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Abstract

We study a model of ordered search with learning. Our focus is on settings where an

agent knows little about how observable attributes of items map to quality but wants

to avoid missing good discoveries. Knowing only that items with similar attributes

have similar qualities, she sequentially decides where to look next or stops searching to

take her best discovery to date. We characterize worst-case optimal search procedures.

Search effort is ‘inverse-v-shaped’ in search complexity. If there is a sweet-spot in

attribute space, the search path is ‘funnel-shaped’. Optimal search is dynamically

consistent and computationally tractable. And the model readily generalizes to limited

consideration sets and multidimensional search.
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1 Introduction

People search for various things: designs for a new product, ideas for a paper, a new tennis

racquet. They examine some items in detail, and in doing so get a sense for the quality of

similar, unexplored alternatives. They then assess whether to settle for their best discoveries

so far, and if not, which of many heterogeneous alternatives to consider next.

The basic question of where forward-looking searchers would explore given what they

had learned is scarcely addressed in economic theory. Classic models treat search as a

pure stopping problem (McCall, 1970; Rothschild, 1974) or assume that search outcomes

are independent, shutting down scope for learning (Weitzman, 1979). Recent models study

settings where search order is exogenously fixed (Urgun and Yariv, 2021) or searchers are

either short-lived or myopic (Callander, 2011; Garfagnini and Strulovici, 2016; Hodgson and

Lewis, 2020). A broad literature on bandits and optimization studies various heuristics

rather than how rational agents optimally search and stop.

This paper studies ordered search with learning, particularly how forward-looking searchers

explore unfamiliar territories. These are settings where searchers know little about how ob-

servable attributes of items map to quality but have incentives to avoid missing good discov-

eries, should they exist. We model searchers as maximizing their worst-case eventual payoffs

so as to be robust to the shape of this unknown mapping. The model yields a tractable and

intuitive characterization of dynamically optimal search. The following examples motivate

the model:

Firm R&D A startup prototypes different designs of a new technology, as does its strong

competitor. Small tweaks to the earlier designs can only affect quality by so much, but larger

changes can produce a wider range of outcomes. Upon bringing its technology to market,

the startup would make little profit should its competitor find a much better design. The

startup extensively explores the space of possible designs to prevent this from happening.

Dose-ranging study A pharmaceutical company must choose the dosage of a compound

in a new drug and again is concerned with a competitor. Similar dosage levels have similar

effects and there is thought to be a sweet spot, or, ‘therapeutic window’: too high a dose

is toxic and too low a dose is ineffective. But what is too high or low is to be determined

through costly experimentation.

Consumer search An amateur photographer shops for his first camera, knowing little

about how he would value various features. He can learn his expected surplus for a camera

by taking the time to read its description and reviews. He would dislike finding out later

that he missed out on a much better purchase and searches to avoid this scenario.

The base model considers a searcher who searches (or explores) items in some compact,

one-dimensional attribute space. The searcher does not know the true mapping from at-
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tributes to quality, i.e., the quality index. She knows only that similar items have similar

qualities (i.e., the quality index is Lipschitz continuous), and perhaps that there is a “sweet

spot” in attribute space (i.e., the quality index is Lipschitz continuous and quasiconcave).

The Lipschitz constant is her perception of search complexity.1

The searcher sequentially explores different items to learn their true quality, and in the

process, narrows down the set of rationalizable quality indices. After each search, she decides

whether to continue exploring or settle with the best item she had discovered so far.

Her payoff increases in the quality of the best item she discovers, decreases in the quality

of the best attainable item, and decreases with costly search. At each turn, she acts to

maximize her worst-case payoff upon eventually concluding search. She takes this worst-

case over the rationalizable quality indices at that point in time. In effect, she fears going on

a wild goose chase only to miss an unexplored high quality item. But the more she learns,

the less scope there is for this unhappy outcome: if a nearby option were so good, then what

she had found could not have been too far off.

We characterize optimal search procedures. Consider an alternative framework, akin

to the classical model of simultaneous search (Stigler, 1961), where the searcher must irre-

vocably decide the sequence of searches she will make beforehand and pick the best of the

discovered items. We show that all optimal sequential search procedures are ‘greedy’ optimal

simultaneous search procedures: in each period, the searcher solves for an optimal simul-

taneous search procedure, and then take only the first step prescribed by that procedure.

From this we derive comparative statics and an explicit optimal search algorithm.

One basic comparative static is that the search intensity is ‘inverse-v-shaped’ in search

complexity. When search complexity is low, unexplored items must be similar in quality

to those that have been discovered, so the searcher concludes search. The searcher also

concludes when complexity is high: making good discoveries is like finding a needle in a

haystack so the effort is not worth the cost. Under a decreasing returns to search assumption,

search only takes place for intermediate levels of search complexity. And under constant

search costs, the searcher plans to do more searches when complexity is higher, conditional

on doing any search at all. This gives rise to a tipping point in complexity, where the searcher

goes from exerting maximal effort to giving up on search entirely.

We also study the impact of past search outcomes on future search. The impact of

discovering high or low quality items is particularly striking in the case where the searcher

believes that the quality index is quasiconcave. Such discoveries alert the searcher to the

location of the ‘sweet spot’ and rule out other regions of the search space. This produces

funnel-like search dynamics empirically observed by Bronnenberg et al. (2016) and Blake

1For example, pharmaceutical firms may perceive high complexity when working with lithium. Small

changes in lithium levels tend to have large effects on the efficacy or toxicity of a drug.
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et al. (2016) in the context of online-shopping. The searcher initially explores broadly in

attribute space but hones in on a particular point over time.

The results for the baseline model have close analogues in extensions to limited consid-

eration sets (i.e., the searcher does not know all searchable items a priori but may learn of

their existence over time), multidimensional attribute spaces (e.g., a shopper explores cam-

eras by sensor size and resolution), and multidimensional learning (i.e., the shopper learns

her values for sensor size and resolution separately and not just the camera as a whole).

Finally, we give polynomial-time algorithms for optimal search when search costs are

constant. These algorithms tie out Weitzman’s intuition about ordered search with learning:

It appears plausible that other things being equal it would be better to open a

box whose reward is highly correlated with other rewards because this adds a

positive informational externality. But translating such an effect into a simple

search rule seems difficult except in the most elementary cases. (Weitzman, 1979)

When exploring unfamiliar territory, the searcher picks her targets to minimize a measure of

distance between the set of explored and ‘relevant’ unexplored items. And roughly speaking,

proximity in search space corresponds to correlation in a Bayesian model.

1.1 Related literature

An broad literature on search with learning studies settings where search order is either

irrelevant (i.e., items are homogeneous) or exogenous. Rothschild (1974) first considers an

agent who draws independent samples from an unknown distribution and learns its shape

while deciding when to stop. Bikhchandani and Sharma (1996) among others generalize

these results to allow for recall and other distributions. Schlag and Zapechelnyuk (2021)

find stopping policies that achieve a substantial fraction of achievable surplus regardless of

the true distribution. In addition to optimal stopping, Urgun and Yariv (2021) study the

speed with which searchers explore the path of a Brownian motion from left to right.2

Far less is known about optimal search with learning when agents freely choose where

to look. Weitzman (1979) studies ordered search without learning: rewards to different

items are independent so learning about one item teaches the agent nothing about another.

While Weitzman’s model with correlations is generally intractable, Adam (2001) solves an

important special case where all items have independent and unknown distributions, but

items of the same observable type are identically distributed. In a much richer setting,

Callander (2011) characterizes where on a realized path of a Brownian motion a sequence

2Wong (2021) studies experimentation in a similar model with uncertain flow payoffs.
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of short-lived social learners would choose to search.3 Our primary theoretical contribution

to analyze a model of ordered search with learning by a forward-looking agent (as in Adam

(2001)) where the qualities of items are flexibly intertwined (as in Callander (2011)).

We follow a growing body of work in economics that considers maxmin or minmax regret

objectives.4 The modeling approach is also related to the applied mathematics literature on

adversarial multi-arm bandits and Lipschitz function optimization (see reviews by Slivkins

(2019) and Hansen et al. (1992), resp.).

In contrast to bandits, searchers do not face uncertain flow utility and the ensuing

exploration-exploitation trade-off. And in contrast to optimization, rational search involves

optimal stopping. A more methodological distinction is that we build a model suitable

for analyzing optimal search and robust comparative statics under general preferences as

opposed to heuristics achieving certain long-run linear regret bounds.

2 The model

2.1 Preliminaries

There is a set of items represented as a compact set S ⊂ R. Let Q ⊂ [0, 1]S be the set of

potential quality indices—mappings from the search space to a measure of quality. There is

some true quality index q ∈ Q, so each item x ∈ S has a quality q(x) ∈ [0, 1].

There is a searcher who knows S and Q but not the identity of the true quality index.

She can learn the quality of technologies in S through costly search. This way, she narrows

down the set of candidate true quality indices in Q.

In each period, t = 1, 2, 3 . . ., the searcher takes one of two kinds of actions. She either

searches a new item xt ∈ S to learn its quality, q(xt). Or she concludes her search, xt = ∅,
and adopts the highest quality item that she had searched with so far.

Formally, let ht = {(xi, zi)}t−1
i=0 be the time t partial history when the searcher has not

yet concluded search, with zi = q(xi). Let Xht be the set of items which were searched at

this history. Let z∗ht
= maxi=0,...,t−1 zi. If xi ∈ Xht and zi = z∗ht

, then xi is an optimal item

at ht. X∗
ht

⊂ Xht denotes the set of optimal items at ht. Let Qht ⊂ Q be the set of quality

indices that are consistent with what the searcher had observed so far at history ht. That

is, Qht is the set of indices q′ satisfying q′(xi) = zi for all i = 0, . . . , t− 1. Let H denote the

set of all partial histories h where Qh is nonempty.

3Notably, Garfagnini and Strulovici (2016) study a bandit problem in a social learning framework similar

to Callander (2011) but with forward-looking agents who live two periods.
4See reviews by Carroll (2019) (contracting), Manski (2011) (treatment choice), and Banerjee et al. (2017)

(experimental design).
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Let QMP
L denote the set of all Lipschitz continuous mappings S → [0, 1] with Lipschitz

constant L > 0. Let QQC
L ⊂ QMP

L denote the set of all quasiconcave Lipschitz continuous

mappings S → [0, 1].5 We assume the following throughout:

Assumption 1. Either Q = QMP
L or Q = QQC

L .

In words, the searcher little about the true quality index. She knows the limits to quality,

as 0 < q < 1. If Q = QMP
L , she knows that proximate items in S cannot be too different

in quality. And if Q = QQC
L , she additionally knows that there is an ideal range (or “sweet

spot”) in S, and that items farther from this range are of lower quality. Under Assumption 1,

an item’s location in S can be thought of as an aggregate index of its observable attributes—

items with similar attributes have similar qualities.

2.2 Payoffs

The searcher’s benefit to adopting item x is,

U(q(x),max
y∈S

q(y)),

where q is the true quality index, and U is differentiable almost everywhere and continuous.

U is non-decreasing in the quality of the adopted item and non-increasing in the quality

of the best item in S. Moreover, U1 + U2 ≥ 0 almost everywhere, so for any item choice,

translating the true quality index q upward always benefits to the searcher.6

One interpretation of the payoff function is that a the searcher is a firm whose future

profits depend not only on the quality of its chosen technology but also on the technology

chosen by a strong potential competitor. In the worst case, the competitor discovers the best

innovation possible, hurting the profits that the first firm stands to make.7 Alternatively,

the searcher could be an online shopper who experiences disutility from later learning that

she missed out on buying a much better product.

5We include the subscript here to emphasize that L is known by the searcher to be an upper bound on

the rate of change of q; but we drop the subscript elsewhere, taking this to be understood.
6This also ensures that if the searcher discovers the best quality item, she is weakly better off when that

item is of higher quality.
7The model can also capture a searcher with an outside option that gives a payoff of u0 independent of

the true quality index. Note that such a searcher’s benefit to concluding search at history ht would be

U ′(z∗ht
,max
y∈S

q(y)) ≡

u0, if minq′∈Qht
U(z∗ht

,maxy∈S q′(y)) < u0.

U(z∗ht
,maxy∈S q(y)), otherwise.

Since U is nondecreasing in the first argument and non-increasing in the second argument, the same is true

for U ′; and U ′
2 ≤ U ′

1, as well.
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The searcher’s cost of searching item x in period t is given by

C(x, ht),

where C : S ×H → R++ is continuous and bounded away from 0. Next, C may depend on

the sequence of items explored so far but not their qualities.8

When the quality index is q, the searcher’s total payoff after concluding search at history

ht ∈ H is given by:

p(ht, q) = U(z∗ht
,max

x∈S
q(x))−

t∑
i=1

C(xi, ht(i)).

2.3 The searcher’s problem

At each history, and for each plan of how to search thereafter, the searcher worries about the

quality index that is consistent with her earlier searches but would minimize her payoff upon

concluding search. She seeks a strategy that is robust to such scenarios, i.e., she searches as

if the true quality index were adversarially selected.

We recast the searcher’s problem as a dynamic zero-sum game. Each period proceeds

in three stages. At history ht, in the first stage, the searcher explores a new item, xt, or

concludes search, ∅. In the second stage, an imaginary adversary observes the searcher’s

action and picks a quality index q′ ∈ Qht that is consistent with previous searches at this

history. In the third stage, either the quality of this item is revealed; or if she had concluded

search in the first stage, the searcher realizes her payoff p(ht, q
′).

Let σ : H → ∆S ∪ {∅} and σA : H × {S ∪ {∅}} → ∆Q denote strategies of the searcher

and its imagined adversary, respectively. A crucial detail is that the adversary responds

to the realization of the searcher’s choice after every partial history, so mixed strategies do

not help the searcher. The adversary is constrained to choosing strategies which satisfy

σA(ht, ·) ∈ ∆Qht for every ht ∈ H; such strategies are said to be feasible.

Let h(σ,σA) denote the history after which the searcher concludes search when both agents

follow their respective strategies. The payoff to the searcher is p(h(σ,σA), σA(h(σ,σA))) and the

payoff to the adversary is −p(h(σ,σA), σA(h(σ,σA))). If the searcher never concludes search

under (σ, σA), then let p(h(σ,σA), ·) = −∞.

Given these preferences, if the searcher concludes search at a history ht, she anticipates

8For example, in some settings, a searcher may find it less costly to experiment with technologies nearer

to those she had explored earlier.
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the adversary to choose a quality index in

argmin
q′∈Qht

(
U(z∗ht

,max
y∈S

q′(y))

)
=argmax

q′∈Qht

(
max
y∈S

q′(y)

)
.

If the searcher continues searching at ht, she anticipates that the adversary would take

actions to minimize her eventual payoff inclusive of search costs. It is not immediately clear

what those actions would be, because they would affect her search path and vice-versa.9

A strategy σ : H → ∆S ∪ {∅} for the searcher is an optimal sequential search procedure

at ht ∈ H if there exists a feasible strategy σA for the adversary such that (σ, σA) is a

subgame-perfect equilibrium of the subgame starting at ht. In subgame-perfect equilibria,

the searcher chooses robustly optimal strategies even at off-path histories. We can therefore

study how optimal search unfolds for any true q ∈ Q.

3 Simultaneous search procedures

We introduce a subclass of the searcher’s strategy space and define an auxiliary game where

the searcher is restricted to strategies in this class. This is useful for the analysis in Section 4.

A simultaneous search procedure is a strategy that does not depend on the qualities of

items explored. For example, a searcher may decide to search items z, x, y and w in that

order and regardless of what she learns about the qualities of these items along the way.

Intuitively, if the searcher decides to tie her own hands in this manner, it is immaterial

whether she learns along the way or learns the qualities of explored items ‘simultaneously’

at the end of her search when it is time to pick the best one.

Formally, two partial histories h′
t, h

′′
t ∈ H differ only by quality if the same sequence of

items are explored in both histories, i.e., h′
t = {(xi, z

′
i)}t−1

i=0 and h′′
t = {(xi, z

′′
i )}t−1

i=0. A strategy

σs is a simultaneous search procedure at ht if σs(h
′
τ ) = σs(h

′′
τ ) for any two histories h′

τ , h
′′
τ ∈ H

following ht that differ only by quality.10

Let Γht denote all simultaneous search procedures at ht. Consider a modification of the

sub-game starting at history ht where the searcher must commit to a strategy in Γht after

which an adversary chooses a feasible quality index following every history and choice by the

searcher (just as in the sequential search game). This is the simultaneous search game at ht.

A strategy σs is an optimal simultaneous search procedure at ht if σs ∈ Γht and if there exists

9For example, the searcher may worry about making discoveries that would trick her into going on a ‘wild

goose chase’ with a lot of costly search but no results to show for it.
10Payoffs to simultaneous search procedures may differ if the order of search is permuted because search

costs can depend on this order.
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some strategy σA for the adversary such that (σs, σ
A) is a subgame perfect equilibrium of

the simultaneous search game at ht.
11

Returning to the original sequential search game, we say a strategy σ follows an optimal

simultaneous search procedure if at every history ht ∈ H, there exists an optimal simultaneous

search procedure at ht, σ
∗
s , such that σ(ht) = σ∗

s(ht). In other words, this strategy solves

for an optimal simultaneous search procedure at every history and takes the first action

prescribed by that procedure. Similarly, for any ht ∈ H, a strategy σ follows an optimal

simultaneous search procedure from ht onward if the same condition holds at ht and for any

history preceded by ht.

Note that a strategy that follows an optimal simultaneous search procedure typically

is not itself a simultaneous search procedure. Such a strategy uses the information about

the latest discovery to recompute an optimal simultaneous search strategy every period,

whereas the searcher’s path of play under a simultaneous search procedure is unaffected by

the discoveries made.

4 Optimal sequential search procedures

Section 4.1 characterizes optimal sequential search procedures as those that follow optimal

simultaneous search procedures. Section 4.2 then characterizes all optimal simultaneous

search procedures. Section 4.3 sketches the proofs and discusses the role of the assumptions.

Section 4.4 describes an algorithm that returns optimal search procedures when search costs

are constant.

4.1 Optimal sequential search

The first result establishes that following optimal simultaneous search procedures is optimal

when Q = QMP or Q = QQC .

Theorem 1. Let ht ∈ H. A search strategy σ is an optimal sequential search procedure at

ht if and only if it follows an optimal simultaneous search procedure from ht onward.
12

The proof of Theorem 1 is in Appendix F.1, while a sketch is given in Section 4.3.

Theorem 1 says that optimal sequential search is effectively ‘greedy’ simultaneous search.

The searcher solves for an optimal simultaneous search procedure at every period, but only

executes the first step of that plan. If the realized quality from that experiment is what she

11All the subgame-perfect equilibria of the simultaneous search game are also Nash equilibria, so this

refinement is immaterial for the definition of optimal simultaneous search procedures.
12Continuity of C and U ensure that optimal sequential search procedures exist.
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Figure 1: The figure on the left displays the true quality index. At history h4, the searcher

has observed the qualities at x0, x1, x2, x3 and x4 in that order. The figure in the middle

plots quh4
, the upper envelope of feasible quality indices when Q = QMP , which is what the

adversary chooses under σA
d if the searcher were to conclude search at this history. On the

right is the adversary’s chosen quality index under σA
d if the searcher were to continue search

at this history. When the adversary plays σA
d , the ‘no news’ strategy, the searcher expects

to discover items that are no better or no worse (if the feasibility constraint does not bind)

than the best item she has discovered so far.

expected, she continues to carry out the previously calculated optimal simultaneous search

procedure. If quality is different than what she anticipated, she formulates a new plan.

A key property of optimal sequential search procedures is that they satisfy certain notions

of dynamic consistency. Even if the searcher could commit to a fully contingent search plan,

committing to follow an optimal simultaneous search procedure remains an optimal strategy.

Of course, this claim hinges on how the corresponding commitment game is modeled, in

particular, on the timing of the adversary’s moves (adaptive versus non-adaptive) and the

space of the searcher’s strategies (deterministic versus randomized). Appendix A shows that

under natural formulations of the commitment game such that optimal sequential search

procedures are indeed dynamically consistent.

4.2 Optimal simultaneous search

Theorem 1 reduces the problem of finding optimal sequential search procedures to finding

optimal simultaneous search procedure at every history. Naturally, we next characterize

optimal simultaneous search procedures.

Let quht
denote the upper envelope of quality indices in Qht for any ht ∈ H, and let
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qAht
= min{quht

, z∗ht
}. Let σA

d (ht, x) = qAht
for all x ̸= ∅, and σA

d (ht, ∅) = quht
. We refer to σA

d as

the ‘no news’ strategy for the adversary, and Figure 1 explains why.

Proposition 1. Let σ ∈ Γht. Then σ is an optimal simultaneous search procedure at ht if

and only if σ is a best-response to σA
d in the simultaneous search game at ht ∈ H.

Proposition 1 only characterizes the searcher’s behavior in simultaneous search games,

not that of the fictitious adversary. There may be equilibria of the sequential search game

where the adversary plays strategies other than σA
d . But by Proposition 1, for every such

equilibrium, there is an equilibrium where the searcher’s behaviour is unchanged but the

adversary plays σA
d instead.

4.3 Discussion

We sketch the proofs of the results and highlight the role of the assumptions.

4.3.1 Proof ideas for Proposition 1

In the simultaneous search game, the adversary’s ‘no news’ strategy serves two purposes

when the searcher continues searching. First, the adversary does not let the quality of any

new discovery exceed z∗ht
because that would improve the quality of the searcher’s chosen

item more than it increases the quality of the potential best alternative. Such a trade-off

would go in the searcher’s favor by the assumption that U1 +U2 ≥ 0. Second, the adversary

picks the quality of new discoveries to be as high as possible conditional on it not exceeding

z∗ht
. This improves the quality of the best unexplored alternative under some feasible quality

index without improving the quality of the searcher’s eventually chosen item.

This reasoning suggests that ‘no news’ is a weakly dominant strategy for the adversary

in the sense that no other strategy delivers a strictly higher payoff for any strategy of the

searcher. There are generally other weakly dominant strategies for the adversary. But by

analogous arguments to the minimax theorem, swapping out the adversary’s action profile

with the ‘no news’ strategy yields another equilibrium. We therefore conclude that a simul-

taneous search procedure is optimal if and only if it best responds to the ‘no news’ strategy

of the adversary.

4.3.2 Proof ideas for Theorem 1

Unlike in the simultaneous search game, the adversary’s actions can affect the searcher’s path

of play in the sequential search game. These dynamics create an additional incentive for the

adversary to keep the searcher engaged in wasteful and unproductive search. Restated from
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the searcher’s perspective, she fears being led onto a ‘wild goose chase’ when she can gather

and react to information dynamically.

Intuitively, it helps the adversary to keep the searcher in the dark as to where good or

bad discoveries might be found. For example, upon discovering a very low quality item,

the searcher learns that items with similar attributes are also low quality (by the Lipschitz

continuity of the true quality index). She would thereafter redirect her attention to a more

promising area of the search space or conclude search early. Clearly, the adversary would

try to avoid tipping off the searcher in this way.

The ‘no news’ strategy shines in this respect as well. Discovering items with qualities

higher or lower than z∗ht
would tip the searcher off as to which areas to explore or avoid.

Discoveries that reveal neither good nor bad news minimize information leakage to the

searcher.

In sum, the ‘no news’ strategy minimizes the quality of the searcher’s best discoveries,

maximizes the quality of the best unexplored alternative conditional on this, and minimizes

information leakage to the searcher. Therefore, ‘no news’ is optimal for the adversary in the

both the simultaneous and sequential search games. This implies that the set of searcher best

responses at every history are also identical across both games, establishing Theorem 1.13

4.3.3 Q = QMP versus Q = QQC

The path of optimal sequential search can play out very differently when Q = QMP ver-

sus when Q = QQC . This is because at any history, the worst-case quality-index from the

searcher’s perspective depends on whether or not she believes the quality index to be qua-

siconcave. Figure 2 illustrates how, starting from the same history, the upper-envelope of

feasible quality indices (and therefore σA
d and the searcher’s best response) vary with Q.

4.3.4 The role of searcher’s knowledge

The assumption that Q = QMP or Q = QQC is crucial for establishing a link between optimal

simultaneous and sequential search. Greedy simultaneous search may be dominated by other

sequential strategies when the searcher has other information about the shape of potential

quality indices.

For example, let Q = {qr, qb, qg} as pictured in Figure 3. Suppose that search costs are

constant: C(x, ht) = ϵ for some ϵ > 0, for all x ∈ [0, 1] and ht ∈ H. Suppose U is strictly

13This intuition helps us guess the form of the searcher’s optimal sequential search procedure, and the

proof in Appendix F verifies it. We first show that, in equilibrium, following optimal simultaneous search

procedures (in the sequential search game) and committing to optimal simultaneous search procedures (in

the simultaneous search game) both produce the same path of play. We then use this result and Proposition 1

to argue there are no profitable one-shot deviations for either player.
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Figure 2: The left and middle figure are the same as in Figure 1. The figure on the right

plots quh4
when Q = QQC (recall that the upper envelope of quasiconcave functions need

not be quasiconcave). When Q = QMP , the searcher may be interested in searching to the

right of x4 to rule out the possibility of finding something of high quality there. But when

Q = QQC , the searcher is guaranteed not to make good discoveries in this region.

Figure 3: The quality indices qr, qb, and qg attain their maxima at xr, xb, and xg respectively.
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increasing in the quality of the adopted item. The searcher starts by observing the quality

of item x0. Since qr(x0) = qb(x0) = qg(x0) = z0, the searcher cannot narrow down the set of

possible quality indices at history h0 = {(x0, z0)}.
For ϵ sufficiently small, the optimal simultaneous procedure is to experiment with xr, xb

and xg in any order. One of these technologies is guaranteed to be of quality z∗. Experi-

menting with any other technologies is clearly wasteful. And leaving one or more of xr, xb or

xg unexplored lowers the searcher’s worst-case payoff. For example, she worries that if she

only searches xb and xg, qr may turn out to be the true quality index.

On the other hand, no optimal sequential search procedure starts with xr, xb or xg.

For instance, if the searcher first explores xr, the true quality index would turn out not to

be qr in the worst case. Because qb(xr) = qg(xr), the searcher would entertain the possibility

that either qb or qg could be the true quality index. If she were to next explore xb, the true

quality index would turn out not to be qb in the worst case. She would then know the true

quality index is qg and conclude search upon exploring xg. So in the worst case, following

an optimal simultaneous search procedure would take three searches to guarantee finding a

maximal quality item.

However, if the searcher were to first explore x1, she would immediately identifies the

true quality index, as qr(x1) ̸= qb(x1) ̸= qg(x1). In the next step, she would choose the

technology that maximizes that index. This strategy guarantees z∗ with two costly searches,

rather than three. Therefore, the searcher is better off not following an optimal simultaneous

search strategy at h0.

In this example, the potentially high quality items are different that the more informa-

tive items; optimal simultaneous search procedures only explore the former while optimal

sequential search procedures initially explore the latter. In exploring unfamiliar territories

where the searcher does not have precise information about the possible shapes of the true

quality index, such a distinction does not arise.14

4.4 An algorithm for optimal sequential search

We describe an algorithm for computing optimal sequential search procedures when search

costs are constant (C(·, ·) = c > 0) and the search space S is an interval in R, leaving a more

formal description and the case of finite search spaces for Appendix B.

14A related example where the link between simultaneous and sequential search may fail is when Q is the

set of all polynomials of degree n. The issue here is that the searcher can back out the the true quality index

with any n+ 1 distinct searches.
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Figure 4: Continuing the example from Figure 2, the figure plots quh4
when Q = QMP and

highlights the search window.

4.4.1 Preliminaries

For any ht ∈ H, the search window, Wht ⊂ S, is the set of technologies x for which qAht
(x) =

z∗ht
(or equivalently, quht

(x) ≥ z∗ht
); see Figure 4. Outside of the search window, the largest

realizable quality is strictly below z∗ht
for any q ∈ Qht . When costs are constant (or more

generally, history-independent), there is no value in searching outside the search window.

Such a search would return a lower payoff than z∗ht
without affecting the costs of future

searches.

By Proposition 1, the searcher expects to discover a technology of quality z∗ht
for every

search. This implies that the searcher expects the search window to remain unchanged over

the course of search. Now the search window is a disjoint union of intervals, as pictured in

Figure 4. Let Yht be the union of (a) the endpoints of the disjoint intervals that comprise

the search window and (b) the items in X∗
ht

(e.g., x3 in Figure 4).

At the midpoint of two items y, y′ ∈ Yht that are in the same interval of the search

window, quht
has a local maximum. Clearly, the size of that local maximum is increasing in

the distance between y and y′. Let ht+1 denote the history where y′′ ∈ (y, y′) is explored

next and has quality z∗ht
, as the searcher expects (by Proposition 1). Then quht+1

will have

peaks in (y, y′′) and (y′′, y′), both smaller than the peak quht
has in (y, y′).
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4.4.2 The algorithm

At the time of concluding search, the searcher’s goal is to have the height of the tallest peak

of qu be as small as possible. The height of this peak is the quality of the best unexplored

alternative in the worst case. If the searcher were to conclude search k periods from ht, she

can plan to pick her k search points so that (1) Yht along with these k points partition Wht ,

and (2) the longest interval in this partition is as short as possible. Doing so minimizes the

global maximum of qu after k searches when the adversary plays the ‘no news’ strategy.

This logic pins down the location of searches conditional on k. The role of U and c is

only to determine anticipated search intensity, k, i.e., the number of items the searcher plans

to explore before concluding. Excessive search eventually pushes payoffs below the that of

concluding search immediately. The number of searches kt for which the cost, kt · c, exceeds
the best-case marginal benefit of optimally conducting kt searches is as upper bound on k.15

The algorithm proceeds as follows. For each k such that 0 ≤ k ≤ kt, the searcher

determines the location of the k items that most evenly partition Wht . Next, she computes

the payoff to conducting these k searches and concluding, should the adversary play the

‘no news’ strategy. She chooses a k∗ corresponding to the highest total payoff among all

0 ≤ k ≤ kt. She selects any one of the optimal k∗ items and learns the quality of that item.

She repeats these steps until k∗ = 0, at which point she concludes search.16

4.4.3 The algorithm’s time complexity

Initialized at a history ht where the quality of n items are known, the time complexity of the

algorithm is O(k
3

t +k
2

t ·n). The algorithm therefore runs in polynomial time in the maximum

conceivable number of searches and the number of items already explored.

The tractability of optimal sequential search strengthens the case for the model as a

positive theory of how agents search. Indeed, one questions the predictions of models where

optimization entails solving problems that are intractable even for computers.17 Another

implication of tractability is that the model may have use for estimating preferences of

forward-looking agents from ordered-search data.

15The best case scenario after conducting any search is that the highest feasible quality is achieved. So the

marginal benefit of search in the best case scenario is U(maxx q
u
ht
(x),maxx q

u
ht
(x))− U(z∗ht

,maxx q
u
ht
(x)).

16Suppose the searcher has already explored l items since ht, finding herself at a history ht+l. She only

considers search intensities k such 0 ≤ k ≤ kt+l ≤ kt − l when computing her l + 1st search. Therefore, the

algorithm concludes in at most kt steps.
17For example, Salant (2011) and Camara (2021) explore the behavioral consequences of the premise that

agents cannot solve such computationally complex problems.
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4.4.4 Discussion

In each period, the algorithm plans a set of searches so that upon the unexplored items in

the search window will be close as possible (in the sense of Hausdorff distance) to the ex-

plored items upon concluding search. This procedure appears to reflect Weitzman’s intuition

that ordered search in the presence of correlated rewards should favor exploring items most

correlated with other unexplored options. In the present prior-free model with continuous

quality indices, proximity is roughly the analogue of correlation.

However, the underlying logic is distinct. The searcher here does not try to learn the

location of good discoveries. Indeed, she searches as if she does not anticipate good discov-

eries. But by searching close to other unexplored items, she ensures that the items that she

misses are not so different in quality than than those that she has searched.

Another feature of search with constant costs (and history-independent costs, more gen-

erally) is that the searcher is indifferent to the order in which she explores the items she

plans on searching. Outside of this case, the searcher may prefer certain search orders; for

example, searching farther away from the most recently searched item may be more costly.18

5 Search complexity and search intensity

Our results can be used to characterize how search complexity, measured by L, affects search

intensity, the number of additional searches the searcher plans to conduct.

Search complexity captures how hard it is to discover a relatively good outcome. A

pharmaceutical company may experiment with a compound whose efficacy and safety is

typically very sensitive to dosage. Similarly, a software firm may be competing to make

a product where slight differences in design significantly affect user experience and market

share.

The first result is that search intensity is non-monotonic in search complexity. In partic-

ular, the searcher does not explore at all if search is sufficiently complex or simple.

Proposition 2. Suppose |S| = ∞. Let h ∈ H. There exist L,L ∈ R++ such that if search

complexity L < L or L > L, every optimal sequential search procedure at h concludes search

immediately.19

When L is sufficiently small, the searcher expects the quality index to be relatively flat

and close to quality of preciously explored items. The value of search is therefore low.

18Taking the limit as such ‘travel costs’ go to zero is one way of selecting an equilibrium while retaining

the tractability of the constant cost case. Appendix C discusses equilibrium refinements.
19We implicitly assume that L is such that h is a feasible history, i.e., Qh is nonempty for this L.
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If, on the other hand, L is sufficiently large, then the searcher is discouraged for a different

reason: she may spend a lot of resources searching and still come nowhere near the peak

outcome. Making a worthwhile discovery is like finding a needle in a haystack. This intuition

hinges on the bounds to achievable quality (i.e., 0 ≤ q ≤ 1) and having sufficiently many

unexplored items to open. When there are many x ∈ S which could potentially be of

maximal quality, a single search is uninformative and too many items have to be opened to

avoid missing out on good outcomes.

Under additional assumptions, Proposition 2 has a converse. We say there are decreasing

returns to search if U22 < 0. In this case, the searcher experiences larger losses from missing

better discoveries. Because additional search reduces the scope for missing better discoveries,

the value of search decreases over time. Next, in light of Proposition 1, we say ht ∈ H is

on-path if the quality of explored items is identical, i.e., ht = {(xi, z)}ti=0.

Proposition 3. Suppose |S| = ∞. Let h ∈ H be on-path and suppose there are decreasing

returns to search. There exist L,L ∈ R++ such that if search complexity L < L or L > L,

every optimal sequential search procedure at h concludes search immediately. Conversely, if

L ∈ (L,L), no optimal sequential search procedure concludes search immediately.

Proposition 3 implies in particular that if the searcher starts out knowing only the quality

of a single item, she continues search if and only if search complexity falls in an intermediate

region. Figure 5 gives a graphical intuition for the claim.

Proposition 3 partitions R++ into regions of search complexity for which the searcher ei-

ther concludes or continues searching under every equilibrium. We next pursue the question:

how extensively does the searcher plan on searching if she indeed decides to continue?20

Let Ih(L) be the set of n ∈ N such that the searcher conducts n more searches in

equilibrium at history h ∈ H in some optimal sequential search procedure when search

complexity is L. Define the search intensity correspondence as Ih : R+ ⇒ N. Consider the

case of constant costs where C(x, h) = c > 0 for all x ∈ S and h ∈ H.

Proposition 4. Let h ∈ H be on-path and suppose there are decreasing returns to search and

constant costs. Every selection from the search intensity correspondence Ih is non-decreasing

on the region where search does not immediately conclude under some equilibrium.

An intuition for Proposition 4 is that conditional on some fixed number of searches being

profitable at complexity levels L′ < L′′, additional search is weakly more profitable when

complexity is higher if any search is profitable at all (by the decreasing returns to search

20There is a difference between anticipated and realized search effort in a sequential search setting. While

the searcher plans for the worst-case, she may shorten on lengthen her search if she makes unanticipated

discoveries along the way. Callander (2011) describes this property as the law of unintended consequences.
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Figure 5: The proof of Proposition 3 breaks into two cases. Let quh,L be the upper envelope

of feasible quality indices at history h when complexity is L. Let L∗ be the threshold search

complexity where max quh,L(x) < 1 if L < L∗ (top) and max quh,L(x) = 1 if L > L∗ (bottom).

The dominance argument shown in each case implies that the set of complexities where

search does not immediately conclude is an interval about L∗.
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Figure 6: An example of the intensity correspondence when the assumptions of Proposition 3

and Proposition 4 are met.

assumption). In the case of constant search costs, the greater willingness to spend on search

also translates into more search.

Taken together, Proposition 3 and Proposition 4 imply that search intensity is ‘inverse-

v-shaped’ in complexity (see Figure 6). When complexity is low, there is no search. As

complexity increases, search intensity initially ramps up. But beyond a tipping point where

maximal search occurs, search intensity collapses back to zero.

The model predicts that small differences in the perceived difficulty of exploring an

unfamiliar territory may determine whether the searcher exerts maximal effort or gives up

on exploration entirely. This suggests, for example, that there may be large impacts to

subsidizing search effort when agents are paralyzed by the perceived difficulty making good

discoveries.

6 News and search dynamics

By Proposition 1, the searcher explores as if expecting to make neither good nor bad dis-

coveries (within the search window) along the equilibrium path. The interpretation is not

literal: the adversary is only a useful metaphor to characterize the behavior of a searcher

who maximizes her payoff guarantee. Indeed in our motivating examples, there is no force

driving quality indices to be adversarially chosen. It is therefore of interest to explore how

the searcher’s behavior changes when ‘off-path’ good or bad news events occur.

Fix the true quality index q and a search strategy. Consider a partial history ht+1 ∈ H

where the searcher does not conclude search, and let ht+1(t) be its time t sub-history. The

searcher learns good news at ht+1 if zt+1 > z∗ht+1(t)
. Similarly, the searcher learns bad news

at ht+1 if zt+1 < z∗ht+1(t)
.
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6.1 Search step size

The next proposition describes the impact of sufficiently bad news on step size in an optimal

search procedure. It captures the intuitive idea that bad news should drive the searcher to

avoid the surrounding area and search elsewhere.

We say costs are history-independent if C(x, {(xi, zi)}ti=0) = f(x) for some continuous

f : S → R+, bounded below by some c > 0

Proposition 5. Suppose costs are history-independent. Let σ be an optimal sequential

search procedure and consider any history ht ≡ {(xi, zi)}ti=0 ∈ H at which σ(ht) ̸= ∅ and

minq∈Qht
q(σ(ht)) > 0. Let x be the closest technology to σ(ht) among those that had been

discovered so far. Then there exists z′ < z∗ht
such that:

1. Qh′
t+1

is non-empty, where h′
t+1 ≡ {(x0, z0), . . . , (xt, zt), (σ(ht), z

′)}.

2. If zt+1 ≤ z′, then either σ(ht+1) = ∅ or |σ(ht+1)− σ(ht)| > |σ(ht)− x|.

The second part of Proposition 5 says that after sufficiently bad news, an optimal search

procedure either concludes or jumps beyond the nearest technology to another part of the

search space. The first part of Proposition 5 says that it is possible to hear such sufficiently

bad news at any history satisfying the stated assumptions.

With bad news, the best technology discovered so far remains unchanged, but not so

with good news. The searcher’s reaction to good news varies from case to case, and there

are many cases to consider.

For example, the searcher may care less about being near the top as the quality of her

best discovery rises. In that case, she may reduce search intensity in response to good news

and make larger jumps in search space.

Alternatively, the searcher may care more about being near the top as the quality of her

best discovery rises. For example, if a firm’s search for an efficient flying car technology

produces poor outcomes, the firm might come to believe the market for such cars will never

be large. But if the firm chances upon a good design, it learns that there could be a large

market and the winner of the innovation race would capture a disproportionate share. Such a

searcher may ramp up search intensity in reaction to good news and start by testing designs

close to her best discovery.

Even these simple intuitions do not easily generalize. In addition to the submodularity

or supermodularity of U , the searcher’s response to good news depends on the history of

discoveries, the cost function and the equilibrium in question.
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6.2 Funnel shaped search

The impact of good or bad news on search dynamics is more striking when the quality index

is known to be quasiconvex. The searcher can use any good or bad news to significantly

narrow down the space over which future searches will occur.

Starting at some history ht ∈ H, a searcher never searches in some set T ⊂ S under

strategy σ if for any h ∈ H such that h(t) = ht, either σ(h) ∈ S/T or σ(h) = ∅.

Proposition 6. Let Q = QQC and suppose costs are history-independent. Suppose the

searcher uses an optimal sequential search procedure σ, and let ht+1 = {(xi, zi)}ti=0 ∈ H be a

history at which σ(ht+1) ≡ xt+1 ∈ S.

1. Suppose the searcher learns good news at xt+1, i.e., zt+1 > z∗ht
.

(a) If xt+1 > xt, the searcher will never search left of xt +
1
L
(zt+1 − z∗ht

).

(b) If xt+1 < xt, the searcher will never search right of xt − 1
L
(zt+1 − z∗ht

).

2. Suppose the searcher learns bad news at xt+1, i.e., zt+1 < z∗ht
. Let x∗

ht
∈ X∗

ht
.

(a) If xt+1 > x∗
ht
, the searcher will never search right of σ(ht)− 1

L
(z∗ht

− zt+1).

(b) If xt+1 < x∗
ht
, the searcher will never search left of σ(ht) +

1
L
(z∗ht

− zt+1).

Good and bad news events cause search to unfold in a ‘funnel shape’: the walls close

in on the space of products or technologies over which search continues. This pattern of

first searching broadly in attribute space and then narrowing in on a particular region was

observed, for example, by Bronnenberg et al. (2016) in ordered-search data from online

shoppers. In our model, the existence of a ‘sweet-spot’ generates such dynamics.

These dynamics also resemble the ‘triangulation phase’ that Callander (2011) finds in a

model where, effectively, a myopic agent tries to find the zeroes of a Brownian motion path.

As Hörner and Skrzypacz (2017) note, understanding how dynamics change in “Callander’s

model for patient agents is an important open problem”. The quasiconcave case is an

analogous prior-free model of a patient agent, and Proposition 6 illustrates the robustness

of the triangulation pattern in Callander (2011). However, patience changes where searchers

explore and when they stop relative to myopic searchers—the subject of Appendix D.

7 Extensions

The base model of search considers a single dimensional search space in which the searcher

knows all available items. In this section, we relax both assumptions by allowing for limited

consideration sets and multidimensional search.
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7.1 Limited consideration sets

Suppose the searcher perceives S to be the set of items that exist. However, at a history

ht+1, the searcher can only search items that lie in a consideration set Sht ⊂ S. Moreover,

the searcher’s cannot shrink over time. That is, if ht+1(t) is a time t sub-history of ht+1,

then Sht+1(t) ⊂ Sht+1 .

The notion of a consideration set captures a searcher who, over time, discovers the exis-

tence of more items that can be searched (and does not forget previously discovered items).

An example is a shopper who learns about the existence of new products while searching as

a platform recommends related items.

We generalize the model to allow for limited consideration by supposing the searcher

employs a strategy that is robust to the way her consideration set evolves. That is, the

searcher behaves as if she faces an adversary who can choose not only a feasible quality

index, but also her consideration set at every history.

More formally, a feasible partial history is now a sequence of tuples ht = {(xi, zi, Si+1)}t−1
i=0

with the property that Si ⊂ Si+1 ⊂ S and xi ∈ Si for all i. Each period proceeds in three

stages. First, at ht, the searcher either concludes search or searches an unexplored item

xt ∈ St. Next the adversary chooses a feasible quality index q′ ∈ Qht and a consideration set

St+1 ⊃ St. Finally, if the searcher had concluded search, she anticipates a payoff of p(ht, q
′).

Otherwise, q′(xt) and the new consideration set St+1 are revealed to the searcher.

The agent’s payoffs and the adversary’s payoffs are the same as in the baseline model. In

particular, upon concluding search at a history ht, the agent still worries about the quality

of the best undiscovered item in S, rather than in her limited consideration set. St is simply

a constraint on what the searcher is able to explore, but there may be items in S/St+1 that

are unreachable to her but still act as reference points.

It is straightforward to see that Theorem 1 continues to hold for this generalized model

with consideration sets: optimal sequential search procedures are those that follow an optimal

simultaneous search procedure at every history. In particular, the searcher anticipates that

she will not learn the existence of any new items.

To see why, suppose at some history, the adversary deviates to showing the searcher new

items. If none of these items are part of the searcher’s optimal simultaneous search strategy,

then this one-shot deviation does not help. If they are part of the searcher’s optimal search

strategy, they the adversary is weakly worse off, since the searcher chose not implement the

(still feasible) strategy that she would have before learning the existence of the new items.21

We omit a full proof as it follows similar steps to the proof of Theorem 1.

21It is also straightforward to argue that double deviations, where the adversary gives good or bad news

and introduces new items into the consideration set would only help the searcher.
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Figure 7: For different histories and Lipschitz constants, both figures plot upper-envelopes of

feasible quality indices and highlight the most promising area. This is the set of unexplored

items, which if explored, would reduce the value of one of tallest peaks in equilibrium.

We can use the observation that the consideration set does not expand along the equi-

librium path to give a necessary condition for search to continue.

Let A(h) ≡ argmaxx∈S q
u
h for any h ∈ H. Let hx denote the history immediately after h

where item x ∈ S is searched and found to have quality z∗h. Define the most promising area

to be the subset P of unexplored items in S such that if x ∈ P is explored at h, then either

maxx∈S q
u
hx

< maxx∈S q
u
h or A(hx) is a strict subset of A(h); see Figure 7.

The following proposition says that if the searcher’s consideration set does not include

items in the most promising area, then she will conclude search.

Proposition 7. Let ht = {(xi, zi, Si+1)}t−1
i=0 and let P be the the most promising area of S

at ht. If St ∩ P = ϕ, the searcher concludes search at ht.

The proof is simple. If the searcher cannot explore the region where the best alternative

lies, then she anticipates never being able to explore in that region, so search does not help

her in the worst case.

Proposition 7 has implications for how online platforms might make product recommen-

dations for first-time buyers searching unfamiliar territory. Recommendations affect search

by altering a shopper’s consideration sets. A platform selling identically priced goods would

want to recommend products that induce more search to avoid the shopper leaving before

making a purchase (see Footnote 7). Proposition 7 suggests that the platform should not

initially display a narrow set of products: repeated searches in the same area would not re-

duce the scope for missing good discoveries. On the other hand, displaying a diverse offering

assures the searcher that she can form worthwhile search plans.
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7.2 Multidimensional search

Technologies and products typically have multiple observable attributes. For example, on-

line marketplaces may make the resolution, size and price of TVs readily observable before

shoppers have to click on the image of the product to learn more.

In some settings, searchers may be able to discern how attributes contribute to the quality

of an item (e.g., learning one’s tastes for thread-count and material used in bedding). In

other settings, they might only be able to learn the quality of an item as a whole (e.g.,

noticing only that a certain pillow is or is not comfortable).

This suggests two natural ways of extending the single-dimensional model to multidi-

mensional search. Appendix E considers a different model where the searcher learns her

preferences for each attribute. Here, we consider a more straightforward extension where

the searcher only learns her value of an item as a whole.

The search space, S, is a compact subset of Rk in the multidimensional search model,

which is otherwise identical to the base model.

Theorem 1′. Suppose Q = QMP and S is a compact subset of Rn. Then a search strategy

σ is an optimal sequential search procedure if and only if it follows an optimal simultaneous

search procedure at every history.

This result needs no separate proof, as the proof of Theorem 1 in Appendix F never

makes use of the one-dimensionality of S.

As a consequence, comparative statics with respect to search complexity (Proposition 2,

Proposition 3, and Proposition 4) and news (Proposition 5) generalize to the multidimen-

sional case as well, when Q = QMP . Appendix B describes an optimal search algorithm for

the case of constant costs and a finite search space.

On the other hand, there is no simple analogue to triangulation when the search space

is multidimensional. Moreover, the characterization of optimal search when Q = QQC does

not readily generalize; Appendix F.2 highlights some difficulties that arise.

8 Conclusion

We study ordered-search with learning in unfamiliar territories. The model tries to capture

the limited information that searchers work with when trying to innovate or learn their

tastes for new products. In such settings, we characterize optimal forward-looking and even

multidimensional search.

We close by speculating about two potential applications.

First, a problem for online platforms is to order products so as to help shoppers discover

what they want. Blake et al. (2016), for example, find that “[where] a search engine like

25



the one at eBay is tuned to encourage immediate purchase, the site might be better served

if it thought holistically about this search funnel and helped consumers learn about the

attributes of products in a way that ultimately led them step by step down the process

instead of assuming that they are at the end of it”. Addressing how to make product

offerings easier to navigate requires a theory of how shoppers navigate. Our model might

help address such design questions.

Second, a literature in economics and marketing estimates preferences and search costs

from consumer search data. In a review article, Honka et al. (2019) note a need for theories

that better match empirical search patterns and can rationalize search sequences. The

resemblance to the funnel shaped search dynamics observed in Bronnenberg et al. (2016)

and the computational tractability of our model suggest that it may be useful for structural

estimation.
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A Dynamic Consistency

A.1 Adaptive adversary

Consider an alternative game where (1) the searcher can commit a fully history-contingent

strategy, and (2) the adversary chooses a consistent quality index after observing the searcher’s

action at every history, just as in the sequential search game. We call this the commitment

game with an adaptive adversary.

Proposition 8. Any optimal sequential search procedure in the sequential game is an opti-

mal strategy for the searcher in the commitment game with an adaptive adversary.

The proof is in Appendix F.5. The idea is that the adversary could always play the same

‘no news’ strategy it does in the sequential search game (see Proposition 1). The adversary

should not receive a higher payoff from playing ‘no news’ than she would in the simultaneous

search game, where the searcher is weaker (i.e., where she can only commit to simultaneous

search strategies). But that means a searcher optimal strategy in the commitment game

must best respond to ‘no news’. Since the adversary cannot be better off than it is in the

simultaneous search game, its payoff to ‘no news’ is the highest it can hope for. But then,

the searcher is no worse off committing to an optimal simultaneous search procedure. By

Theorem 1, she is is also no worse off committing to an optimal sequential search procedure.

A.2 Static adversary

Consider an alternative game where (1) the searcher can commit a fully history-contingent

pure strategy, and (2) the adversary subsequently moves once to choose a consistent quality

index. We call this the pure strategy commitment game with a static adversary.

Proposition 9. Any deterministic optimal sequential search procedure in the sequential

game is an optimal strategy for the searcher in the pure strategy commitment game with a

static adversary.

The proof idea is that static adversary effectively as strong as the adaptive one in Propo-

sition 8. It can compute the path of play under qA to predict which items would be explored

and make only the unexplored items high quality.

The restriction of the searcher to pure strategies is the natural commitment analogue

of the sequential search game, where the adversary observes the searcher’s action at every

history. An interpretation of that timing is that the searcher cannot commit to randomizing

where to look next. She may roll the dice to determine which item to pick. But upon seeing

the realized roll, she starts to worry that the item she is about to select is the wrong choice.
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Symmetrically, the searcher in the pure strategy commitment game with a static adversary

can commit to a contingent plan of search but cannot commit to randomization.

On the other hand, a commitment game where the searcher can choose randomized

strategies corresponds to an alternative sequential search model in which the searcher and

adversary simultaneously choose actions at every history.

B Optimal sequential search algorithms

We describe algorithms returning optimal sequential search procedures when search costs

are constant and fixed at c > 0. Appendix B.1 describes an algorithm for search over a finite

set set of items, allowing for the search space to be multidimensional. Appendix B.2 more

formally describes the algorithm discussed in Section 4.4 for search over a single-dimensional,

connected search space.

B.1 Finite (multidimensional) search spaces

Suppose there are n ∈ N objects that can be searched, i.e., |S| = n. Let ht be some history

where t < n objects have been discovered already. Let Wt be the search window at this

history. Let kt > 0 be the smallest natural number such that if the searcher searches more

than kt times after history ht, her payoff is guaranteed to be less than her payoff to ending

search immediately, regardless of the search outcome. Note that kt is independent of n.

The following algorithm returns an action at ht that is part of an optimal sequential

search procedure.

1. For each x in S and y inWt, let D(x, y) ≡ max{d(s, y)|s ∈ Conv({x, y}), quht
(s) ≥ z∗ht

}.

2. For each k ∈ {0, 1, . . . , kt}, compute Bi: the subset of Wt of size k that solves:

min
B⊂Wt,|B|=k

max
y∈S/B∪Xht

D(y,B ∪Xht),

where B0 = ∅, and where for each y in Wt and S ′ ⊂ S, D(y, S ′) = minx∈S′ D(x, y).

3. Let B∗ be the set Bk ∈ {B1, . . . , Bkt
} that maximizes the searcher’s payoff, were he to

follow a simultaneous search strategy that searches all items in Bk in some order and

the adversary plays the ‘no news’ strategy.

4. The searcher picks some item in B∗ to search if it is non-empty, and concludes search

otherwise.
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Intuitively, the algorithm picks items so that each undiscovered item is as close as possible

to some discovered item. That way, by the bounds imposed by Lipschitz continuity, no

undiscovered item can be that much better than a discovered item.

More precisely, in the third step, the searcher finds subsets of items (of different cardinal-

ities) that, if searched, would be closest to the remaining undiscovered items. In the fourth

step, by the multidimensional analogue of Theorem 1, she picks the subset that maximizes

her payoff along the equilibrium path. Finally, the searcher picks one item in this subset and

repeats the procedure until search concludes.

The first step and third step adjust for the right notion of distance. In the case where

there is no item or only one item had been discovered so far, D(y, S ′) is the usual Hausdorff

distance between item y and a set S ′. If item x had been discovered and has quality below

z∗ht
, then we measure the distance between y and the closest point between y and x (not

necessarily in S) at which quality could conceivably exceed z∗ht
.

Complexity analysis The first two step requires O(n2) computations (computing the mod-

ified notion of distance for, at most, every pair of items). The third and fourth steps col-

lectively require O(kt) computations. The second step requires O(
(
n
1

)
+ . . .

(
n
kt

)
)× O(n2) =

O(nk+2) computations. She repeats these operations at most kt times (with fewer computa-

tions each time, as kt+k < kt), giving an overall time complexity of O(kt · nkt+2).

The algorithm is therefore polynomial in n, e.g., the number items, and exponential in

kt. The searchers utility parameters and search costs, U and c, determine kt. If c is large, or

if U2 is close to zero, then kt is small. We are typically not interested in the limit as kt grows

large. On the other hand, we may be interested in solving problems where the number of

items grows large, e.g., an online market place adds to the selection of cameras a shopper

may choose from. This is a computationally tractable limit.

B.2 Connected (one-dimensional) search spaces

Without loss of generality, we take S = [0, 1]. Fix some history ht ∈ H.

The boundary points of Wht and the technologies in X∗
ht

partition Wht into sub-intervals.

Let mesh(Wht , Xht) be the length of the longest of these sub-intervals. If 0 ∈ Wht/Xht , let

lht denote the length of the sub-interval in Wht containing item 0 ; otherwise, let lht = 0.

Likewise, if 1 ∈ Wht/Xht , let rht denote the length of the sub-interval in Wht containing

item 1; otherwise, let rht = 0. Define the weighted mesh at ht, denoted by ω(Wht , X
∗
ht
), as

max{mesh(Wht , X
∗
ht
), 2lht , 2rht}.

For any k ∈ N, let T (k, ht) and denote a solution to the following problem:

min
T∈S/Xht

;|T |=k
ω(Wht , T ∪X∗

ht
).
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Label the elements of T (k, ht) as xt+1, . . . , xt+k in any order. Let

ht+k = {(x0, z0), . . . , (xt, zt), (xt+1, q
A
ht
(xt+1)), . . . , (xt+k, q

A
ht
(xt+k))},

and let v(k, ht) ≡ p(ht+k, q
u
ht+k

). Recall the definition of kt from Section 4.4 (in particular,

Footnote 15):

1. Let k∗ be a solution to maxk=0,...,kt
v(k, ht).

2. Let σ(ht) ∈ T (k∗, ht).

Repeating these steps until k∗ = 0 returns an optimal sequential search procedure, σ.

Complexity analysis Starting at a history where n items were searched, the search window

can be found with O(n) computations; this pre-processing does not affect the overall time

complexity of the algorithm. Next, at most kt searches occur after this history, regardless of

the realization of the true quality index. Therefore, after l searches, the searcher’s anticipated

search intensity falls anywhere between 0 and kt − l, and the algorithm considers each of

these levels. For any given anticipated search intensity, k, the placement of the optimal

k searches can be computed in O(n + k).22 Therefore, the worst-case time complexity is

O(k
3

t + k
2

t · n).

C Equilibrium refinements for history-independent costs

As the algorithms highlight, there are typically many optimal sequential search procedures

when costs history-independent. This need not be the case for some history-dependent search

costs, but the constant costs case is more tractable and relevant for some applications. Here

we consider two natural equilibrium selection criteria.

C.1 Travel costs

Let g : R+ → R+ be strictly increasing and strongly convex with g(0) = 0. Let f : S → R+ be

bounded away from 0. We say there are travel costs if C(x, {(xi, zi)}ti=0) = f(x)+g(|x−xt|).
Travel costs consist of a fixed component, which depends on the technology or product

being searched, and a travel component, which depends on the distance between the current

and the previously explored items in S. This can describe, for example, the form of search

costs of an online shopper who is navigating some attribute-ordered list of products. Search-

ing an item involves the fixed cost of clicking and reading about it. Jumping to a distant

22 n
2 +2 is the maximum number of disjoint intervals in the search window. Sorting these by interval length

takes O(n) computations. Then the searches are placed so that Yht+1 partitions Wht+k
as evenly as possible;

this takes O(k) operations.

32



item in price-space involves more scrolling or navigating to a new page. Alternatively, it may

be easier to try similar designs when innovating than to attempt something very different.

Introducing travel costs reduces the multiplicity of optimal search procedures, as main-

taining the direction of search and exploring nearer items first saves on such costs. We can

use this idea while maintaining the tractability of the fixed cost model by considering the

case of vanishing travel costs (e.g., reading about a product is much more expensive than

scrolling).

Let {αn}∞n=1 > 0, and let Cn(x, ht) = f(x) + αng(n|x − xt|), where αng(n|x − xt|) → 0

as n → ∞. In effect, travel costs go to zero while the cost of the largest jump outstrips the

other travel costs.

Suppose S is finite and let ht ∈ H. At ht, let Tht be the a set of items that the searcher

would plans to explore before concluding search along some equilibrium path in some optimal

sequential procedure when C(x, ht) = f(x). Optimal sequential search procedures converge

to procedures where the searcher starts on a hamiltonian cycle through Tht that minimizes

the maximum step size between all future searches.23 Because hamiltonian cycles minimizing

the max step size are generically unique (i.e., after slightly perturbing the locations of items

in Tht), this selection criterion gives a sharp prediction for search dynamics in the fixed cost

model.

This selection rule captures settings where travel costs are a secondary concern to the

costs of conducting experiments themselves.

C.2 Search distractions

One can also consider a modification of the fixed cost model where search becomes pro-

hibitively expensive with some small probability at every step. This can be interpreted as

a distraction leading to a premature conclusion of search. As this probability vanishes, an

optimal sequential search procedure with search distractions converges to an optimal sequen-

tial search procedure where at each history ht, the searcher chooses a technology that leads

to the biggest drop in maxx∈s q
u
ht
(x). Unlike the travel costs refinement, search distractions

need not generically select for unique optimal search procedures.

D Myopic search

Here we characterize optimal myopic search procedure. Such strategies take the best action

(e.g., either concluding search or searching some new technology) at each history under the

23Given a set of n points T ⊂ R and an initial point, t0 ∈ T , a hamiltonian cycle is a sequence (t0, t1, . . . , tn)

that includes each other point in T exactly once. Since travel costs are convex and grow steeper in n, the

largest step size |ti+1 − ti| dominates the aggregate travel costs.
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constraint that the searcher must conclude search by the next period at the latest.

Formally, let M > 0 be large enough such that if x ∈ S is at least M , an optimal

search procedure would conclude search immediately at any ht ∈ H. For any ht ∈ H,

let σSL
ht

denote a optimal sequential search procedure if costs where given by CSL, where

CSL(x, ht) = C(x, ht) for any new technology x ∈ S, and CSL(·, ht+i) = M for all ht+i ∈ H

such that ht+i(t) = ht. A myopic strategy σM is a strategy that follows σSL
ht

at every history

ht ∈ H.

D.1 Propensity to Search

A simple observation is that myopic searchers have a lower propensity to continue search

than forward looking searchers. More formally, at any ht ∈ H, if there exists an optimal

sequential search procedure σ such that σ(ht) = ∅, then there is a myopic strategy σM such

that σM(ht) = ∅. This follows by the optimality of σ and the definition of σM : if no myopic

strategy concludes at ht, the payoff to continuing search at ht for one period and concluding

search subsequently is strictly greater than concluding immediately, so the forward-looking

searcher would not conclude either.

D.2 Search Location

The next proposition gives a general characterization of where myopic search occurs.

Proposition 10. Let Q = QMP or Q = QQC, and let ht ∈ H. For any myopic strategy,

σM , either σM(ht) = ∅, or σM(ht) is in most promising area of S at ht.

Proof of Proposition 10. Search outside of the search window is wasteful. Searching a new

technology inside the search window but outside of the most promising area results in

a quality less than or equal to z∗ht
in the worst case. However, at this history, ht+1,

maxx∈S q
u
ht
(x) = maxx∈S q

u
ht
(x). Therefore, concluding search at ht would be an improvement

for the searcher over reaching ht+1 and concluding search. Therefore, a myopic strategy that

continues search at ht searches inside the most promising area.

Intuitively, any future search in the most promising area results in one of two possible

outcomes: either the searcher learns that the highest possible quality is smaller than expected

or she finds a better technology than previously discovered. Outside of the most promising

area, finding technologies that are worse than what was previously discovered does not

change the searcher’s perception of what the highest possible quality could be. Searches in

this region are of no value to a myopic searcher who does not expect to find something of

higher quality than z∗ht
.
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Unlike myopic strategies, optimal sequential search procedures do not always search in

the most promising area of S at every history.

For example, suppose the cost of experimenting with a set of promising technologies

is prohibitively high for a new startup with limited resources. However, experimenting

first with a more basic but less promising technology makes exploring the more promising

technologies accessible. A forward-looking startup may start with the basic technology to

unlock lower costs of future experimentation. A myopic startup that wishes to sell for the

highest valuation after one period may only find it worthwhile to experiment with the most

promising technologies directly.

D.3 Myopic search with constant fixed costs

In the case of constant fixed costs, one natural myopic strategy is simple to describe. Let

ht ∈ H. Let x ∈ argmax quht
, and let ht+1 be the history after ht where x is searched and

found to have quality z∗ht
.24 Define

σM(ht) ≡

∅, if p(ht, q
u
ht
) > p(ht+1, q

u
ht+1

)

x, otherwise

It is clear that σM is a myopic strategy. In the event search does not conclude immediately,

σM explores the technology that leads to the one-period greatest decrease in the quality of

the best available alternative, on the equilibrium path (Proposition 1).

The technology explored by σM is farther away from Yht , in terms of Hausdorff distance,

than any other technology in the search window. At every history, a myopic searcher who

uses σM ventures into a more unexplored part of the search space than any optimal sequential

strategy.

D.4 Optimistic search and the constant fixed costs

As an aside, consider an optimistic searcher, i.e., one who believes, at every history ht ∈ H,

the best outcome in Qht will obtain given her actions. At any ht ∈ H at which she does not

conclude search, she explores an x ∈ argmax quht
, just as in σM (it is sub-optimal for her to

search elsewhere). Therefore, she always explores a more unexplored part of the search space

than the searcher in the base model.25 It is also straightforward to see that at any history, it

24It is easy to verify that Qht+1
̸= ∅

25Outside of constant fixed costs, location choices for myopic and optimistic search need not coincide.

Indeed, even in a more general fixed costs model, optimistic searchers may search outside of the most

promising area entirely, if search in this region is significantly more expensive than search in other regions.
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is optimal for the baseline searcher (and therefore, the myopic searcher) to conclude search

if the optimistic searcher does so.

E Attribute learning model

Here, we define a multidimensional attribute learning model, where upon searching an item,

the searcher learns the quality of each of its attributes.

Suppose items have k attributes, e.g., the size, resolution and brand of TVs. Let Si

be the one-dimensional sets of values that the ith attribute can take. The search space is

S ≡ S1 × . . .× Sk.

An attribute quality index is a mapping κ : S → [0, 1]k, where κ ∈ (QMP )l× (QQC)k−l for

some l ∈ {0, 1, . . . , k}.26 Each time the searcher explores an item, she learns her value for

each dimension of the object, e.g., how much she likes a large versus small TV, how much

she values more resolution, etc.

The quality index aggregates the qualities of the separate dimensions: for any x ∈ S,

q(x) = f ◦κ(x), where f : [0, 1]k → [0, 1] is increasing in all its arguments. We say attributes

are substitutes if f is submodular. While κ is unknown to the searcher, f is known: the

searcher knows the weight she gives to dimension of a item’s quality but not the attribute

qualities themselves.

S is a rectangular search space if for every x, y ∈ S, there exists some z ∈ S such that

κ(z) = κ(x) ∨ κ(y). In words, if the searcher likes some attributes of one item and some of

another, she can find an item in search space that has all the better of all attributes.

To simplify the analysis, we assume that the searcher can conclude search by taking a

previously unexplored option without paying an additional search cost. For example, if she

considers a 65 inch 4k TV and a 75 inch 5k TV and learns that she likes the smaller size but

a higher resolution, she can purchase a 65 inch 5k TV without incurring additional search

costs.27

The attribute learning model is otherwise identical to the baseline model. We have the

following analogue of Theorem 1.

Corollary 1. Consider an attribute learning model where S is a rectangular search space

and attributes are substitutes. Then a search strategy σ is an optimal sequential search

procedure if and only if it follows an optimal simultaneous search procedure at every history.

26Lipschitz constants may differ across attributes.
27In the base model, even if the searcher could take an option that she had not previously explored, she

would never do so when the lower envelope of Qh is greater than 0: the quality of an unexplored item is below

z∗ in the worst case. By comparison, allowing the searcher to take an unexplored option can significantly

change the solution in Weitzman’s model; see Doval (2018).
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See Appendix F.6 for the proof.

Corollary 1 implies that previous comparative statics results and algorithms can be read-

ily adapted to the attribute learning model. For example, triangulation in search space

occurs along those dimensions of κ which the searcher perceives as being quasiconcave.

When S = [0, 1]k, the same algorithm described in Section 4.4 can be applied to choose

search location for each attribute. A similar procedure works when S is finite as well.

The assumptions that the search space is rectangular or that attributes are substitutes

rule out some interesting applications. For example, it may be possible to purchase a powerful

but bulky computer or a slower but more portable model. However, there may not exist a

very fast and perfectly portable computer on the market. Similarly, a searcher may like a

bubblegum pink convertible but may find the same color to be distasteful for a station wagon.

Studying optimal search in the presence of attribute complementarities is an interesting

problem for future work.

F Proofs

F.1 Proof of Theorem 1 in the Q = QMP case

Let ht = {(xi, zi)}t−1
i=0 ∈ H. For each xi ∈ Xht and y ∈ S, let fht,xi

(y) = L||y − xi||+ zi. Let

fht = minx∈Xht
fht,x. Recall that quht

is the upper envelope of the quality indices in Qht for

any history ht ∈ H.

Lemma 1. Suppose that Q = QMP . Then quht
∈ Qht for any ht ∈ H. Moreover, quht

=

min{fht , 1}.

Proof of Lemma 1. We proceed by proving three claims.

Claim 1 : min{fht , 1} is L-Lipschitz.

Let x, y ∈ S. Then there exists some xi, xj ∈ Xht such that |fht(x)−fht(y)| = |fht,xi
(x)−

fht,xj
(y)|. Suppose without loss of generality that fht,xi

(x) ≥ fht,xj
(y). Then

|fht(x)− fht(y)| = fht,xi
(x)− fht,xj

(y)

≤ fht,xj
(x)− fht,xj

(y)

= L||x− xj||+ zj − L||y − xj|| − zj

= L||x− xj|| − L||y − xj||
≤ L||x− y||,

where the first inequality follows from the definition of fht . Therefore, fht , and therefore

min{fht , 1}, is L-Lipschitz.
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Claim 2 : Every quality index in Qht is bounded above pointwise by min{fht , 1}.
Let ht = {(xi, zi)}t−1

i=0 ∈ H, and let q′ ∈ Qht . For any xi ∈ T and y ∈ S, |q′(y)− q′(xi)| ≤
L||y − xi||; Moreover, note that |fht,xi

(y) − fht,xi
(xi)| = fht,xi

(y) − q′(xi) = L||y − xi||.
Together, this implies that q′(y) ≤ fht,xi

(y) for all xi ∈ T . Therefore, q′(y) ≤ min{fht(y), 1}
for all q′ ∈ Qht .

Claim 3: min{fht , 1} is consistent at ht.

For any xi ∈ Xht and q′ ∈ Qht , zi = q′(xi) ≤ fht(xi) ≤ fht,xi
(xi) = zi, where the

first inequality follows from Claim 2, and the second is by the definition of fht . Therefore

fht(xi) = min{fht(xi), 1} = zi for all xi ∈ Xht , so min{fht , 1} is consistent.

The first and third claims imply that min{fht , 1} ∈ Qht . So by the second claim, fht is

the upper envelope of the quality indices in Qht , i.e., q
u
ht

= min{fht , 1}.

Let h′
t = {(xi, z

′
i)}t−1

i=0 and h′′
t = {(xi, z

′′
i )}t−1

i=0 be two partial histories that differ only by

quality. Suppose z′i ≥ z′′i for all i. Then we say h′
t dominates h′′

t in quality.

Lemma 2. Suppose that Q = QMP . If h′
t dominates h′′

t in quality, then

max
q′∈Qh′t

,x∈S
q′(x) ≥ max

q′∈Qh′′t
,x∈S

q′(x).

Proof of Lemma 2. The statement of the lemma is equivalent to showing that:

max
x∈S

quh′
t
≥ max

x∈S
quh′′

t
.

Let T ≡ Xh′
t
= Xh′′

t
be the set of searched technologies in h′

t = {(xi, z
′
i)}t−1

i=0 and h′′
t =

{(xi, z
′′
i )}t−1

i=0. By Lemma 1, it suffices to show that fh′
t,xi

(y) = L||y− xi||+ z′i ≥ L||y− xi||+
z′′i = fh′′

t ,xi
for every xi ∈ T and y ∈ S. This follows immediately from the assumption that

z′i ≥ z′′i for all i.

Lemma 3. Suppose that Q = QMP . Fix some history h′
t = {(xi, z

′
i)}t−1

i=0 ∈ H and let x be

an optimal technology at h′
t. Let T = X∗

h′
t
\ {x}. For each xi ∈ T , let ϵi ∈ R. Consider an

alternate history h′′
t = {(xi, z

′′
i )}t−1

i=0 ∈ H where z′′i = z′i+ ϵi for xi ∈ T and z′′i = z′i otherwise.

Suppose moreover that Qh′
t
and Qh′′

t
are nonempty . The searcher’s payoff to concluding

search in h′′
t is greater than or equal to the searcher’s payoff to concluding search at h′

t.

Proof of Lemma 3. If T is empty, the statement is trivially true. Suppose T is non-empty.

Case 1: If ϵi ≤ 0 for each xi ∈ T , then note that the quality of the searcher’s chosen

technology is the same in both h′′
t and h′

t, but by Lemma 2, the adversarially selected quality

of the best technology in S is weakly higher in h′
t. Therefore, the searcher’s benefit to

concluding search is weakly greater at h′′
t than at h′

t.
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Case 2: Suppose there exists some xi ∈ T such that ϵi > 0. Let ϵ denote the largest ϵi

among all i such that xi ∈ T . Consider a third partial history h′′′
t = {(xi, z

′
i + ϵ)}t−1

i=0, i.e.,

where the quality of all technologies searched in h′
t is higher than in h′

t by ϵ. It is immediate

by definition that quh′′′
t
≤ quh′

t
+ ϵ, with equality if the upper bound of 1 does not bind, so

max
q′∈Qh′′′t

,x∈S
q′(x) ≤ ϵ+ max

q′∈Qh′t
,x∈S

q′(x).

But then the searcher’s benefit to concluding search is weakly higher at h′′′
t than at h′

t,

because by assumption, U(a+ ϵ, b+ ϵ) ≥ U(a, b) for any a, b ∈ R+.

The quality of the searcher’s chosen technology is the same in both h′′
t and h′′′

t . But by

Lemma 2 again, the searcher’s benefit to concluding search is weakly greater at h′′
t than at

h′′′
t , and therefore weakly greater at h′′

t than at h′
t.

Recall C is independent of the qualities of searched technologies. Therefore, the searcher’s

expected costs of experimentation would be the same upon concluding search after partial

h′
t or h

′′
t . Therefore, the searcher’s payoff is weakly greater if she concludes search at h′′

t than

at h′
t.

Let qAht
= min{quht

, z∗ht
}. For all ht ∈ H, let σA

d (ht, x) = qAht
for all x ̸= ∅, and σA

d (ht, ∅) = quht
.

Lemma 4. Suppose that Q = QMP . Then σA
d is a feasible strategy for the adversary.

Proof of Lemma 4. By Lemma 1, it suffices to prove that qAht
∈ Qht . Clearly, qAht

is L-

Lipschitz since it is the minimum of an L-Lipschitz function and a constant. By definition,

it is also consistent.

Lemma 5. Suppose that Q = QMP and let σ ∈ Γht. Then σ is an optimal simultaneous

search procedure at ht if and only if σ is a best-response to σA
d in the simultaneous search

game at ht ∈ H.

Proof of Lemma 5. Let T denote the set of technologies explored under σ after ht. Because

σ ∈ Γht , T is independent of the adversary’s strategy. Then by Lemma 3, σA
d weakly

dominates any other strategy for the adversary.

Therefore, if σ is a best response to σA
d , then (σ, σA

d ) is a Nash equilibrium of the simul-

taneous search game at ht, i.e., σ is an optimal simultaneous search procedure.

For the other direction, suppose for contradiction that σ is not a best response to σA
d

but that (σ, σA) is a Nash equilibrium of the simultaneous search game at ht. Let σ′ be a

best response to σA
d , so that (σ′, σA

d ) is another equilibrium. Let ⪯ represent the searcher’s

preferences over outcomes.

First, (σ′, σA) ⪯ (σ, σA), by the assumption that the latter is a Nash equilibrium.
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Next, (σ, σA) ⪯ (σ, σA
d ): the former is an equilibrium of the zero-sum game, so adversary

is weakly worse off if she deviates, and the searcher is weakly better off.

However, it is also true that (σ, σA
d ) ⪯ (σ, σA) because σA

d weakly dominates any other

strategy for the adversary, leaving the searcher with a weakly smaller payoff.

Finally, (σ, σA
d ) ≺ (σ′, σA

d ), since σ is not a best response to σA
d while σ′ is a best response.

Putting this all together, (σ′, σA) ⪯ (σ, σA) ∼ (σ, σA
d ) ≺ (σ′, σA

d ), i.e., (σ
′, σA) ≺ (σ′, σA

d ).

In other words, when the searcher plays σ′, she is strictly better off when the adversary plays

σA
d over σA. This implies the adversary is strictly worse off playing σA

d over σA when the

searcher plays σ′, contradicting the fact that σA
d weakly dominates any other strategy for

the adversary.

Therefore if σ is not a best response to σA
d , it is not an optimal simultaneous search

procedure.

Lemma 6. Suppose that Q = QMP and that σ follows an optimal simultaneous search proce-

dure at every history. Let ht ∈ H, and let σ′ ∈ Γht be a simultaneous search procedure at ht

which replicates the searcher’s path of play under (σ, σA
d ), conditional on reaching ht. Then

σ′ is an optimal simultaneous search procedure at ht.

Proof of Lemma 6. Fixing the adversary’s strategy as σA
d , Lemma 5 implies that σ is a

conserving strategy for the searcher, i.e., the highest payoff possible at ht equals the highest

payoff possible after the searcher takes the action σ(ht).

Next, let h be an infinite history where the searcher never concludes search, and consider

the best payoff possible for the searcher at an alternate history that matches h for the

first t periods: suph′∈H,h′(t)=h(t)minq∈Qh′
p(h′, q). Because C is bounded away from zero, the

searcher’s best achievable payoff decreases without bound as she searches indefinitely, i.e.,

suph′∈H,h′(t)=h(t)minq∈Qh′
p(h′, q) → −∞ = p(h, ·) as t → ∞.

Therefore conserving strategies are optimal in this setting (e.g., see Kreps (1977)), i.e.,

σ is an optimal strategy for the searcher when the adversary plays σA
d .

This implies that σ′ is a best response to σA
d in the simultaneous search game, so by

Lemma 5, σ′ is an optimal simultaneous search procedure.

Lemma 7. Suppose that Q = QMP . If σ follows an optimal simultaneous search procedure at

every history, then (σ, σA
d ) is a sub-game perfect equilibrium of the sequential search game.

Proof of Lemma 7. First we show that the searcher’s strategy is unimprovable. Let ht ∈ H.

Let σ′ denote some one-shot deviation from σ at ht. Let σ′′ and σ′′′ ∈ Γht be simultaneous

search procedures at ht that replicate the searcher’s path of play under (σ, σA
d ) and (σ′, σA

d ),

respectively.
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Then σ′ is a strict improvement over σ only if σ′′′ is a strict improvement over σ′′ in

the simultaneous search game at ht. But by Lemma 6, σ′′ is an optimal simultaneous

search procedure and therefore a best response to σA
d in Γht . Therefore, σ′′′ is not a strict

improvement over σ′′, and so σ′ is not a strict improvement over σ.

Next, we prove that σA
d is unimprovable. Fix the strategy of the searcher to be σ and

suppose the searcher picks technology xt at history ht. Suppose that the adversary deviates

at this history to q′ ̸= qAht
and returns to following σA thereafter. Denote this history as h′

t+1

There are three cases to consider.

Case 1: q′(xt) = qAht
(xt). In this case, all future histories would proceed as if there was

no deviation at all, so this is not a strict improvement for the adversary.

Case 2: q′(xt) > qAht
(xt). Suppose for a moment that the searcher behaves as if the

quality of xt was q
A
ht
(xt) and continues to follow at h′

t+1 what was the optimal simultaneous

search procedure at ht, i.e., σ
∗
s,ht

. The searcher would be better off upon concluding search,

by Lemma 3, than she would have been had the adversary not deviated from σA at ht. If

the searcher plays σ and follows σ∗
s,h′

t+1
at h′

t+1, she is better off still. Therefore the searcher

is weakly better off when the adversary makes this one-shot deviation.

Case 3: q′(xt) < qAht
(xt). As in the previous case, we first consider what would happen if

the searcher followed σ∗
s,ht

at h′
t+1 onward. Clearly, the quality of the best searched technology

is the same whether the adversary makes this one-shot deviation or not. By Lemma 2, if the

searcher follows σ∗
s,ht

at h′
t+1 onward, she is weakly better off when the adversary deviates at

ht. This implies that even when she follows σ, she is weakly better off when the adversary

deviates, i.e., the adversary is weakly worse off.

Since the adversary has no strictly profitable one-shot deviation, the strategies (σ, σA
d )

constitute a sub-game perfect equilibrium.

Lemma 8. Suppose that Q = QMP . If σ is an optimal sequential search procedure then σ

follows an optimal simultaneous search procedure at every history partial ht ∈ H.

Proof of Lemma 8. Since σ is an optimal sequential procedure, there exists some strategy

of the adversary σA such that (σ, σA) is a sub-game perfect equilibrium. In particular,

let ht ∈ H; then (σ, σA) is a Nash equilibrium of the sub-game starting at ht. Let σ′ be

some strategy that follows an optimal simultaneous search procedure at every history. Then

(σ′, σA
d ) is also a Nash equilibrium of the sub-game starting at ht by Lemma 7.

Note that because (σ′, σA
d ) is an equilibrium of the zero-sum sub-game at ht, the adversary

is weakly better off at (σ, σA
d ) as any deviation leaves the searcher weakly worse-off. And

over (σ, σA
d ), the adversary is weakly better off at (σ, σA), since σA is a best response to σ

by assumption. And again because (σ, σA) is an equilibrium, the adversary’s payoff weakly
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improves under the strategy profile (σ′, σA). And finally, the adversary’s payoff weakly

improves from (σ′, σA) if she best responds to the searcher instead at (σ′, σA
d ).

This loop of weak inequalities implies that the adversary’s payoffs are identical at all

of these strategy profiles. In particular, this means that (σ, σA
d ) is an equilibrium in the

sub-game at ht. Therefore a strategy σ′′ ∈ Γht that replicates the searcher’s path of play

under (σ, σA
d ) is an optimal simultaneous search procedure by Lemma 6.

In other words, σ follows an optimal simultaneous search procedure at ht. Since the

choice of ht was arbitrary, the result follows.

Proof of Theorem 1 in the Q = QMP case. Lemma 7 and Lemma 8 together give the result.

F.2 Proof of Theorem 1 in the Q = QQC case

The analogues of Lemma 1 and Lemma 2 no longer holds when Q = QQC .

To see this, consider the following counter-example: Let S = [0, 4] and L = 1. Denote by

h3 the partial history where technologies {0, 2, 3, 4} have been searched and all have quality

equal to 0, i.e., h3 = {(0, 0), (2, 0), (3, 0), (4, 0)}.
First, note that the upper envelope of Qh3 is a saw-tooth shaped function and therefore

not quasiconcave.

Next, note that the highest possible quality for some technology under some q ∈ Qh3 is

equal to 1. This is uniquely achieved at:

q(x) =


x 0 ≤ x < 1

2− x 1 ≤ x < 2

0 2 ≤ x ≤ 4.

Now consider the history h′
3 = {(0, 0), (2, 0), (3, 0.5), (4, 0)}, which dominates h3 in quality.

Since every quality index in Qh′
3
is quasiconcave, it must now be the case that q′(1) = 0 for

every q′ ∈ Qh3 . The highest possible quality for some technology under some q′ ∈ Qh′
3
is

equal to 0.75. This is achieved at:

q′(x) =


0 0 ≤ x < 2

x− 2 2 ≤ x < 2.75

3.5− x 2.75 ≤ x < 3.5

0 3.5 ≤ x ≤ 4.
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However, an analogue of Lemma 4 and a weaker form of Lemma 2 hold, which suffice for

the proof of Theorem 1 when Q = QQC . To this end, let quht
again denote the upper envelope

of quality indices in Qht for any ht ∈ H, and let qAht
= min{quht

, z∗ht
}.

Lemma 9. Suppose that Q = QQC. Then for all ht ∈ H, qAht
∈ Qht

Proof. The argument that qAht
is L-Lipschitz and consistent is exactly as in the proofs of

Lemma 1 and Lemma 4. It only remains to be shown that qAht
is quasiconcave.

Let ht = {xi, zi}t−1
i=1 ∈ H. If q′ ∈ Qht , then by quasiconcavity, q′ is non-decreasing

on [0,minX∗
ht
) and non-increasing on (maxX∗

ht
, 1]. This implies quht

is non-decreasing on

[0,minX∗
ht
) and non-increasing on (maxX∗

ht
, 1]. Therefore qAht

is quasiconcave.

Lemma 10. Suppose that Q = QQC. If h′
t = {(xi, z

′
i)}t−1

i=0 dominates h′′
t = {(xi, z

′′
i )}t−1

i=0 in

quality, and z∗h′
t
= z∗h′′

t
, then

max
q′∈Qh′t

,x∈S
q′(x) ≥ max

q′∈Qh′′t
,x∈S

q′(x).

Proof of Lemma 10. First we argue that qAh′
t
≥ qAh′′

t
.

Since h′
t dominates h′′

t and z∗h′
t
= z∗h′′

t
, it follows that X∗

h′′
t
⊂ X∗

h′
t
. Therefore, qAh′

t
≥ qAh′′

t
on

[minX∗
h′
t
,maxX∗

h′
t
].

Next, it follows from Lemma 9 that qAh′
t
and qAh′′

t
are non-decreasing on [0,minX∗

h′
t
). This

implies that max{qAh′
t
, qAh′′

t
} is also non-decreasing on this interval. Reasoning analogously,

max{qAh′
t
, qAh′′

t
} is non-increasing on (minX∗

h′
t
, 0]. Finally, observe that max{qAh′

t
, qAh′′

t
} is consis-

tent with what the searcher had observed so far at h′
t, i.e., max{qAh′

t
, qAh′′

t
} ∈ Qh′

t
. Therefore,

qAh′
t
= max{qAh′

t
, qAh′′

t
} ≥ qAh′′

t
.

Now let q′′ ∈ Qh′′
t
. It suffices to show that there exists a q′ ∈ Qh′

t
such that maxx∈S q

′(x) =

maxx∈S q
′′(x).

Define q′ as follows: q′(x) = qAh′
t
(x) if q′′(x) ≤ z∗h′

t
and q′(x) = q′′(x) otherwise. By

the preceding, qAh′
t
≥ qAh′′

t
≥ max{q′′, z∗h′′

t
}. Moreover, because {x ∈ [0, 1]|q′′(x) > qAh′

t
(x)} ⊂

[minX∗
h′
t
,maxX∗

h′
t
], it is clear that q′ is quasiconcave and that q′ ∈ Qh′

t
.

Since maxx∈S q
′(x) = maxx∈S q

′′(x), the result follows.

Proof of Theorem 1 in the Q = QQC case. The proofs of the analogous lemmas to those in

Appendix F.1 are identical, with Lemma 10 in place of Lemma 2 whenever the latter is

referenced.

Proof of Proposition 1. See the proof of Lemma 5. The proof whenQ = QQC is identical.
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F.3 Proofs for Section 5

Proof of Proposition 2. First we construct L. If L = 0 and Qh is nonempty, then clearly

there is no value in search, as Qh is a singleton containing only a constant function. Recall

that C is bounded away from 0, so suppose that c > 0 is such that C(x, h′) > c for all x ∈ S

and h′ ∈ H. Let ϵ > 0 be small enough so that U(z∗h, z
∗
h)−U(z∗h, z

∗
h+ϵ) < c. By compactness

of S, there exists L > 0 small enough so that quh < z∗h + ϵ when search complexity L is

such that L ≤ L and Qh is nonempty. For contradiction, suppose search does not conclude

immediately when L ≤ L and Qh is nonempty: there is some history h′ after h on the

equilibrium path at which the searcher concludes search. Then by Theorem 1 or ?? and by

Proposition 1, the searcher’s anticipated payoff is

p(h′, quh′) = U(z∗h,max
x∈S

quh′(x))−
t∑

i=1

C(xi, h
′(i))

≤ U(z∗h, z
∗
h)− c

< U(z∗h, z
∗
h + ϵ)

< p(h,max
x∈S

quh(x)),

a contradiction. Therefore concluding search immediately is optimal if L ≤ L.

Next we construct L. Let δ = U(z∗h, z
∗
h) − U(z∗h, 1). Let n = ⌈ δ

c
⌉. Let h′ be any history

on the equilibrium path at which there have been at least n searches, i.e., t ≥ n. Then

p(h′, quh′) = U(z∗h,max
x∈S

quh′(x))−
t∑

i=1

C(xi, h
′(i))

≤ U(z∗h, z
∗
h)− n · c

< U(z∗h, 1).

Therefore, it suffices to construct L such that if L ≥ L, then after any history with n searches

where the adversary plays σA
d , maxx∈S q

u
h′(x) = 1. This would imply that the searcher is

better off concluding search immediately.

Pick n+1 points x′
1, . . . , x

′
n+1 ∈ S/Xh; let T denote the union of these points and Xh and

let d be the minimum over distances between two points in T . Let L ≥ 1−z∗h
d

and suppose

L > L. Consider a history h′ after h where some x1, . . . , xn ∈ S/Xh are searched in some

order, with the quality of xi being qAh (xi). There exists by construction a q ∈ Qh′ such that

q(xi) = qAh (xi) for all i, but q(x′
j) = 1 for some j. Therefore maxx∈S q

u
h′(x) = 1 for any

history after which there are n searches.

When considering comparative statics with respect to different levels of search complexity,

say L′ and L′′, we subscript variables by L′ or L′′ to denote which case we are considering.
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Lemma 11. Let 0 < L′ < L′′ be two different levels of search complexity. Let h =

{(xi, z)}ti=0 ∈ H be on-path, and maxx∈S q
u
h,L′′(x) < 1. Let y ∈ S/Xh, and let h′ ∈ H

be the on-path history immediately after at which y is searched. Then,

max
x∈S

quh,L′(x)−max
x∈S

quh′,L′(x) ≤ max
x∈S

quh,L′′(x)−max
x∈S

quh′,L′′(x).

Moreover, if maxx∈S q
u
h,L′(x)−maxx∈S q

u
h′,L′(x) > 0, the preceding inequality is strict.

Proof. Note that because Qh′ ⊂ Qh, maxx∈S q
u
h,L′′(x) −maxx∈S q

u
h′,L′′(x) ≥ 0. So, the result

holds when maxx∈S q
u
h,L′(x)−maxx∈S q

u
h′,L′(x) = 0.

Suppose that maxx∈S q
u
h,L′(x)−maxx∈S q

u
h′,L′(x) > 0.

Let x, x ∈ Xh be the closest previously searched technologies to the left and right of y

(and minS or maxS, respectively, if there are no such technologies). Define xs, xs
′ ∈ Xh

similarly as the endpoints in Xh ∪ {minS,maxS} of the sub-interval containing the second

largest peak of quh.

Let f(L) ≡ maxx∈[x,x] q
u
h,L(x). Similarly, let g(L) ≡ maxx∈[xs,xs] q

u
h,L(x).

It is readily verified (for example, by Lemma 1 and an analogous result for the Q = QQC

case) that f(L) = z + D(x,x
2
) · L, where D(a, b) ≡ b−a

2
if a, b ∈ Xh, and D(a, b) ≡ b − a

otherwise. Similarly, let g(L) = z +D(
xs,xs

2
) · L.

For the remainder of the proof, we consider only the case where x, x, xs, xs ∈ Xh. We

obtain the same conclusion when one or more of x, x, xs, xs are not in Xh. There are three

cases to consider.

Case 1 : At history h′, maxx∈S q
u
h′,L′(x) = g(L′) and maxx∈S q

u
h′,L′′(x) = g(L′′).

Now f(L)− g(L) = L · x−x−xs+xs

2
> 0 is linear in L with a positive slope, which implies

f(L) − g(L) is strictly increasing in L. Therefore f(L′) − g(L′) ≤ f(L′′) − g(L′′), which is

the desired result.

Case 2 : At history h′,

max
x∈S

quh′,L′(x) = max
x∈S∩[x,y]

quh′,L′(x),

and

max
x∈S

quh′,L′′(x) = max
x∈S∩[x,y]

quh′,L′′(x).

Let α = y−x
x−x

. Then by the property of similar triangles,

max
x∈S

quh′,L′(x) = αmax
x∈S

quh,L′(x),

and

max
x∈S

quh′,L′′(x) = αmax
x∈S

quh,L′′(x).

Since (1− α)maxx∈S q
u
h′,L′(x) < (1− α)maxx∈S q

u
h′,L′′(x), the result follows.
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Case 3 : At history h′,

max
x∈S

quh′,L′(x) = max
x∈S∩[y,x]

quh′,L′(x),

and

max
x∈S

quh′,L′′(x) = max
x∈S∩[y,x]

quh′,L′′(x).

The proof in this case is identical to case 2.

Lemma 12. Suppose there are decreasing returns to search. Let 0 < L′ < L′′, h ∈ H

be on-path, and quh,L′′ < 1. If search concludes immediately under some optimal sequential

search procedure when search complexity is L′′, then search concludes immediately under any

optimal sequential search procedure when search complexity is L′.

Proof of Lemma 12. Suppose for contradiction that there is an optimal sequential search

procedure that does not conclude search immediately when complexity is L′. Let h′ be the

history at which search ends along the equilibrium path.

Now, maxx∈S q
u
h,L′(x)−maxx∈S q

u
h′,L′(x) > 0, or else concluding search immediately at h

would have been a strict improvement. But then by Lemma 11 and induction on the number

of searches,

max
x∈S

quh,L′(x)−max
x∈S

quh′,L′(x) < max
x∈S

quh,L′′(x)−max
x∈S

quh′,L′′(x). (1)

Next, it is obvious that

max
x∈S

quh,L′′(x) ≥ max
x∈S

quh,L′(x). (2)

Finally, because both histories are on path,

z∗h = z∗h′ . (3)

Putting eq. (1), eq. (2) and eq. (3) together, along with the facts that U2 ≤ 0 and U22 < 0,

we have

U(z∗h′ ,max
x∈S

quh′,L′(x))− U(z∗h,max
x∈S

quh,L′(x)) < U(z∗h′ ,max
x∈S

quh′,L′′(x))− U(z∗h,max
x∈S

quh,L′′(x)).

So when search complexity is L′′, no optimal sequential search procedure concludes search

at h. This is a contradiction.

Therefore, continuing search is not a part of any optimal sequential search procedure

when complexity is L′.

Lemma 13. Let 0 < L′ < L′′, h ∈ H, and quh,L′ = 1. If search concludes immediately under

some optimal sequential search procedure when search complexity is L′, then search concludes

immediately under any optimal sequential search procedure when search complexity is L′′.28

28We need not assume h is on path for this result, as Lemma 11 is not invoked, nor do we need to assume

that there are decreasing returns to search.
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Proof of Lemma 13. Suppose for contradiction that there is an optimal sequential search

procedure that does not conclude search immediately when complexity is L′′. Let h′ be the

history at which search ends along the equilibrium path.

Now, 1 − maxx∈S q
u
h′,L′′(x) > 0, or else concluding search immediately at h would have

been a strict improvement. But then

max
x∈S

quh′,L′′(x) > max
x∈S

quh′,L′(x)

Along with the facts that U2 ≤ 0, and z∗h = z∗h′ , we have

U(z∗h′ ,max
x∈S

quh′,L′(x))− U(z∗h, 1) > U(z∗h′ ,max
x∈S

quh′,L′′(x))− U(z∗h, 1).

So when search complexity is L′, no optimal sequential search procedure concludes search at

h. This is a contradiction.

Proof of Proposition 3. Let h be some on-path history.

If search concludes immediately at h for any L (e.g., if z∗ = 1 at h), then the result holds

for any L = L ∈ R++.

Suppose there is an L at which search does not conclude immediately in some equilibrium.

Let Lτ be such that when L < Lτ , maxx∈S q
u
h,L(x)) < 1 and when L > Lτ , maxx∈S q

u
h,L(x)) =

1.

Let L be the set of complexity levels L such that, in some equilibrium, search does not

conclude when complexity is L.

Let L = inf L. By Proposition 2, L > 0. Moreover, by Lemma 13, L ≤ Lτ . Finally, by

Lemma 12, if L < Lτ , then search continues in all any equilibrium for L ∈ (L,Lτ ].

Similarly, let L = supL. By Lemma 12, L ≥ Lτ . By Lemma 13, if L > Lτ , then search

continues in all any equilibrium for L ∈ [Lτ , L).

Proof of Proposition 4. Let L′ < L′′ and suppose there is an equilibrium where the searcher

searches k′ > 0 more times when complexity is L′ (and on-path concludes search at h′) and

an equilibrium where the searcher searches k′′ > 0 more times when complexity is L′′ (and

on path concludes search at h′′). For contradiction, suppose that k′ > k′′.

Note first that maxx∈S q
u
h′′,L′′(x) < 1 (and, therefore, maxx∈S q

u
h′′,L′(x) < 1); otherwise,

the searcher would have been better off concluding search immediately at h.

Next, note that conditional on searching k more times (i.e., among all on-path histories

that conclude after after h), the location of an optimal set of k searches when complexity

is L′′ is also optimal when complexity is L′. This is easy to see, for example, from the

description of the optimal search algorithm in Appendix B.

By an argument analogous to that in the proof of Lemma 12,

0 < max
x∈S

quh′′,L′(x)−max
x∈S

quh′,L′(x) < max
x∈S

quh′′,L′′(x)−max
x∈S

quh′,L′′(x),
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where the first inequality is by the optimality of concluding at h′ over searching fewer times

and concluding at h′′.29

This however implies that the marginal benefit of concluding at history h′ rather than

history h′′ is higher when complexity is L′′ than when complexity is L′. Since the benefits

net of costs of searching the additional k′ − k′′ times are non-negative when complexity is

L′, they are strictly positive when complexity is L′′. This contradicts the assumption that

at h, the searcher optimally plans to conclude search at h′′ when complexity is L′′.

F.4 Proofs for Section 6

Proof of Proposition 5. We prove this result by constructing a candidate z′. Let qlht
be the

lower envelope of Qht and let z′ ≡ qlht
(σ(ht)). Note that by definition, Qh′

t+1
is nonempty,

and zt+1 ≥ z′. By construction, and the assumption that minq∈Qht
,y∈S q(y) > 0, quht+1

(y) =

L|σ(ht)− y|+ z′ ≤ quht
(y) for all y ∈ [x− d, x+ d], where d = |x− σ(ht)|. By Proposition 1,

any any search in [x− d, x+ d] could not be a part of an optimal search procedure, proving

the result.

Proof of Proposition 6. If the searcher learns good news at σ(ht) and σ(ht) > xt, then q(x) ≤
zt for any q ∈ Qht+1 . Otherwise, q is not quasiconcave. Moreover, quht

(x) ≤ zt+L(x−xt) for

any x ∈ S, by Lemma 1 and the fact that QQC ⊂ QMP . Therefore, if x < xt +
1
L
(zt+1 − zt),

then quht
(x) < zt+1. By Proposition 1, any any search in [minS, xt +

1
L
(zt+1 − zt)] cannot be

a part of an optimal search procedure.

The proof of the remaining cases follow identical arguments.

F.5 Proofs for Appendix A

Proof of Proposition 8. Fix some history ht ∈ H. Recall σA
d is the ‘no news’ strategy of the

adversary (see Section 4.2). Let σC denote the searcher’s optimal strategy in the commitment

game, should the adversary respond with σA
d . Since the adversary observes the searcher’s

action after each history, it is without loss of generality to take σC to be a pure strategy.

Let T be the sequence of items that are explored on path under the pair of strategies

(σC , σA
d ). Then the simultaneous strategy that explores T in the same order is an optimal

simultaneous search strategy, by Proposition 1, in the simultaneous search game at ht. But by

Lemma 6, any strategy that follows an optimal simultaneous search strategy in the sequential

search game achieves the same payoff as an optimal simultaneous search strategy does in the

simultaneous search game. By Theorem 1, this implies that an optimal sequential search

29A difference from the claim in Lemma 12 is that history h′ need not follow h′′, but this does not change

the argument.
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procedure (which by Lemma 6 and Proposition 1 is a best response to σA
d in the sequential

search game) achieves the same payoff as under (σC , σA
d ) in the commitment game. This

implies that σA
d is optimal for the adversary in the commitment game, since she is no worse

off than she would be in the sequential search game by playing it. It also then implies that

playing an optimal sequential search strategy is also optimal in the commitment game.

Proof. Suppose the commitment game starts at history h0. Let σC denote the searcher’s

strategy in the commitment game. Let ht be the history where search concludes under the

pair of strategies (σC , qAh0
).

By playing quht
, the adversary is weakly better off than she would be in the simultaneous

search game at h0 (by Proposition 1). So an optimal strategy σC in the commitment game

must coincide on path with an optimal simultaneous strategy at h0 should the adversary

play quht
. This means quht

is optimal for the adversary, since she is no worse off than she

would be in the simultaneous search game. The searcher can also achieve the same payoff

by committing to an optimal sequential search procedure.

F.6 Proofs for Appendix E

For the minimal prior case (i.e., κ ∈ (QMP )k), it suffices to adapt Lemma 3 to the present

case.

Lemma 14. Consider an attribute learning model where S is a (k-dimensional) rectangular

search space, and attributes are substitutes. Let Q = (QMP )k. Fix some history h′
t =

{(xi, z
′
i)}t−1

i=0 ∈ H, where z′i = (z1i
′, . . . , zki

′), and let x be an optimal technology at h′
t. Let

T = X∗
h′
t
\ {x}. For each xi ∈ T , let ϵi = (ϵ1i , . . . , ϵ

k
i ) ∈ Rk. Consider an alternate history

h′′
t = {(xi, z

′′
i )}t−1

i=0 ∈ H where z′′i = z′i + ϵi for xi ∈ T and z′′i = z′i otherwise. Suppose

moreover that Qh′
t
and Qh′′

t
are nonempty . The searcher’s payoff to concluding search in h′′

t

is greater than or equal to the searcher’s payoff to concluding search at h′
t.

Proof. The nontrivial case is when T is nonempty and some ϵi ≥ 0. Let ϵ = (ϵ1, . . . , ϵk) ∈ Rk

denote the attribute-wise maximum of all the ϵi, and let h′′′ be the history {(xi, z
′′′
i )}t−1

i=0,

where z′′i = z′i + ϵ. Let z′, z′′′ ∈ [0, 1]k denote the attribute-wise maximum of all z′i’s and

z′′′i ’s at histories h′ and h′′′, respectively. Since S is a rectangular search space, there exist

x′, x′′′ ∈ S such that κ(x′) = z′ and κ(x′′′) = z′′′. Clearly, x′ and x′′′ are optimal at histories

h′ and h′′′, respectively (and the searcher, by assumption, can conclude search with x′ (or

x′′′), even if they were previously unexplored).

Recall, q(x) = f ◦ κ(x) where f is submodular. Let x′
A denote an adversary optimal

unexplored alternative in S, with z′A = κ(x′
A), should the searcher conclude at history h′.

Define z′′′A analogously. Now z′′′A ≤ z′A + ϵ (with equality if the upper bound on quality is not

binding).
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Now f(z′ + ϵ) − f(z′) > 0, since f is increasing. Next z′ ≤ z′A. By submodularity,

f(z′ + ϵ)− f(z′) ≥ f(z′A + ϵ)− f(z′A). In other words, f(z′′′)− f(z′) ≥ f(z′′′A )− f(z′A). The

left side of this inequality is the increase in the quality of searcher’s best discovery, should

he conclude search at history h′′′ instead of h′. The right side is the increase in quality of

the best unexplored option, in the worst case. Along with the assumption that U1 ≥ −U2,

this implies that the searcher is better off at history h′′′ than at h′.

The searcher is weakly better off concluding search at history h′′ than at h′′′, by the same

reasoning as in Lemma 3.

Proof of Corollary 1. Applying Lemma 14 in place of Lemma 3, all other parts of the proof

are identical to the proof of Theorem 1.
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