Chateauneuf, Dana and Tallon [5], Billot,
Chateauneuf, Gilboa and Tallon [4], Dana [9] and Dana [10] for related results.
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Definition 3.1. Fix an agent i and a family Q = (Q(π))π∈Πi of posterior beliefs where
for each interim signal π ∈ Πi, the set Q(π) belongs to P(π). A probability p ∈ Prob(Ω)
is said to be a Q-compatible prior if for every interim signal π ∈ Πi, the conditional
probability p(·|π), when it exists, belongs to the set Q(π). The set of all Q-compatible
priors is denoted by CPi(Q).

Kajii and Ui [17] showed that the set of Q-compatible priors is actually the convex
hull of the union of all sets Q(π), i.e.,

CPi(Q) = co
⋃
π∈Πi

Q(π).

In particular the set CPi(Q) is non-empty, convex and closed, i.e., it belongs to P.
Unfortunately, Kajii and Ui [17] did not propose a “general” characterization of weak

interim efficiency similar to the characterization given in Proposition 2.1 for ex-ante
efficiency. They propose a sufficient condition and prove that this condition is necessary
provided that the interim utility of the initial endowment is independent of the signal
received, i.e., the following mapping

π 7→ EΦi(π)[u
i(ei)]

is constant over Πi for every agent i.

Definition 3.2. The allocation e is said to have constant interim utility if for every
agent i, the utility at an interim stage of the contingent consumption ei is independent
of the signal received, i.e.,

∀i ∈ I, ∀π, σ ∈ Πi, EΦi(π)[u
i(ei)] = EΦi(σ)[u

i(ei)].

Kajii and Ui [17] proved the following (partial) characterization.

Proposition 3.1.

(a) The allocation e is weakly interim efficient if7⋂
i∈I

RAi ◦Acti ◦CPi(Φi) 6= ∅. (2)

(b) If the allocation e has constant interim utility then condition (2) is also necessary.

In order to provide a necessary and sufficient condition for weak interim efficiency,
Kajii and Ui [17] introduced the concept of full insurance in the interim stage.

Definition 3.3. A contingent consumption bundle x has the full-insurance property at
the interim stage for agent i if it is privately measurable in the sense that the restriction
of x to each signal π ∈ Πi is constant.

Kajii and Ui [17] proposed the following necessary and sufficient condition when the
allocation e is privately measurable.

7We abuse notations by writing RAi ◦Acti ◦CPi(Φi) instead of RAi
[
Acti

[
CPi(Φi)

]]
.
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Proposition 3.2. Assume that the allocation e is privately measurable in the sense that
for each agent i, the contingent consumption bundle ei has the full-insurance property
at the interim stage. Then the allocation e is weakly interim efficient if and only if⋂

i∈I
RAi ◦CPi(Φi) 6= ∅. (3)

4. A necessary and sufficient condition for weak interim efficiency

We propose to improve the latter results by exhibiting a necessary and sufficient
condition. For expositional reasons we abuse notations by writing CPi ◦RAi ◦Acti(Φi)
instead of

CPi
[(

RAi
[
Acti(Φi(π))

])
π∈Πi

]
.

Theorem 4.1. The allocation e is weakly interim efficient if and only if⋂
i∈I

CPi ◦RAi ◦Acti(Φi) 6= ∅. (4)

In other words, the allocation e is weakly interim efficient if and only if there exists a
probability measure q ∈ Prob(Ω) and for each i, a family ri = (riπ)π∈Πi with riπ an active
belief of Φi(π) at ei such that

∀i ∈ I, q =
∑
π∈Πi

q(π) RAi(riπ).

The proof will be a very simple consequence of Proposition 2.1. To see this, we need
the following intermediate result.

Lemma 4.1. The allocation e is weakly interim efficient if and only if there does not
exist a feasible trade t such that

∀i ∈ I, ∀p ∈
⋃
π∈Πi

RAi ◦Acti(Φi(π)), Ep[ti] > 0. (5)

Proof of Lemma 4.1. We first prove the “if” part. Assume that there does not exist a
feasible trade satisfying (5) but the allocation e is not weakly interim efficient. Then
there exists a feasible trade t such that

∀i ∈ I, ∀π ∈ Πi, EΦi(π)[u
i(ei + ti)] > EΦi(π)[u

i(ei)].

Following Lemma 2.1 we must have

∀i ∈ I, ∀π ∈ Πi, ∀p ∈ RAi ◦Acti(Φi(π)), Ep[ti] > 0.

This contradicts the assumption that there does not exist a feasible trade satisfying (5).
We now prove the “only if” part. Assume that the allocation e is weakly interim

efficient but there exists a feasible trade τ such that

∀i ∈ I, ∀p ∈
⋃
π∈Πi

RAi ◦Acti(Φi(π)), Ep[τ i] > 0.
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Fix an agent i and a signal π ∈ Πi. We have

∀p ∈ RAi ◦Acti(Φi(π)), Ep[τ i] > 0.

It follows from Lemma 2.1 that there exists εiπ > 0 such that

∀η ∈ (0, εiπ), EΦi(π)[u
i(ei + ητ i)] > EΦi(π)[u

i(ei)].

We let ε > 0 be defined by

ε = min{εiπ : i ∈ I and π ∈ Πi}

and for each i, we pose ti = ετ i. The allocation t = (ti)i∈I is a feasible trade such that

∀i ∈ I, ∀π ∈ Πi, ei + ti ∈ Prefiπ(ei)

which leads to a contradiction.

The proof of Theorem 4.1 follows from Lemma 4.1 and Proposition 2.1. We provide
the straightforward details hereafter.

Proof of Theorem 4.1. Consider the modified economy Ê where

• each agent i is risk-neutral in the sense that his utility index ûi is linear, i.e.,
ûi(c) = c;

• each agent i’s set of priors P̂ i is defined by

P̂ i = co
⋃
π∈Πi

RAi ◦Acti(Φi(π)).

According to Lemma 4.1, the allocation e is weakly interim efficient for the economy E
if and only if it is ex-ante efficient for the economy Ê . Observe that P̂ i coincides with
CPi ◦RAi ◦Acti(Φi). Applying Proposition 2.1, we obtain the desired result.

We provide hereafter an example where Theorem 4.1 can be applied but not the
results in Kajii and Ui [17].

Example 4.1. Consider an exchange economy with two risk-neutral agents I = {i1, i2}
and four states of nature Ω = {ω1, . . . , ω4}.8 Agent i1 may receive two signals Πi1 = {a, b}
with a = {ω1, ω2} and b = {ω3, ω4}. His posterior beliefs are given by

Φi1(a) = {p ∈ Prob(Ω) : p(ω1) + p(ω2) = 1 and 1/4 6 p(ω1) 6 1/2}

and

Φi1(b) = {p ∈ Prob(Ω) : p(ω3) + p(ω4) = 1 and 1/4 6 p(ω3) 6 1/2}.

8The utility index function ui of each agent i is defined by ui(c) = c for each c > 0.
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Agent i1’s contingent bundle is ei1 = (1, 3, 3, 1). Agent i2 has no private information,
i.e., Πi2 = {Ω} and his posterior beliefs are represented by a single probability

Φi2(Ω) = {(1/4, 1/4, 1/8, 3/8)}.

Agent i2’s contingent bundle is any interior vector ei2 ∈ RΩ
++. We can compute the set

of active priors for agent i1:

Acti1(Φi1(a)) = {(1/2, 1/2, 0, 0)} and Acti1(Φi1(b)) = {(0, 0, 1/4, 3/4)}.

It follows that

CPi1 ◦Acti1(Φi1) = {p ∈ Prob(Ω) : p(ω1) = p(ω2) and p(ω4) = 3p(ω3)}.

Since the unique posterior belief of agent i2 belongs to CPi1 ◦Acti1(Φi1), we can apply
Theorem 4.1 to conclude that the allocation e is weakly interim efficient. Since the
interim expected utility of agent i1 is not constant, we cannot apply Proposition 6 in
Kajii and Ui [17].9 Neither can we apply Proposition 7 in Kajii and Ui [17] since ei1 does
not have the full-insurance property at the interim stage.

5. Relation with the literature

In order to simplify the comparison between our characterization result and those
presented in Kajii and Ui [17], we propose to state some properties satisfied by the
operators Acti, CPi and RAi. The details of the proofs are postponed to appendices.

Lemma 5.1. For every agent i and every family Q = (Q(π))π∈Πi of posterior beliefs
Q(π) ∈ P(π), we have

CPi ◦RAi(Q) = RAi ◦CPi(Q).

Remark 5.1. As a consequence of Theorem 4.1 and Lemma 5.2 we obtain the following
equivalent characterization: The allocation e is weakly interim efficient if and only if⋂

i∈I
RAi ◦CPi ◦Acti(Φi) 6= ∅. (6)

Lemma 5.2. For every agent i and every family Q = (Q(π))π∈Πi of posterior beliefs
Q(π) ∈ P(π), we always have

Acti ◦CPi(Q) ⊂ CPi ◦Acti(Q).

The converse inclusion is true if e has constant interim utility.

9We can check that

EΦi1 (a)[u
i1 (ei1 )] = 2 and EΦi1 (b)[u

i1 (ei1 )] = 3/2.

Observe moreover that
Acti1 ◦CPi1 (Φi1 ) = {(0, 0, 1/4, 3/4)}.

Since the unique posterior belief of agent i2 does not belong to Acti1 ◦CPi1 (Φi1 ), condition (7) in Kajii
and Ui [17] cannot be necessary.
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The partial characterization proved by Kajii and Ui [17] (and presented in Proposi-
tion 3.1) follows from our main characterization result (Theorem 4.1) and the two pre-
ceding lemmas. One may want to compare Proposition 3.2 with our general necessary
and sufficient condition. The following characterization is a straightforward consequence
of Theorem 4.1.

Proposition 5.1. Assume that the allocation e is privately measurable. Then the
allocation e is weakly interim efficient if and only if⋂

i∈I
CPi(Φi) 6= ∅. (7)

Proof of Proposition 5.1. Assume that the allocation e is privately measurable. It is
sufficient to prove that for each agent i and each private signal π ∈ Πi, we have
RAi ◦Acti(Φi(π)) = Φi(π). Since ei is constant on π, we denote by ei(π) its value.
Observe that for each rπ ∈ Φi(π) we have Erπ [ui(ei)] = ui(ei(π)). In particular, any
posterior belief is active, i.e., Acti[Φi(π)] = Φi(π).

We propose now to prove that there is no need to adjust for risk. This is very intuitive
since there is no risk. More precisely, let κπ be a probability measure in RAi(Φi(π)).
There exists a posterior belief rπ ∈ Φi(π) such that

∀ω ∈ Ω, κπ(ω) =
1

Erπ [∇ui(ei)]
∇ui(ei(ω))rπ(ω).

Since ei is constant on π, the function ω 7→ ∇ui(ei(ω)) is also constant on π. We
denote by ∇ui(ei(π)) its value. It follows that Erπ [∇ui(ei)] = ∇ui(ei(π)) implying that
κπ = rπ.

Our necessary and sufficient condition (7) seems to be different from (3) the condition
proposed by Kajii and Ui [17]. Actually, when the allocation e has the full-insurance
property at the interim stage, there is no need to adjust Φ-compatible priors to risk.

Lemma 5.3. If the allocation e is privately measurable then

∀i ∈ I, RAi ◦CPi(Φi) = CPi(Φi).

The proofs of Lemma 5.1, Lemma 5.2 and Lemma 5.3 can be found in Appendix A,
Appendix B and Appendix C respectively.

6. General convex preferences and subjective beliefs

Until now we assumed that agents have MaxMin expected utility preferences. When
uncertainty is represented by multiple priors and posteriors, there are other modelings of
preferences: the incomplete preferences model of Bewley [3], the convex Choquet model
of Schmeidler [26], the smooth second-order prior models of Klibanoff, Marinacci and
Mukerji [18] and Nau [22], the second-order expected utility model of Ergin and Gul [12],
the confidence preferences model of Chateauneuf and Faro [6], the multiplier model of
Hansen ad Sargent [16], and the variational preferences model of Maccheroni, Marinacci
and Rustichini [19]. We propose to follow the approach initiated by Rigotti, Shannon

10



and Stralecki [24] by considering a broad class of convex preferences which encompasses
as special cases all the aforementioned models.

Each agent i has an ex-ante preference relation�iΩ on contingent consumption bundles
in RΩ

+ defining the correspondence PrefiΩ : RΩ
+ → RΩ

+ of strictly preferred contingent
consumption bundles:

∀x ∈ RΩ
+, PrefiΩ(x) = {y ∈ RΩ

+ : y �iΩ x}.

Similarly, for each possible interim signal π ∈ Πi, agent i is endowed with an interim
preference relation �iπ on consumption bundles contingent to the information π, defin-
ing the correspondence Prefiπ : Rπ+ → Rπ+ of strictly preferred contingent consumption
bundles at the interim stage.

If x is a vector in RΩ and σ is a subset of Ω, we denote by x|σ the restriction of x
to σ, i.e., x|σ is the vector in Rσ defined by (x|σ)(ω) = x(ω) for each ω ∈ σ. Preference
relations are assumed to satisfy the following properties

Assumption 6.1. For each agent i, for each σ ∈ {Ω} ∪Πi, the binary relation �iσ is

(a) irreflexive, i.e., x 6∈ Prefiσ(x) for all x ∈ Rσ+;

(b) convex, i.e., the set Prefiσ(x) is convex for all x ∈ Rσ+;

(c) monotone, i.e., x+ h ∈ Prefiσ(x) for all x, h ∈ Rσ+ and h interior;10

(d) continuous, i.e., the set Prefiσ(x) is open in Rσ+.

Following Rigotti, Shannon and Stralecki [24] we introduce the concepts of ex-ante
and interim subjective beliefs.

Definition 6.1. The set SubiΩ of ex-ante subjective beliefs (or subjective priors) of agent i
at ei is

SubiΩ = {p ∈ Prob(Ω) : Ep[x] > Ep[ei], ∀x ∈ PrefiΩ(ei)}.

The set Subiπ of interim subjective beliefs (or subjective posteriors) of agent i at ei with
private information π ∈ Πi is

Subiπ = {r ∈ Prob(π) : Er[y] > Er[ei|π], ∀y ∈ PrefiΩ(ei|π)}.

For any σ ∈ {Ω} ∪ Πi, the set Subiσ is non-empty. Indeed, the vector ei|σ does not
belong to the convex set PrefiΩ(ei|σ). Applying the Separating Hyperplane Theorem
there exists a non-zero vector ξ ∈ Rσ+ supporting the set PrefiΩ(ei|σ) at ei|σ, i.e.,

∀y ∈ Prefiσ(ei|σ), ξ · y =
∑
ω∈σ

ξ(ω)y(ω) >
∑
ω∈σ

ξ(ω)ei(ω) = ξ · (ei|σ).

Fix a state ω ∈ σ, ε > 0 and let hε be the vector in Rσ++ defined by hε(ω
′) = ε for

every ω′ 6= ω and hε(ω) = 1. Since the binary relation �iσ is monotone we get ξ · hε > 0.

10The vector h ∈ Rσ+ is interior if it is strictly positive, i.e., h(ω) > 0 for every ω ∈ σ.
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Passing to the limit when ε tends to 0 we can conclude that the vector ξ is a non-zero
vector in Rσ+. Since ξ is not zero we can normalize ξ such that r defined by

∀ω ∈ σ, r(ω) =
ξ(ω)∑

ω′∈σ ξ(ω
′)

can be assimilated to a probability measure in Prob(σ). For any vector y ∈ Rσ, the
inner product r · y is then denoted by Er[y]. Abusing notations we will assimilate the
probability measure r ∈ Prob(σ) to its natural extension in Prob(Ω) by posing r(ω) = 0
if ω does not belong to σ.

The set Subiσ is also compact and convex, therefore it belongs to P(σ). We can adapt
the arguments in Rigotti, Shannon and Stralecki [24] to prove the following intermediary
result which is the counterpart of Lemma 6.1 for general convex preferences.

Lemma 6.1. Fix an agent i, a signal σ ∈ {Ω} ∪ Πi and a vector ti ∈ Rσ such that
(ei|σ) + ti belongs to Rσ+.

• If (ei|σ) + ti belongs to Prefiσ(ei|σ) then

∀p ∈ Subiσ, Ep[ti] > 0. (8)

• Reciprocally, if ti is such that (8) is satisfied then there exists ε > 0 small enough
such that

∀η ∈ (0, ε), (ei|σ) + ηti ∈ Prefiσ(ei|σ).

For the sake of completeness, we provide a detailed proof.

Proof of Lemma 6.1. Assume that (ei|σ) + ti belongs to Prefiσ(ei|σ). We propose to
prove that (8) is satisfied. Since (ei|σ) is strictly positive and Prefiσ(ei|σ) is open in Rσ+,
there exists α ∈ (0, 1] close enough to 1 such that (ei|σ) +αti is strictly positive and still
belongs to Prefiσ(ei|σ). Since the set Prefiσ(ei|σ) is open in Rσ+, there exists ε > 0 small
enough such that11

(ei|σ) + αti − ε1σ ∈ Prefiσ(ei|σ).

It follows from the definition of Subiσ that

∀p ∈ Subiσ, Ep[ti] >
ε

α
> 0.

Assume now that ti ∈ Rσ is such that (ei|σ) + ti belongs to Rσ+ and (8) is satisfied.
Since ei|σ is strictly positive, there exists ε such that for every ε ∈ (0, ε] the vector
(ei|σ) + εti belongs to Rσ+. We claim that there exists at least one ε ∈ (0, ε] such that

(ei|σ) + εti belongs to Prefiσ(ei|σ). Assume by way of contradiction that

{(ei|σ) + εti : ε ∈ (0, ε]} ∩ Prefiσ(ei|σ) = ∅.

Applying the Separating Hyperplane Theorem there exists a non-zero vector ξ ∈ Rσ such
that

∀ε ∈ (0, ε], ∀x ∈ Prefiσ(ei|σ), ξ · x > ξ ·
[
(ei|σ) + εti

]
.

11The vector 1σ in Rσ is defined by 1σ(ω) = 1 for every ω ∈ σ.
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Letting ε tend to 0, we obtain that ξ supports Prefiσ(ei|σ) at (ei|σ). Following a previous
discussion we can prove that ξ belongs Rσ+. Normalizing if necessary, we can assume that

ξ is a subjective belief, i.e., belongs to Subiσ. For each n ∈ N we let

xn = (ei|σ) + (1/(n+ 1))1σ.

Since the preference relation �iσ is monotone we have xn ∈ Prefiσ(ei|σ) implying that12

1

n+ 1
> εEξ[ti].

Passing to the limit this leads to the contradiction: 0 > Eξ[ti]. We have thus proved
that there exists ε ∈ (0, ε] such that (ei|σ) + εti belongs to Prefiσ(ei|σ). We claim that
actually (ei|σ) + ηti belongs to Prefiσ(ei|σ) for every η ∈ (0, ε]. Fix η ∈ (0, ε]. Following
the previous argument we can prove that there exists η ∈ (0, η) such that (ei|σ) + ηti

belongs to Prefiσ(ei|σ). Observe that (ei|σ) + ηti is a convex combination of (ei|σ) + ηti

and (ei|σ) + εti. Since the set Prefiσ(ei|σ) is convex, we get the desired result.

We adapt the concepts of efficiency to this general framework.

Definition 6.2. The allocation e is

• ex-ante efficient if there does not exist a feasible trade t such that each agent i
prefers at the ex-ante stage the contingent consumption ei + ti to ei in the sense
that ei + ti �iΩ ei;

• weakly interim efficient if there does not exist a feasible trade t such that each
agent i prefers at every interim stage π ∈ Πi the contingent consumption (ei|π) +
(ti|π) to (ei|π) in the sense that (ei|π) + (ti|π) �iπ (ei|π).

As a direct consequence of Lemma 6.1 and the fundamental theorem of welfare eco-
nomics, we obtain the following characterization of ex-ante efficiency due to Rigotti,
Shannon and Stralecki [24].

Theorem 6.1. The allocation e is ex-ante efficient if and only if⋂
i∈I

SubiΩ 6= ∅.

Following almost verbatim the arguments in the proof of Theorem 4.1 we obtain the
following characterization.13

12As usual, for any vector z ∈ Rσ the notation ξ ·z is replaced by Eξ[z] since ξ is a probability measure
defined on σ.

13For every interim signal π ∈ Πi, a subjective belief rπ ∈ Subiπ can be interpreted as a probability
measure in Prob(Ω) by posing rπ(ω) = 0 for every ω 6∈ π. Therefore, we abuse notations and consider
that Subiπ is a subset of Prob(Ω) implying that the formula

CPi
[
(Subiπ)π∈Πi

]
is well-defined.
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Theorem 6.2. The allocation e is weakly interim efficient if and only if⋂
i∈I

CPi
[
(Subiπ)π∈Πi

]
6= ∅.

Rigotti, Shannon and Stralecki [24] studied the relationships between the notion of
subjective belief and those arising in several common models of ambiguity. We propose
to interpret the two previous characterization results for the two models of ambiguity
studied in Kajii and Ui [17]. One could also do the same for the other models studied in
Rigotti, Shannon and Stralecki [24].14

6.1. Bewley’s incomplete preferences
In this section we consider that each agent i’s preferences are defined as follows:

• ex-ante,

∀x ∈ RΩ
+, PrefiΩ(x) =

{
y ∈ RΩ

+ : ∀p ∈ P i, Ep[ui(y)] > Ep[ui(x)]
}

;

• for every interim signal π ∈ Πi,15

∀x ∈ Rπ+, Prefiπ(x) =
{
y ∈ Rπ+ : ∀r ∈ Φi(π), Er[ui(y)] > Er[ui(x)]

}
.

For these specific convex preferences we can compute explicitly the set of subjective
beliefs.

Lemma 6.2. For each agent i we have

SubiΩ = RAi(P i) and Subiπ = RAi(Φi(π)), ∀π ∈ Πi.

The arguments of the proof are standard: the result follows from the concavity of the
utility index ui. As a direct consequence of Theorem 6.1, Theorem 6.2 and the previous
lemma, we obtain the following necessary and sufficient conditions for ex-ante and weak
interim efficiency.

Proposition 6.1. Assume that all agents have Bewley’s incomplete preferences. The
allocation e is ex-ante efficient if and only if⋂

i∈I
RAi(P i) 6= ∅.

Proposition 6.1 corresponds to Proposition 1 in Kajii and Ui [17] which is due to
Bewley [2] and Rigotti and Shannon [23].

Proposition 6.2. Assume that all agents have Bewley’s incomplete preferences. The
allocation e is weakly interim efficient if and only if⋂

i∈I
CPi ◦RAi(Φi) 6= ∅.

Proposition 6.2 corresponds to Proposition 2 in Kajii and Ui [17].16

14The Bewley’s incomplete preference model is not studied in Rigotti, Shannon and Stralecki [24] since
they restrict their attention to complete and transitive binary relations.

15If x is a vector in Rπ+ and r is a probability in Prob(π) we let Er[ui(x)] =
∑
ω∈π r(ω)ui(x(ω)).

16Actually in Kajii and Ui [17] the necessary and sufficient condition for weak interim efficiency is⋂
i∈I

RAi ◦CPi(Φi) 6= ∅.
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6.2. Gilboa–Schmeidler’s MaxMin expected utility preferences

In this section we consider that each agent i’s preferences are defined as follows:

• ex-ante,

∀x ∈ RΩ
+, PrefiΩ(x) =

{
y ∈ RΩ

+ : min
p∈P i

Ep[ui(y)] > min
p∈P i

Ep[ui(x)]

}
;

• for every interim signal π ∈ Πi,

∀x ∈ Rπ+, Prefiπ(x) =

{
y ∈ Rπ+ : min

r∈Φi(π)
Er[ui(y)] > min

r∈Φi(π)
Er[ui(x)]

}
.

For these specific convex preferences Rigotti, Shannon and Stralecki [24] have computed
explicitly the set of subjective beliefs.17

Lemma 6.3. For each agent i we have

SubiΩ = RAi ◦Acti(P i) and Subiπ = RAi ◦Acti(Φi(π)), ∀π ∈ Πi.

As a direct consequence of Theorem 6.1, Theorem 6.2 and the previous lemma, we
obtain the necessary and sufficient conditions for ex-ante and weak interim efficiency
presented in Proposition 2.1 and Theorem 4.1.

7. Interim efficiency and common knowledge

In this section we consider the framework of the previous section where each agent i
is endowed with an ex-ante preference relation �iΩ and an interim preference relation �iπ
for every private signal π ∈ Πi. We assume that Assumption 6.1 is satisfied, i.e., for each
σ ∈ {Ω}∪Πi, the preference relation �iσ is irreflexive, convex, monotone and continuous.

The no-trade theorem of Milgrom and Stockey [20] says that, upon the new arrival
of information to the agents, it cannot be commonly known among them that there
are some trading opportunities which can make them mutually beneficial, provided that
the previous allocation (before the arrival of the new information) is ex-ante efficient.
To illustrate this we consider that the allocation e is the outcome of an ex-ante trade
process and assume it is ex-ante efficient. If the state of nature is s ∈ Ω, each agent i
knows (and only knows) at the interim stage that the true state belongs to πi = Πi(s).
One should first define which objects agents may have incentives to trade. If agent i
proposes to trade a consumption bundle xπi : πi → R+, he is revealing to the other
agents his private signal πi. We follow Wilson [29] by considering that agents do not
want to communicate their private information. If we assume that the family (Πi)i∈I
of private partitions is common knowledge then agents can trade consumption bundles
contingent to the common knowledge event E = Πc(s) where Πc(s) is the unique atom

We proved (see Lemma 5.1) that this condition is equivalent to the one stated in Proposition 6.2.
17See Lemma 1 in Rigotti, Shannon and Stralecki [24] and Appendix A in Kajii and Ui [17].
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of the common knowledge partition Πc containing s.18 Let (yiE)i∈I be an allocation of
consumption bundles yiE ∈ RE+ contingent to the event E and feasible, i.e.,

∀ω ∈ E,
∑
i∈I

yiE(ω) =
∑
i∈I

ei(ω).

When would agents accept to exchange the allocation (ei|E)i∈I with the allocation
(yiE)i∈I? Agent i should accept if the restriction (yiE |πi) is strictly preferred to (ei|πi),
i.e.,

(yiE |πi) �iπi (ei|πi) or equivalently (yiE |πi) ∈ Prefiπi(e
i|πi),

or if there is status-quo, i.e.,
(yiE |πi) = (ei|πi).

We denote by Πi(E) the set of all atoms π ∈ Πi contained in E. The set Πi(E) is the
collection of all signals agent i may have received according to the common knowledge
information. Assuming that each agents’ characteristics are common knowledge, agent i
can accept to trade only if for every signal π ∈ Πc(E) we also have

(yiE |π) ∈ {(ei|π)} ∪ Prefiπ(ei|π). (9)

Indeed, if agent i accepts to trade despite the fact that there exists π ∈ Πi(E) such that
(9) is not satisfied then the other agents will infer that the true state does not belong to
π. Since we assume that each agent does not want to reveal information to the others,
we are lead to consider the following concept of interim efficiency.

Definition 7.1. The allocation e is status-quo interim efficient if there does not exist a
feasible allocation (yi)i∈I such that for each agent i and for every signal π ∈ Πi, we have

(yi|π) ∈ {(ei|π)} ∪ Prefiπ(ei|π)

and for at least one agent j and one signal πj ∈ Πj , we have

(yj |πj) ∈ Prefjπj (e
j |πj).

Remark 7.1. One may define the concept of status-quo ex-ante efficiency as follows: the
allocation e is status-quo ex-ante efficient if there does not exist a feasible allocation
(yi)i∈I such that for each agent i, we have

yi ∈ {ei} ∪ PrefiΩ(ei)

and for at least one agent j we have

yj ∈ PrefjΩ(ej).

If an allocation is status-quo ex-ante efficient then it is ex-ante efficient. The converse is
also true since ex-ante preferences are monotone and continuous.19

18Πc is the finest partition among those which are coarser than all partitions {Πi : i ∈ I}. See
Aumann [1].

19Let (yi)i∈I be a feasible allocation such that yi = ei or yi �iΩ ei for each agent i and yj �jΩ ej for
some agent j. Since preferences are continuous, there exists α close enough to 1 such that the allocation
(zi)i∈I defined by zi = αyi + (1 − α)ei is feasible, interior and satisfies zi = ei or zi �iΩ ei for each

agent i and zj �jΩ ej . Since the binary relation �jΩ is continuous there exists ε > 0 small enough such

that xj = zj − ε1Ω �jΩ ej . For every agent i 6= j we pose xi = zi + β1Ω where β(#I − 1) = ε. Observe

that the allocation (xi)i∈I is feasible and satisfies xi �iΩ ei for each agent i.
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If the allocation e is status-quo interim efficient then it is weakly interim efficient.
The converse is not true as illustrated by the following example.

Example 7.1. Consider an exchange economy with four states of nature Ω = {ω1, . . . , ω4}
and two risk-neutral agents I = {i1, i2} with MEU-preferences. Each agent i may receive
two signals Πi = Π with Π = {α, β}, α = {ω1, ω2} and β = {ω3, ω4}. Contingent to
every signal π, every agent i has a unique posterior, i.e., Φi(π) is a singleton. Moreover,
we assume that agents have the same posterior contingent to the signal β, i.e., Φi1(β) =
Φi2(β), but have different posteriors contingent to the signal α, i.e., Φi1(α) 6= Φi2(α). We
propose to show that the allocation (ei)i∈I is weakly interim efficient (as defined by Kajii
and Ui [17]). Assume by way of contradiction that there exists a feasible allocation (yi)i∈I
such that (yi|π) �iπ (ei|π) for every agent i and every signal π ∈ Πi. If we denote by rβ
the common posterior contingent to the signal β, one must have Erβ [yi|β] > Erβ [ei|β] for
each i: this contradicts the feasibility of (yi)i∈I . We have thus proved that the allocation
(ei)i∈I is weakly interim efficient but it is not status-quo interim efficient. Indeed, since
posteriors contingent to the signal α are different, agents have incentives to trade at the
interim stage if the state of nature is ω1 or ω2.

We will show later on (see Corollary 7.1) that when the unique common knowledge
event is the whole space, weak interim efficiency and status-quo interim efficiency are
equivalent provided that preferences are strictly monotone as defined hereafter.

Definition 7.2. Interim preferences are said to be strictly monotone if for every agent i
and every signal π ∈ Πi we have x + h �iπ x for every consumption bundles x, h ∈ Rπ+
where h 6= 0.

Observe that interim MEU-preferences are strictly monotone if every posterior belief
has full support in the sense that for every agent i, for every signal π ∈ Πi, every posterior
r ∈ Φi(π) satisfies supp r = π.20

In most models with ambiguity aversion, the strict preference relation �iπ of agent i
contingent to signal π is the strict part of a reflexive, complete and transitive binary
relation.

Definition 7.3. Preferences are said complete, transitive and convex if for every agent i
and every signal σ ∈ {Ω} ∪ Πi, the binary relation �iσ satisfies Assumption 6.1 and is
the strict part of a reflexive, complete, transitive and convex binary relation �iσ.21

When preferences are complete transitive and convex one may consider the concept
of interim efficiency used by Milgrom and Stockey [20] and Morris [21].

Definition 7.4. Assume that preferences are complete transitive and convex. The allo-
cation e is strongly interim efficient if there does not exist a feasible allocation (yi)i∈I
such that for each agent i and for every signal π ∈ Πi, we have

(yi|π) �iπ (ei|π)

and for at least one agent j and one signal πj ∈ Πj , we have

(yj |πj) �jπj (ej |πj).

20If r ∈ Prob(Ω) we denote by supp r the support of r defined by supp r = {ω ∈ Ω : r(ω) > 0}.
21We omit the standard definition of a reflexive, complete and transitive binary relation �iσ . The

binary relation �iσ is said convex when {y ∈ Rσ+ : y �iσ x} is convex for every x ∈ Rσ+.
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Remark 7.2. Assume that preferences are complete transitive and convex. If the alloca-
tion e is strongly interim efficient then it is status-quo interim efficient. The converse is
true if interim preferences are strictly convex22 or strictly increasing (see Remark 7.5).

Remark 7.3. If preferences are complete transitive and convex then the set of subjective
beliefs coincide with the set of probabilities (or prices) supporting upper contour sets as
defined by Yaari [30] and Rigotti, Shannon and Stralecki [24]. More precisely, for every
agent i and every signal σ ∈ {Ω} ∪ Πi, the vector p ∈ Prob(σ) is a subjective belief if
and only if Ep[y] > Ep[x] for every y �iσ x.

We proved that the existence of a common prior compatible with subjective posteriors
is a necessary and sufficient condition for weak interim efficiency. To characterize status-
quo and strong interim efficiency, we need to strengthen this condition.

Definition 7.5. Fix an agent i and a family Q = (Q(π))π∈Πi of posterior beliefs where
for each signal π ∈ Πi, the set Q(π) belongs to P(π). A probability p ∈ Prob(Ω) is said
to be fully compatible with posteriors of Q if for every signal π ∈ Πi we have p(π) > 0
and the conditional probability p(·|π) belongs to the set Q(π). The set of all priors fully
compatible with posteriors of Q is denoted by

CPi+(Q).

Remark 7.4. A prior p is compatible with posteriors of Q if there exists (λπ, rπ)π∈Πi

with rπ ∈ Q(π) and λ a vector in Prob(Πi) such that

p =
∑
π∈Πi

λπrπ.

The prior p is fully compatible with posteriors of Q if λ has a full support, i.e., λπ > 0
for each possible signal π ∈ Πi.

It is straightforward to check that existence of a common prior that is fully compatible
with subjective posteriors is a sufficient condition for status-quo interim efficiency and
strong interim efficiency (when defined).23 This sufficient condition turns out to be
necessary if interim preferences are strictly monotone. To provide a proof we will use the
following characterization result.

Proposition 7.1. Assume that interim preferences are strictly monotone. If there is a
unique common knowledge event, i.e., Πc = {Ω}, then weak interim efficiency implies
the existence of a common prior that is fully compatible with subjective posteriors.

Proof of Proposition 7.1. Assume that e is weakly interim efficient. Applying Theo-
rem 6.2 there exists a probability p ∈ Prob(Ω) such that for each agent i and each signal
π ∈ Πi, there exists a subjective belief riπ ∈ Subiπ satisfying

∀i ∈ I, p =
∑
π∈Πi

p(π)riπ. (10)

22In the sense that for every agent i ∈ I, for every signal π ∈ Πi and every consumption bundle
zπ ∈ Rπ+, [

zπ 6= (ei|π) and zπ �iπ (ei|π)
]

=⇒ αzπ + (1− α)(ei|π) �iπ (ei|π), ∀α ∈ (0, 1).

23See Appendix D for a detailed proof.
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Fix an agent k ∈ I. Since p belongs to Prob(Ω) there exists at least one signal σ ∈ Πk

such that p(σ) > 0. We have to prove that p(π) > 0 for every agent i and every signal
π ∈ Πi. Using the strict monotonicity of preferences we obtain the following intermediary
step.

Claim 7.1. Fix an agent i and a signal π ∈ Πi consistent with σ in the sense that
π ∩ σ 6= ∅. Then p(π) > 0.

Proof of Claim 7.1. Since the preference relation �kσ is strictly increasing the subjective
belief rkσ has full support, i.e., supp rkσ = σ. Since p(σ) > 0 we obtain that p({ω}) > 0
for every ω ∈ σ, implying the desired result.

Now fix an agent j and a signal µ ∈ Πj . Since Ω is an element of the common
knowledge partition Πc, there exists a finite chain

((i1, π1), . . . , (in, πn))

such that (i1, π1) = (k, σ), (in, πn) = (j, µ) and

∀s ∈ {1, 2, . . . , n− 1}, πs ∩ πs+1 6= ∅.

Applying recursively Claim 7.1 we get that p(µ) = p(πn) > 0. The probability p is a
common prior that is fully compatible with subjective posteriors.

The following equivalence result is a direct corollary of Proposition 7.1 and Appendix
D.

Corollary 7.1. Assume that interim preferences are strictly monotone. If there is a
unique common knowledge event, i.e., Πc = {Ω}, then weak interim efficiency, status-
quo interim efficiency and strong interim efficiency (when defined) are equivalent.

Another consequence of Proposition 7.1 is the following characterization.

Proposition 7.2. Assume that interim preferences are strictly monotone. The alloca-
tion e is status-quo interim efficient (or strongly interim efficient when preferences are
complete transitive and convex) if and only if for every common knowledge atom E ∈ Πc

the allocation (ei|E)i∈I is weakly interim efficient when the state space is restricted to E.

Remark 7.5. Assume that preferences are complete transitive and convex. If interim
preferences are strictly increasing then we can apply Proposition 7.2 to show that the
allocation e is status-quo interim efficient if and only if it is strongly interim efficient.

We can now state our main characterization result.

Theorem 7.1. Assume that interim preferences are strictly monotone. Existence of
a common prior that is fully compatible with subjective posteriors is a necessary and
sufficient condition for status-quo interim efficiency (or strong interim efficiency when
preferences are complete transitive and convex).

In other words, when interim preferences are strictly monotone, the allocation e is
status-quo interim efficient (or strongly interim efficient when defined) if and only if⋂

i∈I
CPi+

[
(Subiπ)π∈Πi

]
6= ∅.
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Proof of Theorem 7.1. The sufficiency part follows from Appendix D. Now assume that
the allocation e is status-quo interim efficient (or strongly interim efficient when defined).
Fix a common knowledge event E ∈ Πc. It follows from Proposition 7.2 that the alloca-
tion (ei|E)i∈I is weakly interim efficient when the state space is restricted to E. Applying
Proposition 7.1 we get the existence of a probability pE ∈ Prob(E) and for each agent i,
a family (λiπ, r

i
π)π∈Πi(E) with riπ ∈ Subiπ and (λiπ)π∈Πi(E) a probability in Prob(E) with

full support such that

∀i ∈ I, pE =
∑

π∈Πi(E)

λiπr
i
π.

We let p be the probability in Prob(Ω) defined by

∀ω ∈ Ω, p(ω) = pΠc(ω)(ω).24

It is straightforward to check that p is a common prior fully compatible with subjective
posteriors.

8. No speculative trade

For expositional reasons, we assume in this section that agents have MEU-preferences
satisfying the assumptions of Section 2. Following Kajii and Ui [17], we propose to
investigate under which conditions speculative trade is impossible.25

Definition 8.1. We say that there is no weak speculative trade if ex-ante efficiency of
the allocation e implies that it is also weakly interim efficient.

As a direct consequence of Proposition 2.1 and Theorem 4.1 we get the following
general characterization.

Proposition 8.1. There is no weak speculative trade if and only if⋂
i∈I

RAi ◦Acti(P i) 6= ∅ =⇒
⋂
i∈I

CPi ◦RAi ◦Acti(Φi) 6= ∅. (11)

The two general characterization results (Corollary 8 and Corollary 9) proposed by
Kajii and Ui [17] follow from the previous result together with Lemma 5.1, Lemma 5.2
and Lemma 5.3.

Proposition 8.2. Assume that the allocation e has constant interim utility. Then there
is no weak speculative trade if and only if⋂

i∈I
RAi ◦Acti(P i) 6= ∅ =⇒

⋂
i∈I

RAi ◦Acti ◦CPi(Φi) 6= ∅. (12)

Assume that the allocation e is privately measurable. Then there is no weak speculative
trade if and only if ⋂

i∈I
RAi ◦Acti(P i) 6= ∅ =⇒

⋂
i∈I

CPi(Φi) 6= ∅. (13)

24Recall that Πc(ω) is the unique atom of the common knowledge partition containing ω.
25Most of the results stated in this section have straightforward proofs. We propose in Appendix E

the details of the arguments for Proposition 8.3, Corollary 8.1 and Corollary 8.2.
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Remark 8.1. In Kajii and Ui [17, Corollary 9], the condition (13) is replaced by⋂
i∈I

RAi ◦Acti(P i) 6= ∅ =⇒
⋂
i∈I

RAi ◦CPi(Φi) 6= ∅. (14)

We proved (see Lemma 5.3) that when the allocation e is privately measurable then for
every i, we have RAi ◦CPi(Φi) = CPi(Φi). This implies that both conditions (14) and
(13) are equivalent.

The necessary and sufficient condition (11) imposes an abstract relation between the
set of priors P i and the family Φi = (Φi(π))π∈Πi of posteriors. We propose to investigate
sufficient conditions relating priors and posteriors to preclude weak speculative trade. A
straightforward sufficient condition is proposed hereafter.

Proposition 8.3. Assume that for each agent i, for every active prior pi ∈ Acti(P i) and
for every signal π ∈ Πi the conditional probability pi(·|π), when it exists, is an active
posterior, i.e.,

∀pi ∈ Acti(P i), ∀π ∈ Πi, pi(π) > 0 =⇒ pi(·|π) ∈ Acti(Φi(π)). (15)

Then there is no weak speculative trade.

Condition (15) is still an abstract relation between the set of priors and the family
of posteriors. However, it is now simple to provide explicit conditions on the way agents
“up-date” their beliefs to guarantee that weak speculative trade is impossible. Kajii and
Ui [17] used the concepts of full Bayesian updating. We consider a weaker concept.

Definition 8.2. We say that the set of posteriors Φi is Bayesian consistent with P i if
for every prior belief p ∈ P i and for every private signal π ∈ Πi plausible according to p,
i.e., p(π) > 0, the conditional probability p(·|π) is a possible posterior, i.e.,

∀p ∈ P i, ∀π ∈ Πi, p(π) > 0 =⇒ p(·|π) ∈ Φi(π). (16)

As a simple corollary of Proposition 8.3 we obtain the following no-trade result.

Corollary 8.1. Assume that for each agent i the set of posteriors is Bayesian consistent
with the set of priors. If the allocation e is privately measurable (or equivalently satisfies
the full insurance property at the interim stage) then there is no weak speculative trade.

This is a slight generalization of Proposition 10 in Kajii and Ui [17] since we only
assume that the set of posteriors is Bayesian consistent with priors, while Kajii and
Ui [17] assumed that posteriors are the full Bayesian updating of priors in the sense that
for every agent i,

∀π ∈ Πi, Φi(π) = cl{p(·|π) : p ∈ P i and p(π) > 0}.

We can also obtain the no-trade result of Epstein and Schneider [11] and Wakai [28] as
a simple corollary of Proposition 8.3. These authors proved that if priors are rectangular
sets with respect to posteriors, then MEU-preferences are dynamically consistent which
in turn implies that there is no weak speculative trade.26 In order to recall the concept

26For the readers interested in dynamically consistent update rules for decision making under ambi-
guity, we refer to Hanany and Klibanoff [15] and the literature therein.
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of a rectangular prior set, we introduce some notations. Fix a probability λ = (λπ)π∈Πi

in Prob(Πi) representing beliefs about the private signals of agent i. Let r = (rπ)π∈Πi

be a family of posteriors. The probability in Prob(Ω) defined by∑
π∈Πi

λπrπ

is denoted by λ⊗ r. If Λi is a set of probabilities in Prob(Πi), we denote by Λi ⊗Φi the
set of all probabilities λ⊗ r where λ ∈ Λi and rπ ∈ Φi(π) for each π ∈ Πi. Observe that
the set CPi(Φi) of Φi-compatible priors coincides with the set Prob(Πi)⊗ Φi.

Definition 8.3. The set of priors is rectangular with respect to posteriors (or equivalently
P i is Φi-rectangular) if there exists a closed and convex set Λi of beliefs in Prob(Πi) about
the realization of private signals such that

P i = Λi ⊗ Φi

and such that for every private signal π ∈ Πi, there exists λ ∈ Λi such that λπ > 0.

If P i = Λi ⊗ Φi then Λi must coincide with P i(Πi) the set of all probabilities
(p(π))π∈Πi defined by all priors p ∈ P i. Observe that if Φi is Bayesian consistent with
P i then we have

P i ⊂ P i(Πi)⊗ Φi.

When the inclusion is replaced by an equality, we obtain that P i is Φi-rectangular. It is
straightforward to check if the set of priors is rectangular with respect to posteriors then
posteriors are the full Bayesian updating of priors.27

Remark 8.2. One may want to investigate sets of priors that are weakly rectangular in the
following sense: there exists a closed set Λi (possibly non-convex) of beliefs in Prob(Πi)
such that28

P i = co
[
Λi ⊗ Φi

]
.

Since each set Φi(π) is convex, it is straightforward to check that P i = [co Λi] ⊗ Φi,
implying that any set of priors that is weakly rectangular is automatically rectangular.

As a simple corollary of Proposition 8.3 we obtain the following no-trade result which
corresponds to Proposition 11 in Kajii and Ui [17].

Corollary 8.2. If for each agent the set of priors is rectangular with respect to posteriors,
then there is no weak speculative trade.

We propose hereafter an example where Proposition 8.3 can be applied but the results
in Kajii and Ui [17] cannot.

27Actually we also have that Φi is the maximum likelihood updating of P i in the sense that

∀π ∈ Πi, Φi(π) =
{
p(·|π) : p ∈ argmaxq∈P i q(π)

}
.

28Given Definition 2.1, the set of priors Λi ⊗ Φi and the set co
[
Λi ⊗ Φi

]
define the same ex-ante

preference relation.
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Example 8.1. Consider the economy described in Example 4.1. We now fix prior beliefs
for both agents. Since agent i2 has no private information, we assume that he has a unique
prior belief which coincides with his posterior belief, i.e., P i2 = {(1/4, 1/4, 1/8, 3/8)}. To
describe the priors of agent i1, we propose the following parametrization of his posterior
beliefs:

∀π ∈ Πi1 = {a, b}, Φi1(π) = {rθπ : θ ∈ Θ}
where Θ = [0, 1/4] and

rθa = (1/2− θ, 1/2 + θ, 0, 0) and rθb = (0, 0, 1/4 + θ, 3/4− θ).

The parameter θ can be interpreted as a scenario that agent i1 considers plausible. This
parameter describes agent i1’s ambiguity in the sense that θ cannot be observed and
agent i1 has no beliefs about its realization. We assume that contingent to a scenario θ,
agent i1 believes he will receive the signal a with probability λθa ∈ (0, 1). We pose λθb =
1 − λθa such that λθ belongs to Prob(Πi1). The prior beliefs of agent i1 are constructed
in the following way:

P i1 = co{λθ ⊗ rθ : θ ∈ Θ}.
For each plausible scenario θ, agent i1’s prior belief is represented by the probability
measure

pθ = λθ ⊗ rθ = (λθa((1/2)− θ), λθa(1/2 + θ), λθb(1/4 + θ), λθb(3/4− θ)).

Observe that Φi1 is the full Bayesian updating of P i1 in the sense that Φi1(π) =
{p(·|π) : p ∈ P i1}. However, P i1 is not Φi1 -rectangular.

We assume that θ 7→ λθa is strictly increasing with λ0
a = 1/2.29 Since

Ep
θ

[ui1(ei1)] = 2θ +
3

2
+
λθa
2

it follows that the only active prior belief is p0, i.e., Acti1(P i1) = {λ0 ⊗ r0}. Since p0

coincides with the unique prior of agent i2, the allocation e is ex-ante efficient. Observe
that

p0(·|a) = r0
a ∈ Acti1(Φi1(a)) and p0(·|b) = r0

b ∈ Acti1(Φi1(b))

implying that we can apply Proposition 8.3 to conclude that there is no weak speculative
trade. Since the interim expected utility of agent i1 is not constant, we cannot apply
Corollary 8 in Kajii and Ui [17]. Neither can we apply Corollary 9 or Corollary 10 since
ei1 does not have the full-insurance property at the interim stage.

One may consider another concept of speculative trade where weak interim efficiency
is replaced by strong interim efficiency.

Definition 8.4. We say that there is no strong speculative trade if ex-ante efficiency of
the allocation e implies that it is also strongly interim efficient.

The concept of strong speculative trade corresponds to the one used in Milgrom and
Stockey [20] and Morris [21]. The following example illustrates the differences with the
concept of weak speculative trade used by Kajii and Ui [17].

29Take for example λθ = (1/2 + θ, 1/2− θ) for every θ ∈ [0, 1/4].
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Example 8.2. We consider the economy defined in Example 7.1. We recall that contingent
to each signal π = Π = {α, β}, each agent i has a single posterior riπ, and that agents
share the same posterior contingent to β, i.e., there exists rβ such that riβ = rβ . We
also assume that endowments are privately measurable and priors are rectangular with
respect to posteriors. Priors are defined as follows:

P i = Prob(Π)⊗ Φi = co{riα, rβ}.

There is no speculative trade since Corollary 8.1 and Corollary 8.2 apply. Observe that
if ei(ω3) < ei(ω2) then the allocation e is ex-ante efficient.30 However, if the posteriors
ri1 and ri2 are distinct, then agents can agree to trade after observing the signal α.

The previous example shows that Corollary 8.1 and Corollary 8.2 are not valid if we
replace “weak speculative trade” by “strong speculative trade”. However, it is straight-
forward to adapt Proposition 8.3 in order to obtain a sufficient condition for no strong
speculative trade.

Proposition 8.4. Assume that for each agent i and each active prior pi ∈ Acti(P i),
every signal π ∈ Πi is plausible and the conditional probability pi(·|π) is an active
posterior, i.e.,

∀pi ∈ Acti(P i), ∀π ∈ Πi, pi(π) > 0 and pi(·|π) ∈ Acti(Φi(π)). (17)

Then there is no strong speculative trade.

Remark 8.3. We do not need to assume that interim preferences are strictly monotone
for the above proposition to be valid. Indeed, the existence of a common prior fully
compatible with subjective posteriors is a sufficient condition for strong interim efficiency
even if interim preferences are not strictly monotone (see Appendix D).

Observe that if ex-ante preferences are strictly monotone then any active prior pi ∈
Acti(P i) will assign positive probability to any signal π ∈ Πi. Actually we do not need
to assume that preferences are strictly monotone.

Definition 8.5. Ex-ante preferences are said signal-monotone if for any contingent con-
sumption bundles x and h in RΩ

+ we have x+h �iΩ x when there exists at least one signal
π ∈ Πi such that h is strictly positive on π, i.e., h(ω) > 0 for every ω ∈ π.

A straightforward consequence of Proposition 8.4 is the following counter-part of
Corollary 8.1.

Corollary 8.3. Assume that ex-ante preferences are signal-monotone and the set of
posteriors is Bayesian consistent with the set of priors. If the allocation e is privately
measurable then there is no strong speculative trade.

30Since ei is privately measurable, for each signal π, we denote by ei(π) the constant value of ei in π.
Observe that since P i = co{riα, rβ}, it follows that

Er
i
α [ei] = ei(α) = ei(ω2) > ei(ω3) = ei(β) = Erβ [ei].

It follows that Acti(P i) = {rβ} and the allocation e is ex-ante efficient.
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Signal-monotonicity is automatically satisfied when priors are fully rectangular with
respect to posteriors as defined below.

Definition 8.6. The set of priors is fully rectangular with respect to posteriors if for
each agent i we have P i = Λi ⊗Φi where Λi is a closed convex set of beliefs in Prob(Πi)
satisfying that every λ ∈ Λi assigns positive probability λπ > 0 to every signal π ∈ Πi.

A straightforward consequence of Proposition 8.4 is the following counter-part of
Corollary 8.2.

Corollary 8.4. If for each agent the set of priors is fully rectangular with respect to
posteriors, then there is no strong speculative trade.

Observe that the set of priors in Example 8.2 are rectangular with respect to posteriors
but not fully rectangular.

Appendix A. Proof of Lemma 5.1

We first prove that CPi ◦RAi(Q) ⊂ RAi ◦CPi(Q).

Proof. Let q ∈ CPi ◦RAi(Q). There exist λ = (λπ)π∈Πi a vector in Prob(Πi) and a
family (rπ)π∈Πi such that

q =
∑
π∈Πi

λπ RAi(rπ) and ∀π ∈ Πi, rπ ∈ Q(π).

For each state ω ∈ Ω, we have

q(ω) =
∑
π∈Πi

λπ
Erπ [∇ui(ei)]

rπ(ω)∇ui(ei(ω))

= α
∑
π∈Πi

µπrπ(ω)∇ui(ei(ω))

where

α =
∑
π∈Πi

λπ
Erπ [∇ui(ei)]

and ∀π ∈ Πi, µπ =
1

α

λπ
Erπ [∇ui(ei)]

.

We let p be defined by

p =
∑
π∈Πi

µπrπ.

Observe that p belongs to CPi(Q) and q = βRAi(p) where β = αEp[∇ui(ei)]. To finish
the proof it is sufficient to show that β is equal to 1. Since for each signal π ∈ Πi, the
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support of rπ is a subset of π, we have

Ep[∇ui(ei)] =
∑
ω∈Ω

[∑
π∈Πi

µπrπ(ω)

]
∇ui(ei(ω))

=
∑
π∈Πi

µπ
∑
ω∈π

rπ(ω)∇ui(ei(ω))

=
∑
π∈Πi

µπErπ [∇ui(ei)]

=
∑
π∈Πi

λπ
α

=
1

α
.

We have thus proved that q = RAi(p) where p belongs to CPi(Q).

Now, we prove that RAi ◦CPi(Q) ⊂ CPi ◦RAi(Q).

Proof. Fix p ∈ CPi(Q). There exist λ = (λπ)π∈Πi a vector in Prob(Πi) and a family
(rπ)π∈Πi such that

p =
∑
π∈Πi

λπrπ and ∀π ∈ Πi, rπ ∈ Q(π).

Now let q be the risk-adjusted prior RAi(p). For each state ω ∈ Ω, we have

q(ω) =
1

Ep[∇ui(ei)]
∑
π∈Πi

λπrπ(ω)∇ui(ei(ω))

=
∑
π∈Πi

µπ
1

Erπ [∇ui(ei)]
rπ(ω)∇ui(ei(ω))

where

µπ =
λπ × Erπ [∇ui(ei)]

Ep[∇ui(ei)]
.

Since the vector (µπ)π∈Πi belongs to Prob(Πi), we obtain that

q =
∑
π∈Πi

µπ RAi(rπ)

and therefore q belongs to CPi ◦RAi(Q).

Appendix B. Proof of Lemma 5.2

We first prove that Acti ◦CPi(Q) ⊂ CPi ◦Acti(Q).

Proof. Fix p ∈ Acti ◦CPi(Φi). There exist λ = (λπ)π∈Πi a vector in Prob(Πi) and a
family (rπ)π∈Πi such that

p =
∑
π∈Πi

λπrπ and ∀π ∈ Πi, rπ ∈ Q(π).
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It is sufficient to show that each rσ actually belongs to Acti(Q(σ)) for every signal σ ∈ Πi

satisfying λσ > 0. Fix a signal σ with λσ > 0 and any posterior qσ ∈ Q(σ). We let pσ

be the probability in Prob(Ω) defined by

pσ = λσqσ +
∑
π 6=σ

λπrπ.

The probability measure pσ belongs to CPi(Q) by construction. It follows that

Ep[ui(ei)] 6 Ep
σ

[ui(ei)]

implying that
Erσ [ui(ei)] 6 Eqσ [ui(ei)].

We have thus proved that rσ belongs to Acti(Q(σ)).

Now we prove that if the utility at an interim stage of ei is independent of the signal
received then CPi ◦Acti(Q) ⊂ Acti ◦CPi(Q).

Proof. Let q ∈ CPi ◦Acti(Q). There exist λ = (λπ)π∈Πi a vector in Prob(Πi) and a
family (rπ)π∈Πi such that

q =
∑
π∈Πi

λπrπ and ∀π ∈ Πi, rπ ∈ Acti[Q(π)].

Since the function π 7→ EΦi(π)[u
i(ei)] is constant on Πi, we denote its value by ui(Πi).

Observe that
Eq[ui(ei)] =

∑
π∈Πi

λπEΦi(π)[u
i(ei)] = ui(Πi).

Now, fix η ∈ CPi(Q). There exist γ = (γπ)π∈Πi a vector in Prob(Πi) and a family
(κπ)π∈Πi such that

η =
∑
π∈Πi

γπκπ and ∀π ∈ Πi, κπ ∈ Q(π).

Observe that

Eq[ui(ei)] = ui(Πi) =
∑
π∈Πi

γπEQ(π)[u
i(ei)]

6
∑
π∈Πi

γπEκπ [ui(ei)]

6 Eη[ui(ei)].

We have thus proved that q belongs to Acti ◦CPi(Q).
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Appendix C. Proof of Lemma 5.3

Let p be a probability measure in CPi(Φi). There exist a vector (λπ)π∈Πi in Prob(Πi)
and a posterior belief rπ ∈ Φi(π) for each signal π ∈ Πi such that

p =
∑
π∈Πi

λπrπ.

We denote by q the risk adjusted probability RAi(p). It follows that for every state
ω ∈ Ω,

q(ω) =
1

Ep[∇ui(ei)]
∑
π∈Πi

λπrπ(ω)∇ui(ei(ω))

=
1

Ep[∇ui(ei)]
∑
π∈Πi

∇ui(ei(π))λπrπ(ω)

=
∑
π∈Πi

γπrπ(ω)

where γπ = ∇ui(ei(π))λπ/Ep[∇ui(ei)]. Observe that

Ep[∇ui(ei)] =
∑
π∈Πi

λπErπ [ui(ei)] =
∑
π∈Πi

λπ∇ui(ei(π)).

This implies that the vector (γπ)π∈Πi belongs to Prob(Πi) and therefore the risk-adjusted
Φi-compatible prior q is also a Φi-compatible prior, i.e., q ∈ CPi(Φi). We have thus
proved that RAi ◦CPi(Φi) ⊂ CPi(Φi).

Conversely, we can always write p in the following form

p =
∑
π∈Πi

1

Ep[∇ui(ei)]
ηπ∇ui(ei(π))rπ

where ηπ = λπEp[∇ui(ei)]/∇ui(ei(π)). Since the vector (ηπ)π∈Πi belongs to Prob(Πi)
we get that p is also a risk-adjusted Φi-compatible prior. We have thus proved that
CPi(Φi) ⊂ RAi ◦CPi(Φi).

Appendix D. Sufficient condition for status-quo and strong interim efficiency

Assume that there exists a probability p ∈ Prob(Ω) such that for each agent i and
every signal π ∈ Πi, we have p(π) > 0 and there exists a subjective belief riπ ∈ Subiπ
satisfying

∀i ∈ I, p =
∑
π∈Πi

p(π)riπ.

We first prove that the allocation e is status-quo interim efficient. Assume by of contra-
diction that e is not status-quo interim efficient. Then there exists a feasible allocation
(yi)i∈I such that for each agent i and every signal π ∈ Πi, we have

(yi|π) ∈ {(ei|π)} ∪ Prefiπ(ei|π)
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and for at least one agent k and one signal σ ∈ Πk, we have

(yk|σ) ∈ Prefkσ(ek|σ).

Since for each agent i and signal π ∈ Πi the probability riπ is a subjective belief, we have{
Eriπ [yi] = Eriπ [ei] if (yi|π) = (ei|π)

Eriπ [yi] > Eriπ [ei] if (yi|π) ∈ Prefiπ(ei|π).

In particular, we have

Er
k
σ [yk] > Er

k
σ [ek].

Summing over agents and signals, we get the following contradiction:∑
i∈I

Ep[yi] =
∑
i∈I

∑
π∈Πi

p(π)Er
i
π [yi] >

∑
i∈I

∑
π∈Πi

p(π)Er
i
π [ei] =

∑
i∈I

Ep[ei].

Now we prove that the allocation e is not strongly interim efficient. Assume by way
of contradiction that the allocation e is not strongly interim efficient. Then there exists
a feasible allocation (yi)i∈I such that for each agent i and every signal π ∈ Πi, we have

(yi|π) �iπ (ei|π)

and for at least one agent k and one signal σ ∈ Πk, we have

(yk|σ) �kσ (ek|σ).

Since rkσ is a subjective belief we have

Er
k
σ [yk] > Er

k
σ [ek]. (D.1)

If follows from Remark 7.3 that every probability riπ is supporting the upper contour of
(ei|π), i.e.,

Er
i
π [yi] > Er

i
π [ei]. (D.2)

Combining (D.1) and (D.2) we get the following contradiction∑
i∈I

Ep[yi] =
∑
i∈I

∑
π∈Πi

p(π)Er
i
π [yi] >

∑
i∈I

∑
π∈Πi

p(π)Er
i
π [ei] =

∑
i∈I

Ep[ei].

Appendix E. No speculative trade: proofs

In this section we propose the detailed proofs of some results presented in Section 8

Proof of Proposition 8.3. We only have to check that (11) is satisfied. Assume that there
exists a probability q ∈ Prob(Ω) and for each agent i an active prior pi ∈ Acti(P i) such
that

∀i ∈ I, q = RAi(pi).
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Fix a state ω ∈ Ω and an agent i. We denote by π the associated signal Πi(ω). If
pi(π) > 0 then

q(ω) =
1

Epi [∇ui(ei)]
∇ui(ei(ω))pi(ω)

=
pi(π)

Epi [∇ui(ei)]
∇ui(ei(ω))pi(ω|π)

= λiπ RAi(pi(·|π))(ω)

where

λiπ =
pi(π)Epi(·|π)[∇ui(ei)]

Epi [∇ui(ei)]
.

Since the family (λiπ)π∈Πi belongs to Prob(Πi), it follows that for each agent i, the
probability q belongs to the set CPi ◦RAi ◦Acti(Φi).

Proof of Corollary 8.1. We only have to check that (15) is satisfied. Fix an agent i, an
active prior pi ∈ Acti(P i) and a private signal π ∈ Πi with pi(π) > 0. Since P i is
Bayesian consistent with Φi, the conditional belief pi(·|π) belongs to Φi(π). We should
now prove that pi(·|π) is active. Actually, a direct consequence of the measurability
of ei is that any prior is active, i.e., Acti(Φi(π)) = Φi(π). Indeed, for every posterior
rπ ∈ Φi(π), we have

Erπ [ui(ei)] = ui(ei(π)).

Proof of Corollary 8.2. We only have to check that (15) is satisfied. Fix an agent i, an
active prior pi ∈ Acti(P i) and a private signal π ∈ Πi with pi(π) > 0. Since the set of
priors P i is Φi-rectangular, it is Bayesian consistent with Φi. Therefore, the conditional
belief pi(·|π) belongs to Φi(π). We should now prove that the posterior pi(·|π) is active,
i.e., belongs to Acti(Φi(π)). We know that pi is an active prior, i.e.,

∀q ∈ P i, Ep
i

[ui(ei)] 6 Eq[ui(ei)]. (E.1)

Fix an arbitrary posterior rπ ∈ Φi(π) and let q be the probability in Prob(Ω) defined by

q = pi(π)rπ +
∑
σ 6=π

pi(σ)p(·|σ).

Since the set of priors is Φi-rectangular, the probability q also belongs to P i. Apply-
ing (E.1) we get

Ep
i(·|π)[ui(ei)] 6 Erπ [ui(ei)].

We have proved that pi(·|π) is an active posterior.
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Université Paris Dauphine.

[9] R.A. Dana, On equilibria when agents have multiple priors, Annals of Operations Research 114
(2002) 105–115.

[10] R.A. Dana, Ambiguity, uncertainty aversion and equilibrium welfare, Economic Thoery 23 (2004)
569–587.

[11] L.G. Epstein, M. Schneider, Recursive multiple priors, Journal of Economic Theory 113 (2003)
1–31.

[12] H. Ergin, F. Gul, A theory of subjective compound lotteries, Journal of Economic Theory 144
(2009) 899–929.

[13] Y. Feinberg, Characterizing common priors in the form of posteriors, Journal of Economic Theory
91 (2000) 127–179.

[14] I. Gilboa, D. Schmeidler, Maxmin expected utility with a non-unique prior, Journal of Mathematical
Economics 18 (1989) 141–153.

[15] E. Hanany, P. Klibanoff, Updating preferences with multiple priors, Theoretical Economics 2 (2007)
261–298.

[16] L.P. Hansen, T.J. Sargent, Robust control and model uncertainty, American Economic Review:
Papers and Proceedings 91 (2001) 60–66.

[17] A. Kajii, T. Ui, Interim efficient allocations under uncertainty, Journal of Economic Theory 144
(2009) 337–353.

[18] P. Klibanoff, M. Marinacci, S. Mukerji, A smooth model of decision making under uncertainty,
Econometrica 73 (2005) 1849–1892.

[19] F. Maccheroni, M. Marinacci, A. Rustichini, Ambiguity aversion, robustness, and the variational
representation of preferences, Econometrica 74 (2006) 1447–1498.

[20] P. Milgrom, N. Stokey, Information, trade and common knowledge, Journal of Economic Theory
26 (1982) 17–27.

[21] S. Morris, Trade with heterogeneous prior beliefs and asymmetric information, Econometrica 62
(1994) 1327–1347.

[22] R.F. Nau, Uncertainty aversion with second-order utilities and probabilities, Management Science
52 (2006) 136–145.

[23] L. Rigotti, C. Shannon, Uncertainty and risk in financial markets, Econometrica 73 (2005) 203–243.
[24] L. Rigotti, C. Shannon, T. Strzalecki, Subjective beliefs and ex-ante trade, Econometrica 76 (2008)

1167–1190.
[25] D. Samet, Common priors and separation of convex sets, Games and Economic Behavior 24 (1998)

172–174.
[26] D. Schmeidler, Subjective probability and expected utility without additivity, Econometrica 57

(1989) 571–587.
[27] J.M. Tallon, Do sunspots matter when agents are Choquet-expected-utility maximizers?, Journal

of Economic Dynamics and Control 22 (1998) 357–368.
[28] K. Wakai, Linking behavioral economics, axiomatic decision theory and general equilibrium theory,

2008. PhD dissertation, Yale University.
[29] R. Wilson, Information, efficiency, and the core of an economy, Econometrica 40 (1978) 807–816.

31



[30] M.E. Yaari, Some remarks on measures of risk aversion and on their uses, Journal of Economic
Theory 1 (1969) 315–329.

32


