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Abstract

There is a large body of evidence that decision makers frequently depart from

Bayesian updating. This paper introduces a model, robust maximum likelihood

(RML) updating, where deviations from Bayesian updating are due to multiple pri-

ors/ambiguity. The primitive of the analysis is the decision maker’s preferences

over acts before and after the arrival of new information. The main axioms char-

acterize a representation where the decision maker’s probability assessment can

be described by a benchmark prior, which is reflected in her ex ante ranking of

acts, and a set of plausible priors, which is revealed from her updated preferences.

When new information is received, decision makers revise their benchmark prior

within the set of plausible priors via the maximum likelihood principle in a way

that ensures maximally dynamically consistent behavior, and update the new prior

using Bayes’ rule. RML updating accommodates most commonly observed biases

in probabilistic reasoning.
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1 Introduction

How do decision makers (DMs) update their beliefs when they receive new information?

The answer to this question is critical in economic models and policy analyses where

one tries to predict the consequence of releasing new information to market participants.

The standard assumption in economics is that beliefs are updated using Bayes’ rule.

However, there is a large body of experimental and empirical evidence which shows

that decision makers frequently deviate from Bayesian updating. For example, many

decision makers tend to underweight base rates (base rate neglect), ignore informative

signals (conservatism), interpret contrary evidence as supportive of their original beliefs

(confirmation bias).1 This paper introduces a model where deviations from Bayesian

updating are due to ambiguity/multiple priors. The model can accommodate previously

mentioned and other errors in probabilistic reasoning.

To illustrate how deviations from Bayesian updating can be related to multiple priors,

consider the thought experiment due to Ellsberg (1961) where a DM is told that an urn

contains 30 red balls and 60 blue or green balls in an unknown proportion. Let fR,

fB, and fG stand for bets which yield $100 if the ball drawn from the urn is red, blue,

and green, respectively, and $0 otherwise. When no further information is given, many

decision makers are indifferent between these bets, which is consistent with the prior that

assigns equal probability to all colors.2

Now suppose the experimenter draws a ball from the urn and conveys to the DM that

the ball is not green. How should the DM update her preferences given this information?

In particular, should she still be indifferent between fR and fB? There are two arguments

that can be made. First, following the principle of dynamic consistency, one can argue

that since both fR and fB agree on the payoff assigned to the unrealized event (green),

the information that this event is ruled out should not affect the original preference.

Hence, indifference should be maintained ex post. On the other hand, the information

that the ball is not green may suggest that the number of blue balls in the urn is greater

than the number of green balls. Since there are only 30 red balls in the urn and 60

1For a review of these findings, see, for example, Camerer (1995), Rabin (1998), Tversky (2004), and
Benjamin (2019).

2Ellsberg argued that most decision makers would prefer to bet on red rather than blue or green.
While Ellsberg style preferences are common, many experimental findings show that a significant number
of decision makers are ambiguity neutral (see Binmore, Stewart, and Voorhoeve, 2012; Charness, Karni,
and Levin, 2013; Stahl, 2014). In this paper, I consider both ambiguity neutral and ambiguity averse
decision makers.
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blue or green balls, one can also argue that fB should be preferred to fR ex post. This

preference is incompatible with dynamic consistency, which is the key implication of

Bayesian updating.

The intuition that decision makers may not perform Bayesian updating when they

face ambiguity is confirmed by experiments and observations of practitioners’ behavior.

For example, in a similar dynamic Ellsberg experiment, Dominiak, Duersch, and Lefort

(2012) find that a significant number of decision makers whose behavior can be charac-

terized as ambiguity neutral are not Bayesian. In addition, many statistical tools used in

practice (e.g. maximum likelihood estimation, hypothesis testing, etc.) are non-Bayesian

even though conceivably many statisticians, and scientists in general, may be ambiguity

neutral.

Most existing models tie the DM’s ambiguity attitude (rather than ambiguity) to her

response to new information, which forces an ambiguity neutral DM to update her be-

liefs using Bayes’ rule. This is not only inconsistent with the intuition and observations

described above but also unnatural as ambiguity attitude and belief updating are dis-

tinct concepts. The model proposed in this paper allows the DM depart from Bayesian

updating when she faces ambiguity even if her attitude towards ambiguity is neutral.

I adopt a dynamic version of the classical Anscombe and Aumann (1963) setup. Let

Ω be a finite set of states, and denote by ∆(Ω) the set of all probability measures on Ω.

An event is a member of A, which is the collection of all subsets of Ω. The set of prizes

(e.g. monetary payments) is a convex subset of a metric linear space, and an act is a

function that assigns a prize to each state of the world.

The primitive of the analysis is a collection of preferences {<A}A∈A where <A repre-

sents the DM’s preference over acts when she learns that event A occurs. The preference

when the DM receives no information is <Ω, which, for simplicity, is denoted by <. The

main axioms in this paper characterize a representation where the DM is endowed with

a benchmark prior π ∈ ∆(Ω), revealed from ex ante preferences <, and a set of plausible

priors N(π), revealed from updated preferences <A. For example, in the Ellsberg exper-

iment the benchmark prior may assign equal probability to all colors, while any prior

that assigns 1/3 probability to red is plausible. The benchmark prior π is interpreted as

the DM’s initial best guess where π ∈ N(π).

The axioms yield a novel updating rule, robust maximum likelihood (RML) updating,

which can be described by two stages. In the first stage, the DM performs maximum

likelihood updating within the set of plausible priors. That is, when the DM learns that
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an event A occurs, she restricts her attention to the subset of plausible priors which

maximize the likelihood of this event. This set is denoted by

NA(π) = arg max
π′∈N(π)

π′(A).

Next, the DM chooses a new benchmark prior that induces maximally dynamically con-

sistent behavior among all priors in NA(π) and updates it using Bayes’ rule. Maximal

dynamic consistency ensures that the DM stays as “close” to her original benchmark prior

as possible. A similar idea is also used in robust control literature where the benchmark

prior π is treated as an “approximating model” that is not fully trusted, and models “fur-

ther away” from π are seen as less appealing (see Hansen and Sargent, 2001; Strzalecki,

2011). When there is no ambiguity (i.e. N(π) is a singleton), RML updating reduces to

Bayesian updating.

To illustrate how RML updating can accommodate a strict preference for fB over fR

after the realization that the ball drawn from the Ellsberg urn is not green, let π, π′, π′′ ∈
N(π) where π is the benchmark prior, and π′ and π′′ represent two plausible priors when

there are no green and blue balls in the urn, respectively.

Red Blue Green

π 1/3 1/3 1/3

π′ 1/3 2/3 0

π′′ 1/3 0 2/3

When the DM learns that the ball drawn from the urn is not green, maximum likelihood

updating implies NA(π) = {π′}. The DM endowed with π′ as her posterior prefers fB

over fR.

RML updating provides explanations for most commonly observed biases in prob-

abilistic reasoning. For example, consider confirmation bias, which is the tendency to

interpret contrary evidence as supportive of original beliefs (see, for example, Rabin

and Schrag, 1999, and references therein). Let S = {s1, s2} be the set of payoff-relevant

states, and denote by Σ = {σ1, σ2} the set of signals. Suppose the DM assesses s1 to be

more likely than s2, and σi is considered more likely than σj when the payoff-relevant

state is si. The joint state space Ω and the benchmark prior π are illustrated below

where µ > 1/2 and α > 1/2. A decision maker who displays confirmation bias assigns a

higher probability to s1 than a Bayesian agent with the prior π after observing σ2.

3



s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

State Space Ω

s1

s2

σ1 σ2

µα µ(1− α)

(1− µ)(1− α) (1− µ)α

Benchmark Prior π

Imagine that the decision maker is not fully confident in the link between s1 and

the signals given by her benchmark prior and finds it plausible that the true information

structure is given by π′ (illustrated below) where α′ < α. For example, the DM might find

it plausible that there is a “bias” in the information source that is potentially unfavorable

towards the state she originally finds more likely (i.e. the state s1). Now suppose the

DM observes the realization σ2. Notice that under the benchmark prior the probability

of observing σ2 is µ+ α− 2µα. On the other hand, under the alternative plausible prior

the probability of observing σ2 is µ + α − µα − µα′. Hence, after observing σ2 the DM

performing maximum likelihood updating may change her benchmark prior from π to π′.

This will result in a behavior that is consistent with confirmation bias.

s1

s2

σ1 σ2

µα′ µ(1− α′)

(1− µ)(1− α) (1− µ)α

Alternative Plausible Prior π′

An important question is whether one can identify the benchmark prior π and the

set of plausible priors N(π) from preferences. The identification of π from ex ante pref-

erences can be done as in Anscombe and Aumann (1963). To illustrate how N(π) can

be identified, I first distinguish between unambiguous and ambiguous events. An event

is unambiguous if there is full agreement among all plausible priors on its likelihood.3

Otherwise, it is ambiguous. A prior is considered plausible if and only if it agrees with

the benchmark prior on the likelihood of all unambiguous events.

Since the main axioms in this paper imply subjective expected utility (SEU) prefer-

ences, most existing approaches in the literature do not help us identify unambiguous

3Several papers have provided a behavioral definition for unambiguous events. Epstein and Zhang
(2001), Zhang (2002), and Gul and Pesendorfer (2014) define unambiguous events to be the ones which
satisfy some versions of Savage’s Sure Thing Principle. Ghirardato, Maccheroni, and Marinacci (2004)
argue for a “relation based” approach and provide a definition for an act to be unambiguously preferred
to another act.
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events from preferences.4 A novelty in this paper is that unambiguous events are identi-

fied by comparing ex ante and ex post preferences. To see how this can be done, notice

that the DM may not satisfy dynamic consistency when an ambiguous event is realized,

as illustrated by the Ellsberg example. Dynamic consistency requires that if two acts f ,

g agree outside an event E and f is ex ante preferred to g, then f must still be preferred

to g when E is realized. Formally, f(ω) = g(ω) for all ω ∈ Ec and f < g imply f <E g.

Since all plausible priors agree on the likelihood of unambiguous events, preferences are

expected to satisfy dynamic consistency when an unambiguous event occurs. More im-

portantly, consider an event B ⊇ E where E is unambiguous. Since E is unambiguous

and f, g agree on B \E, one also expects that the DM’s ex ante preference between f and

g should be preserved when B is realized. According to this observation, E is defined

to be perfectly dynamically consistent if for any two acts f , g that agree on Ec and any

event B ⊇ E, f is ex ante preferred to g if and only if f is preferred to g when B is

realized.

To identify N(π) from preferences, I first define an event E to be unambiguous when

both E and Ec are perfectly dynamically consistent. The set N(π) consists of all prob-

ability measures on Ω which agree with the benchmark prior π on the likelihood of all

unambiguous events. In the Ellsberg example, if the DM is indifferent between fR and

fB ex ante but strictly prefers fB to fR when she is told that the ball drawn from the urn

is not green, the definition implies that both {R,B} and {G} are ambiguous events, and

hence there are multiple plausible priors which differ on the likelihood of these events.

The axioms imposed on {<A}A∈A ensure that both π and N(π) can be identified. In

addition to SEU axioms and standard axioms relating ex ante and ex post preferences,

two main axioms weakening dynamic consistency are imposed. Consider a minimal un-

ambiguous event E, i.e. any nonempty D ( E is ambiguous. The first main axiom,

robust inference, requires that the DM’s ex ante willingness to bet on E is identical to

her willingness to bet on E when D ( E is ruled out. This reflects the DM’s cautious

attitude when she updates her prior. Since the DM knows the likelihood of unambiguous

events but can only guess the likelihood of ambiguous events, when the DM receives new

information, she wants her posterior not to differ too much from her benchmark prior on

4To be more precise, most existing approaches use only ex ante preferences to reveal ambiguity (see
Epstein, 1999; Ghirardato and Marinacci, 2002). Hence, using the standard terminology, the DM whose
ex ante preferences satisfy SEU axioms can be characterized as ambiguity neutral. The main difference
in this paper is that an ambiguity neutral DM may still have multiple priors which will be reflected in
ex post preferences even though it is not reflected in ex ante preferences.
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unambiguous events.

The second main axiom, consistency, states that every D ( E is a perfectly dynam-

ically consistent event whenever E is a minimal unambiguous event. As stated earlier,

when E is unambiguous both E and Ec must be perfectly dynamically consistent. On the

other hand, consistency requires that an ambiguous event D ( E is perfectly dynamically

consistent. Hence, by definition, the realization of Dc must lead to a violation of perfect

dynamic consistency. The intuition for this axiom is that when D ( E is realized, the

DM does not learn any new information that can help her make an inference regarding

the relative likelihoods of the states within D. To illustrate, consider a DM who is told

that an urn contains 25 red (R) balls and 75 blue (B), green (G), or yellow (Y) balls in an

unknown proportion. Here, {B,G, Y } is a minimal unambiguous event that is known to

occur with 0.75 probability, and hence the axiom implies that the DM’s preferences are

dynamically consistent when, for example, {B,G} is realized. This is because the infor-

mation that {B,G} has occurred does not say anything regarding the relative proportion

of blue and green balls. Therefore, fB < fG if and only if fB <{B,G} fG.

This paper lies in the intersection of the literature on non-Bayesian updating and up-

dating under ambiguity. The two most closely related papers are Gilboa and Schmeidler

(1993) and Ortoleva (2012). Maximum likelihood updating was introduced by Gilboa

and Schmeidler (1993) as a dynamic extension of the maxmin expected utility model.

In their model, a DM endowed with a set of priors evaluates acts according to their

minimal expected utility, where the minimum is taken over all priors in this set, and the

DM performs maximum likelihood updating to revise the set of priors when she receives

new information. In Gilboa and Schmeidler (1993), a DM whose behavior is consistent

with the subjective expected utility model must follow Bayes’ rule. On the other hand,

I allow the DM to deviate from Bayesian updating when she faces ambiguity even if she

is ambiguity neutral and also show how violations of dynamic consistency can be used to

identify the set of priors she considers plausible. The second representation in this paper

which has ambiguity averse decision makers is a special case of Gilboa and Schmeidler

(1993).

Ortoleva (2012) axiomatizes a novel updating rule, the Hypothesis Testing (HT)

model. In his model, the DM follows Bayes’ rule for “normal” events but deviates from

Bayesian updating when an “unexpected,” small probability event occurs. In addition

to allowing deviations from Bayesian updating, the HT model also imposes a structure

on belief updating when a zero probability event occurs, which is not the case in RML
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updating. On the other hand, the HT model has two assumptions that are more general

than RML updating: (i) the HT model imposes no structure on the set of priors the DM

considers, whereas in RML updating every plausible prior must agree with the bench-

mark prior on unambiguous events, (ii) in the HT model any subjective second-order

prior over the set of priors is allowed, whereas in RML updating it is uniform. Since

the HT model allows for any second-order prior and it is always possible to construct a

second-order prior such that the maximum likelihood stage of updating yields a unique

probability, the HT model has no second stage, unlike RML updating. Overall, RML

updating imposes significantly more structure on belief updating than the HT model for

non-zero probability events. This is illustrated by the observation that when every state

is non-null, as is the case in this paper, the HT model imposes almost no restriction on

posteriors, unlike RML updating. Due to its generality, the HT model does not have the

uniqueness properties of RML updating. In RML updating, both the benchmark prior

and the set of plausible priors can be uniquely identified from preferences.

The paper proceeds as follows. Section 2 introduces the updating rule. In Section 3,

I take the DM’s ex ante and ex post preferences over acts as the primitive and provide a

set of behavioral postulates that characterize the updating rule. Section 4 illustrates how

the model can explain many well-known biases in probabilistic reasoning. In Section 5, I

extend the model to allow for ambiguity averse preferences. Section 6 provides additional

discussion on related literature. Section 7 concludes. Appendix includes all the proofs

omitted from the main text.

2 Updating Rule

Let Ω be a finite set of states, and denote by ∆(Ω) the set of all probability measures on

Ω. The collection of all subsets of Ω (i.e. events) is denoted by A. The decision maker’s

probability assessment is characterized by (π,P) where π ∈ ∆(Ω) is her benchmark prior

and P is a partitioning of Ω that represents the collection of minimal unambiguous events.

That is, for any P ∈ P , the DM assesses that its likelihood is given by π(P ), and for any

nonempty D ( P , the likelihood assigned by π reflects the DM’s best guess. Since π is

a probability measure, any arbitrary union of the events in P is unambiguous. A prior

is plausible if it agrees with the benchmark prior on unambiguous events. The set of all
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plausible priors NP(π) is

NP(π) = {π′ ∈ ∆(Ω)| π′(P ) = π(P ) for all P ∈ P}.

The set NP(π) is uniquely defined, given the benchmark prior and the collection of

minimal unambiguous events. Throughout this paper, I will maintain the assumption

that π has full support.

Suppose the DM learns that event A ∈ A is realized. In the model belief updating

can be described by two stages. In the first stage, the DM restricts her attention to

the subset of plausible priors that maximize the likelihood that A occurs. Let NP,A(π)

denote this set. Formally,

NP,A(π) = arg max
π′∈NP (π)

π′(A). (1)

Next, the DM chooses a new benchmark prior from NP,A(π) and updates it using Bayes’

rule. Note that when event A is realized, the new collection of minimal unambiguous

events becomes {A∩P |P ∈ P}. I will require that the benchmark posterior πA preserves

the relative likelihood of any two states within each event in the new set of minimal

unambiguous events:

πA(ω)

πA(ω′)
=
π(ω)

π(ω′)
whenever ω, ω′ ∈ A ∩ P for some P ∈ P . (2)

For example, if π ∈ NP,A(π), then condition 2 ensures that the DM’s posterior is the same

as the Bayesian posterior. This is desirable, since the DM has no reason to change her

benchmark prior if it maximizes the likelihood of observing the realized event. As shown

in Proposition 2, condition 2 is equivalent to requiring that among all Bayesian posteriors

of the priors in NP,A(π) the posterior πA is the “closest” to the Bayesian posterior of π,

where closeness is defined in terms of Kullback-Leibler divergence.

Given a probability assessment (π,P), the posterior πA is uniquely defined, and it is

potentially distinct from the Bayesian posterior, which is denoted by π(·|A). The next

proposition illustrates the connection between the posterior πA and the benchmark prior

π.

Proposition 1. Let (π,P) stand for the DM’s probability assessment. For any A ∈ A
and ω ∈ A, the posterior πA obtained via equations 1 and 2 satisfies

πA(ω) = π(ω|A ∩ Pω) · π(Pω|
⋃
P∈P:A∩P 6=∅P ) (3)
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where Pω is the member of P that contains ω.

Proof. Notice that for any π′ ∈ NP,A(π), π′(A∩P ) = π(P ) for all P ∈ P with A∩P 6= ∅.
Since πA is the Bayesian posterior of some π′ ∈ NP,A(π), for any P, P ′ ∈ P that have

nonempty intersections with A,

πA(P )

πA(P ′)
=
π′(P |A)

π′(P ′|A)
=
π′(A ∩ P )

π′(A ∩ P ′)
=
π(P )

π(P ′)
.

This together with equation 2 show that the posterior πA satisfies equation 3.

Definition 1. Given a probability assessment (π,P), the robust maximum likelihood

(RML) updating rule assigns every event A ∈ A the posterior πA given by equation 3.

The RML updating rule reflects the DM’s awareness of potential inaccuracy of her

benchmark prior on ambiguous events, which necessitates a revision of the benchmark

prior when new information is received, and her willingness to stay as “close” to her

benchmark prior as possible. If all events are unambiguous (i.e. P is the collection of

singletons), RML and Bayesian updating coincide. The next proposition provides an

alternative representation for the updating rule which formalizes this intuition.

Proposition 2. Let (π,P) be a probability assessment. Denote by π(·|A) the Bayesian

posterior of π when an event A ∈ A occurs. Then, πA is the RML posterior of π if and

only if

πA = arg min
π′
A∈B(NP,A(π))

DKL(π(·|A) || π′A)

where

DKL(π(·|A) || π′A) = −
∑
ω∈A

π(ω|A) ln
( π′A(ω)

π(ω|A)

)
and B(NP,A(π)) is the set of Bayesian posteriors of the priors in NP,A(π).5

5By utilizing proposition 2, it is possible to define the RML updating rule more generally without
any restriction on the set of plausible priors other than that it should contain the benchmark prior. In
particular, we can consider a DM who has a benchmark prior and an arbitrary set of plausible priors that
contain the benchmark prior. When the DM receives new information, she first maximizes the likelihood
of the observed event and then minimizes Kullback-Leibler divergence from her original benchmark prior
to form her new benchmark, as in RML updating. Understanding the behavioral implications of this
more general model would be a fruitful direction for future research. I believe the special case explored
in this paper is of interest in itself, and as I explain in the next section, this special case allows me to
illustrate in a simple setup how violations of dynamic consistency can be used to identify the priors the
DM considers plausible.
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To illustrate the RML updating rule, consider the Ellsberg experiment where the

DM is told that an urn contains 30 red (R) balls and 60 blue (B) or green (G) balls

in an unknown proportion. Let (π,P) stand for the DM’s probability assessment and

suppose the benchmark prior π assigns equal probability to all colors. According to

the information given to the DM, the collection of minimal unambiguous events is P =

{{R}, {B,G}}, and the set of plausible priors NP(π) is

NP(π) = {π′ ∈ ∆({R,B,G})| π′(R) = 1/3}.

Suppose the experimenter draws a ball from the urn and tells the DM that the ball

is not green. In this case, the plausible prior that assigns zero probability to green

maximizes the likelihood of the observation. Therefore, the RML posterior π{R,B} is

π{R,B}(R) = 1/3, π{R,B}(B) = 2/3, π{R,B}(G) = 0.

When the DM is told that the ball is not red, the first stage of RML updating imposes

no restriction on the posterior as all plausible priors agree on the event {B,G}. Hence,

in this case the RML posterior π{B,G} is the same as the Bayesian posterior:

π{B,G}(R) = 0, π{B,G}(B) = 1/2, π{B,G}(G) = 1/2.

3 Representation Theorem

Let X stand for the set of prizes which is assumed to be a convex subset of a metric

linear space. For example, X can be the set of monetary outcomes the agent may receive

(X ⊆ R) or it can be the set of all lotteries over a finite set of outcomes Z (the classical

Anscombe and Aumann (1963) setup). An act assigns a prize to each state of the world.

The set of all acts is denoted by F = XΩ. As is standard, constant acts are identified

with X. A mixture of two acts is defined statewise: i.e. for any f, g ∈ F and α ∈ [0, 1],

the act αf + (1− α)g ∈ F is given by (αf + (1− α)g)(ω) := αf(ω) + (1− α)g(ω) for all

ω ∈ Ω. For any event A ∈ A and f, g ∈ F , fAg ∈ F is defined by (fAg)(ω) = f(ω) if

ω ∈ A and (fAg)(ω) = g(ω) if ω ∈ Ac.
I impose axioms on the collection of preferences {<A}A∈A where <A reflects the DM’s

preference over acts when she learns that A ∈ A is realized. The DM’s preference over

acts when she receives no information is<Ω, which is simply denoted by<. For notational
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simplicity, it is assumed that the DM is indifferent between all acts when the impossible

event occurs, i.e. f ∼∅ g for all f, g ∈ F .

The first three axioms are standard Weak Order, Archimedean, and Independence.

Axiom 1. (Weak Order) For any A ∈ A, <A is complete and transitive.

Axiom 2. (Archimedean) For any A ∈ A and f, g, h ∈ F such that f �A g �A h, there

exist α, β ∈ (0, 1) such that αf + (1− α)h �A g and g �A βf + (1− β)h.

Axiom 3. (Independence) For any A ∈ A, if f �A g and α ∈ (0, 1], then αf+(1−α)h �A
αg + (1− α)h for all h ∈ F .

Axiom 4 states that there exist best and worst alternatives and the DM is not indif-

ferent between them. The existence of best and worst alternatives is not necessary for

the representation, but it is assumed for the sake of convenience. The assumption that

the DM is not indifferent between all alternatives is necessary for the benchmark prior

to be identified from preferences.

Axiom 4. (Nontriviality) There exist x∗ and x∗ such that x∗ � x∗ and x∗ < x < x∗ for

all x ∈ X.

The next axiom states that if f assigns a better prize to every state of the world than

g does, then f must be preferred to g.

Axiom 5. (Monotonicity) For any A ∈ A, if f(ω) <A g(ω) for all ω ∈ Ω, then f <A g.

If, in addition, f is a constant act and f(ω) �A g(ω) for some ω ∈ A, then f �A g.

Axiom 5 also requires that if the prize associated with a constant act is replaced in

some state with a prize that is strictly worse, the DM considers the new act as strictly

inferior. In addition to guaranteeing that the utility function derived from preferences is

state independent, Axiom 5 also ensures that every state is assigned positive probability.

Notice that by itself this axiom is weaker than strict monotonicity, which requires that

if f(ω) <A g(ω) for all ω ∈ Ω and f(ω) �A g(ω) for some ω ∈ A, then f �A g. For

example, if the DM evaluates acts according to their worst prize on A, then Axiom 5

is still satisfied even though strict monotonicity is violated. In the presence of previous

axioms, Axiom 5 and strict monotonicity are equivalent.

The next axiom states that the ranking of two constant acts does not change when

new information is received. This is because the prize associated with a constant act is

the same regardless of the realized state and the utility of a prize is not affected by new

information.

11



Axiom 6. (Constant Act Preference Invariance) For any A ∈ A \ ∅ and x, y ∈ X,

x < y ⇔ x <A y.

Axiom 7 requires that when A is realized the DM must be indifferent between acts that

agree on A. This axiom is known as consequentialism. In the literature, deviations from

consequentialism are usually allowed to accommodate non-expected utility preferences

(e.g. Machina, 1989) or to model a decision maker with an imperfect understanding of

the state space (e.g. Minardi and Savochkin, 2017). Since the main goal of this paper is to

explore non-Bayesian updating when the DM has expected utility preferences and perfect

understanding of the state space, consequentialism is retained in the representation.

Axiom 7. (Consequentialism) For any A ∈ A, if f(ω) = g(ω) for all ω ∈ A, then

f ∼A g.

If, in addition to Axioms 1–7, one also assumes dynamic consistency, then belief

updating must be Bayesian (e.g. see Ghirardato, 2002).6 Dynamic consistency requires

that if two acts agree outside an event, then the ranking of these acts should not change

when this event occurs. In other words, this says that ex ante optimal plans must be

optimal ex post. It can formally be stated as follows.

Dynamic Consistency: For any non-null A ∈ A and f, g ∈ F , fAg < g ⇔ f <A g.7

Axioms 1–5 guarantee that the benchmark prior can be uniquely revealed from ex ante

preferences as in Anscombe and Aumann (1963). If the DM considers the benchmark

prior as the only plausible prior (i.e. no ambiguity), then dynamic consistency is natural.

In contrast, if the DM considers multiple priors plausible, it seems natural to revise the

benchmark prior when new information arrives. Since the new prior may be distinct from

the original benchmark prior, preferences may violate dynamic consistency. However,

dynamic consistency should still be satisfied when an unambiguous event is realized.

This is because the realization of such an event is not useful in distinguishing between

6The connection between dynamic consistency and Bayesian updating is very general as shown in
Epstein and Le Breton (1993). They show that if conditional preferences are derived in a way to ensure
dynamic consistency and both ex ante and conditional preferences are “based on beliefs” (i.e. an event
A is considered to be more likely than B if the DM prefers to bet on A rather than B), then standard
axioms (Savage (1954) axioms except the Sure Thing Principle) guarantee that there exists a unique
prior that represents beliefs and conditional beliefs are obtained using Bayes’ rule.

7An event is null if the DM assigns it zero probability. Behaviorally, A is null if the DM is indifferent
between any two acts that agree outside it: A is null if f ∼ g for any f, g ∈ F such that f(w) = g(w) on
Ac. Axiom 5 ensures that the only null event is ∅.
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plausible priors as all priors agree on the likelihood of these events, and hence there is no

reason for the DM to deviate from her benchmark prior. Therefore, every unambiguous

event must be dynamically consistent defined as below.

Definition 2. A ∈ A is dynamically consistent if for any f, g ∈ F , fAg < g ⇔
f <A g.8

Suppose the analyst observes that the DM’s preferences are dynamically consistent

upon realization of an event. Can the analyst conclude that the DM considers this

event as unambiguous? I provide an example which shows that this conclusion may

not be accurate and then define a stronger version of dynamic consistency that captures

unambiguous events.

Example 1. Consider a DM who is told that an urn contains 50 red or blue balls and

50 green or yellow balls in unknown proportions. Let Ω = {R,B,G, Y } where R, B, G,

and Y stand for states when the ball drawn from an urn is red, blue, green, and yellow,

respectively. The set of plausible priors is

{π′ ∈ ∆({R,B,G, Y })| π′(R) + π′(B) = π′(G) + π′(Y ) = 1/2}.

When no further information is given, the DM may choose her benchmark prior as

the one that assigns equal probability to all colors. Now suppose that a ball is drawn from

the urn and the DM is told that the ball is either blue or green. This information does

not favor either blue or green relative to the original information. Hence, it makes sense

to assume that the benchmark posterior also assigns equal probability to blue and green.

But then the event {B,G} is dynamically consistent. On the other hand, given the set of

plausible priors, it is not possible to tell the exact probability that {B,G} occurs.

In Example 1, even though {B,G} is a dynamically consistent event, it is still possible

that {B,G} is ambiguous. Consider two bets fB = (0, 100, 0, 0) and fG = (0, 0, 100, 0). If

the DM’s benchmark prior and posterior are as in the example, it must be that fB ∼ fG

and fB ∼{B,G} fG. Now suppose before learning that the ball drawn from the urn is either

blue or green, the DM first learns that the ball is not yellow. The information that the

ball is not yellow may suggest that the number of green balls in the urn is greater than

8Notice that dynamic consistency is a feature of preferences, not events. However, I use this termi-
nology for the sake of brevity. Also note that ∅ is a dynamically consistent event by this definition, since
we assumed that f ∼∅ g for all f, g ∈ F . This only plays a role in simplifying the notation.
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the number of yellow balls. Since this information does not say anything regarding the

relative proportion of red and blue balls, there is no reason for the DM to deviate from

her original evaluation of the relative likelihood of R and B. But then the DM strictly

prefers fG over fB when she learns that the ball is not yellow. Hence, fG �{R,B,G} fB
even though fB ∼{B,G} fG and fB and fG agree on {R}. This would not be expected if

{B,G} was unambiguous.

This example motivates a new definition that captures unambiguous events via a

stronger version of dynamic consistency

Definition 3. A ∈ A is perfectly dynamically consistent if for any event B ⊇ A

and f, g ∈ F ,

fAg <B g ⇔ f <A g.

For a Bayesian decision maker, every event should be perfectly dynamically consis-

tent. Indeed, perfect dynamic consistency is implicitly assumed in the previous charac-

terizations of Bayesian updating as {<A}A∈A satisfies dynamic consistency only if every

non-null event is perfectly dynamically consistent.9

Example 1 illustrates that when {<A}A∈A does not satisfy dynamic consistency, there

may be events that are dynamically consistent but not perfectly dynamically consistent.

Since unambiguous events are expected to be perfectly dynamically consistent and it is

possible to find a violation of perfect dynamic consistency for ambiguous events as in

Example 1, an event is defined to be unambiguous if the event as well as its complement

are perfectly dynamically consistent. The reason for requiring the complement to be

perfectly dynamically consistent comes from the observation that the complement of an

unambiguous event must be unambiguous.

Definition 4. E is an unambiguous event if both E and Ec are perfectly dynamically

consistent. The collection of all unambiguous events is denoted by E. An event that does

not belong to E is an ambiguous event.

The next axiom ensures that the collection of unambiguous events form an algebra.

A collection of events E is an algebra over Ω if (i) Ω ∈ E , (ii) E ∈ E implies Ec ∈ E , and

(iii) E,E ′ ∈ E implies E ∩ E ′ ∈ E .

9To see this, suppose {<A}A∈A satisfies dynamic consistency. Let A ∈ A, B ⊇ A and f, g ∈ F
be given. Dynamic consistency implies that fAg < g ⇔ f <A g. On the other hand, since B ⊇ A,
fAg = (fAg)Bg. Hence, dynamic consistency also implies that fAg < g ⇔ (fAg)Bg < g ⇔ fAg <B g.
Therefore, A is perfectly dynamically consistent.
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Axiom 8. (Algebra of Unambiguous Events) If E,E ′ ∈ E, then E ∩ E ′ ∈ E.

To illustrate the axiom, suppose events E,Ec, E ′, and E ′c are perfectly dynamically

consistent so that both E and E ′ are unambiguous. This axiom has two implications:

(1) E ∩ E ′ must be perfectly dynamically consistent, (2) (E ∩ E ′)c = Ec ∪ E ′c must be

perfectly dynamically consistent. The intuition for the first part is as follows. Let f and g

be two acts which agree outside E∩E ′. By the definition of perfect dynamic consistency,

ex ante preference between f and g must be preserved when the DM learns either B ⊇ E

or B′ ⊇ E ′. But then it makes sense to assume that ex ante preference between f

and g must still be preserved when the DM learns B and B′ simultaneously. Therefore,

perfectly dynamically consistent events are expected to be closed under intersection.

The second part of the axiom requires that Ec∪E ′c is perfectly dynamically consistent

when E and E ′ are unambiguous events. Note that perfectly dynamically consistent

events need not be closed under unions in general. For example, every {ω}, where ω ∈ Ω,

is trivially perfectly dynamically consistent due to monotonicity, constant act preference

invariance, and consequantialism.10 Hence, if perfectly dynamically consistent events

were closed under unions, then every event would be unambiguous. However, note that

the axiom is much weaker as it requires Ec ∪ E ′c to be perfectly dynamically consistent

only when all of E,Ec, E ′, and E ′c are perfectly dynamically consistent. While it is not

as obvious why the second part of the axiom must necessarily hold, this seems to be a

simple property that can be tested experimentally.

Since E is an algebra, there exists a unique partitioning of the state space that gener-

ates E . A partition P of Ω generates the algebra E if E ∈ E ⇔ there exist P1, . . . , Pk ∈ P
such that P1∪ · · ·∪Pk = E. Let PE denote the partition that generates E . The members

of PE are minimal unambiguous events, i.e. any nonempty D ( P where P ∈ PE is

ambiguous. The next two axioms rely on PE . The following definitions will be useful for

the statement of the next axiom.

Definition 5. 1. For any event A, a bet on A is an act fA that yields the best prize

on A and the worst prize outside A, i.e. fA = x∗Ax∗.

2. For any f ∈ F and A ∈ A, a certainty equivalent of f given A is a sure

outcome cA(f) ∈ X such that f ∼A cA(f).11

10By monotonicity, f{ω}g <B g if and only if f(ω) <B g(ω). By constant act preference invariance,
f(ω) <B g(ω) if and only if f(ω) <{ω} g(ω). By consequantialism, f(ω) <{ω} g(ω) if and only if
f{ω}g <{ω} g.

11The axioms stated so far and the assumption that X is convex guarantee that every act has a
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Since the DM knows the likelihood of unambiguous events but can only guess the

likelihood of ambiguous events, she may want her posterior not to differ too much from

her benchmark prior on unambiguous events. The next axiom, robust inference, reflects

this cautious attitude when the DM updates her benchmark prior. Consider a minimal

unambiguous event P ∈ PE and let fP denote a bet on P . Suppose A is realized, and

hence A ∩ P is a new minimal unambiguous event. Robust inference requires that the

DM’s willingness to bet on P is not affected when D ( A ∩ P is ruled out. That is,

cA(fP ) ∼ cA\D(fP ). In other words, since D is a proper subset of a minimal unambiguous

event, when it is ruled out, the DM considers the plausibility that it was a null event in

the first place.

Axiom 9. (Robust Inference) For any A ∈ A and D ( A ∩ P where P ∈ PE ,

cA(fP ) ∼ cA\D(fP ).

To illustrate, consider the example where the DM is told that an urn contains 30 red

balls and 60 blue or green balls in an unknown proportion. Consider a bet that yields

$100 dollars if the ball drawn from the urn is either blue or green. Axiom 9 requires that

the DM’s willingness to pay for this bet does not change if she learns that the ball drawn

from the urn is not green. Hence, the DM considers the possibility that green was a null

event in the first place.

In general, it is desirable if the DM’s preferences are dynamically consistent unless

there is a justifiable reason for deviation. The next axiom, consistency, requires that

every D ( P , where P is a minimal unambiguous event, is perfectly dynamically consis-

tent. Since an event E is unambiguous when both E and Ec are perfectly dynamically

consistent and consistency requires an ambiguous event D ( P to be perfectly dynam-

ically consistent, the implication of the axiom is that Dc is not perfectly dynamically

consistent.

Axiom 10. (Consistency) Every D ( P where P ∈ PE is perfectly dynamically consis-

tent.

Intuitively, when D ( P is realized, the DM does not learn any information that

can help her make an inference regarding the relative likelihoods of the states within D,

and hence there is no reason for the DM to deviate from her original evaluation. To

certainty equivalent.
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illustrate, suppose the DM is told that an urn contains 25 red (R) balls and 75 blue (B),

green (G), or yellow (Y) balls in an unknown proportion. Since {B,G, Y } is a minimal

unambiguous event that is known to occur with 0.75 probability, consistency requires that

the DM’s preferences are dynamically consistent when, for example, {B,G} is realized.

This is because the information that {B,G} is realized does not say anything regarding

the relative proportion of blue and green balls, and hence there is no justification for

deviation from the benchmark prior. Therefore, if the DM is ex ante indifferent between

betting on blue and betting on green, she should remain indifferent when she learns that

the ball drawn from the urn is either blue or green.

The next theorem provides a characterization result for the RML updating model.

It also provides a uniqueness result for the representation. As is standard, the utility

function is unique up to a positive affine transformation, and the benchmark prior and

posteriors are uniquely revealed from ex ante and ex post preferences as in Anscombe and

Aumann (1963). The set of minimal unambiguous events P is uniquely revealed as PE
unless P = {Ω, ∅}. Since the model behaves in the same way when every nontrivial event

is ambiguous (i.e., P = {Ω, ∅}) and when no event is ambiguous (i.e., P = {{ω}|ω ∈ Ω}),
it is not possible to distinguish these two cases.

Theorem 1. The collection of preferences {<A}A∈A satisfies Axioms 1-10 if and only if

there exist a non-constant, affine utility function u : X → R with u(X) = [u(x∗), u(x∗)]

and a probability assessment (π,P), where π has full support on Ω, such that for any

A ∈ A,

f <A g ⇔
∑
ω∈Ω

πA(ω)u(f(ω)) ≥
∑
ω∈Ω

πA(ω)u(g(ω)) (4)

and πA is the RML posterior of π. Moreover, u is unique up to a positive affine trans-

formation, πA is unique for all A ∈ A \ ∅, and P is uniquely revealed as PE unless

P = {Ω, ∅}.

3.1 Sketch of the Proof

While showing the necessity of Axioms 1–7 is standard, the necessity of Axioms 8–10 is

not trivial. The key step in the proof is showing that if {<A}A∈A can be represented by

equation 4, then the collection of minimal unambiguous events PE that is derived from

preferences is exactly P unless P = {Ω, ∅}. This is achieved by showing that an event

belongs to the algebra generated by P if and only if both this event and its complement
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satisfy perfect dynamic consistency. Once this is shown, Axioms 8–10 directly follow

from the representation.

The proof of the claim that when E belongs to the algebra generated by P both

E and Ec are perfectly dynamically consistent can be done using standard arguments.

To prove the opposite, suppose E does not belong to the algebra generated by P . As

an illustration, suppose E ( P for some P ∈ P . Since Axiom 10 is satisfied only if

E is perfectly dynamically consistent, it needs to be shown that Ec is not perfectly

dynamically consistent. Consider bets on P and P \ E, i.e. fP = x∗Px∗ and fP\E =

x∗E(x∗Px∗). Using the representation in equation 4, it is possible to find z̄, z ∈ X such

that fP ∼ z̄ and fP\E ∼ x∗Ez, where z̄ � z. Now suppose Ec is realized. From the

representation, z̄ �Ec z ∼Ec x∗Ez. Since πEc the RML posterior of π, z̄ ∼Ec fP ∼Ec fP\E.

But then, fP\E = x∗E(x∗Px∗) �Ec x∗Ez, in violation of dynamic consistency. Therefore,

Ec is not perfectly dynamically consistent. By definition, E is an ambiguous event, i.e.

E /∈ E . The case when E ∩ P 6= ∅ and E ∩ P ′ 6= ∅ for at least two distinct P, P ′ ∈ P is

similar.

To prove sufficiency, first observe that Axioms 1–5 yield an SEU representation for

each A ∈ A as in Anscombe and Aumann (1963). Moreover, Axiom 6 guarantees that

the same utility function can be used for all <A, and Axioms 5 and 7 guarantee that πA

has full support on A and πA(Ac) = 0. Therefore, it only needs to be shown that each

πA is the RML posterior of π. Let E be given by Definition 4, and PE is the partition

that generates E . The DM’s probability assessment is (π,PE). Since preferences are

dynamically consistent on E ∈ E , standard arguments show that updating is Bayesian

when E is realized, consistent with RML updating.

Consider an event A /∈ E . The next step is to construct an unambiguous event B ∈ E
such that B ⊇ A and B is the smallest such event with respect to set inclusion. To

construct B, let PE = {P1, . . . , Pn} and consider J ⊆ {1, . . . , n} such that Pj ∩ A 6= ∅
for all j ∈ J . The event B is given by B = ∪j∈JPj. Since B ∈ E , according to the

previous paragraph, the DM performs Bayesian updating when B is realized. Hence, for

any j, j′ ∈ J ,
πB(Pj)

πB(Pj′)
=
π(Pj)

π(Pj′)
.

On the other hand, Axiom 9 implies that πA(Pj) = πA∪Pj
(Pj) for all j ∈ J . Therefore,
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iterative application of Axiom 9 yields πA(Pj) = πB(Pj) for all j ∈ J , which implies

πA(Pj)

πA(Pj′)
=
π(Pj)

π(Pj′)
.

Consider an event A∩Pj where j ∈ J . By Axiom 10, A∩Pj is perfectly dynamically

consistent, and hence standard arguments guarantee that πA∩Pj
is the Bayesian posterior

of π. Moreover, perfect dynamic consistency also ensures that πA∩Pj
(ω) = πA(ω|Pj) for

all ω ∈ A ∩ Pj. Therefore, for any ω, ω′ ∈ A ∩ Pj,

πA(ω)

πA(ω′)
=
πA∩Pj

(ω)

πA∩Pj
(ω′)

=
π(ω)

π(ω′)
.

This together with the conclusion of the previous paragraph and Proposition 1 show that

πA is the RML posterior of π, concluding the proof of sufficiency.

Lastly, the uniqueness of u up to a positive affine transformation and the uniqueness

of πA for each A ∈ A are standard results. The uniqueness of P is implied by the proof

of necessity where the equivalence of P and PE is shown.

4 Applications

In this section, I show how the RML updating rule can help explain commonly observed

biases in probabilistic reasoning. While all the examples in this section only use the first

(maximum likelihood) stage of RML updating, in more realistic examples with a larger

state space the first stage of RML updating by itself will not produce a unique posterior

in general, and hence the second stage of RML updating is needed to make meaningful

predictions.

Let Ω ≡ S × Σ where S = {s1, s2} is the set of payoff-relevant states and Σ =

{σ1, σ2} is the set of possible signals. The DM’s benchmark prior π is represented by two

parameters (µ, α) where µ > 1/2 is the probability that the payoff relevant state is s1 and

α > 1/2 denotes the probability that the DM receives signal σi when the payoff-relevant

state is si. µ > 1/2 reflects the DM’s initial evaluation that s1 is more likely.
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4.1 Confirmation Bias

I now revisit the confirmation bias phenomenon illustrated in the introduction. The DM

who displays confirmation bias interprets contrary evidence as supportive of her original

beliefs (Rabin and Schrag, 1999). That is, when the DM observes σ2, she may find s1 to

be at least as likely as before.12 Formally,

πconf. bias(s1|σ2) ≥ µ >
µ− µα

µ+ α− 2µα
= π(s1|σ2).

Confirmation bias is frequently reported in experiments (e.g. see Lord, Ross, and Lepper,

1979; Darley and Gross, 1983).

To see how RML updating can accommodate confirmation bias, suppose the DM

finds it plausible that there is a “bias” in the information source that is potentially

unfavorable towards the state she originally finds more likely. Even though such a DM

unambiguously knows the probability that the payoff-relevant state is s1, the event that

σi occurs when s1 is the payoff-relevant state is ambiguous. Therefore, when the DM

observes σ2, she revises her benchmark prior to account for the possibility that σ2 might

be more likely than σ1 when the payoff-relevant state is s1. Notice that the DM might

find the existence of a bias plausible even though it is not her benchmark belief. Once

the bias is seen as plausible, the DM is endowed with multiple priors and uses signal

realizations to distinguish between plausible priors.

To formalize the intuition, let P stand for the set of minimal unambiguous events in

this example, which is given by

P = {{ω11, ω12}, {ω21}, {ω22}}.

In RML updating, the DM uses the maximum likelihood method to make an inference

12The milder version of confirmation bias states that after observing σ2 the agent finds s1 more likely
than a Bayesian agent with the prior π. RML updating can accommodate both the milder version of
confirmation bias and the more extreme version as illustrated in this section.
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regarding the direction of the bias. Given the benchmark prior and the set of minimal

unambiguous events, the RML posterior πσ2 is

πσ2(s1) =
µ

µ+ α− µα
and πσ2(s2) =

α− µα
µ+ α− µα

Hence, the DM performing RML updating believes that s1 is strictly more likely than

before when she observes σ2, consistent with confirmation bias.

4.2 Other Behavioral Biases

I consider three other commonly observed deviations from Bayesian updating: base rate

neglect, conservatism, and overconfidence.

Base Rate Neglect: In a series of experiments, Kahneman and Tversky (1973)

and Bar-Hillel (1980) show that decision makers tend to ignore the base rate µ in their

predictions. In the well-known “cab problem,” DMs are told that there are two cab

companies, Blue and Green, one of which has been involved in a hit-and-run accident.

The proportion of Blue cabs in the city is 85%, and the cab involved in the accident was

identified as Green by a witness who is accurate 80% of the time. When DMs are asked

to predict the probability that the car involved in the accident is Green, the median and

modal response is 0.8, much higher than the Bayesian posterior (≈ 0.41).

To see how RML updating can explain this phenomenon, imagine that the DM has

full confidence in the likelihood information α but does not have full confidence in the

base rate µ. Even when the DM does not have full confidence in the base rate, the event

that consists of states in which she gets “correct” signals is still unambiguous and known

to occur with α = 0.8 probability. Similarly, the event that corresponds to states in which

she gets “wrong” signals is unambiguously assigned 1− α = 0.2 probability. Given this

set of minimal unambiguous events, the RML posterior is exactly equal to the median

response in the cab problem (see the figure below).

Conservatism: DMs display conservatism bias when they overweight the base rate

and underweight the likelihood information (see Edwards, 1968, for the classical experi-

mental findings). RML updating results in conservatism bias when decision makers have

full confidence in the base rate information but not in the likelihood information. This

is exactly the mirror image of the base rate neglect phenomenon.

Overconfidence: Decision makers who treat their private information as more pre-

cise than it actually is are described as overconfident (see Odean, 1998, for a review of
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psychology literature on overconfidence and its implications for asset markets). Suppose

s1 = good market, s2 = bad market, σ1 = good jobs report, and σ2 = bad jobs report.

Overconfident investors tend to over-invest when they observe good jobs report and

under-invest when they observe bad jobs report. RML updating results in overconfidence

when the DM has full confidence in the likelihood information but is not completely sure

whether the “correct” signal is more likely when the state is s1 or s2.

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

Confirmation Bias

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

Base Rate Neglect

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

Conservatism

s1

s2

σ1 σ2

ω11 ω12

ω21 ω22

Overconfidence

Figure 1: Behavioral biases. This figure illustrates partitions used to explain each be-
havioral bias. States connected by a line belong to the same partition element.

5 Ambiguity Averse Preferences

In Section 3, ambiguity is reflected in the DM’s belief updating even though the DM’s

preferences display neutral attitude towards ambiguity. In this section, I consider an

ambiguity averse DM whose preferences are consistent with the maxmin expected utility

model of Gilboa and Schmeidler (1989).

An ambiguity averse DM is expected to satisfy all the axioms that characterize the

subjective expected utility model in Section 3 except independence and consistency. An

ambiguity averse DM may not satisfy independence due to strict preference for random-

ization, which may arise as randomization potentially limits exposure to ambiguity. In

the Ellsberg example, the DM may be indifferent between betting on blue (fB) and

betting on green (fG) but may strictly prefer the 50-50 randomization of these bets, in

violation of independence (see below). This is because the 50-50 randomization of fB and

fG gives the DM the same monetary outcome regardless of whether the ball drawn from

the urn is blue or green, and hence it can be seen as a perfect hedge against ambiguity.

To illustrate why an ambiguity averse DM may not satisfy consistency, recall the

example where the DM is told that an urn contains 25 red (R) balls and 75 blue (B),

green (G), or yellow (Y) balls in an unknown proportion. Here, {B,G, Y } is a minimal
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Figure 2: Preference for randomization due to ambiguity aversion.

unambiguous events, and hence consistency implies that {B,G} is dynamically consis-

tent. Let f1 be the act that yields $100 if the ball drawn from the urn is blue, and $0

otherwise. Let f2 be the act that yields $25 if the ball drawn from the urn is either blue

or green, and $0 otherwise. When the DM learns that {B,G} is realized, she may have a

strict preference for f2 over f1 as f2 perfectly hedges against ambiguity but f1 does not.

Should this DM have a strict preference for f2 over f1 ex ante as required by consistency?

This is not obvious because ex ante f2 is not a perfect hedge against ambiguity and it

has much lower expected value than f1 for many plausible priors.

In addition to the axioms in Section 3 except for independence and consistency, I

impose two new axioms on preferences that characterize RML updating for ambiguity

averse DMs. Let E stand for the collection of unambiguous events as in Definition 4, and

PE is the collection of minimal unambiguous events. Acts that are constant on minimal

unambiguous events are unambiguous acts.

Definition 6. f ∈ F is an unambiguous act if f(ω) = f(ω′) whenever ω, ω′ ∈ P for

some P ∈ PE . The set of all unambiguous acts is denoted by Fua ⊆ F .

Axiom 11 imposes independence on the set of all unambiguous acts. Since unam-

biguous acts have no exposure to ambiguity, strict preference for randomization between

unambiguous acts cannot be justified by ambiguity aversion.

Axiom 11. (Weak Independence) For any A ∈ A, f, g, h ∈ Fua and α ∈ (0, 1], f �A g
implies αf + (1− α)h �A αg + (1− α)h.

Weak independence is consistent with both ambiguity averse and ambiguity loving

attitude. The next axiom imposes that the DM is ambiguity averse.

Axiom 12. (Ambiguity Aversion) For any A ∈ A, D ( A ∩ P where P ∈ PE , and

f ∈ F , x∗Df ∼A f .
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Consider a minimal unambiguous event P and suppose A is realized. After this

realization, A∩P is a minimal unambiguous event, and hence D ( A∩P is ambiguous.

Axiom 12 requires that the DM is indifferent between an act f and an act which agrees

with f outside D and yields the best prize on D. This is an extreme attitude that

completely disregards that in the second act the DM receives the best prize when D

occurs. This is due to two assumptions: (i) in the model, every D ( A ∩ P is treated

as maximally ambiguous, (ii) given the set of plausible priors, the DM evaluates acts

according to their worst case utility as in Gilboa and Schmeidler (1989).13

The next theorem provides a characterization for RML updating for ambiguity averse

DMs.

Theorem 2. The collection of preferences {<A}A∈A satisfies Axioms 1, 2, 4-9, 11, and

12 if and only if there exist a non-constant, affine utility function u : X → R with

u(X) = [u(x∗), u(x∗)], and a probability assessment (π,P), where π has full support on

P, such that for any A ∈ A,

f <A g ⇔ min
πA∈B(NP,A(π))

∑
ω∈Ω

πA(ω)u(f(ω)) ≥ min
πA∈B(NP,A(π))

∑
ω∈Ω

πA(ω)u(g(ω)) (5)

where B(NP,A(π)) is the set of Bayesian posteriors of the priors in NP,A(π). Moreover,

u is unique up to a positive affine transformation, P is uniquely revealed as PE , and the

set NP,A(π) is unique for all A ∈ A \ ∅.

When the DM’s preferences are consistent with the maxmin expected utility model,

the benchmark prior can no longer be identified from preferences. In fact, the only role

of the benchmark prior in Theorem 2 is to define the likelihood of unambiguous events.

Since the DM uses the worst case scenario to evaluate acts, even if she has a guess for

the likelihood of ambiguous events, this will not be reflected in her preferences. This

distinguishes Theorem 2 from Theorem 1 where the benchmark prior can be revealed

from ex ante preferences. Because of the limited role the benchmark prior plays in

Theorem 2, with maxmin expected utility preferences RML updating coincides with the

maximum likelihood updating rule of Gilboa and Schmeidler (1993).

Recall that an event E is defined to be unambiguous if and only if both E and Ec are

perfectly dynamically consistent, which holds for both ambiguity neutral and ambiguity

13A natural extension of the model analyzed here may impose a less extreme version of ambiguity
aversion. For example, the DM may perform maxmin within a subset of plausible priors rather than the
full set. Analysis of such extensions is left for future work.
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averse DMs. Example 1 shows that an event may fail to be perfectly dynamically consis-

tent even when it is dynamically consistent. However, if {<A}A∈A satisfies the axioms in

Theorem 2, then every dynamically consistent event is perfectly dynamically consistent.

Therefore, if the DM is ambiguity averse, it is possible to identify unambiguous events

via dynamic consistency.

Proposition 3. If the collection of preferences {<A}A∈A can be represented by equation

5, then every dynamically consistent event is perfectly dynamically consistent, and hence

an event E is unambiguous if and only if both E and Ec are dynamically consistent.

6 Related Literature

This paper lies in the intersection of the literature on non-Bayesian updating and up-

dating under ambiguity. As discussed in the introduction, the two most closely related

papers are Gilboa and Schmeidler (1993) and Ortoleva (2012). In this section I provide

a discussion on other related work.

Non-Bayesian Updating

Epstein (2006) and Epstein, Noor, and Sandroni (2008) axiomatize a non-Bayesian up-

dating model where decision makers may be tempted to update their beliefs using a prior

different from their original prior. For example, they might be tempted to overreact to

new information. In RML updating, decision makers also revise their original prior when

they receive new information, but this is not due to temptation but rather due to ambi-

guity and willingness to make an inference. In addition, the primitive of the analysis is

different in these papers.

Zhao (2017) proposes a model that allows DMs to update their beliefs when they

receive new information of the form “event A is more likely than event B.” In his model,

the posterior minimizes Kullback-Leibler (KL) divergence from the prior subject to the

constraint that the posterior assigns a higher probability to A than B.14 In RML up-

dating, the idea is similar as the DM chooses her posterior by minimizing KL divergence

from the Bayesian posterior of the benchmark prior subject to the constraint that the

new prior assigns the maximal likelihood to the observed event among all plausible priors.

14More recently, Dominiak, Kovach, and Tserenjigmid (2021) consider more general forms of informa-
tion structures and more general distance measures.
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However, the main focus in Zhao (2017) is different from the one in this paper, and these

papers use different primitives of analysis.

A few recent decision theoretic papers axiomatize models that can accommodate

belief updating biases. Zhao (2018) axiomatizes a non-Bayesian updating model, called

similarity-based updating, that builds on the representativeness heuristic of Kahneman

and Tversky (1972). Kovach (2021b) axiomatizes an updating rule, called conservative

updating, where the DM’s posterior is a mixture of her prior and Bayesian posterior

as in Epstein, Noor, and Sandroni (2010). As opposed to RML updating, conservative

updating may violate both consequentialism and dynamic consistency. While similarity-

based updating, conservative updating, and RML updating can accommodate some of

the same behavioral biases, the underlying behavioral motivations for these models are

completely different.

Many behavioral models in the literature explain non-Bayesian updating by assum-

ing some type of bounded rationality. This includes assuming imperfect memory (Mul-

lainathan, 2002a; Gennaioli and Shleifer, 2010; Wilson, 2014), coarse thinking (Mul-

lainathan, 2002b; Mullainathan, Schwartzstein, and Shleifer, 2008), the use of represen-

tativeness heuristic (Kahneman and Tversky, 1972), or incorrect modeling (Barberis,

Shleifer, and Vishny, 1998; Rabin and Schrag, 1999) by decision makers. All of these

models are non-axiomatic and focus on particular applications.

A natural setup where the DM might have a benchmark prior and a set of plausible

priors is when the DM receives forecasts or recommendations from different experts.

Levy and Razin (2021) study the problem of a DM who receives forecasts from multiple

Bayesian forecasters and uses the maximum likelihood method to form an explanation

for these forecasts. The decision maker then forms her posterior by applying Bayes’

rule to the most likely explanation. They show that this updating can lead to reliance

on extreme forecasts and ignoring moderate forecasts. Ke, Wu, and Zhao (2021) take

a decision theoretic approach and study a problem where recommendations may not

necessarily come from a Bayesian agent. They show that there exists no updating rule

that satisfies certain desirable axioms. The main difference in this paper is that I impose

axioms on the DM’s preferences which allows me to derive the set of plausible priors

endogenously from the DM’s preferences.
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Updating Under Ambiguity

There is a growing literature on updating under ambiguity, as reviewed in Machina and

Siniscalchi (2014) and Gilboa and Marinacci (2016). As an alternative to maximum

likelihood updating, one natural way to update under ambiguity is updating each prior

according to Bayes’ rule. This method is known as full Bayesian updating and was axiom-

atized by Pires (2002) using the maxmin expected utility model. Epstein and Schneider

(2007) propose another model where the DM applies Bayes’ rule only to a subset of

priors that are considered sufficiently likely. A few recent papers axiomatize updating

rules that generalize full Bayesian and maximum likelihood updating (see, for example,

Cheng, 2021; Hill, 2021; Kovach, 2021a). The main difference between these papers and

RML updating is that when the DM has subjective expected utility preferences, these

updating rules coincide with Bayesian updating.

As discussed in Section 3, updating rules under ambiguity that satisfy consequen-

tialism may violate dynamic consistency. Dynamic consistency is usually considered a

desirable property, and the fact that it may not be satisfied under ambiguity has been

a subject of criticism in the literature (Al-Najjar and Weinstein, 2009). Epstein and

Schneider (2003) retain dynamic consistency by restricting the set of events on which

the DM can update her beliefs. Hanany and Klibanoff (2007) characterize dynamically

consistent maxmin expected utility preferences without any restriction on the set of con-

ditioning events and show that updated preferences must depend on the initial menu

the DM is offered. Siniscalchi (2011) allows deviations from dynamic consistency but

assumes that the DM can anticipate her future deviations. Gul and Pesendorfer (2018)

impose a weaker version of dynamic consistency which can be interpreted as “not all news

can be bad news” and show that neither maximum likelihood updating nor full Bayesian

updating satisfies this property. RML updating also treats dynamic consistency as a

desirable property by ensuring that the DM is maximally dynamically consistent. That

is, any deviation from dynamic consistency is due to the DM’s willingness to use new

information to make an inference on the set of plausible priors.

A few recent papers use ambiguity to explain deviations from Bayesian updating.

Baliga, Hanany, and Klibanoff (2013) show that belief polarization can arise when deci-

sion makers are ambiguity averse. Fryer, Harms, and Jackson (2018) explain confirmation

bias by assuming that when decision makers receive ambiguous signals they interpret it

as favorable to their original beliefs. In a social learning experiment, Filippis, Guarino,

Jehiel, and Kitagawa (2016) find that decision makers frequently deviate from Bayesian
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updating when they receive private information that contradicts their original beliefs.

Their explanation for this phenomenon assumes multiple priors. All of these papers are

non-axiomatic and address specific deviations from Bayesian updating.

7 Conclusion

Many real life economic problems involve ambiguity. In this paper, it is argued that

departing from Bayesian updating is natural when one faces ambiguity. I axiomatize a

non-Bayesian updating model, robust maximum likelihood (RML) updating, where the

DM’s probability assessment can be represented by a benchmark prior, which reflects the

DM’s initial best guess, and a set of priors the DM considers plausible. The DM responds

to new information by revising the benchmark prior via the maximum likelihood principle

in a way that ensures maximally dynamically consistent behavior, and updates the new

prior using Bayes’ rule. I show that RML updating can accommodate many commonly

observed deviations from Bayesian updating.

I take the DM’s preferences over acts before and after the arrival of new information

as the primitive of the analysis. In addition to standard axioms, the two main axioms

imposed on preferences are robust inference and consistency. Robust inference requires

that when a proper subset of a minimal unambiguous event is ruled out, the DM’s

willingness to bet on this minimal unambiguous event is not affected. This reflects the

DM’s cautious attitude when she updates her benchmark prior. Consistency states that

every proper subset of a minimal unambiguous event is perfectly dynamically consistent.

This reflects the intuition that when such an event is realized, the DM does not learn any

new information that can help her make an inference regarding the relative likelihoods

of the states within this event. I show that if the DM satisfies these axioms, both the

benchmark prior and the set of plausible priors are uniquely identified from preferences.

Lastly, I provide a characterization of RML updating with ambiguity averse preferences.

A Proof of Theorem 1

A.1 Necessity

The necessity of Axioms 1–5 is standard. The necessity of constant act preference invari-

ance follows from the observation that the same utility function is used for all <A in the
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representation. Consequentialism is necessary as the RML posterior satisfies πA(ω) > 0

only if ω ∈ A.

Let (π,P , u) be a representation of {<A}A∈A given by Theorem 1. To prove the

necessity of Axioms 8–10, it needs to be shown that the set of unambiguous events, as

defined in Definition 4 and denoted by E , is equal to σ(P), the algebra generated by the

partition P , as long as P is not degenerate (i.e. P 6= {Ω, ∅}). This is proved in Claim 3

after two preliminary observations. The next claim shows that if A ⊆ B and πA and πB

are the RML posteriors of π, then πA is the RML posterior of πB where the partition of

B is given by {B ∩ P | P ∈ P}.

Claim 1. Let (π,P) represent the probability assessment and suppose for any non-null

A ∈ A, πA is the RML posterior of π. Then for any non-null A ⊆ B, πA is the RML

posterior of πB where the partition of B is given by {B ∩ P | P ∈ P}.

Proof. Notice that since A∩ (B ∩P ) = A∩P for any P ∈ P , it suffices to show that for

any P, P ′ ∈ P with A ∩ P 6= ∅ and A ∩ P ′ 6= ∅,

πA(P )

πA(P ′)
=
πB(P )

πB(P ′)

and for any ω, ω′ ∈ A ∩ P where P ∈ P ,

πA(ω)

πA(ω′)
=
πB(ω)

πB(ω′)
.

The second equation follows from the observation that since πA and πB are the RML

posteriors of π and A ⊆ B, the above ratio is equal to π(ω)
π(ω′)

. Similarly, the first equation

follows from the observation that B ∩ P 6= ∅ whenever A ∩ P 6= ∅, and hence the above

ratio is equal to π(P )
π(P ′)

.

Consider an act that gives the best prize on P \E, where P is a minimal unambiguous

event and E ( P , and the worst prize outside P \E, i.e. fP\E = x∗E(x∗Px∗). The next

claim shows that for any realized event A ⊇ P , we can find a sure outcome zA such that

the DM is indifferent between fP\E and an act that gives the worst prize on E and zA

outside E.

Claim 2. Let E ( P for some P ∈ P and fP\E = x∗E(x∗Px∗). Then for any A ⊇ P ,

there exists zA ∈ X such that fP\E ∼A x∗EzA.
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Proof. Let zA be defined by

zA =
πA(P \ E)

1− πA(E)
x∗ +

1− πA(P )

1− πA(E)
x∗.

By assumption, A ) E and πA(ω) > 0 for each ω ∈ A. Hence, πA(E) < 1. Since X is

convex, zA ∈ X. Moreover, since u is affine,

u(zA) =
πA(P \ E)

1− πA(E)
u(x∗) +

1− πA(P )

1− πA(E)
u(x∗).

Let UA be a representation of <A given by Theorem 1. By the representation,

UA(fP\E) = πA(P \ E)u(x∗) + (1− πA(P \ E))u(x∗)

= πA(P \ E)u(x∗) + (1− πA(P ))u(x∗) + πA(E)u(x∗)

= (1− πA(E))

[
πA(P \ E)

1− πA(E)
u(x∗) +

1− πA(P )

1− πA(E)
u(x∗)

]
+ πA(E)u(x∗)

= (1− πA(E))u(zA) + πA(E)u(x∗).

Therefore, fP\E ∼A x∗EzA.

The next claim is the key step in concluding the necessity of axioms by showing that

unambiguous events are fully revealed from preferences unless all proper nontrivial events

are ambiguous. The case when all proper nontrivial events are ambiguous is treated in

the same way in the model as the case when no event is ambiguous. Hence, unambiguous

events cannot be revealed if P = {Ω, ∅}.

Claim 3. Suppose P 6= {Ω, ∅}. Then E ∈ E if and only if E ∈ σ(P).

Proof. Suppose E /∈ σ(P). It needs to be shown that E /∈ E . There are two cases to

consider.

Case 1: E ( P for some P ∈ P . Let x∗ � x∗ be given and define fP\E = x∗E(x∗Px∗).

Let z be such that fP\E ∼ x∗Ez as in the previous claim, and let z̄ be such that fP =

x∗Px∗ ∼ z̄.

Since each state in Ω is non-null, π(P ) > π(P \E)/(1− π(E)). Hence, u(x∗) > u(x∗)

implies

u(z̄) = π(P )u(x∗) + (1− π(P ))u(x∗) >
π(P \ E)

1− π(E)
u(x∗) +

1− π(P )

1− π(E)
u(x∗) = u(z).
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Therefore, by the representation, z̄ � z and z̄ �Ec z. Moreover, since πEc is the RML

posterior of π, πEc(P ) = π(P ). This implies fP ∼Ec z̄ because

UEc(fP ) = πEc(P )u(x∗) + (1− πEc(P ))u(x∗) = u(z̄).

In addition, since πEc(E) = 0, fP\E ∼Ec fP ∼Ec z̄ and z ∼Ec x∗Ez. Therefore, z̄ �Ec z

implies fP\E �Ec x∗Ez. On the other hand, fP\E ∼ x∗Ez and fP\E and x∗Ez agree on

E, violating dynamic consistency. Since Ec is not dynamically consistent, neither E nor

Ec belongs to E .

Case 2: There are P, P ′ ∈ P such that P ∩E 6= ∅, P ′ ∩E 6= ∅ and either P ∩Ec 6= ∅
or P ′ ∩Ec 6= ∅. Without loss of generality, assume that P ∩Ec 6= ∅. Let A = E ∪ P . As

before, let x∗ � x∗ be given. Consider a bet on P ∩E given by fP∩E = x∗P \E(x∗Px∗).

Let zA be as in the previous claim such that x∗P \ E(x∗Px∗) ∼A x∗P \ EzA, and let

z̄A ∈ X be such that fP = x∗Px∗ ∼A z̄A. Note that z̄A � zA as in the previous case.

By Claim 1, πE is the RML posterior of πA with the partition {A ∩ P | P ∈ P}.
Now note that if P ′′ ∈ P has a nonempty intersection with A, it must also have a

nonempty intersection with E: if P ′′ ∩ A 6= ∅, then either P ′′ = P in which case P ′′ ∩
E 6= ∅ follows by assumption or P ′′ ⊆ P c in which case P ′′ ∩ E 6= ∅ follows from

A = E ∪ P . Hence, it must be that πE(P ) = πA(P ). Therefore, the representation

implies fP∩E = x∗P \ E(x∗Px∗) ∼E z̄A �E zA. On the other hand, x∗P \ EzA ∼E zA.

Hence, x∗P \ E(x∗Px∗) ∼A x∗P \ EzA but x∗P \ E(x∗Px∗) �E x∗P \ EzA, violating

perfect dynamic consistency. This proves that E /∈ E .

Now suppose E ∈ σ(P). It needs to be shown that E ∈ E . Let A ⊇ E be given. By

Claim 1, πE is the RML posterior of πA with the partition {A ∩ P | P ∈ P}. To prove

that E ∈ E , it suffices to show that for any ω ∈ E,

πE(ω) =
πA(ω)

πA(E)
.

Since E ∈ σ(P), ∪P∈P: E∩P 6=∅P = E. By Proposition 1 and Claim 1,

πE(ω) = πA(ω|Pω) · πA(Pω| ∪P∈P: E∩P 6=∅ P ) = πA(ω|Pω) · πA(Pω|E) =
πA(ω)

πA(E)

as desired. This concludes the proof of the claim.

Since E ∈ E if and only if E ∈ σ(P), the necessity of Axiom 8 is obvious. To see the
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necessity of Axiom 9, let A ∈ A and D ( A∩P for some P ∈ P . Since πA\D is the RML

posterior of πA with the partition {A ∩ P |P ∈ P}, we have πA\D(P ) = πA(P ). Hence,

Axiom 9 follows. Lastly, to see the necessity of Axiom 10, let D ( P for some P ∈ P ,

A ⊇ D and ω ∈ D be given. Since πD is the RML posterior of πA,

πD(ω) = πA(ω|D) · πA(P |P ) = πA(ω|D).

Hence, D satisfies perfect dynamic consistency.

A.2 Sufficiency

The first claim is a standard result. For a proof, see Fishburn (1970) or Kreps (1988).

Claim 4. Suppose Axioms 1–5 are satisfied. Then, for any A ∈ A, there exist a subjective

probability measure πA ∈ ∆(Ω) and a non-constant, affine utility function uA : X → R
such that for any f, g ∈ F ,

f <A g ⇔
∑
ω∈Ω

πA(ω)uA(f(ω)) ≥
∑
ω∈Ω

πA(ω)uA(g(ω)).

By constant act preference invariance, <A and < agree on all constant acts for all

A ∈ A\∅. Using the standard uniqueness result, for any A ∈ A\∅, uA is a positive affine

transformation of uΩ, which is denoted by u. Hence, it is without loss to let uA = u for

all A ∈ A \ ∅. Moreover, Axioms 4 and 6 imply that <A is nontrivial, and hence πA is

unique for each A ∈ A \ ∅ as in Anscombe and Aumann (1963). By consequentialism,

for any f ∈ F , fAx∗ ∼A fAx∗. Since by the representation u(x∗) > u(x∗), we must

have πA(Ac) = 0. Moreover, by monotonicity, for any ω ∈ A, x∗ �A x∗ωx∗. Hence, the

representation implies that πA(ω) > 0 for all ω ∈ A. This establishes the following claim.

Claim 5. Suppose Axioms 1–7 are satisfied. Then, there exist a non-constant, affine

utility function u : X → R with u(X) = [u(x∗), u(x∗)] and a family of probability measures

{πA}A∈A such that for any f, g ∈ F and A ∈ A,

f <A g ⇔
∑
ω∈Ω

πA(ω)u(f(ω)) ≥
∑
ω∈Ω

πA(ω)u(g(ω)).

Moreover, πA has full support on A and is unique for all A ∈ A \ ∅, and u is unique up

to a positive affine transformation.
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Let E be the collection of events which are perfectly dynamically consistent and whose

complements are also perfectly dynamically consistent as in Definition 4. By definition,

E is closed under complements. By Axiom 8, E is closed under intersections. Moreover,

Ω ∈ E . Hence, E is an algebra over Ω. Let PE be the partitioning of the state space

that generates E , and let (π,PE) denote the probability assessment. To establish the

representation, it suffices to show that each πA is the RML posterior of π.

Claim 6. For any non-null A ∈ A, πA is the RML posterior of π.

Proof. First, consider A ∈ E . By definition, f <A g ⇔ fAg < g. fAg < g is equivalent

to ∑
ω∈A

π(ω)u(f(ω)) ≥
∑
ω∈A

π(ω)u(g(ω)) ⇔
∑
ω∈A

π(ω)

π(A)
u(f(ω)) ≥

∑
ω∈A

π(ω)

π(A)
u(g(ω)).

By the uniqueness of πA in the representation, for all ω ∈ A,

πA(ω) =
π(ω)

π(A)
= π(ω|A).

That is, πA is the Bayesian posterior of π, which also corresponds to the RML posterior

since A is unambiguous.

Now consider A /∈ E . Let PE = {P1, . . . , Pn} and choose an index set J ⊆ {1, . . . , n}
such that Pj ∩ A 6= ∅ ⇔ j ∈ J . Let B = ∪j∈JPj. Since B ∈ E , by the first part of the

claim, πB is the Bayesian posterior of π. Consider the bet fPj
= x∗Pjx∗ where j ∈ J . If

A = A ∪ Pj, then cA(fPj
) ∼ cA∪Pj

(fPj
) trivially holds. Now suppose A ( A ∪ Pj and let

D = (A ∪ Pj) \ A. Since Pj ∩ A is nonempty, D is a proper subset of Pj. Therefore, by

Axiom 9, cA∪Pj
(fPj

) ∼ c(A∪Pj)\D(fPj
), and hence cA∪Pj

(fPj
) ∼ cA(fPj

) as (A∪Pj)\D = A.

Given the representation in Claim 5, this is possible only if πA(Pj) = πA∪Pj
(Pj). Hence,

iterative application Axiom 9 implies that πA(Pj) = πB(Pj) for all j ∈ J . Therefore, for

any j, j′ ∈ J ,
πA(Pj)

πA(Pj′)
=
πB(Pj)

πB(Pj′)
=
π(Pj)

π(Pj′)
.

Let A ∩ Pj for some j ∈ J be given. By Axiom 10, A ∩ Pj is a perfectly dynamically

consistent event. Hence, using the same reasoning as in the first part of the claim, we

get

π(ω|A ∩ Pj) = πA∩Pj
(ω) = πA(ω|Pj).
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But then for any ω, ω′ ∈ A ∩ Pj,

π(ω)

π(ω′)
=
πA∩Pj

(ω)

πA∩Pj
(ω′)

=
πA(ω)

πA(ω′)
.

This together with the conclusion of the previous paragraph and Proposition 1 imply

that πA is the RML posterior of π. This concludes the proof of sufficiency.

Lastly, to show that P is uniquely revealed as PE , assume that P is not degenerate

(P 6= {Ω, ∅}). By Claim 3, P and PE are two partitions of the state space that generate

the same algebra E . But then P = PE . �

B Proof of Proposition 3

Let (π,P , u) be a representation of {<A}A∈A given by Theorem 2. Observe that for any

A,

πA ∈ B(NP,A(π))⇔ πA(Ac) = 0 and πA(P ) =
π(P )∑

P ′∈P:P ′∩A 6=∅ π(P ′)
for any P ∈ P with A∩P 6= ∅.

That is, all plausible posteriors agree on minimal unambiguous events. Moreover, the

utility function defined by

UA(f) =
∑
P∈P

πA(P ) min
ω∈A∩P

u(f(ω)),

where πA ∈ B(NP,A(π)), represents <A.

Let E be a dynamically consistent event. Suppose E is not perfectly dynamically

consistent so that there exist A ⊇ E and f, g ∈ F such that fEg <A g and g �E f . Let

h and h′ be given as below.

h =

f(ω) if ω ∈ E
g(ω) if ω ∈ A \ E
x∗ if ω ∈ Ac

 and h′ =

g(ω) if ω ∈ E
g(ω) if ω ∈ A \ E
x∗ if ω ∈ Ac


Then, the representation implies h <A h′ and h′ �E h. Also note that h(ω) = h′(ω)

for all ω ∈ Ec. Next, it is shown that h <A h′ implies h < h′. Let P = {P1, . . . , Pn}
and J ⊆ {1, . . . , n} be the index set such that j ∈ J ⇔ Pj ∩ E 6= ∅. Then, for any
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i /∈ J , Pi ∩ E = ∅, and hence minω∈A∩Pi
u(h) = minω∈A∩Pi

u(h′). Therefore, by the

representation, h <A h′ implies∑
j∈J

πA(Pj) min
ω∈A∩Pj

u(fEg(ω)) ≥
∑
j∈J

πA(Pj) min
ω∈A∩Pj

u(g(ω)).

Notice that since h(ω) = h′(ω) = x∗ for all ω ∈ Ac, for any j ∈ J , minω∈A∩Pj
u(h(ω)) =

minω∈Pj
u(h(ω)) and minω∈A∩Pj

u(h′(ω)) = minω∈Pj
u(h′(ω)). In addition, for i /∈ J ,

minω∈Pi
u(h) = minω∈Pi

u(h′) since h and h′ agree on Ec. Lastly, for any j ∈ J , π(Pj) =

c · πA(Pj) where c =
∑

P ′∈P:P ′∩A 6=∅ π(P ′). Hence,∑
j∈J

πA(Pj) min
ω∈A∩Pj

u(fEg(ω)) ≥
∑
j∈J

πA(Pj) min
ω∈A∩Pj

u(g(ω))

⇒
∑
j∈J

c · πA(Pj) min
ω∈A∩Pj

u(h(ω)) ≥
∑
j∈J

c · πA(Pj) min
ω∈A∩Pj

u(h′(ω))

⇒
∑
j∈J

π(Pj) min
ω∈Pj

u(h(ω)) ≥
∑
j∈J

π(Pj) min
ω∈Pj

u(h′(ω))

⇒
∑
Pi∈P

π(Pi) min
ω∈Pi

u(h(ω)) ≥
∑
Pi∈P

π(Pi) min
ω∈Pi

u(h′(ω)),

which implies h < h′. But then since h(ω) = h′(ω) for all ω ∈ Ec and h′ �E h, this

contradicts the original hypothesis that E is dynamically consistent. Hence, E must be

perfectly dynamically consistent. �

C Proof of Theorem 2

C.1 Necessity

The necessity of Axioms 1, 2, 4, 5, 6, and 7 is standard. To prove the necessity of Axioms

8, 9, 11, and 12, it is shown that E = σ(P), where σ(P) is the algebra generated by P ,

as in the proof of Theorem 1.

Claim 7. Let (π,P , u) be a representation of {<A}A∈A given by equation 5. Then E ∈ E
if and only if E ∈ σ(P).

Proof. First, I show that if E /∈ σ(P), then E /∈ E . Notice that since E /∈ σ(P), there

exists P ∈ P such that P ∩ E 6= ∅ and P \ E 6= ∅. Let f = x∗P ∩ Ex∗. Then the

representation implies that f ∼ x∗ but f �E x∗ even though f(ω) = x∗ for ω ∈ Ec.
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f �E x∗ holds because of the assumption that π(P ) > 0, which implies πE(P ) > 0 for all

πE ∈ B(NP,E(π)). Hence, E is not a dynamically consistent event. By definition, E /∈ E .

Now suppose E ∈ σ(P). To show that E ∈ E , let A ⊇ E be given. It needs to be

shown that fEg <A g if and only if f <E g. Let P = {P1, . . . , Pn}. Since E ∈ σ(P),

there exists an index set J ⊆ {1, . . . , n} such that E = ∪j∈JPj. Notice that if i /∈ J , then

minω∈A∩Pi
u(fEg(ω)) = minω∈A∩Pi

u(g(ω)). Hence, fEg <A g if and only if∑
j∈J

πA(Pj) min
ω∈Pj

u(fEg(ω)) ≥
∑
j∈J

πA(Pj) min
ω∈Pj

u(g(ω))

where πA is an arbitrary member of B(NP,A(π)). On the other hand, it is easy to see

that for any πE ∈ B(NP,E(π)), πE(Pj) > 0 if and only if j ∈ J , and πE(Pj) = c · πA(Pj)

where c = 1∑
j∈J πA(Pj)

. Hence, the above inequality holds if and only if

∑
j∈J

πE(Pj) min
ω∈Pj

u(fEg(ω)) ≥
∑
j∈J

πE(Pj) min
ω∈Pj

u(g(ω))

which is true if and only if f <E g.

Since E = σ(P), the necessity of Axiom 8 is obvious. The necessity of Axiom 9 is the

same as in Theorem 1. To see the necessity of Axiom 11, let Γ : Ω → S be a surjective

mapping that satisfies Γ(ω) = Γ(ω′) for all ω, ω′ ∈ P and Γ(ω) 6= Γ(ω′) whenever ω ∈ P
and ω′ ∈ P ′ for distinct P and P ′. Now for each A ∈ A, define a probability measure

on S by πA ◦ Γ−1 where πA is an arbitrary member of B(NP,A(π)). Let F̂ be the set of

all acts XS. Then, F̂ is isomorphic Fua. Since (πA ◦ Γ−1, u) is an SEU representation

of <A restricted to F̂ , Axiom 11 follows. Lastly, Axiom 12 is necessary because within

each partition element only the minimal payoff matters.

C.2 Sufficiency

Axiom 8 implies that E is an algebra and PE is a partitioning of the state space. As in

Claim 5, it is easy to see that the axioms imply the following claim.

Claim 8. Suppose Axioms 1, 2, 4-8, and 11 are satisfied. Then there exist a non-

constant, affine utility function u : X → R with u(X) = [u(x∗), u(x∗)] and a family

of subjective probability measures {πA}A∈A on σ(PE) such that for any f, g ∈ Fua and
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A ∈ A,

f <A g ⇔
∑
P∈P

πA(P )u(f(P )) ≥
∑
P∈P

πA(P )u(g(P )).

Moreover, πA(P ) > 0 for any P ∈ PE with A∩P 6= ∅ and πA(P ) = 0 whenever A∩P = ∅.

The second part of the claim is implied by Axioms 5 and 7. Extend πA to σ(PE ∪A)

(i.e. the algebra generated by sets of the form A \ P , A ∩ P , and P \ A) by letting

πA(A ∩ P ) = πA(P ) whenever A ∩ P 6= ∅.
The next claim shows that for any f ∈ F and A ∈ A, there exists an unambiguous

act fua ∈ Fua such that the DM is indifferent between f and fua given A.

Claim 9. Suppose Axioms 1, 2, 4-8, 11, and 12 are satisfied. Then, for any A ∈ A and

f ∈ F , there exists fua ∈ Fua such that f ∼A fua.

Proof. Let P ∈ PE and ω∗ = arg minω∈A∩P u(f(ω)). By Axioms 7 and 12, x∗P \{ω∗}f ∼A
f(ω∗)Pf . On the other hand, by Axiom 5, x∗P \ {ω∗}f <A f <A f(ω∗)Pf . Hence,

f ∼A f(ω∗)Pf . Now let fua denote an act that assigns the worst prize of f in A ∩ P
to P for all P ∈ PE with A ∩ P 6= ∅. Let fua be constant on P ′ with A ∩ P ′ = ∅. This

act belongs to Fua, and f ∼A fua by iterative application of the previous argument and

Axiom 7.

For any f ∈ F , let

UA(f) =
∑
P∈P

πA(A ∩ P ) min
ω∈A∩P

u(f(ω)).

Notice that for fua defined as in Claim 9, UA(f) = UA(fua). We already know that

UA represents <A on Fua. Hence, f <A g if and only if fua <A gua if and only if

UA(fua) ≥ UA(gua) if and only if UA(f) ≥ UA(g). Hence, UA represents <A on all F .

The only thing left to prove is that πA ∈ B(NP,A(π)). This is implied by Axiom 9.

The proof is identical to the first part of Claim 6. Lastly, the uniqueness result for u

is standard. The uniqueness of P is a consequence of Claim 7, and NP,A(π) is uniquely

defined given π on P . �
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D Proof of Proposition 2

Notice that π′A ∈ B(NP,A(π)) if and only if for all P ∈ P with A ∩ P 6= ∅,

∑
ω∈A∩P

π′A(ω) =
π(P )∑

P ′∈P:A∩P ′ 6=∅ π(P ′)
. (D.1)

The objective is to minimize Kullback-Leibler divergence DKL(π(·|A) || π′A) subject to

these constraints for each P ∈ P with A ∩ P 6= ∅. The Lagrangian for the minimization

problem is

L
(
{π′A(ω)}ω∈A, {λP}P∈P:A∩P 6=∅

)
=−

∑
ω∈A

π(ω|A) ln
( π′A(ω)

π(ω|A)

)
+

∑
P∈P:A∩P 6=∅

λP

( ∑
ω∈A∩P

π′A(ω)− π(P )∑
P ′∈P:A∩P ′ 6=∅ π(P ′)

)
.

The first order conditions imply that for any P ∈ P with A∩P 6= ∅ and any ω, ω′ ∈ A∩P ,

π(ω|A)

π′A(ω)
= λP =

π(ω′|A)

π′A(ω′)
, and hence

π′A(ω)

π′A(ω′)
=
π(ω|A)

π(ω′|A)
=
π(ω)

π(ω′)
. (D.2)

Since the objective function is strictly convex, equations D.1 and D.2 characterize the

solution to the minimization problem. �

References

Al-Najjar, N. I. and J. Weinstein (2009): “The ambiguity aversion literature: a critical

assessment,” Economics & Philosophy, 25(3), 249–284.

Anscombe, F. J. and R. J. Aumann (1963): “A Definition of Subjective Probability,”

Annals of Mathematical Statistics, 34(1), 199–205.

Baliga, S., E. Hanany, and P. Klibanoff (2013): “Polarization and Ambiguity,” American

Economic Review, 103(7), 3071–83.

Bar-Hillel, M. (1980): “The Base-Rate Fallacy in Probability Judgments,” Acta Psycho-

logica, 44(3), 211–233.

38



Barberis, N., A. Shleifer, and R. Vishny (1998): “A Model of Investor Sentiment,” Jour-

nal of Financial Economics, 49(3), 307–343.

Benjamin, D. J. (2019): “Errors in Probabilistic Reasoning and Judgment Biases,” in

Handbook of Behavioral Economics-Foundations and Applications 2, ed. by B. D. Bern-

heim, S. DellaVigna, and D. Laibson, Elsevier, 69–186.

Binmore, K., L. Stewart, and A. Voorhoeve (2012): “How Much Ambiguity Aversion?”

Journal of Risk and Uncertainty, 45(3), 215–238.

Camerer, C. (1995): “Individual Decision Making,” in Handbook of Experimental Eco-

nomics, ed. by J. H. Kagel and A. E. Roth, Princeton University Press, 587–703.

Charness, G., E. Karni, and D. Levin (2013): “Ambiguity Attitudes and Social Interac-

tions: An Experimental Investigation,” Journal of Risk and Uncertainty, 46(1), 1–25.

Cheng, X. (2021): “Relative Maximum Likelihood Updating of Ambiguous Beliefs,”

arXiv preprint arXiv:1911.02678.

Darley, J. M. and P. H. Gross (1983): “A Hypothesis-Confirming Bias in Labeling Ef-

fects,” Journal of Personality and Social Psychology, 44(1), 20–33.

Dominiak, A., P. Duersch, and J.-P. Lefort (2012): “A Dynamic Ellsberg Urn Experi-

ment,” Games and Economic Behavior, 75(2), 625–638.

Dominiak, A., M. Kovach, and G. Tserenjigmid (2021): “Minimum Distance Belief Up-

dating with General Information,” Working Paper.

Edwards, W. (1968): “Conservatism in Human Information Processing,” in Formal Rep-

resentation of Human Judgment, ed. by B. Kleinmuntz, Wiley, New York, 17–52.

Ellsberg, D. (1961): “Risk, Ambiguity, and the Savage Axioms,” Quarterly Journal of

Economics, 75(4), 643–669.

Epstein, L. G. (1999): “A Definition of Uncertainty Aversion,” Review of Economic

Studies, 66(3), 579–608.

(2006): “An Axiomatic Model of Non-Bayesian Updating,” Review of Economic

Studies, 73(2), 413–436.

39



Epstein, L. G. and M. Le Breton (1993): “Dynamically Consistent Beliefs Must Be

Bayesian,” Journal of Economic Theory, 61(1), 1–22.

Epstein, L. G., J. Noor, and A. Sandroni (2008): “Non-Bayesian Updating: A Theoretical

Framework,” Theoretical Economics, 3(2), 193–229.

(2010): “Non-bayesian learning,” The BE Journal of Theoretical Economics,

10(1), 1–20.

Epstein, L. G. and M. Schneider (2003): “Recursive Multiple-Priors,” Journal of Eco-

nomic Theory, 113(1), 1–31.

(2007): “Learning Under Ambiguity,” Review of Economic Studies, 74(4), 1275–

1303.

Epstein, L. G. and J. Zhang (2001): “Subjective Probabilities on Subjectively Unam-

biguous Events,” Econometrica, 69(2), 265–306.

Filippis, R. D., A. Guarino, P. Jehiel, and T. Kitagawa (2016): “Updating Ambigu-

ous Beliefs in a Social Learning Experiment,” Working Paper, Centre for Microdata

Methods and Practice.

Fishburn, P. C. (1970): Utility Theory for Decision Making, Wiley, New York.

Fryer, R. G., P. Harms, and M. O. Jackson (2018): “Updating Beliefs When Evidence is

Open to Interpretation: Implications for Bias and Polarization,” Working Paper.

Gennaioli, N. and A. Shleifer (2010): “What Comes to Mind,” Quarterly Journal of

Economics, 125(4), 1399–1433.

Ghirardato, P. (2002): “Revisiting Savage in a Conditional World,” Economic Theory,

20(1), 83–92.

Ghirardato, P., F. Maccheroni, and M. Marinacci (2004): “Differentiating Ambiguity and

Ambiguity Attitude,” Journal of Economic Theory, 118(2), 133–173.

Ghirardato, P. and M. Marinacci (2002): “Ambiguity Made Precise: A Comparative

Foundation,” Journal of Economic Theory, 102(2), 251–289.

40



Gilboa, I. and M. Marinacci (2016): “Ambiguity and the Bayesian Paradigm,” in Read-

ings in Formal Epistemology: Sourcebook, ed. by H. Arló-Costa, V. F. Hendricks, and
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