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Abstract

In this paper, we study a general model of information acquisition: costly
Bayesian learning. Using a menu choice framework, we provide an axiomatic
characterization of the model, identify its parameters (a utility function, an
increasing transformation, a second-order prior belief, and an information
cost function), and behaviorally compare the costs. Our results show that
the rational inattention model, which has found various applications in the
literature, is a special case of the costly Bayesian learning model. We identify
several behavioral conditions each of which can be used to test if the decision
maker is rationally inattentive or is of a more general type Bayesian learner
including those who exhibit aversion to uncertainty. We argue that our
decision makers can have flexible attitudes towards the timing of resolution
of uncertainty.

1 Introduction

Information acquisition is ubiquitous in economics. To lower the uncertainty about
economic variables and improve the quality of decision making, agents acquire
information all the time. A prominent model of information acquisition in economics
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is the rational inattention (RI) model. A rationally inattentive agent balances the
benefits and costs of information by choosing optimally the type and quantity of
information about the true state of the world. It has been shown by numerous
authors that rational inattention models can have fruitful applications.1 Rational
inattention has been given solid axiomatic foundations with testable implications.2

There are, however, other important models of costly information acquisition, where
learning is not about the states (unlike rational inattention), but rather about
the distribution of states. These models are natural to apply especially when the
decision maker (DM) does not know the true model of the economy, but rather
have a set of possibilities.3 Following Baaley and Veldkamp [2021], we call the
general class of information acquisition models with learning about distributions,
Bayesian Learning (BL). In fact, as we discuss later, RI models can be seen as
part of this general class of BL models. But then what exactly are the axiomatic
foundations for this general class? How can we distinguish them from RI models
in general? Can we elicit information costs for the BL models? Is it possible to
compare information costs by using choice data?

In this paper, our objective is to answer these and similar questions by considering
a general costly Bayesian learning (CBL) model by way of an axiomatic analysis.
To do this, following de Oliveira et al. [2017], we use a menu choice framework.
However, unlike de Oliveira et al. [2017] who consider menus of acts, we consider
menus of act-lotteries (i.e., simple lotteries over acts). In this relatively richer
framework, we show that a set of simple and plausible axioms are enough to
characterize a general CBL model. We also show that by using menu choice

1See, e.g., Mackowiak et al. [2021] for a comprehensive review of the literature on economic
applications of rational inattention.

2See, e.g., Caplin and Dean [2015]; de Oliveira et al. [2017]; Ellis [2018]; Hebert and Woodford
[2019] on axiomatic foundations of rational inattention.

3For instance, this is the case for decision makers in finance settings (see, e.g., Pastor and
Veronesi [2009] for a review article on parameter learning in finance models); or in labor market
settings (see, e.g., Borovickova [2016] on learning about firm characteristics, or Moscarini [2001] on
learning about innate worker skills in different occupations); or in IO settings (see, e.g., Jovanovic
and Nyarko [1996] on learning about parameters for technology choice); or in policy making
settings (see, e.g., Kelly and Kolstad [1999] on learning about climate change parameters, or
Cogley and Sargent [2005] on learning about the trade-off between inflation and unemployment).
See Baaley and Veldkamp [2021] for a review of the literature on Bayesian learning including
models of learning about parameters.
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data, all parameters of the model (a utility function; an increasing transformation;
a second-order prior belief; and an information cost function) can be uniquely
identified. Moreover, we provide a comparative statics result about information
costs, and show that special cases of the CBL model (including RI) can be given a
characterization in our setting.

In accomplishing the above objectives, we utilize some of the techniques that
de Oliveira et al. [2017] developed for characterizing, identifying, and comparing a
general model of rational inattention. The main point of departure that we have
from de Oliveira et al. [2017]’s work is that they consider a DM with a first-order
expected utility and we consider a DM with a second-order expected utility. Similar
to Seo [2009]’s analysis of second-order expected utility in an Anscombe-Aumann
choice setting, we weaken some of the conditions that de Oliveira et al. [2017]
consider to model the DM’s uncertainty about the states as a second-order prior
instead of a first-order prior. Naturally, a second-order expected utility extends a
first-order expected utility, and therefore it can allow a richer set of choice behavior.
For instance, we show that while the RI model allows for unambiguous comparisons
only when one alternative dominates the other state by state, the CBL model can
allow for more general comparisons, where comparisons can be done when one
alternative dominates the other posterior by posterior. This means the CBL model
can accommodate a richer set of choice behavior by requiring weaker dominance.

There are other distinguishing features of the CBL model from the RI model. One
of which is, for instance, about the attitudes towards the timing of resolution of
randomizations. Randomizations between possible actions of choice are a natural
part of economic activities (e.g., mixed strategies). According to the RI model, the
DM is neutral to the timing of resolutions. In particular, the DM is indifferent
whether the randomization between two acts is resolved before or after the state
of the world is revealed. There are, however, plausible reasons to expect the DM
not to be indifferent between the timing of resolutions. For instance, this is true
whenever the DM has non-linear attitudes towards uncertainty, as in the cases of
uncertainty aversion or uncertainty seeking. These more general attitudes towards
the resolution of uncertainty are well-documented in the literature since the seminal
work of Ellsberg [1961] and they have been utilized in explaining many puzzling
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behavior in various economic settings. Our CBL model can accommodate these
richer attitudes unlike the RI model.

The RI model that de Oliveira et al. [2017] consider can be embedded into our
setting as a special case of the CBL model. By imposing either (i) a stronger
dominance axiom, or (ii) an indifference to the timing of resolution type axiom,
or (iii) an independence over acts axiom, the RI model can be characterized in
our setting as a class of CBL preferences. Importantly the characterization we
provide shows that a DM seemingly following the RI model can in fact be someone
who does follow the CBL model with multiple first-order prior beliefs, but due
to the linear transformation function her behavior is seen as if she has a unique
first-order prior belief. This means there is indeed a strong connection between the
information acquisition models where learning is about the distribution of states
or about the actual state. We believe, therefore, our results in general help better
understand the relation of these two seemingly different strands of the literature.

The paper is organized as follows. In Section 2, we present our menu-choice
framework, introduce a general model of information acquisition, and define a set
of canonical properties for the information cost function. Section 3 provides a set of
testable axioms for menu choice data that are implied by the CBL model. Section
4.1 characterizes the CBL model by showing that these testable implications of the
model are the only implications for menu choice data. In Section 4.2, we present
our identification results for: a utility function, an increasing transformation, a
second-order prior belief, and an information cost function. In particular, we show
that the canonical properties of an information cost function are necessary and
sufficient to uniquely elicit the information costs. Section 4.3 provides a comparative
statics result. Section 5 characterizes some special cases of the general CBL model,
where the information acquisition model is either the RI model, or a CBL model
with a concave (or convex) transformation function capturing attitude towards
uncertainty, or a constrained Bayesian learning (ConBL) model capturing costless
but constrained information acquisition, or a passive Bayesian learning (PBL)
model capturing costless but fixed information acquisition. Section 6 provides a
brief review of the related literature. Section 7 concludes. Proofs are given in an
Appendix.
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2 Preliminaries

In this section, we introduce our choice framework of menus of lotteries over state-
contingent acts. We then describe a general information acquisition problem, and
define the induced preference relation over menus.

2.1 Framework

Let Ω = {ω1, ..., ωn} be a finite set of states and let Z be an arbitrary set of prizes
with generic elements x, y, z.4 A lottery is called simple if it has a finite support.
Let ∆(Z) denote the set of simple lotteries over Z with typical elements p, q, r. We
call a lottery in ∆(Z) a prize-lottery. An act is a map from the set of states Ω into
the set of prize-lotteries ∆(Z). We denote by F the set of all acts with generic
elements f, g, h. Let ∆(F) denote the set of simple lotteries over F with typical
elements P,Q,R. We call a lottery in ∆(F) an act-lottery. A menu F ⊂ ∆(F) is
a finite set of act-lotteries. Let F denote the collection of all menus with generic
elements F,G,H.

For all α ∈ [0, 1], prize-lotteries p, q ∈ ∆(Z), acts f, g ∈ F , act-lotteries P,Q ∈ ∆(F),
and menus F,G ∈ F, we denote (i) by αp+(1−α)q the mixed prize-lottery r ∈ ∆(Z)
such that r(x) = αp(x)+(1−α)q(x) for all x ∈ Z, (ii) by αf+(1−α)g the mixed act
h ∈ F such that h(ω) = αf(ω) + (1− α)g(ω) for all ω ∈ Ω, (iii) by αP + (1− α)Q
the mixed act-lottery R ∈ ∆(F) such that R(f) = αP (f) + (1− α)Q(f) for
all f ∈ F , and (iv) by αF + (1 − α)G the mixed menu H ∈ F such that
H = {αP + (1− α)Q : ∀P ∈ F and ∀Q ∈ G}.

With some abuse of notation, we identify a singleton menu {P} ∈ F with the act-
lottery P ∈ ∆(F), and a constant act f ∈ F with the prize-lottery p ∈ ∆(Z) given
that f(ω) = p for all ω ∈ Ω. An act f ∈ F can be identified with a degenerate
act-lottery δf ∈ ∆(F) and a prize x ∈ Z can be identified with a degenerate
prize-lottery δx ∈ ∆(Z). For an act-lottery P ∈ ∆(F), let fP ∈ F denote its
induced act, where the resolution of the act-lottery is delayed by the determination

4We assume that Ω is finite to simplify the exposition. Our analysis can be extended to a
general measurable space by straightforward modifications.
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of a state; that is, fP (ω) = ∑
P (f)f(ω) for each ω ∈ Ω. Notice that any act-lottery

P ∈ ∆(F) with only constant acts in its support can be identified as a (simple)
two-stage compound lottery P ∈ ∆(∆(Z)).

Let ∆(Ω) denote the set of all possible beliefs about the likelihood of states in Ω
with typical elements µ, ν, τ . Given a belief µ ∈ ∆(Ω), (i) an act f ∈ F induces a
(simple) one-stage lottery fµ ∈ ∆(Z) such that fu = ∑

ω∈Ω µ(ω)f(ω) and (ii) an
act-lottery P ∈ ∆(F) induces a (simple) two-stage compound lottery Pµ ∈ ∆(∆(Z))
such that Pµ(p) = ∑

fµ=p P (f) for all p ∈ ∆(Z).

Our primitive is a binary relation % over the set of menus, which represents the
preferences of a decision-maker (henceforth, DM). The asymmetric and symmetric
parts of % are denoted � and ∼, respectively. We assume that both ∆(Ω) and
∆(∆(Ω)) are measurable spaces, while both ∆(∆(Ω)) and ∆(∆(∆(Ω))) are endowed
with the weak* topology. Finally, for any given measurable space (X,A), we denote
by Eθ[w(.)] the average value

∫
X w(x)θ(dx) of a measurable function w : X → R

by a given measure θ : A → R.

2.2 The information acquisition problem

We consider a general information acquisition problem under uncertainty. Below we
first describe how the DM receives utility from each act-lottery when information
is not relevant. We then formalize the notion of information in our setting. Finally,
we describe the general problem of information acquisition under uncertainty by
discussing benefits and costs of information.

Second-order expected utility. The DM receives utility from any given act
f ∈ F according to the second-order expected utility model

Em̄[v(Efµ [u(x)])] =
∫

∆(Ω)
v
(∫

Z
u(x)fµ(dx)

)
m̄(dµ), (1)

where u : Z → R is an unbounded utility function, v : u(Z)→ R is an unbounded
increasing transformation, and m̄ ∈ ∆(∆(Ω)) is a second-order prior.5 The inter-

5Klibanoff et al. [2005] were the first to propose the model given in equation (1), which they call
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pretation of this model is that the DM believes there is a true probability model
in ∆(Ω) which governs the likelihood of each state, but she is uncertain about
which probability model µ ∈ ∆(Ω) is the correct one. However, she has enough
information to form a prior belief m̄ ∈ ∆(∆(Ω)) on the likelihood of relevant
probability models. Hence, using her second order prior belief m̄, she aggregates
each possible expected utility v(Efµ [u(x)]) that she can gain under each probability
model µ with her utility function u and a transformation v.

Furthermore, the DM evaluates an act-lottery by taking the expectation of second-
order expected utility of each act in its support, and so

Uu,v
P (m̄) = EP [Em̄[v(Efµ [u(x)])]] (2)

gives the second-order expected utility of each act-lottery P ∈ ∆(F).

Information and Blackwell ordering. We consider the possibility that the
DM acquires information in order to improve her choices under uncertainty. In
particular, the DM can acquire a noisy signal that conveys additional information
about the true probability model. For instance, she can do this by sampling
previous realizations of states. Each such sampling will result in a signal which
would induce a posterior belief m ∈ ∆(∆(Ω)) from the prior m̄ according to Bayes
rule. Thus, a signal would lead to a distribution over posteriors π ∈ ∆(∆(∆(Ω)))
such that the expected posterior is equal to the prior. As a result, the collection of
all possible signals can be given by the set

Π(m̄) =
{
π ∈ ∆(∆(∆(Ω))) : m̄ =

∫
∆(∆(Ω))

mπ(dm)
}
.

The set of signals Π(m̄) is partially ordered in terms of their informativeness by the
well-known Blackwell [1951] order, which in this context can be defined as follows:

Definition 1 (Blackwell order). Signal π ∈ Π(m̄) is more informative than signal

the smooth ambiguity model, to study attitudes towards ambiguity. They provide an axiomatic
characterization of this model by using a rich choice setting of first-order and second-order acts.
Seo [2009] provides an axiomatic characterization of the second-order expected utility model by
using a lotteries of acts choice setting.
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ρ ∈ Π(m̄), denoted π D ρ, if
∫

∆(∆(Ω))
φ(m) π(dm) ≥

∫
∆(∆(Ω))

φ(m) ρ(dm)

for every convex continuous function φ : ∆(∆(Ω))→ R.

Benefits and costs of information. Given a menu F , extracting a signal
allows the DM to make a more informed choice from F because she can choose
an act-lottery to maximize her second-order expected utility for each posterior
m ∈ ∆(∆(Ω)). With a utility function u : Z → R and an increasing transformation
function v : u(Z)→ R, the benefit of information for a given signal π ∈ Π(m̄) is
therefore,

bu,vF (π) =
∫

∆(∆(Ω))

[
max
P∈F

Uu,v
P (m)

]
π(dm).

Since the integrand in square brackets is a convex continuous function on ∆(∆(Ω)),
the benefits of information are increasing in the Blackwell order D.

A rational DM balances the benefit of information from a signal π against the
cost for acquiring that signal. These costs are measured by an information cost
function c : Π(m̄)→ [0,∞], which associates a cost c(π) to each signal π ∈ Π(m̄).
In the information acquisition problem we consider, the DM therefore chooses a
signal π that maximizes the difference between benefits and costs of information
bu,vF (π)− c(π). We say a cost function is proper if it can assume a finite value and
it is lower-semicontinuous.

2.3 Costly Bayesian learning preferences

In our framework, the DM chooses a menu with the expectation of acquiring
information before she selects an act-lottery. We model information acquisition as
illustrated above, and study the induced preference relation over menus.

Definition 2. A binary relation % over menus is a costly Bayesian learning (CBL)
preference if it is represented by a functional V : F→ R, defined by

V (F ) = max
π∈Π(m̄)

[bu,vF (π)− c(π)] , (3)
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where u : Z → R is an unbounded utility function, v : u(Z) → R is an un-
bounded increasing transformation, m̄ ∈ ∆(∆(Ω)) is a second-order prior, and
c : Π(m̄)→ [0,∞] is a proper information cost function. In this case, we also say
% is represented by the parameters (u, v, m̄, c).

The assumptions on parameters (u, v, m̄, c) are standard. Unboundedness of u and
v implies that the benefits of information are not bounded, which will be useful
for unique identification of parameters. Monotonicity of v is natural property that
ensures that more is better. Properness of c is a minimal assumption required to
ensure that the maximization over costly signals is well-defined.

2.4 Canonical information costs

Properness is the only restriction that we impose on the cost function to define the
information acquisition problem. On the other hand, there are a number of intuitive
properties that, without loss of generality, can be imposed on an information cost
function (see Corollary 1 in section 4.2).

Definition 3. An information cost function c : Π(m̄)→ [0,∞] is canonical if

(i) c(δm̄) = 0, where δm̄ ∈ Π(m̄) assigns probability 1 to the second-order prior
m̄ [groundedness: no information no cost],

(ii) π D ρ implies c(π) ≥ c(ρ) [monotonicity: more information more cost],

(iii) αc(π)+(1−α)c(ρ) ≥ c(απ+(1−α)ρ) [convexity: average cost of information
exceeds cost of average information].

It is well known that mutual information satisfies properties (i)–(iii), and so the
cost functions based on mutual information–which are frequently used in the
literature–are canonical.6

6See, e.g., Cover and Thomas [2006, Chapter 2] for a comprehensive analysis on mutual
information and its use in economics.
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3 Axioms

In the following, we consider eight axioms for the DM’s preferences over menus.
The first three axioms are standard in the menu-choice literature:

Axiom 1 (Weak order). For all menus F, G and H, (i) F % G or G % F , and
(ii) if F % G and G % H, then F % H.

Axiom 2 (Continuity). For all menus F , G and H, the following sets are closed:
{α ∈ [0, 1] : αF + (1− α)G % H} and {α ∈ [0, 1] : H % αF + (1− α)G}.

Axiom 3 (Unboundedness). There are prizes x and y, with x � y, such that for all
α ∈ (0, 1) there is a prize z satisfying either y � αz+(1−α)x or αz+(1−α)y � x.

Axioms 1 and 2 ensure that preferences are complete, transitive and continuous.
Axiom 3 implies that preferences over outcomes are unbounded (see, e.g., Mac-
cheroni et al. [2006, Lemma 29]). The remaining axioms reflect more distinctive
features of the information acquisition problem which defines the CBL preferences.

The DM chooses an act-lottery conditional on signal realizations by considering
all possible alternatives in her menu. As such, when choosing a menu, the DM
exhibits a desire for flexibility (Kreps [1979]); that is, adding an alternative to
a menu can only make the DM better off since she can always ignore the added
alternative if it does bring no added value.7

Axiom 4 (Preference for flexibility). For all menus F and G, if F ⊃ G then
F % G.

The DM solves an optimal signal extraction problem by balancing the benefits and
costs of information that may differ from menu to menu. As a result, when choosing
a menu, the DM exhibits a desire for early resolution of uncertainty (Kreps and
Porteus [1978]) about which menu is relevant for her payoff. For instance, when
the DM faces the menu F for sure, then she can focus her signal extraction on

7Desire for flexibility distinguishes CBL preferences from models where the DM may miss some
of the alternatives in a menu due to her bounded rationality (see, e.g., Masatlioglu, Nakajima,
and Ozbay [2012], Manzini and Mariotti [2014], or Ortoleva [2013]).
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F , but if she faces a mixture of F with another (equally good) menu G, then she
cannot focus her signal extraction on F or on G causing her potentially to loose
value. This behavior reflects in our framework as a preference towards having
one of the equally good menus F or G for sure rather than having a mixed menu
αF + (1− α)G, a behavior which is called aversion to contingent planning (Ergin
and Sarver [2010]).

Axiom 5 (Aversion to contingent planning). For all menus F and G, if F ∼ G

then F % αF + (1− α)G for all α ∈ (0, 1).

Information is redundant for singleton menus since signal realizations do not help
to choose a best alternative in a singleton menu and since the expected posterior
belief is equal to the prior. Hence, the optimal information in a mixed menu
αF + (1− α)P depends only on α and F , and does not change if P is replaced by
an alternative act-lottery Q. Thus, the DM’s preferences exhibit an independence
of degenerate decisions (Ergin and Sarver [2010]).

Axiom 6 (Independence of degenerate decisions). For all menus F and G, act-
lotteries P and Q, and α ∈ (0, 1), if αF + (1 − α)P % αG + (1 − α)P , then
αF + (1− α)Q % αG+ (1− α)Q.

The DM acquires information only about the true probability model in ∆(Ω). As
a result, adding an act-lottery Q to a menu F can make the DM strictly better
off only when there is some optimal information about the true probability model
that would lead the DM to choose Q from F ∪{Q}. Thus, if F already contains an
act-lottery that is preferred to Q posterior by posterior, adding Q to her opportunity
set can make her neither better off nor worse off.8

Axiom 7 (Posteriorwise dominance). For all menus F and act-lottery Q, if there
exists P ∈ F such that Pµ % Qµ for all µ ∈ ∆(Ω), then F ∼ F ∪ {Q}.

The DM is an expected utility maximizer. Thus, her preferences satisfy an inde-
pendence axiom when they are reduced to the set of prize-lotteries, where neither
uncertainty about states nor information acquisition is relevant.

8A counterpart of our stronger dominance axiom in the original Anscombe-Aumann choice
setting was introduced by Seo [2009] in order to characterize the second-order expected utility
model.
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Axiom 8 (Independence of prize-lotteries). For all prize-lotteries p, q, r and
α ∈ (0, 1), p % q if and only if αp+ (1− α)r % αq + (1− α)r.

Discussion. In a menu of act choice setting, de Oliveira et al. [2017] consider
the first six axioms which we adapt to our menu of act-lottery choice setting. Our
seventh axiom is a dominance condition which, in our choice setting, strengthens
de Oliveira et al. [2017]’s counterpart, a state-wise dominance (their seventh and last
axiom). de Oliveira et al. [2017]’s state-wise dominance axiom can be extended to
our choice setting. We argue in section 5 that the (extended) state-wise dominance
axiom implies our posterior-wise dominance condition. Moreover, we show that
an extension of de Oliveira et al. [2017]’s RI preferences can be characterized by
this stronger dominance axiom in our setting showing that the RI model can be
embedded into our setting as a special case of the CBL model.

Our eighth and last axiom is a standard independence of prize-lotteries axiom
adapted to our menu of act-lottery choice setting. de Oliveira et al. [2017]’s Axioms
5 and 6 imply an independence of acts axiom in their setting. Moreover, by the
definition of mixture acts in their setting, their RI preferences implicitly satisfy a
reversal of order axiom (see section 5). As a result, the independence of acts axiom
they have together with their implicit reversal of order axiom imply independence of
prize-lotteries axiom. However, we do not assume an independence of act-lotteries
axiom nor a reversal of order axiom. Thus, our CBL preferences are more general
than the RI preferences. In fact, we show in section 5 that de Oliveira et al. [2017]’s
RI model can be characterized in our setting by imposing on our CBL preferences
either the independence of act-lotteries axiom or the reversal of order style axioms.

4 Analysis

In this section, we show that CBL preferences can be characterized by the set of
axioms that we discussed in the previous section. Moreover, we show that the
model parameters can be uniquely identified and compared across decision-makers
using menu-choice data.
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4.1 Characterization

The following result shows that Axioms 1–8 characterize all observable implications
of CBL preferences.

Theorem 1. A binary relation % over menus is a costly Bayesian learning prefer-
ence if and only if it satisfies Axioms 1–8.

Theorem 1 shows that the information acquisition problem in Section 2.2 implies
a set of intuitive choice behavior that can be observed in our framework. It also
establishes a formal connection between the literature on information acquisition
about the distribution of the state and the decision-theory literature on menu-choice.

Proof sketch: Necessity part of the proof is straightforward to show. For sufficiency,
Lemma 1 (Appendix A.2) shows that if a binary relation % satisfies Axioms 1–8,
then there exist an unbounded utility function u : Z → R, an unbounded increasing
transformation v : u(Z) → R, a second-order prior m̄, and an information cost
function c : Π(m̄) → [0,∞] such that (u, v, m̄, c) represents %. In particular,
Axioms 1, 2, 4, and 7 imply that every menu F ∈ F has a singleton equivalent
PF ∈ ∆(F) such that PF ∼ F . By considering the induced axioms over the set of
act-lotteries, we then obtain–as explained in more detail in the next section–a second-
order expected utility representation for the restriction of the preferences on act-
lotteries with parameters (u, v, m̄). Using singleton equivalents and the second-order
expected utility representation, (with a slight abuse of notation) a functional V over
the set ΦF = {φF : ∆(∆(Ω))→ R |φF (m) = maxP∈F EPEmv(Efµu(x)), ∀m, ∀F}
can be defined such that F % G if and only if V (φF ) ≥ V (φG) for all menus F
and G. The remainder of the proof uses Axioms 1–8 to show that V is monotone,
continuous and convex, and employs duality arguments to establish the desired
representation.

4.2 Identification

In this section, we show how the parameters (u, v, m̄, c) in the information acquisi-
tion problem can be identified from menu-choice data.
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Identifying a utility function. The restriction of the DM’s preferences % over
the set of first-order prize-lotteries ∆(Z) satisfies the axioms of expected utility
(with unboundedness), and so they can be represented by the expected utility
model with an unbounded utility function u : Z → R such that p % q if and only
if Epu(x) ≥ Equ(x). Moreover, u can be normalized such that Ep′u(x) = 1 and
Eq′u(x) = 0 for some p′ � q′.

Identifying an increasing transformation. The restriction of the DM’s pref-
erences % over the set of second-order prize-lotteries ∆(∆(Z)) satisfies the axioms
of expected utility (with unboundedness). Thus, there exists an unbounded func-
tion Ū : ∆(Z) → R such that P̄ % Q̄ if and only if EP̄ Ū(r) ≥ EQ̄Ū(r) for all
P̄ , Q̄ ∈ ∆(∆(Z)). Moreover, Ū can be normalized such that EP̄ ′Ū(r) = 1 and
EQ̄′Ū(r) = 0 for some P̄ ′ � Q̄′. Without loss of generality, let P̄ ′ = δp′ and
Q̄′ = δq′ . Since ∆(Z) can be embedded into ∆(∆(Z)), we have EδpŪ(r) ≥ Eδq Ū(r)
if and only if Epu(x) ≥ Equ(x). This means there exists an unbounded increasing
transformation v : u(Z)→ R such that Ū(p) = v(Epu(x)) for all p ∈ ∆(Z).

Identifying a second-order prior. The restriction of the DM’s preferences %
over the set of act-lotteries ∆(F) satisfies the axioms of expected utility. Thus, there
exists a function U : F → R such that P % Q if and only if EP [U(f)] ≥ EQ[U(f)]
for all P,Q ∈ ∆(F). Note that we can let U such that U(p) = Ū(p) = v(Epu(x))
for all p ∈ ∆(Z). But then, since % satisfies Axiom 7, following Seo [2009,
Lemma B.3-B10], there exists a second-order belief m̄ ∈ ∆(∆(Ω)) such that
U(f) = Em̄[v(Efµu(x))] yields the value of each act f ∈ F .

Identifying an information cost function. Given all other parameters (u, v, m̄),
we can obtain a unique canonical information cost function c by using menu-choice
data. Note that for any given menu F ∈ F, there exists an equivalent act-lottery
PF ∈ ∆(F) such that F ∼ PF .

Theorem 2. Let % be a costly Bayesian learning preference such that the restric-
tion of % to singleton menus is represented by (u, v, m̄). Then the cost function
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c : Π(m̄)→ [0,∞], defined by

c(π) = sup
F∈F

[
bu,vF (π)− Uu,v

PF
(m̄)

]
, (4)

is the unique canonical cost function such that (u, φ, m̄, c) represents %.

As an implication of Theorem 2, we can identify all parameters of the costly
information acquisition model up to standard positive affine transformations. For
any two measures m,m′ ∈ ∆(∆(Ω)), we say they are essentially equivalent (denoted
by m ≈ m′) if for all P ∈ ∆(F),

EP [Em[v(Efµ [u(x)])]] = EP [Em′ [v(Efµ [u(x)])]].

Corollary 1. If (u, v, m̄, c) and (u′, v′, m̄′, c′) represent the same CBL preferences
% with canonical costs c and c′, then there exists α, λ > 0 and β, γ ∈ R such that
u′ = αu+ β, v′(αu+ β) = λv(u) + γ, m̄′ ≈ m̄ and c′ = λ c.

4.3 Comparative statics

As an application of our identification results, we now consider a comparative
measure of flexibility. Let DM1 and DM2 be two individuals who have CBL
preferences %1 and %2, respectively, with canonical representations agreeing on
the utilities, transformations, second-order priors, but the costs. We say that
DM2 is less able to acquire information than DM1 when acquiring information is
costlier for DM2 than DM1; that is, c∗2 ≥ c∗1. Intuitively, when DM2 is less able
to acquire information, she should find the option of committing to a singleton
menu–which eliminates the need of acquiring information–more valuable than DM1.
The following comparative defines when DM2 finds singleton menus more valuable
than DM1.

Definition 4. [Comparative desire for singletons] Let %1 and %2 be two binary
relations on the set of menus F. Then %2 has a stronger desire for singletons than
%1 if, for all F and P , whenever P �1 F , then P �2 F .
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The following result shows that the comparative in Definition 4 characterizes when
DM2 is less able to acquire information than DM1.

Theorem 3. Let %1 and %2 be costly Bayesian learning preferences with canonical
representations (u1, v1, m̄1, c1) and (u2, v2, m̄2, c2), respectively. Then, %2 has a
stronger desire for singleton menus than %1 if and only if (u1, v1, m̄1) = (u2, v2, m̄2)
and c2 ≥ c1.

Theorem 3 provides a behavioral measure of comparative ability to acquire informa-
tion. In particular, Theorem 3 implies that the utility difference between a menu
and the singleton equivalent of the menu is higher for a DM who is less able to
acquire information. As such, the DM will be willing to pay a higher premium for
the option to have the singleton menu, thereby avoiding higher information costs.

5 Special cases

Special cases of CBL preferences can be characterized in terms of the additional
restrictions they impose on menu-choice data.

5.1 Rationally inattentive preferences

As indicated earlier, de Oliveira et al. [2017]’s RI preferences are a special case of
our CBL preferences. We can establish this relation both by directly inspecting
the representations or by establishing the underlying behaviors.

Structural relation. The RI model, which assigns a utility value to each menu
of acts, can be given in our setting as

V̂ (F ) = max
π̂∈Π(µ̄)

(
Eπ̂

[
max
f∈F

(
Efµw(x)

)]
− ĉ(π̂)

)
, (5)

where µ̄ is a first-order prior, Π(µ̄) = {π ∈ ∆(∆(Ω)) : µ̄ =
∫
µdπ(µ)} is the set of

viable information structures conveying information about the states, w : Z → R
is a utility function, and ĉ : Π(µ̄)→ [0,∞] is a proper information cost function.
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Note that whenever the CBL model has an affine transformation function v, then
the utility the DM obtains from each act f can be given by the first-order expected
utility

Efµm̄v(u(x)) =
∫

Ω
v[u(f(ω)]dµm̄(ω), (6)

where µm̄ =
∫
∆(Ω) dm̄(µ) is the barycenter of the second-order probability measure

m̄. As such, according to the CBL model with an affine transformation function v,
the value of a menu of acts F will be

V (F ) = max
π∈Π(m̄)

(
Eπ

[
max
f∈F

Em
[
v
(
Efµu(x)

)]]
− c(π)

)
, (7)

which is equivalent to

max
π∈Π(m̄)

(
Eπ

[
max
f∈F

Efµm [v (u(x))]
]
− c(π)

)
, (8)

where µm =
∫

∆(Ω) µm(dµ) for all m ∈ ∆(∆(Ω)), which can be equivalently given as

max
π̂∈Π(µm̄)

(
Eπ̂

[
max
f∈F

Efµm [v (u(x))]
]
− ĉ(π̂)

)
, (9)

where Π(µm̄) = {π ∈ ∆(∆(Ω)) : µm̄ =
∫

∆(Ω) µmπ(dm)} is the set of viable informa-
tion structures conveying information about the states and ĉ : Π(µm̄)→ [0,∞] is
the suitably substituted for information cost function. Then, letting µ̄ = µm̄ and
w(x) = v(u(x)) for all x ∈ Z above, we see that equations (5) and (9) coincide
showing that the RI model can be embedded into our setting as a CBL model
representing preferences over menus of acts. Moreover, these RI preferences can be
immediately extended to our general setting of menus of act-lotteries where the
value of a menu of act-lotteries F will be

V (F ) = max
π̂∈Π(µm̄)

(
Eπ̂

[
max
P∈F

EP
(
Efµm [v (u(x))]

)]
− ĉ(π̂)

)
. (10)

Axiomatic relation. The RI model can be established as a special case of our
CBL model by imposing either one of the five axioms below.

First, according to the extended RI model given in equation (10), the DM can be

17

Electronic copy available at: https://ssrn.com/abstract=3919508



seen as if she learns about the states, and not about the distribution of the states.
This fact induces the following state-wise dominance condition, which is clearly a
strengthening of our posterior-wise dominance axiom.

Axiom 9 (Statewise dominance). For all menus F and act-lotteries Q, if there
exists P ∈ F such that Pδω % Qδω for all ω ∈ Ω, then F ∼ F ∪ {Q}.

Axiom 9 states that the DM acquires information only about the states in Ω. As a
result, adding an act-lottery Q to a menu F can make her strictly better off only
when there is some information about the true state that would lead the DM to
choose Q from F ∪{Q}. Thus, if F already contains an act-lottery that is preferred
to Q state by state, adding Q to her opportunity set can make her neither better
off nor worse off.

Second, for the equivalence of equations (7) and (8) above, we moved the expectation
by the first-order beliefs out of the transformation function and reduced the second-
order expectation to a first-order expectation. This possibility of reduction implies
the following three axioms.

Axiom 10 (Indifference to the timing of resolution). For all act-lotteries P , we
have fP ∼ P .

Axiom 10 states that the DM’s preferences are not sensitive to the timing of
resolution of uncertainty about which act of the possible ones will be relevant for
her payoffs.

Third, similar to the second observation, the DM must be indifferent between
whether the mixture of acts is resolved before or after the state is determined.

Axiom 11 (Reversal of order). For all acts f, g, and mixture weights α ∈ (0, 1),
we have αδf + (1− α)δg ∼ αf + (1− α)g.

Axiom 11 states that the DM’s preferences are not sensitive to the timing of
resolution of uncertainty about which act of the possible two will be relevant for
her payoffs.

Fourth, similar to the third observation, the DM must be indifferent between
whether a second-order lottery is resolved at the first-stage or the second-stage.
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Axiom 12 (Reduction of compound lotteries). For all prize-lotteries p, q, and
α ∈ (0, 1), we have αδp + (1− α)δq ∼ αp+ (1− α)q.

Axiom 12 states that the DM’s preferences are not sensitive to the timing of
resolution of uncertainty about which constant act of the possible two will be
relevant for her payoffs.

Finally, the value of a single act f will be given by the first-order expected utility
given in equation (6) whenever the CBL model has an affine transformation. This
implies the following independence of acts axiom.

Axiom 13 (Independence of acts). For all acts f, g, h and α ∈ (0, 1), f % g if and
only if αf + (1− α)h % αg + (1− α)h.

Axiom 13 is a standard independence over acts axiom and typically imposed in
order to obtain the subjective expected utility model in an Anscombe-Aumann
choice setting.

Counterparts of Axioms 9, 11 and 12 can be found in Seo [2009] who uses them
in the original Anscombe-Aumann act choice setting to show that the first-order
(subjective) expected utility representation can be obtained from his second-order
expected utility representation. A counterpart of Axiom 10 was first given by Kreps
[1988, p.107] in an Anscombe-Aumann choice setting by way of implicitly describing
the condition within a discussion about the order of acts (i.e., horse-race lotteries)
and prize-lotteries (i.e., roulette-wheel lotteries). Clearly, Axiom 10 implies Axiom
11, which implies Axiom 12. In fact, the following results shows that for a given
CBL preferences all of the five axioms stated above are equivalent to each other,
and each one of them can characterize the extended RI preferences in our setting
as a special case of the CBL preferences.

Proposition 1. Let % be a costly Bayesian learning preference. Then the following
are equivalent:

(i) % satisfies either one of Axioms 9, 10, 11, 12, or 13.

(ii) % is represented by the model given in equation (10).
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Discussion. Proposition 1 provides a way to separate models of information
acquisition proposed in the literature that are about either learning the distribution
of the state (like the CBL model) or the state itself (like the RI model). Both
types of models are utilized for various choice problems in macroeconomics, finance,
IO, and other disciplines; however, it is not clear what type of choice implications
these models have and what distinguishes them from each other in a general choice
framework. This is an issue that can be of critical importance to understand which
type of model should be used for particular applications, for instance when deciding
modeling rationally inattentive behavior. Proposition 1 shows that these models
can be distinguished from each other by several equivalent ways on the basis of
either a dominance axiom, or timing of resolution type axioms, or an independence
of acts axiom.

First, the dominance axiom reveals directly what type of learning is more suitable for
the information acquisition problem. For instance, if the DM satisfies the stronger
axiom of dominance, Axiom 9, then RI as a model of learning about the state with
information acquisition is more suitable to describe the DM’s behavior; however, if
the DM violates this stronger axiom of dominance, but satisfies the relatively weaker
axiom of dominance, Axiom 7, then CBL as a general model of learning about
the distribution of states with information acquisition is more suitable to describe
the DM’s behavior. Second, the timing of resolution type axioms reveal whether
the DM is sensitive to the timing of resolution of randomizations or not. For the
RI model the DM is indifferent, though in general there can be viable reasons to
expect that the DM is not indifferent to the timing of resolutions; for instance, this
is the case when the DM has multiple first-order priors, as in the case of general
CBL preferences. And third, verification (or violations) of the independence of
acts axiom reveals if the DM is a subjective expected utility maximizer or not. In
general, the DM can violate the independence of acts axiom; for instance, this is
the case when the DM exhibits uncertainty aversion, a phenomenon which is widely
documented in the experimental literature.

What we have shown and argued above was that because of the reducibility of the
CBL model whenever its transformation function v is affine, the DM can be seen
as if she acts according to the RI model and acquires information about the states,
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and not the distributions. One can wonder, at this point, whether a hybrid model
can be considered where information can be gathered both about the states and
distributions at the same time. Although this type of information acquisition is
a possibility in general, our Proposition 1 implies that such a model will violate
some of the axioms listed above, most likely the axiom of preference for flexibility,
Axiom 4. Thus, to allow for more general type of learning models, one might need
to allow for the possibility that information can sometimes be harmful and induce
the DM to prefer smaller menus.

5.2 Other special cases

In addition to the rationally inattentive preferences, there are other special cases
of the CBL preferences.

Ambiguity averse preferences

We have discussed in section 5.1 that any of the Axioms 9-13 can be violated by
the DM with CBL preferences, whenever she is not indifferent to the timing of
resolution of randomizations. This is in particular a case for ambiguity averse
decision-makers, who typically satisfy an uncertainty aversion axiom, first given by
Schmeidler [1989] in an Anscombe-Aumann choice setting .

Axiom 14. [Uncertainty aversion] For all acts f, g and α ∈ (0, 1), if f ∼ g, then
αf + (1− α)g % f .

This axiom says that the DM can improve her payoff that she can obtain from
singleton menus by way of mixing the acts in them with ex-post randomizations
(i.e., hedging acts). As a result, such a DM with CBL preferences will have a
non-affine transformation function, and so she will not be indifferent to the timing
of resolution of randomizations.

Proposition 2. Let % be a costly Bayesian learning preference with an increasing
transformation v. Then the following are equivalent:

(i) % satisfies Axiom 14.
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(ii) v is concave.

Note that a similar result, where the DM will be ambiguity seeking, can be easily
characterized with an uncertainty seeking axiom in which case the transformation
function v will be convex.

Constrained Bayesian learning

A general constrained Bayesian learning (ConBL) model can be given in our setting
such that the value of a menu of act-lotteries will be

V (F ) = max
π∈Γ(m̄)

(
Eπ

[
max
P∈F

Uu,v
P (m)

])
, (11)

where Γ(m̄) is a closed convex subset of the set of information structures Π(m̄).
Clearly, the ConBL model is a special case of our CBL preferences where the
information cost function c satisfies c(π) ∈ {0,∞} with c(π) = 0 if and only
if π ∈ Γ(m̄). This model can be characterized by an axiom allowing for weak
indifference to contingent plans with singleton menus (de Oliveira et al. [2017]).

Axiom 15. [Weak indifference to contingent planning] For all menus F and act-
lotteries P , if F ∼ P , then F ∼ αF + (1− α)P for all α ∈ (0, 1).

In the CBL model that we have characterized in Theorem 1, a DM is averse to
mixing menus F and G unless there is a common information structure π that is
optimal for both menus. For the constrained information acquisition problem in
equation 11, any feasible information structure π in the set Γ(m̄) is optimal for
a singleton menu. Thus, the DM is indifferent towards mixtures with singleton
menus. The following result shows that Axiom 15 is the only additional behavioral
restriction of a ConBL model within the class of our general CBL model.

Proposition 3. Let % be a costly Bayesian learning preference. Then the following
are equivalent:

(i) % satisfies Axiom 15,

(ii) % is represented by the model given in equation (11).
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Passive Bayesian learning

There are many information acquisition models used in applied literature where
the DM does not actively seek information, but rather is a passive recipient of it
(see, e.g., Baaley and Veldkamp [2021]). A general passive Bayesian learning (PBL)
model can be given in our setting such that the value of a menu of act-lotteries
will be

V (F ) = Eπ

[
max
P∈F

Uu,v
P (m)

]
(12)

where π ∈ Π(m̄) is some fixed information structure that the DM expects to have
for no cost. These types of models imply the following axiom in our choice setting,
which de Oliveira et al. [2017] call indifference to contingent planning for arbitrary
menus.

Axiom 16. [Indifference to contingent planning] For all menus F and G, if F ∼ G,
then F ∼ αF + (1− α)G for all α ∈ (0, 1).

The following result shows that Axiom 16 is the only additional behavioral restriction
of a PBL model within the class of our general CBL model.

Proposition 4. Let % be a costly Bayesian learning preference. Then the following
are equivalent:

(i) % satisfies Axiom 16,

(ii) % is represented by the model given in equation (12).

By Proposition 1, it is immediate to see that the PBL model contains Dillenberger
et al. [2014]’s subjective-learning preferences as a special case, and thus the sub-
jective learning model can be characterized in our setting by adding one of the
Axioms 9-13 to the PBL model.

6 Related literature

In this section, we provide a brief review of the related literature focusing on
attitudes towards the timing of resolutions and on truthful elicitation of the CBL
preferences even when they exhibit uncertainty aversion.
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Attitudes towards the timing of resolutions

Our work is most related to de Oliveira et al. [2017] who study a costly information
acquisition model (given in equation (9)), where learning is about the states. They
give an axiomatic characterization of this model and call the induced preferences
over menus of acts Rationally Inattentive Preferences. Due to the structure of
their framework and the way they define mixed acts, the RI preferences exhibit
neutrality towards the timing of resolution of randomizations between acts; that is,
the DM is indifferent between learning which act is relevant for her payoff before
or after the state is revealed. As such, the DM is a first-order expected utility
maximizer. However, the RI preferences do exhibit desire for early resolution of
randomizations between menus; that is, a DM with RI preferences would like to
know which menu will eventually be relevant for her payoffs before she makes the
choice of a costly information to acquire.

Our work extends de Oliveira et al. [2017]’s analysis by using the richer setting
of menus of lotteries over acts. The costly Bayesian learning (CBL) model that
we study formalizes the DM’s acquisition of information as learning about the
distribution of states by modeling the DM’s uncertainty using a second-order prior
belief. Therefore, the CBL model can permit differing attitudes towards the timing
of resolution of uncertainty unlike the RI preferences. For instance, when the
increasing transformation function v is concave, then the DM with CBL preferences
finds mixing of acts with late resolution helpful by means of hedging against the
uncertainty of the state, and therefore she exhibits a desire for late resolution
of randomizations between acts. On the other hand, the CBL preferences do
exhibit a desire for early resolution of randomizations between menus, just like
the RI preferences; a DM with CBL preferences would like to know which menu
will eventually be relevant for her payoffs before she makes the choice of a costly
information to acquire.

There are other axiomatic studies that are related to de Oliveira et al. [2017]
(and therefore our work) in view of attitudes towards the timing of resolutions.
Ergin and Sarver [2010] consider a choice setting of menus of lotteries over prizes
to study a model of costly contemplation. As de Oliveira et al. [2017] argues,
the RI preferences can be seen (and similarly the CBL preferences) as a class
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of the costly contemplation preferences. As such, similar to the RI (and CBL)
preferences, the costly contemplation preferences exhibit a desire for early resolution
of randomizations between menus (i.e., Axiom 5). While there are such close
connections between these preferences, in Ergin and Sarver [2010] there is no
counterpart of having attitudes towards the timing of resolution of randomizations
between within-menu-alternatives (e.g., lotteries in this case) since there is no
objective state space in their setting unlike in de Oliveira et al. [2017] or in our
work. In fact due to the lack of an objective state space in their setting, there is no
counterpart of a Blackwell ordering in Ergin and Sarver [2010], which plays a key
role for the unique elicitation of costs in de Oliveira et al. [2017]’s or in our study.

Ergin and Sarver [2015] extends the choice setting of Ergin and Sarver [2010] by
considering lotteries over menus of lotteries. Within this framework, they provide
a rationale for the DM’s seemingly intrinsic preferences for early resolution of
uncertainty (see, e.g., Kreps and Porteus [1978]) by the possibility of taking hidden
actions at a later unmodeled stage (see, e.g., Kreps [1979]). In another work,
Pennesi [2015] consider a choice setting with lotteries over menus of acts extending
de Oliveira et al. [2017]’s framework, and provides an axiomatic characterization
for the costly information acquisition model that de Oliveira et al. [2017] study.
In particular, following Ergin and Sarver [2015], Pennesi [2015] defines more
explicitly the notion of desire for the early resolution of uncertainty and shows
that this attitude is a key feature of the RI model in addition to other standard
behavior. Finally, when the DM is indifferent toward the timing of resolution of
any uncertainty, then the DM has passive Bayesian learning (PBL) preferences,
which extends Dillenberger et al. [2014]’s subjective-learning preferences into our
menus of lotteries over acts choice setting.

Ambiguity aversion and Raiffa’s critique

Since the seminal work of Ellsberg [1961], ambiguity aversion has been an active area
of research, both theoretically and empirically. One of the well known arguments
against Ellsberg [1961] style paradoxes is known as Raiffa’s critique. Raiffa [1961]
argued that by mixing acts, the DM can hedge against ambiguity and simply
turn the uncertainty about the states into an objective risk. In fact, this is how
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Schmeidler [1989] defines uncertainty aversion which we use as Axiom 14 in our
setting.

A recent line research warns that just because of the very nature of uncertainty
aversion, it might not be possible to truthfully elicit the DM’s preferences under
uncertainty in an incentivized experiment.9 The reason is that simply the DM can
recognize the fact that she can hedge against uncertainty by sometimes choosing
possibly inferior acts over constant acts in a given random incentive system (RIS).
The use of RIS is widespread in experimental economics, but this simple argument
implies that it may have limitations for eliciting preferences under uncertainty.10

Our model of CBL can provide a new perspective on this debate. Notice that in a
typical incentivized experiment, the DM is given a sequence of choice problems.
Each choice problem is a menu of acts, typically consisting of an act and a certain
outcome, from which the DM is asked to make a choice. After the DM makes all
the choices, she is made a payment by randomly selecting one of the choice sets
she was given. As such, since a DM with CBL preferences satisfies Axiom 5, she
will prefer not randomizing over choice sets and will reveal her true preferences in
each choice set as a result. The reason is that resolution of randomizations over
her choice sets are typically made before the state is revealed to her and thus these
mixtures practically do not provide hedging against the uncertainty she faces. This
means that random payments do not create unintended implications for elicitation
of CBL preferences.

While this line of argument works well for CBL preferences, it will not be helpful
when the DM satisfies the dual of Axiom 5, who will be someone who prefers
randomization over choice sets. In that case, truthful elicitation of the DM’s
preferences can still be a problem, but this time perhaps not due to uncertainty
aversion, but due to a desire for contingent planning. We believe this is an
interesting point of observation that should be considered when eliciting preferences
using menu choice data in controlled experiments, not just for decision making
under uncertainty in specific, but more in general.

9See, e.g., Bade [2015], Azrieli et al. [2018], Baillon et al. [2021] for some related wok on this.
10See, e.g., Azrieli et al. [2018] for a demonstration of shortcomings of RIS in an experiment

when there is ambiguity aversion. Azrieli et al. [2018] also propose a modification of the RIS
procedure to restore incentive compatibility.
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7 Conclusion

In this paper, we show how menu choice data can be used to study models of
costly information acquisition with learning about the distribution of states. These
models, which we call costly Bayesian learning (CBL), have been widely applied in
the literature to study important questions in finance, macroeconomics, IO and
related disciplines. A challenging issue for applied work on costly information
acquisition problems is that the costs can be subjective and therefore not directly
observable by the analyst. Following de Oliveira et al. [2017], who work on rational
inattention (RI) models, we show that behavior of individuals with CBL preferences
can be directly tested, and their hidden information costs can be identified and
elicited with observable choice data in a richer setting.

We also show that the RI model, which have recently gained prominence with
the rational inattention literature (Sims [1998, 2003]), can be embedded into our
setting as a special case of the CBL model. By imposing either (i) a stronger
dominance axiom, or (ii) various forms of indifference to timing of resolution axioms,
or (iii) an independence over acts axiom, the RI model can be characterized in our
setting. Importantly this characterization shows that a DM seemingly following
the RI model can in fact be someone who does follow the CBL model with multiple
first-order prior beliefs, but due to the linear transformation function her behavior
is seen as if she has a unique first-order prior belief. This means there is indeed a
strong connection between the information acquisition models where learning is
about the distribution of the states or learning about the actual state. We believe,
therefore, our results in general help better understand the relation of these two
seemingly different strands of the literature.

Our model of CBL preferences is flexible enough to accommodate non-linear
attitudes towards the resolution of uncertainty, such as when the DM is uncertainty
averse. As such, our analysis provides a plausible point of start for research on
the behavioral foundations of dynamic models of costly information acquisition.
Extending on our analysis in dynamic choice settings, future research can provide
guidance for empirical analysis on the implications of costly information acquisition
in dynamic choice environments.
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A Appendix

In this section, we prove the results given in Sections 4 and 5.

A.1 Preliminaries

We first introduce some additional notation and preliminary results required for the
proofs. To this end, let ∆2(Ω) denote the space ∆(∆(Ω)), and let ∆3(Ω) denote
∆(∆(∆(Ω))) to simplify the exposition.

Niveloids. Denote by C(∆2(Ω)) the linear space of real-valued continuous func-
tions defined on ∆2(Ω), and by ca(∆2(Ω)) the linear space of signed measures
of bounded variation on ∆2(Ω) (Aliprantis and Border [2006, p. 399]). For each
π ∈ ca(∆2(Ω)) and for each φ ∈ C(∆2(Ω)), let

〈φ, π〉 =
∫

∆2(Ω)
φ(m) π(dm).

The linear space C(∆2(Ω)) is endowed with the supnorm and ca(∆2(Ω)) with the
weak* topology. Therefore ca(∆2(Ω)) can be identified with the continuous dual
space of C(∆2(Ω)) (Aliprantis and Border [2006, Corollary 14.15]), and C(∆2(Ω))
can be identified with the continuous dual space of ca(∆2(Ω)) (Aliprantis and
Border [2006, Theorem 5.93]).

Let Ψ be a subset of C(∆2(Ω)), and consider a function V : Ψ → R. We say
that V is normalized if V (α) = α for each constant function α ∈ Ψ; mono-
tone if V (φ) ≥ V (ψ) for all φ, ψ ∈ Ψ such that φ ≥ ψ; translation invariant if
V (φ + α) = V (φ) + α for each φ ∈ Ψ and α ∈ R such that φ + α ∈ Ψ; and a
niveloid if V (φ)− V (ψ) ≤ sup {φ(m)− ψ(m) : m ∈ ∆2(Ω)} for each φ, ψ ∈ Ψ. If
V is a niveloid, then it is monotone and translation invariant, while the converse
is true whenever Ψ = Ψ + R. Moreover, if V is a niveloid, then V is Lipschitz
continuous. If Ψ is a convex set and V is a convex niveloid, then there is a convex
niveloid that extends V to C(∆2(Ω)).11

11See Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini [2014] for the proofs of these
results and a detailed analysis about niveloids in general.
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Notation and Auxiliary Results. Let Φ be the set of convex functions belong-
ing to C(∆2(Ω)): Φ is a closed convex cone such that 0 ∈ Φ. Denote by Φ∗ the
dual cone of Φ, that is,

Φ∗ = {π ∈ ca(∆2(Ω)) : 〈φ, π〉 ≥ 0 for all φ ∈ Φ}.

The set Φ∗ is also a closed convex cone such that 0 ∈ Φ∗. Moreover Φ = Φ∗∗ (see
Aliprantis and Border [2006, Theorem 5.103]), that is,

Φ = {φ ∈ C(∆2(Ω)) : 〈φ, π〉 ≥ 0 for all π ∈ Φ∗}.

Let u : Z → R be a function and v : u(Z) → R be an increasing transformation.
Denote by ΦF the set of functions φF : ∆2(Ω)→ R for each menu F where,

φF (m) = max
P∈F

EP [Em[v(Efµ [u(x)])]],

for all m ∈ ∆2(Ω). Similarly, let Φ∆(F) denote the set of functions φP : ∆2(Ω)→ R
for each act-lottery P where φP (m) = EP [Em[v(Efµ [u(x)])]] for each m ∈ ∆2(Ω),
and let Φ∆(Z) denote the set of functions φp : ∆2(Ω) → R for each prize-
lottery p where φp(m) = v(u(x)) for each m ∈ ∆2(Ω). Observe that we have
Φ∆(Z) ⊂ Φ∆(F) ⊂ ΦF ⊂ Φ. Moreover, αφF + (1− α)φG = φαF+(1−α)G for each pair
of menus F and G, and α ∈ [0, 1]. Hence, in particular, ΦF is convex.

For any given menu F , let co(F ) denote its convex hull. For any P ∈ ∆(F),
let supp(P ) denote its support. For any P ∈ ∆(F), let v(u(P )) denote the
vector λP ∈ R∆(Ω) such that λP (µ) = EP [v(Efµ [u(x)])] for each µ ∈ ∆(Ω) and let
v(u(F )) = {λP : P ∈ F} for each F ∈ F. For any f ∈ F , let uf ∈ u(Z)∆(Ω) denote
the vector such that uf (µ) = Efµu(x) for each µ ∈ ∆(Ω). Let u(F) = {uf : f ∈ F}.

A.2 Implications of Axioms 1–8

In this Section, we state and prove a lemma that provides a representation for a
binary relation satisfying Axioms 1–8. We consider below utility functions which
are unbounded above, while the case where they are unbounded below is analogous
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and therefore omitted.

Lemma 1. Let % be a binary relation on F that satisfies Axioms 1–8. Then:

(i) Every menu F ∈ F has a singleton equivalent PF ∈ ∆(F) such that F ∼ PF .

(ii) There exist an unbounded utility function u : Z → R, an unbounded increasing
transformation v : u(Z) → R, and a second-order prior m̄ ∈ ∆(∆(Ω))
such that the restriction of the preference order % over the set of singletons
is represented by the second-order expected utility defined with parameters
(u, v, m̄).

(iii) The function c∗ such that c∗(π) = supF∈F
[
bu,vF (π)− Uu,v

PF
(m̄)

]
for all π ∈ Π(m̄)

is proper.

(iv) The functional V defined by V (F ) = maxπ∈Π(m̄) [bu,vF (π)− c∗(π)] for all F ∈ F
represents %.

Proof. Let % be a binary relation on F that satisfies Axioms 1–8.

[Part (i)]: We establish this part in two claims.

Claim 1. Let F and G be menus such that for each Q ∈ G there is P ∈ F such
that Pµ % Qµ for each µ ∈ ∆(Ω). Then F % G.

Proof. By Axiom 7, F ∼ F ∪ {Q1} ∼ F ∪ {Q1, Q2} ∼ ... ∼ F ∪ G. By Axiom 4,
F ∪G % G. Combining these, we obtain F % G.

Claim 2. Every menu F has a singleton equivalent PF such that PF ∼ F .

Proof. Let s(F ) = {f(w) : f ∈ supp(P ), P ∈ F} denote the set of prize-lotteries
that are possible within menu F . Since F has finitely many act-lotteries, each
act-lottery has finitely many acts in its support, and the state space has finitely
many states, s(F ) must be finite. Therefore, there are some p, q ∈ s(F ) such that
p % Pµ % q for all P ∈ F and for all µ ∈ ∆(Ω). Notice that p, q and Pµ are
viewed as singleton menus with corresponding act-lotteries in the previous binary
comparisons. By Claim 1, we have p % F % q. By Axiom 2, the two sets

A = {α ∈ [0, 1] : αp+ (1− α)q % F} and B = {α ∈ [0, 1] : F % αp+ (1− α)q} .
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are closed. Since [0, 1] is connected, there exists α ∈ A∩B such that αp+(1−α)q ∼ F .
Let PF be equal to the singleton αp+ (1− α)q.

[Part (ii)]: Restriction of the DM’s preferences % over the set of first-order prize-
lotteries ∆(Z) satisfies the vNM axioms of expected utility, and so they can be
represented by the expected utility model with a utility function u : Z → R such
that p % q if and only if Epu(x) ≥ Equ(x). Note that by Axiom 3, u is unbounded.
Moreover, u can be normalized such that Ep′u(x) = 1 and Eq′u(x) = 0 for some
p′ � q′.

Restriction of the DM’s preferences % over the set of act-lotteries ∆(F) satisfies
the axioms of expected utility. In particular, to see that the independence ax-
iom holds, take any α ∈ (0, 1) and P,Q ∈ ∆(F) such that P ∼ Q. By Axiom 5,
P = αP+(1−α)P % αQ+(1−α)P . By Axiom 6, αP+(1−α)Q % αQ+(1−α)Q = Q.
By Axiom 5, Q = αQ + (1 − α)Q % αP + (1 − α)Q. So we conclude that
P ∼ αP + (1−α)Q for any α ∈ (0, 1) whenever P ∼ Q. But then, by Ozbek [2021,
Proposition 1 ], the preference order must satisfy independence over act-lotteries.

As a result, restriction of the DM’s preferences % over the set of second-order
prize-lotteries ∆(∆(Z)) satisfies the axioms of expected utility. Thus, there exists
a function Ū : ∆(Z) → R such that P̄ % Q̄ if and only if EP̄ Ū(r) ≥ EQ̄Ū(r)
for all P̄ , Q̄ ∈ ∆(∆(Z)). Moreover, Ū can be normalized such that EP̄ ′Ū(r) = 1
and EQ̄′Ū(r) = 0 for some P̄ ′ � Q̄′. Without loss of generality, let P̄ ′ = δp′ and
Q̄′ = δq′ . Since ∆(Z) can be embedded into ∆(∆(Z)), we have EδpŪ(r) ≥ Eδq Ū(r)
if and only if Epu(x) ≥ Equ(x). This means there exists an unbounded increasing
transformation v : u(Z)→ R such that Ū(p) = v(Epu(x)) for all p ∈ ∆(Z).

Finally, since restriction of the DM’s preferences % over the set of act-lotteries ∆(F)
satisfies the vNM axioms of expected utility, there exists a function U : F → R
such that P % Q if and only if EP [U(f)] ≥ EQ[U(f)] for all P,Q ∈ ∆(F). Note
that we can let U such that U(p) = Ū(p) = v(Epu(x)) for all p ∈ ∆(Z). But then,
since % satisfies Axiom 7, following Seo [2009, Lemma B.3-B10], there must exist a
second-order belief m̄ ∈ ∆(∆(Ω)) such that U(f) = Em̄[v(Efµu(x))] for all f ∈ F .
Combining all these, we conclude that the preference order % restricted to the set
of singletons can be represented by the second-order expected utility model given
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in equation (2). �

[Part (iii)]: We need to show that (i) c∗(π) ≥ 0 for all π ∈ Π(m̄), (ii) c∗(π) <∞
for some π ∈ Π(m̄), and (iii) c∗ is lower semi-continuous. Note that since u and v
are normalized, and so we have 0 ∈ ΦF, it follows that c∗(π) ≥ Eπ 0 − 0 = 0 for all
π ∈ Π(m̄), showing (i). By Axiom 4, we have F % P for any P ∈ F , and so PF % P

for all P ∈ F by Part (i). This means c∗(δm̄) = supF∈F
[
bu,vF (δm̄)− Uu,v

PF
(m̄)

]
≤ 0,

and so c∗(δm̄) = 0, showing (ii). Finally, since c∗ is a pointwise supremum of a
family of continuous functions, it is lower semi-continuous. �

[Part (iv)]: We establish this part in several claims. Without loss of generality
assume that u(x) ≥ 0 for each x ∈ Z whenever u(Z) is lower bounded and closed.

Define the functional V : ΦF → R such that V (φF ) = EPFU(f) where PF is a
singleton equivalent of F .12 If PF and QF are two certainty equivalents of F , then
PF ∼ QF and so EPFU(f) = EQFU(f). Next we show in two claims that V is
monotone ( i.e., φF ≥ φG implies V (φF ) ≥ V (φG) ), and so V is well-defined; that
is, whenever φF = φG, then F ∼ G for each pair of menus F and G.

Claim 3. Consider a pair of menus F and G. If φF ≥ φG, then for each Q ∈ G
there exists P ∈ co(F ) such that Pµ % Qµ for each µ ∈ ∆(Ω).

Proof. Assume, for contradiction, that that there is some Q ∈ G such that for
all P ∈ co(F ) we have Qµ � Pµ for some µ ∈ ∆(Ω). Since the vector valued
function v(u(P )) is linear in P , we have co(v(u(F ))) = v(u(co(F ))), so that
v(u(co(F ))) is convex, closed and bounded. Let A =

{
a ∈ R∆(Ω) : a ≥ v(u(Q))

}
,

then A is a closed convex cone. Clearly, v(u(co(F ))) and A are disjoint sets. By a
separating hyperplane theorem (Rockafellar [1970, Corollary 11.4.2]), there exists
some m ∈ R∆(Ω) such that EP [Em[v(Efµu(x))]] < Ema(µ) for all a ∈ A and P ∈ F .
Since v(u(Q)) belongs to A we have

max
P∈F

EP [Em[v(Efµu(x))]] < EQ[Em[v(Efµu(x))]].

Since A is a cone, we can let m ∈ ∆2(Ω) implying φF (m) < φG(m), a contradiction.

12For convenience we use V to denote both the representation over menus and the induced
representation over support functions.
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Claim 4. Consider a pair of menus F and G. If G ⊂ co(F ), then F % G.

Proof. Let G = {Q1, . . . , Qn} ⊂ co(F ). For all i = 1, . . . , n we can write each
Qi = ∑mi

j=1 α
i
jP

i
j for αi1, . . . , αimi ≥ 0 summing up to one, and P i

1, . . . , P
i
mi
∈ F .

Hence
G ⊂

m1∑
j=1
· · ·

mn∑
j′=1

α1
j · · ·αnj′F =

l∑
k=1

βkF.

By Axiom 4 we have that∑l
k=1 βkF % G, so it is enough to check that F ∼ ∑l

k=1 βkF .
We show this by induction on l. If l = 1, then ∑l

k=1 βkF = F ∼ F . Suppose now
the claim is true for l − 1. Observe that

l∑
k=1

βkF = βlF + (1− βl)
(
l−1∑
k=1

βk
1− βl

F

)
.

Moreover, by inductive assumption F ∼ ∑l−1
k=1

βk
1−βl

F . Therefore by Axiom 5
F %

∑l
k=1 βkF . Since F ⊂ ∑l

k=1 βkF , by Axiom 4 we obtain ∑l
k=1 βkF % F .

Therefore F ∼ ∑l
k=1 βkF , as desired.

By Claim 3, if φF ≥ φG, then there exists a subset H ⊂ co(F ) such that for each
Q ∈ G there exists R ∈ H such that Rµ % Qµ for all µ ∈ ∆(Ω). By Claim 4,
F is preferred to H, which, by Claim 1, is preferred to G. This shows that V is
monotone, and so well-defined. Moreover, since F % G if and only if PF % PG by
definition, we deduce that V represents % in the sense that F % G if and only if
V (φF ) ≥ V (φG).

Claim 5. The functional V is a monotone, normalized, convex niveloid.

Proof. We have already established that V is monotone. To see that it is normalized,
notice that the set of constant functions in ΦF is identified with the set Φ∆(Z), and
for every prize-lottery p we have V (φp) = v(Epu(x)) = φp, so that V is normalized.

We now show that V is a convex niveloid in several steps.

Step 1 (V is translation invariant): Using Axiom 6, the obvious adaptation of the
argument in Maccheroni, Marinacci, and Rustichini [2006, Proof of Lemma 28]
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provides that whenever k belongs to v(u(Z)) we have for any φF ∈ ΦF,

V (βφF + (1− β)k) = V (βφF ) + (1− β)k ∀β ∈ (0, 1).

Pick γ > 1, so that γφF ∈ ΦF. Then,

V

(
1
γ

(γφF ) + γ − 1
γ

(
γ

γ − 1k
))

= V

(
1
γ

(γφF )
)

+ γ − 1
γ

(
γ

γ − 1k
)
∀α > 0.

This implies that V (φF + k) = V (φF ) + k whenever k > 0. Notice that we have
just shown V (φF + k − k) = V (φF + k)− k implying that V (φG + t) = V (φG) + t

for any t < 0 such that φG + t ∈ ΦF. Thus, V is translation invariant on ΦF.

Step 2 (V is convex): To show that V is convex, suppose V (φF ) = V (φG). Then
F ∼ G and, by Axiom 5, F % αF + (1− α)G. Hence,

αV (φF ) + (1− α)V (φG) = V (φF ) ≥ V (φαF+(1−α)G) = V (αφF + (1− α)φG).

Now suppose V (φG) > V (φF ), and define β = V (φG) − V (φF ) > 0. Since
φF + β ∈ ΦF,

V (φF + β) = V (φF ) + β = V (φF ) + V (φG)− V (φF ) = V (φG),

where the first equality holds by translation invariance. Therefore,

V (φG) ≥ V (α(φF + β) + (1− α)φG) = V (αφF + (1− α)φG) + αβ

= V (αφF + (1− α)φG) + α(V (φG)− V (φF )),

so that V (αφF + (1− α)φG) ≤ αV (φF ) + (1− α)V (φG) showing that V is convex.

Step 3 (V is a niveloid): Since V is translation invariant on ΦF, we can extend V
uniquely to ΦF+R by defining V (φ) = V (φ+k)−k for any φ ∈ ΦF+R and k ∈ R
such that φ + k ∈ ΦF. This extension preserves not only translation invariance,
but also monotonicity and convexity. Hence the extension of V is a convex niveloid
on ΦF + R, and therefore on ΦF.

To complete to proof we apply the well-known Fenchel-Moreau theorem adapted
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to our framework.

Claim 6. There exist a proper cost function c : Π(m̄)→ [0,∞] such that

V (φF ) = max
π∈Π(m̄)

(〈φF , π〉 − c(π)) , ∀F ∈ F.

Proof. Since ΦF is convex and V is a convex niveloid, there is a real-valued
functional W defined on C(∆2(Ω)) which is a convex niveloid extending V (see
Section A.1). Since W is a niveloid, it is continuous. Since W is continuous, convex
and real-valued, by Rockafellar [1974, Theorem 11] the subdifferential of W is
nonempty at each φ ∈ C(∆2(Ω)), that is, for each φ there is π ∈ ca(∆2(Ω)) such
that

〈φ, π〉 −W (φ) ≥ 〈ψ, π〉 −W (ψ) ∀ψ ∈ C(∆2(Ω)). (13)

Moreover, since W is a niveloid, it is monotone and translation invariant, so by
Ruszczyński and Shapiro [2006, Theorem 2.2] we can let π be in ∆3(Ω). Define
V ∗ : ∆3(Ω)→ (−∞,∞] such that

V ∗(π) = sup
F∈F
〈φF , π〉 − V (φF ) ∀π ∈ ∆3(Ω).

Thus, for all φF and π, V ∗(π) > 〈φF , π〉−V (φF ) and hence V (φF ) > 〈φF , π〉−V ∗(π).
Moreover, for any φF there exists a π ∈ ∆3(Ω) such that 〈φF , π〉 − V (φF ) = V ∗(π)
by (13). As a result,

V (φF ) = max
π∈∆3(Ω)

〈φF , π〉 − V ∗(π) ∀F ∈ F.

Finally, we want to show that c is the restriction of V ∗ to Π(m̄), in which case c
coincides with c∗ showing that it is a proper cost function by Part (iii). For this,
we need to show that V ∗(π) <∞ implies π ∈ Π(m̄) whenever v is not affine, and
V ∗(π) <∞ implies π ∈ Π(m) where Emµ = Em̄µ whenever v is affine.

First, suppose that v is not affine. In this case, suppose, for contradiction, that there
exists some π ∈ ∆3(Ω) \Π(m̄) such that V ∗(π) <∞. Let mπ = Eπm ∈ ∆2(Ω). By
definition, we have mπ 6= m̄. This means we can find some f with f(ω) ∈ {δx, δy}
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for some δx � δy such that

Emπ [v(Efµu(x)]− Em̄[v(Efµu(x)] > 0. (14)

But since u and v are unbounded, x and y above can be chosen such that the
payoff difference in equation (14) becomes arbitrarily large. This means we have
V ∗(π) ≥ supf∈F〈φf , π〉 − V (φf ) =∞, a contradiction.

Now suppose that v is affine. In this case, for each n ∈ N, choose prizes xn and y
such that v(u(xn)) = n and v(u(y)) = 0. Fix some ω ∈ Ω and consider an act f
assuming prize xn on ω and y otherwise. Then

〈φf , π〉 − V ∗(π) = nEπ[Em[µ(ω)]]− V ∗(π) ≤ V (φf ) = nEm̄[µ(ω)].

Since the above inequality holds for each n, as long as V ∗(π) <∞, it follows that

Eπ[Em[µ(ω)]] ≤ Em̄[µ(ω)] ∀ω ∈ Ω,

and so, since Em̄[µ] ∈ ∆(Ω), it follows that Eπ[Em[µ(ω)]] = Em̄[µ(ω)] for all ω ∈ Ω.
Thus,

V (φF ) = max
π∈Π(m)

〈φF , π〉 − V ∗(π) ∀F ∈ F,

where m ∈ ∆2(Ω) is such that m = m̄ whenever v is not affine, and Emµ = Em̄µ

whenever v is affine.

With the demonstration of Part (iv), we complete the proof of Lemma 1.

A.3 Proofs of the results in the text

Proof of Theorem 1

It is straightforward to show that a CBL preference satisfies Axioms 1–8. For the
converse, let % be a binary relation that satisfies Axioms 1–8. Then by Lemma
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1, the functional V : F→ R defined by V (F ) = maxπ∈Π(m̄) [bu,vF (π)− c∗(π)] for all
F ∈ F represents %. �

For the following proofs of Propositions 1-4, let % be a CBL preference represented
by (u, v, m̄, c) and suppose, without loss of generality, that c is canonical.

Proof of Proposition 1

It is clear that when % is represented by the RI model given in equation (10), then
% satisfies Axioms 9-13.

For the converse, we first show that each one of Axioms 9-11, and 13 implies Axiom
12. Notice that for any given P ∈ ∆(F), by definition we have Pδω = δfP (ω) = (δfP )δω
for all ω ∈ Ω. Thus by Axiom 4, we have {P, δfP } % P, δfP . Hence, whenever
Axiom 9 holds we have P, δfP % {P, δfP }, and so P ∼ δfP , showing that Axiom 10
holds. Clearly, Axiom 10 implies Axiom 11, which implies Axiom 12.

Note that by Axiom 6, for all f, g, h ∈ F and α ∈ (0, 1), we have f % g if and only if
αδf +(1−α)δh % αδg+(1−α)δh. Moreover, if Axiom 13 holds, then we have f % g

if and only if αf + (1− α)h % αg + (1− α)h. In this case, for all f, g, h ∈ F and
α ∈ (0, 1), we have f % g if and only if V∆(F)(αδf+(1−α)δh) ≥ V∆(F)(αδg+(1−α)δh)
and VF(αf+(1−α)h) ≥ VF(αg+(1−α)h), where V∆(F) and VF are restrictions of V
over ∆(F) and F , respectively. This means there exists an increasing transformation
λ : R→ R such that V∆(F)(δf ) = λ(VF(f)) for all f ∈ F . But since δf ∼ f for all
f ∈ F , the transformation λ must be the identify map. Hence, when Axiom 13
holds, we have αδf + (1 − α)δh ∼ αf + (1 − α)h for all f, h ∈ F and α ∈ (0, 1)
showing that Axiom 11 holds (which implies Axiom 12).

In sum, Axioms 9-11, and 13 all imply Axiom 12. Thus, if we show that Axiom 12
implies that v is affine, then we are done. To see this, let p, q ∈ ∆(Z) and α ∈ (0, 1).
Since % is represented by the CBL model given in equation (3) with a canonical
cost function, we have V (αδp + (1− α)δq) = α v(Epu(x)) + (1− α) v(Equ(x)) and
V (αp+ (1− α)q) = v(αEpu(x) + (1− α)Equ(x)). Thus, if Axiom 12 holds, then
we must have V (αδp + (1− α)δq) = V (αp+ (1− α)q). But this can happen only
when v is affine, as desired. �
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Proof of Proposition 2

It is immediate to see that when % is represented by the CBL model with a
concave transformation v, then % satisfies Axiom 14. For the converse, suppose
that % satisfies Axiom 14. In this case, for any f, g ∈ F with V (f) = V (g),
we have V (αf + (1 − α)g) ≥ V (f) for all α ∈ (0, 1). Then, by a similar
argument given in Claim 5, V is concave over F ; that is for all f, g ∈ F ,
we have V (αf + (1 − α)g) ≥ αV (f) + (1 − α)V (g) for all α ∈ (0, 1). Since
V (f) = Em̄v(Efµu(x)) for all f ∈ F , it follows that the function Em̄[v] : u(F)→ R
is concave, where for all f ∈ F , we have Em̄[v](uf) = Em̄v(Efµu(x)). Thus
v : u(Z)→ R is concave. �

Proof of Proposition 3

If % is represented by the ConBL model given in equation (11), clearly % satisfies
Axiom 15. The converse direction of the proof follows immediately from the proof
of de Oliveira et al. [2017, Corollary 1 ] after making the obvious adaptations. �

Proof of Proposition 4

It is clear that if % is represented by the passive information acquisition model
given in equation (12), then % satisfies Axiom 16. The converse direction of the
proof follows immediately from the proof of de Oliveira et al. [2017, Corollary 2]
after making the obvious adaptations. �

Proof of Theorem 2

Let (u, v, m̄, c) represents a CBL preference. By an obvious adaptation of the
arguments in the proof of de Oliveira et al. [2017, Theorem 2], c can be taken as a
cost function satisfying the canonical properties given in Definition 3. But then, the
rest of the proof that c is the unique canonical cost function follows immediately
from the proof of de Oliveira et al. [2017, Theorem 2]. �
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Proof of Corollary 1

Assume that the given CBL preference % is represented both by (u, v, m̄, c) and
(u′, v′, m̄′, c′), where c and c′ are canonical. Since the restriction of % to the set of
prize-lotteries has an expected utility representation, there exist some α > 0 and
β ∈ R such that u′ = αu + β. Similarly, since the restriction of % to the set of
second-order prize-lotteries has an expected utility representation, there exist some
λ > 0 and γ ∈ R such that v′(u′) = λv(u) + γ. Since the restriction of % to the set
of act-lotteries has a second-order expected utility representation, by Seo [2009,
Lemma C1] for any P ∈ ∆(F), we have EPEm̄′v(Efµu(x)) = EPEm̄v(Efµu(x))
showing that m̄ and m̄′ are essentially equivalent. Finally, by Theorem 2, for all
π′ ∈ Π(m̄′),

c′(π′) =

= sup
F∈F

[
Eπ max

P∈F

[
EPEm′v′(Efµu′(x))

]
− EPEm̄′v′(Efµu′(x))

]
= sup

F∈F

[
Eπ max

P∈F

[
EPEm′λv(Efµαu(x) + β)

]
− EPEm̄′λv(Efµαu(x) + β

]
= λ sup

F∈F

[
Eπ max

P∈F

[
EPEm′v(Efµαu(x) + β)

]
− EPEm̄′v(Efµαu(x) + β)

]
= λ sup

F∈F

[
Eπ max

P∈F

[
EPEm′v(Efµu(x))

]
− EPEm̄′v(Efµu(x))

]
= λ sup

F∈F

[
Eπ max

P∈F

[
EPEmv(Efµu(x))

]
− EPEm̄v(Efµu(x))

]
= λ c(π)

where π′ and π are induced by the same signal structure from second-order priors
m̄′ and m̄, respectively. This completes the proof. �

Proof of Theorem 3

It is straightforward to show that whenever %2 has a stronger desire for singletons
than %1, then the restriction of %2 and %1 over the set of act-lotteries coincide.
Thus we can normalize the parameters such that (u1, v1, m̄1) = (u2, v2, m̄2). In
this case, we have c2 ≥ c1 if and only if V1 ≥ V2 by Theorem 2. Thus, given that
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we have (u1, v1, m̄1) = (u2, v2, m̄2), to show the equivalence of the conditions in
Theorem 3, we only need to show that (i) P �1 F implies P �2 F for all P and F
if and only if (ii) V1(F ) ≥ V2(F ) for all F . First, suppose (i) holds. Take a menu F
and an act-lottery P such that F ∼2 P . By (i), we must have F %1 P . This means
we have V1(F ) ≥ V1(P ) = V2(P ) = V2(F ), and so V1(F ) ≥ V2(F ) for all F showing
that (ii) is satisfied. For the converse, suppose (ii) holds; that is, V1(G) ≥ V2(G)
for all G. Take a menu F and an act-lottery P such that V2(F ) ≥ V2(P ). Since
V1(F ) ≥ V2(F ) and V2(P ) = V1(P ), we have V1(F ) ≥ V1(P ), as desired. �
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