IS MONEY ESSENTIAL?
AN EXPERIMENTAL APPROACH*

Janet Hua Jiang
Bank of Canada

Peter Norman
University of North Carolina

Daniela Puzzello
Indiana University

Bruno Sultanum
FRB Richmond

Randall Wright
Zhejiang University, University of Wisconsin - Madison & FRB Minneapolis

July 8, 2022

Abstract
Money is called essential when better outcomes are incentive feasible with money than without it. We study essentiality theoretically and experimentally, using finite-horizon monetary models that suit our purposes well in the lab. Following mechanism design, we also study the effects of strategy recommendations when they are incentive compatible and when they are not. Results show the use of money and welfare are significantly higher in treatments where it is essential, and recommendations help when incentive compatible but not much otherwise. Sometimes money gets used when it should not, and we investigate why using surveys plus measures of social preferences.

Keywords: Money, mechanism design, experimental economics
JEL Classification numbers: E4, E5

*We thank for their input John Duffy, Frank Heinemann, Luba Petersen, Shyam Sunder and participants at presentations at Virginia Commonwealth University, Nanyang Technology University, the 2021 Search and Matching in Macro and Finance conference, 2022 World ESA Meeting, the 2022 Ostrom-Smith Workshop, the 2nd Editors-in-Chief Conference in Economics, the 2022 Canadian Economic Association Meetings, the 2022 Workshop on Theoretical and Experimental Macroeconomics, and the Richmond Fed CORE Week Monetary Conference. We gratefully acknowledge funding for this project from Indiana University. Wright acknowledges research support from the Ray Zemon Chair in Liquid Assets and the Kenneth Burdett Professorship in Search Theory and Applications at the University of Wisconsin. The views expressed in this paper are those of the authors and not necessarily those of the Federal Reserve Bank of Richmond, the Federal Reserve Bank of Minneapolis, or the Federal Reserve System. Also, no responsibility should be attributed to the Bank of Canada.
1 Introduction

A central issue in economics is to understand what makes money a socially useful institution. Based on Hahn (1973, 1987), money is said to be essential if more desirable outcomes are incentive feasible with money than without it. This is particularly relevant for fiat currency, an object that may have value even though it is intrinsically useless (Wallace 1980). While it has no such role in traditional general equilibrium theory, there are by now various formalizations, surveyed in Lagos et al. (2017) and Nosal and Rocheteau (2017), where frictions make fiat money essential. In this literature, it is commonly understood that three ingredients are needed for essentiality: a double coincidence problem; limited commitment; and imperfect information.

A double coincidence problem means there are gains from trade that cannot be fully exploited by pure barter. In the spirit of Jevons (1875), suppose you are in a world where agents specialize in production and consumption, meet bilaterally at random, and engage in quid pro quo exchange. It may be rare (a coincidence) to meet someone who produces what you like, and very rare (a double coincidence) to meet someone who produces what you like plus likes what you produce. A venerable notion is that money is useful because it permits trade in single coincidence meetings. Yet this is not sufficient for essentiality, as ex ante payoffs are typically higher if agents simply produce when asked. So if they can commit to produce when asked, they would agree to do so, and efficient outcomes can be sustained without money.

If they cannot commit agents may be tempted to renge when asked to produce, rendering the commitment solution inconsistent with dynamic incentives. Yet that is still not enough for essentiality if trading histories are observable, since desirable outcomes can often be supported without money, akin to cooperative equilibria in the repeated-game literature: agents who do not produce when asked are punished by having others not produce for them in the future. This can be described as a credit arrangement, with punishments interpreted as denying future credit to those who fail to honor obligations, as in Kehoe and Levine (1993). As Kocherlakota (1998) emphasizes, such punishments must be precluded for money to be essential.
Conventional wisdom is this: if it is incentive feasible to implement monetary exchange and trading histories are publicly observed, a credit arrangement like the one described above is also incentive feasible, and it is at least as good if not better in terms of welfare. This suggests that essentiality requires information frictions, and while there are different ways to capture such frictions (e.g., see Gu et al. 2016), the common thread is that it must be hard to monitor, communicate or keep records of what happens in pairwise meetings – in Kocherlakota’s (1998) terminology, there must be imperfect memory – hindering punishments for bad behavior.

In this context, Wallace (2001, 2010) refers to the view that essentiality is salient as the mechanism design approach to monetary economics, and argues that mechanism design methods are attractive because they provide a clear distinction between the environment and the rules of the game mapping actions into outcomes, so given a set of feasible mechanisms, it is possible to decide whether money is essential. What may not have been anticipated is that this leads to models of monetary exchange that are in some ways ideally suited to experimental economics, because the theory is tractable enough that its properties are well understood, and transparent enough that subjects in the lab should be able to comprehend the details, yet the outcomes are not obvious because there are multiple equilibria due to the self-referential nature of liquidity (what you accept in payment depends on what others accept).

There has by now emerged a significant body of experimental monetary economics. However, previous papers do not address our main issue, which is to ask,

1 As Wallace (2010) puts it, “The mechanism-design approach to monetary theory is the search for fruitful settings or environments in which something that resembles monetary trade actually accomplishes something – or, in Hahn’s (1973) terminology, settings in which money is essential.” For those interested in history of thought, Hahn actually talked about the essentiality of a “sequence economy” where the sequence of trades may not lead to Arrow-Debreu outcomes. If the sequence is inessential, money might be a way of registering transactions, but nothing important is lost by focusing on Arrow-Debreu. To properly study monetary economics, therefore, we must analyze economies where the trading sequence is essential – as is certainly the case in what follows.

from a mechanism design perspective, if money helps achieve better welfare outcomes in theory and in the lab, and in both cases for the same reasons. To this end, we work with finite-horizon models, which have advantages in the lab where the game must end at some finite time T. In particular, two environments are considered, identical in all aspects except that agents may or may not know where they are in the sequence of trading opportunities: in one, monetary exchange is an equilibrium outcome, even with a finite horizon, and is superior to the best outcome without money; in the other, there is no monetary equilibrium. Hence a small change in specification takes us from a case where money is theoretically essential to one where it is not.

Intuitively, in the case where monetary exchange is an equilibrium outcome, subjects in the lab can be interpreted as giving up something of value for money because they rationally put positive probability on being able to exchange it later for something they value more. In contrast, in environments where trade ends with probability 1 at $T < \infty$, without uncertainty over where agents are in the trading sequence, accepting fiat money cannot be an equilibrium by standard logic: assuming they understand the game, no one should sacrifice anything at T to get money; so no one at $T - 1$ should sacrifice anything to get it; and by backward induction fiat currency should never be valued. Therefore, in standard models with $T < \infty$, if subjects accept money in trade in the lab, one cannot be sure why, but it cannot be because they rationally expect to spend it later.

Experimentalists address this in various ways. Often random termination times are used, where the game ends with some probability after each round. This is meant to generate discounting, as assumed in infinite-horizon models, but does nothing to avoid the backward induction argument if there is still a hard stop at $T < \infty$. Another idea for implementing infinite-horizon monetary theory in finite experiments is to assign value to cash held at T based on what payoffs would be if the game were

3 Going beyond monetary economics, consider Selten et al. (1997): “Infinite supergames cannot be played in the laboratory. Attempts to approximate the strategic situation of an infinite game by the device of a supposedly fixed stopping probability are unsatisfactory since play cannot continue beyond the maximum time available” (see also Cooper and Kuhn 2014, Fréchette and Yuksel 2017 or Jiang et al. 2021.) To be clear, our claim is not that taking standard monetary models to the lab is without value – we have done and continue to do that – but here we provide an alternative.
to continue (Marimon and Sunder 1993; Jiang et al. 2021). This is interesting, but treads close to giving up on the fiat nature of fiat currency, as does any experiment with subjects getting a real payoff from finishing up with cash. In our framework, in equilibrium, genuine fiat objects can be used as media of exchange despite $T < \infty$, and agents accept them because they rationally expect to spend them later.

This follows up on previous work in which some of us were involved, Davis et al. (2020), which draws on Kovenock and de Vries (2002), and is related to the analysis of bubbles in Allen et al. (1993) or Allen and Gorton (1993), and ultimately to Samuelson’s (1987) discussion of how a lack of common knowledge about T ameliorates end-game effects. What is novel is that we use these insights to study essentiality in the lab (while Davis et al. 2020 also experiment with finite-horizon monetary theory, they do not take a mechanism design approach, or consider strategy recommendations, or try to explain anomalous outcomes the way we do, as discussed below). One especially novel exercise here is a clear controlled experiment comparing two environments with money, where in one there is a monetary equilibrium and in the other there is not, which, perhaps surprisingly, has not been done before.

As mentioned, we go beyond previous papers by considering strategy suggestions or recommendations – e.g., “always produce in exchange for money” – as a device to deal with the coordination problem endemic to fiat currency. The idea, related to Myerson (1986), is that mediation may help with coordination, although, importantly, it is always possible for agents to ignore the mediator. We think recommendations are consistent with mechanism design, and with a standard interpretation of equilibria going back to Nash (1950): give agents a strategy profile and see if they deviate.

While it is quite rare in experimental economics to consider suggestions, we feel they are appropriate for the issues at hand, and in any case we want to know if they serve mainly as a coordination device, or subjects simply follow them blindly.\footnote{The reluctance to use suggestions in experimental economics is typified by Croson (2002): “the researcher must be careful to... avoid suggesting the desired results to the subjects either explicitly or implicitly.” A few papers do consider suggestions (e.g., Duffy and Feltovich 2010; Huyck et al. 1992), but mostly about which equilibrium to play; we do that, plus consider suggestions that are inconsistent with equilibrium, which should not be followed in theory but that does not mean they will not be followed in the lab. No previous work on monetary economics has done that.}
To preview the model, suppose there are three agents and two rounds of trade. Also suppose agents being offered money do not know if they are in the first or second round. Accepting money in the second round is rational for an agent that puts high enough probability on it being the first round. Thus monetary exchange can be consistent with equilibrium even when all players know the horizon is finite, and it yields higher ex ante payoffs than can be achieved without money. Yet questions arise. Do agents necessarily use money when a monetary equilibrium exists? No, according to theory, as there always coexists a nonmonetary equilibrium. Might agents accept money when there is no monetary equilibrium? No, according to theory, but in experiments they sometimes do, and we want to understand why – is it due to mistakes, social preferences (agents caring about others) or something else? This is addressed using exit surveys and measures of social preferences extracted from auxiliary experiments that we correlate with subjects’ behavior.

To summarize: (i) We compare environments with and without money. (ii) In environments with money we compare specifications where monetary exchange is an equilibrium and where it is not. (iii) We compare cases with and without recommendations, both when following them is incentive compatible and when it is not. (iv) We use theory that allows valued fiat currency with a finite horizon. (v) We focus squarely on essentiality. (vi) We use surveys and measures of social preferences to gain insight into anomalous behavior. (vii) We make some experimental design choices different from related studies, including our earlier work, to minimize repeated-game effects – subjects believing their current actions impact future actions of others – that may have plagued past results.

5 Essentiality is discussed by Camera and Casari (2014) and Duffy and Puzzello (2014a,b), but there money is not essential: the credit system described on pp. 1-2 is implementable. They ask if subjects still use money, which is interesting, but does not bear on essentiality. Suppose, e.g., there is an efficient credit equilibrium, but we are mired in an inferior no-credit equilibrium. Then adding money may be helpful, but it is not essential if the efficient credit outcome is incentive feasible.

6 There are two standard ways to run experiments with dynamic games: the “strategy method” where ex ante subjects make conditional decisions for each possible information set; and the “direct-response method” where they observe previous play before deciding. We adopt the latter, as it better captures the dynamic nature of the theory, and use it consistently in all treatments, which is not the case in Davis et al. (2020). In combination with agents having fixed roles and being randomly matched, the new design should reduce repeated-game effects (more on this below).
In terms of results, the experiments are largely consistent with theory. Payoffs are significantly higher when money is introduced if a monetary equilibrium exists. If a monetary equilibrium does not exist, introducing money initially increases economic activity, but the impact soon dissipates as subjects seem to learn that accepting it lowers their payoffs. Recommendations help if following them is incentive compatible, but subjects soon learn to ignore them otherwise. When theory says subjects should not accept money, sometimes they do, and, to our surprise, measures of social preferences do not correlate with this. Based on exit surveys, social preferences do play a role, although some subjects say they simply made mistakes. At the same time, other subjects are quite sophisticated, in that they try to infer their position in the trading sequence based on the time it takes to meet a counterparty, which led us to a generalization of the baseline model incorporating such inferences.

2 Theory

There are two environments, Model M and Model N, that are identical except for the information structure, and the labels M and N indicate that the former model has a monetary equilibrium while the latter does not. A common feature is that there are 3 agents and 2 sequential, pairwise meetings; and in each meeting one agent is a producer while the other is a consumer of an indivisible good. This can be considered a truncation of a standard random-matching model or an OLG model. When those models include fiat currency they assume the horizon is $T = \infty$. We can do that, too, but need not, as fiat currency can be valued with infinite or finite T.7

Nature determines the roles of players randomly. First there is meeting 1, where one agent is a consumer and called Player 1, while the other is a producer and called Player 2 (everything goes through with pure exchange where there is an opportunity cost of giving up an endowment instead of a production cost). Player 1 may or may

7What follows easily extends to any $T < \infty$, with or without random terminations at $t < T$, but we stick to $T = 2$ for two reasons. One is that it should minimize the chance that subjects irrationally regard big T as “approximately” ∞. The other is that, as a referee noted, small T is part of what makes the game easy to learn in the lab.
not be endowed with money, an indivisible, intrinsically useless token. Then there is meeting 2, where Player 2 is a consumer and Player 3 is a producer.

In the first meeting, possible actions for the consumer are: walk away without trading; ask for the good for free; and, if endowed with money, offer it in exchange for the good or offer it for free. If an offer is made, the producer can accept or reject. In the second meeting, possible actions are the same, although whether the consumer has money now depends on what happened in the first meeting. Then the game is over. In each meeting, if a producer gives the good to a consumer the latter gets utility u while the former gets $-c$, a production (or opportunity) cost. Given $u > c > 0$, before nature determines types it is ex ante Pareto efficient for agents to produce in all meetings.

Where the two models differ is that in Model M some agents do not know if they are in meeting 1 or 2, while in Model N the timing of meetings is common knowledge. In particular, in Model N, Player 3 knows the meeting is the second meeting, and so there only exists an autarkic nonmonetary equilibrium. To confirm this, notice it is irrational for Player 3 to bear cost c in the second meeting unless Player 2 gives something of value in exchange, and all that can potentially be offered is money, which is worthless since the game ends after that meeting. So in second meeting money is not valued, and therefore in the first meeting it is not valued, and hence the unique equilibrium entails no trade, the same as the unique equilibrium without money.

In Model M, when matched with a consumer the producer does not know if it is the first or second meeting. Without money the unique equilibrium is autarky, and with money that is still an equilibrium, but there is also a monetary equilibrium with trade in both meetings as long as $u > 2c$. To confirm this, suppose a producer believes others will produce when offered money. Then the probability of getting to spend the money after receiving it is $1/2$, the same as the probability of the meeting being the first rather than the second. Hence the expected payoff to producing for money is $\frac{1}{2}(-c + u) + \frac{1}{2}(-c) > 0$. Thus, monetary exchange is an equilibrium, and money is essential because without it the unique equilibrium is autarky with expected payoff
Now, the realized payoff to Player 3 is \(-c\) upon getting stuck with money, but this is still desirable because ex ante payoffs are higher, or, amounting to the same thing, average payoffs are higher if the game is played multiple times. Money thus expands the strategy set in both Models M and N, but in Model M it also expands the set of equilibrium outcomes.

There is also a symmetric mixed-strategy equilibrium, where all producers accept money with probability \(2c/u\), or equivalently, at least in a version with a large number of players, an asymmetric pure-strategy equilibrium, where a fraction \(2c/3\) of the population always, and the rest never, accept money. In related models this kind of partial acceptability is sometimes said to be nonrobust, although there are ways of dealing with that (e.g., Shevchenko and Wright 2004). In any case, a feature of the mixed equilibrium is that monetary exchange is mechanically more likely in the first than second meeting, since the latter requires the former.\(^8\)

Model M turns into Model N if all actions become publicly observable, which can be considered perfect memory. There is no equilibrium other than autarky with perfect memory. Hence, we provide a counterexample to the generally accepted proposition that money is at best an imperfect substitute for memory, a proposition that seems to follow from Kocherlakota (1998), as discussed in a general way by Wallace (2001, 2010). It is based on the idea that anything one can do with money one can also do with memory, and often one can do strictly better with memory. Here money strictly dominates memory. Indeed, it is incomplete knowledge of the timing that allows fiat currency to be valued, and that is what allows an improvement on autarky, the unique equilibrium with perfect memory.\(^9\)

While this baseline model serves our purposes nicely in the lab, there is an ex-

\(^8\)There are also sunspot equilibria, where money is accepted in some states but not others. While experimenting with sunspots in our framework may be interesting, it must be relegated to future work (see Marimon et al. 1993 for experiments on sunspots in OLG models, something we would eventually like to consider in our framework).

\(^9\)Awaya and Fukai (2017) is a previous counterexample to the idea that memory always beats money, but it is much more complicated, so ours constitutes a bit of a contribution. One might say it arises from money containing \textit{some but not all} information about the past, related to work on optimal opacity (Andolfatto et al. 2014; Dang et al. 2017): in our context, if an outside party knows whether agents are in meeting 1 or 2, agents are better off ex ante if that party keeps quiet.
tension that is interesting for its own sake, and especially relevant in light of the experimental results discussed below. Although in theory Model M has players unable to distinguish between the first and second meetings, if the game proceeds in real time, inferences may be possible based on how long it takes to meet a potential trading partner. Since this sometimes happens in our experiments, we now show monetary equilibria still exist if waiting time is a *noisy* signal.

There are different ways to formalize this, but suppose for simplicity that agents can distinguish between \{t_E, t_M, t_L\}, indicating early, middle and late in the game (this can be extended to richer sets of signals at a cost in terms of notation). Assume meeting 1 can occur at \(t_E\) or \(t_M\) and meeting 2 at \(t_M\) or \(t_L\), generating a signal-extraction problem: agents cannot tell meeting 1 from 2 when \(t = t_M\). The probability distribution over \{t_E, t_M, t_L\} conditional on being in meeting 1 is

\[
\Pr (t_E|\text{meeting } 1) = 1 - q, \quad \Pr (t_M|\text{meeting } 1) = q, \quad \Pr (t_L|\text{meeting } 1) = 0,
\]

where \(q\) is an objective probability that is part of the environment. Similarly, the distribution conditional on being in meeting 2 is

\[
\Pr (t_E|\text{meeting } 2) = 0, \quad \Pr (t_M|\text{meeting } 2) = r, \quad \Pr (t_L|\text{meeting } 2) = 1 - r.
\]

If a meeting occurs early (late) the producer knows it is the first (second). The inference when being offered money at \(t = t_M\) is more subtle, and the interpretation of getting a money offer depends on producers’ acceptance strategy, because if players do not accept money then a money offer reveals it is meeting 1. If there is an equilibrium in which money is accepted for sure at \(t \in \{t_E, t_M\}\), Bayes rule implies that the producer has posterior beliefs

\[
\Pr (\text{meeting } 1|t_M) = \frac{q}{q + r}
\]

when offered money at \(t = t_M\). If it is meeting 2 the agent that just produced cannot trade money for goods, but in case it is meeting 1 there is a chance that the money can be used to get the good.

However, if the next producer can detect that it is meeting 2 there will be no exchange. Hence, conditional on signal \(t_M\) and being in the first meeting trade occurs
in the second meeting if the next producer also receives signal \(t_M \), which happens with probability \(r \). The expected payoff from accepting at \(t = t_M \) is thus

\[
\frac{qr}{q + r} (u - c) + \left(1 - \frac{qr}{q + r}\right)(-c) = \frac{qr}{q + r} u - c.
\]

Acceptance at \(t_E \) gives \(ru - c \), so if players are best responding by accepting money at \(t_M \) they will optimally accept offers at \(t_E \). Hence, there is a pure strategy equilibrium where players produce in exchange for money, except when they know it is the last meeting, provided that \(qr u / (q + r) \geq c \).

The point is that monetary equilibria still exist if the signal provided by waiting time is not too precise. Notice \(q = r = 1 \) is Model M and \(q = r = 0 \) is Model N, so the extension spans these environments. Also, notice production rates will be higher in meeting 1 than meeting 2 in this extension, as in the mixed strategy equilibrium mentioned above, but now that is true even conditional on the consumer having money in meeting 2.

3 Experimental Design

We now describe our general approach, relegating details to online Appendices.\(^\text{10}\) Treatments include cases with and without money, cases with money in Models M and N, and cases with and without suggestions. Table 1 summarizes this, where treatments are labeled with M or N for Model M or Model N, with 1 or 0 indicating if there is money, and with another 1 or 0 indicating if there are suggestions. Previous work focuses on comparing treatments with and without money. We do that, plus we compare Model M and N with money to investigate the importance of strategic considerations – in both cases, strategies contingent on monetary offers are feasible, but in theory accepting is only consistent with equilibrium in Model M.

As regards suggestions, with money the recommendation is to offer money and produce in exchange for it; without money the recommendation is to always produce.

\(^\text{10}\) Go to www.sultanum.com/papers/Money_Essential_Instruction_and_additional_results.pdf for all of the Appendices. Appendix G has the full instructions given to subjects; the others mainly contain alternative statistical analyses, designed to check robustness.
TABLE 1: TREATMENT AND SESSION CHARACTERISTICS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Money</th>
<th>Suggestions</th>
<th># of Sessions</th>
<th># of Subjects per Treatment (Session)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-0-0</td>
<td>No</td>
<td>No</td>
<td>4</td>
<td>45 (9,9,12,15)</td>
</tr>
<tr>
<td>M-1-0</td>
<td>Yes</td>
<td>No</td>
<td>4</td>
<td>51 (12,12,15,12)</td>
</tr>
<tr>
<td>M-1-1</td>
<td>Yes</td>
<td>Yes</td>
<td>4</td>
<td>48 (9,12,15,12)</td>
</tr>
<tr>
<td>M-0-1</td>
<td>No</td>
<td>Yes</td>
<td>4</td>
<td>51 (12,15,12,12)</td>
</tr>
<tr>
<td>N-1-0</td>
<td>Yes</td>
<td>No</td>
<td>6</td>
<td>72 (12,12,12,15,9,12)</td>
</tr>
<tr>
<td>N-1-1</td>
<td>Yes</td>
<td>Yes</td>
<td>4</td>
<td>48 (12,12,12,12)</td>
</tr>
</tbody>
</table>

NOTE.—M or N stand for Model M or Model N; the first digit is 1 or 0 for money or no money; and the second digit is 1 or 0 for suggestions or no suggestions.

Notice: (i) in Model N, following the suggestion is not incentive compatible or Pareto superior; (ii) in Model M with money it is incentive compatible and Pareto superior; (iii) in Model M without money it is Pareto superior but not incentive compatible. This helps us disentangle if: (i) suggestions coordinate behavior; (ii) subjects do what we suggest even if it is not in their narrow self interest; (iii) they act based on other considerations, perhaps a desire to achieve better social payoffs.

To provide experience, it is standard for subjects to play multiple rounds. Unfortunately, this may make them regard the experiment as a repeated game. Some puzzling results in Davis et al. (2020) (e.g., money has big effects when it should not) seem attributable to this. To allow learning while minimizing repeated-game effects we randomly group players in each round. While some subjects interact more than once, they are anonymous, and the number of participants is large enough that reputation building is difficult. Also, in Model N a subject is Player $i \in \{1, 2, 3\}$ in every round, and in Model M a subject is either Player 1 or randomly assigned 2 and 3 in every round. This further diminishes incentives to try to achieve cooperative outcomes. One can imagine, e.g., that Player 3 could produce hoping that it would make others more likely to do so later in the experiment, but such considerations are less of an issue given the way we assign subjects to roles.

Each experiment has multiple parts. First instructions are read aloud, followed by a quiz to see if subjects understand. Then there are 15 rounds of play in either Model M or N. Next subjects complete an exit survey and demographic survey. Appendix G
provides details, but, in brief, the demographic survey asks about gender, age, English proficiency, and field of study, and was included because several past experiments find such characteristics can matter. Finally, subjects play a series of generalized dictator games designed to elicit information about social preferences, the idea being that in the theory agents only care about their own payoffs, but they might care about others in the lab, and this is a way to measure that.

At the beginning of a treatment with Model N, each participant is randomly assigned a role as Player $i \in \{1, 2, 3\}$, which they keep for all 15 rounds. In each round, groups of three are formed by randomly drawing one of each type. Player 1 is endowed with a token. To simplify the choice set in the lab, we change the model in Section 2 slightly by assuming a consumer can either offer money for the good or not; then the producer either produces or not. After this happens twice, in the first and the second meeting, the round is complete, and players are randomly reassigned to new groups, except in round 15 when the session ends.

Model M treatments are similar, except that Player 1 subjects stay in that role for all 15 rounds while the others are either Player 2 or 3 with equal probability in each round, and are uninformed about their role when they decide to produce. In monetary treatments with Model M, Player 1 is endowed with a token and can offer it in exchange in meeting 1, but, different from Model N, the recipient accepts or rejects not knowing if it is meeting 1 or 2. Then, if there is another meeting and Player 2 has a token, it can be offered to Player 3. Player 3 accepts or rejects while similarly uninformed. Then payoffs are tallied and subjects are randomly assigned to new groups, except in round 15 when the session ends.

11 Croson and Buchan (1989) find women return significantly more wealth than men in trust games, and Eckel and Grossman (1998) find that women donate twice as much to anonymous partners in dictator games. Marwell and Ames (1981) find economics students contribute less than others in public good games, Carter and Irons (1991) find they accept less and keep more in ultimatum games, and Frank et al. (1993) find they defect more in the prisoner’s dilemma. Based on those findings, we decided to look into this in our experiments, although it turned out that no interesting differences across demographic characteristics actually emerged.

12 The consumer gets the good for free if no offer of money is made but the producer still produces, which sometimes, but not often, happens in the lab. What we eliminate from Section 2 are the (dominated) strategies for the consumer: walk away without trading; and offer money for free. Obviously this does not matter in theory and simplifies subjects’ choice set in the experiments.
The monetary treatments with recommendations are the same, except we included the following message:

A suggestion: Each player in a group may consider making the following choices: 1. Whenever you have the token, transfer it to the next player (if there is one). 2. Produce ONLY if you are offered the token. This is simply a suggestion. Feel free to follow it or not.

In Model M without money, Player 1 makes no decision, and others decide whether to produce despite not being offered a token, and the message is:

A suggestion: If you are not Player 1, you may consider choosing to produce. This is simply a suggestion. Feel free to follow it or not.

In all treatments subjects start with 3 points, then earn $u = 3$ points from consumption and lose $c = 1$ points from production, keeping payoffs nonnegative. Three out of the 15 games are randomly selected for actual dollar payments (while evidence is mixed, Charness et al. 2020 find that paying for only a subset of games is at least as effective as paying for all of them). Each point is worth 2 dollars, while tokens are worth 0, as explicitly described in the instructions: “The token does not yield points directly and cannot be transferred from one game to another.”

In the second part of a session subjects play a sequence of generalized dictator games, and from the results we compute a SVO (social value orientation) score as in Murphy et al. (2011). Details are in online Appendix A, but the basic rationale is to see whether social preferences help explain departures from predictions of the theory. Every subject plays 15 generalized dictator games and payoffs are determined from one randomly selected round where the subject is a proposer and one where the subject is a receiver.

We ran four sessions for each treatment, except for Model N without recommendations, where we ran six.13 This took place between 2020 and 2022 at the IELAB

13The reason is the following: We started in the lab, then had to move online due to the COVID pandemic. After two online sessions for the treatment where we had lab data, we found the results were very similar, so we did the rest online. See Appendix B for more detail.
at Indiana University or online. The subject pool consisted of Indiana University students recruited via the Online Recruitment System for Economic Experiments (Greiner 2015). The IELAB experiments were programmed using zTree (Fischbacher 2007), while the online experiments were programmed using oTree (Chen et al. 2016). Every subject participated in only one session. The number of subjects per session ranged from 9 to 15, depending on how many showed up from the recruitment procedure. In total there were 315 subjects, and they earned on average $18.65 for 45 to 60 minutes of their time.

Although there are several auxiliary results discussed below, the experiments were designed mainly to address the following three questions:

Question 1. Is there more production with money than without it in Model M?

Question 2. Is there more production in Model M with money than in Model N with money?

Question 3. Do suggestions have more of an impact in Model M with money than in Model M without money or in Model N with money?

4 Main Results

The first objective of the experiments is to see whether money is a useful instrument for the reasons emphasized in theory. Fig. 1 provides and overview. In particular, recall **Question 1:** Is there more production with money than without it in Model M? The answer is yes. In Fig. 1 the left panel shows the frequency of production in Model M in the treatments where, theoretically, money can be valued, while the right panel shows it for the other treatments, two without money, and two with money but without a monetary equilibrium. Production is aggregated over both meetings, and the darker lines are averages across treatments. Two features stand out: production is higher in the left than in the right panel; and in the left panel it is relatively stable while in the right it declines fairly sharply over the rounds, presumably because subjects figure out that production reduces payoffs. The message is similar in Fig. 2,
which focuses on comparing Model M with and without money, showing production with (without) suggestions on the right (left), and including production conditional on the buyer having money.

Table 2 provides statistics. Production averaged over meetings holds relatively steady in Model M with money, averaging 52% without suggestions and 62% with suggestions. In contrast, without money production decreases to 25% in the last five rounds as subjects gain experience, and suggestions do not appear to matter much. Table 2 reports p-values from WMW (Wilcoxon-Mann-Whitney) tests where the unit of observation is average production at the session level. For each case we perform tests for different segments of the data: all rounds, rounds 1-5, rounds 6-15, and rounds 11-15. This allows us to study effects of experience, and shows production is
significantly higher with money than without it especially in later rounds.14

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>WMW p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M-1-0</td>
<td>M-0-0</td>
</tr>
<tr>
<td>All Rounds</td>
<td>0.52</td>
<td>0.28</td>
</tr>
<tr>
<td>Rounds 1-5</td>
<td>0.55</td>
<td>0.37</td>
</tr>
<tr>
<td>Rounds 6-15</td>
<td>0.51</td>
<td>0.24</td>
</tr>
<tr>
<td>Rounds 11-15</td>
<td>0.48</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Note. — The p-values from the WMW test are exact and two-sided. There are 4 observations per treatment.

Note that the frequencies of production in the preceding paragraph, 52% without suggestions and 62% with suggestions, are not conditional on the consumer having money, and obviously if money is not accepted it in the first meeting it cannot be offered in the second. Fig. 2 also shows production conditional on the consumer having money, which is around 60% without suggestions and 69% with them, while Table 3 provides statistics. Again, production is higher with money than without it, similar to earlier findings by Camera and Casari (2014) and Duffy and Puzzello (2014), although in those papers money is not essential (recall fn. 5). The results differ significantly from Davis et al. (2020), where money is essential in theory, but their evidence does not support that – money improves allocations most in treatments where it should not even be accepted – which we think is due to design choices, as mentioned above.

In Model M with money, it is offered and accepted for production in the majority, but not all, of the meetings. There are alternative ways to interpret some people not accepting it when others seem to be coordinating on monetary equilibrium. Some deviations from theory are naturally expected in any experiment, but, in any case, money is essential if some, not necessarily all, agents rationally produce in exchange for it. Also, in principle, partial acceptability could be due to agents coordinating on the symmetric mixed-strategy equilibrium, where everyone accepts money with

14Appendix C describes production by session, while Appendix D complements the non-parametric analysis in the text with parametric analysis. Table D.1 in Appendix D reports results from linear probability and probit models, with controls for meetings and rounds. Consistent with the results in the text, the results in Appendix D show production in Model M is significantly higher with money than without it.
TABLE 3: Production in Model M Conditional on Money in Meeting

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>WMW p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M-1-0</td>
<td>M-1-1 v M-0-0</td>
</tr>
<tr>
<td>All Rounds</td>
<td>0.60</td>
<td>0.029</td>
</tr>
<tr>
<td>Rounds 1-5</td>
<td>0.64</td>
<td>0.057</td>
</tr>
<tr>
<td>Rounds 6-15</td>
<td>0.58</td>
<td>0.029</td>
</tr>
<tr>
<td>Rounds 11-15</td>
<td>0.55</td>
<td>0.029</td>
</tr>
</tbody>
</table>

NOTE. The p-values from the WMW test are exact and two-sided. There are 4 observations per treatment.

Now recall **Question 2:** *Is there more production in Model M with money than in Model N with money?* Yes. As Fig. 3 and Table 4 show, in Model N without suggestions production averages 20% over all rounds, falling from 25% in the first five rounds to 18% in the last five. With suggestions, it averages 30% over all rounds, falling from 43% in the first five rounds to 22% in the last five. Of course, theory says it should be 0, but again we do not expect all everyone to be a rational, self-interested agent. In Model M with money and no suggestions, production is 52% over all rounds, only declining from 55% to 48%. With suggestions it is 62% across
all rounds, declining from 64% to 59%. Table 4 reports p-values for production at the session level.15

The conclusion is that production in Model M with money is significantly higher than in Model N with money, and it is worth emphasizing that this comparison is novel. Previous studies contrast the same environment with and without money, not different environments with money where monetary exchange is incentive compatible in one but not the other, which we think provides an important complementary evaluation of essentiality. In some previous work, subjects tend to use money regardless of whether that is consistent with equilibrium. Our findings indicate that subjects do not use money automatically – it matters whether a monetary equilibrium exists – which was not obvious ex ante.

\begin{table}[h]
\centering
\begin{tabular}{lcccccc}
\hline
 & \multicolumn{2}{c}{Average} & \multicolumn{2}{c}{WMW p-values} \\
 & N-1-0 & M-1-0 & N-1-1 & M-1-1 & N-1-0 v M-1-0 & N-1-1 v M-1-1 \\
\hline
All Rounds & 0.20 & 0.52 & 0.30 & 0.62 & 0.009 & 0.029 \\
Rounds 1-5 & 0.25 & 0.55 & 0.43 & 0.64 & 0.019 & 0.086 \\
Rounds 6-15 & 0.18 & 0.51 & 0.23 & 0.61 & 0.009 & 0.029 \\
Rounds 11-15 & 0.18 & 0.48 & 0.22 & 0.59 & 0.009 & 0.029 \\
\hline
\end{tabular}
\caption{Production in Treatments with Money}
\end{table}

\textbf{NOTE.} – The p-values from the WMW test are exact and two-sided, and there are 6 observations in treatment N-1-0 and 4 in the other treatments.

15 Again the Appendices complement the non-parametric analysis in the text with parametric analysis. Table D.2 reports results from linear probability and probit models, with controls for meeting and round. Similar to the results in the text, with money production in Model M is significantly higher than in Model N.
Now recall **Question 3**: Do suggestions have more of an impact in Model M with money than in Model M without money or in Model N? Yes. In theory, when a monetary equilibrium does not exist, recommending that subjects produce for money should not matter, and when it exists the same suggestion may help them coordinate on exchange with fiat currency. The left panel of Fig. 4 and Table 5 summarize production in early, middle, and late rounds, plus \(p \)-values. The message is this: as subjects gain experience, outcomes can be improved by suggestions when they are consistent with equilibrium, but not otherwise, even if following the suggestions would generate a Pareto superior outcome.\(^{16}\)

We conclude from this that the impact of suggestions in Model M is attributable to coordination, as opposed to a desire by subjects to please the experimenter or to achieve higher social payoffs (consistent with findings by Duffy and Feltovich 2010, although their experiments were not on monetary economics). In the treatments where the unique equilibrium is nonmonetary, suggestions can raise production in early rounds, but as Table 5 shows, the initial boost is significant only for Model N, where the \(p \)-value is 0.076. In later rounds, production appears to converge toward the same level, and all \(p \)-values are above 0.45. In contrast, in Model M the suggestion increases production by about 10% on average in later rounds, or over all rounds, and the effects are statistically significant.

5 Additional Findings

We now explore how subjects’ behavior correlates with social preferences as captured by SVO scores, demographic characteristics, and major field of study, to see how factors not captured by standard theory matter. We also discuss responses from exit surveys designed to shed further light on subjects’ motivation. Finally, we ask how production varies across meetings 1 and 2.

To begin, we regressed production on agents’ SVO scores, demographic characteristics and major field of study separately for each model. As for demographic

\(^{16}\)Once again the Appendices complement the analysis in the text with results from linear probability and probit models, with controls for meeting and round. Similar to results in the text, those results indicate suggestions have a stronger impact in Model M with money than in Model M without money or in Model N. To summarize, the material in the Appendices shows all the main findings are robust to different ways of examining the data.
TABLE 5: EFFECT OF SUGGESTIONS

<table>
<thead>
<tr>
<th></th>
<th>N-1-0</th>
<th>N-1-1</th>
<th>M-1-0</th>
<th>M-1-1</th>
<th>M-0-0</th>
<th>M-0-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Rounds</td>
<td>0.20</td>
<td>0.30</td>
<td>0.52</td>
<td>0.62</td>
<td>0.28</td>
<td>0.39</td>
</tr>
<tr>
<td>Rounds 1-5</td>
<td>0.25</td>
<td>0.43</td>
<td>0.55</td>
<td>0.64</td>
<td>0.37</td>
<td>0.52</td>
</tr>
<tr>
<td>Rounds 6-15</td>
<td>0.18</td>
<td>0.23</td>
<td>0.51</td>
<td>0.61</td>
<td>0.24</td>
<td>0.32</td>
</tr>
<tr>
<td>Rounds 11-15</td>
<td>0.18</td>
<td>0.22</td>
<td>0.48</td>
<td>0.59</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

WMW p-value

<table>
<thead>
<tr>
<th></th>
<th>N-1-0 v N-1-1</th>
<th>M-1-0 v M-1-1</th>
<th>M-0-0 v M-0-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Rounds</td>
<td>0.114</td>
<td>0.086</td>
<td>0.400</td>
</tr>
<tr>
<td>Rounds 1-5</td>
<td>0.076</td>
<td>0.400</td>
<td>0.114</td>
</tr>
<tr>
<td>Rounds 6-15</td>
<td>0.457</td>
<td>0.057</td>
<td>0.571</td>
</tr>
<tr>
<td>Rounds 11-15</td>
<td>0.609</td>
<td>0.057</td>
<td>1.000</td>
</tr>
</tbody>
</table>

NOTE.—The p-values from the WMW test are exact and two-sided, and there are 6 observations in treatment N-1-0 and 4 in the other treatments.

As for SVO scores, we expected that they would be positively correlated with individuals producing whether or not that is consistent with equilibrium. However, the general finding is that coefficients on SVO tend to be insignificant or have the wrong sign, suggesting that either social preferences do not explain why agents produce when theory says they should not, or that SVO scores are not a good measure of social preferences in our experiments.17

To further investigate this we employed exit surveys, which turned out to provide more insight than SVO regressions. In surveys from the treatments with money, we asked Players 2 and 3 why they produced in exchange for the token, and Tables 6 and 7 give the number choosing each answer; for the nonmonetary treatments, we asked why they produced, and Table 8 gives those numbers. Note the columns need not add to the number of subjects because they can choose more than one answer.

Starting in Model N with money, but without a monetary equilibrium, without suggestions, among the 24 subjects that acted as Player 3, 17 never produced, con-

17 Appendix E regresses production on individual characteristics separately for Model M and N with money, as well as model M without money. The coefficient on SVO is significant at the 5% level only in rounds 6-15 in Model N and then it is negative; it is positive but insignificant in Model M with money; and it is positive and significant only in early rounds in Model M without money. Demographic characteristics and field of study are not significant.
Table 6: REASONS FOR MONETARY EXCHANGE IN MODEL N

<table>
<thead>
<tr>
<th>Reason</th>
<th>Player 3</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-1-0</td>
<td>N-1-1</td>
</tr>
<tr>
<td>a Not applicable:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I was never in this situation</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>b To increase the chance of trading it</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for the good with another player</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c I made a mistake</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>d To help the other player</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>e I wanted the token for the sake of it</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>f To follow the suggestions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g Other reason. Please explain:</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE.—This table shows the number of responses to the question: "If you were offered the token and you produced in exchange for the token, why did you do it? Check all that apply." Option (f) applies only to N-1-1. The total number of subjects is 24 for treatment N-1-0, and 16 for treatment N-1-1.

consistent with theory. The rest produced for money. Among those, 2 said they wanted to help the other player, which to us sounds like social preferences. Then 4 said they wanted the token for its own sake, 2 said it was a mistake, and 1 said it was to increase the chance of trading with another player, which to us all sound like confusion. In the treatment with suggestions, more subjects produced for money, and of those that did 4 said they were following the suggestion. For subjects that acted as Player 2, many indicated they produced for money to increase the chance of trading it to another player, which can be rationalized if sometimes Player 3 accepts money even if that is not equilibrium play (see below).

Moving to Model M with money, the survey does not distinguish between Player 2 and 3 since roles are uncertain when actions are taken. From Table 7, strategic considerations play a dominant role: most subjects produced for money and said they did so to increase the chance of trading in the next meeting, consistent with monetary equilibrium. Finally, for Model M without money, Table 8 shows some subjects produce when in theory they should not, and many said they did so to increase the chance of others producing for them in this game and more to increase the chance of others producing for them in the next game.

Another result seen in Fig. 6 is that production in Model M with money is higher in the first than the second meeting. The difference is statistically significant and
big, around 15% (see Appendix F for details). This is production conditional on the consumer having money, so the explanation is not simply that subjects are playing a mixed-strategy equilibrium, as discussed in Section 2. Instead the finding suggests that subjects can to some extent distinguish between the two meetings, as in the extension of the baseline with noisy signals. Sophisticated subjects may make inferences based on how long they wait for a meeting, and not produce if they infer a high probability of meeting 2.

At the end of the sessions, Players 2 or 3 were asked whether they could tell what their positions were, and some of them said that they tried to guess based on the
time they had to wait to have access to the decision screen. However, some also said their guesses were often wrong, suggesting that the inference is noisy, consistent with the extension in Section 2. In the lab, during the experiment, subjects proceed to meeting 2 after everyone in their group finishes meeting 1, so a longer waiting time can also be due to slow group members, making inference noisy in practice. The fact that the difference between production in meeting 1 and 2 is bigger in Model M than Model N also lines up nicely with theory.

As a final result, recall that in Model N subjects know which meeting they are in. Hence, in theory no one should produce for money in either meeting, but in practice the two meetings are not quite the same, and this shows up in Fig. 6, where the right panel displays production in the first and second meeting for treatments based on Model N. This can be explained by noticing that if you accept money in
the first meeting there is at least a chance you can spend it in the next meeting – not in equilibrium, but in the experiment – while if you accept it in the second meeting there is no such chance. Hence, even if someone is rational and selfish, there is a rationale for accepting money if it is believed that other players may accept it due to irrationality or social preferences. Of course, it may also be due to limited ability to use backward induction. In any case, in Model M without money there is no systematic difference between the two meetings, again consistent with the benchmark model, as can be seen in the right panel of Fig. 5.18

6 Conclusion

This paper studied, theoretically and experimentally, models of monetary exchange that can have valued fiat currency even with a deterministic termination time. In terms of methods, we focused on essentiality and took a mechanism design approach that sometimes included strategy recommendations. In terms of findings, first, the introduction of money had large and statistically significant effects on production in Model M, consistent with theory, and with past experiments. Second, the effect of money was substantially smaller and declined quickly with experience in Model N, again consistent with theory, and not something checked in past work. Together these results provide evidence that money is used for the strategic reasons pinpointed by the theory.

While money should not be accepted in Model N, sometimes it was accepted, which did not surprise us too much. Based mainly on exit surveys, if not the correlation with social value orientation, this may be due social preferences, although some subjects admitted to simply making mistakes. Another finding is that suggestions improved outcomes when they were incentive compatible, but not much otherwise, implying their impact does not come from subjects feeling obliged to follow them. Yet another finding is that some subjects used waiting time as a noisy indicator of position in the trading sequence, which led us to extend the benchmark model to incorporate inferences. This extension has the property that monetary exchange is

\footnote{Appendix F reports regression results verifying that production is significantly lower in the second meeting in Model M and in model N. It also shows that production does not decline across meeting in Model M without money.}
more likely in the first than the second meeting, consistent with the experimental evidence.

In terms of extensions, one idea is to add more agents or meetings to see how that affects backward induction. Another is to study alternative ways to coordinate play – e.g., in addition to suggestions, one could consider different specifications for private or public histories, or perhaps pre-play communication (cheap talk). Additionally, there are other ways to get monetary equilibria in finite environments – e.g., one can add a coordination or hawk-dove game in the final period, with equilibrium selection depending on whether money was accepted in the past. Also, there are many interesting applications of monetary theory in experimental economics, mentioned in fn. 2, studying commodity as well as fiat money, two-country or two-money models, versions with divisible goods or divisible money, and OLG environments, and it may be fruitful to revisit those applications using finite-horizon models. This is left to future work. For now, we conclude that the experimental results line up fairly well with theory, and that the exercise taught us a lot about monetary economics, especially about essentiality and the mechanism design approach.
References

A Social Value Orientation

We use a standard measure of SVO (Social Value Orientation) introduced by Murphy et al. (2011) to capture social or altruistic preferences. This is constructed by having participants play six generalized dictator games that differ in the costs for the sender to give money to the receiver. The SVO index is computed as an increasing function of the ratio of the amount given to the amount kept, so higher SVO scores correspond to more altruistic preferences (see Murphy et al. 2011 for details). Experiments were conducted using the computerized module for zTree and oTree developed by Crosetto et al. (2019) with the ring matching protocol, where each subject acts as both a sender and a receiver (see Crosetto et al. 2019 for details). In addition to the six games used to compute SVO scores, we added nine secondary games from Murphy et al. (2011) and Crosetto al. (2019) that can in principle
help disentangle motives associated with maximization of the social surplus from equality motives, but since not even the basic SVO score has any explanatory power, we did not pursue this. One of the games where the subject was a proposer and one where the subject was a receiver were randomly chosen to determine subjects’ payments.

B In-person vs Online Sessions

We ran four in-person sessions for Model N with money and without suggestions (Model N-1-0) before the COVID-19 pandemic. Because of the ensuing lockdown of Indiana University we resumed sessions online, recruiting subjects from the same pool. For comparison we ran two additional sessions of the same treatment online. Table B.1 provides a summary. While online production rates tend to be slightly higher, the difference is not significant after the first 5 rounds, so it seems unlikely that the difference between online and in-person sessions is affecting the main results.

Table B.1: PRODUCTION IN MODEL N-1-0

<table>
<thead>
<tr>
<th>Rounds</th>
<th>In-Person</th>
<th>Online</th>
<th>Difference (t-test)</th>
<th># of Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.1706*** (0.0243)</td>
<td>0.2714** (0.0054)</td>
<td>0.1008*** (0.0234)</td>
<td>720</td>
</tr>
<tr>
<td>1–5</td>
<td>0.2000*** (0.0254)</td>
<td>0.3714 (0.0612)</td>
<td>0.1714** (0.0533)</td>
<td>240</td>
</tr>
<tr>
<td>6–10</td>
<td>0.1706** (0.0485)</td>
<td>0.1857*** (0.0112)</td>
<td>0.0151 (0.0471)</td>
<td>240</td>
</tr>
<tr>
<td>11–15</td>
<td>0.1412** (0.0388)</td>
<td>0.2571 (0.0653)</td>
<td>0.1160 (0.0627)</td>
<td>240</td>
</tr>
<tr>
<td>6–15</td>
<td>0.1559** (0.0436)</td>
<td>0.2214 (0.0387)</td>
<td>0.0655 (0.0512)</td>
<td>480</td>
</tr>
</tbody>
</table>

NOTE.– Standard errors in parentheses are clustered by session.

C Production by Session and Treatment

Table C.1 reports production by session and treatment for rounds 1-5, 6-15, 10-15 rounds, and all rounds. Table C.2 provides the same information but conditional on money in the
meeting. The main takeaway is that results from the different sessions are consistent in terms of averages and when splitting data by early, medium, and late rounds. The one exception is that production is considerably higher in Session 4 of treatment M-0-1.

Table C.1: PRODUCTION BY SESSION: ALL MEETINGS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Session</th>
<th>Rounds</th>
<th>Treatment</th>
<th>Session</th>
<th>Rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-5</td>
<td>6-15</td>
<td>11-15</td>
<td>All</td>
</tr>
<tr>
<td>M-1-0</td>
<td>1</td>
<td>0.64</td>
<td>0.52</td>
<td>0.48</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.50</td>
<td>0.49</td>
<td>0.42</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.42</td>
<td>0.57</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.65</td>
<td>0.45</td>
<td>0.48</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>0.55</td>
<td>0.51</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.75</td>
<td>0.67</td>
<td>0.65</td>
<td>0.7</td>
</tr>
<tr>
<td>M-1-1</td>
<td>2</td>
<td>0.57</td>
<td>0.55</td>
<td>0.50</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.50</td>
<td>0.58</td>
<td>0.53</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.76</td>
<td>0.64</td>
<td>0.66</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>0.65</td>
<td>0.61</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.24</td>
<td>0.26</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>M-0-0</td>
<td>2</td>
<td>0.37</td>
<td>0.22</td>
<td>0.2</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.33</td>
<td>0.1</td>
<td>0.07</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.53</td>
<td>0.37</td>
<td>0.43</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>0.37</td>
<td>0.24</td>
<td>0.25</td>
</tr>
<tr>
<td>M-0-1</td>
<td>1</td>
<td>0.62</td>
<td>0.31</td>
<td>0.22</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.42</td>
<td>0.26</td>
<td>0.22</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.38</td>
<td>0.16</td>
<td>0.06</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.67</td>
<td>0.56</td>
<td>0.52</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>0.52</td>
<td>0.32</td>
<td>0.25</td>
</tr>
</tbody>
</table>

NOTE.– (*) Sessions were conducted in person. All other sessions were conducted online.

Table C.2: PRODUCTION BY SESSION: CONDITIONAL ON MONEY IN MEETING

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Session</th>
<th>Rounds</th>
<th>Treatment</th>
<th>Session</th>
<th>Rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-5</td>
<td>6-15</td>
<td>11-15</td>
<td>All</td>
</tr>
<tr>
<td>M-1-0</td>
<td>1</td>
<td>0.74</td>
<td>0.60</td>
<td>0.55</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.59</td>
<td>0.59</td>
<td>0.50</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.53</td>
<td>0.65</td>
<td>0.64</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.70</td>
<td>0.48</td>
<td>0.50</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>0.64</td>
<td>0.58</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.79</td>
<td>0.75</td>
<td>0.74</td>
<td>0.76</td>
</tr>
<tr>
<td>M-1-1</td>
<td>2</td>
<td>0.68</td>
<td>0.61</td>
<td>0.56</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.60</td>
<td>0.66</td>
<td>0.62</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.81</td>
<td>0.69</td>
<td>0.67</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>0.72</td>
<td>0.68</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>0.49</td>
<td>0.32</td>
<td>0.31</td>
</tr>
</tbody>
</table>

NOTE.– (*) Sessions were conducted in person. All other sessions were conducted online. Sample only includes meetings where the consumer entered the meeting with money.
D Regression Analysis

In the main text we report p-values from Wilcoxon-Mann-Whitney non-parametric tests to support our findings, and partition our sample into rounds 1–5, 6–15 and 11–15 because we expect play in early rounds to reflect more experimentation and mistakes. Here we summarize OLS (ordinary least square estimations) of the linear probability model and MLE (maximum likelihood estimations) of the probit model. We also provide a robustness check of data partitioning by tabulating results from the very early (1-3) and late rounds (13-15).

D.1 Money and Suggestions in Model M

Here we study the impacts of money and suggestions in Model M by regressing production on dummies for money, the interaction with suggestions and controls for round and meeting. The results in Table D.1 pool data from treatments M-1-0, M-0-0, M-1-1 and M-0-1. We also ran regressions using the characteristics considered in Appendix E, but do not report the results as they were similar.

Results from the linear probability and probit estimations are qualitatively and quantitatively very similar, and consistent with the non-parametric results, except the positive effects of money have higher significance levels. The effect of money is to increase production between 18% to 33% depending on the round. Aggregating over all rounds, it appears the effect of suggestions is of similar magnitude in the model when it should not have an effect according to theory (without money) and when it could have a coordinating effect (with money). However, the effect of suggestions without money is concentrated in early rounds, and is even slightly negative in late rounds. In contrast, the effect of suggestions in the monetary version of Model M is stable and significant except in the earliest rounds. This suggests that subjects quickly learn that it is a bad idea to follow suggestions in treatment M-0-1, but not M-1-1.
Table D.1: PRODUCTION IN MODEL M

<table>
<thead>
<tr>
<th>Rounds</th>
<th>Money</th>
<th>Suggestion × Money</th>
<th>Money</th>
<th>Suggestion × Money</th>
<th># of Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Money= 0</td>
<td>Money= 1</td>
<td>Money= 0</td>
<td>Money= 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>0.2477***</td>
<td>0.1046</td>
<td>0.1057***</td>
<td>0.2645***</td>
<td>0.1168</td>
</tr>
<tr>
<td></td>
<td>(0.0397)</td>
<td>(0.0811)</td>
<td>(0.0363)</td>
<td>(0.0464)</td>
<td>(0.0894)</td>
</tr>
<tr>
<td>1–5</td>
<td>0.2055**</td>
<td>0.1643*</td>
<td>0.1037</td>
<td>0.2139***</td>
<td>0.1707*</td>
</tr>
<tr>
<td></td>
<td>(0.0732)</td>
<td>(0.0861)</td>
<td>(0.0735)</td>
<td>(0.0782)</td>
<td>(0.0902)</td>
</tr>
<tr>
<td>6–15</td>
<td>0.2688***</td>
<td>0.0872</td>
<td>0.1068***</td>
<td>0.2876***</td>
<td>0.0884</td>
</tr>
<tr>
<td></td>
<td>(0.0457)</td>
<td>(0.0872)</td>
<td>(0.0336)</td>
<td>(0.0541)</td>
<td>(0.1008)</td>
</tr>
<tr>
<td>11–15</td>
<td>0.2231***</td>
<td>−0.0063</td>
<td>0.1173**</td>
<td>0.2365***</td>
<td>−0.0047</td>
</tr>
<tr>
<td></td>
<td>(0.0606)</td>
<td>(0.1062)</td>
<td>(0.0412)</td>
<td>(0.0694)</td>
<td>(0.1297)</td>
</tr>
<tr>
<td>1–3</td>
<td>0.1843***</td>
<td>0.1255</td>
<td>0.0282</td>
<td>0.1868***</td>
<td>0.1249**</td>
</tr>
<tr>
<td></td>
<td>(0.0547)</td>
<td>(0.0816)</td>
<td>(0.0654)</td>
<td>(0.0553)</td>
<td>(0.0809)</td>
</tr>
<tr>
<td>13–15</td>
<td>0.3294***</td>
<td>−0.0137</td>
<td>0.0539</td>
<td>0.3484***</td>
<td>−0.0137</td>
</tr>
<tr>
<td></td>
<td>(0.0840)</td>
<td>(0.1051)</td>
<td>(0.0907)</td>
<td>(0.0968)</td>
<td>(0.1444)</td>
</tr>
</tbody>
</table>

NOTE. – Regression of production on money, suggestion interacted with money, and controls. Money is a dummy that equals 1 in models M-1-0 and M-1-1, and suggestion is a dummy that equals 1 in models M-0-1 and M-1-1. Controls are meeting and round. Standard errors in parentheses are clustered at the session level. ***p < 0.01, **p < 0.05, *p < 0.1.

D.2 Model M vs Model N

Next we pool the data from all treatments with money and regress production on a dummy for Model M, interactions between Models M and N, suggestions and controls for meeting and round. Again we consider OLS of a linear probability and MLE of a probit specification. As the main effect of interest is on the use of money to increase production, we only consider production conditional on the consumer having money.

Table D.2 summarizes the results for the linear probability model and the marginal effects from the probit regression. Again the linear probability and probit specifications are similar. Production in Model M-1-0 is more than 30% higher than in Model N-1-0. Similar to the case with no money in Model M, suggestions increase production in early rounds in Model N, but this quickly diminishes over time and is insignificant beyond the first five rounds. In Model M the pattern is the opposite with the suggestion having significant effects in all but the earliest rounds.
Table D.2: PRODUCTION IN MODEL M vs N WITH MONEY

<table>
<thead>
<tr>
<th>Rounds</th>
<th>Model M</th>
<th>Suggestion × Model N</th>
<th>Model M</th>
<th>Suggestion × Model M</th>
<th>Model N</th>
<th>Model M</th>
<th># of Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.3435*** (0.0349)</td>
<td>0.1072* (0.0598)</td>
<td>0.1005*** (0.0342)</td>
<td>0.3726*** (0.0401)</td>
<td>0.1221 (0.0665)</td>
<td>0.1146*** (0.0403)</td>
<td>1,680</td>
</tr>
<tr>
<td>1–5</td>
<td>0.3333*** (0.0679)</td>
<td>0.1708** (0.0657)</td>
<td>0.0974 (0.0656)</td>
<td>0.3622*** (0.0748)</td>
<td>0.1872** (0.0730)</td>
<td>0.1165 (0.0784)</td>
<td>588</td>
</tr>
<tr>
<td>6–15</td>
<td>0.3487*** (0.0512)</td>
<td>0.0689 (0.0716)</td>
<td>0.1036** (0.0404)</td>
<td>0.3771*** (0.0579)</td>
<td>0.0823 (0.0819)</td>
<td>0.1142*** (0.0437)</td>
<td>1092</td>
</tr>
<tr>
<td>11–15</td>
<td>0.3175*** (0.0509)</td>
<td>0.0671 (0.0662)</td>
<td>0.1165** (0.0446)</td>
<td>0.3479*** (0.0587)</td>
<td>0.0817 (0.0773)</td>
<td>0.1254*** (0.0490)</td>
<td>544</td>
</tr>
<tr>
<td>1–3</td>
<td>0.3661*** (0.0733)</td>
<td>0.2448*** (0.0815)</td>
<td>0.0260 (0.0567)</td>
<td>0.4010*** (0.0872)</td>
<td>0.2689*** (0.0936)</td>
<td>0.0352 (0.0683)</td>
<td>364</td>
</tr>
<tr>
<td>13–15</td>
<td>0.3442*** (0.0497)</td>
<td>0.0294 (0.0703)</td>
<td>0.0502 (0.0382)</td>
<td>0.3708*** (0.0952)</td>
<td>0.0386 (0.0929)</td>
<td>0.0538 (0.0991)</td>
<td>327</td>
</tr>
</tbody>
</table>

NOTE. – Regression of production on Model M, suggestion interacted with Model M and Model N, and controls. Model M is a dummy that equals 1 in models M-1-0 and M-1-1, Model N is a dummy that equals 1 in models N-1-0 and N-1-1, and suggestion is a dummy that equals 1 in models M-0-1 and M-1-1. Controls are meeting and round. Standard errors in parentheses are clustered at the session level. ***p < 0.01, **p < 0.05, *p < 0.1.

E Social Preferences and Demographics

Here we report regression results controlling for SVO and demographic variables. We use OLS and control for meeting and round. Besides SVO scores, we expected that a dummy for majoring in economics or finance (econfin in Table E.1) may be important. We ran separate regressions for monetary treatments in Model N (N-1-0 and N-1-1), monetary treatments in Model M (M-1-0 and M-1-1), and nonmonetary treatments in Model M (M-0-0 and M-0-1). For monetary treatments, we only consider meetings with money, but this does not affect the conclusions. As Table E.1 shows, individual characteristics have small effects that are either insignificant or have unexpected signs. SVO tends to have a negative impact on production in Model N, and a positive effect in Model M with money, but the magnitude is small and insignificant in late rounds. SVO is significant in the nonmonetary treatment in early rounds but not after the first five. Male subjects tend to produce more in Model N and less in Model M, but this is also insignificant. There is some evidence that economic training helps subjects figure out equilibrium: economics and finance students tend to produce more for money in Model M and less in Model N, but this is not significant at the 10% level except for late rounds for Model M.
Table E.1: PRODUCTION AND INDIVIDUAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Rounds</th>
<th>SVO</th>
<th>Male</th>
<th>EconFin</th>
<th>Suggestion</th>
<th>Age</th>
<th>Native</th>
<th># of Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>-0.0052* (0.0023)</td>
<td>0.0229 (0.0731)</td>
<td>-0.0231 (0.0824)</td>
<td>0.1087 (0.0519)</td>
<td>0.0037 (0.0081)</td>
<td>-0.0074 (0.0653)</td>
<td>832</td>
</tr>
<tr>
<td>1–5</td>
<td>-0.0030 (0.023)</td>
<td>0.0149 (0.0933)</td>
<td>0.0010 (0.1095)</td>
<td>0.1791** (0.0593)</td>
<td>-0.0046 (0.0112)</td>
<td>0.0487 (0.0524)</td>
<td>301</td>
</tr>
<tr>
<td>6–15</td>
<td>-0.0064** (0.028)</td>
<td>0.0249 (0.0683)</td>
<td>-0.0385 (0.0803)</td>
<td>0.0710 (0.0649)</td>
<td>0.0079 (0.0078)</td>
<td>-0.0369 (0.0853)</td>
<td>531</td>
</tr>
<tr>
<td>11–15</td>
<td>-0.0046 (0.038)</td>
<td>0.0247 (0.0809)</td>
<td>-0.0861 (0.0931)</td>
<td>0.0701 (0.0637)</td>
<td>0.0061 (0.0094)</td>
<td>-0.0039 (0.1205)</td>
<td>266</td>
</tr>
</tbody>
</table>

Models N-1-0 and N-1-1

<table>
<thead>
<tr>
<th>Rounds</th>
<th>SVO</th>
<th>Male</th>
<th>EconFin</th>
<th>Suggestion</th>
<th>Age</th>
<th>Native</th>
<th># of Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.0010 (0.0020)</td>
<td>-0.0067 (0.0349)</td>
<td>0.1124 (0.0618)</td>
<td>0.1068** (0.0430)</td>
<td>0.0162 (0.0178)</td>
<td>-0.0176 (0.0598)</td>
<td>848</td>
</tr>
<tr>
<td>1–5</td>
<td>0.0011 (0.016)</td>
<td>0.0564 (0.0576)</td>
<td>0.0571 (0.0489)</td>
<td>0.0881 (0.0660)</td>
<td>0.0190* (0.0095)</td>
<td>0.0374 (0.0803)</td>
<td>287</td>
</tr>
<tr>
<td>6–15</td>
<td>0.0011 (0.026)</td>
<td>-0.0378 (0.0536)</td>
<td>0.1403 (0.0844)</td>
<td>0.1156* (0.0520)</td>
<td>0.0150 (0.0271)</td>
<td>-0.0412 (0.0875)</td>
<td>561</td>
</tr>
<tr>
<td>11–15</td>
<td>0.0016 (0.026)</td>
<td>-0.0960 (0.0678)</td>
<td>0.2338** (0.1019)</td>
<td>0.1430** (0.0595)</td>
<td>0.0242 (0.0254)</td>
<td>-0.0758 (0.0823)</td>
<td>278</td>
</tr>
</tbody>
</table>

Models M-1-0 and M-1-1

<table>
<thead>
<tr>
<th>Rounds</th>
<th>SVO</th>
<th>Male</th>
<th>EconFin</th>
<th>Suggestion</th>
<th>Age</th>
<th>Native</th>
<th># of Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.0054* (0.0024)</td>
<td>-0.0457 (0.0659)</td>
<td>-0.0453 (0.0696)</td>
<td>0.1011 (0.0768)</td>
<td>0.0084 (0.0081)</td>
<td>0.0042 (0.0317)</td>
<td>960</td>
</tr>
<tr>
<td>1–5</td>
<td>0.0062*** (0.018)</td>
<td>-0.0198 (0.0682)</td>
<td>-0.0521 (0.0648)</td>
<td>0.1573* (0.0772)</td>
<td>0.0080 (0.0073)</td>
<td>0.0453 (0.0329)</td>
<td>320</td>
</tr>
<tr>
<td>6–15</td>
<td>0.0049 (0.028)</td>
<td>-0.0569 (0.0730)</td>
<td>-0.0434 (0.0894)</td>
<td>0.0733 (0.0844)</td>
<td>0.0086 (0.0091)</td>
<td>-0.0166 (0.0401)</td>
<td>640</td>
</tr>
<tr>
<td>11–15</td>
<td>0.0048 (0.033)</td>
<td>-0.0177 (0.0557)</td>
<td>-0.0672 (0.1089)</td>
<td>-0.0014 (0.1065)</td>
<td>0.0116 (0.0089)</td>
<td>0.0540 (0.0532)</td>
<td>320</td>
</tr>
</tbody>
</table>

Models M-0-0 and M-0-1

<table>
<thead>
<tr>
<th>Rounds</th>
<th>SVO</th>
<th>Male</th>
<th>EconFin</th>
<th>Suggestion</th>
<th>Age</th>
<th>Native</th>
<th># of Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.0054* (0.0024)</td>
<td>-0.0457 (0.0659)</td>
<td>-0.0453 (0.0696)</td>
<td>0.1011 (0.0768)</td>
<td>0.0084 (0.0081)</td>
<td>0.0042 (0.0317)</td>
<td>960</td>
</tr>
<tr>
<td>1–5</td>
<td>0.0062*** (0.018)</td>
<td>-0.0198 (0.0682)</td>
<td>-0.0521 (0.0648)</td>
<td>0.1573* (0.0772)</td>
<td>0.0080 (0.0073)</td>
<td>0.0453 (0.0329)</td>
<td>320</td>
</tr>
<tr>
<td>6–15</td>
<td>0.0049 (0.028)</td>
<td>-0.0569 (0.0730)</td>
<td>-0.0434 (0.0894)</td>
<td>0.0733 (0.0844)</td>
<td>0.0086 (0.0091)</td>
<td>-0.0166 (0.0401)</td>
<td>640</td>
</tr>
<tr>
<td>11–15</td>
<td>0.0048 (0.033)</td>
<td>-0.0177 (0.0557)</td>
<td>-0.0672 (0.1089)</td>
<td>-0.0014 (0.1065)</td>
<td>0.0116 (0.0089)</td>
<td>0.0540 (0.0532)</td>
<td>320</td>
</tr>
</tbody>
</table>

NOTE.– Regression of Production on SVO, male, econFin, suggestion, age, native, and controls. The variable SVO is explained in Appendix A, male equals 1 if male, econFin is a dummy that equals 1 for subjects majoring in economics or finance, suggestion is a dummy that equals 1 in models N-1-1, M-1-1, M-0-1, age is age in years, and native is a dummy that equals 1 for producers who are native English speakers. Controls are meeting and round. Standard errors in parentheses are clustered at the session level. ***(p < 0.01, **(p < 0.05, *(p < 0.1.}
F Meeting 1 vs Meeting 2

We now add a dummy for meeting 2 in a linear probability model. We also include a dummy for Model M or N and interact Model M or N with the meeting and suggestions. We also considered the interaction of meeting and suggestions but the effects are small, not significant, and not robust to specification. Results are similar whether we include these variables so we do not report them. The regression includes observations from the four monetary treatments and we only consider meetings where the consumer has the token. There are 1,680 meetings, where 1,095 are meeting 1 and 585 are meeting 2. In both Model M and N, subjects produce significantly less (by 15% in Model M, and by 23% in Model N) in meeting 2. In Model M, this is consistent with subjects trying to infer which meeting they are in (see Section 5 of the paper). However, because the information is not perfect, production in later rounds is still over 30% higher in Model M than Model N, where they know in which meeting they are in.

Table F.1: PRODUCTION IN MEETING 1 vs MEETING 2

<table>
<thead>
<tr>
<th>Rounds</th>
<th>Model M</th>
<th>Meeting 2 × Model N</th>
<th>Suggestion × Model M</th>
<th># of Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.2417*** (0.0768)</td>
<td>−0.2274*** (0.0381)</td>
<td>−0.1501*** (0.0260)</td>
<td>1,680</td>
</tr>
<tr>
<td>1–5</td>
<td>0.0368 (0.1157)</td>
<td>−0.3379*** (0.0451)</td>
<td>−0.1180** (0.0543)</td>
<td>588</td>
</tr>
<tr>
<td>6–15</td>
<td>0.3431*** (0.1075)</td>
<td>−0.1723*** (0.0463)</td>
<td>−0.1680*** (0.0339)</td>
<td>1,092</td>
</tr>
<tr>
<td>11–15</td>
<td>0.3284*** (0.1220)</td>
<td>−0.2031*** (0.0610)</td>
<td>−0.2115*** (0.0555)</td>
<td>544</td>
</tr>
</tbody>
</table>

NOTE.– Regression of production on Model M, meeting 2 interacted with Model M and Model N, suggestion interacted with Model M and Model N, and round. Model M is a dummy that equals 1 in models M-1-0 and M-1-1, meeting 2 is a dummy that equals 1 in the second meeting, Model N is a dummy that equals 1 in models N-1-0 and N-1-1, and suggestion is a dummy that equals 1 in models M-1-1 and N-1-1. Standard errors in parentheses are clustered at the session level. ***p < 0.01, **p < 0.05, *p < 0.1.

We also test the difference in production between meetings in Model M without money (treatments M-0-0 and M-0-1). We run a regression similar to the one above of production on Meeting 2, suggestion, and round as control. The overall difference is 4%, but it is not significant with a p-value of 30%. In the last 5 rounds the difference is even smaller at 1% and a p-value of 81%. See Table F.2.
Table F.2: MEETING 1 vs 2 IN MODEL M WITHOUT MONEY

<table>
<thead>
<tr>
<th>Rounds</th>
<th>Meeting 2</th>
<th>Suggestion</th>
<th># of Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.0417</td>
<td>0.1046</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>(0.0368)</td>
<td>(0.0840)</td>
<td></td>
</tr>
<tr>
<td>1–5</td>
<td>0.0687</td>
<td>0.1643</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>(0.0433)</td>
<td>(0.0892)</td>
<td></td>
</tr>
<tr>
<td>6–15</td>
<td>0.0281</td>
<td>0.0747</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>(0.0419)</td>
<td>(0.0904)</td>
<td></td>
</tr>
<tr>
<td>11–15</td>
<td>−0.0125</td>
<td>−0.0063</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>(0.0507)</td>
<td>(0.1100)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE.— Regression of production on meeting 2, suggestion, and round as control. Meeting 2 is a dummy that equals 1 in the second meeting, and suggestion is a dummy that equals 1 in treatment M-0-1. Standard errors in parentheses are clustered at the session level. ***$p < 0.01$, **$p < 0.05$, *$p < 0.1$.}
G Experimental Instructions

We report below the instructions for all six treatments of part I of the experiment: N-1-0, M-1-0, N-1-1, M-1-1, M-0-0, and M-0-1. We also include the exit surveys for each treatment, the demographic survey and the instructions for the Social Value Orientation task (part II of the experiment).

Instructions for Treatment N-1-0

Introduction

Today's session has two parts. In each part, you will make a series of decisions. The earnings you make from the two parts are calculated in points, and will be converted to dollars at the specified exchange rates. In addition, you also receive a $5 show-up payment regardless of your earnings during the experiment. If you follow the instructions carefully, you can earn a considerable amount of cash. Between the two parts, you will be required to complete two short surveys. Please refrain from talking for the duration of today's session. Kindly silence all mobile devices.

Instructions for Part I

Overview

There are X participants in today's experiment. In the first part of the experiment, you will play 15 games in groups of 3 people. There are two objects: a token and a good. You earn points from consuming the good and lose points from producing it. The token itself does not yield points directly, but may help you earn points if other participants are only willing to produce for you in exchange for the token.

At the beginning of this part of the experiment, each participant is randomly assigned a number 1, 2 or 3, which determines his/her position in the group for all 15 games. Each participant is informed about his/her position. Depending on your position, you make either one or both of the following two decisions:

1. whether to produce for the player preceding you in the group, and
2. if you have a token, whether to offer it to the next player in exchange for the good that he/she can produce for you.

Decisions in each game

In each game, the three participants in the group make decisions sequentially.

- First, player 1 is endowed with a token and decides whether or not to offer the token to player 2 in exchange for the good.
- Player 2 observes whether player 1 has offered the token or not, and then decides whether to produce for player 1. If player 2 obtains the token, then he/she also decides whether to offer the token to player 3 in exchange for the good.
- Finally, player 3 observes whether player 2 has offered the token or not, and then decides whether to produce for player 2.

Some observations:
• You earn 3 points from consumption, and lose 1 point from production.
• Player 1 cannot produce because there is no player preceding him, and can consume if player 2 decides to produce for him/her.
• Player 2 can produce for player 1, and can consume if player 3 decides to produce for him/her.
• Player 3 can produce for player 2, but cannot consume since there is no player after him/her.
• The token does not yield points directly, and cannot be carried from one game to another.

Grouping and Positions

There are 15 games. At the beginning of each game participants are randomly grouped in new groups of three, and thus group members are likely to change from game to game. However, your position is fixed for the duration of the experiment. For example, if you are player 3 in game 1, then you will remain player 3 in all games.

Earnings

You will start this part of the experiment with an endowment of 3 points. In each game your points total increases by 3 when you consume, and decreases by 1 when you produce. The computer will randomly select 3 games for payment. Your points from the 3 selected games will then be converted into dollars at rate 1 point = $2.

Computer Screens

You will submit your decision through a computer screen. For example, player 2 will input his/her decision through the screen as shown below.

Figure 1. Decision screen for player 2.
At the end of each game, you will also receive information on the results for the game. See below for a sample result screen for player 2.

Game 1 Results

![Result screen for player 2.](image)

Summary

1. You will play 15 games.
2. At the beginning of this part of the experiment, each participant is randomly assigned a number with equal probability, 1, 2 or 3, that determines his/her position in all 15 games.
3. While the position is fixed, at the beginning of each game, participants are randomly grouped in new groups of three, and thus group members are likely to be different across games.
4. Player 1 is endowed with a token. Player 1 can only choose whether to offer or not the token to the next player. Player 1 cannot produce because there is no player preceding him/her.
5. Player 2 decides whether to produce for player 1. If he/she acquires a token, he/she can also decide whether to offer it to player 3 in exchange for the good.
6. Player 3 decides whether to produce for Player 2. Player 3 can neither transfer the token nor consume because there is no player after her/him.
7. You earn 3 points from consumption and lose 1 point from production.
8. Player 1 is endowed with the token, while the other two players can obtain and offer the token only if they produce for others and if the player preceding them offers the token in exchange for the good.
9. The token does not yield points directly and cannot be transferred from one game to another.
Quiz

1. a. Suppose that you are player 1 in game 1, then you will be player 1 in all games.
 - True
 - False

 b. Will other players keep their position in each game?
 - Yes
 - No

2. Suppose in game 2 you are grouped with two other participants. In game 3 you will be grouped for sure with the same two participants.
 - True
 - False

3. Suppose that you are player 1. Suppose that you offer the token to player 2, and he/she produces for you. How many points do you earn?

4. Suppose that you are player 2. Suppose player 1 offers you the token in exchange for the good, you decide to produce for player 1, and you offer the token to player 3 in exchange for the good. Player 3 chooses to produce for you.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn in total in this game?

5. Suppose again that you are player 2. Suppose player 1 offers you the token in exchange for your production, you decide not to produce for player 1 so you do not acquire the token. Player 3 observes that you do not offer the token and chooses NOT to produce for you.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn total in this game?

6. Suppose that you are player 3, or the last player in the game. Suppose that player 2 offered you the token and you produce for player 2.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn in total in this game?

7. The token will be converted into money and paid to you in cash at the end of the experiment.
 - True
 - False
Exit Survey- Treatment N-1-0

Player 1 Questionnaire for Part I of the Experiment

1. How often did you offer the token in exchange for the good?
 - Always
 - Sometimes
 - Never

2. If you offered the token, why did you do it? Check all that apply.
 - Not applicable: I have never offered the token.
 - To increase the chance of trading it for the good with player 2
 - I made a mistake
 - To help the other player
 - I had no other use of the token.
 - Other reason. Please explain:
 [Box Here]

3. If you did not offer the token, why did you do it? Check all that apply.
 - Not applicable: I always offered the token
 - It did not increase the chance of trading it for the good with player 2
 - I made a mistake
 - I wanted to keep the token.
 - Other reason. Please explain:
 [Box Here]

Additional Comments:

[Box Here]
Player 2 Questionnaire for Part I of the Experiment

1. When player 1 offered you the token in exchange for the good, how often did you produce?
 - o Not applicable: I was never offered the token in exchange for the good.
 - o Always
 - o Sometimes
 - o Never

2. If you were offered the token and you produced in exchange for the token, why did you do it? Check all that apply.
 - □ Not applicable: I was never in this situation.
 - □ To increase the chance of trading it for the good with player 3
 - □ I made a mistake
 - □ To help the other player
 - □ I wanted the token for the sake of it.
 - □ Other reason. Please explain:
 [Box Here]

3. If you were offered the token and you decided not to produce in exchange for the token, why did you do it? Check all that apply.
 - o Not applicable: I was never in this situation
 - o It is costly to produce, and the token would not increase the chance of trading it for the good with player 3
 - o It is costly to produce, and the token would not be converted into cash
 - o I made a mistake
 - o Other reason. Please explain:
 [Box Here]

4. If the previous player did not offer you the token and you decided to produce for him/her, why did you do it? Check all that apply.
 - o Not applicable: I was never in this situation
 - o I made a mistake
 - o To help the other player
 - o Other reason. Please explain:
 [Box Here]

Additional Comments:

[Box Here]
Player 3 Questionnaire for Part I of the Experiment

1. When player 2 offered a token in exchange for the good, how often did you produce?
 - Not applicable: I was never offered the token in exchange for the good.
 - Always
 - Sometimes
 - Never

2. If you were offered the token and you produced in exchange for the token, why did you do it? Check all that apply.
 - Not applicable: I was never in this situation.
 - To increase the chance of trading it for the good with another player
 - I made a mistake
 - To help the other player
 - I wanted the token for the sake of it.
 - Other reason. Please explain:

3. If you were offered the token and you decided not to produce in exchange for the token, why did you do it? Check all that apply.
 - Not applicable: I was never in this situation,
 - It is costly to produce, and I could not trade the token for the good with another player
 - I made a mistake
 - Other reason. Please explain:

4. If the previous player did not offer you the token and you decided to produce for him/her, why did you do it? Check all that apply.
 - Not applicable: I was never in this situation
 - I made a mistake
 - To help the other player
 - Other reason. Please explain:

Additional Comments:

[Box Here]
Instructions for Treatment M-1-0

Introduction

Today's session has two parts. In each part, you will make a series of decisions. The earnings you make are calculated in points, and will be converted to dollars at the specified exchange rates. In addition, you also receive a $5 show-up payment regardless of your earnings during the experiment. If you follow the instructions carefully, you can earn a considerable amount of cash. Between the two parts, you will be required to complete two short surveys. Please refrain from talking for the duration of today's session. Kindly silence all mobile devices.

Instructions for Part I

Overview

There are X participants in today's experiment. In the first part of the experiment, you will play 15 games in groups of 3 people. There are two objects: a token and a good. You earn points from consuming the good and lose points from producing it. The token itself does not yield points directly, but may help you earn points if other participants are only willing to produce for you in exchange for the token.

In each game, each of the three participants will be assigned a position, 1, 2 or 3. Depending on your position, you make either one or both of the following two decisions:

1. whether to produce for the player preceding you in the group, and
2. if you have a token, whether to offer it to the next player in exchange for the good that he/she can produce for you.

Decisions in each game

At the beginning of each game, one of the three participants in a group is revealed as player 1 and informed about his/her position. The other two players are informed that they are not player 1, but do not know their exact positions, i.e. whether they are player 2 or player 3. It is equally likely that they are player 2 or player 3. It is equally likely that they are player 2 or player 3. The three players then make decisions sequentially.

- Player 1 is endowed with a token and decides whether or not to offer the token to the next player in exchange for the good.
- Player 2, blind to his/her exact position, is informed about whether the preceding player has offered the token and decides whether to produce for the preceding player. After the production decision, player 2 is informed about his/her exact position. If player 2 obtains the token, then he/she also decides whether to offer the token to player 3 in exchange for the good.
- Player 3, blind to his/her exact position, is informed about whether the preceding player has offered the token and decides whether to produce for the preceding player. After the production decision, player 3 is informed about his/her exact position. Player 3 has no further decisions to make, even if he/she has acquired a token.

Some observations:

- You earn 3 points from consumption, and lose 1 point from production.
• Player 1 cannot produce because there is no player preceding him/her, and can consume if player 2 decides to produce for him/her.
• Player 2 can produce for player 1, and can consume if player 3 decides to produce for him/her.
• Player 3 can produce for player 2, but cannot consume since there is no player after him/her.
• The token does not yield points directly, and cannot be carried from one game to another.
• Player 1 is endowed with the token. Player 2 and player 3 can obtain and offer the token only if they produce for others (and if the player preceding them offers the token in exchange for the good).

Regarding the production decision of the last two players, consider the following.

• When deciding whether to produce, the last two players do not know their exact positions. When deciding whether to produce, they should consider both the possibility of being player 2 and the possibility of being player 3.
• If offered a token, the token could either be from
 o player 1, who is endowed with the token, or
 o player 2 who has produced for the token.
• If not offered a token, the preceding player could be
 o player 1 who did not offer the token,
 o player 2 who acquired the token by producing but did not offer the token,
 o player 2 who did not acquire the token because player 1 did not offer the token, or
 o player 2 who did not acquire the token because he/she did not produce.

Grouping and Positions

There are 15 games. At the beginning of each game participants are randomly grouped in new groups of three, and thus group members are likely to change from game to game.

Player 1’s position is fixed for the duration of the experiment. If you are player 1 in game 1, you will remain player 1 in all games. However, whether you are player 2 or player 3 is randomly determined in each game. For example, if you are player 3 in game 1, you have an equal chance of being player 2 or player 3 in each of the other games. Player 1 is informed that he/she is player 1 and the other two players are informed that they are not player 1. The exact position of the last two players is revealed to them only after they make the production decision.

Earnings

You will start this part of the experiment with an endowment of 3 points. In each game your points total increases by 3 when you consume, and decreases by 1 when you produce. The computer will randomly select 3 games for payment. Your points from the 3 selected games will then be converted into dollars at rate 1 point = $2.

Computer Screens

You will submit your decision plans through the following screens.
Your Choice

You remain as player 1 in part 1 of today's experiment.
This is a new game, game 1.
You are randomly grouped with two other players, and they may not be the same people you played with in previous games.

Points:
- Participants gain 3 points from consumption.
- Participants lose 1 point from production.
- The token does not yield points directly, and cannot be transferred to a new game.

Please decide:
Offer the token to player 2 if he/she produces for you?
- Yes
- No

Next

Figure 1. Decision screen for player 1

Your Choice

You are not player 1 in all games, and have an equal chance of being player 2 or player 3 in each game.
This is a new game, game 3.
You are randomly grouped with two other players, and they may not be the same people you played with in previous games.

Points:
- Participants gain 3 points from consumption.
- Participants lose 1 point from production.
- The token does not yield points directly, and cannot be transferred to a new game.

The preceding player has offered you the token in exchange for the good.
Produce?
- Yes
- No

Next

Figure 2. Decision screen for the last two players.

After players submit their decisions, you will also receive information on the results for each game. See Figure 3 for a sample result screen for player 2.
Summary

1. In this part of the experiment, you will play 15 games.
2. At the beginning of each game, participants are randomly grouped in new groups of three, and thus group members are likely to be different across games.
3. At the beginning of the experiment, each participant has an equal chance of being player 1, player 2, or player 3.
4. The position of player 1 is fixed throughout the 15 games. The rest of the players have an equal chance of being player 2 or player 3 in each game.
5. Player 1 can only choose whether or not to offer the token to the next player. Player 1 cannot produce because there is no player preceding him/her.
6. The last two players make a production decision before their exact position is revealed. However when they make this decision, they see whether they are offered the token or not.
7. Each of the last two players finds out his/her exact position after submitting his/her production decision. If a player turns out to be player 2 and he/she received a token, then he/she decides whether to offer the token to player 3. If a player turns out to be player 3, then he/she has no further decision even if he/she acquired the token.
8. You earn 3 points from consumption and lose 1 point from production.
9. Player 1 is endowed with the token, while the other two players can obtain and offer the token only if they produce for others and if the player preceding them offers the token in exchange for the good.
10. The token does not yield points directly and cannot be transferred from one game to another.
Quiz

1. Suppose that you are player 1 in game 1, then you will be player 1 in all games.
 - True
 - False

2. Suppose that you are player 3 in game 1. Then,
 - You will be player 3 in all games.
 - You will have an equal chance of being player 2 or player 3 in the other games.
 - You will be player 2 in game 2 for sure.

3. Suppose in game 2 you are grouped with two other participants. In game 3 you will be grouped for sure with the same two participants.
 - True
 - False

4. Player 2 or player 3 must produce for the preceding player to acquire the token.
 - True
 - False

5. While making the production decision, player 2 and player 3 know their exact positions.
 - True
 - False

6. Suppose that you are player 1 in a game. You offer the token to the next player, and he/she produces if offered the token. How many points do you earn in that game?

7. Suppose that you are NOT player 1 in a game. You were offered the token and you decide to produce. You learn that you are player 2 and you decide to offer the token to player 3 in exchange for the good. Player 3 chooses to produce for you.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn in total in this game?

8. Suppose that you are NOT player 1 in a game. You were offered the token and you decide NOT to produce, so you do not receive the token. You learn that you are player 2. Player 3 observes that he/she was not offered the token and decides not to produce.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn total in this game?

9. Suppose that you are NOT player 1 in a game. You are offered the token and you decide to produce. You learn that you are player 3.
 a. Did player 2 decide to produce for the token?
 - Yes.
 - No.
 - Cannot Tell.
 b. How many points do you lose from production?
 c. How many points do you earn from consumption?
 d. How many points do you earn in total in this game?
10. The token will be converted into money and paid to you in cash at the end of the experiment.
 - True
 - False

Exit Survey- Treatment M-1-0

Player 1 Questionnaire for Part I of the Experiment

1. How often did you offer the token in exchange for the good?
 - Always
 - Sometimes
 - Never

2. If you offered the token, why did you do it? Check all that apply.
 - Not applicable: I have never offered the token.
 - To increase the chance of trading it for the good with player 2
 - I made a mistake
 - To help the other player
 - I had no other use of the token.
 - Other reason. Please explain:

 [Box Here]

3. If you did **not** offer the token, why did you do it? Check all that apply.
 - Not applicable: I always offered the token
 - It did not increase the chance of trading it for the good with player 2
 - I made a mistake
 - I wanted to keep the token.
 - Other reason. Please explain:

 [Box Here]

Additional Comments:

[Box Here]
Player 2/3 Questionnaire for Part I of the Experiment

1. When the preceding player offered you the token in exchange for the good, how often did you produce?
 - Not applicable: I was never offered the token in exchange for the good.
 - Always
 - Sometimes
 - Never

2. If you were offered the token and you produced in exchange for the token, why did you do it? Check all that apply.
 - Not applicable: I was never in this situation.
 - To increase the chance of trading it for the good with player 3 in case I turn out to be player 2
 - I made a mistake
 - To help the other player
 - I wanted the token for the sake of it.
 - Other reason. Please explain:

 [Box Here]

3. If you were offered the token and you decided not to produce in exchange for the token, why did you do it? Check all that apply.
 - Not applicable: I was never in this situation
 - It is costly to produce, and I could be selected as player 3 and thus I would not be able to consume
 - It is costly to produce, and I did not think that the token would increase the chance of consuming
 - It is costly to produce, and the token would not be converted into cash
 - I made a mistake
 - Other reason. Please explain:

 [Box Here]

4. If the previous player did not offer you the token and you decided to produce for him/her, why did you do it? Check all that apply.
 - Not applicable: I was never in this situation
 - I made a mistake
 - To help the other player
 - Other reason. Please explain:

 [Box Here]

Additional Comments:

[Box Here]
Instructions for Treatment N-1-1

Introduction

Today's session has two parts. In each part, you will make a series of decisions. The earnings you make are calculated in points, and will be converted to dollars at the specified exchange rates. In addition, you also receive a $5 show-up payment regardless of your earnings during the experiment. If you follow the instructions carefully, you can earn a considerable amount of cash. Between the two parts, you will be required to complete two short surveys. Please refrain from talking for the duration of today's session. Kindly silence all mobile devices.

Overview

There are X participants in today's experiment. In the first part of the experiment, you will play 15 games in groups of 3 people. There are two objects: a token and a good. You earn points from consuming the good and lose points from producing it. The token itself does not yield points directly, but may help you earn points if other participants are only willing to produce for you in exchange for the token.

At the beginning of this part of the experiment, each participant is randomly assigned a number 1, 2 or 3, which determines his/her position in the group for all 15 games. Each participant is informed about his/her position. Depending on your position, you make either one or both of the following two decisions: (1) whether to produce for the player preceding you in the group, and (2) if you have a token, whether to offer it to the next player in exchange for the good that he/she can produce for you.

Decisions in each game

In each game, the three participants in the group make decision sequentially.

- First, player 1 is endowed with a token and decides whether or not to offer the token to player 2 in exchange for the good.
- Player 2 observes whether player 1 has offered the token or not, and then decides whether to produce for player 1. If player 2 obtains the token, then he/she also decides whether to offer the token to player 3 in exchange for the good.
- Finally, player 3 observes whether player 2 has offered the token or not, and then decides whether to produce for player 2.

Some observations:

- You earn 3 points from consumption, and lose 1 point from production.
- Player 1 cannot produce because there is no player preceding him, and can consume if player 2 decides to produce for him/her.
- Player 2 can produce for player 1, and can consume if player 3 decides to produce for him/her.
- Player 3 can produce for player 2, but cannot consume since there is no player after him/her.
- The token does not yield points directly, and cannot be carried from one game to another.
A suggestion

Each player in a group may consider making the following choices:

1. Whenever you have the token, transfer it to the next player (if there is one).
2. Produce ONLY if you see that you are offered the token.

This is simply a suggestion. Feel free to follow it or not.

Grouping and Positions

There are 15 games. At the beginning of each game participants are randomly grouped in new groups of three, and thus group members are likely to change from game to game. However, your position is fixed for the duration of the experiment. For example, if you are player 3 in game 1, then you will remain player 3 in all games.

Earnings

You will start this part of the experiment with an endowment of 3 points. In each game your points total increases by 3 when you consume, and decreases by 1 when you produce. The computer will randomly select 3 games for payment. Your points from the 3 selected games will then be converted into dollars at rate 1 point = $2.

Computer Screens

You will submit your decision through a computer screen. For example, player 2 will input his/her decision through the screen as shown below.
Your Choice

You remain to be player 2 in today's experiment.
This is a new game, game 1.
You are randomly grouped with two other players, and they may not be the same people you played with in previous games.

Points:
• Participants gain 3 points from consumption.
• Participants lose 1 point from production.
• The token does not yield points directly and cannot be transferred to a new game.

A suggestion
Each player in a group may consider making the following choices:
1. Whenever you have the token, transfer it to the next player (if there is one).
2. Produce ONLY if you see that you are offered the token.

This is simply a suggestion. Feel free to follow it or not.

Player 1 has offered you the token in exchange for the good.

Produce?
○ Yes
○ No

Offer the token to player 3 if he/she produces for you?
○ Yes
○ No

Next

Figure 1. Decision screen for player 2.

At the end of each game, you will also receive information on the results for the game. See below for a sample result screen for player 2.

Game 1 Results

You remain to be player 2 in today's experiment.
In this game.

In your meeting with Player 1:
• Player 1 chose to offer you the token in exchange for the good.
• You decided to produce the good in exchange for the token.
• You produced and acquired the token.

In your meeting with Player 3:
• You decided to offer the token in exchange for the good.
• Player 3 chose to produce the good in exchange for the token.
• You consumed and did not keep the token.

As a result:
• You produced.
• You consumed.
• Your earnings in this game are 2 points.

Next

Figure 2. Result screen for player 2.
Summary

1. You will play 15 games.
2. At the beginning of this part of the experiment, each participant is randomly assigned a number with equal probability, 1, 2 or 3, that determines his/her position in all 15 games.
3. While the position is fixed, at the beginning of each game, participants are randomly grouped in new groups of three, and thus group members are likely to be different across games.
4. Player 1 is endowed with a token. Player 1 can only choose whether to offer or not the token to the next player. Player 1 cannot produce because there is no player preceding him/her.
5. Player 2 decides whether to produce for player 1. If he/she acquires a token, he/she can also decide whether to offer it to player 3 in exchange for the good.
6. Player 3 decides whether to produce for Player 2. Player 3 can neither transfer the token nor consume because there is no player after her/him.
7. You earn 3 points from consumption and lose 1 point from production.
8. Player 1 is endowed with the token, while the other two players can obtain and offer the token only if they produce for others and if the player preceding them offers the token in exchange for the good.
9. Each player may consider making the following choices: i) Whenever you have the token, transfer it to the next player; and ii) Produce only if you are offered the token. This is simply a suggestion.
10. The token does not yield points directly and cannot be transferred from one game to another.

Quiz

1. Suppose that you are player 1 in game 1, then you will be player 1 in all games.
 a. True
 b. False

2. Will other players keep their position in each game?
 a. Yes
 b. No

3. Suppose in game 2 you are grouped with two other participants. In game 3 you will be grouped for sure with the same two participants.
 a. True
 b. False

3. Suppose that you are player 1. Suppose that you offer the token to player 2, and he/she produces for you. How many points do you earn?

4. Suppose that you are player 2. Suppose player 1 offers you the token in exchange for the good, you decide to produce for player 1, and you offer the token to player 3 in exchange for the good. Player 3 chooses to produce for you.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn in total in this game?
5. Suppose again that you are player 2. Suppose player 1 offers you the token in exchange for your production, you decide not to produce for player 1 so you do not acquire the token. Player 3 observes that you do not offer the token and chooses NOT to produce for you.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn total in this game?

6. Suppose that you are player 3, or the last player in the game. Suppose that player 2 offered you the token and you produce for player 2.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn in total in this game?

7. Consider the following suggestion: i) Whenever you have the token, transfer it to the next player; and ii) Produce only if you see that you are offered the token.
 o You must follow this suggestion
 o This is simply a suggestion, that is, you can choose another action.

8. The token will be converted into money and paid to you in cash at the end of the experiment.
 o True
 o False

Exit Survey- Treatment N-1-1

Player 1 Questionnaire for Part I of the Experiment

1. How often did you offer the token in exchange for the good?
 o Always
 o Sometimes
 o Never

2. If you offered the token, why did you do it? Check all that apply.
 □ Not applicable: I have never offered the token.
 □ To increase the chance of trading it for the good with player 2
 □ I made a mistake
 □ To help the other player
 □ I had no other use of the token.
 □ To follow the suggestion.
 □ Other reason. Please explain:

 [Box Here]

3. If you did not offer the token, why did you do it? Check all that apply.
 □ Not applicable: I always offered the token
 □ It did not increase the chance of trading it for the good with player 2
 □ I made a mistake
 □ I wanted to keep the token.
Player 2 Questionnaire for Part I of the Experiment

1. When player 1 offered you the token in exchange for the good, how often did you produce?
 o Not applicable: I was never offered the token in exchange for the good.
 o Always
 o Sometimes
 o Never

2. If you were offered the token and you produced in exchange for the token, why did you do it? Check all that apply.
 □ Not applicable: I was never in this situation.
 □ To increase the chance of trading it for the good with player 3
 □ I made a mistake
 □ To help the other player
 □ I wanted the token for the sake of it.
 □ To follow the suggestion.
 □ Other reason. Please explain:

3. If you were offered the token and you decided not to produce in exchange for the token, why did you do it? Check all that apply.
 o Not applicable: I was never in this situation
 o It is costly to produce, and the token would not increase the chance of trading it for the good with player 3
 o It is costly to produce, and the token would not be converted into cash
 o I made a mistake
 o Other reason. Please explain:

Appendix G: page 20
4. If the previous player did **not** offer you the token and you decided to produce for him/her, why did you do it? **Check all that apply.**
 - Not applicable: I was never in this situation
 - I made a mistake
 - To help the other player
 - Other reason. Please explain:

 [Box Here]

5. If you followed the suggestion to transfer the token and produce **ONLY** for the token in any game, please explain why:

 [Box Here]

6. If you did **NOT** follow the suggestion to transfer the token and produce **ONLY** for the token in any game, please explain why:

 [Box Here]

Additional Comments:

[Box Here]

Player 3 Questionnaire for Part I of the Experiment

1. When player 2 offered a token in exchange for the good, how often did you produce?
 - Not applicable: I was never offered the token in exchange for the good.
 - Always
 - Sometimes
 - Never

2. If you were offered the token and you produced in exchange for the token, why did you do it? **Check all that apply.**
 - Not applicable: I was never in this situation.
 - To increase the chance of trading it for the good with another player
 - I made a mistake
 - To help the other player
 - I wanted the token for the sake of it.
 - To follow the suggestion.
 - Other reason. Please explain:

 [Box Here]

3. If you were offered the token and you decided **not** to produce in exchange for the token, why did you do it? **Check all that apply.**

Appendix G: page 21
Instructions for Treatment M-1-1

Appendix G: page 22
Introduction

Today's session has two parts. In each part, you will make a series of decisions. The earnings you make are calculated in points, and will be converted to dollars at the specified exchange rates. In addition, you also receive a $5 show-up payment regardless of your earnings during the experiment. If you follow the instructions carefully, you can earn a considerable amount of cash. Between the two parts, you will be required to complete two short surveys. Please refrain from talking for the duration of today's session. Kindly silence all mobile devices.

Instructions for Part I

Overview

There are X participants in today's experiment. In the first part of the experiment, you will play 15 games in groups of 3 people. There are two objects: a token and a good. You earn points from consuming the good and lose points from producing it. The token itself does not yield points directly, but may help you earn points if other participants are only willing to produce for you in exchange for the token.

In each game, each of the three participants will be assigned a position, 1, 2 or 3. Depending on your position, you make either one or both of the following two decisions:

1. whether to produce for the player preceding you in the group, and
2. if you have a token, whether to offer it to the next player in exchange for the good that he/she can produce for you.

Decisions in each game

At the beginning of each game, one of the three participants in a group is revealed as player 1 and informed about his/her position. The other two players are informed that they are not player 1, but do not know their exact positions, i.e. whether they are player 2 or player 3. It is equally likely that they are player 2 or player 3. The three players then make decisions sequentially.

- Player 1 is endowed with a token and decides whether or not to offer the token to the next player in exchange for the good.
- Player 2, blind to his/her exact position, is informed about whether the preceding player has offered the token and decides whether to produce for the preceding player. After the production decision, player 2 is informed about his/her exact position. If player 2 obtains the token, then he/she also decides whether to offer the token to player 3 in exchange for the good.
- Player 3, blind to his/her exact position, is informed about whether the preceding player has offered the token and decides whether to produce for the preceding player. After the production decision, player 3 is informed about his/her exact position. Player 3 has no further decisions to make, even if he/she has acquired a token.

Some observations:

- You earn 3 points from consumption, and lose 1 point from production.
- Player 1 cannot produce because there is no player preceding him/her, and can consume if player 2 decides to produce for him/her.
- Player 2 can produce for player 1, and can consume if player 3 decides to produce for him/her.
- Player 3 can produce for player 2, but cannot consume since there is no player after him/her.
• The token does not yield points directly, and cannot be carried from one game to another.
• Player 1 is endowed with the token. Player 2 and player 3 can obtain and offer the token only if they produce for others (and if the player preceding them offers the token in exchange for the good).

Regarding the production decision of the last two players, consider the following.

• When deciding whether to produce, the last two players do not know their exact positions. When deciding whether to produce, they should consider both the possibility of being player 2 and the possibility of being player 3.
• If offered a token, the token could either be from
 o player 1, who is endowed with the token, or
 o player 2 who has produced for the token.
• If not offered a token, the preceding player could be
 o player 1 who did not offer the token,
 o player 2 who acquired the token by producing but did not offer the token,
 o player 2 who did not acquire the token because player 1 did not offer the token, or
 o player 2 who did not acquire the token because he/she did not produce.

A suggestion

Each player in a group may consider making the following choices:

1. Whenever you have the token, transfer it to the next player (if there is one).
2. Produce ONLY if you see that you are offered the token.

This is simply a suggestion. Feel free to follow it or not.

Grouping and Positions

There are 15 games. At the beginning of each game participants are randomly grouped in new groups of three, and thus group members are likely to change from game to game.

Player 1’s position is fixed for the duration of the experiment. If you are player 1 in game 1, you will remain player 1 in all games. However, whether you are player 2 or player 3 is randomly determined in each game. For example, if you are player 3 in game 1, you have an equal chance of being player 2 or player 3 in each of the other games. Player 1 is informed that he/she is player 1 and the other two players are informed that they are not player 1. The exact position of the last two players is revealed to them only after they make the production decision.

Earnings

You will start this part of the experiment with an endowment of 3 points. In each game your points total increases by 3 when you consume, and decreases by 1 when you produce. The computer will randomly select 3 games for payment. Your points from the 3 selected games will then be converted into dollars at rate 1 point = $2.

Computer Screens

You will submit your decision plans through the following screens.
Appendix G: page 25

Figure 1. Decision screen for player 1.

Your Choice

You remain as player 1 in part 1 of today's experiment.
This is a new game, game 1.
You are randomly grouped with two other players, and they may not be the same people you played with in previous games.

Points:
- Participants gain 3 points from consumption.
- Participants lose 1 point from production.
- The token does not yield points directly, and cannot be transferred to a new game.

A suggestion
Each player in a group may consider making the following choices:

1. Whenever you have the token, transfer it to the next player (if there is one).
2. Produce ONLY if you see that you are offered the token.

This is simply a suggestion. Feel free to follow it or not.

Please decide:

Offer the token to player 2 if he/she produces for you?

○ Yes
○ No

Next

Figure 2. Decision screen for the last two players.

Your Choice

You are not player 1 in all 15 games, and have an equal chance of being player 2 or player 3 in each new game.
This is a new game, game 1.
You are randomly grouped with two other players, and they may not be the same people you played with in previous games.

Points:
- Participants gain 3 points from consumption.
- Participants lose 1 point from production.
- The token does not yield points directly, and cannot be transferred to a new game.

A suggestion
Each player in a group may consider making the following choices:

1. Whenever you have the token, transfer it to the next player (if there is one).
2. Produce ONLY if you see that you are offered the token.

This is simply a suggestion. Feel free to follow it or not.

The preceding player has offered you the token in exchange for the good.

Produce?

○ Yes
○ No

Next

After players submit their decisions, you will also receive information on the results for each game. See Figure 3 for a sample result screen for player 2.
Summary

1. In this part of the experiment, you will play 15 games.
2. At the beginning of each game, participants are randomly grouped in new groups of three, and thus group members are likely to be different across games.
3. At the beginning of the experiment, each participant has an equal chance of being player 1, player 2, or player 3.
4. The position of player 1s is fixed throughout the 15 games. The rest of the players have an equal chance of being player 2 or player 3 in each game.
5. Player 1 can only choose whether or not to offer the token to the next player. Player 1 cannot produce because there is no player preceding him/her.
6. The last two players make a production decision before their exact position is revealed. However when they make this decision, they see whether they are offered the token or not.
7. Each of the last two players finds out his/her exact position after submitting his/her production decision. If a player turns out to be player 2 and he/she received a token, then he/she decides whether to offer the token to player 3. If a player turns out to be player 3, then he/she has no further decision even if he/she acquired the token.
8. Each player may consider making the following choices: i) Whenever you have the token, transfer it to the next player; and ii) Produce only if you are offered the token. This is simply a suggestion.
9. You earn 3 points from consumption and lose 1 point from production.
10. Player 1 is endowed with the token, while the other two players can obtain and offer the token only if they produce for others and if the player preceding them offers the token in exchange for the good.
11. The token does not yield points directly and cannot be transferred from one game to another.
Quiz

1. Suppose that you are player 1 in game 1, then you will be player 1 in all games.
 - True
 - False

2. Suppose that you are player 3 in game 1. Then,
 - You will be player 3 in all games.
 - You will have an equal chance of being player 2 or player 3 in the other games.
 - You will be player 2 in game 2 for sure.

3. Suppose in game 2 you are grouped with two other participants. In game 3 you will be grouped for sure with the same two participants.
 - True
 - False

4. Player 2 or player 3 must produce for the preceding player to acquire the token.
 - True
 - False

5. While making the production decision, player 2 and player 3 know their exact positions.
 - True
 - False

6. Suppose that you are player 1 in a game. You offer the token to the next player, and he/she produces if offered the token. How many points do you earn in that game?

7. Suppose that you are NOT player 1 in a game. You were offered the token and you decide to produce. You learn that you are player 2 and you decide to offer the token to player 3 in exchange for the good. Player 3 chooses to produce for you.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn in total in this game?

8. Suppose that you are NOT player 1 in a game. You were offered the token and you decide NOT to produce, so you do not receive the token. You learn that you are player 2. Player 3 observes that he/she was not offered the token and decides not to produce.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn total in this game?

9. Suppose that you are NOT player 1 in a game. You are offered the token and you decide to produce. You learn that you are player 3.
 a. Did player 2 decide to produce for the token?
 - Yes.
 - No.
 - Cannot Tell.
 b. How many points do you lose from production?
 c. How many points do you earn from consumption?
 d. How many points do you earn in total in this game?
10. Consider the following suggestion: i) Whenever you have the token, transfer it to the next player; and ii) Produce only if you see that you are offered the token.

 - You must follow this suggestion
 - This is simply a suggestion, that is, you can choose another action.

11. The token will be converted into money and paid to you in cash at the end of the experiment.

 - True
 - False

Exit Survey- Treatment M-1-1

Player 1 Questionnaire for Part I of the Experiment

1. How often did you offer the token in exchange for the good?
 - Always
 - Sometimes
 - Never

2. If you offered the token, why did you do it? Check all that apply.
 - Not applicable: I have never offered the token.
 - To increase the chance of trading it for the good with player 2
 - I made a mistake
 - To help the other player
 - I had no other use of the token.
 - To follow the suggestion.
 - Other reason. Please explain:

 [Box Here]

3. If you did not offer the token, why did you do it? Check all that apply.
 - Not applicable: I always offered the token
 - It did not increase the chance of trading it for the good with player 2
 - I made a mistake
 - I wanted to keep the token.
 - Other reason. Please explain:

 [Box Here]

4. If you followed the suggestion to transfer the token in any game, please explain why:

 [Box Here]

5. If you did NOT follow the suggestion to transfer the token in any game, please explain why:

 [Box Here]
Additional Comments: [Box Here]

Player 2/3 Questionnaire for Part I of the Experiment

1. When the preceding player offered you the token in exchange for the good, how often did you produce?
 - o Not applicable: I was never offered the token in exchange for the good.
 - o Always
 - o Sometimes
 - o Never

2. If you were offered the token and you produced in exchange for the token, why did you do it? Check all that apply.
 - □ Not applicable: I was never in this situation.
 - □ To increase the chance of trading it for the good with player 3 in case I turn out to be player 2
 - □ I made a mistake
 - □ To help the other player
 - □ I wanted the token for the sake of it.
 - □ To follow the suggestion.
 - □ Other reason. Please explain:
 [Box Here]

3. If you were offered the token and you decided not to produce in exchange for the token, why did you do it? Check all that apply.
 - o Not applicable: I was never in this situation
 - o It is costly to produce, and I could be selected as player 3 and thus I would not be able to consume
 - o It is costly to produce, and I did not think that the token would increase the chance of consuming
 - o It is costly to produce, and the token would not be converted into cash
 - o I made a mistake
 - o Other reason. Please explain:
 [Box Here]

4. If the previous player did not offer you the token and you decided to produce for him/her, why did you do it? Check all that apply.
 - o Not applicable: I was never in this situation
 - o I made a mistake
 - o To help the other player
 - o Other reason. Please explain:
 [Box Here]

5. If you followed the suggestion to transfer the token and produce ONLY for the token in any game, please explain why:
6. If you did NOT follow the suggestion to transfer the token and produce ONLY for the token in any game, please explain why:

[Box Here]

Additional Comments:

[Box Here]

Instructions for Treatment M-0-0

Introduction

Today's session has two parts. In each part, you will make a series of decisions. The earnings you make are calculated in points, and will be converted to dollars at the specified exchange rates. In addition, you also receive a $5 show-up payment regardless of your earnings during the experiment. If you follow the instructions carefully, you can earn a considerable amount of cash. Between the two parts, you will be required to complete two short surveys. Please refrain from talking for the duration of today's session. Kindly silence all mobile devices.

Instructions for Part I

Overview

There are X participants in today's experiment. In the first part of the experiment, you will play 15 games in groups of 3 people. You earn points from consuming a good and lose points from producing it.

In each game, each of the three participants will be assigned a position, 1, 2 or 3. Player 1 does not make any decision. The other two players decide whether to produce for the player preceding him/her in the group.

Decisions in each game

At the beginning of each game, one of the three participants in a group is revealed as player 1 and informed about his/her position. The other two players are informed that they are not player 1, but do not know their exact positions, i.e. whether they are player 2 or player 3. It is equally likely that they are player 2 or player 3. Each game proceeds as follows:
• Player 1 does not make any decision.
• Player 2, **blind to his/her exact position**, decides whether to produce for the preceding player. After the production decision, player 2 is informed about his/her exact position. Player 2's decision will not be observed by player 3.
• Then, player 3, **blind to his/her exact position**, decides whether to produce for the preceding player. After the production decision, player 3 is informed about his/her exact position.

Some observations:

• You earn 3 points from consumption, and lose 1 point from production.
• Player 1 **cannot produce** because there is no player preceding him/her, and **can consume** if player 2 decides to produce for him/her.
• Player 2 **can produce** for player 1, and **can consume** if player 3 decides to produce for him/her.
• Player 3 **can produce** for player 2, but **cannot consume** since there is no player after him/her.

Regarding the production decision of the last two players, consider the following.

• When deciding whether to produce, the last two players do not know their exact positions. When deciding whether to produce, they should consider both the possibility of being player 2 and the possibility of being player 3.

Grouping and Positions

There are 15 games. At the beginning of each game participants are randomly grouped in new groups of three, and thus group members are **likely** to change from game to game.

Player 1's position is fixed for the duration of the experiment. If you are player 1 in game 1, you will remain player 1 in all games. However, whether you are player 2 or player 3 is **randomly** determined in each game. For example, if you are player 3 in game 1, you have an equal chance of being player 2 or player 3 in each of the other games. Player 1 is informed that he/she is player 1 and the other two players are informed that they are not player 1. The exact position of the last two players is revealed to them only after they make the production decision.

Earnings

You will start this part of the experiment with an endowment of 3 points. In each game your points total increases by 3 when you consume, and decreases by 1 when you produce. The computer will randomly select 3 games for payment. Your points from the 3 selected games will then be converted into dollars at rate 1 point = $2.

Computer Screens

You will submit your decision plans through the following screens.
You are Player 1

You remain as player 1 in part I of today's experiment.
This is a new game, game 1.
You are randomly grouped with two other players, and they may not be the same people you played with in previous games.

Points:
- Participants gain 3 points from consumption.
- Participants lose 1 point from production.

You do not need to make a decision. However, you need to press the "Next" button to continue.

Figure 1. Decision screen for player 1.

Your Choice

You are not player 1 in all 15 games, and have an equal chance of being player 2 or player 3 in each new game.
This is a new game, game 1.
You are randomly grouped with two other players, and they may not be the same people you played with in previous games.

Points:
- Participants gain 3 points from consumption.
- Participants lose 1 point from production.

Note that (1) you may be player 2 or player 3; (2) if you are player 2, your production decision will not be observed by player 3 when player 3 makes his/her decision.

Produce?
- Yes
- No

Next

Figure 2. Decision screen for the last two players.

After players submit their decisions, you will also receive information on the results for each game. See Figure 3 for a sample result screen for player 2.
Summary

1. In this part of the experiment, you will play 15 games.
2. At the beginning of each game, participants are randomly grouped in new groups of three, and thus group members are likely to be different across games.
3. At the beginning of the experiment, each participant has an equal chance of being player 1, player 2, or player 3.
4. The position of player 1's is fixed throughout the 15 games. The rest of the players have an equal chance of being player 2 or player 3 in each game.
5. Player 1 does not make any decision. Player 1 cannot produce because there is no player preceding him/her.
6. The last two players make a production decision before their exact position is revealed. Neither can observe the other player's decision while making their own decisions.
7. Either of the last two players finds out his/her exact position after submitting his/her production decision.
8. You earn 3 points from consumption and lose 1 point from production.

Quiz

1. Suppose that you are player 1 in game 1, then you will be player 1 in all games.
 - True
 - False

2. Suppose that you are player 3 in game 1. Then,
 - You will be player 3 in all games.
 - You will have an equal chance of being player 2 or player 3 in the other games.
 - You will be player 2 in game 2 for sure.
3. Suppose in game 2 you are grouped with two other participants. In game 3 you will be grouped for sure with the same two participants.
 - True
 - False

4. While making the production decision, player 2 and player 3 know their exact positions.
 - True
 - False

5. Suppose that you are player 1 in a game. The next player produces for you. How many points do you earn in that game?

6. Suppose that you are NOT player 1 in a game. You decided to produce. You learn that you are player 2. Player 3 will observe that you produced.
 - True
 - False

7. Suppose that you are NOT player 1 in a game. You decided to produce. Then you learn that you are player 2. Later player 3 decides to produce.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn in total in this game?

8. Suppose that you are NOT player 1 in a game. You decided to produce. Then you learn that you are player 2. Later player 3 decides not to produce.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn total in this game?

9. Suppose that you are NOT player 1 in a game. You decided NOT to produce. Then you learn that you are player 2. Later player 3 decides not to produce.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn in total in this game?

10. Suppose that you are NOT player 1 in a game. You decided to produce. Then you learn that you are player 3.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn in total in this game?

Exit Survey- Treatment M-0-0

Player 1 Questionnaire for Part I of the Experiment

Please write below any comments you have on the experiment:

[Box Here]
Player 2/3 Questionnaire for Part I of the Experiment

1. How often did you produce?
 - Always
 - Sometimes
 - Never

2. If you produced in a game, why did you do it? Check all that apply.
 - Not applicable: I never produced
 - To increase the chance of others producing for me in this game
 - To increase the chance of others producing for me when in a following game
 - I made a mistake
 - To help the other player
 - Other reason. Please explain:

3. If you decided not to produce in a game, why? Check all that apply.
 - Not applicable: I always produced
 - It is costly to produce, and I could be selected as player 3 and thus I would not be able to consume
 - It is costly to produce and producing does not increase my chance of consuming in this game
 - It is costly to produce and producing does not increase my chance of consuming in a following game
 - I made a mistake
 - Other reason. Please explain:

4. Could you guess whether you were player 2 or player 3 in the experiment?
 - I could never tell
 - Sometimes
 - Often
 - Always

 If you selected "Sometimes", "Often", or "Always", can you explain how you could guess what your position was?

 [Box Here]

Additional Comments:

[Box Here]
Instructions for Treatment M-0-1

Introduction

Today's session has two parts. In each part, you will make a series of decisions. The earnings you make are calculated in points, and will be converted to dollars at the specified exchange rates. In addition, you also receive a $5 show-up payment regardless of your earnings during the experiment. If you follow the instructions carefully, you can earn a considerable amount of cash. Between the two parts, you will be required to complete two short surveys. Please refrain from talking for the duration of today's session. Kindly silence all mobile devices.

Instructions for Part I

Overview

There are X participants in today's experiment. In the first part of the experiment, you will play 15 games in groups of 3 people. You earn points from consuming a good and lose points from producing it.

In each game, each of the three participants will be assigned a position, 1, 2 or 3. Player 1 does not make any decision. The other two players decide whether to produce for the player preceding him/her in the group.
Decisions in each game

At the beginning of each game, one of the three participants in a group is revealed as player 1 and informed about his/her position. The other two players are informed that they are not player 1, but do not know their exact positions, i.e. whether they are player 2 or player 3. It is equally likely that they are player 2 or player 3. Each game proceeds as follows:

- Player 1 does not make any decision.
- Player 2, blind to his/her exact position, decides whether to produce for the preceding player. After the production decision, player 2 is informed about his/her exact position. Player 2’s decision will not be observed by player 3.
- Then, player 3, blind to his/her exact position, decides whether to produce for the preceding player. After the production decision, player 3 is informed about his/her exact position.

Some observations:

- You earn 3 points from consumption, and lose 1 point from production.
- Player 1 cannot produce because there is no player preceding him/her, and can consume if player 2 decides to produce for him/her.
- Player 2 can produce for player 1, and can consume if player 3 decides to produce for him/her.
- Player 3 can produce for player 2, but cannot consume since there is no player after him/her.

Regarding the production decision of the last two players, consider the following.

- When deciding whether to produce, the last two players do not know their exact positions. When deciding whether to produce, they should consider both the possibility of being player 2 and the possibility of being player 3.

A suggestion

If you are not player 1, you may consider choosing to produce.

This is simply a suggestion. Feel free to follow it or not.

Grouping and Positions

There are 15 games. At the beginning of each game participants are randomly grouped in new groups of three, and thus group members are likely to change from game to game.

Player 1’s position is fixed for the duration of the experiment. If you are player 1 in game 1, you will remain player 1 in all games. However, whether you are player 2 or player 3 is randomly determined in each game. For example, if you are player 3 in game 1, you have an equal chance of being player 2 or player 3 in each of the other games. Player 1 is informed that he/she is player 1 and the other two players are informed that they are not player 1. The exact position of the last two players is revealed to them only after they make the production decision.
Earnings

You will start this part of the experiment with an endowment of 3 points. In each game your points total increases by 3 when you consume, and decreases by 1 when you produce. The computer will randomly select 3 games for payment. Your points from the 3 selected games will then be converted into dollars at rate 1 point = $2.

Computer Screens

You will submit your decision plans through the following screens.

![Figure 1. Decision screen for player 1.](image)
Your Choice

You are **not player 1** in all 15 games, and have an equal chance of being player 2 or player 3 in each new game.

This is a **new game**, game 1.

You are randomly grouped with two other players, and they may not be the same people you played with in previous games.

Points:
- Participants gain 3 points from consumption.
- Participants lose 1 point from production.

A suggestion

If you are not player 1, you may consider choosing to produce.

This is simply a suggestion. Feel free to follow it or not.

Note that (1) you may be player 2 or player 3; (2) if you are player 2, your production decision will not be observed by player 3 when player 3 makes his/her decision.

Figure 2. Decision screen for the last two players

After players submit their decisions, you will also receive information on the results for each game. See Figure 3 for a sample result screen for player 2.

Game 1 Results

You were player 2 in this game.

In this game,

In your meeting with Player 1:
- You decided to produce the good.

In your meeting with Player 3:
- Player 3 chose to produce the good.

As a result:
- You produced.
- You consumed.
- Your earnings in this game are 2 points.

Figure 3. Result screen for player 2.
Summary

1. In this part of the experiment, you will play 15 games.
2. At the beginning of each game, participants are randomly grouped in new groups of three, and thus group members are likely to be different across games.
3. At the beginning of the experiment, each participant has an equal chance of being player 1, player 2, or player 3.
4. The position of player 1 is fixed throughout the 15 games. The rest of the players have an equal chance of being player 2 or player 3 in each game.
5. Player 1 does not make any decision. Player 1 cannot produce because there is no player preceding him/her.
6. The last two players make a production decision before their exact position is revealed. Neither can observe the other player's decision while making their own decisions.
7. Either of the last two players finds out his/her exact position after submitting his/her production decision.
8. If you are not player 1, you may consider choosing to produce. This is simply a suggestion.
9. You earn 3 points from consumption and lose 1 point from production

Quiz

1. Suppose that you are player 1 in game 1, then you will be player 1 in all games.
 - True
 - False

2. Suppose that you are player 3 in game 1. Then,
 a. You will be player 3 in all games.
 b. You will have an equal chance of being player 2 or player 3 in the other games.
 c. You will be player 2 in game 2 for sure.

3. Suppose in game 2 you are grouped with two other participants. In game 3 you will be grouped for sure with the same two participants.
 - True
 - False

4. While making the production decision, player 2 and player 3 know their exact positions.
 - True
 - False

5. Suppose that you are player 1 in a game. The next player produces for you. How many points do you earn in that game?

6. Suppose that you are NOT player 1 in a game. You decided to produce. You learn that you are player 2. Player 3 will observe that you produced.
 - True
 - False
7. Suppose that you are NOT player 1 in a game. You decided to produce. Then you learn that you are player 2. Later player 3 decides to produce.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn in total in this game?

8. Suppose that you are NOT player 1 in a game. You decided to produce. Then you learn that you are player 2. Later player 3 decides not to produce.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn total in this game?

9. Suppose that you are NOT player 1 in a game. You decided NOT to produce. Then you learn that you are player 2. Later player 3 decides not to produce.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn total in this game?

10. Suppose that you are NOT player 1 in a game. You decided to produce. Then you learn that you are player 3.
 a. How many points do you lose from production?
 b. How many points do you earn from consumption?
 c. How many points do you earn total in this game?

11. Consider the following suggestion: If you are not player 1, you may consider choosing to produce.
 o You must follow this suggestion
 o This is simply a suggestion, that is, you can choose another action.

Exit Survey-Treatment M-0-1

Player 1 Questionnaire for Part I of the Experiment

Please write below any comments you have on the experiment:

[Box Here]

Player 2/3 Questionnaire for Part I of the Experiment

1. How often did you produce?
 o Always
 o Sometimes
 o Never

2. If you produced in a game, why did you do it? Check all that apply.
 □ Not applicable: I never produced
 □ To increase the chance of others producing for me in this game

Appendix G: page 41
To increase the chance of others producing for me when in a following game
I made a mistake
To help the other player
To follow the suggestion
Other reason. Please explain:

3. If you decided not to produce in a game, why? Check all that apply.
 - Not applicable: I always produced
 - It is costly to produce, and I could be selected as player 3 and thus I would not be able to consume
 - It is costly to produce and producing does not increase my chance of consuming in this game
 - It is costly to produce and producing does not increase my chance of consuming in a following game
 - I made a mistake
 - Other reason. Please explain:

4. Could you guess whether you were player 2 or player 3 in the experiment?
 - I could never tell
 - Sometimes
 - Often
 - Always

 If you selected "Sometimes", "Often", or "Always", can you explain how you could guess what your position was?

Additional Comments:

The demographic survey is the same across treatments.

Demographic Survey

1. What is your gender? (Please select one.):
 - Female
 - Male
 - Other
 - Prefer not to answer

 If you selected 'Other', please specify:

[Box Here]
2. What is your age?

[Box here]

3. Rate your English. (Please select one.):
 - Native
 - Fluent
 - Proficient

4. What is your intended major/field of study?

[Box here]

Instructions for Part II of the experiment, SVO task, are the same across all treatments.

Instructions for Part II

In this part of the experiment, you will be paired with two other persons, whom we will refer to as your receiver and your sender, respectively. These two other persons are someone you do not know and will remain mutually anonymous. All of your choices are completely confidential. You will be deciding how to allocate resources between you and your receiver (how much to keep for yourself and how much to send to your receiver) in a series of scenarios. For each scenario, please indicate the allocation you prefer most by marking the corresponding position along the line by sliding the cursor. You can only make one mark for each question.

There are no right or wrong answers; this is all about personal preferences. Your choices will influence both the amount of money you receive, as well as the amount of money your receiver receives. After all choices have been submitted, one of your choices will be randomly selected to determine your payoff as a sender and your receiver's payoff. At the same time, you will also receive a payoff as a receiver from your sender. The points will be converted at the rate 100pts=$3.