
ar
X

iv
:2

20
4.

02
15

4v
1 

 [
ec

on
.T

H
] 

 5
 A

pr
 2

02
2

Simple dominance of fixed priority top trading cycles*

Pinaki Mandal†

Abstract

We consider assignment problems where agents are to be assigned at most one indivisible object

and monetary transfers are not allowed. We study the implementation of fixed priority top trading cy-

cles (FPTTC) rules via simply dominant mechanisms, and provide characterizations of all such FPTTC

rules. We further introduce the notion of simple strategy-proofness to resolve the issue with agents being

concerned about having time-inconsistent preferences, and discuss its relation with simple dominance.

Keywords: Fixed priority top trading cycles; Assignment problem; Simple dominance; Simple strategy-

proofness; Indivisible goods

JEL Classification: C78; D82

*I thank Souvik Roy and Clayton Thomas for helpful discussions.
†E-mail: pnk.rana@gmail.com

1

http://arxiv.org/abs/2204.02154v1


1 Introduction

We consider the well-known assignment problem (also known as house allocation problem or resource alloca-

tion problem) where a set of heterogeneous indivisible objects are to be allocated among a group of agents

so that each agent receives at most one object and monetary transfers are not allowed. Such problems

arise when, for instance, the Government wants to assign houses to the citizens, or hospitals to doctors, or

a manager wants to allocate offices to employees, or tasks to workers, or professor wants to assign projects

to students. Agents are asked to report their preferences over the objects and the designer decides the

allocation (of the objects among the agents) based on these reports. An important consideration while

designing such decision processes is to implement desirable outcomes when the participating agents are

strategic. The standard notion of strategy-proofness requires truth-telling to be a dominant strategy, that

is, no agent can be strictly better-off by misreporting her (true) preference.

Fixed priority top trading cycles (FPTTC) mechanism (Abdulkadiroğlu and Sönmez, 2003) is a well-known

strategy-proof way to assign objects in the absence of transfers. An FPTTC mechanism works in steps.

At each step, the objects (available at that step) are owned by certain agents who then trade their objects

by forming top trading cycles (TTC).1 Ownership of the objects at the start of each step is determined

by a priority structure.2 As observed in Troyan (2019), despite their appealing theoretical properties, the

use of FPTTC mechanisms in practice is rare as participating agents find it difficult to understand them,

particularly the fact that these mechanisms are strategy-proof.3,4,5

The notion of obvious strategy-proofness (OSP) (Li, 2017) has emerged as a remedy by strengthening

strategy-proofness in a way so that it becomes transparent to the participating agents that a mechanism

is not manipulable. The concept of OSP is based on the notion of obvious dominance in an extensive-form

game. A strategy si of an agent i in an extensive-form game is obviously dominant if, whenever agent i

is called to play, even the worst possible final outcome from following si is at least as good as the best

possible outcome from following any deviating strategy s′i of agent i, where the best and worst cases are

determined by considering all possible strategies that could be played by i’s opponents in the future,

keeping her own strategy fixed. A mechanism is OSP-implementable if one can construct an extensive-

form game that has an equilibrium in obviously dominant strategies.

While OSP relaxes the assumption that the participating agents fully comprehend how the strategies of

opponents will affect outcomes, it still presumes that they understand how their own future actions will

affect outcomes. In other words, when checking obvious dominance, the worst possible final outcome

1TTC is due to David Gale and discussed in Shapley and Scarf (1974).
2A priority structure is a collection of priorities (over the agents) – one for each object.
3Troyan (2019) uses the term “TTC rule” to refer to an FPTTC rule.
4Apart from strategy-proofness, FPTTC mechanisms also satisfy group strategy-proofness, Pareto efficiency, and non-bossiness.

Group strategy-proofness ensures that no group of agents can be better-off by misreporting their preferences. Pareto efficiency
ensures that there is no other way to allocate the objects so that each agent is weakly better-off. Non-bossiness says that an agent
cannot change the assignment of another one without changing her own assignment.

5Similar phenomena is also observed in other settings, see Chen and Sönmez (2006), Hassidim et al. (2017), Hassidim et al.
(2018), Rees-Jones (2018), and Shorrer and Sóvágó (2018) for details.

2



and the best possible final outcome are taken only over opponents’ strategies, s−i, fixing the agent’s own

strategy, si. Pycia and Troyan (2019) argue that in this case the agents might be concerned about having

time-inconsistent preferences or making a mistake while performing backward induction over their own

future actions. As a remedy, they introduce a natural strengthening of OSP called strongly obvious strategy-

proofness (SOSP) by relaxing the assumption that the agents understand how their own future actions will

affect outcomes. A strategic plan is strongly obviously dominant if, whenever an agent is called to play,

even the worst possible final outcome from the prescribed action is at least as good as the best possible

outcome from any other action, where what is possible may depend on all future actions, including

actions by the agent’s future-self. Thus, strongly obviously dominant strategies are those that are weakly

better than all alternative actions even if the agent is concerned that she might have time-inconsistent

preferences.6

1.1 Our motivation and contribution

Mandal and Roy (2022a,b) study the OSP-implementability of FPTTC mechanisms. They introduce the

notion of dual ownership and show that it is both necessary and sufficient condition for an FPTTC mech-

anism to be OSP-implementable. An FPTTC mechanism satisfies dual ownership if for each preference

profile and each step of the FPTTC mechanism at that preference profile, there are at most two agents who

own all the objects available at that step. Although dual ownership is an intuitive property (and thereby,

is quite helpful for explaining it to the participating agents), it is not so convenient for the designer to

check whether a given FPTTC mechanism satisfies this property or not. This is because, technically, one

needs to check at every preference profile and every step of the FPTTC mechanism at that preference pro-

file, whether at most two agents are owning all the (available) objects at that stage or not. This motivates

one natural question: Is there any equivalent property to dual ownership, that is easier for the designer to check?

To tackle this question, we present two conditions for FPTTC mechanisms, namely acyclicity and strong

acyclicity (Troyan, 2019).7 Both are technical properties, which, as the names suggest, ensure that certain

type of cycles are not present in the associated priority structure of an FPTTC mechanism. The advantage

of checking these properties for an FPTTC mechanism is that they only involve the priority structure, and

not anything about the state of the FPTTC mechanism at different steps at different preference profiles.

In a model without outside options, we show that dual ownership and acyclicity are equivalent proper-

ties (Theorem 4.2), while dual ownership and strong acyclicity are equivalent properties in a model with

outside options (Theorem 4.3).8 Since dual ownership property is intuitive but not convenient for the de-

signer to check, whereas (strong) acyclicity property is technical but easier to check, these two equivalent

properties, in a sense, complement each other.

6This verbal description of SOSP is adapted from Pycia and Troyan (2019).
7Troyan (2019) uses the term “weak acyclicity” to refer to the strong acyclicity property.
8In a model without outside options, every object is “acceptable” to every agent; in a model with outside options, each object

need not be acceptable to an agent.

3



Next, we characterize the structure of SOSP-implementable FPTTC mechanisms. We introduce the

notion of weak serial dictatorship for this purpose. An FPTTC mechanism satisfies weak serial dictatorship

if, for any preference profile and any step of the FPTTC mechanism at that preference profile, if there are

more than two objects available at that step, then there is exactly one agent who owns all those objects. We

show that in a model without outside options, weak serial dictatorship is both necessary and sufficient

condition for an FPTTC mechanism to be SOSP-implementable (Theorem 5.1). We obtain as a corollary

(Corollary 5.2) of our result that in a model without outside options and with more objects than agents,

the class of SOSP-implementable FPTTC mechanisms is characterized by the class of serial dictatorships

(Satterthwaite and Sonnenschein, 1981). We further characterize all SOSP-implementable FPTTC rules as

serial dictatorships in a model with outside options (Theorem 5.3).

Finally, we introduce the notion of simple strategy-proofness which strengthens OSP-implementation to

resolve the issue with agents being concerned about having time-inconsistent preferences. Recall that

Pycia and Troyan (2019) introduce SOSP-implementation for the same purpose. The concept of simple

strategy-proofness is based on obvious dominance in a simple extensive-form game. An extensive-form

game is simple if every agent is called to play at most once. A mechanism is simple strategy-proof if one

can construct a simple extensive-form game that has an equilibrium in obviously dominant strategies.

We show that simple strategy-proofness is even stronger than SOSP-implementability (Proposition 6.1).

We further show that the class of simply strategy-proof FPTTC mechanisms is same as the class of SOSP-

implementable FPTTC mechanisms in both models – with or without outside options (Theorem 6.1).

1.2 Additional related literature

Troyan (2019) shows that strong acyclicity is a sufficient condition for an FPTTC rule to be OSP-implementable

when there are equal number of agents and objects.9 Mandal and Roy (2022a) characterize OSP-implementable,

Pareto efficient, and non-bossy assignment rules as hierarchical exchange rules (Pápai, 2000) satisfying dual

ownership.10 Bade and Gonczarowski (2017) constructively characterize OSP-implementable and Pareto

efficient assignment rules as the ones that can be implemented via a mechanism they call sequential barter

with lurkers. Pycia and Troyan (2019) characterize the full class of OSP mechanisms in environments

without transfers as millipede games with greedy strategies. They also characterize the full class of of SOSP

mechanisms as sequential price mechanisms with greedy strategies.

Ashlagi and Gonczarowski (2018) consider two-sided matching with one strategic side and show that

for general preferences, no mechanism that implements the men-optimal stable matching (or any other

9Theorem 1 in Troyan (2019) says that in a model without outside options, strong acyclicity is both necessary and suffi-
cient condition for an FPTTC rule to be OSP-implementable when there are equal number of individuals and objects. Later,
Mandal and Roy (2022a) point out that while strong acyclicity is a sufficient condition for the same, it is not necessary (see
Footnote 22 in Mandal and Roy (2022a) for details).

10Pápai (2000) characterizes all strategy-proof, Pareto efficient, non-bossy, and reallocation-proof assignment rules as hierar-
chical exchange rules. Later, Pycia and Ünver (2017) introduce the notion of trading cycles rules as generalization of hierarchical
exchange rules and show that an assignment rule is strategy-proof, Pareto efficient, and non-bossy if and only if it is a trading
cycles rule.

4



stable matching) is obviously strategy-proof for men. They also provide a sufficient condition for a de-

ferred acceptance rule to be OSP-implementable. Later, Thomas (2020) provides a necessary and sufficient

condition for the same.

1.3 Organization of the paper

The organization of this paper is as follows. In Section 2, we introduce basic notions and notations that we

use throughout the paper, define assignment rules, and introduce the notion of simple dominance (OSP-

implementation and SOSP-implementation). Section 3 introduces the notion of FPTTC rules. In Section

4, we introduce the dual ownership property of an FPTTC rule and present prior results on the OSP-

implementability of FPTTC rules. We also introduce acyclicity property and strong acyclicity property of

an FPTTC rule, and discuss their relation with the dual ownership property. In Section 5, we introduce

the notion of weak serial dictatorship, and characterize all SOSP-implementable FPTTC rules. In Section

6, we introduce the notion of simple strategy-proofness, and discuss its relation with simple dominance.

We further characterize all simply strategy-proof FPTTC rules. All omitted proofs are collected in the

Appendix.

2 Preliminaries

2.1 Basic notions and notations

Let N = {1, . . . , n} be a finite set of agents, and A be a non-empty and finite set of objects. Let a0 denote

the outside option. An allocation is a function µ : N → A ∪ {a0} such that |µ−1(a)| ≤ 1 for all a ∈ A.

Here, µ(i) = a means agent i is assigned object a under µ, and µ(i) = a0 means agent i is not assigned

any object under µ. We denote by M the set of all allocations.

Let L(A ∪ {a0}) denote the set of all strict linear orders over A ∪ {a0}.11 An element of L(A ∪ {a0}) is

called a preference over A ∪ {a0}. For a preference P, let R denote the weak part of P.12 For a preference

P ∈ L(A ∪ {a0}) and non-empty A′ ⊆ A ∪ {a0}, let τ(P, A′) denote the most-preferred element in A′

according to P.13 For ease of presentation, we denote τ(P, A ∪ {a0}) by τ(P).

For each object a ∈ A, we define the priority of a as a “preference” ≻a over N.14 Following our

notational convention, for a priority ≻∈ L(N) and non-empty N′ ⊆ N, let τ(≻, N′) denote the most-

preferred agent in N′ according to ≻. For ease of presentation, we denote τ(≻, N) by τ(≻). For a priority

≻∈ L(N) and an agent i ∈ N, by U(i,≻) we denote the (strict) upper contour set {j ∈ N | j ≻ i} of i at ≻.

Furthermore, for a priority ≻∈ L(N), an agent i ∈ N, and non-empty N′ ⊆ N \ {i}, we write i ≻ N′ to

mean that i ≻ j for all j ∈ N′.

11A strict linear order is a semiconnex, asymmetric, and transitive binary relation.
12For all a, b ∈ A ∪ {a0}, aRb if and only if

[

aPb or a = b
]

13For P ∈ L(A ∪ {a0}) and non-empty A′ ⊆ A ∪ {a0}, τ(P, A′) = a if and only if
[

a ∈ A′ and aPb for all b ∈ A′ \ {a}
]

.
14That is, ≻a∈ L(N).

5



We call a collection ≻A= (≻a)a∈A a priority structure. Let N′ ⊆ N, A′ ⊆ A, and ≻A be a priority

structure. The reduced priority structure ≻N ′

A′ is the collection (≻N ′

a )a∈A′ such that for all a ∈ A′, (i)

≻N ′

a ∈ L(N′) and (ii) for all i, j ∈ N′, i ≻N ′

a j if and only if i ≻a j. Thus, the reduced priority structure

≻N ′

A′ is the restriction of ≻A to the submarket (N′, A′).15 Furthermore, let T (≻N ′

A′ ) = {i | τ(≻a, N′) =

i for some a ∈ A′} be the set of agents who have the highest priority in N′ for at least one object in A′

according to ≻A.

2.2 Types of domains

We denote by Pi ⊆ L(A ∪ {a0}) the set of admissible preferences of agent i. A preference profile, denoted

by PN = (P1, . . . , Pn), is an element of PN =
n

∏
i=1

Pi that represents a collection of preferences – one for

each agent. We say an object a is acceptable to agent i if aPia0.

In this paper, we consider two well-known domains of preference profiles as follows.

(a) The unrestricted domain of preference profiles, which we denote by L
n(A ∪ {a0}).

(b) The restricted domain of preference profiles, where every object is acceptable to every agent. With

abuse of notation, we denote this domain by L
n(A).16

2.3 Assignment rules and simple dominance

An assignment rule is a function f : PN → M. For an assignment rule f : PN → M and a preference

profile PN ∈ PN , let fi(PN) denote the assignment of agent i by f at PN.

Pycia and Troyan (2019) introduce the notion of simple dominance. In this paper, we discuss two types

of simple dominance in the context of assignment rules, namely obviously strategy-proofness (OSP) (Li,

2017) and strongly obviously strategy-proofness (SOSP) (Pycia and Troyan, 2019). We use the following no-

tions and notations to present these.

We denote a rooted (directed) tree by T. For a rooted tree T, we denote its set of nodes by V(T), set of

edges by E(T), root by r(T), and set of leaves (terminal nodes) by L(T). For a node v ∈ V(T), let Eout(v)

denote the set of outgoing edges from v. For an edge e ∈ E(T), let s(e) denote its source node. A path in

a tree is a sequence of nodes such that every two consecutive nodes form an edge.

Definition 2.1. An extensive-form mechanism, or simply a mechanism on PN , is defined as a tuple G =

〈T, ηLA, ηNI , ηEP〉, where

(i) T is a rooted tree,

(ii) ηLA : L(T) → M is a leaves-to-allocations function,

(iii) ηNI : V(T) \ L(T) → N is a nodes-to-agents function, and

15Thus, ≻N
A=≻A.

16With abuse of notation, by L(A), we mean the set of preferences {P ∈ L(A ∪ {a0}) | aPa0 for all a ∈ A}.

6



(iv) ηEP : E(T) → 2L(A∪{a0}) \ {∅} is an edges-to-preferences function such that

(a) for all distinct e, e′ ∈ E(T) with s(e) = s(e′), we have ηEP(e) ∩ ηEP(e′) = ∅, and

(b) for any v ∈ V(T) \ L(T),

(1) if there exists a path (v1, . . . , vt) from r(T) to v and some 1 ≤ r < t such that ηNI(vr) =

ηNI(v) and ηNI(vs) 6= ηNI(v) for all s = r+ 1, . . . , t− 1, then ∪
e∈Eout(v)

ηEP(e) = ηEP(vr , vr+1),

and

(2) if there is no such path, then ∪
e∈Eout(v)

ηEP(e) = PηNI(v).

For a given mechanism G on PN , every preference profile PN ∈ PN identifies a unique path from the

root to some leaf in T in the following manner: from each node v, follow the outgoing edge e from v such

that ηEP(e) contains the preference PηNI(v). If a node v lies in such a path, then we say that the preference

profile PN passes through the node v. Furthermore, we say two preferences Pi and P′
i of some agent i diverge

at a node v ∈ V(T) \ L(T) if ηNI(v) = i and there are two distinct outgoing edges e and e′ in Eout(v) such

that Pi ∈ ηEP(e) and P′
i ∈ ηEP(e′).

For a given mechanism G on PN , the assignment rule f G : PN → M implemented by G is defined as

follows: for all preference profiles PN ∈ PN , f G(PN) = ηLA(l), where l is the leaf that appears at the end

of the unique path characterized by PN.

Definition 2.2. A mechanism G on PN is OSP if for all i ∈ N, all nodes v such that ηNI(v) = i, and all

PN, P̃N ∈ PN passing through v such that Pi and P̃i diverge at v, we have f G
i (PN)Ri f G

i (P̃N).

An assignment rule f : PN → M is OSP-implementable (on PN) if there exists an OSP mechanism G

on PN such that f = f G.

Definition 2.3. A mechanism G on PN is SOSP if for all i ∈ N, all nodes v such that ηNI(v) = i, and all

PN, P′
N , P̃N ∈ PN passing through v such that (i) Pi and P′

i do not diverge at v and (ii) Pi and P̃i diverge at

v, we have f G
i (P′

N)Ri f G
i (P̃N).

17

An assignment rule f : PN → M is SOSP-implementable (on PN) if there exists an SOSP mechanism

G on PN such that f = f G.

Remark 2.1. For an arbitrary domain of preference profiles PN , every SOSP-implementable assignment

rule is OSP-implementable.

3 Fixed priority top trading cycles rules

Fixed priority top trading cycles (FPTTC) rules are well-known in the literature; we present a brief de-

scription for the sake of completeness. For a given priority structure ≻A, the FPTTC rule T≻A associ-

ated with ≻A is defined by an iterative procedure as follows. Consider an arbitrary preference profile

PN ∈ PN .

17In other words, there exists an edge e ∈ Eout(v) such that Pi, P′
i ∈ ηEP(e) and P̃i /∈ ηEP(e).

7



Step s. Let Ns(PN) ⊆ N be the set of agents that remain after Step s − 1 and As(PN) ⊆ A be the set of

objects that remain after Step s − 1.18

We construct a directed graph with the set of nodes Ns(PN) ∪ As(PN) ∪ {a0}. Each agent i ∈

Ns(PN) points to her most-preferred element in As(PN) ∪ {a0} according to Pi. Each object a ∈

As(PN) points to its most-preferred agent in Ns(PN) according to ≻a. The outside option a0 points

to each agent in Ns(PN).

There is at least one cycle.19 Each agent in a cycle is assigned the element she is pointing to (the

element might be some object or the outside option a0). Remove all agents and objects that appear

in some cycle.

This procedure is repeated iteratively until either all agents are assigned or all objects are assigned.

The final outcome is obtained by combining all the assignments at all steps.

4 OSP-implementability of FPTTC rules

4.1 Dual ownership and prior results

In this subsection, we present the notion of dual ownership (Mandal and Roy, 2022a), as well as the prior

results on the OSP-implementability of FPTTC rules using this property.

The dual ownership property of FPTTC rules implies the following: for any preference profile and

any step of the FPTTC rule at that preference profile, there are at most two agents who own all the objects

that remain in the reduced market at that step.20 In what follows, we present a formal definition. Recall

the definitions of Ns(PN) and As(PN) given in Section 3.

Definition 4.1. The FPTTC rule T≻A : PN → M satisfies dual ownership (on PN) if for all PN ∈ PN , we

have |T (≻
Ns(PN)
As(PN)

)| ≤ 2 for all s.

Remark 4.1. Note that if the FPTTC rule T≻A : PN → M satisfies dual ownership, then it satisfies dual

ownership on some restricted domain P̃N ⊆ PN . However, the converse is not true.

Theorem 4.1 (Mandal and Roy, 2022a,b). Suppose PN ∈
{

L
n(A), L

n(A ∪ {a0})
}

. The FPTTC rule T≻A :

PN → M is OSP-implementable if and only if it satisfies dual ownership.

4.2 Results

Although dual ownership is an intuitive property, it is somewhat time consuming to check whether a

given FPTTC rule satisfies this property. This is because, technically, one needs to check at every prefer-

18Note that for all PN ∈ PN , N1(PN) = N and A1(PN) = A.
19All the cycles we consider here are assumed to be “minimal”, that is, no subset of nodes of such a cycle forms another cycle.

In the model without outside options, cycles are always minimal. However, since there can be multiple outgoing edges from
the outside option a0, non-minimal cycles may appear in the model with outside options.

20For an FPTTC rule T≻A and a preference profile PN , we say an agent i owns an object a at some step s if a ∈ As(PN) and
τ(≻a, Ns(PN)) = i.

8



ence profile whether at most two agents are owning all the (remaining) objects at every step of the FPTTC

rule. In view of this observation, we introduce equivalent properties to dual ownership, which involve

the priority structure only (and not the preference profiles), and thus, is more convenient to be checked.

4.2.1 Results on the restricted domain L
n(A)

Here, we introduce the notion of acyclicity for FPTTC rules, and show that it is equivalent to the dual

ownership property on the restricted domain L
n(A).

An FPTTC rule is acyclic if the associated priority structure does not contain any priority cycle. We

begin with a verbal description of a priority cycle. A tuple [(i1, i2, i3), (a1, a2, a3)] where i1, i2, i3 ∈ N and

a1, a2, a3 ∈ A are all distinct, constitutes a priority cycle in two ways. In the first way, ih is the most-

preferred agent of ≻ah
for all h = 1, 2, 3. To explain the second way, let us present a specific instance

where agents i1, i2, i3 and objects a1, a2, a3 form a priority cycle. Suppose there exist distinct agents i4, i5 ∈

N \ {i1, i2, i3} and distinct objects a4, a5 ∈ A \ {a1, a2, a3}. For h = 1, . . . , 5, let ≻ah
be as given below (the

dots indicate that all preferences for the corresponding parts are irrelevant and can be chosen arbitrarily).

≻a1
≻a2 ≻a3 ≻a4

≻a5

i4 i4 i4 i5 i5

i1 i2 i3 i4
...

...
...

...
...

Table 1: Priority structure with a priority cycle

The priority structure in Table 1 has the property that for all h = 1, . . . , 5, the (strict) upper contour

set of agent ih at ≻ah
is a subset of {i4, i5}. For instance, the (strict) upper contour set of agent i1 is the

singleton set {i4}. In this case, the tuple [(i1, i2, i3), (a1, a2, a3)] is called a priority cycle. In general, a tuple

[(i1, i2, i3), (a1, a2, a3)] is a priority cycle if one can get hold of agents i4, . . . , it and objects a4, . . . , at such

that for all h = 1, . . . , t, the (strict) upper contour set of agent ih at ≻ah
is a subset of {i4, . . . , it}. In what

follows, we present a formal definition.

Definition 4.2. A tuple [(i1, i2, i3), (a1, a2, a3)], where i1, i2, i3 ∈ N and a1, a2, a3 ∈ A are all distinct, is

called a priority cycle at a priority structure ≻A if either τ(≻ah
) = ih for all h = 1, 2, 3, or there exist

distinct agents i4, . . . , it ∈ N \ {i1, i2, i3} and distinct objects a4, . . . , at ∈ A \ {a1, a2, a3} such that for all

h = 1, . . . , t, we have U(ih,≻ah
) ⊆ {i4, . . . , it}.

We call a priority structure acyclic if it contains no priority cycles, and call an FPTTC rule acyclic if it

is associated with an acyclic priority structure.

Our next theorem says that dual ownership and acyclicity are equivalent properties of an FPTTC rule

on the restricted domain L
n(A).

9



Theorem 4.2. The FPTTC rule T≻A : L
n(A) → M satisfies dual ownership if and only if it is acyclic.

The proof of this theorem is relegated to Appendix B.

Since dual ownership is both necessary and sufficient condition for an FPTTC rule to be OSP-implementable

on the restricted domain L
n(A) (see Theorem 4.1), we obtain the following corollary from Theorem 4.2.21

Corollary 4.1. The FPTTC rule T≻A : L
n(A) → M is OSP-implementable if and only if it is acyclic.

4.2.2 Results on the unrestricted domain L
n(A ∪ {a0})

Troyan (2019) works on the OSP-implementable FPTTC rules on the restricted domain L
n(A) when there

are equal number of agents and objects. For this purpose, he introduces the notion of strong acyclicity.22

Here, we show that it is equivalent to the dual ownership property on the unrestricted domain.

Definition 4.3. A tuple [(i1, i2, i3), (a1, a2, a3)], where i1, i2, i3 ∈ N and a1, a2, a3 ∈ A are all distinct, is

called a weak cycle at a priority structure ≻A if i1 ≻a1
{i2, i3}, i2 ≻a2 {i1, i3}, and i3 ≻a3 {i1, i2}.

We call a priority structure strongly acyclic if it contains no weak cycles, and call an FPTTC rule

strongly acyclic if it is associated with a strongly acyclic priority structure.

Remark 4.2. Note that if ≻A contains a priority cycle [(i1, i2, i3), (a1, a2, a3)], then i1 ≻a1
{i2, i3}, i2 ≻a2

{i1, i3}, and i3 ≻a3 {i1, i2}. Therefore, every priority cycle is a weak cycle, and hence strong acyclicity

implies acyclicity. However, the converse is not true (see Example 4.1 for details).

Example 4.1. Consider an allocation problem with four agents N = {i, j, k, l} and four objects A =

{a, b, c, d}. Let ≻A be as follows:

≻a ≻b ≻c ≻d

i l l i

j j k j

k k j k

l i i l

Table 2: Priority structure for Example 4.1

Note that i ≻a {j, k}, j ≻b {i, k}, and k ≻c {i, j}, which means [(i, j, k), (a, b, c)] is a weak cycle in ≻A.

Furthermore, it is straightforward to verify that ≻A is acyclic.

Our next theorem says that dual ownership and strong acyclicity are equivalent properties of an

FPTTC rule on the unrestricted domain.

21As we have mentioned earlier, Theorem 1 in Troyan (2019) is not correct. Corollary 4.1 is a correct version of Theorem 1 in
Troyan (2019) (in fact, our result is a general result for arbitrary (not necessarily equal) values of the number of agents and the
number of objects).

22As we have mentioned, Troyan (2019) uses the term “weak acyclicity” to refer to the strong acyclicity property.

10



Theorem 4.3. The FPTTC rule T≻A : L
n(A ∪ {a0}) → M satisfies dual ownership if and only if it is strongly

acyclic.

The proof of this theorem is relegated to Appendix C.

Since dual ownership is both necessary and sufficient condition for an FPTTC rule to be OSP-implementable

on the unrestricted domain (see Theorem 4.1), we obtain the following corollary from Theorem 4.3.

Corollary 4.2. The FPTTC rule T≻A : L
n(A ∪ {a0}) → M is OSP-implementable if and only if it is strongly

acyclic.

5 SOSP-implementability of FPTTC rules

Before proceeding with our next results, we first present a special class of assignment rules, namely serial

dictatorships (Satterthwaite and Sonnenschein, 1981). In a serial dictatorship, agents are ordered, and the

first agent in the ordering gets her most-preferred element among all the objects and the outside option

a0, the second agent in the ordering gets her most-preferred element among the remaining objects and

the outside option a0, etc.

Note that serial dictatorships are special cases of FPTTC rules. For example, consider an allocation

problem with three agents N = {1, 2, 3} and three objects A = {a1, a2, a3}. The priority structure associ-

ated with the FPTTC rule that corresponds to the serial dictatorship with the exogenously given ordering

(1 ≻ 2 ≻ 3) is as follows:

≻a1
≻a2 ≻a3

1 1 1

2 2 2

3 3 3

Further note that serial dictatorships are SOSP-implementable. For example, consider the allocation

problem with three agents N = {1, 2, 3} and three objects A = {a1, a2, a3}. The SOSP mechanism in

Figure 1 implements the serial dictatorship with the exogenously given ordering (1 ≻ 2 ≻ 3).23

23We use the following notations in Figure 1: by a1a2 we denote the set of preferences where a1 is preferred to a2, and we
denote an allocation [(1, a1), (2, a2), (3, a3)] by





a1

a2

a3



 .

11



1

2

a1

a2

a3

a2a3

a1

a3

a2

a3a2

τ(P1) = a1

2

a2

a1

a3

a1a3

a2

a3

a1

a3a1

τ(P1) = a2

2

a3

a1

a2

a1a2

a3

a2

a1

a2a1

τ(P1) = a3

Figure 1: SOSP mechanism

We concisely sum up the above discussion as follows.

Remark 5.1. For an arbitrary domain of preference profiles PN , every serial dictatorship is an SOSP-

implementable FPTTC rule.

Remark 5.1 arises a natural question: Apart from serial dictatorships, are there any other SOSP-

implementable FPTTC rules? Theorem 5.1 and Theorem 5.3 provide an answer to this question for the

domains L
n(A) and L

n(A ∪ {a0}).

5.1 Results on the restricted domain L
n(A)

In this subsection, we introduce a property called weak serial dictatorship of an FPTTC rule and provide a

characterization of SOSP-implementable FPTTC rules on the restricted domain L
n(A) by means of this

property. We further discuss the configuration of the priority structures associated with these FPTTC

rules.

The weak serial dictatorship property of FPTTC rules implies the following: for any preference profile

and any step of the FPTTC rule at that preference profile, if there are more than two objects remaining

in the reduced market at that step, then there is exactly one agent who owns all those remaining ob-

jects. Clearly, serial dictatorships satisfy weak serial dictatorship. In what follows, we present a formal

definition of weak serial dictatorship.

Definition 5.1. The FPTTC rule T≻A : PN → M satisfies weak serial dictatorship (on PN) if for all

PN ∈ PN and all s,

|As(PN)| > 2 =⇒ |T (≻
Ns(PN)
As(PN)

)| = 1.

Our next theorem says that weak serial dictatorship is both necessary and sufficient condition for an

FPTTC rule to be SOSP-implementable on the restricted domain L
n(A).

Theorem 5.1. The FPTTC rule T≻A : L
n(A) → M is SOSP-implementable if and only if it satisfies weak serial

dictatorship.

12



The proof of this theorem is relegated to Appendix D.

Similarly as dual ownership, to verify whether a given FPTTC rule satisfies weak serial dictatorship or

not, one needs to check its behavior at every step at every preference profile. In view of this observation,

we present our next result regarding the configuration of the priority structures associated with these

FPTTC rules. We use the following terminology to facilitate the result. For ≻∈ L(N) and i ∈ N, we

define rank(i,≻) = m if |{j ∈ N | j ≻ i}| = m − 1.

Theorem 5.2. The FPTTC rule T≻A : L
n(A) → M satisfies weak serial dictatorship if and only ≻A has the

following property: for all a, b ∈ A and all i ∈ N,

rank(i,≻a) ≤ |A| − 2 =⇒ rank(i,≻a) = rank(i,≻b).

The proof of this theorem is relegated to Appendix E.

As a corollary of Theorem 5.1 and Theorem 5.2, we obtain the configuration of the priority structures

associated with the SOSP-implementable FPTTC rules on the restricted domain L
n(A).

Corollary 5.1. The FPTTC rule T≻A : L
n(A) → M is SOSP-implementable if and only ≻A has the following

property: for all a, b ∈ A and all i ∈ N,

rank(i,≻a) ≤ |A| − 2 =⇒ rank(i,≻a) = rank(i,≻b).

We obtain the following corollary from Corollary 5.1. It says when there are more objects than agents,

SOSP-implementable FPTTC rules on the restricted domain L
n(A) are characterized as serial dictator-

ships.

Corollary 5.2. Suppose |A| > |N|. The FPTTC rule T≻A : L
n(A) → M is SOSP-implementable if and only if

it is a serial dictatorship.

5.2 Results on the restricted domain L
n(A ∪ {a0})

Recall that the serial dictatorships are SOSP-implementable FPTTC rules (see Remark 5.1). Here, we

show that on the unrestricted domain, they are the only SOSP-implementable FPTTC rules.

Theorem 5.3. The FPTTC rule T≻A : L
n(A ∪ {a0}) → M is SOSP-implementable if and only if it is a serial

dictatorship.

The proof of this theorem is relegated to Appendix F.

6 Simple strategy-proofness

OSP-implementation presumes that the agents understand how their own future actions will affect out-

comes (the worst and the best possible final outcomes are taken only over opponents’ future actions),

13



and consequently, they might be concerned about having time-inconsistent preferences or making a mis-

take while performing demanding backward induction over their own future actions. Pycia and Troyan

(2019) introduces SOSP-implementation as a way to resolve this issue by relaxing the assumption that

the agents fully comprehend how their own future actions will affect outcomes. Another way to resolve

this issue will be by calling each agent to play at most once so that they need not be worried about their

own future actions. In view of this observation, we introduce the notion of simple strategy-proofness in this

section.

The concept of simple strategy-proofness is based on a simple OSP mechanism. A mechanism is simple

if every agent is called to play at most once along a path. An assignment rule is simply strategy-proof if

there exists a simple OSP mechanism that implements the assignment rule. In what follows, we present

formal definitions of these. Recall the definition of a mechanism G given in Section 2.3.

Definition 6.1. A mechanism G = 〈T, ηLA, ηNI , ηEP〉 on PN is simple if ηNI(v) 6= ηNI(v′) for all distinct

v, v′ ∈ V(T) \ L(T) that appear in same path.

Definition 6.2. An assignment rule f : PN → M is simply strategy-proof (on PN) if there exists a simple

OSP mechanism G on PN such that f = f G.

By definition, simple strategy-proofness is stronger than OSP-implementability. Our next result shows

that simple strategy-proofness is even stronger than SOSP-implementability.

Proposition 6.1. For an arbitrary domain of preference profiles PN , every simply strategy-proof assignment rule

is SOSP-implementable.

The proof of this proposition is relegated to Appendix G.

It is worth mentioning that the converse of Proposition 6.1 is not true in general. Example 6.1 presents

a domain of preference profiles and an FPTTC rule, which is SOSP-implementable but not simply strategy-

proof on the given domain.

Example 6.1. Consider an allocation problem with two agents N = {1, 2} and four objects A = {a1, a2, a3, a4}.

Let P̃ = {a1a4a3a2a0, a2a3a4a1a0, a3a2a4a1a0, a4a1a3a2a0}. Let ≻A be as follows:

≻a1
≻a2 ≻a3 ≻a4

1 2 2 1

2 1 1 2

Table 3: Priority structure for Example 6.1

Consider the FPTTC rule T≻A on the domain P̃2. The SOSP mechanism in Figure 2 implements T≻A

on P̃2.24

24We use the following notations in Figure 2: by a1a2a3 we denote the set of preferences where a1 is preferred to a2 and a2 is

14



1

2

a1

a2

a2a3a4

a1

a3

a3a2a4

a1

a4

a4a3a2

τ(P1) = a1

2

1

a2

a1

τ(P1) = a2

a3

a1

τ(P1) = a3

τ(P2) = a1

a3

a2

τ(P2) = a2

a2

a3

τ(P2) = a3

1

a2

a4

τ(P1) = a2

a3

a4

τ(P1) = a3

τ(P2) = a4

τ(P1) ∈ {a2, a3}

2

a4

a1

a1a3a2

a4

a2

a2a3a1

a4

a3

a3a2a1

τ(P1) = a4

Figure 2: Tree Representation for Example 6.1

Now we argue that T≻A is not simply strategy-proof on P̃2. Consider the preference profiles presented

(together with the outcome of T≻A ) in Table 4.

Preference profiles Agent 1 Agent 2 T≻A
1 T≻A

2

P̃1
N a2a3a4a1 a2a3a4a1 a3 a2

P̃2
N a3a2a4a1 a3a2a4a1 a2 a3

P̃3
N a3a2a4a1 a4a1a3a2 a3 a4

P̃4
N a2a3a4a1 a4a1a3a2 a2 a4

P̃5
N a1a4a3a2 a1a4a3a2 a1 a4

P̃6
N a2a3a4a1 a1a4a3a2 a2 a1

P̃7
N a4a1a3a2 a4a1a3a2 a4 a1

Table 4: Preference profiles for Example 6.1

Assume for contradiction that T≻A is simply strategy-proof on P̃2. So, there exists a simple OSP

mechanism G̃ that implements T≻A on P̃N . Note that since T≻A(P̃1
N) 6= T≻A(P̃2

N), there exists a node in

the simple OSP mechanism G̃ that has at least two edges. Consider the first node (from the root) v that

has at least two edges. We distinguish two following two cases.

(i) Suppose ηNI(v) = 1.

By obvious strategy-proofness of G̃, the facts a2P̃1
1 a3, T≻A

1 (P̃1
N) = a3, and T≻A

1 (P̃2
N) = a2 together

imply that P̃1
1 and P̃2

1 do not diverge at v. This, together with the facts that P̃1
1 = P̃4

1 , P̃2
1 = P̃3

1 ,

preferred to a3, and we denote an allocation [(1, a1), (2, a2)] by

(

a1

a2

)

.

15



P̃3
2 = P̃4

2 and T≻A(P̃3
N) 6= T≻A(P̃4

N), implies that there exists a node v′ at which P̃1
1 and P̃2

1 diverge.

Clearly, v and v′ are distinct nodes appearing in same path such that ηNI(v) = ηNI(v′) = 1. This

contradicts the fact that G̃ is a simple mechanism.

(ii) Suppose ηNI(v) = 2.

By obvious strategy-proofness of G̃, the facts a1P̃5
2 a4, T≻A

2 (P̃5
N) = a4, and T≻A

2 (P̃7
N) = a1 together

imply that P̃5
2 and P̃7

2 do not diverge at v. This, together with the facts that P̃5
2 = P̃6

2 , P̃7
2 = P̃4

2 ,

P̃4
1 = P̃6

1 and T≻A(P̃4
N) 6= T≻A(P̃6

N), implies that there exists a node v′ at which P̃5
2 and P̃7

2 diverge.

Clearly, v and v′ are distinct nodes appearing in same path such that ηNI(v) = ηNI(v′) = 2. This

contradicts the fact that G̃ is a simple mechanism.

Since Cases (i) and (ii) are exhaustive, it follows that T≻A is not simply strategy-proof on P̃2.

Example 6.1 shows that on an arbitrary domain of preference profiles, every SOSP-implementable

FPTTC rule might not be simply strategy-proof. However, on the restricted domain L
n(A) and the unre-

stricted domain L
n(A ∪ {a0}), every SOSP-implementable FPTTC rule is simply strategy-proof.

Theorem 6.1. Suppose PN ∈
{

L
n(A), L

n(A ∪ {a0})
}

. The FPTTC rule T≻A : PN → M is simply strategy-

proof if and only if it is SOSP-implementable.

The proof of this proposition is relegated to Appendix H.

We obtain the following corollary from Theorem 5.1, Theorem 5.3, and Theorem 6.1.

Corollary 6.1. (a) The FPTTC rule T≻A : L
n(A) → M is simply strategy-proof if and only if it satisfies weak

serial dictatorship.

(b) The FPTTC rule T≻A : L
n(A ∪ {a0}) → M is simply strategy-proof if and only if it is a serial dictatorship.

Appendix A Some additional notations

It will be convenient to introduce some additional notations for the proofs. Following our notational

terminology in Section 2.1, for a preference P ∈ L(A ∪ {a0}) and two disjoint subsets A′ and Â of A ∪

{a0}, we write A′PÂ to mean that aPb for all a ∈ A′ and all b ∈ Â. Furthermore, for a preference profile

PN and an FPTTC rule, let Is(PN) be the set of assigned agents at Step s, Is(PN) be the set of assigned

agents up to Step s (including Step s), Xs(PN) be the set of assigned objects at Step s, Xs(PN) be the set

of assigned objects up to Step s (including Step s), and Os(i, PN) be the set of objects owned by agent i at

Step s.

Appendix B Proof of Theorem 4.2

(If part) Suppose T≻A does not satisfy dual ownership on L
n(A). We show that ≻A contains a priority

cycle. Since T≻A does not satisfy dual ownership on L
n(A), there exist a preference profile P̃N ∈ L

n(A)

16



and a step s∗ of T≻A at P̃N such that |T (≻
Ns∗(P̃N)

As∗ (P̃N)
)| > 2. This implies that there exist three agents i1, i2, i3 ∈

Ns∗(P̃N) and three objects a1, a2, a3 ∈ As∗(P̃N) such that for all h = 1, 2, 3, agent ih owns the object ah

at Step s∗. We proceed to show that [(i1, i2, i3), (a1, a2, a3)] is a priority cycle in ≻A. We distinguish the

following two cases.

CASE 1: Suppose s∗ = 1.

Since for all h = 1, 2, 3, agent ih owns the object ah at Step 1, by the definition of T≻A , it follows that

τ(≻ah
) = ih for all h = 1, 2, 3. This means [(i1, i2, i3), (a1, a2, a3)] is a priority cycle in ≻A.

CASE 2: Suppose s∗ > 1.

Let {i4, . . . , it} ⊆ N \ {i1, i2, i3} and {a4, . . . , at} ⊆ A \ {a1, a2, a3} be as follows.

(i) {i4, . . . , it} = Is∗−1(P̃N).

(ii) For all h = 4, . . . , t, {ah} =
(

Xs(P̃N) ∩ Os(ih, P̃N)
)

where ih ∈ Is(P̃N) for some s < s∗. To see

that this is well-defined note that by the definition of T≻A and the fact P̃N ∈ L
n(A), (a) for every

ih ∈ Is∗−1(P̃N), there exists exactly one step s with s < s∗ such that ih ∈ Is(P̃N), and (b) Os(ih, P̃N) ∩

Xs(P̃N) is a singleton set for all ih ∈ Is(P̃N) with s < s∗.

It follows from the definition of T≻A and the construction of {i4, . . . , it} and {a4, . . . , at} that U(ih,≻ah

) ⊆ {i4, . . . , it} for all h = 1, . . . , t. This implies that [(i1, i2, i3), (a1, a2, a3)] is a priority cycle in ≻A, which

completes the proof of the “if” part of Theorem 4.2.

(Only-if part) Suppose ≻A contains a priority cycle [(i1, i2, i3), (a1, a2, a3)]. We show that T≻A does not

satisfy dual ownership on L
n(A). By the definition of a priority cycle, one of the following two statements

must hold.

(1) τ(≻ah
) = ih for all h = 1, 2, 3.

(2) There exist distinct agents i4, . . . , it ∈ N \ {i1, i2, i3} and distinct objects a4, . . . , at ∈ A \ {a1, a2, a3}

such that for all h = 1, . . . , t, we have U(ih,≻ah
) ⊆ {i4, . . . , it}.

We distinguish the following two cases.

CASE 1: Suppose (1) holds.

Since τ(≻ah
) = ih for all h = 1, 2, 3, it must be that for any preference profile, agents i1, i2, and i3 own

objects a1, a2, and a3, respectively, at Step 1 of T≻A at that preference profile. Therefore T≻A does not

satisfy dual ownership on L
n(A).

CASE 2: Suppose (2) holds.

Consider the preference profile P̃N ∈ L
n(A) defined as follows. Each ih ∈ {i4, . . . , it} has a preference

P̃ih
such that τ(P̃ih

) = ah and each j ∈ N \ {i4, . . . , it} has a preference P̃j such that {a4, . . . , at}P̃j(A \

{a4, . . . , at}). The next claim establishes some properties of the outcome of T≻A at P̃N at Step 1.

17



Claim B.1. (a) I1(P̃N) ⊆ {i4, . . . , it}, and (b) T≻A
ih

(P̃N) = ah for all h = 4, . . . , t with ih ∈ I1(P̃N).

Proof of Claim B.1. By the assumptions for Case 2, it follows that {a4, . . . , at} ⊆
t
∪

h=4
O1(ih, P̃N). More-

over, by the construction of P̃N, we have τ(P̃i) ∈ {a4, . . . , at} for all i ∈ N. Since {a4, . . . , at} ⊆
t
∪

h=4
O1(ih, P̃N)

and τ(P̃i) ∈ {a4, . . . , at} for all i ∈ N, it follows from the definition of T≻A that I1(P̃N) ⊆ {i4, . . . , it} and

T≻A
i (P̃N) = τ(P̃i) for all i ∈ I1(P̃N). These two facts, along with the construction of P̃N, complete the

proof of Claim B.1. �

By Claim B.1, I1(P̃N) ⊆ {i4, . . . , it} and T≻A

ih
(P̃N) = ah for all h = 4, . . . , t with ih ∈ I1(P̃N). We proceed

to show that there will be a step s∗ such that Is∗(P̃N) = {i4, . . . , it} and T≻A
ih

(P̃N) = ah for all h = 4, . . . , t.

If I1(P̃N) = {i4, . . . , it}, then s∗ = 1 and we are done. Suppose I1(P̃N) ( {i4, . . . , it}, that is, I1(P̃N) is

a proper subset of {i4, . . . , it}. Since I1(P̃N) ( {i4, . . . , it} and T≻A

ih
(P̃N) = ah for all h = 4, . . . , t with

ih ∈ I1(P̃N), using similar argument as for Claim B.1, it follows from the assumptions for Case 2 and

the construction of P̃N that I2(P̃N) ⊆
(

{i4, . . . , it} \ I1(P̃N)
)

and T≻A
ih

(P̃N) = ah for all h = 4, . . . , t with

ih ∈ I2(P̃N). If I1(P̃N) ∪ I2(P̃N) = {i4, . . . , it}, then s∗ = 2 and we are done. Otherwise, continuing in this

manner, we obtain a step s∗ > 2 of T≻A at P̃N such that Is∗(P̃N) = {i4, . . . , it} and T≻A
ih

(P̃N) = ah for all

h = 4, . . . , t.

Since Is∗(P̃N) = {i4, . . . , it} and T≻A
ih

(P̃N) = ah for all h = 4, . . . , t, by the assumptions for Case 2, we

have ah ∈ Os∗+1(ih, P̃N) for all h = 1, 2, 3. This implies that agents i1, i2, and i3 own the objects a1, a2, and

a3, respectively, at Step s∗ + 1 of T≻A at P̃N. Therefore T≻A does not satisfy dual ownership on L
n(A),

which completes the proof of the “only-if” part of Theorem 4.2. �

Appendix C Proof of Theorem 4.3

Before we start proving Theorem 4.3, to facilitate the proof we present the notion of dual dictatorship

(Troyan, 2019).

Definition C.1. The FPTTC rule T≻A : PN → M satisfies dual dictatorship if for all N′ ⊆ N and all

A′ ⊆ A, we have |T (≻N ′

A′ )| ≤ 2.

Note that the dual dictatorship property does not depend on the choice of the domain.

Completion of the proof of Theorem 4.3. Mandal and Roy (2022b) show that dual ownership and dual

dictatorship are equivalent properties of an FPTTC rule on the unrestricted domain (see Theorem 4.1 in

Mandal and Roy (2022b)).25 In the model with equal number of agents and objects, Troyan (2019) shows

that dual dictatorship and strong acyclicity are equivalent properties of an FPTTC rule on the restricted

domain L
n(A) (see Theorem 2 in Troyan (2019)). His proof works verbatim on the unrestricted domain

25For an arbitrary domain of preference profiles PN , the set of FPTTC rules satisfying dual ownership is a superset of those
satisfying dual dictatorship. See Mandal and Roy (2022b) for a detailed discussion about the relation between dual ownership
and dual dictatorship.

18



in our model (that is, with arbitrary values of the number of agents and the number of objects), and his

result still holds. Combining all these facts, we obtain that dual ownership, dual dictatorship, and strong

acyclicity are equivalent properties of an FPTTC rule on the unrestricted domain. This completes the

proof of Theorem 4.3. �

Appendix D Proof of Theorem 5.1

We first make a straightforward observation to facilitate the proof.

Observation D.1. Suppose |A| = 2. Every FPTTC rule is SOSP-implementable on the restricted domain L
n(A).

Completion of the proof of Theorem 5.1. (If part) Using Observation D.1, it is straightforward to verify

that on the restricted domain L
n(A), every FPTTC rule satisfying weak serial dictatorship is SOSP-

implementable. This completes the proof of the “if” part of Theorem 5.1.

(Only-if part) Let T≻A be an SOSP-implementable FPTTC rule on the restricted domain L
n(A). Since

SOSP-implementability is stronger than OSP-implementability (see Remark 2.1), by Theorem 4.1, T≻A

satisfies dual ownership. Assume for contradiction that T≻A does not satisfy weak serial dictatorship.

Since T≻A satisfies dual ownership, but does not satisfy weak serial dictatorship, there exist a preference

profile P′
N ∈ L

n(A) and a step s∗ of T≻A at P′
N such that there are two agents i, j and three objects a, b, c

in the reduced market at Step s∗ with the property that agent i owns the object a, and agent j owns the

objects b and c at Step s∗. We distinguish the following two cases.

CASE A: Suppose s∗ = 1.

Consider the domain P̃N ⊆ L
n(A) with only four preference profiles presented in Table D.1.26 Here,

l denotes an agent (might be empty) other than i and j. Note that such an agent does not change her

preference across the mentioned preference profiles.

Preference profiles Agent i Agent j . . . Agent l

P̃1
N abc . . . acb . . . . . . P′

l

P̃2
N bac . . . bac . . . . . . P′

l

P̃3
N bca . . . abc . . . . . . P′

l

P̃4
N cab . . . abc . . . . . . P′

l

Table D.1: Preference profiles of P̃N

In Table D.2, we present some facts regarding the outcome of T≻A on the domain P̃N . These facts are

deduced by the construction of P̃N along with the assumptions for Case A.

26For instance, abc . . . indicates (any) preference that ranks a first, b second, and c third.

19



Preference profiles Agent i Agent j T≻A

i T≻A

j

P̃1
N abc . . . acb . . . a c

P̃2
N bac . . . bac . . . a b

P̃3
N bca . . . abc . . . b a

P̃4
N cab . . . abc . . . c a

Table D.2: Partial outcome of T≻A on P̃N

Since T≻A is SOSP-implementable on L
n(A), it must be SOSP-implementable on the domain P̃N . Let

G̃ be an SOSP mechanism that implements T≻A on P̃N .

Note that since T≻A(P̃1
N) 6= T≻A(P̃2

N), there exists a node in the SOSP mechanism G̃ that has at least

two edges. Also, note that since each agent l ∈ N \ {i, j} has exactly one preference in P̃l, whenever there

are at least two outgoing edges from a node, that node must be assigned to some agent in {i, j}. Consider

the first node (from the root) v that has at least two edges.

(i) Suppose ηNI(v) = i.

By SOSP-implementability, the facts bP̃2
i a, T≻A

i (P̃2
N) = a, and T≻A

i (P̃3
N) = b together imply that P̃2

i

and P̃3
i do not diverge at v. Since P̃2

i and P̃3
i do not diverge at v, by SOSP-implementability, the facts

cP̃3
i a, T≻A

i (P̃2
N) = a, and T≻A

i (P̃4
N) = c together imply that P̃3

i and P̃4
i do not diverge at v. Moreover,

since P̃3
i and P̃4

i do not diverge at v, by SOSP-implementability, the facts aP̃4
i b, T≻A

i (P̃1
N) = a, and

T≻A
i (P̃3

N) = b together imply that P̃1
i and P̃4

i do not diverge at v. Combining all these observations,

we have a contradiction to the fact that v has at least two edges.

(ii) Suppose ηNI(v) = j.

By SOSP-implementability, the facts aP̃1
j c, T≻A

j (P̃1
N) = c, and T≻A

j (P̃3
N) = a together imply that P̃1

j

and P̃3
j do not diverge at v. Since P̃1

j and P̃3
j do not diverge at v, by SOSP-implementability, the facts

bP̃3
j c, T≻A

j (P̃1
N) = c, and T≻A

j (P̃2
N) = b together imply that P̃2

j and P̃3
j do not diverge at v. Combining

all these observations, we have a contradiction to the fact that v has at least two edges.

CASE B: Suppose s∗ > 1.

Recall that Xs∗−1(P′
N) is the set of assigned objects up to Stage s∗ − 1 (including Stage s∗ − 1) of T≻A at

P′
N. Fix a preference P̂ ∈ L(Xs∗−1(P′

N)) over these objects. Consider the domain P̃N ⊆ L
n(A) with only

four preference profiles presented in Table D.3.27

27For instance, P̂abc . . . denotes a preference where objects in Xs∗−1(P′
N) are ranked at the top according to the preference P̂,

objects a, b, and c are ranked consecutively after that (in that order), and the ranking of the rest of the objects is arbitrarily.

20



Preference profiles Agent i Agent j . . . Agent l

P̃1
N P̂abc . . . P̂acb . . . . . . P′

l

P̃2
N P̂bac . . . P̂bac . . . . . . P′

l

P̃3
N P̂bca . . . P̂abc . . . . . . P′

l

P̃4
N P̂cab . . . P̂abc . . . . . . P′

l

Table D.3: Preference profiles of P̃N

In Table D.4, we present some facts regarding the outcome of T≻A on the domain P̃N that can be

deduced by the construction of the domain P̃N along with the assumptions for Case B. The verification

of these facts is left to the reader.

Preference profiles Agent i Agent j T≻A
i T≻A

j

P̃1
N P̂abc . . . P̂acb . . . a c

P̃2
N P̂bac . . . P̂bac . . . a b

P̃3
N P̂bca . . . P̂abc . . . b a

P̃4
N P̂cab . . . P̂abc . . . c a

Table D.4: Partial outcome of T≻A on P̃N

Using a similar argument as for Case A, we get a contradiction. This completes the proof of the “only-

if” part of Theorem 5.1. �

Appendix E Proof of Theorem 5.2

The “if” part of the theorem is straightforward. We proceed to prove the “only-if” part. To do so, we

prove the contrapositive. Suppose there exist an agent i∗ ∈ N and two objects a∗, b∗ ∈ A such that

rank(i∗ ,≻a∗) ≤ |A| − 2 and rank(i∗ ,≻a∗) 6= rank(i∗ ,≻b∗). Without loss of generality, assume that for all

l ∈ U(i∗,≻a∗), rank(l,≻a∗ ) = rank(l,≻b) for all b ∈ A. Let rank(i∗ ,≻a∗) = m∗ and let A′ ⊆ A \ {a∗, b∗}

be such that |A′| = m∗ − 1. Clearly, m∗ ≤ |A| − 2. Furthermore, A′ is well-defined since m∗ ≤ |A| − 2.

Fix a preference P̂ ∈ L(A) such that A′P̂(A \ A′).28 Consider the preference profile P̃N ∈ L
n(A) such

that P̃i = P̂ for all i ∈ N. Since rank(l,≻a∗ ) = rank(l,≻b) for all l ∈ U(i∗,≻a∗) and all b ∈ A, and

rank(i∗ ,≻a∗) = m∗, it follows from the construction of P̃N that Im∗−1(P̃N) = U(i∗,≻a∗) and Xm∗−1(P̃N) =

A′. The facts A′ ⊆ A \ {a∗, b∗} and Xm∗−1(P̃N) = A′ together imply a∗, b∗ ∈ Am∗(P̃N). Since Im∗−1(P̃N) =

U(i∗,≻a∗), rank(l,≻a∗ ) = rank(l,≻b∗ ) for all l ∈ U(i∗,≻a∗), rank(i∗ ,≻a∗) 6= rank(i∗ ,≻b∗), and a∗, b∗ ∈

Am∗(P̃N), it follows that |Nm∗(P̃N)| ≥ 2. Moreover, since Xm∗−1(P̃N) = A′, |A′| = m∗ − 1, and m∗ ≤

|A| − 2, we have |Am∗(P̃N)| ≥ 3. However, the facts |Nm∗(P̃N)| ≥ 2 and |Am∗(P̃N)| ≥ 3 together imply

28Recall that L(A) = {P ∈ L(A ∪ {a0}) | aPa0 for all a ∈ A}.

21



that T≻A does not satisfy weak serial dictatorship. This completes the proof of the “only-if” part of

Theorem 5.2. �

Appendix F Proof of Theorem 5.3

The “if” part of the theorem is straightforward. We proceed to prove the “only-if” part. Let T≻A be an

SOSP-implementable FPTTC rule on the unrestricted domain L
n(A ∪ {a0}). Assume for contradiction

that T≻A is not a serial dictatorship. Then, there exist two agents i, j ∈ N and two objects a, b ∈ A such

that i ≻a j and j ≻b i.

Fix a preference P̂ ∈ L(A ∪ {a0}) such that τ(P̂) = a0. Consider the domain P̃N ⊆ L
n(A ∪ {a0}) with

only three preference profiles presented in Table F.1.

Preference profiles Agent i Agent j . . . Agent l

P̃1
N aba0 . . . aa0 . . . . . . P̂

P̃2
N ba0 . . . baa0 . . . . . . P̂

P̃3
N baa0 . . . aba0 . . . . . . P̂

Table F.1: Preference profiles of P̃N

In Table F.2, we present some facts regarding the outcome of T≻A on the domain P̃N . These facts are

deduced by the construction of P̃N .

Preference profiles Agent i Agent j T≻A
i T≻A

j

P̃1
N aba0 . . . aa0 . . . a a0

P̃2
N ba0 . . . baa0 . . . a0 b

P̃3
N baa0 . . . aba0 . . . b a

Table F.2: Partial outcome of T≻A on P̃N

Since T≻A is SOSP-implementable on L
n(A ∪ {a0}), it must be SOSP-implementable on the domain

P̃N . Let G̃ be an SOSP mechanism that implements T≻A on P̃N .

Note that since T≻A(P̃1
N) 6= T≻A(P̃2

N), there exists a node in the SOSP mechanism G̃ that has at least

two edges. Also, note that since each agent l ∈ N \ {i, j} has exactly one preference in P̃l, whenever there

are at least two outgoing edges from a node, that node must be assigned to some agent in {i, j}. Consider

the first node (from the root) v that has at least two edges. We distinguish the following two cases.

CASE A: Suppose ηNI(v) = i.

By SOSP-implementability, the facts bP̃2
i a0, T≻A

i (P̃2
N) = a0, and T≻A

i (P̃3
N) = b together imply that P̃2

i

and P̃3
i do not diverge at v. Since P̃2

i and P̃3
i do not diverge at v, by SOSP-implementability, the facts

aP̃3
i a0, T≻A

i (P̃2
N) = a0, and T≻A

i (P̃1
N) = a together imply that P̃1

i and P̃3
i do not diverge at v. Combining all

22



these observations, we have a contradiction to the fact that v has at least two edges.

CASE B: Suppose ηNI(v) = j.

By SOSP-implementability, the facts aP̃1
j a0, T≻A

j (P̃1
N) = a0, and T≻A

j (P̃3
N) = a together imply that P̃1

j

and P̃3
j do not diverge at v. Since P̃1

j and P̃3
j do not diverge at v, by SOSP-implementability, the facts

bP̃3
j a0, T≻A

j (P̃1
N) = a0, and T≻A

j (P̃2
N) = b together imply that P̃2

j and P̃3
j do not diverge at v. Combining all

these observations, we have a contradiction to the fact that v has at least two edges.

Since Cases A and B are exhaustive, this completes the proof of the “only-if” part of Theorem 5.3. �

Appendix G Proofs of Proposition 6.1

Fix an arbitrary domain of preference profiles PN . Consider a simply strategy-proof assignment rule f

on PN . Let G be the simple OSP mechanism that implements f on PN . Consider an agent i ∈ N, a node

v such that ηNI(v) = i, and preference profiles PN, P′
N, P̃N ∈ PN passing through v such that (i) Pi and P′

i

do not diverge at v and (ii) Pi and P̃i diverge at v. We show that fi(P′
N)Ri fi(P̃N).

Since Pi and P′
i do not diverge at v, the fact that G is a simple mechanism implies that f (P′

N) =

f (Pi, P′
−i). This, in particular, means

fi(P′
N) = fi(Pi, P′

−i). (G.1)

The fact that both PN and P′
N pass through v implies that (Pi, P′

−i) passes through v. Consider the prefer-

ence profiles (Pi, P′
−i) and P̃N. Since both of them pass through v at which Pi and P̃i diverge, by obvious

strategy-proofness of G, we have fi(Pi, P′
−i)Ri fi(P̃N). This, together with (G.1), implies fi(P′

N)Ri fi(P̃N).

This completes the proof of Proposition 6.1. �

Appendix H Proof of Theorem 6.1

We first make a straightforward observation to facilitate the proof.

Observation H.1. Suppose |A| = 2. Every FPTTC rule is simply strategy-proof on the restricted domain L
n(A).

Completion of the proof of Theorem 6.1. The “only-if” part of the theorem follows from Proposition 6.1,

we proceed to prove the “if” part. Let T≻A be an SOSP-implementable FPTTC rule on PN . We distinguish

the following two cases.

CASE A: Suppose PN = L
n(A).

From Theorem 5.1, it follows that T≻A satisfies weak serial dictatorship. This, along with Observation

H.1, implies that T≻A is simply strategy-proof.

CASE B: Suppose PN = L
n(A ∪ {a0}).

The proof of this case is straightforward. �

23



References

[1] ABDULKADIROĞLU, A. AND T. SÖNMEZ, “School choice: A mechanism design approach,” American

economic review 93 (2003), 729–747.

[2] ASHLAGI, I. AND Y. A. GONCZAROWSKI, “Stable matching mechanisms are not obviously strategy-

proof,” Journal of Economic Theory 177 (2018), 405–425.

[3] BADE, S. AND Y. A. GONCZAROWSKI, “Gibbard-Satterthwaite Success Stories and Obvious Strate-

gyproofness,” arXiv preprint arXiv:1610.04873 (2017).

[4] BOGOMOLNAIA, A., R. DEB AND L. EHLERS, “Strategy-proof assignment on the full preference

domain,” Journal of Economic Theory 123 (2005), 161–186.

[5] CHEN, Y. AND T. SÖNMEZ, “School choice: an experimental study,” Journal of Economic theory 127

(2006), 202–231.

[6] EHLERS, L. AND B. KLAUS, “Coalitional strategy-proof and resource-monotonic solutions for mul-

tiple assignment problems,” Social Choice and Welfare 21 (2003), 265–280.

[7] HASSIDIM, A., D. MARCIANO, A. ROMM AND R. I. SHORRER, “The mechanism is truthful, why

aren’t you?,” American Economic Review 107 (2017), 220–24.

[8] HASSIDIM, A., A. ROMM AND R. I. SHORRER, “’Strategic’ Behavior in a Strategy-Proof Environ-

ment,” Available at SSRN 2784659 (2018).

[9] LI, S., “Obviously strategy-proof mechanisms,” American Economic Review 107 (2017), 3257–87.

[10] MANDAL, P. AND S. ROY, “Obviously Strategy-proof Implementation of Assignment Rules: A New

Characterization,” International Economic Review 63 (2022a), 261–290.

[11] ———, “On obviously strategy-proof implementation of fixed priority top trading cycles with out-

side options,” Economics Letters 211 (2022b), 110239.

[12] PÁPAI, S., “Strategyproof assignment by hierarchical exchange,” Econometrica 68 (2000), 1403–1433.

[13] PYCIA, M. AND P. TROYAN, “A theory of simplicity in games and mechanism design,” Available at

SSRN 2853563 (2019).

[14] PYCIA, M. AND M. U. ÜNVER, “Incentive compatible allocation and exchange of discrete resources,”

Theoretical Economics 12 (2017), 287–329.

[15] REES-JONES, A., “Suboptimal behavior in strategy-proof mechanisms: Evidence from the residency

match,” Games and Economic Behavior 108 (2018), 317–330.

24



[16] ROTH, A. E. AND A. POSTLEWAITE, “Weak versus strong domination in a market with indivisible

goods,” Journal of Mathematical Economics 4 (1977), 131–137.

[17] SATTERTHWAITE, M. A. AND H. SONNENSCHEIN, “Strategy-proof allocation mechanisms at differ-

entiable points,” The Review of Economic Studies 48 (1981), 587–597.

[18] SHAPLEY, L. AND H. SCARF, “On cores and indivisibility,” Journal of mathematical economics 1 (1974),

23–37.

[19] SHORRER, R. I. AND S. SÓVÁGÓ, “Obvious mistakes in a strategically simple college admissions

environment: Causes and consequences,” Available at SSRN 2993538 (2018).

[20] THOMAS, C., “Classification of Priorities Such That Deferred Acceptance is Obviously Strate-

gyproof,” arXiv preprint arXiv:2011.12367 (2020).

[21] TROYAN, P., “Obviously Strategy-Proof Implementation of Top Trading Cycles,” International Eco-

nomic Review 60 (2019), 1249–1261.

25


	1 Introduction
	1.1 Our motivation and contribution
	1.2 Additional related literature
	1.3 Organization of the paper

	2 Preliminaries
	2.1 Basic notions and notations
	2.2 Types of domains
	2.3 Assignment rules and simple dominance

	3 Fixed priority top trading cycles rules
	4 OSP-implementability of FPTTC rules
	4.1 Dual ownership and prior results
	4.2 Results
	4.2.1 Results on the restricted domain Ln(A)
	4.2.2 Results on the unrestricted domain Ln(A {a0})


	5 SOSP-implementability of FPTTC rules
	5.1 Results on the restricted domain Ln(A)
	5.2 Results on the restricted domain Ln(A {a0})

	6 Simple strategy-proofness
	Appendices
	Appendix A Some additional notations
	Appendix B Proof of Theorem 4.2
	Appendix C Proof of Theorem 4.3
	Appendix D Proof of Theorem 5.1
	Appendix E Proof of Theorem 5.2
	Appendix F Proof of Theorem 5.3
	Appendix G Proofs of Proposition 6.1
	Appendix H Proof of Theorem 6.1

