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Abstract

This paper studies normal form games with multiple prior preferences. We develop a

new measure of ambiguity based on the concept that sets of priors which are trans-

lations of one another represent the same level of ambiguity. This is applied to non-

cooperative games with ambiguity. We propose a solution concept for games where

players have multiple priors preferences. The set of translations of a given set of pri-

ors is shown to be isomorphic to the simplex. This enable us to prove existence of

equilibrium. Like conventional mixing, translations can convexify pure strategies.
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1 Introduction

Most issues in the social sciences involve uncertainty in some form. How to encourage people

to be vaccinated or how to respond to threats from terrorism or rogue states are current policy

examples. Often it is difficult or impossible to assign probabilities to the possible outcomes

of this uncertainty. One reason for this is that the relevant uncertainty often involves the

behaviour of other people, which is intrinsically difficult to predict. This type of uncertainty

referred to as ambiguity.

In this paper we present a theory of how ambiguity affects the interactions between

a group of agents. Strategic interactions between individuals are represented as normal

form games. Ambiguity is modelled using multiple prior preferences. Gilboa and Schmei-

dler (1989) axiomatised ambiguity-averse multiple prior preferences which they refer to as

Maxmin Expected utility, (henceforth MEU). Marinacci (2002) proposed an extension of

multiple priors, which is not necessarily ambiguity averse which we shall refer to as α-MEU.

One advantage of using multiple prior preferences is that they can be applied to problems

involving multiple time periods in a way which respects dynamic consistency, Sarin and

Wakker (1998). Sarin and Wakker propose recursive multiple prior preferences which are

dynamically consistent while also allowing for non-neutral attitudes to ambiguity.1 This will

allow an extension of our solution concept to extensive form games.

We present a new definition of comparative ambiguity based on the intuition that am-

biguity should be the same for any set of priors of the same shape regardless of where it is

located in the space of probabilities. In other words ambiguity is translation invariant within

the probability simplex. We then apply this to strategic ambiguity in games. Consider a

situation where a given player perceives his/her opponent’s action to be ambiguous. Trans-

lation invariance enables us to model a situation where a player perceives similar levels of

ambiguity regardless of which strategy his/her opponent plays.

We prove existence of equilibrium with new solution concept. Our existence proof is novel

since it does not require preferences to be convex. This we are able to allow for ambiguity

seeking as well as ambiguity-averse behaviour. In addition it does not impose any restrictions

1Epstein and Schneider (2003) develop the recursive multiple priors model and apply it to financial
markets.
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on pay-offs, (such as strategic complementarity, see Eichberger and Kelsey (2014)). This is

achieved because we discover a novel isomorphism between the set of translations of a set of

priors and the mixed strategy space of a related game. Thus translations have a convexifying

effect analogous to the way mixed strategies convexify standard games. This enables us to

demonstrate existence of equilibrium using fixed point theorems.

Organisation of the paper

In the next section we describe our framework and definitions. In Section 3 we argue that

ambiguity is location invariant and use this to define a new measure of ambiguity. In Section

4 we apply this to normal form games. Section 5 extends the results to extensive form games

and Section 6 concludes.

2 Preliminaries

We consider a finite state space S. Let ∆(S) denote the set of all probability distributions

over S and 2S the powerset of S. An act is a function a : S → R.. Let A(S) denote the

set of all acts. It is without loss of generality to assume that the pay-offs are utilities. A

utility function may be derived for non-monetary outcomes in the usual way. Let C be a set

of priors, i.e. a closed convex subset of ∆(S).

Definition 2.1 The binary relation < is a multiple priors (or α-MEU) preference relation

if there exists a set of priors C and α ∈ [0, 1] such that:

a < b⇔ αmin
p∈C

Epa+ (1− α) max
p∈C

Epa > αmin
p∈C

Epb+ (1− α) max
p∈C

Epb,

where Epa denotes the expected value of a with respect to the probability distribution p.

Mulptiple prior preferences have been axiomatised by Hartmann, GMM, Seo et al,

to be completed

If α = 1, these coincide with MEU preferences, Gilboa and Schmeidler (1989). If α = 0

these would be maxmax preferences. For intermediate values of α these preferences are nei-

2



ther uniformly ambiguity-averse nor ambiguity loving. This is compatible with experimental

evidence, see Kilka and Weber (2001).

We interpret C as the decision-maker’s beliefs. However these are ambiguous beliefs. The

decision-maker does not know which of the priors in C is the true probability distribution.

His/her reaction to this ambiguity is in part pessimistic in the sense it values acts by the

least favourable probability distribution. It is also partially optimistic since weight is also

given to the most favourable probability in C. The parameter α measures the individuals

ambiguity-attitude. Higher values of α correspond to more ambiguity-averse preferences.

3 Location Invariance of Ambiguity

What does it mean for two prior sets to reflect the same ambiguity? This question is

interesting in its own right. Moreover we believe that it is important for the study of

ambiguity in games. We may wish to consider a situation where a player perceives his/her

opponents’ behaviour to be ambiguous. However we do not wish to specify which strategies

the opponents will play before we have determined equilibrium. Translations allow us to do

this.

We propose that ambiguity is location invariant, meaning that the exact “location” of

the prior set within the set of probabilities over a state space is irrelevant for the level of

ambiguity that it reflects. Location invariance is obvious when prior sets are singletons: If we

consider two distinct probability distributions, these being two singleton prior sets differing

only in “location”, then they reflect the same ambiguity: None! In the following we argue

that this location invariance generalizes to non-singleton prior sets as well. This leads to

a natural measure which is intuitive and unifies many existing measures of ambiguity (see

Epstein (1999), Ghirardato and Marinacci (2002)).

3.1 Location Invariance

Throughout this section we consider ambiguity in single-person decisions. In Section 4 we

apply these concepts to games.

3



3.1.1 Translations

Our concept of location invariance builds on translations of prior sets, which are defined as

follows.

Definition 3.1 (Translation) Let H denote the hyperplane H = p ∈ RS :
∑
s∈S

p(s) = 1. A

translation is an additive function φt : H → H defined by φt(p) = p+ t where t ∈ RS is such

that
∑
s∈S

t(s) = 0. Let Φ denote the space of all translations.

Definition 3.2 (Translation of prior sets) Two prior sets C, C ′ ⊆ ∆(S) are translations

of each other if there exists a translation φt : 2S → R such that

C ′ = {p ∈ ∆(S)|∃q ∈ C : p = φt(q)}.

In such a case we write C ′ = φt(C) or C ′ = C + t. Below we present two examples to

illustrate the concept of a translation. Firstly any single subjective probability is a translation

of any other. Secondly all balls of a given size are translations of one another.

Example 3.1 (Translation)

• C = {p}, C ′ = {p′} with p, p′ ∈ ∆(S). Define t(s) = p(s) − p′(s) for all s ∈ S. Then

C ′ + t = C.

• C ′ = Bε(p), C = Bε(p
′) ⊆ ∆(S) with p, p′ ∈ ∆(S) and Bε(p) the prior set, which is a

ball with centre p and radius ε. Define t(s) = p(s)−p′(s) for all s ∈ S. Then C ′+t = C.

3.1.2 Translations Keep Ambiguity Constant.

We claim that prior sets that are translations of one another reflect the same ambiguity.

To see why consider a prior set C and an act a : S → R. Every prior p in C induces an

expectation of a through
∑
s∈S

a(s)p(s). Since prior sets are compact, there exist priors in

C that induce the (weakly) highest and lowest expectation. The difference between these

two expectations is a measure of the ambiguity for a given C. A translation of C keeps this

ambiguity constant. The class of prior sets that reflect the same ambiguity thus corresponds
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precisely to the set of translations of a given set C. These claims are justified by the results

and definitions in this section.

Measure of Ambiguity

Next we present a measure of ambiguity for a prior set. For a given act a it is the normalised

difference between the highest and lowest expected value of a.

Definition 3.3 (Ambiguity of Prior Sets) Let C be a set of priors. The ambiguity for

act a reflected by C is characterized by the function

δC(a) =


max
p∈C

Ep(a)−min
p∈C

Ep(a)

max
p∈∆(S)

Ep(a)− min
p∈∆(S)

Ep(a)
, a /∈ X

0, a ∈ X,
(1)

where X = {a ∈ A(S) : max
p∈C

Ep(a) = min
p∈C

Ep(a)}.

Figure 1: Worst and best scenario for the act a given prior set C and utility function u.

This measure of ambiguity is illustrated by Figure 1. There are 3 states S = {s1, s2, s3}.

Let C be a set of priors. The two parallel lines illustrate the best and worst case scenarios

for some act a : S → R given C. The difference between these two lines is δC(a) ∈ [0, 1]

which measures the ambiguity reflected by C for the act a. The number δC(a) thus measures
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the ambiguity of a given C. If δC(a) = 0, then there is no ambiguity. The larger δC(a)

becomes, the more ambiguity there is. The following result shows that when two prior sets

are translations, then their δ functions are identical. This illustrates why ambiguity does

not change when a prior set is translated: A translation keeps the ambiguity constant for

each act.

Proposition 3.1 If two prior sets C and C ′ are translations of one another then δC(a) =

δC′(a) for all a ∈ A(S).

Proof. Let a ∈ A(S) be an act, t a translation, and p ∈ ∆(S) a prior. Notice that

Ep(a) = p � a. 2 Then

Ep+t(a) = (p+ t) � a = p � a+ t � a = Epa+ t � a

Now assume that the prior sets C and C ′ are translations, i.e. C ′ = φt(C) for some trans-

lation t. The above implies that q ∈ argmaxp∈C′ Ep(a) if and only if q+ t ∈ argmaxp∈C Ep(a).

In particular, minp∈C′ Ep(a) = minp∈C Ep(a) + t � a. The same holds when “min” is replaced

by “max”. Thus

max
p∈C′

Ep(a)−min
p∈C′

Ep(a) = max
p∈C

Ep(a) + t � a− (min
p∈C

(Ep(a) + t � a)

= max
p∈C

Ep(a)−min
p∈C

Ep(a).

This implies δC(a) = δC′(a).

Remark 3.1 This result illustrates why ambiguity does not change when a prior set is trans-

lated: A translation keeps the ambiguity constant for each act. The converse is not true, since

rotations by 180o also keep δ constant. To see this first note that a and −a have the same

ambiguity. Rotations would preserve ambiguity, if we rotated the acts as well as the priors.

Moreover a 180o rotation maps a to −a, hence ambiguity is unchanged by such a rotation.

See Figure 2 for a demonstration. The two prior sets are 180o rotations around the point p

and obviously not translations of each other. Nonetheless we have δC ≡ δC‘.
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Figure 2: C and C‘ are 180o rotations around the point p. The measures δC(a) and δC‘(a) are
the same for all acts a ∈ A(S).

It is immediate that δC1 ≡ δC2 holds if C1 and C2 are translations. We can thus define

equivalence classes of prior sets that fix ambiguity.

Definition 3.4 (Ambiguity classes) We define the ambiguity class of the set of priors C

to be:

[C] = {C ′ ⊆ ∆(S)|∃φt ∈ Φ : C ′ = φt(C).

The set [C] contains all the translations of C within ∆(S). By Proposition 3.1, it contains

exactly those prior sets that reflect the same ambiguity according to Definition 3.3. The

following definition now suggests itself.

Definition 3.5 (Comparative notion for ambiguity classes) Let C, C ′ be prior sets and

[C], [C ′] their respective ambiguity classes. Then [C] reflects more ambiguity than [C ′] if and

only if C reflects more ambiguity than C ′, i.e. there exists a translation t such that C ′ ⊆ C+ t.

2Here p � a =
∑
s∈S

p(s)a(s) denotes the scalar product of vectors p and a.

7



This induces an order which is transitive but not complete. Since [C] is the set of transla-

tions of C and ambiguity is location invariant, [C] is exactly the set of prior sets that reflect

the same ambiguity. We shall apply this concept to ambiguous beliefs in games. Ambiguity

classes allow us to specify a level of ambiguity independent of the strategies actually played.

3.2 Isomorphism

Building on the concept of location invariance from Section 3.1, we now introduce a result

which is crucial for existence of equilibrium. We show that any given ambiguity class is

isomorphic to the simplex, hence ambiguity classes are convex. This enables us to use fixed

point theorems. All claims made in this subsection are proved in the Appendix.

We define the support of a set of priors, C, to be those states which are in the support

of all of the priors in C. This is a strong notion of support. It is the set of states in which

the decision-maker “believes” in the strong sense that they receive positive probability no

matter which of the priors is the true distribution.

Definition 3.6 Let C be a set of priors. Define the support of C by supp(C) =
⋂
p∈C

supp(p).3

Let C be a prior set on a state space S and let [C] be its ambiguity class, (see Definition

3.4). Assume that the support of C = supp(C) is non-empty. For each s ∈ S there exists a

unique element Cs in [C] such that supp(Cs) = {s}. This prior set is in the “s-corner” of Σ.

We show in the appendix that this prior set always exists and is unique.

Lemma 3.1 If S is a finite state space and C ⊆ ∆(S) is a prior set with supp(C) 6= ∅, then

for every state s∗ ∈ S there exists a unique prior set Cs∗ ∈ [C] such that supp(Cs∗) = {s∗}.

Now consider a arbitrary σ ∈ ∆(S), i.e. a probability distribution over S. Below, we

define Cσ as the σ-mix of the “corner” prior sets.

Definition 3.7 Define a function ψ : ∆(S) to → [C], by ψ (σ) = Cσ = Cs∗ + tσ(s), where

tσ(s) =


τσ (s) , s 6= s∗,

τ [σ (s)− 1] , s = s∗,

3This support notion is the logical one for prior sets and is introduced in Ryan (2002).
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where τ = min
p∈Cs

p(s) ∈ (0, 1]. 4 The prior set Cσ is the “σ mix” of the sets Cs, s ∈ S.

The following proposition establishes the ψ is indeed an isomorphism.

Proposition 3.2 The function ψ : ∆(S)→ [C], is an isomorphism.

Note that when the prior set C is a singleton, [C] = ∆(S) and the isomorphism is the

identity.

3.3 Comparison with other Measures of Ambiguity

In this section we compare our proposed measure of comparative ambiguity with related

definitions in the previous literature.

3.3.1 Belief Hedges

Baillon et al. (2021) introduce two ambiguity indexes: an ambiguity-aversion index b and

an (ambiguity generated-) insensitivity index a. They generalize many ambiguity indexes

suggested in the literature. To introduce them some definitions are needed.

Definition 3.8 A measurement design H is a finite collection of events, {E1, . . . , En} de-

notes the smallest nonempty intersection of events in H, called design atoms. v denotes the

normalized event size, i.e. v(E) = |E|
n

, where |E| is the number of atoms in E.

Definition 3.9 A measurement design H is called l(evel)-hedged if each state s appears in

exactly half of the events in H. It is called v(ariation)-hedged if
∑
s∈E

v(E) is the same for all

states s ∈ S. If H is both l-hedged and v-hedges, it is called a belief hedge.

For a belief hedge, the design atoms form a partition of S. For a function a : H → R,

a =
∑

E∈H a(E)

|H| denotes the average of a. The indexes of Baillon et al. (2021) rely on the

concept of probability matching. For each event E ⊆ S there exists (by monotonicity) a

unique number m(E) ∈ [0, 1] such that xEy ∼ xm(E)y.5 We can now introduce the indexes

of Baillon et al. (2021).

4Lemma A.2, in the appendix, proves that τ is independent of s.
5As usual, xEy denotes the act which gives consequence x on E and y on Ec. xpy denotes the lottery

which gives x with probability p and y with probability 1− p.
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Definition 3.10 If l-hedging holds then the index of ambiguity aversion is

b = 1− 2m.

If in addition v-hedging holds (i.e. H is a belief hedge) then the index of a(mbiguity generated)

insensitivity is

a = 1− Cov(m, v)

V ar(v)
.

The following lemma shows that these indices are unaffected by translations.

Proposition 3.3 Consider α ∈ [0, 1] and prior sets C1, C2. Let <i be the α-MEU

preference relations induced by a and Ci, for i ∈ {1, 2}. If C1 and C2 are translations, then

<1 and <2 have the same ambiguity aversion and a-insensitivity index for any belief hedge

H.

Proof. We first show that when C1 and C2 are translations, i.e. C2 = φt(C1), thenm2 = m1+t.

First note that in the α-MEU model, m(E) = αmin
p∈C

p(E) + (1− α) max
p∈C

p(E). We have

m2(E) = αmin
p∈C2

p(E) + (1− α) max
p∈C2

p(E) = α min
p∈C1+t

p(E) + (1− α) max
p∈C1+t

p(E)

= α[min
p∈C1

p(E) + t(E)] + (1− α)[max
p∈C1

p(E) + t(E)]

= αmin
p∈C1

p(E) + (1− α) max
p∈C1

p(E) + t(E) = m1(E) + t(E).

Next we show that the average of the matching probability function is unaffected by

translations, i.e. that m1 = m2.

First note that
∑
E∈H

t(E) =
∑
s∈S

t(s) |H|
2

= |H|
2

∑
s∈S

t(s) = 0, where the first equality follows

from H being l-hedged as well as the additivity of t and the last equality follows from t being

a translation. Thus we have

m2 = m1 + t =

∑
E∈H[m1(E) + t(E)]

|H|

=

∑
E∈Hm1(E)

|H|
+

∑
E∈H t(E)

|H|
=

∑
E∈Hm1(E)

|H|
= m1.
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This directly implies that the ambiguity-aversion index is the same for both preferences.

We now turn to a-insensitivity, defined by a = 1 − Cov(m,ν)
V ar(ν)

. It suffices to show that

Cov(m2, v) = Cov(m1, v). We have

Cov(m2, v) = (m2 −m2)(v − v)

= m2v −m2 v

= (m1 + t)v −m1 + t v

= m1v + tv −m1 v − t v

= Cov(m1, v) + tv − v t.

Since t = 0 by the definition of translation it suffices to show that tv = 0:

tv =
∑
E∈H

t(E)v(E) =
∑
E∈H

∑
Ei∈E

t(Ei) v(Ei)︸ ︷︷ ︸
= 1
|H|

=
1

|H|
∑
E∈H

∑
Ei∈E

∑
s∈Ei

t(s)
(∗)
=

1

|H|
|H|
2

∑
s∈S

t(s)︸ ︷︷ ︸
=0

= 0,

where (∗) holds due to l-hedging. We have thus shown that Cov(m2, ν) = Cov(m1, ν) which

implies that the a-insensitivity is uneffected by translations.

The reverse direction in Proposition 3.3 is not true, i.e. our measure is finer than the

indexes from Baillon et al. (2021). There exist preferences with the same indexes but whose

prior sets are not translations. This is not surprising as the indexes are one-dimensional

and only depend on preferences over binary acts whereas there is much more variability

in multiple prior models which depend on preferences over non-binary acts as well. The

following example illustrates such a case.

Example 3.2 Consider the state space S = {s1, s2, s3}, the belief hedge H = P(S), and let

punif be the uniform distribution over S. Let α ∈ [0, 1] and consider the following two prior
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sets:

C1 = B 1
6
(punif )

C2 = {q ∈ ∆(S)|q(si) ≥
1

6
, q(si, sj) ≥

1

2
, i, j ∈ {1, 2, 3}, i 6= j}.

The prior set C1 is the ball with radius 1
6

and centre punif . The prior set C2 is the core of a

convex capacity. Obviously they are not translations. However, it is immediate that

min
p∈C1

p(E) = min
p∈C2

p(E) =


1
6
; |E| = 1,

1
2
; |E| = 2;

max
p∈C1

p(E) = max
p∈C2

p(E) =


1
2
; |E| = 1,

5
6
; |E| = 2.

Let <i be the α-MEU preference induced by α and Ci, i ∈ {1, 2}. For any α-MEU preference

and all events E we have m(E) = αmin
p∈C

p(E) + (1 − α) max
p∈C

p(E), thus m1 = m2 and in

particular m1 = m2. This implies that the indexes coincide for <1 and <2.

The measure of Definition 3.3 is intuitively appealing.6 In the following section we illus-

trate the definition by applying it to some examples.

3.3.2 Neo-Additive Preferences

Neo-Additive preferences, (Chateauneuf et al. (2007)) (henceforth CEG) satisfy both the

multiple priors and Choquet Expected Utility (CEU) axioms. They are defined as follows.

Definition 3.11 Let α, δ be real numbers such that 0 < δ < 1, 0 < α < 1. A neo-additive-

capacity ν on S is defined by ν (A) = δ (1− α) + (1− δ)π (A), for ∅ $ A $ S, where π is

an additive probability distribution on S. A preference relation < is Neo-Additive if it can

be represented by the Choquet integral

W (a) =

∫
adν.

6Eichberger and Kelsey (2014), Marinacci (2000), Chateauneuf et al. (2007) and Dominiak and Eichberger
(2016) introduce measures that are all special cases of Definition 3.3.
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CEG show that neo-additive capacities also have a multiple prior representation. Let ν

be a neo-additive capacity characterized by π, δ and α. Then for any act a ∈ A(S),

W (a) = αmin
p̂∈D

Epa+ (1− α) max
p̂∈D

Epa,

where D = {p̂ ∈ ∆(S)|p̂(E) ≥ (1− δ)p(E),∀ E ∈ Σ}.

Neo-Additive preferences are represented by a weighted average of the highest expected

pay-off and the lowest expected pay-off of the priors in D. CEG interpret them as describing

a situation where the decision maker’s ‘beliefs’ are represented by the probability distribution

π. However these are ambiguous beliefs. This ambiguity is captured by the parameter δ.

The highest possible level of ambiguity corresponds to δ = 1, while δ = 0 corresponds to no

ambiguity. The following proposition shows that two neo-additive capacities are translations

of one another if and only if they have the same δ. Hence our measure of ambiguity coincides

with that proposed by CEG.

Proposition 3.4 Let ν and ν ′ be two neo-additive capacities characterized by π, δ, α and

π′, δ′, α′, respectively. Let D and D′ be the respective prior sets from (3.3.2). Then δ = δ′ if

and only if D and D′ are translations.

Proof. Assume that δ = δ′. Consider the translation t = (1− δ)(π′−π). We show that

D′ = D + t. Consider some π̂ ∈ ∆(S). Then

π̂ ∈ D + t ⇐⇒ π̂(E) ≥ (1− δ)π(E) + (1− δ)(π′(E)− π(E)), ∀E ⊆ S

⇐⇒ π̂(E) ≥ (1− δ)π′(E), ∀E ⊆ S ⇐⇒ π̂ ∈ D′.

For the converse assume that δ > δ′. Consider an arbitrary state s′ ∈ S and the following

translations t and t′:

t(s) =


1− π(s), s = s′;

−π(s), s 6= s′;

t′(s) =


1− π′(s), s = s′;

−π′(s), s 6= s′.

The prior sets D+ t and D′+ t′ are the sets D and D′ translated into the s′-corner of the
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simplex, i.e.

D + t = {π̂ ∈ ∆(S)|π̂(E) ≥ (1− δ)Is′ ,∀E ⊆ S}

D′ + t′ = {π̂ ∈ ∆(S)|π̂(E) ≥ (1− δ′)Is′ , ∀E ⊆ S},

where Is′ is the degenerate distribution in ∆(S) which puts all weight on s′. Due to δ > δ′

we have that D + t ) D′ + t′. Therefore D and D′ are not translations.

3.4 Multiple dimensions

Here we extend our analysis to a multi-dimensional state space. The state space is a Cartesian

product, S = S1 × ... × SM . The previous results imply the existence of an isomorphism

between an ambiguity class over S and the set of probability distributions over S,∆ (S) .

However it is often useful to consider beliefs which are independent over the components.

In particular if S is the space of possibly mixed strategies of one’s opponents in a game it is

usual to assume that they are independent. This can be achieved as follows.

Let Λ denote the set of all independent probability distributions over S, i.e. if p ∈ Σ,

then p (s1, ..., sM) =
∏M

i=1 pi (si) . An independent set of priors C is a finite subset of Λ. Note

that as defined C is not convex. However we could take the convex hull of C. This would

not change decisions since they only depend of the extremal points of C.

Definition 3.12 Let Ci be a set of priors over Si,and let [Ci] denotes its ambiguity class for

1 6 i 6 M. An independent ambiguity class, I, is a family of sets of priors of the form

I = C ′1× ...×C ′M , where C ′i ∈ [Ci] for 1 6 i 6M. Alternatively I = φt1 (C1)× ...× φtM (CM) ,

where φti is a translation for 1 6 i 6M.

We can show that the independent ambiguity class, I, is isomorphic to the set of inde-

pendent probability distributions over S.

Proposition 3.5 The function ξ defined by by ξ (π1, ..., πM) =
〈
ψ1 (π1) , ..., ψ

M (πM)
〉

is an

isomorphism. Here ψi : ∆ (Si)→ [Ci] denotes the isomorphism from Definition 3.7.
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Proof. The fact that ψi is 1-1 for 1 6 i 6 M implies that ξ is 1-1. Moreover ξ is onto

since if 〈π1, ..., πM〉 ∈ Λ, then 〈π1, ..., πM〉 = ξ
〈

(ψ1)
−1

(π1) , ...,
(
ψM
)−1

(πM)
〉
.

In the next section we apply the concept of translation invariance to ambiguity in games.

The isomorphism which we have discovered will enable to prove existence of equilibrium with

fixed point theorems.

4 Games with Multiple Priors

In this section we shall introduce our theory of games where players perceive strategic am-

biguity about others behaviour. We model this ambiguity with a multiple prior approach.

For comparability with the existing literature we shall assume that any given player views

his/her opponents’ actions to be independent. We shall also assume that beliefs are consis-

tent in the sense that any two players have the same beliefs over the behaviour of a third

party. These restrictions may be relaxed in applications if the context suggests it is desirable.

We formally define our equilibrium concept and prove existence.

4.1 Framework

We consider normal-form games Γ = 〈H, Si, ui : 1 ≤ i ≤ N〉, where H is a set of N players,

Si and ui denote respectively the strategy set and utility function of player i. The pure

strategy sets Si for each of the N players are finite, Σi denotes the set of mixed strategies

of player i (Pi). The sets of pure strategy and mixed strategy combinations of the game are

denoted by S = ×Ni=1Si and Σ = ×Ni=1Σi. As usual, S−i = ×j 6=iSi, and Σ−i = ×j 6=iΣi denote

the sets of pure and mixed strategies of i’s opponents. For Pi, the function ui : Σ → R is

the expected pay-off function.

The ambiguous belief of Pi about the strategy choice of the other players is reflected by a

prior set C−i ⊆ ∆(S−i). The ambiguity-attitude of player Pi is represented by the parameter

αi ∈ [0, 1]. Player Pi evaluates a strategy si ∈ Si by

Vi(si) = αi min
p∈C−i

ui(si, p) + (1− αi) max
p∈C−i

ui(si, p). (2)
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Thus the player considers the worst and the best scenario over the beliefs and weights them

according to his/her ambiguity attitude. The ambiguity-attitude parameter tells us how

pessimistic or optimistic (s)he is towards the strategic ambiguity. If αi is small (large), the

player is optimistic (pessimistic).

4.2 Location invariance in games

When there are more than two players, strategic ambiguity is multi-dimensional. Thus we

use the results from Section 3.4. The players perceive ambiguity about the behaviour of

each opponent, each reflected by a prior set. The overall belief is reflected by the Cartesian

product of these prior sets.

Definition 4.1 Let Cji ⊆ Σj be the belief of player i about player j. The overall belief of

player i is Ci = ×j 6=iCji ⊆ Σ−i.
7

This definition incorporates the notion that any given player believes his/her opponents

act independently. A translation of such a prior set Ci is the Cartesian product of translations

of Cji . The following definition says that any two players have the same beliefs about the

behaviour of any third player. This is standard in game theory, however it needs to be

imposed as an extra assumption in the present context.

Assumption 4.1 We say that players have consistent beliefs if Cki = Ckj i 6= j, i 6= k, j 6= k.

Next we extend the concept of an ambiguity class to games.

Definition 4.2 Let Ci = ×j 6=iCji be the belief of player i. Then Ĉi = ×j 6=iĈji is a translation

of Ci if Ĉji is a translation of Cji for all j 6= i. The ambiguity class of Ci denoted by [Ci], is

the set of all such translations.

Remark 4.1 By Proposition 3.5 there exists an isomorphism ξi from ∆(S−i) to [Ci]. This

implies that any given ambiguity class is isomorphic to the set of mixed strategies in Γ.

7This is not a convex set. However replacing the set by its convex hull will not affect preferences.
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4.3 Definition of Equilibrium

In this section we present our definition of equilibrium for games with ambiguity, represented

by multiple priors. Our equilibrium concept demands that players believe that others only

play strategies that are optimal given their beliefs (Definition 4.3). Our equilibrium concept

coincides with Nash Equilibrium when prior sets are singletons. Thus our model is the logical

extension of Nash equilibrium to a multiple prior context.

Definition 4.3 (Equilibrium under Ambiguity) Let Γ = 〈H;Si, ui : 1 ≤ i ≤ N〉 be a

normal-form game. The tuple (C−i, ai)Ni=1 is an Equilibrium Under Ambiguity (EUA) if for

all 1 ≤ i ≤ N there exist Ci ⊆ Σ(Si) such that C−i = ×j 6=iCji and

∅ 6= supp(C−i) ⊆ ×j 6=i argmaxsj∈Sj
Vj(sj), (3)

where supp(C−i) = ×j 6=i supp(Cji ).

Remark 4.2 When prior sets are singletons, i.e. C−i = σi for 1 ≤ i ≤ N , then if 〈σ1, ..., σN〉

is a EUA, it is also a Nash equilibrium of Γ.

In light of Remark 4.2, EUA can be viewed as the natural extension of Nash Equilibrium

(possibly in mixed strategies) to strategic ambiguity.

4.4 Equilibrium Existence

This section provides an equilibrium existence result. We achieve this for arbitrary perceived

ambiguity and ambiguity-attitude for every player. This enables us to analyse the impact

of ambiguity by conducting comparative static exercises. An ambiguous normal-form game

is characterized by the players, their strategies and payouts as usual and in addition by an

ambiguity class and ambiguity-attitude for each player. We rely in the concept of location

invariance introduced in Section 3 and on the ambiguity classes [·] from Definition 3.4.

Definition 4.4 (Ambiguous Normal-form Game) Consider a normal form game Γ =

〈H, Si, ui : 1 ≤ i ≤ N〉 as well as ambiguity classes [C1], . . . , [CN ] for the strategy of player

17



i, 1 ≤ i ≤ N} and ambiguity attitudes a1, . . . , aN for all players. Then we call this an

ambiguous game and denote it by

Γ = 〈H, Si, ui, [Ci], ai : 1 ≤ i ≤ N〉. (4)

The following theorem shows that an EUA exists for every ambiguous game. The theorem

thus guarantees existence for any ambiguity and ambiguity-attitude of the players.

Theorem 4.1 (Equilibrium Existence) Let Γ = 〈H, Si, ui, [Ci], ai : 1 ≤ i ≤ N〉 be an

ambiguous normal-form game. Then there exist C∗−i ∈ [C−i] := ×j 6=i[Cj] such that (C∗−i, ai)Ni=1

is an Equilibrium under Ambiguity.

The existence of C∗−i ∈ [C−i] means that no matter what shape and size we have fixed

for each player i’s ambiguity, reflected by [Ci], there always exist translations such that we

have an equilibrium as in Definition 4.3. Such an equilibrium exists for any normal-form

game and any possible ambiguity and ambiguity-attitude. This is a very general result and

does not need any limiting assumptions such as convexity of preferences or restrictions on

the pay-off functions.

5 Extensive form Games

I am not yet sure how the analysis of extensive form games can benefit from our new

measure. I think however that translation invariance does play a role when updating for

many important updating rules:

Proposition 5.1 Let C and C ′ be prior sets and assume that C ′ = φt(C). If t(Ec) = 0, then

C ′FBE = φtE(CFBE ) and C ′ML
E = φtE(CML

E ) for some translation tE : E → R.

If t(Ec) > 0, then C ′FBE ⊃ φtE(CFBE ) and C ′ML
E ⊃ φtE(CML

E ) for some translation tE :

E → R. If t(Ec) < 0, then C ′FBE ⊂ φtE(CFBE ) and C ′ML
E ⊂ φtE(CML

E ) for some translation

tE : E → R.

Proof. I’ll add a proof once we decide that it is correct and that it’s important.
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Looks interesting

Some explanations are in order. If t(Ec) > 0, then C ′ is “closer” to Ec than C. If

now E happens then it is logical that C ′E reflects more ambiguity than CE because event E

happened which was perceived more unlikely for C ′ than for C. So the update of C ′ reflects

more ambiguity than the update of C. If t(Ec) = 0, then both prior sets are equally “close”

to Ec, thus the information E leads to the same ambiguity when the prior sets are updated.

6 Conclusion

This paper has two main contributions. Firstly we proposed a new measure of ambiguity

based on the concept that ambiguity is translation invariant. Secondly we propose a solution

for games where players have ambiguous beliefs as represented by the multiple priors model.

In this paper we assume that any two players have the same beliefs about the behaviour

of a third party and that players believe that their opponents act independently. These

assumptions are standard in the previous literature. It is useful to retain them, which enables

us to isolate the effect of ambiguity in games. However we note these assumptions act as

constraints. Therefore our proof of existence of equilibrium with these constraints implies

existence when they are not required. In a context of ambiguity a given player may perceive

ambiguity concerning whether or not his/her opponents are colluding. If the independence

assumption is relaxed our framework would be suitable for analysing such questions

Our results can be extended to the case where the ambiguity attitude depends on the

strategy chosen, as in the invariant biseparable model, see Hartmann.

Lorenz can you add a citation to ypur thesis.

A number of extensions are possible in future research. It would be relatively straight-

forward to include games of incomplete information by adding a type space. Our theory

could be expanded to include extensive form games. Dynamic consistency can be ensured by

requiring players to have preferences of the recursive multiple priors form, Sarin and Wakker

(1998).
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7 Extensions

7.1 The Smooth Model

In the smooth model of Klibanoff et al. (2005), µ is a second-order probability over the state

space and reflects perceived ambiguity. Let µ′ be another such second-order probability.

When do µ and µ′ reflect the same ambiguity? We show in the following that translations,

suitable adapted to their framework, gives an intuitive solution to this question.

As Klibanoff et al. (2005) we denote by µf the distribution over expected utility values

induced by µ and f ∈ F . It is natural to say that µ and µ′ reflect the same ambiguity

for f if (and only if?) the cumulative distribution functions of µf and µ′f are shifts of each

other, i.e. there exists an a ∈ R such that F ′(x) = F (x + a) for all x ∈ R and where F, F ′

are the cumulative distribution functions of µf and µ′f , respectively. If this holds then all

probability mass is simply shifted uniformly by the constant a. We argue that such a shift

does not change ambiguity.

The following result states that µ and µ′ are translations, i.e. µ′ = φt(µ), if and only if

the above holds for all acts.

Proposition 7.1 Let µ and µ′ be two second-order probabilities over some finite state space

S. Then µ and µ′ are translations if and only if for all f ∈ F there exist af ∈ R such that

F ′(x) = F (x+ af ) for all x ∈ R.

Proof. I’ll add a proof once we decide that it is correct and that it’s important.

Looks interesting but not sure that it fits with the theme of the present paper.

7.2 Applications

Possible applications include:

• Herding in Financial Markets,

– Conjecture. If individuals view the behaviour of others as ambiguous they will

be less sensitive to changes in their behaviour. As a result ambiguity will make
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herding and bubbles less likely. Maybe increases in ambiguity can cause the

collapse of bubbles.

• Entry Games see Tirole Ch.8

• Repeated Games.

Appendix

The proof of Theorem 4.1 can be divided into three steps. Firstly we show that for a state

space S and a set of priors C there is an isomorphism between ∆(S) and [C]. We use this

to define an isomorphism between the space of mixed strategies and an ambiguity class of

beliefs about the opponent’s behaviour in a non-cooperative game. In the second step we

show that this isomorphism induces what we call an “ambiguity perturbed game” of Γ. In

the third step we show that every Nash equilibrium in the perturbed game induces an EUA

in Γ. Since the perturbed game is a conventional normal-form game and thus has a Nash

equilibrium, we are finished.

A Ambiguity Classes

This appendix shows that any given ambiguity class is isomorphic to the simplex. We

introduce the isomorphism for a finite state space and then extend this to a state space with

a product structure. This can then be directly applied to games.

Lemma A.1 Consider a finite state space S and prior sets C, C ′ ⊆ ∆(S) with C ′ ∈ [C].

Then supp(C) 6= ∅ if and only if supp(C ′) 6= ∅. Furthermore, if both supports are empty, then

the sets are identical, i.e. C = C ′.

Proof. Since C ′ ∈ [C], there exists some translation φt such that C ′ = φt(C). First assume

that supp(C) 6= ∅, i.e. there exists some ŝ ∈ S such that min
p∈C

p(ŝ) > 0. If t(ŝ) > −min
p∈C

p(ŝ),

then ŝ ∈ supp(C ′). Otherwise t(ŝ) = −min
p∈C

p(ŝ) < 0. Hence there exists some s′ ∈ S such

that t(s′) > 0. It holds that min
q∈C′

q(s′) = min
p∈C

p(s′)+t(s′) ≥ t(s′) > 0. Thus s′ ∈ supp(C ′) 6= ∅.
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Now assume that supp(C) = ∅, which implies min
p∈C

p(s) = 0 for all s ∈ S. Assume for

contradiction that t(s) < 0 for some s ∈ S. Then min
q∈C′

q(s) = min
p∈C

p(s) + t(s) = t(s) < 0. But

this cannot happen since q(s) ≥ 0. Thus t ≡ 0 must hold, so C ′ = C.

Lemma 3.1 If S is a finite state space and C ⊆ ∆(S) is a prior set with supp(C) 6= ∅, then

for every state s∗ ∈ S there exists a unique prior set Cs∗ ∈ [C] such that supp(Cs∗) = {s∗}.

Proof. Consider a prior set Cs∗ = φt(C) where t is defined by

t(s) = −min
p∈C

p(s), s 6= s∗; t(s∗) =
∑

s∈S\{s∗}

min
p∈C

p(s).

By construction, min
p∈Cs∗

p(s) = min
p∈C

p(s)+t(s) = 0 for all s ∈ S\{s∗}, implying that supp(Cs∗) ⊆

{s∗}. By Lemma A.1, supp(Cs∗) 6= ∅ so we can conclude that supp(Cs∗) = {s∗}.

Now let C ′ = φt̂ be a translation of C such that supp(C ′) = {s∗}. There does not exist

ŝ 6= s∗ such that t̂(ŝ) > −min
p∈C

p(ŝ). This would imply min
p∈C′

p(ŝ) > 0, and hence ŝ ∈ supp(C ′).

For ŝ 6= s∗, we cannot have t̂(ŝ) < −min
p∈C

p(ŝ), since this would imply the existence of

p̃ ∈ C ′ such that p̃(ŝ) < 0. Hence t̂(s) = −min
p∈C

p(s), s 6= s∗. Since
∑
s∈S

t(s) =
∑
s∈S

t̂(s) = 0

t̂(s∗) = t(s∗), which implies t̂ = t. This establishes uniqueness of Cs∗ .

In what follows, for s ∈ S, we denote the prior set derived in Lemma 3.1 by Cs.

Lemma A.2 The number τ(s) defined by τ(s) = min
p∈Cs

p(s) ∈ (0, 1] does not depend on s.

Proof. Let ŝ, s̃ ∈ S, ŝ 6= s̃. Note that min
p∈Cŝ

p(ŝ) = τ(ŝ) and min
p∈C

p(s) = 0, s 6= ŝ. By

construction C s̃ = C ŝ + t′, where t′ (ŝ) = −τ (ŝ) , t′ (s̃) = τ (ŝ) and t (s) = 0 otherwise. It is

now clear that τ(s̃) = min
p∈Cs̃

p(s) = τ(ŝ). The result follows.

Remark A.1 This result enables us to define τ = τ(s). The number τ can be interpreted

as a measure for the space that the prior sets in [C] have to move around in ∆(S). It is 0 if

and only if supp(C) = ∅ and 1 if and only if |C| = 1.

Next note that for a given s∗ ∈ S,

[C] = {C ⊆ ∆(S)|C = Cs∗ + t, t(s) ≥ 0 ∀ s 6= s∗,
∑

s∈S\{s∗}

t(s) ≤ τ, t ∈ T}.
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Lemma 3.1 defines a 1-1 map from S to a subset of [C]. We shall now extend this to an

isomorphism between ∆(S) and [C].

Proposition 3.2 The function ψ : ∆(S)→ [C], is an isomorphism.

LH: Where do we define the function ψ?

Proof. First note that ψ is well defined, since ∀p ∈ Cs∗ , p (s∗) ≥ τ, p+ t(s) ≥ 0. Moreover ψ

is 1-1, since if σ̂ 6= σ̃ then tσ̂(s) 6= tσ̃(s), hence Cσ̂ 6= Cσ̃.

To show that ψ is onto if C ′ ∈ [C] then C ′ = Cs∗ + t′ for some t′, such that
∑

s∈S t
′(s) = 1.

Notice that if s̃ 6= s∗, ∃p̃ ∈ C such that p̃ (s̃) = 0. Thus we must have t′ (s̃) ≥ 0 to ensure

that p̃+ t′ is a well defined probability distribution.

Define a probability distribution σ′ ∈ S by:

σ′(s) =


t′(s)
τ
, s 6= s∗,

t′(s)
τ

+ 1, s = s∗.

We can show that σ′ so defined in a probability distribution since:

∑
s∈S

σ′(s) =
∑
s∈S

t′(s)

τ
+ 1 = 1.

By construction ψ (σ′) = C ′, which establishes that ψ is onto. The result follows.

Corollary A.1 If σ ∈ Σ then supp(Cσ) = supp(σ).

Proof. From the proof of Proposition 3.2 we see that Cσ = Cs∗ + t′, where t′(s) > 0 ⇐⇒

σ(s) > 0. Since ∀p ∈ Cσ), p(s) ≥ t′(s), this implies supp(σ) ⊆ supp(Cσ).

For the converse assume that s̃ /∈ supp(Cσ), then ∃p ∈ Cσ such that p(s̃) = 0. This

implies that t′(s̃) = 0 hence s̃ /∈ supp(σ). Thus we may conclude supp(Cσ) ⊆ supp(σ), which

establishes the result.

Remark A.2 The isomorphism ψ implies that for every prior set C we have

[C] = {Cσ|σ ∈ ∆(S)}.
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Figure 3 illustrates the work done for the case S = {s1, s2, s3}. The isomorphism maps

the strategy s1 to the set Cs1 . It maps the mixed strategy 1
2
s1 + 1

2
s3 to the set C 1

2
s1+

1
2
s3 .

Figure 3: The sets Cσ.

The next result shows that if beliefs are represented by Cq, then preferences are linear in

q. This implies that if s corresponds to the strategies of an opponent in a non-cooperative

game, then mixed strategies will convexify pay-offs in the usual way.

For consistency with the above should we say The evaluation functional V is linear in

σ ∈ ∆(S) i.e. replace q by σ,? Maybe we should replace σ by q instead? Since we are here

still in the non-game context. I can change the picture accordingly if you agree.

Lemma A.3 The evaluation functional V is linear in q ∈ ∆(S), i.e. for a ∈ A(S).

V (s|Cq, a) =
∑
s∈S

q(s)V (s|Cs, a).

Proof. Consider q ∈ ∆(S). For s̃ ∈ S if we define the translation tq−s̃s
′

by

tq−s̃(s) =


τq(s), s 6= s̃;

τ [q(s̃)− 1] , s = s̃,

then holds that Cq = C s̃ + tq−s̃. Next we show that for all a ∈ A(S) and q ∈ ∆(S),∑
s∈S q(s)t

q−s � a = 0. Here tq−s � a denotes the scalar product of vectors tq−s and a.
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∑
s∈S

q(s)tq−s � a =
∑
s∈S

q(s)

[∑
s′∈S

tq−s � a

]

=
∑
s∈S

q(s)τ

[∑
s′ 6=s

q(s′)a(s′) + (q(s)− 1)a(s)

]

=
∑
s∈S

q(s)τ

[∑
s′∈S

q(s′)a(s′)− a(s)

]

= τ

∑
s′∈S

∑
s∈S

q(s)︸ ︷︷ ︸
=1

q(s′)a(s′)

− τ∑
s∈S

q(s)a(s)

= τ
∑
s′∈S

q(s′)a(s′)− τ
∑
s∈S

q(s)a(s) = 0.

Now we have

min
p∈Cq

Epa =
∑
s∈S

q(s) min
p∈Cq

Epa

=
∑
s∈S

q(s) min
p∈Cs

Epa+
∑
s∈S

q(s)tq−s � a

=
∑
s∈S

q(s) min
p∈Cs

Epa).

Analogously we can show that max
p∈Cq

Epa =
∑
s∈S

q(s) max
p∈Cs

Epa. This implies

V (a|Cq, α) = α(a) min
p∈Cq

Epa+ (1− α(a)) max
p∈Cq

Epa

= α(a)
∑
s∈S

q(s) min
p∈Cs

Epa+ (1− α(a))
∑
s∈S

q(s) max
p∈Cs

Epa

=
∑
s∈S

q(s)

[
α(a) min

p∈Cs
Epa+ (1− α(a)) max

p∈Cs
Epa

]
=
∑
s∈S

q(s)V (a|Cs, α).

This shows the required linearity.
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B Existence of Equilibrium in Games

In this appendix we prove existence of equilibrium with ambiguity. Our strategy is to

construct a related game without ambiguity which we refer to as the perturbed game. We

use the isomorphism constructed above to map a mixed strategy equilibrium of the perturbed

game to an equilibrium with ambiguity in the original game. Existence of equilibrium then

follows by applying Nash’s Theorem to the perturbed game.

The perturbed game Γ∗

The isomorphism is crucial for the following definition, the key step towards proving Theorem

4.1. For any ambiguous normal-form game Γ = 〈H, Si, ui, [Ci], αi : 1 ≤ i ≤ N〉 we can define

what we call the perturbed game of Γ. This is a standard normal form game with the same

players and strategy sets but modified pay-off functions.

Definition B.1 (Perturbed Game) Let Γ = 〈H, Si, ui, [Ci], αi : 1 ≤ i ≤ N〉 be an am-

biguous normal-form game with independent beliefs. The independent perturbed game is a

normal form game Γ∗ = 〈H;Si, wi : 1 ≤ i ≤ N〉 defined by

ωi(si, s−i) = αi min
p∈Cs−i

Epui(si, s−i) + (1− αi) max
p∈Cs−i

Epui(si, s−i).

The game Γ∗ is well-defined. It is a normal-form game with exactly the same players

and strategy sets as Γ. The payoff functions will differ unless the players do not perceive

any ambiguity, i.e. the [Cji ]’s are singletons. Let Cs−i

i be the member of [Ci] such that

supp(Cs−i

i ) = s−i. Existence and uniqueness of Cs−i

i is ensured by Lemma 3.1. If σ−i ∈ Σ−i,

define Cσ−i

i = ξ−1i (σ−i), where ξi is the isomorphism defined in Proposition 3.5. The following

Lemma is the crucial step for proving Theorem 4.1. It shows that the Nash Equilibria of Γ∗

induces an Equilibrium under Ambiguity of Γ.

Lemma B.1 Let Γ = 〈H, Si, ui, [Ci], αi : 1 ≤ i ≤ N〉 be an ambiguous normal-form game

with consistent beliefs. If σ ∈ Σ is a Nash Equilibrium of the independent perturbed game Γ∗

then (Cσ−i , αi)
N
i=1 = (ξi(σ−i), αi)

N
i=1 is an Equilibrium under Ambiguity of Γ.
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Proof. Assume that σ = (σi)
N
i=1 is a Nash Equilibrium of Γ∗. By Lemma A.3, Vi is

linear in σi, hence

Vi(si|Cσ−i , αi) =
∑

s−i∈S−i

σ−i(s−i)Vi(si|Cs−i , αi).

This implies that Vi(si|Cσ−i , αi) = ωi(si, σ−i).

Assume that s′i ∈ supp(σi). Then s′i ∈ argmaxsi∈Si
ωi(si, σ−i). Therefore

s′i ∈ argmaxsi∈Si
Vi(si|Cσ−i , αi). So s′i is a best response given belief Cσ−i and ai. Then

∅ 6= supp(σ−i) ⊆ ×j 6=i argmaxsj∈Sj
ωj(sj, σ−j).

By Corollary A.1, supp(σ−i) = supp(Cσ−i) and by the definition of ωj this is equivalent to

∅ 6= supp(Cσ−i) ⊆ ×j 6=i argmaxsj∈Sj
V (sj|Cσ−j , αj).

This implies that (Cσ−i

i , αi)
N
i=1 is an Equilibrium under Ambiguity.

Proof of Theorem 4.1. The proof follows directly from Lemma B.1. By Nash’s theorem,

the game Γ∗ always has a Nash Equilibrium which induces an Equilibrium under Ambiguity

in Γ.

A direct proof may be more elegant than defining a perturbed game.
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