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1. introduction

Assignment problems pioneered by Koopmans and Beckmann (1957),
Gale and Shapley (1962), Shapley and Scarf (1974), and Shapley and Shubik
(1971) are models where preferences of agents are heterogeneous, but fixed;
in particular they ignore the underlying valuations of characteristics that
leads to the preference orderings. Thus, from Kelso and Crawford (1982)
and Crawford (1991) to Turhan (2019) and Pérez-Castrillo and Sotomayor
(2019) comparative statics have mostly been restricted to changes in the sets
of agents and objects, be they additions, subtractions, mergers or divisions.
To tackle other comparative statics, however, the models require a general-
ization that distinguishes the idiosyncratic and the common components of
the preferences.

An illustrative urban planning problem consists of a city where agents
wish to live as close as possible to their office, there are two business districts
in the city and the local government considers the possibility to build a
new one. To evaluate the alternative locations of the new district, between
two or more candidate locations, one wishes to computationally simulate
the swapping of houses that it would trigger, for instance through the Top
Trading Cycle. Modeling the behavior of the market requires to estimate the
distribution of the idiosyncratic components of the preferences: the districts
where they work before and after the creation of the district, and the location
of their houses. The common component is the estimate of commuting times,
considered homogeneous, i.e., such that it is the same for all agents covering
a given travel. In the school choice model (Abdulkadiroğlu and Sönmez
(2003)) the idiosyncratic parts of the preferences might be the location of the
students and the enrollment of their siblings and the common part might be
the ranking of the school and the transportation cost to the different schools.
The comparative statics might consists in evaluating the localization of the
new school.

Our objective in the paper is two-fold: first to propose a population model
which allows to capture both the idiosyncratic and the common components
of the preferences of agents, be they continuous or discrete; second to study
the existence of Core assignments in these economies. Specifically, we model
the sets of agents and indivisible goods as measure spaces, which allows to
present in a unified manner both discrete sets of agents and indivisible goods,
and a compact continuum of them. Concretely, types label indivisible goods
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and agents1. The type of an indivisible good describes the different charac-
teristics that fully characterize a good and the type of an agent represents a
preference relation over the set of goods. The number or mass of indivisible
goods and agents of a certain type is measured by a probability distribution.

We propose two models that bridge the gap between one-sided problems
and the optimal transport literature. The key result of the analysis consists
in establishing that if an assignment is the solution of a Pareto optimization
problem, specified as a linear maximization problem, then it is in the Core
of the economy. Our first model, called type-exclusive assignment economy,
introduces a natural concept of assignment as a measurable function that
assigns to each type of agent a type of good. We establish specific continuity,
differentiability and topological conditions for the nonemptiness of the core.

The type-exclusive assignment economy is embedded in the second model,
called flexible assignment economy, which introduces a more general concept
of assignment as a probability distribution that assigns a mass of agents
to a mass of goods. In these settings the existence of a non-empty core is
guaranteed under general conditions. Beside the existence of core allocation,
comparative statics may require the use of numerical techniques as Monte
Carlo simulations. In turn, they may be applied only to the core approxima-
tion. We study the concept of ε-core and establish conditions to approximate
the core of general models through finite models. Finally, we present an il-
lustrative example of Monte Carlo simulations in the housing market.

Currently, optimal transport theory is a very active research area of prob-
ability theory and optimization with several applications to economic theory
(see e.g. Galichon (2016), Galichon (2017) and Xia (2015)). In the case of
two-sided markets of one-to-one matching, stable matchings can be identified
with solutions to the dual of the Kantorovich optimal transport problem, for
models with transferable utility (TU) (Gretsky et al. (1992), Gretsky et al.
(1999), Chiappori et al. (2010), Ekeland (2005), Ekeland (2010), Carlier and
Ekeland (2010)); and for models with imperfectly transferable utility (ITU),
Nöldeke and Samuelson (2018). These models use the dual of an optimal
transportation problem to define and solve the nonemptiness of the core. In
our one-sided matching market model, we use a different approach, we focus
on the primal problem to define and solve the nonemptiness of the core for

1In this article, the word “type” does not have the use it is given in the Bayesian
decision literature
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one-sided matching market. Moreover, we categorize the sets of indivisible
goods and agents in types and assign a probability distribution over each
set of types (agents and goods). This allow us to study the sets of agents
and goods as measure spaces. Thus, we establish a unified model in which
continuous and discrete models (finite or infinite) are encompassed.

We establish conditions to approximate the core of general models through
deterministic and finite models, i.e., models where the set of types of good
and agents are finite, and the utility function is deterministic. This approx-
imation through finite models differs from Greinecker and Kah (2018) and
Menzel (2015) where the approximation for two-sided markets is through
finite models with stochastic perturbations in the utility functions.

In our Illustrative example, we propose two numerical methods to cal-
culate the core of finite economies that approximate the general model. In
the first one, under a mass transfer scheme, and in the second one, under
a simulation scheme and Monte Carlo integration techniques. This second
numerical approximation allows us to perform comparative statics, which
do not rely on differentiation techniques; indeed the change in the economy
is discrete in nature, specifically if consists in evaluating the effects of the
localization of a new business center. This method does not require the differ-
entiability hypothesis (as in Graham (2013), Galichon and Salanié (2017)).
On the other hand, the flexible economy model allows to capture idiosyn-
cratic components for future econometric works, see for example, Chiappori
(2020), Chiappori and Salanié (2016), and Galichon et al. (2019). While
the econometrics of matching markets has experienced important develop-
ments, as far as we are aware, ours is first step toward a theory that support
computational approximation of these markets.

The remainder of the paper is organized as follows. Section 2 presents
the type-exclusive assignment economy in which the concept of assignment is
a measurable function. Theorem 2.4 establishes a relation between the core
of a type-exclusive assignment economy and an optimal transport problem.
Section 3 presents the flexible assignment economy introducing a concept
of assignment as a probability distribution which assigns a mass of agents
to a mass of goods. We see that the type-exclusive assignment economy is
embedded in the flexible assignment economy, and in Theorem 3.3 we estab-
lish conditions for the nonemptiness of the core in the flexible assignment
economy.

Section 4 proves Theorem 3.3. Theorem 4.3 relates the nonemptiness
of the core of the flexible assignment economy and an optimal transport
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problem. In Section 5 we study the concept of ε-core to approximate the core
of general models through finite models. In Section 6 we present an housing
market model. First we approach it as an optimal transport problem, second
we examplify the use of the TTC in this population model, finally we adapt
Monte Carlo integration techniques to solve a complexified version of the
model.

We conclude in section 7 with some general comments. Appendix– A
presents an extension of the Debreu’s preferences representation theorem.
Finally, Appendix– B proposes a model where there is non-atomic measure
on the set of types of goods and agents and other conditions to ensure the
nonemptiness of the core in the type-exclusive assignment economy.

2. Type-exclusive assignment model

In this section, we require assignments to be such that two or more agents
of the same type are assigned to goods of the same type, and vice versa. An
interpretation of this condition is that the assignment is anonymous, both
for agents and goods, a normative criterion potentially incompatible with the
existence of a core stable assignment.

2.1. Type-exclusive assignment economy

Consider an economy which has a population of agents, and a population
of indivisible goods. Each indivisible good is labeled with a single type, g,
which describes the different characteristics that fully characterize a good.
The set of types of goods is G. Each agent is labeled with a type, a, where
a particular type represents the preference relation -a over G. The set of
types of agents is A. Assume that A and G are compact Borel spaces, that
is, they are separable and compact metric spaces.

We assume that preference relations {-a}a∈A are represented by a con-
tinuous utility function u : A×G→ [0, 1], that is

g -a g
′ ⇐⇒ u(a, g) ≤ u(a, g′). (1)

Two comments are in order about the utility function: 1) continuity is
a requirement one cannot dispense of for our results to hold (the definition
of continuity should be understood in the context of general topology); and
2) the utility function u(·, ·) represents the preference relations of all types
of agents, so when one considers transformations f of u(·, ·) that also rep-
resent the preference relations of all types, they might treat arguments a
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and g differently. Specifically, since no cardinality of utility is assumed for
our purpose, any transformation uf (·, ·) = f(u(·, ·)) that is continuous also
represents the original preference relations, that is, if g -a g′, then

uf (a, g)) ≤ uf (a, g′))⇐⇒ u(a, g) ≤ u(a, g′) ∀a ∈ A. (2)

This is the only monotonicity restriction required on f .
For conditions in {-a}a∈A that guarantee the existence of u(·, ·), see for

example Levin (1983), Rachev and Rüschendorf (1998) Theorem 5.5.18 page
337, or Bridges and Mehta (2013) Theorem 8.3.6 page 146 (see Appendix
A).

Let B(A) and B(G) be the Borel σ-algebras of A and G, respectively.
Probability measures η and ν assign a population distribution over the sets
A and G, respectively. Finally, we denote the population of agents and the
population of indivisible goods by the probability measure spaces

A := (A, B(A), η) and (3)

G := (G, B(G), ν), (4)

respectively.
A type-exclusive assignment economy is a quadruple E := (A,G, u, µ0),

where A is a population of agents as in (3), G is a population of indivisible
goods as in (4), u is a continuous function that satisfies (1), and, finally,
µ0 : A→ G ∪ ∅ is a measurable function which assigns for each type of agent
a in A the agent’s initial endowment µ0(a) in G and satisfies (5), or all gents
have the empty set ∅ as initial endowment. The function µ0 is called the
initial type-exclusive endowment.

A type-exclusive assignment for the economy E is a measurable function
µ : A → G. A type-exclusive assignment µ for E is feasible if for each
set of types of indivisible goods E in B(G), the amount ν(E) of indivisible
goods is proportional to the amount η(µ−1(E)) of agents. In other words, a
type-exclusive assignment µ for E is feasible if

η(µ−1(E)) = ν(E) ∀E ∈ B(G). (5)

The following are two examples of type-exclusive economies and assign-
ments.

Example 2.1. Consider an economy E where A and G are finite sets with the
same cardinality n and the function u in (1) is represented as a square matrix
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[u(a, g)]{a∈A,g∈G} of rank n. Let η and ν be uniform probability distributions
over the sets A and G, respectively; that is, η(a) = ν(b) = 1

n
for all a ∈ A

and g ∈ G. In this case, any bijective function µ : A → G is a feasible
type-exclusive assignment.
Remark: The economy in Example 2.1 is a particular case of Shapley and
Scarf (1974).

Example 2.2. Consider an economy E where A and G are both the interval
[0, 1] and the function u in (1) is u(a, g) = a2 + g2. Let η and ν be uniform
probability distribution over the sets A and G, respectively, that is, η(da) =
ν(dg) = 1 for all a ∈ A and g ∈ G. In this case, the functions µ1(a) = a and
µ2(a) = 1− a are feasible type-exclusive assignments for E.

Now, we define the core for this economy.

Definition 2.3. The core C(E) of an economy E is the set of all feasible
type-exclusive assignment µ such that there is no coalition S ∈ B(A) with
(ν(S) > 0) and type-exclusive assignment γ that satisfies the following three
conditions:

E1 i) η(γ−1(E)) = ν(E) for all E ∈ B(G) ∩ γ(S); 2

ii) µ(S) = γ(S);

E2 u(a, µ(a)) ≤ u(a, γ(a)) η-almost everywhere in S;

E3 there is D ∈ B(A) ∩ S with η(D) > 0 and u(a, µ(a)) < u(a, γ(a))
η-almost everywhere in D.

Condition E1-i) refers to the feasibility of the assignment, a mass of goods
is assigned to a mass of agents in equivalent proportions. Condition E1-ii)
ensures that the blocking coalition S does not require goods held by agents
out of S. Conditions E2 and E3 refer to the incentives that individuals in
coalition S have to improve with respect to their assignments. In conditions
E2 and E3 the statement “η-almost everywhere” means that these conditions
can fail only in a subset of η-measure zero.

2Symbols µ(S) and γ(S) refer to the topological closures of µ(S) and γ(S), respectively.
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2.2. Looking for a Pareto optimal assignment

In this section we consider a social planner who searches a type-exclusive
assignment that is Pareto optimal (when the initial matching is the empty
one, i.e., µ0(a) = ∅ for all a in A). Let L be the set of all feasible type-
exclusive assignment, i.e.,

L :=
{
µ : A→ G : η(µ−1(E)) = ν(E) ∀E ∈ B(G)

}
. (6)

Consider the social planner’s problem in an economy E :

max
µ∈L

∫
A

u(a, µ(a))η(da) (7)

with L as in (6).
If µ∗ is a solution to the planner’s problem, one cannot strictly increase

the utility of a given type without lowering the others; thus µ∗ is Pareto
optimal. Obviously, it is not the only one and when u is transformed by
a new utility function that satisfies (2), the new solution might be another
Pareto optimal assignment. The dependence on the utility representation is
not critical for our present purpose, which is to establish the relation between
the core of the economy C(E) and the social planner’s problem (7).

Theorem 2.4. A type-exclusive assignment µ∗ is solution to the social plan-
ner’s problem (7), then µ∗ is in C(E).

Proof. Suppose that µ∗ is solution to (7) and it is not in C(E). Then there
exists S ∈ B(A) (with η(S) > 0) and a feasible exclusive assignment γ which
satisfy E1-E2 in Definition 2.3.

Now, consider the exclusive assignment

µ(a) =

{
µ∗(a) if a /∈ S
γ(a) if a ∈ S

Note that γ(S) = µ(S) = µ∗(S). Let E ∈ B(G). Then by E1-ii), the
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properties of the inverse image and (5), we have that

η(µ−1(E)) = η
(
µ−1

(
E ∩ γ(S)

))
+ η

(
µ−1

(
E ∩

(
G \ γ(S)

)))
= η

(
γ−1

(
E ∩ γ(S)

))
+ η

(
µ∗−1

(
E ∩

(
G \ γ(S)

)))
= η

(
γ−1

(
E ∩ γ(S)

))
+ η

(
µ∗−1

(
E \ E ∩ γ(S)

))
= η

(
γ−1

(
E ∩ γ(S)

))
+ η

(
µ∗−1(E) \ µ∗−1

(
E ∩ γ(S)

))
= η

(
γ−1

(
E ∩ γ(S)

))
+ η(µ∗−1(E))− η

(
µ∗−1

(
E ∩ γ(S)

))
= ν

(
E ∩ γ(S)

)
+ ν(E)− ν

(
E ∩ γ(S)

)
= ν(E).

Thus, µ is a feasible exclusive assignment for E . Moreover, by E2 and
E3 it satisfies that

∫
A

u(a, µ∗(a))η(da) =

∫
A−S

u(a, µ∗(a))η(da) +

∫
S

u(a, µ∗(a))η(da)

<

∫
A−S

u(a, µ∗(a))η(da) +

∫
S

u(a, γ(a))η(da)

=

∫
A−S

u(a, µ(a))η(da) +

∫
S

u(a, µ(a))η(da)

=

∫
A

u(a, µ(a))η(da).

Therefore µ∗ is not optimal for (7), which is a contradiction. So, we
conclude that µ∗ is in in the core.

Example 2.5. Consider an economy E as in Example 2.1. In this case L (as
in (6)) is the set of all bijective functions µ : A → G. The social planner’s
problem is given by the optimization problem:

max
µ∈L

1

n

∑
a∈A

u(a, µ(a)).

2.3. The core and feasible allocations

Consider an economy E . If µ∗ is a solution to the problem (7), then
by Theorem 2.4, µ∗ is in C(E) and therefore the core of E is not empty.
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Nevertheless, the set of feasible allocation L in (6) is not necessarily compact
nor convex, in fact it may be empty (as in Example 2.6). In any case, (7)
may have no solution. The following example provides a case where the set
of feasible allocations L is empty.

Example 2.6. Consider a population of agents A := (A, B(A), δa) and a
population of goods G := (G, B(G), ν), where δa is Dirac probability measure
at a ∈ A and ν is defined by

ν(E) :=
1

2
δg1(E) +

1

2
δg2(E) ∀E ∈ B(G),

where δg1 and δg2 are Dirac probability measures on G with g1 6= g2. This
example describes a situation in which we only have two types of goods, and
one type of agent. In this case L = ∅.
Remark 2.7. Consider an economy as in Example 2.1 where A and G are
finite sets with the same cardinality n, and η and ν are uniform probability
distributions over the sets A and G, respectively. In this case, the social
planner’s problem has a solution; see, for example, Koopmans and Beckmann
(1957) or Shapley and Scarf (1974). Moreover, by Theorem 2.4 the core in
this economy is not empty.

In Appendix B we establish conditions under which the core of an econ-
omy E is nonempty. In the next section we define a new concept of assign-
ment that ensures that set of feasible allocations is not empty, under general
conditions.

3. Flexible assignment model

In a type-exclusive assignment economy E presented in Section 2, we
assume that any feasible type-exclusive assignment µ is such that two agents
of the same type are assigned to goods of the same type, and the set of
feasible type-exclusive assignments L in (6) may be empty. In this section,
we relax this restriction and work with a more flexible concept of assignment.
This flexibility is suitable in permitting the transport of masses of agents and
goods that allows us to guarantee the existence of feasible allocations and,
in addition, it ensures a solution to the social planner’s problem.

In this second model, we also classify the population of agents and the
population of goods in types. In the assignment, to each type of agent can
correspond one or many types of products, although the assignment is one-
to-one.
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3.1. Flexible assignment economy

As in Section 2.1, we consider a population A of agents as in (3), and
a population G of indivisible goods as in (4). We also assume, that the
preference relations {-a}a∈A are represented by a continuous function u as
in (1).

A flexible assignment economy is a quadruple EΠ := (A,G, u, π0), where
u is a continuous function that satisfies (1), and π0 is a probability measure
on A×G, which satisfies (8) and assigns to each set of types of goods E (for
E in B(G)) the proportion π0(D×E) of agents of types in D (for D in B(A)).
Alternatively, π0 may be the empty matching, where all goods are unassigned.
The probability measure π0 is called the initial flexible endowment.

A flexible assignment for an economy EΠ is a probability measure π on
A×G. A flexible assignment π for EΠ is feasible if for all D in B(A) and E
in B(G),

π(A× E) = ν(E) and π(D ×G) = η(D), (8)

with ν and η as in (4) and (3), respectively.
Next is an example of a flexible assignment economy.

Example 3.1. Let EΠ be an economy where A, G, and u are as in Example
2.6. The set of feasible flexible assignments Π for EΠ is not empty because it
contains at least the product measure π = δa × ν defined by

π(E) :=
1

2
δ(a,g1)(E) +

1

2
δ(a,g2)(E) ∀E ∈ B(A×G).

Definition 3.2. The core C(EΠ) of an economy EΠ is the set of all flexible
assignments π such that there is no coalition S ∈ B(A) (with η(S) > 0),
set H ∈ B(G) (with ν(H) > 0) and flexible assignment κ that satisfy the
following three conditions for any E in B(G) ∩H, and D in B(A) ∩ S:

F1 i) κ(A× E) = ν(E) and κ(D ×G) = η(D),

ii) κ(S × E) = π(S × E) and κ(D ×H) = π(D ×H);

F2 if η(D) > 0 and ν(E) > 0, then∫
D×E

u(a, g)π(da, dg) ≤
∫
D×E

u(a, g)κ(da, dg). (9)

F3 there exists D′ in B(A)∩S and E ′ in B(G)∩H, such that (9) is satisfied
with inequality.

11



Condition F1-i) refers to the feasibility of the assignment. Condition
F1-ii) refers to preserving “the quantity” (mass) and “the types” of agents
and indivisible goods in the change from π to κ. In other words, the mass
π(S × E) of types of goods E ⊂ H that are assigned to coalition S does
no change (κ(S × E) = π(S × E) for any E in B(G) ∩ H); conversely, the
mass π(D × H) of types of agents D ⊂ S that are assigned to H does no
change (κ(D ×H) = π(D ×H) for any D in B(A) ∩ S), thus, the coalition
is on its own to block π. Conditions F2 and F3 refer to the incentives that
individuals in coalition S have to improve their assignments.

The next theorem establishes conditions that are sufficient for the core of
an economy EΠ to be nonempty.

Theorem 3.3. For any economy EΠ, the core C(EΠ) is not empty.

Theorem 3.3 is a consequence of Theorem 4.3 and Proposition 4.4, which
are proven in section 4.

3.2. Assignments in E and EΠ

In this section we compare the definitions of assignment for the economies
E and EΠ. Let µ be a type-exclusive assignment of an economy E . We can
rewrite µ as a flexible assignment πµ for an economy EΠ as follows: for any
K ∈ B(A×B)3 let

πµ(K) := η(Ka) where Ka := {a ∈ A : (a, µ(a)) ∈ K}. (10)

Let µ be a flexible assignment in E , note that if K = S×H in (10), where
S ∈ B(A) and H ∈ B(G), then

πµ(S ×H) := η(S ∩ µ−1(H)) = η(µ−1(H)) = ν(H). (11)

The following examples illustrate how a type-exclusive assignment µ can be
rewritten as a flexible assignment πµ.

Example 3.4. Let EΠ be an economy where A, G, η, ν and u are as in
Example 2.1. Then for any bijective function µ : A → G, the probability
measure πµ defined by

πµ(a, g) =

{
1
n

if g = µ(a)
0 otherwise

is a feasible flexible assignment for the economy EΠ.

3Where B(A×B) is the σ-algebra product of B(A) and B(G).
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Example 3.5. Let EΠ be an economy where A, G, η, ν and u are as in
Example 2.2. Consider the type-exclusive assignments µ1(a) = a and µ2(a) =
1− a. Then πµ1 and πµ2, as in (10), are feasible flexible assignments in the
economy EΠ. That is, for any (b, c] ⊂ [0, 1]

πµ2((b, c], G) =

∫
[b,c)×G

πµ2(da, dg) = c− b = η(b, c]

πµ2(A, (b, c]) =

∫
A×[b,c)

πµ2(da, dg) = (1− b)− (1− c) = c− b = ν(b, c].

Similarly for πµ1. For this economy EΠ the probability measure πu with uni-
form density πu(da, dg) = 1 is also a feasible assignment.

Note that if µ is a feasible type-exclusive assignment for E , then πµ in
(10) satisfies (8), i.e., πµ is a feasible flexible assignment of EΠ.

Proposition 3.6. Consider a feasible type-exclusive assignment µ for an
economy E and a flexible assignment πµ for an economy EΠ, defined as in
(10). Suppose that there exists a coalition S ∈ B(A) and assignment γ that
satisfies E1-E3 in Definition 2.3. Then the assignment πγ in EΠ defined as

(10) satisfies F1-F3 in Definition 3.2 with H = γ(S).

Proof. Let H := γ(S), then H ∈ B(G). Using the inverse image properties
S ⊂ γ−1(γ(S)) ⊂ γ−1(γ(S)) we have that

ν(H) = η
(
γ−1

(
γ(S)

))
≥ η(S) > 0.

If γ satisfies E1, then πγ as in (10) satisfies F1-i), because if E ∈ B(G) ∩H
and D ∈ B(A) ∩ S, then we have

πγ(D ×G) = η(D ∩ γ−1(G)) = η(D ∩ A) = η(D),

πγ(A× E) = η(γ−1(E)) = ν(E) (by (10) and (11)).

Moreover, if E ∈ B(G) ∩H and D ∈ B(A) ∩ S, then

πγ(D ×H) = η(D ∩ γ−1(H)) = η(D ∩ S) = η(D)

πγ(S × E) = η(S ∩ γ−1(E)) = η(γ−1(E)) = ν(E) (by (10) and (11)).

Since η(µ−1(E)) = ν(E) for all E ∈ B(G) ∩H and D ∈ B(A) ∩ S, we have
that κ(S × E) = π(S × E) and κ(D ×H) = π(D ×H). Therefore F1-ii) is
satisfied.
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On the other hand, note that for any type-exclusive assignment γ of E , if
E ∈ B(G) and D ∈ B(A), then∫

D×E
u(a, g)πγ(da, dg) =

∫
D∩γ−1(E)

u(a, γ(a))η(da). (12)

Since γ satisfies E2, if E ∈ B(G)∩H and D ∈ B(A)∩S, with η(E) > 0 and
ν(D) > 0, then using (12) we have that∫

D×E
u(a, g)πµ(da, dg) ≤

∫
D×E

u(a, g)πγ(da, dg), (13)

which implies F2.
Finally, if there exist D′ that satisfies E3, take E ′ := γ(D′), we have

that E ′ ∈ B(G) ∩H. Using the inverse image properties D′ ⊂ γ−1(γ(D′)) ⊂
γ−1(γ(D′)), then

ν(E ′) = η
(
γ−1

(
γ(D′)

))
≥ η(D′) > 0.

Then (13) is satisfied with strictly inequality and this implies F3.

The following theorems is a direct consequence of Proposition 3.6.

Theorem 3.7. Consider an economy EΠ, and πµ in the core of EΠ. If πµ is
as in (10), then the type-exclusive assignment µ is in the core of E .

Next example covers the classical housing market proposed by Shapley
and Scarf (1974), Examples 2.1, 2.5, 2.6, 3.4, 3.1, and Remark 2.7.

Example 3.8. Consider an economy EΠ where A and G are finite sets and
the function u as in (1) is represented as a m × n-matrix [u(a, g)]{a∈A,g∈G}
where n is the cardinality of A and m is the cardinality of G. Let η and ν
be any discrete probability distributions over the sets A and G, respectively.
The product probability πη,ν := η × ν is a feasible flexible assignment.

4. Optimal transport theory and proof of Theorem 3.3, C(EΠ) 6= ∅

In this section we prove Theorem 4.3 and Proposition 4.4, which in turn
are used to prove Theorem 3.3 in Section 4.2.
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4.1. Looking for a Pareto optimal assignment

Consider (10), and let L be as in (6). We define the set

ΠL := {π ∈ P(A×G) : π = πµ, µ ∈ L}, (14)

where P(A×G) is the set of probability measures on A×G.
In this case, we can rewrite problem (7) as

max
π∈ΠL

∫
A×G

u(a, g)π(da, dg). (15)

The set of feasible type-exclusive assignments (14) is not necessarily con-
vex nor compact; in fact, it may be empty (as in the Example 2.6). In any
case, (15) may have no solution. To solve the problem, we replace the set of
feasible type-exclusive assignments ΠL by the convex set of Π which is the
set of all feasible flexible assignments, i.e.,

Π := {π ∈ P(A×G) : π satisfies (8)} , (16)

where we have that ΠL ⊂ Π.
As in Section 2.2, we consider a social planner who searches a Pareto

optimal assignment for a flexible assignment economy EΠ as

max
π∈Π

∫
A×G

u(a, g)π(da, dg) (17)

with Π as in (16).

Example 4.1. Consider an economy EΠ as in Example 3.4. Then the set
of feasible flexible assignments Π is given by the set of probabilities π that
satisfy ∑

a∈A

π(a, g) = 1/n,
∑
g∈G

π(a, g) = 1/n.

Hence, the social planner’s problem for this economy is

max
π∈Π

∑
a∈A

∑
a∈G

u(a, g)π(a, g).

The equivalence between the social planner’s problem for an economy E in
Examples 2.1 and 2.5, and the social planner’s problem for an economy Eπ
can be seen in Koopmans and Beckmann (1957).
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Example 4.2. Consider an economy EΠ as in Example 3.8. Then the set of
feasible flexible assignments Π is given by the set of probability measures π
that satisfies ∑

a∈A

π(a, g) = η(a),
∑
g∈G

π(a, g) = ν(a).

Hence, the social planner’s problem for this economy EΠ is

max
π∈Π

∑
a∈A

∑
a∈G

u(a, g)π(a, g).

Let π∗ be an optimal assignment for social planner’s problem and let S ⊂
A×G be the support of π∗. Then for any sequence {(ai, gi)}ki=1 in S and any
bijective function on the k elements µ : {ai}ki=1 → {gi}ki=1, we have that

k∑
i=1

u(ai, µ(ai)) ≤
k∑
i=1

u(ai, gi);

see for example Gangbo and McCann (1996), Theorem 2.3. Hence, the solu-
tion of the social planner’s problem for this economy EΠ also solves the social
planner’s problem for the economy E in Example 2.5 where the optimum
assignment is searched in a set of permutations.

The following theorem establishes the relation between the core C(EΠ) of
an economy EΠ and the social planner’s problem (17).

Theorem 4.3. If the flexible assignment π∗ is solution of the social planner’s
problem (17), then π∗ is in C(EΠ).

Proof. Suppose that π∗ is a solution to (17) and it is not in C(EΠ). Then
there exists a coalition S ∈ B(A) (with η(S) > 0), a flexible assignment κ,
and a set H ∈ B(G) (with ν(H) > 0), such that for any E in and B(G)∩H,
and D in B(A) ∩ S satified F1-F3 in Definition 3.2.

Consider the flexible assignment π defined by

π(O) = π∗(O ∩ (A×G))− π∗(O ∩ (S ×H)) + κ(O ∩ (S ×H))

for all O in B(A×G). Let D be in B(A) and E in B(G). Then by F1
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π(D ×G) = π∗((D ×G) ∩ (A×G))− π∗((D ×G) ∩ (S ×H))

+κ((D ×G) ∩ (S ×H))

= π∗(D ×G)− π∗((D ∩ S)×H) + κ((D ∩ S)×H)

= π∗(D ×G)

= µ(D),

π(A× E) = π∗((A× E) ∩ (A×G))− π∗((A× E) ∩ (S ×H))

+κ((A× E) ∩ (S ×H))

= π∗(A× E)− π∗(S × (E ∩H)) + κ(S × (E ∩H))

= π∗(A× E)

= µ(E).

Hence π is a feasible flexible assignment satisfying (8) and Since F2 and F3
are satisfied, we have that∫
A×G

u(a, g)π∗(da, dg) <

∫
A×G

u(a, g)π∗(da, dg)−
∫
S×H

u(a, g)π∗(da, dg)

+

∫
S×H

u(a, g)κ(da, dg)

=

∫
A×G

u(a, g)π(da, dg).

Therefore, π∗ is not optimal for problem (17), which is a contradiction.

4.2. Proof of Theorem 3.3, C(EΠ) 6= ∅
The optimization problem (7) is among the oldest and best known prob-

lems in probability theory, also known as the optimal transport problem.
It was introduced by Gaspard Monge (1728), and posed as a mathematical
linear problem (17) by L.V. Kantorovich (1942). The solvability of (17) has
been studied under a wide variety of hypotheses on the underlying spaces A
and G, and/or the utility function u. For instance see Hernández-Lerma and
Gabriel (2002), Jiménez-Guerra and Rodŕıguez-Salinas (1996). A standard
reference about this topic is Villani (2008).
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Proposition 4.4. Consider the economy EΠ. Then there exists a solution to
(17), i.e., there exists a flexible assignment π∗ ∈ Π (with Π as in (16)) such
that ∫

A×G
u(a, g)π∗(da, dg) = max

π∈Π

∫
A×G

u(a, g)π(da, dg). (18)

Proof. See Santambrogio (2015) Pages 4-5, Theorem 1.4.

Proof of Theorem 3.3 Consider the hypotheses on the economy EΠ.
Then by Proposition 4.4, there exits π∗ ∈ Π that satisfies (18), i.e., π∗ is a
solution to (17). By Theorem 4.3, π∗ is in C(EΠ), and so Theorem 3.3 is
satisfied. �

5. The ε- core and finite approximations

In section 6 we carry out numerical approximations using the core as a
solution concept. The aim of this sections is to justify the use of ε-core as
a finite approximation of the core. We propose two results, Theorems 5.2
and 5.5, to approximate an assignment π in the core of the an economic EΠ,
through an essentially finite economy (Remark 5.3).

5.1. The ε- core and finite approximations

As in Section 2.1, we consider a population A of agents as in (3), and
a population G of indivisible goods as in (4). We also assume that the
preference relations {-a}a∈A are represented by a bounded function u as
in (1). In this section we consider a flexible assignment economy EΠ :=
(A,G, u, π0),.

Definition 5.1. The ε-core of an economy EΠ, ε-C(EΠ) is the set of all
flexible assignments π such that there is no coalition S ∈ B(A) (with η(S) >
0), set H ∈ B(G) (with ν(H) > 0) and flexible assignment κ that satisfy the
following three conditions for any E in B(G) ∩H, and D in B(A) ∩ S:

J1 i) κ(A× E) = ν(E) and κ(D ×G) = η(D),

ii) κ(S × E) = π(S × E) and κ(D ×H) = π(D ×H);

J2 if η(D) > 0 and ν(E) > 0, then∫
D×E

u(a, g)π(da, dg)− ε ≤
∫
D×E

u(a, g)κ(da, dg). (19)
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J3 there exists D′ in B(A) ∩ S and E ′ in B(G) ∩ H, such that (19) is
satisfied with inequality.

As a fact, C(EΠ) ⊆ ε-C(EΠ) for any ε > 0. Moreover, if ε′ ≥ ε > 0, then
ε-C(EΠ) ⊆ ε′-C(EΠ).

Theorem 5.2. Consider two economies

EΠ := (A,G, u, π0), and ÊΠ := (A,G, û, π0),

and suppose that

‖u− û‖∞ = sup
(a,g)∈(A×G)

|u(a, g)− û(a, g)| < α.

Then if π is in ε-C(ÊΠ), we have that π is in ε′-C(EΠ) where ε′ = ε+ α.

Proof. Let π be in ε-C(ÊΠ), if it satisfies J1 in Definition 5.1 for ÊΠ, it is

clear that π also satisfies J1 for EΠ. Now, if π satisfies J2 for ÊΠ, then there
is no a coalition S ∈ B(A) (with η(S) > 0), a flexible assignment κ, and a
set H ∈ B(G) (with ν(H) > 0), such that for any E in and B(G) ∩H, and
D in B(A) ∩ S∫

D×E
u(a, g)π(da, dg)−

∫
D×E

u(a, g)κ(da, dg)

≤
∫
D×E

u(a, g)π(da, dg)−
∫
D×E

û(a, g)π(da, dg)

+

∫
D×E

û(a, g)π(da, dg)−
∫
D×E

u(a, g)κ(da, dg)

≤ α + ε = ε′.

Then J2 is satisfied, with ε′ = α+ ε, for EΠ. Finally, if π satisfies J3 for ÊΠ,
it is clear that π also satisfies J3 , with ε′ = α + ε, for EΠ.

Remark 5.3. Consider an economy EΠ := (A,G, u, π0) where, A (in A)
and G (in G) are compact and separable metric spaces. Let u be a con-
tinuous function and consider any partitions P k

A := {Ai}k−1
i=0 over A and

P r
G := {Gj}r−1

j=0 over G. Let û be the discrete approximation of u defined by
the function

û(a, g) := u(ai, gj), if (a, g) ∈ Ai ×Gj, (20)
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where (ai, gj) ∈ inAi ×Gj are fixed vectors.
Now, consider the economy

ÊΠ := (A,G, û, π0) (21)

with û as in (20). In this case, we say that the ÊΠ is essentially finite in the
sense that for any O in B(A×G) ∩

(
P k
A × P r

G

)
4, we have that∫

O

û(a, g)π(da, dg) =
∑

(Ai×Gj)∈O∩Pk
A×P

r
G

u(ai, gj)π(Ai ×Gj)

≈
∑

(Ai×Gj)∈O∩Pk
A×P

r
G

u(ai, gj)π̂(Ai ×Gj) (22)

where π̂ is a discrete approximation of π over the partitions5. If we consider
the population

Ak := (P k
A, P(P k

A), ηk) and (23)

Gr := (P r
G, P(P r

G), νr), (24)

where P represents the potential set, and ηk and ηr are discrete approximation
of η and ν over P k

A, and P r
G, respectively. Then the economy

ÊΠk
r

:= (Ak,Gr, û, π̂0), (25)

approximates EΠ and ÊΠ in (21), see (22).

Using Theorem 5.2, we can approximate an assignment π in the core of
an economic EΠ through an essentially finite economy ÊΠk

r
. That is, we can

search an assignment π̂ in the core of ÊΠk
r

which approximate some

π ∈ ε−C(ÊΠ) ⊂ ε′−C(EΠ) for ε′ ≥ ε > 0. (26)

4Where B(A × G) is the σ-algebra product of B(A) and B(G), and P k
A × P r

G is the
Cartesian product of P k

A and P r
G

5IfX is a separable metric space, then the set of all probability measures whose supports
are finite are dense in the set of all all probability measures of X, (see Parthasarathy, 1967,
Theorem 6.3, p. 44)
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5.2. A simple random sample on EΠ

In this section we propose a result, Theorem 5.5, that allows us to use
the TTC algorithm to approximate an assignment π̂ in the core of ÊΠk

r
in

(25)-Remark 5.3, using Monte Carlo integration techniques (see section 6.2).
Consider a flexible assignment economy EΠ := (A,G, u, π0), where the

populations A and G are as in (3) and (4), respectively. Supposes that
A ⊂ RM and G ⊂ RN are compact set, and let An = {α1, α2, ..., αn}, and
Gn = {β1, β2, ..., βn}, be simple random sample of populations A and G,
respectively. Note that for each k, r = 1, 2, ..., n, αk ∈ A and βr ∈ G. The
preference relations {-αk

}nk=1 over Gn, are represented as a square matrix
[u(αi, βk)]

n
k,r=1 of rank n.

Consider the classical housing market equivalent to the one of Shapley
and Scarf (1974) described by the economy

En =:
(
An, Gn, [u(αi, βk)]

n
k,r=1, µ0

)
,

where µ0 is a bijective function. In this case, any bijective function µ : An →
Gn is a feasible assignment.

Definition 5.4. The core C(En) of an economy En is the set of all feasible
assignment µ such that there is no coalition Sp = {ai1 , ai2 , ..., aip}subset of
An and assignment γ such that

X1 i) γ is a bijective ,

ii) γ(aks) ∈ {µ(aks) : s = 1, ..., p} for all s = 1, 2, ..., p;

X2 u(aks , µ(aks)) ≤ u(aks , γ(aks)) for all s = 1, 2, ..., p;

X3 u(aks′ , µ(aks′ )) < u(aks′ , γ(aks′ )) for some s′ ∈ {1, ..., p}.

Condition X1-i) refers to the feasibility of the assignment. Condition
X1-ii) ensures that the blocking coalition S does not require goods held by
agents out of S. Conditions X2 and X3 refer to the incentives that agents
in coalition S have to improve their assignments.

The following theorem establishes a relation between the economies EΠ

and En.

Theorem 5.5. Consider a flexible assignment economy EΠ := (A,G, u, π0),
and the economy En =:

(
An, Gn, [u(αi, βk)]

n
k,r=1, µ0

)
, where An = {α1, α2, ..., αn}

and Gn = {β1, β2, ..., βn} are simple random sample of populations A and G,
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respectively. Suppose that µ ∈ C(En) and n is large enough, then there exists
π ∈ C(EΠ), such that

{(a1, µ(a1)), (a2, µ(a2)), ..., (an, µ(an))},

is a simple random sample where each element has a distribution π.

Proof. By Theorem 3.3 C(EΠ) is nonempty. Let

{(α1, µ(α1)), (α2, µ(α2)), ..., (αn, µ(αn))},

be a simple random sample where each element has a distribution π. Assume
that π is not in C(E). Then there exists S ∈ B(A) (with η(S) > 0), flexible
assignment κ, and set H ∈ B(G) (with ν(H) > 0), such that satisfies F1-
F3, in Definition (3.2). Since n is large enough, then there exists Sp =
{αi1 , αi2 , ..., αiq} ⊂ An and Hp = {βk1 , βk2 , ..., βkq} ⊂ Gn

6 such that

{(αi1 , βk1), (αi2 , βk2), ..., (αip , βiq)}

is in the support of κ, and satisfies that if D ⊂ {1, 2, ..., q}, then∑
s∈D

u(αis , µ(αis)) ≤
∑
s∈D

u(αis , βks). (27)

with strictly inequality for some D′ ⊂ {1, 2, ..., q}. Let γ(αis) = βis for
s = 1, ..., p, and γ(αi) = µ(βi) if αi /∈ Sp. It is clear that γ satisfies X1-X3.
Then µ is not in C(En) which is a contradiction. Therefore we have that π
is in C(E).

6. An illustrative housing market

We establish the existence of a core allocation in the flexible assignment
model and validated discrete approximations of the model. We now perform
comparative statics in a stylized housing market, incorporating both the id-
iosyncratic parts of the preferences and the common parts. More specifically,
in an empirical model we need to estimate the different parameters of u, µ
and η. For example, if G is a population of houses as in (4), the type set

6Since n is large enough, if Sp = ∅ or Hp = ∅, then η(S) = 0 or ν(H) = 0 which is a
contradiction.
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G may be a set of characteristics as: location, number of rooms, size, color,
level of contamination in the area, among others. A characteristic can be
modeled using a continuous distribution η over G. Similarly, for the popu-
lation of agents A in (4), we may be interested in the preferences of agents
with different characteristics such as income level, age, sex, workplace, among
others. We illustrate the use of our model with a simple flexible assignment
economy EΠ := (A,G, u, π0) where:

i) G is a populations of houses as in (4), with G = [0, 1]× [0, 1], and ν is
a uniform distribution on G; each point g = (g1, g2) ∈ G represents the
location of the house g. It is the idiosyncratic part of the preferences.

ii) Business center are concentrated in three locations

{(0, 0), (0.5, 0.5), (1, 1)}

called business center. We consider that each agent only works in one
of this business centers.7 The agents prefer the homes closest to their
workplace. Then the populations of agents A as in (4), has a types set
of the form A = {a1, a2, a3}, where a1, a2, and a3 are the types of agents
that works in (0, 0), (0.5, 0.5) and (1, 1), respectively. We assume that
the utility function u has the form

u(ai, g) = −d(ai, g) ∀ i = 1, 2, 3, g ∈ G

where d(ai, g) is the Euclidean distance that there exits of the localiza-
tion or coordinated g ∈ G of house at the location ai of the business
center, it is the common part of the preferences. Finally, we assume
that η is a distribution on A of the form η(a1) = η(a3) = 0.3 and
η(a2) = 0.4.

6.1. Core approximation using optimal transport theory

Using Theorem 5.2 and Remark 5.3 we search an assignment π̂ in the
core of a finite economy ÊΠk

r
(as in (25)) that approximate an assignment π

in the core of an economy EΠ, see (22) and (26).

7We can aggregate a continuous set of business centers (for example a line connecting
the points (0, 0) and (1, 1)), we use only the location of three business center to obtain
illustrative graphics.
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We approximate ν with a uniform discrete distribution ν̂ on G. For this,
we partition [0, 1], into 50 intervals Ij of the same length l(Ij) = 1

50
, then G

(a) π̂(a1, ·) (b) π̂(a2, ·)

(c) π̂(a3, ·) (d) Overlap of the conditional distributions

Figure 1: Conditional distributions of the optimal π̂kr
∗
.
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is partitioned into 2, 500 cells of the form Ih×Ij with a volume or probability
mass

ν(Ih × Ij) = ν̂(Ih × Ij) = l(Ih)l(Ij) = 1/2500.

In this case Ih = [ h
50
, h+1

50
), Ij = [ j

50
, j+1

50
) for h, j = 0, ..., 48 and for I49 =

[49
50
, 1]. Since η is a discrete distribution, it does not requires a discrete

approximation.
To obtain a discrete approximation of u as in (20), let

û(a, g) := u(ai, ghj), if a = ai and g ∈ Ih × Ij,

where i = 1, 2, 3, and ghj =
(
h
50

+ 1
100
, j

50
+ 1

100

)
for h, j = 0, 1, ..., 49. Now,

we search π̂ in C(ÊΠk
r
) as in (25) solving the optimization problem 8

max
π

3∑
i=1

49∑
h,j=0

u(ai, gh,j)π({ai}, Ih × Ij) (28)

Subject to

3∑
i=1

π({ai}, Ih × Ij) = ν(Ih × Ij) for h, j = 0, 1, ...49, (29)

49∑
h=0

49∑
j=0

π({ai}, Ih × Ij) = η({ai}) for i = 1, 2, 3. (30)

This optimal π̂ approximates an assignment π in the ε′-core of EΠ. Figure
1 shows the conditional distributions of the optimal π̂ that solves the optimal
transport (28)-(30), as follows:

i) Figure 1-(a) shows the conditional distribution π̂(a1, ·) of the agents
that works in the location a1 = (0, 0).

ii) Figure 1-(b) shows the conditional distribution π̂(a2, ·) of the agents
that works in the location a2 = (0.5, 0.5).

iii) Figure 1-(c) shows the conditional distribution π̂(a3, ·) of the agents
that works in the location a3 = (1, 1).

8We use the library “lpSolve” of the R software to solve (28)-(30), and also to obtain
graphics of Figure 1
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iv) The distributions π̂(a1, ·), π̂(a2, ·) and π̂(a3, ·) are almost uniform over
the blue color, that is, each Ih× Ij of color blue have the same positive
probability, and zero in other case .

v) Finally, Figure 1-(d) shows cells where previous conditional distribu-
tions overlap.

6.2. Core approximation using the TTC algorithm

Suppose that we have a sample of size n of the populations G, and A,
by Theorem 5.5 we can use the TTC algorithm and Monte Carlo integration
techniques to approximate an allocation π̂ in C(ÊΠk

r
) as in (25)-Remark 5.3,

(for n ≥ k, r). This assignment π̂ is near to an assignment π in the core of
an economy EΠ, see (22) and (26). In this example we establish the following
steps, where n = 10, 000:

i) Let A = Ak and consider an economy over the partitions ÊΠk
r

:= (Ak,Gr, û, π̂0)
as in (25), where π̂0 ≈ π0.

(a) Simulation of a sample using π0. (b) Assignment using the TTC algorithm

Figure 2: Assignment using the TTC algorithm of a sample of size n = 10, 000.

ii) Take samples of size n of the populations A and B, that is, An =
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{α1, ..., αn}, Gn = {β1, ..., βn}, this sample satisfies the distribution π0. For
example if

π0(da, dg) = 1{a1}×[0,0.3]×[0,1]1{a2}×[0.3,0.7]×[0,1]1{a3}×[0.7,1]×[0,1]

we generate with a uniform distribution, 3, 000 house location data corre-
sponding to the cell [0, 0.3] × [0, 1] and assume that each house is assigned
one agent that works in a1 = (0, 0), the blue points in Figure 2-(a). We
have 3, 000 agents with the same preference relation -a1 . Similarly, we gen-
erate 4, 000 house location data in the cell [0.3, 0, 7] × [0, 1] and 3, 000 in
[0.7, 1]× [0, 1], we suppose that each house is assigned one agent that works
in a2 = (0.5, 0.5) and a3 = (1, 1), respectively (the red and green points in
Figure 2-(a)). This initial assignment is µπ0

iii) We search for this finite economy (An, Gn,-αj
, µπ0), a location in the core

using the TTC-algorithm and we obtain the new assignment µ∗. In Figure
2-(b), we illustrate this assignment using colors. Blue points represents the
location of houses whose owners work at point a1 = (0, 0); red points repre-
sents the location of houses whose owners work at point a2 = (0.5, 0.5); and
green points represents the location of houses whose owners work at point
a3 = (1, 1).9

iv) Monte Carlo integration. Since, µ∗ ∈ C(E
¯n

), from Theorem 5.5 there
exists π ∈ C(EΠ), such that

{(a1, µ(a1)), (a2, µ(a2)), ..., (an, µ(an))},

is a simple random sample where each element has a distribution π. We can
approximate the conditional distributions π̂(a1, ·), π̂(a2, ·), π̂(a3, ·) of ÊΠk

r
in

stage i), (similar to Figure 1) from the TTC-algorithm, following the steps:

a) we divide the sets A and G in partitions P k
A := {Ai}k−1

i=0 and P r
G :=

{Gj}r−1
j=0, as Remark 5.3. In the Figure 3 the number of parts in parti-

tions P k
A and P r

G is the same, r = k = 25.

b) For each Ai ×Gj we count the number of points by type of agent. Let
NPBij and TPB be the number of point of color blue in Ai ×Gj and
P k
A × P r

G respectively, in this case TPB = 3000.

9We use “R package matchingMarkets” to get the assignments generated by the TTC-
algorithm, see Klein (2018)
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Figure 3: Counting the number of points by type of agent in each partition

c) To obtain the conditional distribution π̂(a1, ·), to each Ai×Gj we assign

the probability
NPBi,j

TPB
. We repeat this processes obtaining π̂(a2, ·),

π̂(a3, ·).
To see more about Monte Carlo integration techniques, see for example Evans
and Swartz (2000).

In partitions P k
A and P r

G with large numbers of elements k and r, respec-
tively, the Monte Carlo integration technique requires a very large sample n
to compute a good approximation of this conditional distribution π̂(ai, ·). In
this example this approach is computationally more costly than the optimal
transport approach, in particular the time required to perform the approxi-
mation is greater.

These techniques allow to numerically evaluate changes in different cir-
cumstances and answer, questions such as: How do assignments behave if
we add a business center? How do the assignments respond to different
compositions of the populations due to changes in ν and η?, among others.

If we change the initial condition π0 for the TTC algorithm, we obtain
different stable assignment. In figure 4 we have a sample with the same
characteristics as in Figure 2 but with an initial condition

π′0(da, dg) = (0.3)1{a1}×G(0.4)1{a2}×G(0.3)1{a3}×G
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Where G = [0, 1]× [0, 1]. Compare Figure 1, 2 and 4 .

(a) Simulation of a sample using π′0. (b) Assignment using the TTC algorithm

Figure 4: Assignment using the TTC algorithm of a sample of size n = 10, 000.

Thus, our comparative statics establishes that the original distribution
of houses impacts both the agents at an individual level, but also at an
aggregate level since the blue, red, and green areas do not overlap with the
one obtained at figure Figure 2-(b).

7. Comments

In this paper we present two models of a one-sided matching market. In
our setting, the sets of agents and goods are measure spaces, which allows us
to present an unified model in which both sets can be continuous or finite.
The first model, called a type-exclusive assignment economy, introduces a
concept of assignment as a measurable function that assigns to each type
of agent a type of good. The second model, called a flexible assignment
economy, introduces a concept of assignment as a probability distribution
which assigns a mass of agents to a mass of goods. This approach allows
us to use optimal transport theory (see Theorems 2.4 and 4.3) to establish
conditions for the nonemptiness of the core in both models; see Theorems
3.3, B.3 and B.4. We show that the type-exclusive assignment economy is
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embedded in a flexible assignment economy; see Proposition 3.6, Theorem
3.7.

We study the concept of ε-core to approximate the core of general models
through finite models. We proposed two results, Theorems 5.2 and 5.5, to
approximate an assignment in the core of the an flexible assignment economic,
through an essentially finite economy (Remark 5.3). Finally, we propose
continuous housing allocation problem and solve it using optimal transport
and other numerical techniques such as TTC algorithm, and Monte Carlo
integration, for this use finite models.

Our approach complement the active research on econometric of match-
ing, which allows to elaborate new competitive comparative statics in these
markets. Particularly, the theoretical development of numerical and compu-
tational approximations of these markets will allow to expand the number of
empirical applications. For example, using these approximation and simula-
tion techniques under a comparative statics scheme (as developed in Section
6) it is possible to evaluate public policies of interest in these matching mar-
kets.

Appendix

A. An extension of the Debreu’s preferences representation theo-
rem

Consider an economy Assume that A and G are compact Borel spaces,
that is, they are complete, separable and compact metric spaces. For the
preference relations {-a}a∈A , we assume that

H1 rationality: for each a in A, -a is a is a complete and transitive order
relation;

H2 continuity in the goods: for each a in A and g′ in G the sets {g ∈ G :
g′ -a g} and {g ∈ G : g -a g′} are closed;

H3 continuity in the agents: for any g′, g ∈ G the set {a ∈ A : g′ -a g} is
closed.

The following theorem is an extension of the Debreu’s preferences repre-
sentation theorem Debreu (1954). The proof can be see in Levin (1983), or
in Rachev and Rüschendorf (1998) Theorem 5.5.18 page 337, or Bridges and
Mehta (2013) Theorem 8.3.6 page 146.
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Theorem A.1. Let A be the set of type of agents, and G be the set of type of
indivisible goods. Assume as in (1) and (3) that A and G are compact metric
spaces, and let G, in addition, be separable. Suppose that the preference
relations {-a}a∈A satisfy H1, H2 and H3. Then there exits a continuous
function u : A×G→ [0, 1] such that

∀a ∈ A, g -a g
′ ⇐⇒ u(a, g) ≤ u(a, g′).

B. Non-atomic sets of types an the non-emptiness of C(E)

In Section 2, we defined an economy where the set of feasible type-
exclusive allocation L in (6) may be empty (see Example 2.6). In Section 3
we defined a general concept of assignment (the flexible-assignment) which
ensures that the set of feasible assignments of a economy is not empty. More-
over, under general conditions the core of the economy is nonempty, as stated
in Theorem 3.3.

In this section we establish particular conditions under which if we have
non-atomic sets of types, then the core of economy E (in Section 2) is
nonempty. We consider the following assumptions:

A1 Non-atomic sets of types. The set of types of agents A and the set
of types of indivisible goods G are compact subsets of Rn, and η is
a probability measure on B(A) which is absolutely continuous with
respect to n-dimensional Lebesgue measure.

A2 Heterogeneity on utility. Let U be a differentiable function in A × G.
If g′, g ∈ supp(ν) with g 6= g′, then

∂u

∂a
(a, g) 6= ∂u

∂a
(a, g′).

A3 Convexity in types of agents. The set A is convex, and for each g ∈
supp(ν) the function a→ u(a, g) is concave or convex.

A4 Smoothness on the heterogeneity of types of agents. The set int(supp(η))
is not empty and its complement is Lebesgue negligible; for every
g ∈ supp(ν), a → u(a, g) is differentiable and for any a ∈ supp(η),
there exits a neighborhood V of a and a number ca > 0 such that

|u(a1, g)− u(a2, g)| ≤ ca‖a1 − a2‖ ∀a1, a2 ∈ V, g ∈ supp(ν).
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Proposition B.1. Consider assumptions A1, A2, A3. Then the problems
(7) and (17) admit at least one solution. Moreover, if µ ∈ L (with L as in
(6)) is a solution to (7), then πµ as in (10) is a solution to (17), and

max
µ∈L

∫
A

u(a, µ(a))η(da) = max
π∈Π

∫
A

u(a, g)π(da, dg)

with Π as in (16).

Proof. See Levin (2004), Theorems 1.2 and 1.3.

Proposition B.2. Consider assumptions A1, A2, A4. Then the problems
(7) and (17) admit at least one solution. Moreover, if µ ∈ L, (with L as in
(6)) is a solution to (7), then πµ as in (10) is a solution to (17), and

max
µ∈L

∫
A

u(a, µ(a))η(da) = max
π∈Π

∫
A

u(a, g)π(da, dg),

with Π as in (16).

Proof. See Levin (2004), Theorem 1.4.

Carlier (2003) propose similar conditions of Proposition B.2, but for
metric spaces.

Theorems B.3 and B.4 establish particular conditions under which the
core of an economy E is nonempty, as well as the relation between the cores
C(E) and C(EΠ).

Theorem B.3. Let E and EΠ be economies where (u,A,G, ν, η) satisfies
assumptions A1, A2, A3. Then the cores C(E) and C(EΠ) are not empty.
Moreover, if µ ∈ C(E) is a maximum in (7), then πµ in (10) is a maximum
in (17), and πµ ∈ C(EΠ).

Proof. The theorem follows from Theorem 2.4 and Proposition B.1.

Theorem B.4. Let E and EΠ be economies where (u,A,G, ν, η) satisfies
assumptions A1, A2, A4. Then the cores C(E) and C(EΠ) are not empty.
Moreover, if µ ∈ C(E) is a maximum in (7), then πµ in (10) is a maximum
in (17), and πµ ∈ C(EΠ).

Proof. The theorem follows from Theorem 2.4 and Proposition B.2.
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Next example satisfies the assumptions A1, A2, A4. To see the proof
of the conclusion and other interesting examples, see Levin (2004).

Example B.5. Let E := (A,G, u, µ0) be a type-exclusive assignment econ-
omy, where A and G are convex and compact subsets of Rn; η is absolutely
continuous with respect to the Lebesgue measure on A; u(a, g) = −

∑
(ai−gi)2

for a := (a1, ..., a2) and g := (g1, ..., gn) and µ0 is any agent’s initial endow-
ment. Let µ∗(a) = Ha + b where H is symmetric and positive semidefinite
matrix, and b ∈ Rn. If ν(E) = η(µ∗−1(E)) for all E ∈ B(G), Then µ∗ is the
unique optimal solution of (7), and it is in the core of E. Moreover, πµ∗ (as
in (10)) is optimal solution of (17), and the core of the flexible assignment
economy E := (A,G, u, πµ0) is not empty.
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