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To be honest, my head is hurting from this
back-and-forth thinking ad infinitum.

Participant #230

1 Introduction
The canonical model of bounded rationality in games, as level-𝑘 and cognitive hierarchy, is an it-
erative ‘top-down’ model of reasoning: a player with a finite level of reasoning believes others can
reason to a strictly lower level and best responds to that belief. This restriction is critical in how
the model is operationalized – it ensures that a player requires only a finite number of steps of rea-
soning to optimally respond to their belief. Importantly, a player who can do 𝑘 steps of iterated
reasoning (i.e., 𝑘 steps of “I think, you think, I think, ...”) can only model others as being capable
of doing at most 𝑘 − 1 steps of iterated reasoning.1 This ability to model the behavior of others,
and hence predict it, is a key assumption in these models. This, however, leads to natural and in-
teresting questions: what happens if a player believes others may reason to a higher level than they
are capable of? For example, how will a player respond if they believe that their opponent is more
sophisticated than them? Will they no longer be capable of modeling their opponent’s behavior
and hence predicting their actions?

Consider a player, Ann, who is playing a game with Bob. We propose a behavior that reveals
to an analyst that Ann is not able to model, and hence predict, Bob’s behavior. We then implement
a novel experimental design that allows us to identify this behavior experimentally and evaluate
its pervasiveness in the population. We also investigate whether Ann’s behavior is a feature of her
thought process or depends on Bob’s observed characteristics such as being either an undergraduate
student or a Ph.D student in Economics.

To understand the intuition behind the identification strategy and experimental design, recall
that in iterative ‘top-down’ models of reasoning players’ beliefs are anchored in the behavior of a
non-strategic L0 type, and types are heterogenous in their level of reasoning. The L1 type performs
one level of reasoning and best responds to the L0 type. In turn, the L2 type performs two levels of
reasoning and best responds to some belief over L0 and L1 types, and so on with the L𝑘 type best
responding to some belief over L0, ..., L(𝑘 − 1) types. In these models, the lack of predictability of
the opponent is captured by the L0 type, which is typically assumed to play uniformly random. The
only other source of unpredictability in these models stems from the uncertainty over the level of
reasoning of others.

The uncertainty associated with non-strategic play (L0) could be controlled for by designing
a game that permits the analyst to identify if a player “believes other players are rational.”2 We
introduce a judiciously designed game – which we refer to as the large game (“𝐿𝐺”) – in which the
lack of predictability in iterative ‘top-down’ models of reasoning is limited. In particular, if Ann
1Any player who can reason about their opponent doing 𝑚 steps must necessarily be able to do at least 𝑚 + 1 steps of
reasoning themselves.

2We use rationality here in the game-theoretic sense of playing a best response to beliefs. Further, in the iterative
‘top-down’ model of reasoning, all L𝑘 types with 𝑘 ≥ 1 play a best response and hence are rational.
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believes that Bob is rational and has the ability to model Bob’s behavior, then her payoff in the game
is bounded from below by a strictly positive number.

Now consider the possibility that Ann thinks that Bob may be more sophisticated than her but
cannot model, and hence predict, Bob’s behavior. In such a situation, it might be reasonable for
Ann to believe that Bob is rational, since Ann herself is rational and thinks that Bob may be more
sophisticated than herself. However, she might not be able to model Bob’s behavior beyond that.
In many games, the assumption that Bob is rational will not leverage much predictability, as in the
case of our carefully designed large game.3 In this game, even if Ann believes that Bob is rational –
but cannot model and predict Bob’s behavior – her payoff might not respect the lower bound that
was constructed for the case in which she was able to model his behavior.

We contrast the large game with a dominance-solvable game (“𝐷𝑆”), in which Bob has a strictly
dominant strategy. If Ann believes that Bob is rational, she will believe that Bobwill play the strictly
dominant strategy. Thus, she can guarantee herself a certain payoff, which is below the lower bound
on her payoff in the large game if she is able to model Bob’s behavior.

ObservingAnn’s preferences over the two gameswill allow anobserver to inferwhetherAnn can
model Bob’s behavior or not. If Ann canmodel Bob’s behavior she will strictly prefer the large game.
Hence, if she weakly prefers the dominance-solvable game, then she reveals that she cannot model
Bob’s behavior. Importantly, these inferences do not depend on Ann’s risk or social preferences.

One reasonable concern with the proposed identification strategy may arise if Ann’s inability
to model Bob’s behavior is due to her concern that Bob may not be rational. To control for this
possibility, the large game includes a “safe” action, which guarantees Ann a strictly higher expected
utility in the large game than in the dominance-solvable game for any belief that Bob may not be ra-
tional.4 Consequently, although our design makes the starkest predictions for a player that believes
their opponent is rational, any deviation from this benchmark biases the identification in one di-
rection only. Put differently, those that can model the behavior of others will prefer the large game
regardless. This results in the proportion of participants that is identified as not having the ability
to model the behavior of others being a conservative estimate of this behavior in the population.

The novel experimental design we employ has four components. The first are the two diagnostic
games: 𝐿𝐺 and𝐷𝑆. The second are two control games that rule out other confounding factors that
can contribute to prefer𝐷𝑆 over 𝐿𝐺. Third, we investigate whether participants’ reasoning process
(‘top-down’ as in iterative reasoning models or prioritizing rationality as an organizing principle)
depends on their opponents’ observed characteristics. To achieve this, we exogenously vary the
participants’ opponent type: they face either a Ph.D. student in Economics or an undergraduate
student of any discipline. The fourth component is a preference-elicitation mechanism over the
games. Rather than directly eliciting a choice between the two diagnostic games, participants first
choose their actions in each game (and against each potential opponent), and then we elicit their
respective valuations.5 This allows an observer to infer both participants’ preferences between the
twodiagnostic games andparticipants’ (confidence in their) beliefs about their opponents’ behavior.
Moreover, we can exploit the valuation data to isolate those participants who believe that their
3The assumption of rationality will only ensure that Bob will not play any strictly dominated strategy.
4This statement is robust to arbitrary degree of risk aversion, see Section 5 for details.
5To allow participants to recall their reasoning in the valuation stage, we encouraged them to write it down in a text
box. We use this information to gather further qualitative evidence on their choice process.
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opponent is rational as the predictions in our games are the starkest for this subset of participants.
We find that approximately half of the choices made by participants are consistent with diffi-

culty of predicting others’ behavior. This is true especially if they believe that their opponents are
rational. Among those, 64% behave as though they are not able to model the behavior of others.
Moreover, roughly 70% of participants exhibit a stable model of reasoning irrespective of the op-
ponent’s characteristics. Among the remainder, the results are split: roughly 12% can model the
behavior of undergraduate students but not of Ph.D. students, while roughly 18% can model the
behavior of Ph.D. students but not of undergraduate students.

This paper is closely related to the literature on iterative reasoning. Pioneering scholarly contri-
butions in the level-𝑘 literature include Stahl andWilson (1994; 1995), Nagel (1995), Costa-Gomes,
Crawford, and Broseta (2001), Camerer, Ho, and Chong (2004), and Costa-Gomes and Crawford
(2006). More recently, Gill and Prowse (2016) investigated how cognitive ability and character skills
influence the evolution of play in repeated strategic interactions and estimate a structural model of
learning based on level-𝑘 reasoning. For a survey of this literature, see Crawford, Costa-Gomes,
and Iriberri (2013).

Arad and Rubinstein (2012a) and Kneeland (2015) developed novel experimental designs to
identify levels of reasoning in an iterative model. Moreover, in the former design, the authors ex-
plicitly asked participants about their thought process when making their choices to gain a better
understanding of participants’ behavior. Arad (2012) proposed a new allocation game to study
iterative reasoning and the performance of the level-𝑘model, and showed that level-𝑘 thinking ac-
counts for a smaller number of choices made by participants than in other experiments. Further,
Arad and Rubinstein (2012b) studied how participants reason iteratively on few dimensions, or fea-
tures, in an allocation game (Colonel Blotto). Subsequently, Arad and Penczynski (2020) studied
a few other environments of resource allocation with communication between participants, and
confirmed that many participants engage, in fact, in multi-dimensional iterative reasoning.

Most closely related to our work is Agranov, Potamites, Schotter, and Tergiman (2012) who
manipulated participants’ beliefs about the cognitive levels of the players they are playing against,
and Alaoui and Penta (2016) who studied a model of iterative reasoning where player’s depth of
reasoning is endogenously determined. More recently, Alaoui, Janezic, and Penta (2020) further
developed an experimental design strategy to distinguish level-𝑘 behavior driven by subjects’ beliefs
from their cognitive bounds, and found an interaction between participants’ own cognitive bound
and reasoning about the opponent’s reasoning process.

The paper proceeds as follows. Section 2 introduces the design and the set of diagnostic games
as well as the two control games. It builds the theoretical background necessary for our experiment
– discussed in Section 3 – and the identification strategy used in the analysis conducted in Section
4. Section 5 offers a more formal analysis. Finally, Section 6 concludes with a brief discussion of
the results. The Appendix contains further analyses, details on participants’ individual behavior,
the experimental instructions, and screenshots of the experimental interface.
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2 The Design
We employ both an iterative ‘top-down’ model of reasoning, based on level-𝑘 and cognitive hierar-
chy, and the concept of 2-rationalizability to guide our experimental design, identification strategy,
and analysis. We provide a brief description of the model and the concept here and engage in a dis-
cussion on how these interact with our setup in the next subsection. A more formal and general
analysis will be provided in Section 5.

2.1 Building Intuition: Model and Solution Concept
Iterative ‘top-down’ model of reasoning In this model, players anchor their beliefs in a naïve model
of others’ behavior and adjust their beliefs by a finite number of iterated best-responses. The model
is anchored in the behavior of the level-0 (“L0”) type, which is exogenously given and is typically
assumed to be uniformly random. A level-1 (“L1”) player is not strategic and does not believe oth-
ers are rational, but does choose a strategy that maximizes their expected utility (given the level-0
play).6 A level-2 (“L2”) player assumes that all other players are either L0 or L1 types and chooses
a strategy that maximizes their expected utility under some probability distribution on L0 and L1
strategies. This process continues for higher-level players and, more generally, with L𝑘 types choos-
ing a strategy that is expected-utility maximizing given beliefs over play of strictly lower types.7

2-rationalizability This concept can be intuitively understood via its relationship with the notion
of rationality and reasoning about rationality. A player is rational if they play a best-response (max-
imize expected utility) given their subjective belief about how the game is played. A player believes
in rationality if they believe others play a best-response given their subjective beliefs about how the
game is played. The solution concept of 2-rationalizable strategies incorporates both the assump-
tion of rationality and belief in rationality.8

Iterative ‘top-down’ model of reasoning and 2-rationalizability Now we highlight the relationship
between the model and the concept introduced above. First notice that the iterative ‘top-down’
model of reasoning implicitly imposes assumptions about how types reason about rationality. We
highlight two facts. First, all L𝑘 types with 𝑘 ≥ 1 are rational as they play a best response given
their belief about others’ play. Second, any L𝑘 type that places zero weight on the L0 type believes
in rationality.

Further notice that the iterative ‘top-down’ model of reasoning imposes an additional assump-
tion beyond reasoning about rationality. It imposes the assumption that beliefs are anchored in
L0-play. Put differently, a rational L1-type cannot hold any belief about the play of the game.
6Most iterative reasoning applications assume that players are risk-neutral and hence maximize expected-payoffs. In
this paper, instead, we will allow for any expected-utility preferences.

7This ‘top-down’ model of iterative reasoning nests both the level-𝑘 and cognitive hierarchy models. In the level-𝑘
model, a L𝑘 type assumes that all other players are L(𝑘 − 1) types. In the cognitive hierarchy model, a L𝑘 type places
positive weight over L0,…, L(𝑘 − 1) types where the weight is determined according to a conditional Poisson model.
The iterative ‘top-down’ model was first formalized in Strzalecki (2014).

8The relationship between reasoning about rationality and 𝑘-rationalizable strategies follows from standard results, e.g.,
among others, Bernheim (1984), Brandenburger and Dekel (1987) and Tan and da Costa Werlang (1988).
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Rather, they must hold beliefs consistent with L0-play. The same holds true similarly for higher
levels. A L2-type (that believes others are L1-type) cannot hold any belief about others’ rational
play, but rather must hold beliefs consistent with L1-play, etc. Therefore, one can view the iterative
‘top-down’ model of reasoning as assuming that players can, in fact, model the play of others.

This is in sharp contrast to the concept of 2-rationalizability. This approach is grounded in
the assumption that players can hold any beliefs about the play of others, and only requires those
beliefs to be consistent with the assumption that others are rational. In this sense, one can think
of 2-rationalizable strategies as relaxing the assumption of the ability to model the play of others,
relative to iterative reasoning models.

Key design assumptions In what follows, we will assume that players are rational. For the iterative
‘top-down’model of reasoning, this means that we will focus on the behavior of L𝑘-types for 𝑘 ≥ 1.9

Moreover, players that are rational and believe in rationality will also play a special role in our
design. As we assume that players themselves are rational, a natural assumption if they believe
others may be more sophisticated than them, is to at least believe others are rational – even if they
cannot model the behavior of others. As such, our design will make stark predictions for those
participants who are rational and believe in rationality of others.

2.2 The Games
In order to identify behavior that reflects the player’s belief that while other players may be rational,
they cannot model the behavior of others, we judiciously designed two diagnostic games. One
where the ability to model the opponents’ behavior is important for how the participant values the
game, and the other where such an ability is less important.

The strategic form of these games is depicted in Figure 1.
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Figure 1: The Large Game (LG) and the Dominance-Solvable Game (DS)

The large game “𝐿𝐺” We begin with the large game denoted 𝐿𝐺, which is a 4 × 4 bimatrix game.
The iterative ‘top-down’ model of reasoning predicts that players choose actions in {𝑎, 𝑏} and in
9There are two interpretations of a L0-player in the literature. One is that the player does not reason at all, but chooses
a mixed strategy that corresponds to the anchor. The second is that the player does not exist but, instead, serves as a
way to anchor the beliefs of other players.
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{𝐵, 𝐶}. To see why this is the case, let us first consider the simpler level-𝑘model. For simplicity, we
assume that all players maximize expected payoffs.10

To build intuition, we first consider the behavior of the L1 type of Player 1 who is maximizing
their own payoff but does not take any strategic considerations of their opponent into account (as
they do not believe that their opponent is rational). This type plays actions 𝑎 or 𝑏 as actions 𝑐 and
𝑑 induce payoffs that are dominated by action 𝑎’s payoffs. Notice that 𝑎 is naturally a best response
to the belief that Player 2 is the L0 type and plays actions in {𝐴, 𝐵, 𝐶,𝐷} with equal chance.

We can carry out the analogous thought experiment for Player 2’s behavior to find that the L1
type plays action 𝐶. This action delivers the highest Player 2 payoffs and is therefore a natural focal
action.11 Any new iteration (“the next level”) is a best response to the opponent’s behavior. For
example, the L2 type of Player 1 plays 𝑎 and the L2 type of Player 2 plays 𝐵. Then, the L3 type of
Player 1 plays 𝑏 and the L3 type of Player 2 plays 𝐵. This process continues ad infinitum. Player 1’s
best responses are always in {𝑎, 𝑏} and Player 2’s best responses are always in {𝐵, 𝐶}.

The iterative ‘top-down’ model of reasoning is a more general model than the level-𝑘model. It
explicitly allows players to hold arbitrary risk preferences within expected utility. Moreover, players
mayhold any belief about the expected-utility preferences of other players aswell as over lower types
L0, ..., L(𝑘 − 1) of other players.

We first consider Player 1’s behavior of L1 type and begin with the observation that each ac-
tion induces a lottery through the player’s belief about the play of others. For example, the lottery
induced by action 𝑎, in which Player 1 receives with equal chance the monetary payoffs of 13, 12,
11, and 0. Playing 𝑎 first-order stochastically dominates the lotteries induced by playing actions 𝑐
or 𝑑. Notice, however, that the lotteries induced by actions 𝑎 and 𝑏 do not first-order stochastically
dominate each other. Further, if Player 1 is extremely risk-seeking, then action 𝑏 is their best re-
sponse. Thus, the best response to such beliefs are actions 𝑎 and 𝑏. Making analogous arguments
for Player 2, we can show that the L1 type plays action 𝐶.

We now consider Player 1’s behavior of L2 type. This type can hold any beliefs that take the
following form: (1−𝑝) ⋅ {1/4, 1/4, 1/4, 1/4} +𝑝 ⋅ {0, 0, 1, 0} for any 𝑝 ∈ (0, 1]. The best-response to such
beliefs are actions 𝑎 and 𝑏 (but not 𝑐 or 𝑑). Again, making analogous arguments for Player 2, we
can show that the L2 type plays either action 𝐵 or action 𝐶. This type’s behavior is characterized by
any belief about Player 1’s behavior that is a mixture of Player 1 playing actions in {𝑎, 𝑏, 𝑐, 𝑑} with
equal chance and the two degenerate beliefs that Player 1 plays action 𝑎 or action 𝑏 with certainty.

Lastly, consider the L3 type of Player 1. This type can hold any beliefs that take the following
form: (1 − 𝑝1 −𝑝2) ⋅ {1/4, 1/4, 1/4, 1/4} + 𝑝1 ⋅ {0, 0, 1, 0} + 𝑝2 ⋅ {0, 1, 0, 0} for any 𝑝1, 𝑝2 ∈ [0, 1] such that
0 < 𝑝1 +𝑝2 ≤ 1. The best response to such beliefs is either action 𝑎 or action 𝑏. The behavior of the
L3 type of Player 2 is characterized by playing actions 𝐵 or 𝐶. The reasoning for higher-order types
follows similarly and no new actions are played by these types.

A special case of the iterative ‘top-down’ model of reasoning arises when we restrict attention
to types that are rational and believe in rationality. This implies that we focus on types that place
10This can be generalized to allow for any expected-utility preferences and it will still be true that the iterative ‘top-down’
model of reasoning predicts that players will play actions in {𝑎, 𝑏} and in {𝐵, 𝐶}. For details, see Section 5.

11The attractiveness of action 𝐶 for the L1 type of Player 2 is particularly salient in our experiment design, which we
will discuss in Section 3. Notice that this behavior is also a best response to the belief that Player 1 is the L0 type and
plays actions in {𝑎, 𝑏, 𝑐, 𝑑} with equal chance.
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zero weight on others being the L0 type. If this is true, then the expected payoff for any such type
must be strictly greater than 12.12

Moving to payoffs when applying the concept of 2-rationalizability. Any action can be played
by a rational player. For any action there exists some belief about the other player’s behavior such
that the action is a best response.13 Thus, if Player 1 has difficulty predicting the behavior of others,
theymight reasonably hold any beliefs over the distribution {𝐴, 𝐵, 𝐶,𝐷}. For example, a player who
plays action 𝑎 could plausibly assign positive probability to Player 2 playing action𝐴. In such a case,
one might reasonably expect the payoff to be less than 12 in 𝐿𝐺.

Thedominance-solvable game “𝐷𝑆” Theother diagnostic game is𝐷𝑆 – a 3×3 bimatrix game that is
dominance-solvable in a single iteration. Player 2 has a strictly dominant strategy. This means that
any rational Player 2 must play the dominant action𝐴 in either the level-𝑘model or any ‘top-down’
model of reasoning. To give some guidance, we first consider the behavior in the level-𝑘model of
the L1 type of Player 1, who plays action 𝑎 thatmaximizes their expected payoff (the payoffs induced
by action 𝑐 are dominated by those induced by action 𝑎). Such behavior is also a best response to
the belief that Player 2 is the L0 type and plays actions in {𝐴, 𝐵, 𝐶} with equal chance. As Player 2
has a strictly dominant strategy, it is obvious that all L𝑘 types’ behavior with 𝑘 ≥ 1 is characterized
by always playing 𝐴. For Player 1, any type 𝑘 > 1 best responds by playing 𝑐.

Behavior in the iterative ‘top-down’ model of reasoning is more nuanced for Player 1 (but not
for Player 2). Because players can hold any expected utility preference, it is possible that Player 1
chooses, in fact, actions in {𝑎, 𝑏, 𝑐}.

We begin with Player 1’s behavior of L1 type. Playing 𝑎 first-order stochastically dominates
playing action 𝑐, however, the lotteries induced by actions 𝑎 and 𝑏 do not first-order stochastically
dominate each other. If the L1 type of Player 1 is extremely risk-seeking, then action 𝑏 is their best
response.

Consider again a special case of the iterative ‘top-down’ model of reasoning by restricting at-
tention to types that are rational and believe in rationality. If this is true, then the expected payoff
for any such type will be exactly 12.

In contrast to the large game 𝐿𝐺, however, any player who is rational and believes in rationality
– yet falls outside the iterative ‘top-down’ model of reasoning – must still behave exactly the same
as in the iterative ‘top-down’ model of reasoning. Thus, any 2-rational player chooses action 𝑐 and
has an expected payoff of exactly 12 irrespective of being an iterative-reasoner or not.

Player 1’s preferences over 𝐿𝐺 and𝐷𝑆 All players that are rational and believe that their opponents
are rational prefer playing 𝐿𝐺 over𝐷𝑆 in the iterative ‘top-down’ model of reasoning. The expected
payoff of 12 in 𝐷𝑆 is strictly lower than the expected payoff of 𝐿𝐺. That is, a ‘top-down’ iterative-
reasoner should strictly prefer to play 𝐿𝐺 over𝐷𝑆.

Whenwe relax the assumption of belief in rationality it permits players to assign positive weight
on the L0 type in the ‘top-down’ model of reasoning. Importantly, allowing for dispersed beliefs
12Player 1 may value 𝐿𝐺 exactly at 12. This, however, can only occur with an extreme form of ambiguity aversion
coupled with the player’s set of prior including degenerate priors. We elaborate on this point in Section 5.

13𝑐 is a best response to Player 2 playing𝐷 and 𝑑 is a best-response to Player 2 playing𝐴. Likewise,𝐴 is a best-response
to Player 1 playing 𝑐 and𝐷 is a best response to Player 1 playing 𝑑.
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does not alter the ranking of 𝐿𝐺 over 𝐷𝑆. Put differently, any ‘top-down’ iterative-reasoner should
strictly prefer to play 𝐿𝐺 over𝐷𝑆 regardless of risk preferences.

Lastly, the comparative statics also hold in Nash equilibrium.14 𝐿𝐺 has a Nash equilibrium in
mixed strategies where the equilibrium actions coincide with the actions prescribed by the iter-
ative ‘top-down’ model of reasoning. The equilibrium payoff is also strictly greater than 12 and
strictly dominates the equilibrium payoff of 𝐷𝑆, which is exactly 12. The Nash equilibrium of 𝐿𝐺
is ((8/9, 1/9, 0, 0), (0, 13/15, 2/15, 0)) with payoffs of (182/15, 112/9). 𝐷𝑆 has a Nash equilibrium in pure
strategies: ((0, 0, 1), (1, 0, 0)) with payoffs of (12, 10).

The control games Now we are ready to introduce the control games. The objective of our study
is to detect whether players value the predictability of their opponents’ actions. The two control
games are designed to rule out other confounding factors that can contribute to prefer𝐷𝑆 over 𝐿𝐺.

The strategic form of the two games is depicted in Figure 2.
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Figure 2: The controls: The Mixed-Strategy (MS) Game and the Nash-Equilibrium (NE) Game

Our controls serve two purposes: First, we want to control for the size of the game, that is,
whether players prefer any smaller game over 𝐿𝐺 per se. To do so, we introduce𝑀𝑆, which is a
3 × 3 bimatrix game with the iterative ‘top-down’ model of reasoning prescribing a player’s actions
∈ {𝑎, 𝑏, 𝑐}. Notice that the payoffs in𝑀𝑆 can be greater than 12, and thus above those in 𝐷𝑆. In
addition,𝑀𝑆 also has a Nash equilibrium in mixed strategies similar to 𝐿𝐺 where players mix over
the actions ∈ {𝑎, 𝑏} (but not 𝑐), and the equilibrium payoff is strictly dominated by 𝐿𝐺’s equilibrium
payoff.15

Second, we want to control for Nash equilibrium. Thus, we consider 𝑁𝐸 – a 3 × 3 bimatrix
game with a unique Nash equilibrium in pure strategies. In contrast to 𝐷𝑆, however, this game is
not dominance-solvable. Here too, the iterative ‘top-down’ model of reasoning prescribes player’s
action ∈ {𝑎, 𝑏, 𝑐}.16 The payoffs in 𝑁𝐸 can be greater than 12, and thus above those of 𝐷𝑆 as well.
Once again, the equilibrium payoff in 𝑁𝐸 is strictly dominated by 𝐿𝐺’s equilibrium payoff. The
Nash equilibrium of the𝑁𝐸 control game is ((0, 0, 1), (1, 0, 0))with equilibrium payoffs of (12, 10),
which coincides with the equilibrium payoff prediction of𝐷𝑆.

As we are solely interested in participants’ behavior in the role of Player 1, all 3 × 3 games (𝐷𝑆,
𝑀𝑆, and𝑁𝐸, respectively) are judiciously chosen to share common features. All payoffs for Player
14This is also true in logit Quantal Response Equilibrium.
15The Nash equilibrium of the𝑀𝑆 control game is ((7/9, 2/9, 0), (0, 11/12, 1/12)) with payoffs of (143/12, 76/9).
16Strictly speaking, a player’s action ∈ {𝑎, 𝑏} is consistent with the standard level-𝑘model, whereas dispersed beliefs are
required for action ∈ {𝑎, 𝑏, 𝑐} – which is consistent with the iterative ‘top-down’ reasoning model.
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1 are kept constant across these smaller games to improve control and ease of comparison. We only
altered the payoffs associated with actions ∈ {𝐴, 𝐵, 𝐶} for Player 2. Naturally, each action’s min-
imum payoff with the corresponding action pairs ((𝑎, 𝐴), (𝑏, 𝐶), (𝑐, 𝐶)) is zero in the two control
games as in 𝐷𝑆. Lastly, notice that in the control games, like the 𝐿𝐺 game, all actions are itera-
tively undominated. Thus, game𝐷𝑆 stands alone as being the unique game where reasoning about
rationality alone is enough to predict the opponent’s play.

3 The Experiment

3.1 Implementation
We divided the experiment into two parts. In each part, participants faced four decision-making
problems in random order. We told participants that they would be randomly matched with an-
other participant, who already made their choices in a previous auxiliary session. The purpose of
this design feature was to collect all data online in an individual decision-making setting and to
ameliorate any form of social preferences when choosing actions.

We told participants that this other participant, whom we called “Player 𝑍,” is either an un-
dergraduate student from any year or discipline at The University of Toronto or a Ph.D. student in
Economics who took several advanced courses that are highly relevant for this experiment. Par-
ticipants would not learn their opponent type until the conclusion of the experiment. Therefore,
participants made always two choices: one if Player 𝑍 is an undergraduate student from any year
or discipline and another if they are a Ph.D. student in Economics.

Figure 3 visualizes the implementation of the games.
The matrices on the left represent participants’ payoffs in the 𝐿𝐺 game (top) and the 𝐷𝑆 game

(bottom). The matrices on the right represent Player 𝑍’s payoffs in 𝐿𝐺 and 𝐷𝑆, respectively. The
opponent type was visualized via color (red = undergraduate and blue = Ph.D. student).

Our experimental implementation of the games makes it particularly salient for participants
that Player𝑍 has a strictly dominant strategy in𝐷𝑆. Moreover, in𝐿𝐺, it highlights the attractiveness
of action 𝐶 for the L1 type of Player 𝑍, even though it is more nuanced compared to 𝐷𝑆. As this
type is non-strategic and does not take the other player’s incentives into account, visualizing each
player’s payoffs in a separate matrix directs attention to the sequence of numbers that is the highest.

To improve participants’ experience and to assist in selecting an action, we implemented a high-
lighting tool that used two colors: yellow and light green. When a participant moved their mouse
over a row in their matrix (“Your Earnings”), the action was highlighted in yellow color in both
matrices: a row in their matrix, and a column in Player 𝑍’s matrix (“Player 𝑍’s Earnings”). By
left clicking the mouse over a row it remained highlighted, and participants could unhighlight it
by clicking their mouse again or clicking another row. Similarly, when participants moved their
mouse over a row that corresponds to an action of Player 𝑍 in “Player 𝑍’s Earnings,” the row was
highlighted in light green and the corresponding column was highlighted in light green in “Your
Earnings.” Clicking the mouse over the row kept it highlighted, and clicking it again (or clicking
another action) unhighlighted it.

We further told participants that Player 𝑍 participated in a previous auxiliary experimental
session in which (s)he was matched with another participant, called “Player𝑌,” who participated in
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Figure 3: Game Implementation: 𝐿𝐺 (top) and𝐷𝑆 (bottom)

the same session and played their role. When Player𝑍was an undergraduate student from any year
or discipline, so was Player 𝑌; and when Player 𝑍 was a Ph.D. student in Economics, so was Player
𝑌. We used Player 𝑍’s decisions from the auxiliary sessions to determine participants’ earnings in
the main experiment.

In addition, we gave participants the opportunity to write notes to their “future self.” Below each
decision problem participants could write down the reasoning behind their choice of action in a
text box. What they typed was displayed later on in the experiment. We told participants that these
notes would help them when making choices in the second part of the experiment.

To account for possible order effects, we gave participants another opportunity to revisit their
choices and confirm them.17 We displayed their notes and participants were able to modify these.
Afterwards, participants advanced to the next part of the experiment.

In the second part of the experiment, we elicited participants’ approximate valuations via choice
lists. We asked them tomake a series of choices between playing the four decision problems against
both Player𝑍 typeswith their action choices from the first part of the experiment and sure amounts.
For example, suppose that in the first part of the experiment a participant chose action 𝑐 in any given
3×3 game, as highlighted in Figure 4. The payoff from the decision problem depends on the action
chosen by Player 𝑍 and is either $12, $8, or $0 if Player 𝑍 chose 𝐴, 𝐵, or 𝐶, respectively.

The choice problems were organized in four pairs (4 × 2 = 8 lists), where Option 𝐴 changed
17We find no evidence of order effects, using both parametric and non-parametric tests.
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Figure 4: Valuation Task

across lists and represented participants’ payoffs from each of the four decision problems against
both opponent types from the first part of the experiment. Option 𝐵 paid with certainty and started
at $8 in the decision of the choice list, and increased by $0.25 as the participant moved from one
line to the next until $14. For each decision problem, we showed participants their notes from the
first part of the experiment to remind them of their reasoning behind their action choices.

Finally, one of the choice problems in one of the choice lists was randomly selected, and the
participants’ choice in that choice problem determined their payment. If a participant chose the
sure amount inOption𝐵, then they received the payment specified inOption𝐵 in that choice prob-
lem. If a participant opted for Option 𝐴, then their payment depended on the action chosen in the
decision problem in the first part of the experiment, if their Player𝑍was an undergraduate student
from any year or discipline or a Ph.D. student in Economics, and on the action chosen by Player𝑍.
Figure 5 highlights the timeline of the experiment and summarizes the key features.
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𝑡 = 0

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

𝑡 = 5

𝑡 = 6

𝑡 = 7

𝑡 = 8

Decisions for Player 𝑍 collected:
– auxiliary sessions with UG & Econ Ph.D. students

Instructions for Part I:
– screen locked for ten minutes

Nine incentivized quiz questions

Four decision problems facing Player 𝑍 of two types:
– decision problems in random order
– opponent’s order randomized
– notes to (future) self
– action choice buttons locked for three minutes
Four decision problems revisited:
– confirmation of action choices
– editable notes to (future) self displayed

Instructions for Part II:
– screen locked for ten minutes

Five incentivized quiz questions

Valuation task:
– four decision problems in same order
– opponent’s order reversed
– notes to (future) self displayed

Payment details determined and displayed

↓ indicates tasks in chronological order; ↷ indicates decisions used for
later task; 99K indicates decisions used to determine payment.

Figure 5: Timeline of the Experiment

3.2 Participants and Procedure
We conducted the experiment online due to the COVID-19 pandemic in April 2020 with students
enrolled atTheUniversity of Toronto. Participants were recruited fromToronto Experimental Eco-
nomics Laboratory’s (TEEL) pool using ORSEE (Greiner 2015). No subject participated in more
than one session. Participants signed up ahead of time for a particular day, either the 4𝑡ℎ or 5𝑡ℎ
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of April 2020 for the auxiliary part of the experiment; or the 11𝑡ℎ, 13𝑡ℎ, and 15𝑡ℎ to 20𝑡ℎ of April
2020 for the main experiment. On the day of the experiment, we sent participants an electronic
link at 8 AM EDT, and they had to complete the tasks by 8 PM EDT. During this time window,
participants could contact an experimenter via cell phone or Skype for assistance. After reading
the instructions, participants had to correctly answer nine incentivized comprehension questions
before starting the first task, and further five incentivized comprehension questions before start-
ing the second task. We paid $0.25 for answering each question correctly on their first trial. If
participants made a mistake, no payment was made for that question, but they had to answer it
correctly in order to move to the next question. The experiment was programmed in oTree (Chen,
Schonger, and Wickens 2016). We recruited a total of 244 (9 for the auxiliary sessions and 235 for
the main experiment) participants and all payments were made via Interac e-transfer, a commonly
used payment method by Canadian banks that only requires an e-mail address and a bank account.
The average participant earned approximately $18 (maximum payment was $22.50 and minimum
payment was $5.50), including a show-up payment of $5. All payments were in Canadian dollars.
The instructions and experimental interface are reproduced in the Online Appendix.18

3.3 Discussion of the Implementation and Procedure
The core idea of this paper is to identify a novel behavior that reflects the participants’ belief that
while other participants may be rational, they cannot model the behavior of them and hence pre-
dict it. Thus far, we developed an identification strategy for such behavior and before presenting
the results on the evaluation of its pervasiveness, we briefly discuss some aspects of the experimen-
tal implementation and its procedure. We collected Player 𝑍’s decisions on action choices in the
four games in two separate auxiliary sessions. This has the following advantages: First, we were
able to match participants (Player 𝑌 and Player 𝑍) with the same sophistication level. Second,
we could collect all decisions in the main experiment in an “individual decision-making” frame-
work. As we collected the data during the COVID-19 pandemic, we could not run any experiment
sessions in the laboratory. Instead, undergraduate students enrolled at The University of Toronto
participated remotely. Thus, we were able to avoid any coordination issues stemming from simulta-
neous strategic decision-making in an online context. Lastly, as payments in the auxiliary sessions
had materialized already, this design can ameliorate utilitarian choices of the participants in the
main experiment. As alluded to above, all experiment sessions took place online. To avoid quick
heuristic-based decision-making, we forced participants to spent at least 10 minutes on each set of
instructions and at least 3 minutes on each of the four games against either opponent type before
buttons were activated. Further, we presented all four games in random order to avoid any order
effects, and, in addition, gave participants the opportunity to revise their decisions after they were
exposed to all four games and had selected an action choice. Remaining conscious of possible or-
der effects, we also reversed the opponent order between the two parts of the experiment. That is,
if participants faced always an undergraduate student before a Ph.D. student in Economics when
choosing an action, then they always faced a Ph.D. student in Economics before an undergradu-
ate student in the valuation task and vice versa. A possible downside of our online experiment –
though not a characteristic that is unique to our experiment – is the reduction of control. As such,
18A live version with all dynamic elements displayed to participants can be accessed upon request.
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we may expect noisier data relative to “standard” laboratory experiments. Nevertheless, there is no
reason to expect behavioral deviations in any systematic way.

4 Results
We break the analysis into four sections. We begin with presenting the aggregate experimental
results focusing first on preferences between 𝐿𝐺 and𝐷𝑆 and then explore the valuation data across
all four games. Third we will focus on behavior conditional on the opponent’s identity: whether
Player 𝑍 was an undergraduate student or a Ph.D. student in Economics. Last we consider non-
choice data embedded in the subject’s notes.

4.1 Aggregate Choices
In total, we collected data of 𝑁 = 235 participants. We impose two exclusion restrictions at the
subject-level for the 𝐿𝐺 and 𝐷𝑆 choices. First, we include only participants in our analysis whose
valuations are consistent with them being rational. That is, we exclude participants from our anal-
ysis whose valuations are inconsistent with best-responding.19 Second, we exclude participants
from our analysis who played 𝑏 in 𝐷𝑆, as it is inconsistent with the iterative ‘top-down’ model of
reasoning and would require a large deviation from ‘belief in rationality’ to be a best response.
We are carefully removing these participants as we do not want to confound a preference for the
predictability of the opponent’s behavior with participants holding “eccentric” beliefs and hence
resulting in𝐷𝑆 being valued at 𝑣 = 13. Since we are interested in participants that satisfy these ex-
clusion restrictions against both opponent types (the intersection), we restrict attention to 𝑛 = 161
participants.20 Table 1 provides an overview of the frequency of actions choices in 𝐿𝐺 and𝐷𝑆.

Table 1: Frequency of Action Choices in the Diagnostic Games

Action 𝐿𝐺 𝐷𝑆
𝑎 230/322 20/322
𝑏 28/322 —
𝑐 39/322 302/322
𝑑 25/322 —

All choices made irrespective of opponent type.

In 𝐿𝐺, approximately 71% of choices are concentrated on action 𝑎, and the remainder is roughly
equally distributed among actions 𝑏, 𝑐, and 𝑑. In 𝐷𝑆, roughly 94% of choices fall on action 𝑐 with
the remaining 6% playing action 𝑎.

As a first pass, we summarize choice behavior and the ranking of𝐷𝑆 and 𝐿𝐺 irrespective of the
opponent type. Table 2 lists these results.

The observed choices are clearly at odds with the predictions of the iterative reasoning model
or Nash equilibrium. While players are predicted to strictly prefer 𝐿𝐺 over𝐷𝑆, less than half of all
19More precisely, we exclude subjects whose valuations exceed the maximum possible payoff given their action choice
(e.g., playing action 𝑎 with a valuation 𝑣 = 14 in𝐷𝑆) and those playing 𝑎 in𝐷𝑆 with a valuation 𝑣 ≥ 12.

20All analyses reported in the main text are replicated for all participants in our sample. These results are reported in
Appendix A.
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Table 2: Aggregate Results

𝐷𝑆 ≿ 𝐿𝐺 𝐷𝑆 ≺ 𝐿𝐺
𝐼 − 𝑅 Prediction nil all

Ratio 170/322 152/322
Percentage 52.8% 47.2%

All choices made irrespective of opponent type.
𝐼 − 𝑅 ≡ Iterative ‘top-down’ model of reasoning.

observed choices are in line with the prediction. This is the first evidence at the aggregate choice-
level that suggests that participants may value the predictability of their opponents’ actions. Put
differently, themajority of choices suggest that participants are not able tomodel, and hence predict,
the behavior of others in 𝐿𝐺.

Introducing controls As a next step, we include the two control games in our aggregate-choice
analysis. We are interested in those participants who weakly prefer the dominance-solvable game
𝐷𝑆 over the more complex game 𝐿𝐺, and not those who may have a preference for smaller games
or Nash equilibrium in pure strategies per se. To do so, we first extend the requirement that partic-
ipants make choices consistent with best-responding to both𝑀𝑆 and 𝑁𝐸 games21 As a result, we
are now focussing on 121 participants facing an undergraduate student and 119 participants facing
a Ph.D. students in Economics, respectively. Table 3 lists these results of 240 choices irrespective of
opponent type. As is evident, controlling for best-response inconsistency at the aggregate choice
level does not make a substantial dent on participants’ overall ranking of𝐷𝑆 and 𝐿𝐺.

Table 3: Aggregate Results – Controlling for Best-Response Inconsistency
and Equal Valuations of All Smaller Games

𝐷𝑆 ≿ 𝐿𝐺 𝐷𝑆 ≺ 𝐿𝐺
𝐼 − 𝑅 Prediction nil all

Control #1 117/240 123/240
B-R Inconsistency 48.8% 51.2%

Control #2 110/225 115/225
Equal Valuations 48.9% 51.1%

All choices made irrespective of opponent type excluding all choices that
C#1: inconsistent with best-responses; C#2: value𝐷𝑆,𝑀𝑆, and𝑁𝐸 equally.

𝐼 − 𝑅 ≡ Iterative ‘top-down’ model of reasoning.

Next, we leverage𝑀𝑆 and𝑁𝐸 and, in this step, exclude only those choices that value all small
games equally, i.e., 𝑣𝐷𝑆 = 𝑣𝑀𝑆 = 𝑣𝑁𝐸 (Control #2 in Table 3). This allows us to control for those
participants who have high valuations in 𝐷𝑆 relative to 𝐿𝐺 not because it is easier to predict be-
havior in this game, but rather because of a preference for smaller games or Nash equilibrium in
pure strategies. This results in concentrating on 116 participants playing against an undergraduate
student and 109 participants playing against a Ph.D. students in Economics, respectively.
21In particular, in this step, we remove participants who play 𝑎with a valuation 𝑣 ≥ 12, and further exclude those whose
valuations exceed the maximum possible payoff given their action choice in either of the two control games.
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This control does not make a substantial dent on the overall ranking of 𝐷𝑆 and 𝐿𝐺 either. The
conclusion remains qualitatively the same when allowing for one line difference (±0.25) in val-
uations across all small games with 106/213 weakly preferring 𝐷𝑆 over 𝐿𝐺 and 107/213 strictly
preferring 𝐿𝐺 over𝐷𝑆, respectively. Overall, the inclusion of the controls does not alter the results.
While the ratio of those who weakly prefer 𝐷𝑆 over 𝐿𝐺 somewhat decreases, the big picture still
suggests that participants may value the predictability of their opponents’ actions.22

Aggregate choices – belief that opponent is rational This is also true – and even more strongly pro-
nounced – if participants believe that their opponents are rational. This means that the player is
confident that Player𝑍 is rational. Our design allows us to identify these participants by exploiting
the valuation data collected in the second part of our experiment. Table 4 summarizes the choice
behavior by the ranking of𝐷𝑆 and 𝐿𝐺 irrespective of the opponent type but conditional on believ-
ing in the opponent’s rationality.

Table 4: Aggregate Results – Belief that Opponent Is Rational

𝐷𝑆 ≿ 𝐿𝐺 𝐷𝑆 ≺ 𝐿𝐺
𝐼 − 𝑅 Prediction nil all

Ratio 113/177 64/177
Percentage 63.8% 36.2%

All choices made irrespective of opponent type
conditional on believing in opponent’s rationality.
𝐼 − 𝑅 ≡ Iterative ‘top-down’ model of reasoning.

4.2 Empirical Value Distributions
We revert to the (unconditional) aggregate results as summarized in Table 2. Moving beyond sum-
mary statistics, we now turn to the empirical distribution of valuations by the ranking of 𝐷𝑆 and
𝐿𝐺 induced by the valuations. Thus far we only discussed the ordinal information gathered in our
experiment. Now we enrich our discussion by leveraging the cardinal information obtained in the
valuation task. Figure 6 visualizes the empirical distributions of the valuations of the two diagnostic
games,𝐷𝑆 and 𝐿𝐺, as well as the two control games,𝑀𝑆 and𝑁𝐸.

For the diagnostic games, the value distribution for 𝐷𝑆 (𝐿𝐺) is significantly higher (lower) in
stochastic dominance when 𝐷𝑆 ≿ 𝐿𝐺 than 𝐷𝑆 ≺ 𝐿𝐺: two-sample Kolmogorov-Smirnov test pro-
duces 𝑝 < 0.001.23 While differences between how the two groups value 𝐷𝑆 and 𝐿𝐺 are expected
given how the groups are defined, the value distributions provide further support for the idea that
the 𝐷𝑆 ≿ 𝐿𝐺 group prioritizes reasoning about rationality as an organizing principle. First, the
large differences between the empirical value distributions in 𝐿𝐺 indicates that the 𝐷𝑆 ≿ 𝐿𝐺 par-
ticipants face difficulties in modeling and predicting the opponents’ behavior in 𝐿𝐺 – a game where
22Apotential concernmay arise because we used choice lists to elicit participants’ approximate valuation for each game.
As these lists are discrete we could potentially misclassify participants. Those participants who valued both 𝐿𝐺 and
𝐷𝑆 exactly at 12.25 could be classified as ranking𝐷𝑆weakly above 𝐿𝐺 even though being consistent with the iterative
‘top-down’ model of reasoning. Of the 322 choices presented in Table 2, only 24 choices value both games exactly at
12.25. For the controls, this number reduces further to 9 of 240 and 8 of 225 choices.

23In this discussion of empirical value distributions, all reported 𝑝-values are associated with two-sample Kolmogorov-
Smirnov tests.
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Figure 6: Empirical Value Distributions of All Games by the Ranking of𝐷𝑆 and 𝐿𝐺 for All 𝑛 = 322
Choices. Top Row: The diagnostic games. Left: 𝐷𝑆; Right: 𝐿𝐺; Bottom Row: The control games.
Left: 𝑀𝑆; Right: 𝑁𝐸.

reasoning about rationality plays no predictive role. Second, participants’ valuation in 𝐷𝑆 allows
us to infer their (confidence in their) beliefs about rationality: we can infer that participants with
12 ≤ 𝑣 ≤ 12.25 believe that their opponents are rational. Thus, the large differences between the
empirical value distributions in 𝐷𝑆 indicates that the 𝐷𝑆 ≿ 𝐿𝐺 group is more likely to believe in
rationality relative to the𝐷𝑆 ≺ 𝐿𝐺 group.

For the two control games, the empirical value distributions by ranking of 𝐷𝑆 and 𝐿𝐺 (the
two groups) overlap and cross each other several times as well. Thus, it is not surprising that no
statistically significant differences can be detected (𝑝 ≥ 0.412). This also supports the hypothesis
that the relative preference for𝐷𝑆 over 𝐿𝐺 between the two groups is not driven by a preference for
small games or Nash equilibrium in pure strategies as these two groups value𝑀𝑆 and𝑁𝐸 similarly.
Comparing the empirical value distributions across all small games also sheds some light on how
participants value 𝐷𝑆 relatively to𝑀𝑆 and 𝑁𝐸. Irrespective of the the ranking of our diagnostic
games, a significantly larger mass of choices concentrates at 12 ≤ 𝑣 ≤ 12.25 compared to the two
control games. We interpret this as an indication that for our participants the opponents’ behavior
in𝐷𝑆 is indeed easier to model and choices easier to predict.

So far we only visualized the empirical value distributions separately for each game by the rank-
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ing of the set of diagnostic games. The novel behavior we propose is rooted in the player’s belief that
while other players may be rational, they cannot model the behavior of others and hence predict it.
In Figure 7, we show the empirical value distributions for all games by the ranking of𝐷𝑆 and 𝐿𝐺.

Figure 7: Empirical Value Distributions of𝐷𝑆,𝑀𝑆, and𝑁𝐸 by Ranking of𝐷𝑆 and 𝐿𝐺

For the 𝐷𝑆 ≿ 𝐿𝐺 group, the valuation distribution for 𝐷𝑆 first-order stochastically dominates
the valuation distributions of the two control games (both 𝑝 < 0.001). Further, no statistical dif-
ferences are observed when comparing the distributions of the two control games (𝑝 = 0.657). By
contrast, when𝐷𝑆 ≺ 𝐿𝐺, the valuation distributions of all small games overlap and are statistically
indistinguishable from each other with the exception of 𝐷𝑆 and 𝑁𝐸 (𝑝 = 0.047).24 We interpret
these findings as further evidence that for approximately half of our participants,𝐷𝑆 is indeed very
attractive because it permits easier modeling and hence predicting the opponent’s choices. The
other half of participants, however, appear not to distinguish between the small games and, inter
alia, have strictly higher valuations for 𝐿𝐺 than𝐷𝑆.

Empirical value distributions – belief that opponent is rational We have established that a large
fraction of choices weakly prefer 𝐷𝑆 over 𝐿𝐺. This observation is even starker for those believing
in the opponent’s rationality – behavior that our identification strategy aims to capture by con-
centrating on those who played 𝑐 in 𝐷𝑆 with 12 ≤ 𝑣 ≤ 12.25. In other words, now we emphasize
observed choices by participants who believe that their opponents are rational. Below, we highlight
the empirical value distributions for all games by preference relation over 𝐷𝑆 and 𝐿𝐺, as shown in
Figure 8.

Differences in empirical value distributions are even more distinct for those who rank𝐷𝑆 over
𝐿𝐺 when holding the belief that their opponent is rational. That is, the player being confident
that their opponent is rational. The valuation distribution for 𝐷𝑆 clearly first-order stochastically
dominates the valuation distributions of the two control games as well as 𝐿𝐺 (all 𝑝 < 0.001).25

Similarly to the unconditional empirical value distributions depicted in Figure 6, when 𝐷𝑆 ≺ 𝐿𝐺,
24Differences in valuation distributions are not significant: 𝑝 = 0.397 from comparing games 𝐷𝑆 vs. 𝑀𝑆 and𝑀𝑆 vs.
𝑁𝐸, respectively.

25Differences in valuation distributions are only significant for 𝐿𝐺 vs. 𝑀𝑆 with 𝑝 = 0.290. By contrast, 𝑝 = 0.487 and
𝑝 = 0.830 from comparing 𝐿𝐺 vs. 𝑁𝐸 and𝑀𝑆 vs. 𝑁𝐸, respectively.
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Figure 8: Empirical Value Distributions of𝐷𝑆,𝑀𝑆, and𝑁𝐸 by Preference Relation

the valuation distributions of the two control games overlap and are statistically indistinguishable
from each other (𝑝 = 0.160). Clearly, the difference between 𝐿𝐺 and the remaining games as well
as the difference between𝐷𝑆 and both𝑀𝑆 and𝑁𝐸 is statistically significant (all 𝑝 < 0.001).

4.3 Opponent Type
Wenow turn to choices at the subject-level and discuss differences in behavior by opponent type. As
before, we maintain all our exclusion restrictions discussed above and thus concentrate on 𝑛 = 161
participants. We have established that approximately half of the choices made by these participants
are consistent with difficulty of predicting others’ behavior. Recall that this turns out to be true even
if they believe their opponents are rational. Among this subset of participants, approximately 68%
behave as though they are not able to model the behavior of others.

Table 5: Ranking of𝐷𝑆 and 𝐿𝐺 by Opponent Type

Undergraduate
𝐷𝑆 ≿ 𝐿𝐺 𝐷𝑆 ≺ 𝐿𝐺

Ph
.D
.

𝐷𝑆 ≿ 𝐿𝐺 𝐼 − 𝑅 Prediction 𝑛𝑖𝑙 𝑛𝑖𝑙
Ratio 61/161 19/161

Percentage 37.9% 11.8%

𝐷𝑆 ≺ 𝐿𝐺 𝐼 − 𝑅 Prediction 𝑛𝑖𝑙 𝑎𝑙𝑙
Ratio 29/161 52/161

Percentage 18.0% 32.3%
𝐼 − 𝑅 ≡ Iterative ‘top-down’ model of reasoning.

Table 5 shows the comparative statics of the ranking over the set of diagnostic games conditional
on the opponent’s identity, that is, whether participants played against an undergraduate student or
a Ph.D. student in Economics.

As can be easily seen, the choices made by these participants are consistent with difficulty of
modeling and hence predicting others’ behavior. These numbers are not overly sensitive to the
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opponent’s type: roughly 70% of participants exhibit a stable model of reasoning irrespective of
the opponent’s characteristics. That is, the majority of participants respond similarly to both un-
dergraduates and economic Ph.D. students. Specifically, about 32% of participants can predict the
choices of both undergraduate and Ph.D. students in 𝐿𝐺 and about 38% find it challenging to pre-
dict the choices of either. Among the remainder, of those who respond to the opponent’s type, the
results are split. Roughly 12% can predict the choices of undergraduates and not Ph.D. students,
while 18% can predict the choices of Ph.D. students and not undergraduates.

By exploiting the cardinal information collected in the valuation task, we are able to detect not
only ordinal differences in the ranking over the diagnostic games but also more nuanced differ-
ences: whether 𝐷𝑆 becomes relatively more or less attractive conditional on both the preference
relation over 𝐷𝑆 and 𝐿𝐺 as well as the opponent’s sophistication. The corresponding difference in
differences of valuations (𝑣𝐿𝐺 − 𝑣𝐷𝑆) by opponent type are depicted in Figure 9.

G: DS ≿ LG & UG: DS ≿ LG G: DS ≿ LG & UG: DS ≺ LG

G: DS ≺ LG & UG: DS ≿ LG G: DS ≺ LG & UG: DS ≺ LG

Figure 9: Difference in Differences of Valuations of 𝐿𝐺 and 𝐷𝑆 by Ranking of 𝐷𝑆 and 𝐿𝐺 and by
Opponent Type

As visualized in Figure 9, depending on the preference relation over the games by opponent
type, participants indeed value the games differently when facing either an undergraduate student
or a Ph.D. student in Economics. On one hand, when 𝐷𝑆 ≿ 𝐿𝐺 against both types, 𝐷𝑆 becomes
relatively less valuable when playing against a Ph.D. student in Economics. This difference is sta-
tistically significant at the 5%-level using both t-test and Wilcoxon’s signed-rank test (𝑝 < 0.026).
On the other hand, when 𝐷𝑆 ≺ 𝐿𝐺, 𝐷𝑆 becomes relatively more valuable when facing a Ph.D. stu-
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dent in Economics. This difference, however, is not statistically significant (𝑝 > 0.257 for both
tests). Naturally, whenever 𝐷𝑆 ≺ 𝐿𝐺 against one opponent type but not the other, the differences
are statistically significant at the 1%-level (all 𝑝 < 0.001). Overall, around 32% of participants can
predict the choices of both opponent types and roughly 38% cannot predict the choices of either.
Both groups, however, display stark asymmetries by type: 𝐷𝑆 becomes relatively more (less) attrac-
tive when facing a Ph.D. student in Economics whenever the participant is able (unable) to predict
the choices of both (either) opponent types. The direction of these asymmetries in the observed
choices by opponent type firmly surprised us. If anything, we conjectured 𝐷𝑆 becoming relatively
more attractive when playing against a Ph.D. student in Economics conditional on experiencing
difficulties in predicting the opponent’s choices. While these findings indeed surprised us, there
are obvious explanations for such behavior. To begin with, we conjectured that the – carefully de-
signed – attractiveness of 𝐷𝑆 relative to 𝐿𝐺 would be relatively more important for Ph.D. students
in Economics than undergraduate students. Put differently, we conjectured participants to be more
(less) likely to hold the belief that the opponent is rational when playing against (undergraduate)
Ph.D. students; which in turn dominates the potential increased unpredictability of Ph.D. students
in 𝐿𝐺. However, the reverse occurred in our data with the unpredictability of Ph.D. students in 𝐿𝐺
dominating the “rationality-impact” in 𝐷𝑆. The findings do not qualitatively change when we re-
strict attention to those participants who hold the belief that their opponent is rational. Participants
face more difficulties when predicting the opponent’s choices in 𝐿𝐺 against Ph.D. students relative
to undergraduate students. When𝐷𝑆 is ranked above 𝐿𝐺 against both types,𝐷𝑆 still becomes rela-
tively less enticingwhen playing against a Ph.D. student in Economics. This difference is statistically
significant at the 5%-level using both t-test and Wilcoxon’s signed-rank test (𝑝 < 0.034). When𝐷𝑆
is ranked below 𝐿𝐺, 𝐷𝑆 still becomes relatively more alluring when facing a Ph.D. student. It is
not statistically significant (𝑝 > 0.160 for both tests), as in the aggregate-choice analysis. As above,
when 𝐷𝑆 is ranked above 𝐿𝐺 against one opponent type but not the other, the differences are also
statistically significant at the 1%-level (all 𝑝 < 0.008).

Robustness test As a further robustness test and to complement the non-parametric analysis and
key elements discussed so far in this section, we ran ordinary least-square regressions with random
effects controlling for order effects as well as the opponent order. In particular, we regressed the
difference in valuations of 𝐿𝐺 and𝐷𝑆 (𝑣𝐿𝐺 − 𝑣𝐷𝑆) on the opponent dummy Ph.D., which is 0 when
facing an undergraduate student and 1 when playing with a Ph.D. student in Economics, and the
valuations for both𝑀𝑆 and𝑁𝐸. Further, we include the game order dummy DS before LG, which
is 0 if 𝐿𝐺 is displayed before𝐷𝑆 and 1 if𝐷𝑆 is displayed before 𝐿𝐺. In addition, we also include the
opponent order dummyGbeforeUG, which is 0 if participants played first against an undergraduate
student and afterwards against a Ph.D. student in Economics in the first part of the experiment and
1 if the order is reversed.

To account for the fact that we observe each participant repeatedly and behavior across games
for the same participant is not independent, we treat each participant as our units of statistically
independent observations. We first split our sample by preference relation over the set of diagnostic
games and opponent type (= 2× 2) as in Table 5 and then estimate the model using the full sample.
As above, we exclude participants fromour analysiswhose valuations exceed themaximumpossible
payoff given their action, those who played 𝑏 in 𝐷𝑆, and those who are inconsistent with best-
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responding in𝐷𝑆.26 Table 6 lists the results from this analysis.

Table 6: OLS Estimations with Random Effects of Difference in Valuations of 𝐿𝐺 and𝐷𝑆

Ranking by UG:𝐷𝑆 ≿ 𝐿𝐺 UG:𝐷𝑆 ≿ 𝐿𝐺 UG:𝐷𝑆 ≺ 𝐿𝐺 UG:𝐷𝑆 ≺ 𝐿𝐺 All
Opponent G:𝐷𝑆 ≿ 𝐿𝐺 G:𝐷𝑆 ≺ 𝐿𝐺 G:𝐷𝑆 ≿ 𝐿𝐺 G:𝐷𝑆 ≺ 𝐿𝐺

𝑣𝐿𝐺 − 𝑣𝐷𝑆 𝑣𝐿𝐺 − 𝑣𝐷𝑆 𝑣𝐿𝐺 − 𝑣𝐷𝑆 𝑣𝐿𝐺 − 𝑣𝐷𝑆 𝑣𝐿𝐺 − 𝑣𝐷𝑆
Intercept −0.649 −0.046 4.692∗∗ 3.311∗∗∗ 0.322

(1.198) (1.546) (1.994) (0.877) (0.969)
Ph.D. 0.463∗∗ 3.196∗∗∗ −2.810∗∗∗ −0.112 0.367∗

(0.220) (0.407) (0.609) (0.129) (0.197)
𝑣𝑀𝑆 0.016 −0.221∗ -0.192 −0.216∗∗∗ −0.084

(0.081) (0.126) (0.205) (0.081) (0.076)
𝑣𝑁𝐸 -0.082 0.079 -0.114 0.065 0.073

(0.096) (0.140) (0.184) (0.090) (0.084)
𝐷𝑆 before 𝐿𝐺 -0.152

(0.298)
𝐺 before 𝑈𝐺 0.048

(0.303)
𝜎𝜖 0.972 1.253 1.369 0.599 1.483
𝜎𝑢 0.982 0.288 0.475 1.102 1.292
N 83 42 25 90 240
(Between) R-squared 0.001 0.228 0.611 0.080 0.004
∗∗∗Significant at the 1 percent level; ∗∗Significant at the 5 percent level; ∗Significant at the 10 percent level

We find a strong effect of the observed characteristic of the opponent, Ph.D., on the difference
in valuations of 𝐿𝐺 and 𝐷𝑆 for all ranking as long as 𝐷𝑆 ≿ 𝐿𝐺 against at least one opponent type.
This is also mildly true for the full sample, irrespective of the ranking over the set of diagnostic
games. As expected, we do not find a strong of type when 𝐷𝑆 ≺ 𝐿𝐺. These estimation results are
in line with the difference in differences of valuations by opponent type and by ranking of 𝐿𝐺 and
𝐷𝑆, as depicted in Figure 9. We do not find any indication of order effects, either due to presenting
participants 𝐿𝐺 or 𝐷𝑆 before the other as well as playing each of the four games first against an
undergraduate student or a Ph.D. student in Economics in the first part of the experiment.

4.4 Non-Choice Data
Recall that we gave participants the opportunity to write notes to their “future-self.” Below each of
the two diagnostic games as well as two control games against either opponent type, participants
could write down the reasoning behind their choice of action in a text box. If participants decided
to type anything in these text boxes, then it was displayed later on again in the experiment: the
first time when participants were prompted to confirm their choice of action and a second time
when facing the valuation task. We did not force participants to write anything in these text boxes,
however, we told them that these notes would help them when making choices in the second part
of the experiment. As expected, not all participants made use of this opportunity. Those who did,
26We replicated the same analysis on the entire sample and report the results in Appendix A.
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however, give us the opportunity to use their notes as “the window of the strategic soul.”27 Using
both action choice and valuation data, we documented evidence at the aggregate choice-level that
suggests that participants may value the predictability of their opponents’ behavior. Moreover, we
showed that this observation is even starker if participants believe that their opponents are rational
with 63.8% of choices ranking𝐷𝑆 higher than 𝐿𝐺. Among this subset of participants, we are curi-
ous to see whether there is any suggestive evidence of participants indicating that the opponents’
actions are predictable in 𝐷𝑆 and 𝐿𝐺, and if there is any difference by the ranking of 𝐷𝑆 and 𝐿𝐺.
We have established that 177 choices are consistent with holding the belief that their opponent is
rational, meaning that the player is confident that Player𝑍 is rational. In 106 (134) of these choices,
participants decided to write notes in𝐷𝑆 (𝐿𝐺). Table 7 provides summary statistics for this subset
of choices by the ranking of the set of diagnostic games.

Table 7: Notes – Belief that Opponent Is Rational

Indication that Player 𝑍’s Action Is Predictable
𝐷𝑆 𝐿𝐺

yes no yes no

𝐷𝑆 ≿ 𝐿𝐺 Ratio 45/67 22/67 29/86 57/86
Percentage 67.2% 32.8% 33.7% 66.3%

𝐷𝑆 ≺ 𝐿𝐺 Ratio 16/39 23/39 22/48 26/48
Percentage 41.0% 59.0% 45.8% 54.2%

Clearly, those who rank 𝐷𝑆 above 𝐿𝐺 indicate more frequently that the opponents’ action is
predictable in 𝐷𝑆 relative to those who rank 𝐷𝑆 below 𝐿𝐺. Those with 𝐷𝑆 ≿ 𝐿𝐺 indicate less fre-
quently that Player 𝑍’s action is predictable in 𝐿𝐺 compared to those with 𝐷𝑆 ≺ 𝐿𝐺. Although
participants’ notes cannot be quantified in a strict sense, they nevertheless provide further qual-
itative support for the idea that the 𝐷𝑆 ≿ 𝐿𝐺 group prioritizes reasoning about rationality as an
organizing principle.

5 Theoretical Analysis
In Section 2, we provided intuitive explanations for our identification strategy. In this section, we
elaborate and present a formal analysis.

5.1 Theory
Let 𝐺 = (𝑆1, 𝑆2, 𝑢1, 𝑢2) be a finite 2-player game where 𝑆𝑖 is player 𝑖’s strategy set and 𝜋𝑖 ∶ 𝑆1 × 𝑆2 →
ℝ is player 𝑖’s pecuniary payoff function, which depends on player 𝑖 and the other player’s (−𝑖)
strategies. We allow for general expected-utility preferences over monetary payoffs. Let U be the
set of vonNeumann-Morgenstern utility functions, which are strictly increasing functionsmapping
ℝ toℝ. For any 𝑢𝑖 ∈ U, the function 𝑢𝑖 ∘ 𝜋𝑖 ∶ 𝑆𝑖 × 𝑆−𝑖 → ℝ represents the utility of player 𝑖. Denote
27Vincent Crawford coined this term in Crawford (2008).
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by 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖) player 𝑖’s beliefs over player −𝑖’s strategies. Extend 𝑢𝑖(𝜋𝑖(𝑆𝑖, 𝑆−𝑖)) to 𝑢𝑖(𝜋𝑖(𝑆𝑖, 𝜇−𝑖)) in
the usual way to represent player 𝑖’s expected utility.

Throughout this paper we assume that players are rational. That is, all players best respond to
their beliefs about the play of others. Let 𝔹ℝ𝑖 be the best response set for each player 𝑖. This set
specifies the strategies that are a best response for player 𝑖 given both player 𝑖’s preferences, 𝑢𝑖 ∈ U,
and the belief they hold about the play of the other player, 𝜇−𝑖. Formally, for 𝑢𝑖 ∈ U and 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖),

𝔹ℝ𝑖[𝑢𝑖, 𝜇−𝑖] ∶= {𝑠𝑖 ∈ 𝑆𝑖 ∶ 𝑢𝑖(𝜋𝑖(𝑠𝑖, 𝜇−𝑖)) ≥ 𝑢𝑖(𝜋𝑖(𝑟𝑖, 𝜇−𝑖)), for each 𝑟𝑖 ∈ 𝑆𝑖}.

We will be interested in two solution concepts. First, the iterative ‘top-down’ model of rea-
soning, which captures how players reason when they can model the behavior of others. Second,
the concept of 2-rationalizable strategies, which incorporates the assumption that player 𝑖 is ratio-
nal and believes player −𝑖 is rational. This concept captures how players reason when they cannot
model the behavior of others. We define both below.

Iterative ‘top-down’ models of reasoning These models are anchored in the exogenously specified
L0 behavior: 𝜇0 = 𝜇01×𝜇02 ∈ 𝛥(𝑆1)×𝛥(𝑆2). Throughout this paper we impose a standard assumption
that the L0 type plays uniformly random: 𝜇0𝑖 (𝑠) = 1|𝑆𝑖| for all 𝑠 ∈ 𝑆𝑖. A common assumption in the
literature is that L0 type exists only in the minds of others, and anchors the beliefs of all higher
types. Here too, we focus on the behavior of the latter.

Before we define the behavior of an L𝑘 type in the general ‘top-down’ model of reasoning, it
may help to consider the simpler level-𝑘 model. This model imposes two restrictive assumptions.
First, it assumes risk-neutrality which implies that 𝑢𝑖 is the identity function 𝐼. Second, it assumes
that L𝑘 types believe that others are L(𝑘 − 1) types.

The behavior of all L𝑘 types can be defined recursively, anchored on the behavior of the L0
type. Denote by 𝐿𝑘,𝑙𝑒𝑣𝑒𝑙𝑘𝑖 the set of actions consistent with 𝑘 iterations of reasoning by player 𝑖 in the
level-𝑘 model. Then 𝐿1,𝑙𝑒𝑣𝑒𝑙𝑘𝑖 = 𝔹ℝ𝑖[𝐼, 𝜇0−𝑖]. This set includes any actions that maximize player 𝑖’s
expected payoffs given belief 𝜇0−𝑖. In other words, player 𝑖 believes that player−𝑖 is playing according
to behavior prescribed by the L0 type.

Next, assume the set 𝐿𝑘,𝑙𝑒𝑣𝑒𝑙𝑘𝑖 has been defined. Then we can readily define the behavior for
L(𝑘+1). Let 𝐿𝑘+1,𝑙𝑒𝑣𝑒𝑙𝑘𝑖 be the set of strategies 𝑠𝑖 so that 𝜇−𝑖(𝐿𝑘−𝑖) = 1 and 𝑠𝑖 ∈ 𝔹ℝ𝑖[𝐼, 𝜇−𝑖]. The former
condition guarantees that player 𝑖’s beliefs about player −𝑖’s play place positive probability only on
actions in 𝐿𝑘𝑖 . The latter condition ensures that 𝑠𝑖maximizes player 𝑖’s expected payoffs given beliefs.
Moving forward, for player 𝑖, we will refer to any action 𝑎𝑖 ∈ 𝐿𝑘,𝑙𝑒𝑣𝑒𝑙𝑘𝑖 as an action played by the L𝑘
type.

The behavior of an L𝑘 type in the general ‘top-down’ model of reasoning generalizes the simpler
level-𝑘 model to allow for three key features. First, a player may hold arbitrary risk preferences
within expected-utility. Second, a playermay hold any beliefs about the expected-utility preferences
of other players. Third, a player of L𝑘 type may hold any beliefs over lower types L0, ..., L(𝑘 − 1).

As in the level-𝑘model, all L𝑘 types’ behavior is anchored in L0 and can be defined recursively.
The definition of the 𝐿1𝑖 set is analogous to the level-𝑘 model, except allowing for arbitrary risk
preferences. Therefore, 𝐿1𝑖 is the set of strategies 𝑠𝑖 such that 𝑠𝑖 ∈ 𝔹ℝ𝑖[𝑢, 𝜇0−𝑖] for some 𝑢 ∈ U. The
𝐿1𝑖 set then naturally includes any actions that maximize player 𝑖’s expected-utility for some von
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Neumann-Morgenstern utility function 𝑢 given the belief 𝜇0−𝑖. That is, player 𝑖’s belief that player −𝑖
behaves according to the L0 type.

Further, assume the sets 𝐿𝑚𝑖 have been defined for all 𝑚 ∈ {1,… , 𝑘}. Then we can define the
behavior for L(𝑘 + 1). Denote by 𝑅𝑘𝑖 the set of strategies that can potentially be played by levels
1,… , 𝑘 of player 𝑖: 𝑅𝑘𝑖 = {∪𝑚∈{1,…,𝑚}𝐿𝑘𝑖 }. Let 𝐿𝑘+1𝑖 be the set of strategies 𝑠𝑖 such that there exists
some 𝑢 ∈ U and 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖) that satisfies the following two conditions. First, let 𝜇−𝑖 = 𝑝 ⋅𝜇0−𝑖 + (1−
𝑝) ⋅ 𝜇−𝑖(𝑅𝑘−𝑖) with 𝑝 ∈ [0, 1). That is, player 𝑖may assign probability 𝑝 < 1 that player −𝑖 is L0, and
probability (1 − 𝑝) that player −𝑖 is rational but can reason at most 𝑘 iterations. This ensures that
player 𝑖’s beliefs about player−𝑖’s behavior are consistentwith the assumption that players’ reasoning
is organized in a ‘top-down’ fashion. Put differently, player 𝑖 can only assign positive probability on
actions played by types with levels strictly less than (𝑘+1). Second, 𝑠𝑖 ∈ 𝔹ℝ𝑖[𝑢, 𝜇−𝑖]. This condition
ensures that player 𝑖’s strategy 𝑠𝑖 maximizes their expected utility given player 𝑖’s preferences 𝑢, and
the belief that player −𝑖 plays according to 𝜇−𝑖. Wewill refer to any action 𝑎𝑖 in 𝐿𝑘𝑖 as an action played
by the L𝑘 type for player 𝑖. We abuse notation slightly by referring to either 𝑎𝑖 ∈ 𝐿𝑘,𝑙𝑒𝑣𝑒𝑙𝑘𝑖 or 𝑎𝑖 ∈ 𝐿𝑘𝑖 as
an action played by the L𝑘 type, but make it clear in our discussion whether we refer to the simpler
level-𝑘model or the more general iterative ‘top-down’ model of reasoning.

2-rationalizability The solution concept of 2-rationalizable strategies incorporates both the as-
sumption of rationality and belief in rationality. We can define this solution concept recursively in
the following way. Let 𝑆1𝑖 be the set of strategies 𝑠𝑖 such that there exists some 𝑢 ∈ U and 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖)
with 𝑠𝑖 ∈ 𝔹ℝ𝑖[𝑢, 𝜇−𝑖]. The set 𝑆1𝑖 includes all rational strategies for player 𝑖. These are a best response
for player 𝑖 given their preference 𝑢 and beliefs 𝜇−𝑖 about player −𝑖’s play. We refer to any action 𝑎𝑖
in 𝑆1𝑖 as a 1-rationalizable strategy. Given this, we can define 𝑆2𝑖 as the set of strategies 𝑠𝑖 so that there
exists some 𝑢 ∈ U and 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖) that satisfies the following conditions. First, 𝑠𝑖 ∈ 𝔹ℝ𝑖[𝑢, 𝜇−𝑖],
which ensures that 𝑠𝑖 maximizes player 𝑖’s expected utility given the belief that player −𝑖 behaves
according to 𝜇−𝑖. Second, 𝜇−𝑖(𝑆1−𝑖) = 1, which guarantees that player 𝑖 believes rationality. That is,
player 𝑖 can only place positive probability on 1-rationalizable strategies, which are the strategies
consistent with the assumption that player −𝑖 is rational. We will refer to any action 𝑠𝑖 in 𝑆2𝑖 as a
2-rationalizable strategy.

5.2 Revisiting the Diagnostic Games
The large game “𝐿𝐺” To set the stage, we first consider the simpler level-𝑘 model. First, note
that we can denote any probability measure 𝑝 ∈ 𝛥(𝑆1) (and 𝑝 ∈ 𝛥(𝑆2), respectively) as a 4-tuple
(𝑝1, 𝑝2, 𝑝3, 𝑝4). This represents the probabilities over {𝑎, 𝑏, 𝑐, 𝑑} (and {𝐴, 𝐵, 𝐶,𝐷}, respectively).
Then in this game, L0 behavior is given by 𝜇0 = (1/4, 1/4, 1/4, 1/4) for both players. Moreover, the
𝐿𝑘,𝑙𝑒𝑣𝑒𝑙𝑘𝑖 sets can then be calculated recursively given the anchor 𝜇0:

𝐿𝑘,𝑙𝑒𝑣𝑒𝑙𝑘1 =
{
{
{

{𝑎} if 𝑘mod4 = 1, 2
{𝑏} if 𝑘mod4 = 0, 3

𝐿𝑘,𝑙𝑒𝑣𝑒𝑙𝑘2 =
{
{
{

{𝐶} if 𝑘mod4 = 0, 1
{𝐵} if 𝑘mod4 = 2, 3

TheL1 type of Player 1 plays actions 𝑎 or 𝑏 as this type is agnostic about the other player’s action
choice as they do not believe that their opponent is rational. Therefore, the L1 type plays 𝑎 or 𝑏 as

26



actions 𝑐 or 𝑑 induce payoffs that are dominated action 𝑎’s payoffs. Notice that 𝑎 is naturally a best
response to the belief that Player 2 is the L0 type and plays actions in {𝐴, 𝐵, 𝐶,𝐷}with equal chance.
Similarly, the L1 type of Player 2 plays action 𝐶 as this action delivers the highest payoffs.28 The L2
types then best respond to L1 behavior: the L2 type of Player 1 plays 𝑎 and the L2 type of Player
2 plays 𝐵. The L3 types then best respond to L2 behavior: the L3 type of Player 1 plays 𝑏 and the
L3 type of Player 2 plays 𝐵. This process continues for higher types ad infinitum. Thus, the level-𝑘
model predicts that Player 1 plays actions in {𝑎, 𝑏} (and Player 2 plays actions in {𝐵, 𝐶}).

The more general iterative ‘top-down’ model of reasoning delivers identical predictions as the
level-𝑘model: Player 1 plays actions in {𝑎, 𝑏} (and Player 2 plays actions in {𝐵, 𝐶}). The 𝐿𝑘𝑖 sets can
then be calculated recursively given the anchor 𝜇0:

𝐿𝑘1 = {𝑎, 𝑏} if 𝑘 ≥ 1 𝐿𝑘2 =
{
{
{

{𝐶} if 𝑘 = 1
{𝐵, 𝐶} if 𝑘 ≥ 2

Recall that the L1 type can play any strategy 𝑠𝑖 ∈ 𝐿1𝑖 . A strategy 𝑠𝑖 is in 𝐿1𝑖 if there exists some
𝑢 ∈ U such that 𝑠𝑖 ∈ 𝔹ℝ𝑖[𝑢, 𝜇0]. Clearly, action 𝑎 is in 𝐿11 as it maximizes the expected payoff
under the player’s belief 𝜇0. Importantly, we also need to ensure that 𝑎 is the only choice that
maximizes expected utility for every von Neumann-Morgenstern utility function 𝑢.29 We begin
with the observation that a strategy 𝑠𝑖 ∈ 𝑆𝑖 induces a lottery through the belief 𝑝 ∈ 𝛥(𝑆−𝑖), which we
denote 𝑠𝑖,𝑝. For example, the lottery 𝑎𝜇0 = (13, 1/4; 12, 1/4; 11, 1/4; 0, 1/4), in which Player 1 receives
with equal chance the pecuniary payoffs of 13, 12, 11, and 0. This lottery first-order stochastically
dominates the lotteries 𝑐𝜇0 and 𝑑𝜇0 . Thus, actions 𝑐 and 𝑑 cannot maximize the player’s expected
utility. The remaining action to consider is 𝑏. Notice that neither lotteries 𝑎𝜇0 nor 𝑏𝜇0 first-order
stochastically dominate each other. This means that we can find some 𝑢𝑏 ∈ U where 𝑢𝑏(𝜋(𝑏, 𝜇0)) ≥
𝑢𝑏(𝜋(𝑎, 𝜇0)). It follows that 𝑏 ∈ 𝔹ℝ𝑖[𝑢𝑏, 𝜇0]. In fact, if player 𝑖 is extremely risk-seeking, then action
𝑏 is their best response. To summarize, 𝐿11 = {𝑎, 𝑏}. Analogous arguments can be made for Player 2
to show that 𝐿12 = {𝐶}.

The L2 type of Player 1 can hold any belief about the play of Player 2 that takes the form of a
mixture between 𝜇0 and (0, 0, 1, 0). That is, beliefs take the form 𝜇2 = (𝑝0/4,𝑝0/4,𝑝0/4+ (1 −𝑝0),𝑝0/4)
for some 𝑝0 ∈ [0, 1). The lottery 𝑎𝜇2 still first-order stochastically dominates the lotteries 𝑐𝜇2 and
𝑑𝜇2 for any 𝑝0 ∈ [0, 1). Thus, 𝐿21 = {𝑎, 𝑏}.

For Player 2, the L2 type can hold any belief about Player 1’s behavior that is a mixture between
𝜇0 and the two degenerate beliefs: (1, 0, 0, 0) and (0, 1, 0, 0). In other words, beliefs take the form
𝜇1 = (𝑝0/4+𝑝𝑎,𝑝0/4+𝑝𝑏,𝑝0/4,𝑝0/4) for some 𝑝0, 𝑝𝑎, 𝑝𝑏 ∈ [0, 1]with 𝑝0+𝑝𝑎+𝑝𝑏 = 1 and 𝑝0 < 1. Con-
sider the case where 𝑝𝑎 ≠ 1, then the lottery 𝐶𝜇1 first-order stochastically dominates the lotteries
𝐴𝜇1 and 𝐷𝜇1 . Next, consider the case where 𝑝𝑎 = 1, then the lottery 𝐵𝜇1 first-order stochastically
dominates the lottery 𝑥𝜇1 for 𝑥 ∈ {𝐴, 𝐶,𝐷}. Thus, we conclude that 𝐿22 = {𝐵, 𝐶}. Moreover, for both

28Notice that actions 𝑎 and𝐶maximize the expected payoff under the players’ belief 𝜇0 as well. Further, our qualitative
data provides suggestive evidence that L1 types’ behavior is consistent with selecting the row that contains the highest
sequence of numbers.

29In what follows we will rely on the the following equivalence: a lottery 𝑝 first-order stochastically dominates lottery
𝑞 if and only if 𝑝 is preferred to 𝑞 for all 𝑢 ∈ U.
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players and using arguments analogous to those made above, it can be shown that 𝐿𝑘1 = {𝑎, 𝑏} and
𝐿𝑘2 = {𝐵, 𝐶} for all 𝑘 ≥ 3.

We now turn to the predictions when Player 1 only believes that Player 2 is rational, and nothing
beyond that. This includes the scenario where Player 1 believes that Player 2 may be more sophis-
ticated than Player 1. We are interested specifically in the 2-rationalizable set for Player 1, which
captures the case of a player who is rational and believes that Player 2 is rational. Here, Player 1
believes that Player 2 plays a 1-rationalizable strategy. The 2-rationalizable set for Player 1 and the
1-rationalizable set for Player 2 are:

𝑆21 = {𝑎, 𝑏, 𝑐, 𝑑} 𝑆12 = {𝐴, 𝐵, 𝐶,𝐷}

It is straightforward to see that all actions for Player 2 are 1-rationalizable. This is the case as
each action maximizes expected payoffs under some degenerate belief about the play of Player 1.
It follows that all actions are 2-rationalizable for Player 1 as each action for Player 1 maximizes
expected payoffs under some degenerate belief about Player 2’s behavior.

Lastly, we elicited participants’ valuation for each game, i.e., their certainty equivalent. Since
player’s utility function is monotone, the analyst can infer their ranking over the games. More-
over, the valuations reveal important information about participants’ beliefs. As such, we can learn
whether the level-𝑘model or the more general iterative ‘top-down’ model of reasoning is an accu-
rate predictor of participants’ behavior.

In the iterative ‘top-down’model of reasoning, restricting attention to types that are rational and
believe that their opponent is rational confines attention to types that assign zero weight on others
being the L0 type. The expected payoff in the 𝐿𝐺 game must be strictly greater than 12 for these
types. It is straightforward to confirm this claim by setting 𝑝0 = 0 in the above arguments. This
means that any type holds a belief that is a mixture of (0, 1, 0, 0) and (0, 0, 1, 0). For any such belief
𝜇2 = 𝑝(0, 1, 0, 0) + (1 − 𝑝)(0, 0, 1, 0), the lottery 𝑎𝜇2 = (12, 𝑝; 13, (1 − 𝑝)) delivers a payoff strictly
above 12 whenever 𝑝 ≠ 1 and the lottery 𝑏𝜇2 = (14, 𝑝; 0(1 − 𝑝)) delivers a payoff of 14 whenever
𝑝 = 1. To summarize, players who are rational and hold the belief that their opponents are rational
believe that they can guarantee themselves a payoff that is strictly greater than 12. It follows that
the certainty equivalent of 𝐿𝐺 for any expected utility player who believes that their opponent is
rational is strictly higher than 12.

Caution is potentially warranted if Player 1 is ambiguity averse as they may value 𝐿𝐺 at 12.
This, however, can only occur under an extreme form of ambiguity aversion coupled with the player
holding degenerate beliefs. It requires Player 1 to play the “safe” action 𝑎, to havemaxmin expected-
utility preferences and their set of priors must include beliefs that Player 2 plays 𝐵 with certainty
and a prior that assigns a probability strictly less than 6/7 that Player 2 plays 𝐵.30

Moving to payoffs when applying the concept of 2-rationalizability. A player that believes others
are rational can hold any belief over Player 2 choosing a 1-rationalizable action. This means that in
30Whether this is an important concern is an empirical question. We can exploit participants’ actions and valuations
in the control games to evaluate if ambiguity aversion dominates participants’ valuations. If we allow for for maxmin
expected utility preferences, and allow that the set of priors of a player of level (𝑘 + 1) includes all degenerate priors
consistent with the strategies in 𝐿𝑘2 in the control games, then (for any action in)𝑀𝑆 has to be valued at 8 and𝑁𝐸 at 11
(when playing action 𝑎). In our data, of all choices, only 2 choices exhibit such extreme form of ambiguity aversion.
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the 𝐿𝐺 game Player 1 can hold any belief about the play of Player 2. In this case, such players may
not believe that they can guarantee themselves any certain payoff. Moreover, one might reasonably
conjecture these expected payoffs to be less than 12.

The dominance-solvable game “𝐷𝑆” As in 𝐿𝐺, we first introduce the predictions of the level-𝑘
model. In this game, the L0 behavior is given by the 3-tuple 𝜇0 = (1/3, 1/3, 1/3) for both players.
Consequently, the 𝐿𝑘,𝑙𝑒𝑣𝑒𝑙𝑘𝑖 sets can then be calculated recursively given the anchor 𝜇0:

𝐿𝑘,𝑙𝑒𝑣𝑒𝑙𝑘1 =
{
{
{

{𝑎} if 𝑘 = 1
{𝑐} if 𝑘 ≥ 1

𝐿𝑘,𝑙𝑒𝑣𝑒𝑙𝑘2 = {𝐴} if 𝑘 ≥ 1

The L1 type of Player 1 plays action 𝑎 that maximizes their expected payoff as the payoffs in-
duced by action 𝑐 are dominated by those induced by action 𝑎. Similarly, the L1 type of Player 2
plays action 𝐴.31 As action 𝐴 is strictly dominant for Player 2, all L𝑘 types with 𝑘 ≥ 1 play 𝐴. In
turn, the L2 type of Player 1 plays 𝑐 and the L2 type of Player 2 plays the strictly dominant action.
This processes continues ad infinitum, however, no new actions are being played. Thus, the level-𝑘
model predicts that Player 1 plays actions in {𝑎, 𝑐} (and Player 2 plays the unique action in {𝐴}).

In this game, the predictions of the level-𝑘model and the iterative ‘top-down’ model of reason-
ing are not identical. In the more general model, allowing players to hold arbitrary expected utility
preference expands the set of actions that could be played by Player 1. The iterative ‘top-down’
model of reasoning predicts that Player 1 chooses actions in {𝑎, 𝑏, 𝑐} (and Player 2 plays actions in
{𝐴}). The 𝐿𝑘𝑖 sets are shown below. These can be calculated recursively given the anchor 𝜇0.

𝐿𝑘1 =
{
{
{

{𝑎, 𝑏} if 𝑘 = 1
{𝑎, 𝑏, 𝑐} if 𝑘 ≥ 2

𝐿𝑘2 = {𝐴} if 𝑘 ≥ 1

Webeginwith the behavior of the L1 type and consider Player 1. Action 𝑎 is in𝐿11 as itmaximizes
expected payoffs under the belief 𝜇0. The lottery 𝑎𝜇0 first-order stochastically dominates the lottery
𝑐𝜇0 and neither 𝑎𝜇0 nor 𝑏𝜇0 first-order stochastically dominate each other. In fact, if Player 1 is
extremely risk-seeking, then action 𝑏 is their best response. Therefore, 𝐿11 = {𝑎, 𝑏}. As above,
analogous arguments can be made for Player 2 to show that 𝐿12 = {𝐴}.

Turning to the behavior of the L2 type of Player 1, action 𝑐maximizes expected payoffs under
the degenerate belief (1, 0, 0), and thus 𝐿21 = {𝑎, 𝑏, 𝑐}. As action 𝐴 is strictly dominant for Player 2,
𝐿𝑘2 = {𝐴} for 𝑘 ≥ 1.

Lastly, we briefly discuss the 2-rationalizable predictions. Again, since 𝐴 is strictly dominant
for Player 2, it is the unique 1-rationalizable action. It follows that the only 2-rationalizable action
for Player 1 is 𝑐.

𝑆21 = {𝑐} 𝑆12 = {𝐴}

31Actions 𝑎 and 𝐴 also maximize the expected payoff under the players’ belief 𝜇0.
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In this game, a rational type who believes that their opponent is rational must hold beliefs of
the form (1, 0, 0). Such players believe that they can guarantee themselves a payoff of exactly 12
with certainty. Notice that reasoners who cannot model, and hence predict, Player 2’s behavior –
beyond the belief that Player 2 should play a 1-rationalizable strategy – might reasonably rank 𝐷𝑆
over 𝐿𝐺.

If Player 1 plays 𝑐 and values the game less that 12 it reveals to the analyst that the participant is
not confident that Player 2 is rational. Further, such valuations shed light on whether the simpler
level-𝑘model or the more general iterative ‘top-down’ model of reasoning that explicitly allows for
dispersed beliefs predicts participants’ behavior more accurately.

Player 1’s preferences over 𝐿𝐺 and 𝐷𝑆 We first restrict attention to players that are rational and
believe that their opponents are rational. Consider the preferences of such types over the two di-
agnostic games: 𝐿𝐺 and 𝐷𝑆. Although 𝐷𝑆 has a smaller strategy space compared to 𝐿𝐺 and is
dominance-solvable, the game’s expected payoff of 12 is strictly lower than the expected payoff of
𝐿𝐺 in the iterative ‘top-down’ model of reasoning. In other words, a ‘top-down’ iterative-reasoner
should strictly prefer to play 𝐿𝐺 over𝐷𝑆.

We now relax the assumption of belief in rationality. When considering the ‘top-down’model of
reasoning, this means that we allow players to place positive weight on the L0 type. Fix 𝑝0 ∈ [0, 1)
as the probability assigned to the L0 type. In 𝐿𝐺, the belief of a ‘top-down’ reasoner takes the
following form: 𝜇𝐿𝐺2 = 𝑝0(1/4, 1/4, 1/4, 1/4) +𝑝𝐵(0, 1, 0, 0) +𝑝𝐶(0, 0, 1, 0) for some 𝑝𝐵, 𝑝𝐶 ∈ [0, 1]with
𝑝0 + 𝑝𝐵 + 𝑝𝐶 = 1. In𝐷𝑆, the belief of such reasoner is 𝜇𝐷𝑆2 = 𝑝0(1/31/3, 1/3) + (1 − 𝑝0)(1, 0, 0).

First, notice that the lottery 𝑎𝐿𝐺𝜇𝐿𝐺2 = (0,
𝑝0/4; 12,𝑝0/4+𝑝𝐵; 13,𝑝0/4+𝑝𝐶; 11,𝑝0/4) first-order stochas-

tically dominates the lottery 𝑎𝐷𝑆𝜇𝐷𝑆2 = (0,
𝑝0/3 + 𝑝𝐴; 12, 𝑝0/3; 11, 𝑝0/3) for all 𝑝0, 𝑝𝐵 and 𝑝𝐶. Further, the

lottery 𝑎𝐿𝐺𝜇𝐿𝐺2 also first-order stochastically dominates the lottery 𝑐𝐷𝑆𝜇𝐷𝑆2 = (12, 1 −
2𝑝0/3; 8, 𝑝0/3; 0, 𝑝0/3; )

for all 𝑝0, 𝑝𝐵 and 𝑝𝐶. Thus, any iterative ‘top-down’ reasoner prefers to play the 𝐿𝐺 game over
actions 𝑎 or 𝑐 in the𝐷𝑆 game, regardless of risk preferences.32

6 Concluding Remarks
In iterative reasoning models, each player best-responds to belief that other players reason to some
finite level. In this paper, we propose a novel behavior that captures players holding the belief that
their opponent could be rational but they cannot model their behavior. Reverting to our example
from the introduction, it encompasses a situation where a player believes that their opponent can
reason to a higher level than they do. We developed a novel experimental design that permits us to
identify such behavior, and evaluate it experimentally.

We find that approximately half of the choicesmade by participants are consistent with difficulty
of predicting others’ behavior. This is true especially if they believe their opponents are rational.
32The only potential caveat here is that there may be an iterative ‘top-down’ reasoner who is extremely risk seeking
and at the same time very pessimistic about the rationality of others (high 𝑝0), and as such prefers the lottery 𝑏𝐷𝑆𝜇𝐷𝑆

2
=

(5, 𝑝0/3; 13, 1 − 2𝑝0/3; 0, 𝑝0/3) over any lotteries induced by the 𝐿𝐺 game. Such choices are extremely rare in our data.
Of 470 choices in total, only 8 participants choose to play 𝑏 in 𝐷𝑆 and value the game at 13 ≤ 𝑣 ≤ 13.25. As in the
analysis presented in Section 4, if we control for such players by focusing on those who play 𝑎 or 𝑐 in the𝐷𝑆 game, the
iterative ‘top-down’ model of reasoning makes the unambiguous prediction that such players rank 𝐿𝐺 over playing 𝑎
or 𝑐 in𝐷𝑆.
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Among those, 64% behave as though they are not able to model the behavior of others.
Interestingly, approximately 70% of participants exhibit a stablemodel of reasoning irrespective

of the opponent’s characteristics. Among the remainder, the results are split: around 12% canmodel
the behavior of undergraduate students but not of Ph.D. students, while around 18% can model the
behavior of Ph.D. students but not of undergraduate students.

To conclude, we document evidence that players may value predictability of their opponents
behavior.
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A Experimental Results of All Participants
In this section, we replicate and report all results reported in themain text. We begin by summariz-
ing choice behavior and the preference relation over𝐷𝑆 and 𝐿𝐺 irrespective of the opponent type.
Table A.1 lists these results.

Table A.1: Aggregate Results

𝐷𝑆 ≿ 𝐿𝐺 𝐷𝑆 ≺ 𝐿𝐺
𝐼 − 𝑅 Prediction nil all

Ratio 258/470 212/470
Percentage 54.9% 45.1%

All choices made irrespective of opponent type.
𝐼 − 𝑅 ≡ Iterative ‘top-down’ model of reasoning.

As a next step, we control for participants whose behavior is inconsistent with best-responding
across all games and either types. For example, we now remove participants who play 𝑎 with a
valuation 𝑣 ≥ 12, and further exclude those whose valuations exceed the maximum possible pay-
off given their action choice: 𝑏 with a valuation 𝑣 > 13.25 or 𝑐 with a valuation 𝑣 > 12.25 in
either of the two control games,𝑀𝑆 and𝑁𝐸. As a result, we are now focussing on 173 participants
playing against an undergraduate student and 164 participants playing against a Ph.D. students in
Economics, respectively. Table A.2 lists these results of 𝑛 = 337 choices irrespective of opponent
type.

Table A.2: Aggregate Results – Controlling for Best-Response Inconsistency

𝐷𝑆 ≿ 𝐿𝐺 𝐷𝑆 ≺ 𝐿𝐺
𝐼 − 𝑅 Prediction nil all

Ratio 179/337 158/337
Percentage 53.1% 46.9%

All choices made irrespective of opponent type excluding
all choices that are inconsistent with best-responses in𝑀𝑆 and𝑁𝐸.

𝐼 − 𝑅 ≡ Iterative ‘top-down’ model of reasoning.

Next, we leverage𝑀𝑆 and𝑁𝐸 and, in this step, exclude only those choices that value all small
games equally, i.e., 𝑣𝐷𝑆 = 𝑣𝑀𝑆 = 𝑣𝑁𝐸. This results in concentrating on 173 participants playing
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against an undergraduate student and 165 participants playing against a Ph.D. students in Eco-
nomics, respectively. Table ?? lists these results.

Table A.3: Aggregate Results – Controlling for Equal Valuations of All Smaller Games

𝐷𝑆 ≿ 𝐿𝐺 𝐷𝑆 ≺ 𝐿𝐺
𝐼 − 𝑅 Prediction nil all

Ratio 229/338 109/338
Percentage 68.2% 32.2%

All choices made irrespective of opponent type excluding
all choices that value𝐷𝑆,𝑀𝑆, and𝑁𝐸 equally.
𝐼 − 𝑅 ≡ Iterative ‘top-down’ model of reasoning.

Overall, the inclusion of the controls does not alter the results. Similar to the results reported in
themain text, while the ratio of those whoweakly prefer𝐷𝑆 over 𝐿𝐺 increases to some extent, using
the entire sample also suggests that participants may value the predictability of their opponents’
actions.

Figure A.1: Empirical Value Distributions of All Games by the Ranking of 𝐷𝑆 and 𝐿𝐺 for all𝑁 =
470 Choices. Top Row: The diagnostic games. Left: 𝐷𝑆; Right: 𝐿𝐺; Bottom Row: The control
games. Left: 𝑀𝑆; Right: 𝑁𝐸.
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As in the main text, we move beyond summary statistics and turn to the empirical distribution
of valuations by the ranking of 𝐷𝑆 and 𝐿𝐺 induced by the valuations for the aggregate results pre-
sented in Table A.1. We leverage again the cardinal information obtained in the second part of the
experiment – the valuation task. Figure A.1 visualizes the empirical distributions of the valuations
of the two diagnostic games,𝐷𝑆 and 𝐿𝐺, as well as the two control games,𝑀𝑆 and𝑁𝐸.

Next, we show the empirical value distributions for all games by the ranking of 𝐷𝑆 and 𝐿𝐺 in
Figure A.2.

Figure A.2: Empirical Value Distributions of𝐷𝑆,𝑀𝑆, and𝑁𝐸 by Ranking of𝐷𝑆 and 𝐿𝐺

Turning to choices at the subject-level and a brief discussion of differences in behavior by op-
ponent type. We have established that approximately half of the choices made by these participants
are consistent with difficulty of predicting others’ behavior. On the full sample, this turns out to
be even stronger when we control for valuing all smaller games equally as highlighted above. Table
A.4 shows the comparative statics of the ranking over the set of diagnostic games conditional on
the opponent’s identity (i.e., either an undergraduate student or a Ph.D. student in Economics).

Table A.4: Ranking of𝐷𝑆 and 𝐿𝐺 by Opponent Type

Undergraduate
𝐷𝑆 ≿ 𝐿𝐺 𝐷𝑆 ≺ 𝐿𝐺

Gr
ad
ua
te

𝐷𝑆 ≿ 𝐿𝐺 𝐼 − 𝑅 Prediction 𝑛𝑖𝑙 𝑛𝑖𝑙
Ratio 90/235 29/235

Percentage 38.3% 12.3%

𝐷𝑆 ≺ 𝐿𝐺 𝐼 − 𝑅 Prediction 𝑛𝑖𝑙 𝑎𝑙𝑙
Ratio 49/235 67/235

Percentage 20.9% 28.5%
𝐼 − 𝑅 ≡ Iterative ‘top-down’ model of reasoning.

Lastly, we ran ordinary least-square regressions with random effects controlling for order effects
as well as the opponent order. In particular, we regressed the difference in valuations of 𝐿𝐺 and𝐷𝑆
(𝑣𝐿𝐺 − 𝑣𝐷𝑆) on the opponent dummy Ph.D., which is 0 for facing an undergraduate student and 1

3



for playing against a Ph.D. student in Economics, and the valuations for both𝑀𝑆 and𝑁𝐸. Further,
we include the game order dummy DS before LG, which is 0 if 𝐿𝐺 is displayed before 𝐷𝑆 and 1 if
𝐷𝑆 is displayed before 𝐿𝐺. In addition, we also include the opponent order dummy G before UG,
which is 0 if participants played first against an undergraduate student and afterwards against a
Ph.D. student in Economics in the first part of the experiment and 1 if the order is reversed.

We first split our sample by preference relation over the set of diagnostic games and opponent
type (= 2 × 2) as in Table A.4 and then estimate the model using the full sample. Unlike in the
main text, we do not exclude participants from our analysis whose valuations exceed themaximum
possible payoff given their action, those who played 𝑏 in 𝐷𝑆, and those who are inconsistent with
best-responding in𝐷𝑆. Table A.5 lists the results from this analysis.

Table A.5: OLS Estimations with Random Effects of Difference in Valuations of 𝐿𝐺 and𝐷𝑆

Ranking by UG:𝐷𝑆 ≿ 𝐿𝐺 UG:𝐷𝑆 ≿ 𝐿𝐺 UG:𝐷𝑆 ≺ 𝐿𝐺 UG:𝐷𝑆 ≺ 𝐿𝐺 All
Opponent G:𝐷𝑆 ≿ 𝐿𝐺 G:𝐷𝑆 ≺ 𝐿𝐺 G:𝐷𝑆 ≿ 𝐿𝐺 G:𝐷𝑆 ≺ 𝐿𝐺

𝑣𝐿𝐺 − 𝑣𝐷𝑆 𝑣𝐿𝐺 − 𝑣𝐷𝑆 𝑣𝐿𝐺 − 𝑣𝐷𝑆 𝑣𝐿𝐺 − 𝑣𝐷𝑆 𝑣𝐿𝐺 − 𝑣𝐷𝑆
Intercept −1.597∗∗ −1.075 2.498∗ 2.474∗∗∗ 0.069

(0.685) (1.101) (1.379) (0.831) (0.682)
Ph.D. 0.206 3.642∗∗∗ −3.418∗∗∗ −0.190 0.360∗

(0.148) (0.290) (0.350) (0.186) (0.170)
𝑣𝑀𝑆 0.037 −0.043 0.007 −0.116 −0.039

(0.054) (0.090) (0.111) (0.076) (0.055)
𝑣𝑁𝐸 0.030 0.019 -0.007 0.070 0.067

(0.057) (0.094) (0.115) (0.078) (0.058)
𝐷𝑆 before 𝐿𝐺 0.009

(0.215)
𝐺 before 𝑈𝐺 -0.225

(0.219)
𝜎𝜖 0.995 1.435 1.286 1.059 1.839
𝜎𝑢 0.961 0.750 0.812 0.897 1.002
N 180 98 58 134 470
(Between) R-squared 0.013 0.019 0.009 0.009 0.010
∗∗∗Significant at the 1 percent level; ∗∗Significant at the 5 percent level; ∗Significant at the 10 percent level

We find a strong effect of the observed characteristic of the opponent, Ph.D., on the difference
in valuations of 𝐿𝐺 and 𝐷𝑆 for all ranking as long as 𝐷𝑆 ≿ 𝐿𝐺 against at one opponent type only.
This is also mildly true for the full sample, irrespective of the ranking over the set of diagnostic
games. As expected, we do not find a strong of type when 𝐷𝑆 ≺ 𝐿𝐺. Here, we also do not find a
strong of type when𝐷𝑆 ≿ 𝐿𝐺. Overall, these estimation results for all𝑁 = 235 are in line with the
difference in differences of valuations by opponent type and by ranking of 𝐿𝐺 and𝐷𝑆 too. Using the
full sample, we also do not find any indication of order effects, either due to presenting participants
𝐿𝐺 or 𝐷𝑆 before the other as well as playing each of the four games first against an undergraduate
student or a Ph.D. student in Economics in the first part of the experiment.
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