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Abstract

Economic agents are motivated to undertake costly actions by the prospect

of being rewarded for successes and punished for failures. But what determines

what a success looks like? This paper endogenizes the criteria for success in

an otherwise standard principal-agent model with risk neutrality and limited

liability. The set of feasible contracts is constrained by incentive constraints

and possibly by a budget constraint. If the principal manipulates the criteria

for success only to lower implementation costs, and depending on which type of

constraint is more restrictive, the second-best action may be above or below the

�rst-best action. However, given the second-best action, the criteria for success

are as stringent as possible. In a class of problems where the principal�s payo¤

depends directly on the criteria for success, the second-best solution features

either more stringent criteria for success or a lower action (or both) than the

�rst-best solution.
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1 Introduction

The following new principal-agent model is proposed and studied. The agent�s �per-

formance� is a continuous variable whose distribution is determined by the agent�s

action. However, the principal is not able to perfectly observe performance. For ex-

ample, consider a salesman (agent) who has been instructed to sell a product at some

price p. The agent�s e¤orts at persuading the customer will make the latter revise

his willingness-to-pay for the product. In other words, the agent�s �performance�

is described by the customer�s resulting willingness-to-pay. However, the customer�s

willingness-to-pay is inside his head and cannot be observed by outsiders. It can only

be observed whether he decides to purchase the product or not. In other words, the

agent�s employer (principal) knows only whether the willingness-to-pay is above or

below p. Thus, even though �background performance�is continuous, the observable

signal on which remuneration is based is binary. Moreover, the criterion for success

is endogenously determined by p, which is after all dictated by the principal. For

another example, a �rm who is about to market a product newly developed by one

of its engineers must decide upon the stringency of product testing prior to launch.

A similar situation may occur even when performance can be observed but the

reward structure is restricted. This is often the case when a pass/fail test is taken.

The examiner may be able to obtain a �ne measure of the examinee�s performance,

yet much of this information is lost in the coarse marking scheme. The criterion for

success �the pass mark or the di¢ culty of the test �is also often endogenous. For

instance, a regulator dictates what it takes to pass a driver�s license test, but leaves

it to a certi�ed middleman at a test centre to determine if the applicant meets those

criteria. Likewise, medical boards determine through testing whether the medical

school graduate does or does not meet the bar to be awarded a medical license. It is

irrelevant if the candidate passes by a wide or a narrow margin. Finally, in up-or-out

systems, the organization simply decides whether to retain the employee or not.

Performance is one-dimensional in the model and the criterion for success is there-

fore essentially a performance threshold. If this is exogenous, the model reduces to

a standard two-outcome model. However, when it is endogenous, it is entirely pos-

sible that the optimal threshold depends on the action that the principal wishes to

induce. The standard literature typically does not worry about where the probability

of success comes from. One way of thinking about the current model is that a �mi-
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crofoundation�of sorts is provided, linking the endogenous probability of success to

an underlying performance technology. The model thus allows us to ask whether the

criterion for success is more or less demanding as varying levels of e¤ort is induced.

Now return to the salesman example. Within this principal-agent relationship, the

��rst-best�in the absence of moral hazard involves some e¤ort level and a price that

is set to maximize monopoly pro�ts (this ignores the e¤ects on parties outside the

contractual relationship, such as the consumer). Thus, under asymmetric information,

two sources of distortions from the �rst-best are possible; the employer may decide to

distort the action, the price, or both. Thus, the model is richer than the standard two-

outcome model, which misses the dependence between one of the principal�s choice

variables (the price) and the probability of success.

The criterion for success serves a dual purpose. It manipulates implementation

costs, and it may also, as in the salesman example, be intrinsically important to the

principal. It accomplishes the former by changing the quality of information about

the agent�s e¤ort. In this sense, the monitoring technology is endogenized. As in Li

and Yang (2020), discussed in more detail below, monitoring is tied to, and disciplined

by, an underlying performance technology that is outside the principal�s control. In

contrast, in the more traditional literature, the principal can choose from an ad hoc

set of monitoring technologies. Examples include Dye (1986) and Kim (1995).

The agent is assumed to be risk-neutral and protected by limited liability. This

makes it possible to characterize implementation costs in a succinct and tractable

way. Three versions of the problem are then analyzed. The �rst two versions assume

that the principal does not directly care about the criterion for success, but uses it

only to manipulate the cost of incentivizing the agent. Thus, this is a pure monitoring

problem. These two versions of the model di¤er in the nature of the constraint that

limits the feasible set of contracts.

The �rst version is inspired by the dominant approaches in the existing literature.

The �rst-order approach (FOA) is assumed to be valid but the principal faces a budget

constraint.1 Thresholds that are very small or very large require substantial bonuses

to be incentive compatible. The budget constraint rules out such thresholds.

The second version departs from the traditional approach by focusing squarely

1Bounds on payments are analyzed in e.g. Innes (1990), Jewitt, Kadan, and Swinkels (2008), and
Poblete and Spulber (2012). However, these papers assume that performance is perfectly observable.
A more closely related paper by Bond and Gomes (2009) is discussed below.
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on the �implementability constraint� by studying environments where the FOA is

not valid. While the FOA simpli�es the incentive compatibility problem, it requires

strong assumptions. It is even less desirable in the current environment, where the

probability of success is linked to the underlying performance technology. Without

the FOA, there are combinations of actions and thresholds that simply cannot be

implemented because no incentive compatible contract exists. Fortunately, it turns

out to be possible to fully characterize the set of incentive compatibility contracts

for any underlying performance technology. However, the shape of the feasible set

depends on the properties of said performance technology. A set of natural properties

is identi�ed and the characteristics of the resulting feasible set are described.

In both versions, the optimal threshold is higher than the threshold that optimally

implements the �rst-best action. This is due to a fundamental feature of the model

that more stringent criteria for success tend to lower incentive costs. The principal

therefore has an incentive to distort the action in such a way that higher thresholds

become feasible. However, the two versions of the model di¤er in how this is achieved.

In the �rst version, the second-best action is lower than the �rst-best action but this

is reversed in the second model under certain regularity assumptions. In either case,

the feasibility constraint binds at the second-best solution. The two versions give

di¤erent conclusions because the feasible sets have dramatically di¤erent shapes. This

is a stark illustration of the critical role of the FOA in the existing literature.

In the third version of the problem, the principal is assumed to intrinsically care

about the criterion for success, as in the salesman example. Consequently, the second-

best solution is not necessarily on the boundary of the feasible set because the princi-

pal may be reluctant to distort the threshold too much. When the �rst-best is interior

and feasible in the second-best problem, the latter features more stringent criteria for

success or a lower action (or both) than the �rst-best solution, even when allowing

for both budget constraints and implementability constraints. In general, both the

threshold and the action are distorted away from the �rst-best. This is typically done

in such a way that the threshold is too high compared to what would be socially op-

timal given the second-best action. In the salesman example, the price then exceeds

the monopoly price for the demand curve induced by the agent�s action.

Li and Yang (2020) examine the design of an optimal monitoring technology in

which performance can be partitioned into an exogenously �xed number of categories.

This is more general than the current paper, which only allows a partition into success
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and failure. However, Li and Yang (2020) simply assume that the principal wishes

to induce the highest possible action. Thus, they do not study how the �rst-best

and second-best actions di¤er. Moreover, absent a budget constraint it is always

possible to implement the highest action with a su¢ ciently large bonus. Hence, the

implementability problem is minimized in their setting. The current paper allows the

study of environments consistent with Li and Yang (2020) (with two categories) while

allowing the �rst-best action to be interior. Then, the second-best action may exceed

the �rst-best action.

Bond and Gomes (2009) consider an agent who works on a number of independent

tasks, each of which either succeeds or fails. The agent�s compensation is contingent

on the number of successes. The FOA is not valid because the agent may want

to deviate to the lowest possible e¤ort pro�le (shirking on all tasks). The FOA is

generally not valid in the present paper either. In fact, the problem is often precisely

that the agent is tempted to deviate to the lowest possible action. Thus, Bond and

Gomes (2009) and the current paper share some methodological similarities and are

among the few that study the economic consequences of the failure of the FOA.

The contracting problem in Bond and Gomes (2009) results in two kinds of in-

e¢ ciencies: A distortion in the total amount of e¤ort, and a distortion in how this

total amount is distributed among tasks. They assume that the �rst-best solution

involves the agent working as hard as possible on each task. Thus, the only possible

distortion in total e¤ort is downwards; the second-best e¤ort must be no higher than

the �rst-best. Once again, no such assumption is made in this paper. As for the

second distortion, the agent in Bond and Gomes (2009) concentrates too much of the

total e¤ort on a small number of tasks. In the model presented here, the second di-

mension of ine¢ ciency comes from the fact that the criteria for success are distorted.

As alluded to earlier, when the criterion for success is intrinsically important to the

principal, she often makes the criterion more stringent than she would ideally like,

since this turns out to make it cheaper to induce e¤ort.

In some ways, the problem in the current paper is simpler than in Li and Yang

(2020) and in Bond and Gomes since only partitions into successes and failures are

allowed and there is only one task. On the other hand, the implementability problem

is tackled in more generality and distortions from the �rst-best are treated more

carefully as it is not assumed that distortions in e¤ort can only be downwards.
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2 Model and preliminaries

The principal (she) employs a single agent (he). The agent takes some costly and

unobservable action, a, belonging to some compact interval [a; a]. Given the agent�s

action, his performance is a random variable, X. Let F (xja) denote the corresponding
distribution function, given a. For all a 2 (a; a], assume that there are no mass points,
the support is the same interval for all a 2 (a; a], and the density f(xja) = Fx(xja)
is strictly positive on this interval, [x; x], which may be bounded or unbounded.2 At

a = a, the distribution either (i) satis�es these same assumptions or (ii) is degenerate

at x. In the latter case, the agent�s performance is guaranteed to be the worst possible

if he takes the lowest possible action. This special case is included because it is

useful in illustrating the workings of the model and because it arises naturally in

some parameterized examples. The derivatives Fa; Faa, fa and their partial and cross

partial derivatives are assumed to exist for all a 2 [a; a] in case (i) and for all a 2 (a; a]
in case (ii). Throughout, it is assumed that Fa(xja) < 0 for all x 2 (x; x) and all
a 2 [a; a] or a 2 (a; a] in case (i) and (ii), respectively. This assumption implies that
actions are productive, in the sense that bad outcomes are less likely the harder the

agent works.

Actions are normalized such that the agent�s cost function is linear. Thus, the

agent incurs a cost of a when he takes action a. Alternatively, think of the agent�s

action as a decision of what costs to incur. The agent is assumed to be risk neutral

and protected by limited liability. This assumption makes it possible to succinctly

characterize implementation costs, but it is not important for the more fundamental

discussion of which contracts are incentive compatible.3 The minimum wage implied

by the limited liability constraint is normalized to zero. The agent�s outside option

is assumed to be so poor that the participation constraint never binds.

The principal either does not directly observe the agent�s performance or his per-

formance is not veri�able. Instead, what is observable and veri�able is whether the

agent�s performance exceeds a (deterministic) threshold t. Thus, [x; x] is partitioned

into two intervals, [x; t) and [t; x]. The agent fails if his performance falls in the �rst

interval and succeeds otherwise. Note that the threshold t in this way describes the

2A subscript indicates the partial derivative with respect to the subscripted variable.
3As long as the agent has quasi-linear utility, the bonus from succeeding can be interpreted

as being measured in �utils� rather than in monetary terms. The characterization of incentive
compatible contracts carries through under this interpretation.
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criterion for success. The higher t is, the more stringent is the criterion.

Thus, there are two veri�able outcomes. The novelty is that the criterion for

success is endogenized. That is, the principal controls what the threshold is. The

stringency of the criterion a¤ects the agent�s incentives and therefore the implemen-

tation costs that the principal faces.

2.1 Properties of contracts

To understand the agent�s incentives, �x a threshold t 2 (x; x) and a bonus b that is
paid out if the outcome is a success. Given the participation constraint is slack, it is

optimal for the principal to pay nothing if the outcome is a failure. Then, the agent�s

expected utility from action a is b (1� F (tja))�a since the probability of a success is
1� F (tja). Now assume that the principal is aiming to induce some speci�c interior
action a while holding �xed the threshold t 2 (x; x). Then, b must be calibrated to
ensure that the agent�s �rst-order condition is satis�ed at the intended action. In

other words, it must equal

B(a; t) =
�1

Fa(tja)
:

Hence, if the agent takes the intended action a when o¤ered the bonus B(a; t), his

expected wage is

W (a; t) = �1� F (tja)
Fa(tja)

and his expected utility is

U(a; t) =W (a; t)� a:

It is useful to think of a contract as a triplet (a; t; B(a; t)), specifying a recom-

mended action, a criterion for success, and a bonus if the outcome is a success. How-

ever, since B(a; t) is uniquely nailed down by (a; t), the contract can be summarized

entirely by the pair (a; t). Here (a; t) can be read as: �the principal intends to induce

action a by specifying threshold t and committing to the bonus B(a; t).�The problem

is that the �rst-order condition is necessary but not always su¢ cient for the agent�s

utility to attain a global maximum at the intended action a. In other words, there is

more to the incentive compatibility problem. Thus, keep in mind that W (a; t) and

U(a; t) are valid only as long as (a; t) is incentive compatible. A general treatment of

the incentive compatibility problem is postponed to Section 4.

As mentioned, incentive compatibility pins down B(a; t), W (a; t), and U(a; t), as
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long as a 2 (a; a). This is not the case when a or a is induced. The interesting

question in those cases is what the cheapest way to induce the action with threshold

t is. For action a, it is optimal and incentive compatible to o¤er a zero bonus,

regardless of the threshold. Thus, let B(a; t) = W (a; t) = 0 and U(a; t) = �a. Note
that implementation costs are generally discontinuous at a (an exception is considered

in Section 4.2). Similarly, let B(a; t) denote the lowest bonus that can be used to

induce action a with threshold t 2 (x; x), and let W (a; t) and U(a; t) denote the

resulting expected wage and expected utility, respectively. Incentive compatibility

may necessitate a higher bonus than what the �rst-order condition suggests. A lower

bonus would certainly cause the agent to deviate to a lower action. In other words,

using the �rst-order condition gives lower bounds on B(a; t); W (a; t), and U(a; t).

Holding �xed the threshold, a standard argument proves that a higher bonus must

be o¤ered to induce a higher action. Otherwise, an incentive compatibility constraint

is violated. This conclusion does not require a full characterization of the feasible set.

When the agent is induced to work harder, he bene�ts not only from a higher

bonus but also from a higher probability that he passes the �xed threshold. This

double bene�t increases his expected wage and more than compensates for the fact

that he also incurs higher e¤ort costs. The next proposition records and proves these

properties. All proofs are either in the Appendix or integrated into the main text.

Proposition 1 Fix an interior threshold t 2 (x; x) and assume that actions a and
a0 are implementable, with a0 > a. Then, B(a0; t) � B(a; t), U(a0; t) � U(a; t), and

W (a0; t) > W (a; t):

Next, move along the other dimension. That is, hold a 2 (a; a) �xed and consider
how the contract depends on the threshold that is used to induce the action. For many

of the following results, the monotone likelihood-ratio property (MLRP) is imposed.

In fact, for expositional simplicity a strict version of the MLRP is used. Under the

(strict) MLRP, the likelihood-ratio fa(xja)
f(txa)

is (strictly) increasing in x. An equivalent

de�nition is as follows.

Definition (MLRP): The monotone likelihood-ratio property is satis�ed if f(xja)
is strictly log-supermodular in x and a, or

@2 ln f(xja)
@x@a

> 0:
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There is a potential trade-o¤ when increasing the threshold. First, the higher the

threshold is, the less likely it is that the bonus is paid out. On the other hand, it

is possible that the bonus must be increased as well. The MLRP implies that the

�rst e¤ect dominates because the bonus increases relatively slowly. Thus, W (a; t) is

strictly decreasing in t. Since the threshold does not directly impact the cost of e¤ort,

U(a; t) is strictly decreasing in t as well.

Proposition 2 Assume MLRP is satis�ed. Fix an interior action a 2 (a; a) and
assume that it can be induced with thresholds t and t0, with t0 > t. Then, W (a; t0) <

W (a; t) and U(a; t0) < U(a; t).

2.2 The principal�s problem

The principal is assumed to be risk neutral. The cost W (a; t) of implementing a

feasible contract (a; t) depends on the threshold. Thus, even holding �xed the action,

there is generally an incentive to manipulate the criterion for success in order to

manipulate implementation costs.

However, the principal may also take a more direct interest in the threshold t.

The expected bene�t to the principal of (a; t) is �(a; t). Her objective is therefore to

maximize �(a; t)�W (a; t) over the feasible set of contracts.
The bene�t function may depend directly on the criterion for success. The leading

example is �(a; t) = (t� c)(1� F (tja)). Here, the principal hires a salesman (agent)
to sell a product at price t to a single customer. If successful, the principal incurs

a cost c of supplying the product. As mentioned in the introduction, the agent�s

performance is the willingness-to-pay that he is able to instill in the customer. Given

an action a and a price t, the probability of a success is 1� F (tja), and �(a; t) thus
describes expected pro�ts. Note that �(a; t) is non-monotonic in t in this example.

The threshold t will be said to be �intrinsically important�to the principal whenever

�(a; t) depends on t. This encompasses situations in which it is harder or more costly

for the principal to detect if performance exceeds some thresholds rather than others.

There are also contracting environments in which the principal does not care

directly about the criterion for success. With some abuse of notation, the bene�t

function will be written more succinctly as �(a) in those cases. The obvious example

is �(a) = E[Xja]. Here, the agent�s performance can be interpreted as his productivity
and the principal cares about his expected productivity. However, at the point in time
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at which the agent must be paid, it can only be veri�ed whether the performance

exceeded a pre-set threshold or not.

It is important to distinguish between the case where the threshold is intrinsically

important to the principal and the case where it is not. In the latter case, the only

role of the threshold is to manipulate implementation costs, whereas it serves a dual

purpose when it is intrinsically important.

Social surplus is the di¤erence between the bene�ts and the e¤ort costs, or

S(a; t) = �(a; t)� a:

The �rst-best benchmark entails maximizing S(a; t).4 Thus, any �rst-best solution

consists of a pair (aFB; tFB). The point here is that t is directly important for welfare

when it is intrinsically important to the principal. Hence, any distortion of the thresh-

old away from tFB is important for welfare reasons. In contrast, t does not matter

for social surplus when the bene�t function takes the form �(a). Stated di¤erently,

there is no unique �rst-best threshold in this case.

The principal�s second-best problem is to maximize

V (a; t) = �(a; t)�W (a; t):

It is often more useful to think of the principal as the �residual claimant,�since she

claims what is left of social surplus after the risk neutral agent has received his share,

or

V (a; t) = S(a; t)� U(a; t):

The di¤erence between the �rst-best and the second-best problem is that there is no

moral hazard problem in the former. However, both problems assume the same uncer-

tainty regarding the agent�s performance. In other words, the bene�t function is the

same in either case. In the salesman example, the customer�s true willingness-to-pay

is hidden to the principal even in the �rst-best problem. Perfect price discrimina-

tion is therefore not possible in the �rst-best problem. Thus, all distortions in the

second-best problem ultimately traces back to the moral hazard problem.

Propositions 1 and 2 already reveal important information about W (a; t) and

4This de�nition ignores any impact on third parties. For instance, the customer in the salesman
example is impacted by (a; t), but this is disregarded in S(a; t).
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U(a; t) along the a and t dimension, respectively. First, �x the threshold t and

assume that there is a unique action that maximizes S(a; t). This would identify the

�rst-best action in a world where the threshold is exogenous. If this is feasible in

the second-best problem, then V (a; t) is maximized at an action that is no higher.

The reason is that at higher actions, social surplus is strictly lower and the agent is

weakly better o¤, hence leaving less surplus for the principal. Thus, a standard model

with exogenous thresholds predicts that the second-best action is no higher than the

�rst-best action. However, Section 4 demonstrates that this is no longer necessarily

true when actions and thresholds are determined jointly.

Second, holding the action �xed, W (a; t) is strictly decreasing in the threshold

(although attention must be restricted to incentive compatible thresholds). Thus,

when the criterion for success is not intrinsically important, the principal will aim to

increase the threshold as much as possible in order to decrease implementation costs.

This may give rise to an existence problem because a threshold of x is not incentive

compatible �the agent never succeeds and will therefore pick action a in response.

There are at least three ways to deal with the existence problem. First, the

problem disappears under realistic restrictions on the set of permissible contracts.

For instance, a budget constraint or a wage cap makes it impossible to implement

thresholds close to x. Such contracting environments are examined in Section 3.5

Second, under realistic assumptions on the distribution function, contracts with

large thresholds are not incentive compatible in the �rst place. This possibility is

explored in Section 4. In comparison, the dominant approach in the existing principal-

agent literature downplays the incentive compatibility problem by assuming that the

�rst-order approach is valid. The incentive compatibility problem is taken more

seriously in Section 4, where it takes center stage. The conclusions of Sections 3 and

4 are sometimes diametrically opposed. Both sections focus on the case in which the

principal is not intrinsically interested in the criteria for success.

Third, assume the threshold is intrinsically important to the principal and tFB

is interior. If she cares su¢ ciently much about the threshold, then distorting it too

much is so undesirable that it does not compensate for the accompanying decrease in

implementation costs. This possibility is considered in Section 5.

5A wage cap can also be thought of as a crude way to model a risk averse agent, speci�cally
one whose utility is constant at wages above a certain level. Thus, risk aversion can also solve the
existence problem.
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3 Budget constraints

This section assumes that the principal faces a budget constraint. Thus, she can o¤er

a bonus of at most b, where b is bounded. To understand the implications of this

restriction, note that the MLRP implies that the bonus B(a; t) is u-shaped in t since

Bt(a; t) =
fa(tja)
Fa(tja)2

is �rst negative and then positive as t increases.

For a given action a, the bonus B(a; t) is minimized at the threshold t = t0(a)

for which the likelihood-ratio is zero, or fa(t0(a)ja) = 0. Here, the agent is paid if

and only if the likelihood-ratio is positive, i.e. whenever x � t0(a) or fa(xja) � 0.

This is where it is easiest to incentivize the agent, because he is now paid for all the

performance levels that a marginal increase in his e¤ort makes more likely and never

for those that are made less likely. However, as Proposition 2 shows, expected wage

costs decrease if the threshold exceeds t0(a) because the bonus, albeit higher, is then

paid out less often.

Conversely, more extreme thresholds, whether they are high or low, require higher

bonuses. The reason is that F (tja) is close to 0 or 1 when t is close to x or x,
respectively. Thus, it is harder for the agent to manipulate the chance of success. To

entice him to work harder, the bonus must therefore be substantial. In fact, since

Fa(tja)! 0 as t! x or t! x, the bonus needs to grow without bound as more and

more extreme thresholds are used. In contrast, when t takes an intermediate value,

F (tja) is easier to manipulate through a, and so a smaller bonus is required.
Thus, the budget constraint implies that only thresholds in an intermediate range

can be used to incentivize the agent. However, the set of thresholds that work depends

on the action that the principal intends to induce. To focus on this issue, it is assumed,

in line with most of the existing literature, that the �rst-order approach is valid and

that all interior (a; t) are implementable. This is satis�ed as long as F (tj�) is globally
convex in a, since this implies that the agent�s problem is concave. Thus, Rogerson�s

(1985) Convexity of Distribution Function Condition (CDFC) is imposed.

Definition (CDFC): The Convexity of Distribution Function Condition is satis�ed

if Faa(xja) � 0 for all x 2 [x; x] and all a 2 (a; a].

The CDFC is often criticized. It is used here not because it is a desirable assump-
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Figure 1: The feasible set given a budget constraint.

tion but instead to focus squarely on budget constraints. The next section does the

opposite, by ignoring budget constraints but relaxing the CDFC. The CDFC implies

that the cheapest way to induce action a with threshold t is to use the bonus that

satis�es the �rst-order condition. Thus, Propositions 1 and 2 also hold when a = a.

To visualize the problem, start by sketching the iso-bonus curve where B(a; t) = b

in (a; t) space. Fix some action a and assume that B(a; t0(a)) < b, meaning that there

exists threshold that implements a while satisfying the budget constraint. Given that

B(a; t) is u-shaped in t, there is one threshold below t0(a) and one threshold above

it for which B(a; t) = b. Next, it follows from Proposition 1 that B(a; t) is weakly

increasing in a. Thus, holding �xed the threshold, if B(a; t) satis�es the budget

constraint, then so do all smaller actions. The slope of the iso-bonus line is �Ba(tja)
Bt(tja)

or �Faa(tja)
fa(tja) . Thus, the iso-bonus curve slopes downward if t > t0(a) and upwards if

t > t0(a). Figure 1 illustrates (the details are in Example 1 at the end of this section).

Note that the iso-bonus curve has two �prongs.�Any (a; t) that is inside the area

between the prongs satis�es the budget constraint and is therefore feasible. In con-

trast, Propositions 1 and 2 imply that iso-wage curves, W (a; t) = c, and indi¤erence

curves, U(a; t) = c, slope upwards when the CDFC and MLRP are satis�ed. Expected

wages and expected utility are higher below the respective curves.

Assume that the bene�t function �(a) does not depend on the criterion for success.
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Thus, in the second-best problem, the threshold is manipulated with the sole purpose

of lowering implementation costs. Assume that aFB is unique and interior.

If B(aFB; t0(aFB)) > b then aFB, or any higher action, is not implementable in

the second-best problem. Then, the second-best action must be below the �rst-best

action, or aSB < aFB. Thus, assume instead that B(aFB; t0(aFB)) � b. This is the

case in Figure 1, where aFB = 3. In the second-best problem and for any a, it is

optimal for the principal to increase the threshold as much as is feasible. Hence, the

optimal threshold is to be found on the upper prong or the downwards-sloping part

of the iso-bonus line. Now imagine inducing aFB with the highest possible threshold.

At this point, the weakly downward-sloping iso-bonus curve is intersected from below

by a weakly increasing indi¤erence curve. Thus, any feasible contract that involves

a higher action is on or below the indi¤erence curve, which means that it has both

strictly lower social surplus and gives the agent weakly higher utility. This cannot

be optimal for the principal. Thus, the second-best action can be no higher than the

�rst-best, or aSB � aFB.6 As long as aSB > a, this means that the threshold must be
larger than the threshold that would optimally implement aFB, subject to the budget

constraint. Thus, the criterion for success is stringent. Indeed, since aSB is small and

tSB is large, there is a smaller probability that the agent is successful.

Proposition 3 Assume that the MLRP and CDFC hold and that the principal is not
intrinsically interested in the criterion for success. Assume the �rst-best action aFB

is unique and interior. Assume that the principal faces a budget constraint, b < 1.
Then, any second-best action is no greater than the �rst-best action, aSB � aFB. If
b allows aFB to be implemented and aSB > a, then the second-best threshold is no

smaller than the threshold that optimally implements aFB subject to feasibility.

Example 1: Figure 1 illustrates Proposition 3 when F (xja) =
�
x
16

�a
, x 2 [0; 16],

a 2 [1; 4]. This distribution satis�es the MLRP and the CDFC and is inspired by
an example in Rogerson (1985). It is assumed that b = B(3; 13) = 8:98. Assuming

that �(a) = E[Xja] = 16a
1+a
, the �rst-best action is aFB = 3. In the second-best

problem, the contract (a; t) = (3; 13) is the best feasible contract that induces aFB.

This contract yields pro�t of 7:84. In comparison, action a = 1 can be induced at

6If �(a) is di¤erentiable and Faa(xja) > 0 for all x 2 (x; x), then aSB < aFB . Intuitively, a small
distortion away from aFB has no �rst-order e¤ect on social surplus but it has a �rst-order e¤ect on
the agent�s expected utility.
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zero cost, yielding pro�t of 8. However, the second-best (obtained numerically) is at

(aSB; tSB) = (2:22; 13:66), which yields expected pro�t of 8:37. N

Demougin and Fluet (2001) consider a model with a �nite number of signals and

risk neutral parties. The MLRP and the CDFC hold and there is a limited liability

constraint. Interestingly, in such a setting there is no loss of generality in restricting

the compensation structure to be binary even if performance is perfectly observable.

A bonus is paid if and only if the very best signal is realized, which has a strictly

positive probability of occurring in their �nite-signal model. Note that there is no

existence problem.

The principal in Demougin and Fluet (2001) can invest in di¤erent monitoring

technologies, each leading to a di¤erent relationship between actions and the proba-

bility of realizing the highest signal. They make the point that the optimal monitoring

system may depend on the action that is implemented. Something similar occurs in

the present model, where the optimal threshold depends on the action.

4 Implementability constraints

This section studies the problem without imposing the CDFC. Thus, some (a; t)

may not be incentive compatibility. This places new restrictions on the principal�s

problem. To focus on these implementability constraints, the principal is assumed

not to be budget constrained.

4.1 Characterization of the feasible set

It is possible to completely characterize the set of incentive compatible contracts.7 To

this end, �x t 2 (x; x) and think of it as a parameter. Then, for a �xed bonus b, the
curvature of the agent�s expected utility depends only on the curvature of 1� F (tj�)
with respect to a. Hence, the problem is locally concave in a if F is locally convex

in a, or Faa � 0. Now, starting from the function F (tj�), construct the convex hull
(as a function of a), and denote this FC(tj�). The convex hull is the largest convex
function that lies on or below F (tj�). Thus, FC(tja) � F (tja) for all a 2 [a; a]. For

7The argument leading to Lemma 1 borrows from Kirkegaard (2017). Although he considers a
more traditional contracting setting, at the technical level his model is closely related to a problem
with binary outcomes as featured in the present model.
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any t, let

AC(t) = fa 2 [a; a]jFC(tja) = F (tja)g

denote the set of actions for which F (tja) coincides with FC(tja). With some abuse of
terminology, say that a is �on the convex hull�of F (tj�) if a 2 AC(t). The end-points
of the domain are always on the convex hull, or a; a 2 AC(t).
For any t 2 (x; x), it holds that (a; t) is incentive compatible if and only if a 2

AC(t).8 The intuition is as follows. First, since 1� FC(tj�) � 1� F (tj�), the agent�s
expected utility is at least as high in an imaginary problem where his technology is

described by FC(tj�) rather than F (tj�). Moreover, expected utility is concave in the
imaginary problem. Thus, if utility in the imaginary problem is maximized at some

a 2 AC(t) then it is maximized at the same action in the real problem. Finally,

thresholds of x or x can be used to induce only a since F (xja) = 0 and F (xja) = 1
are independent of a. These results are summarized in the next statement.

Lemma 1 The set of implementable (a; t) is

I = f(a; t) 2 [a; a]� (x; x) ja 2 AC(t)g [ f(a; x); (a; x)g:

The �implementability constraint� from now on refers to the condition that the

principal must necessarily select a contract that belongs to I. Recall that the �rst-
order condition pins down B(a; t), W (a; t), and U(a; t) for any interior (a; t) that is

in I.
Holding �xed the threshold t, the set AC(t) traces out all the actions in I. Moving

along the other dimension, let TC(a) denote the set of thresholds for which a can be

implemented, TC(a) = ft 2 [x; x]j(a; t) 2 Ig. Thus, TC(a) describes the set of

thresholds that can be used to incentivize the action a.

Examples that illustrate Lemma 1 can be found in Sections 4.3, 5.1, and in the

Appendix. For now, note that AC(t) = [a; a] for all t 2 (x; x) if and only if the CDFC
is satis�ed. Thus, any departure from the CDFC implies that there are some interior

(a; t) that are not implementable.

8For a 2 fa; ag, this statement is taken to mean that there are bonuses that make the contract
incentive compatible. The action a can be implemented with any threshold and a �xed wage contract
(no bonus). Similarly, the action a can be implemented with any interior threshold x 2 (x; x) by
picking a bonus that is so large that the agent�s utility is globally increasing in the action.
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4.2 The shape of the feasible set

Lemma 1 describes how to derive the feasible set for any distribution function. How-

ever, the shape of the feasible set depends on the speci�c properties of the latter.

This subsection asks what some reasonable or natural properties are, and what such

properties imply for the shape of the feasible set. The next subsection utilizes these

results to solve the principal�s problem.

To begin, it is helpful to introduce a very simple way to relax the CDFC.

Definition (CAT): Concavity at the top is satis�ed if, for any a 2 (a; a), there

exists some x0 2 (x; x) such that Faa(xja) < 0 for all x 2 (x0; x).

Concavity at the top (CAT) rules out the CDFC and implies that no interior

action can be implemented with very high thresholds. Thus, this assumption solves

the existence problem mentioned in Section 2.

Chade and Swinkels (2020) introduce a no-upward-crossing condition, which can

be stated as the requirement that Faa(�ja) � �Fa(�ja) never crosses 0 from below

on (x; x), for any � 2 R and any a. An equivalent statement is that �Fa(�j�) is
log-supermodular in a and x, or that Faa(�ja)

Fa(�ja) is increasing. Modifying Chade and

Swinkels� (2020) terminology slightly, the abbreviation NUCx will be used for no-

upward-crossing with respect to x.

Definition (NUCx): The no-upward-crossing condition (with respect to x) is sat-

is�ed if �Fa(xja) is log-supermodular in a and x.

Given NUCx, Faa(�ja) is �rst-positive-then-negative as x increases. Thus, if NUCx
is satis�ed but F is not globally convex in a for any x then CAT is automatic.

Chade and Swinkels (2020) provide su¢ cient conditions for NUCx. Even though

they provide counterexamples, they argue that NUCx is a relatively weak condition.

They mention the location families as a special example, such that F (xja) and f(xja)
can be written as Q(x�a) and q(x�a), respectively. Here, it holds that �Fa(xja) =
q(x� a) = f(xja). Thus, in this case, the MLRP and NUCx are the same condition.
NUCx implies that Faa is more likely to be negative the higher the threshold is,

suggesting that the set of implementable actions shrinks as t increases. This is correct,

but the proof is more involved since the convex hull of F (tj�) must be examined.

Proposition 4 Assume NUCx holds. If t0; t 2 (x; x) and t0 > t then AC(t0) � AC(t).
That is, fewer interior actions can be implemented the higher the threshold is.

16



Next, move along the other dimension. Thus, �x a target action and ask which

thresholds can work to implement that particular action.

Proposition 5 Assume NUCx and CAT are satis�ed. Then, for any a 2 (a; a), the
set TC(a) is empty or it is an interval of the form (x; t

C
(a)], where tC(a) < x. Thus,

thresholds close to x cannot be used to implement a.

For a = a, let tC(a) denote the highest threshold such that the bonus derived from

the FOA is incentive compatible. Thresholds above tC(a) can still be used to induce

action a, but the bonus must be made higher than what is suggested by the FOA.

Introducing a new de�nition, say that F satis�es no-downward-crossing with re-

spect to a, abbreviated NDCa, if Faa(xj�) never crosses 0 from above on (a; a), for any
x 2 [x; x]. This allows Faa(xj�) to be �rst-negative-and-then-positive as a increases.
This is a natural counterpart of NUCx, which considers the e¤ects of increasing x.

Definition (NDCa): The no-downward-crossing condition (with respect to a) is

satis�ed if Faa(xj�) never crosses 0 from above on (a; a), for any x 2 [x; x].

Equivalently, NDCa says that �Fa is unimodal in a. A su¢ cient condition is that
�Fa is log-concave in a. In the location families mentioned before, this holds under
the standard assumption that the density, q, is log-concave.

Chade and Swinkels (2020) explain NUCx in the context of a jogger trying to

run a certain distance in a pre-speci�ed amount of time. The action is how much the

jogger exercises. The NUCx disciplines how the marginal increase in the probability of

success from additional exercise for a committed jogger as compared to a sedentary

person changes with the threshold (distance). NDCa instead says that for a �xed

threshold, the probability of success, 1�F (tja), is �rst-convex-then-concave in e¤ort.
For the sedentary person, a bit of additional exercise is not going to improve the

chance that he will be able to run the full distance in the allotted time very much.

However, as the amount of exercise ramps up, the chance of succeeding increases

rapidly, until a point is reached where success is all but guaranteed and the marginal

return to further exercise diminishes. Thus, the �learning curve�is s-shaped.

NDCa implies that the set of feasible actions has a particularly simple structure.

Proposition 6 Assume NDCa holds. Then, for any t 2 (x; x), the set of imple-

mentable actions takes either the form (i) AC(t) = fa; ag, (ii) AC(t) = [a; a], or (iii)
AC(t) = fag [ [aC(t); a], where aC(t) 2 (a; a).
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Thus, if some interior action is implementable, then all higher actions are im-

plementable as well. It is particularly important to note that if the action aC(t) is

induced, then the agent is exactly indi¤erent between the target action and the lowest

action, a. In case (i), de�ne aC(t) = a and in case (ii) de�ne aC(t) = a. Then, in all

three cases, the set AC(t) can be written in the form fag [ [aC(t); a].
The next result combines the previous regularity assumptions. It can be thought

of as describing the �nicest�shape of the feasible set that can be expected once the

CDFC no longer holds.

Corollary 1 Assume that CAT, NUCx, and NDCa all hold. Then, aC(t) is weakly
increasing in t on (x; x). Equivalently, tC(a) is weakly increasing in a on (a; a).

4.3 The second-best solution

Consider again the case in which the principal takes no direct interest in the threshold

t. As before, assume that there is a unique and interior �rst-best action, aFB. In

addition, assume that the distribution function is well-behaved in the following sense.

Definition (Regularity): F (xja) is regular if MLRP, CAT, NUCx, NDCa all
hold and that for any a 2 (a; a), there exists a threshold tC(a) 2 (x; x) such that a
can be implemented if and only if the threshold is no larger than tC(a).9

The regularity assumption is interesting in part because it turns out to yield

conclusions that are diametrically opposed to those obtained in Section 3.

Note that (a; tC(a)) traces out the boundary of the feasible set on (a; a)� (x; x).
Since wage costs are decreasing in t and � is independent of t, any interior solution

to the second-best problem must be on the boundary, i.e. be of the form (a; t
C
(a)).

By Corollary 1, the threshold is more stringent the higher the target action is.

What is particularly important for the upcoming analysis is that NDCa implies

that if action a is implemented with a threshold of exactly tC(a) then the agent is

exactly indi¤erent between a and the lowest possible action, a (see the discussion

following Proposition 6). This is analytically convenient because the �anchor� a is

independent of the action that is to be implemented, which in turn makes it easier to

make inferences about the agent�s utility along the boundary of the feasible set.

9CAT already ensures that tC(a) < x. Thus, what is assumed in addition is that TC(a) is not
empty. Hence, all a are implementable with some threshold. This rules out that F (xja) is globally
concave in a for all x.
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Example 2: Assume that F (xja) is the Kumaraswamy distribution,

F (xja) = 1� (1� xa)� , x 2 [0; 1]

where � > 0 is a shape parameter and a � 0. It is easy to verify that the MLRP and
the NUCx hold. Likewise, for any x 2 (0; 1), Faa(xja) has the same sign as 1� �xa.
Thus, the CDFC is satis�ed if � 2 (0; 1]. Indeed, note that � = 1 reproduces the

distribution in Example 1 (with a normalized support), for which the CDFC holds.

For � > 1, CAT holds since 1 � �xa < 0 when x is su¢ ciently close to one. For
similar reasons, NDCa holds as well. If a > 0, then Faa(xja) is strictly positive for
all a 2 [a; a] when x is su¢ ciently small. Any such threshold can then be used to
implement any action. Combined with CAT, there thus exists a threshold tC(a) 2
(0; 1) such that a 2 (a; a) can be implemented if and only if the threshold is no larger
than tC(a). Hence, regularity is satis�ed. The last part of the argument does not

hold if a = 0. However, in this case, F (xja) is degenerate. It then turns out to
be straightforward to solve for tC(a) and verify directly that tC(a) 2 (0; 1) for all
a 2 (a; a]. By the indi¤erence condition just mentioned, U(a; tC(a)) = 0 since action
a = 0 has no chance of earning a bonus. This in turn implies that tC(a) = z

1
a , where

z 2 (0; 1) solves 1 = z (1� � ln z). In this example, the probability of success is
(1� z)�, and thus constant, along the boundary of the feasible set. N

The best-case scenario for the principal is that F (xja) = 1 for all x 2 [x; x].

Example 2 provided one example (when a = 0) and Section 5.1 contains another

example. In words, the agent�s performance is guaranteed to be the worst possible if

his action is a. Therefore, for any t 2 (x; x), there is no chance that the agent earns the
bonus with action a. This is advantageous to the principal, because such a deviation

is less desirable and therefore easier to prevent. In particular, the aforementioned

indi¤erence condition is now

U(a; t
C
(a)) = �a:

Thus, the agent is indi¤erent between all (a; tC(a)), a 2 (a; a]. Stated di¤erently,
along the boundary of the feasible set, the agent appropriates a constant amount of

rent and the rest goes to the principal. This is reminiscent of a standard principal-

agent problem with risk neutral parties and a binding participation constraint. Thus,

the �rst-best action solves the second-best problem.
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Proposition 7 Assume that F (xja) is regular and that F (xja) = 1 for all x 2 [x; x].
Assume that the principal�s bene�t function, �(a), depends only on a and that there

is a unique and interior �rst-best action, aFB. Then the second-best action coincides

with the �rst-best action, aSB = aFB.

In this setting, there is no distortion of the optimal action. However, this is the

case only because the threshold is endogenous and can be adjusted. If t is exogenous

and �xed, the conclusion is much di¤erent. For instance, if t is �xed at a level that

exceeds the solution to the second-best problem, then only a and actions above aFB

are feasible. Thus, the agent is either induced to take the lowest possible action or an

action that exceeds the �rst-best. This example illustrates in a rather extreme way

the bene�t to being able to endogenize the criterion for success.

Next, remove the assumption that F (xja) is degenerate. A deviation to a now

carries with it a strictly positive probability that the agent earns the bonus. Since the

bonus depends on (a; tC(a)), the agent�s utility therefore also depends on (a; tC(a)).

Thus, the agent�s utility is no longer constant along the boundary of the feasible set.

This gives the principal an incentive to distort the action away from the �rst-best,

since this allows her to manipulate the rent that has to be portioned o¤ to the agent.

It will now be proven that the action is distorted upwards, and that the threshold as

a consequence must be �large.�

The argument centers on comparing the agent�s indi¤erence curve to the boundary

of the feasible set, summarized by the function tC(a). As already noted, the indif-

ference curve must slope upwards on the feasible set, but so does tC(a). However, it

can be shown that at any point of intersection, the indi¤erence curve is �atter than

t
C
(a). Thus, any indi¤erence curve crosses tC(a) at most once, and if so from above.

Figure 2 illustrates this property (see Example 3, below, for details). In comparison,

in Proposition 7 there is an indi¤erence curve that coincides everywhere with tC(a).

Consider the indi¤erence curve through the feasible point (aFB; tC(aFB)), as in

Figure 2. Any feasible point below this curve is better for the agent and must have

social surplus no higher than at (aFB; tC(aFB)) since social surplus is maximized

whenever a = aFB. Thus, all such points leave less surplus to the principal than

does (aFB; tC(aFB)). The only feasible points that are potentially preferable feature

actions and thresholds that are above aFB and tC(aFB)), respectively. Thus, if the

second-best action is greater than a then it must be no smaller than the �rst-best

action, aSB � aFB, and the optimal threshold must be larger than what is required
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Figure 2: The feasible set for a regular distribution function.

to optimally implement the �st-best action, or tC(aSB) � t
C
(aFB). However, since

implementation costs are discontinuous at a = a, it cannot be ruled out that a is

preferable to the principal. In conclusion, either aSB = a or aSB � aFB.

Proposition 8 Assume that F (xja) is regular. Assume that the principal�s bene�t
function, �(a), depends only on a and that there is a unique and interior �rst-best

action, aFB. Then the second-best action is either a or it is no smaller than the �rst-

best action, or aSB � aFB. In the latter case, the second-best threshold is no smaller
than the threshold that optimally implements aFB subject to feasibility.

Example 3: Figure 2 illustrates Proposition 8 for the distribution function F (xja) =
1� e�

x
4
p
1+a , x � 0, a 2 [0; 6]. Here, the agent�s performance is exponentially distrib-

uted with mean E[Xja] = 4
p
1 + a and the distribution is regular. Assuming that

�(a) = E[Xja], the �rst-best action is aFB = 3. In the second-best problem, the con-
tract (a; t) = (3; 19:46) is the best feasible contract that induces aFB. This contract

yields pro�t of 4:71 whereas inducing a = 0 yields pro�t of 4. It can be veri�ed that

inducing action a = 6 yields pro�t of at most 4:58, depending on the threshold that is

used. The second-best (obtained numerically) is at (aSB; tSB) = (3:54; 20:39), which

yields expected pro�t of 4:73. N

The fact that the second-best action is greater than the �rst-best action is in very

stark contrast to the conclusion that obtains from a standard model in which the
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threshold is �xed. If aFB is implementable at the exogenous threshold, or t � tC(aFB),
then the second-best action must be below the �rst-best. The argument is by now

familiar. Once again, the agent�s expected utility is increasing in a. Hence, increasing

a above aFB decreases social surplus and increases the agent�s surplus, thus leaving

less surplus for the principal. Thus, in these cases, the standard model predicts

that aSB � aFB. This is also the conclusion that was obtained when the threshold

was made endogenous but the binding constraint was a budget constraint. Thus,

even when the threshold is endogenous, it matter whether the budget constraint or

the �implementability constraint�is binding. The reason is that the feasible set are

shaped so di¤erently; compare Figures 1 and 2.

On the other hand, Propositions 3 and 8 agree on the conclusion that the second-

best threshold is typically larger than the threshold that would optimally implement

the �rst-best action subject to feasibility. This distortion is due to the fact that higher

thresholds are cheaper to implement. To be able to use higher thresholds, however,

the action must be distorted downwards under budget constraints but upwards when

it is the implementability constraint that binds.

Examples 2, 3, and 4 (to follow) provide examples of regular distribution func-

tions. The appendix contains an example that shows that some natural distribution

functions are not regular. However, the problem can also be solved in such cases.

5 Intrinsically important criteria for success

The remainder of the paper considers bene�t functions �(a; t) that depend both on

the action and the criterion for success. The analysis is broken into two parts, each

examining a di¤erent class of environments.

5.1 Bene�ts versus implementation costs

This subsection assumes that the �rst-best solution (aFB; tFB) is unique, interior, and

that it can feasibly be implemented in the second-best problem. It is also assumed

that a solution to the second-best problem exists. It does not matter if feasibility

is restricted by a budget constraint, implementability constraint, or a combination

of the two. Thus, the main results in this subsection are driven by the interaction

between a and t as bene�ts and implementation costs are traded o¤.
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The assumption that (aFB; tFB) is feasible in the second-best problem merits dis-

cussion. First, this requires that the budget is large enough, or b � B(aFB; tFB).

Second, (aFB; tFB) must be incentive compatible, or (aFB; tFB) 2 I. While Section 4
describes the shape of I for any F (xja), the complication is that (aFB; tFB) depends
not only on F (xja) but also on �(a; t). The next result con�rms that (aFB; tFB) is
feasible in the second-best problem for two speci�cations of �(a; t) that are closely

related to the salesman problem.

Proposition 9 Let v (x) be a strictly increasing and di¤erentiable function de�ned
on [x; x]. Assume also that there exists some c 2 (x; x) such that v(c) = 0. Assume
that either

1. �(a; t) = v(t)(1� F (tja)), or

2. �(a; t) =
R x
t
v (x) f(xja)dx and that F is regular.

In either case, any �rst-best solution (aFB; tFB) is in I.

The �rst case �ts the salesman example when v(t) = t� c, and where c represents
the cost of production. The second case �ts a version of the salesman problem in

which the customer�s willingness-to-pay is observable and perfect price discrimination

is possible, but where the agent can be paid only on the basis of whether a sale was

made or not. In this case, v(x) = x� c, where c is once again production costs.
The second case is also relevant to up-or-out employment contracts where the

action (a) is the agent�s e¤ort during the trial period to build up job-speci�c human

capital (x). Human capital accumulation is stochastic and determines the agent�s

productivity (v(x)) if he remains in the organization after the trial period. In this

case, c can be interpreted as the minimum level of competency that is required for the

agent�s continued employment to be productive to the principal. This interpretation

also partially �ts the licensing examples in the introduction. In those cases, however,

the principal typically controls the bonus at best in an indirect way. For instance, the

value of a driver�s license depends on taxes and fees associated with car ownership as

well as the quality of the road network compared to the availability of public transit.

In the medical license example, there are jurisdictions around the world where health

care is publicly funded and physicians�compensation is more heavily regulated.

Now, to understand how the �rst-best and second-best solutions compare in situ-

ations like this, imagine that the principal in the second-best problem contemplates
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inducing (aFB; tFB). From this starting point, what are the consequences of changing

the contract? First, any departure from (aFB; tFB) strictly lowers social surplus. Like-

wise, under the MLRP, any departure to another incentive compatible contract that

weakly increases a and/or weakly decreases t makes the agent at least weakly better

o¤, by Propositions 1 and 2. Thus, such a (a; t) contract leaves strictly less surplus

to the principal than she would get from inducing the �rst-best. In other words, the

second-best cannot have both a larger a and a smaller t than the �rst-best.

Corollary 2 Assume the MLRP holds. Assume that the �rst-best solution (aFB; tFB)
is unique, interior, and feasible in the second-best problem. Assume that a second-

best solution (aSB; tSB) exists and that it is di¤erent from the �rst-best.10 Then, the

second-best features either a strictly higher threshold than the �rst-best (tSB > tFB),

a strictly lower action (aSB < aFB), or both.

Corollary 2 describes the possible ways in which the second-best is distorted away

from the �rst-best when the principal is intrinsically interested in the criterion for

success. It is important to realize that both the action and the criterion for success are

distorted. The moral hazard problem implies a welfare loss along both dimensions.

More precise predictions depend on the properties of the bene�t function, and

possibly which kind of feasibility constraint binds, if any. The easiest setting to

understand is when the bene�t function is di¤erentiable and additively separable in

a and t. Thus, there is no interaction between the two variables, or �at = 0. The

iso-surplus curve is downward-sloping to the south-west and north-east of (aFB; tFB),

and upwards-sloping to the north-west and to the south-east of this point. If the

MLRP holds and the second-best is in the interior of the feasible set (i.e. the budget

constraint and the implementability constraint are not binding) then the second-best

must be found at a point of tangency between the iso-surplus curve and the agent�s

indi¤erence curve. The latter slopes upwards. Corollary 2 implies that the second-

best cannot be to the south-east of the �rst-best. This leaves only the possibility that

the second-best is to the north-west of the �rst-best, or tSB > tFB and aSB < aFB.

When a and t interact in �(a; t), or if one of the feasibility constraints bind, then

matters are more complicated. The next example shows that both the action and the

threshold may be distorted downwards compared to the �rst-best.

10The �rst-best and second-best may coincide in special cases, such as when �(a; x) is discontin-
uous at (aFB ; xFB).
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Example 4: Assume that �(a; t) = t(1 � F (tja)) and that F (xja) = 1 � e�
x

a� ,

x 2 [0;1), a 2 [0; 1], and � 2 (0; 1). Thus, the agent�s performance is exponentially
distributed with mean h(a) = a�. Note that F is regular and degenerate at a = a = 0.

These functional-form assumptions make it possible to solve the �rst-best and second-

best problems analytically. The details are in the appendix, which in fact outlines a

solution procedure for any concave h(a) function for which h(0) = 0 and F is regular.

In the �rst-best problem,

aFB =
�
�e�1

� 1
1�� and tFB =

�
aFB

��
=
�
�e�1

� �
1�� :

Thus, tFB equals the mean performance, in equilibrium. Likewise, 1�F (tFBjaFB) =
e�1 regardless of �. Thus, the probability that the agent succeeds is always the same.

In the second-best problem, the boundary of the feasible set is described by

t
C
(a) = 1

�
a�. Note that this is greater than a�, thus con�rming that the �rst-best

solution is feasible in the second-best problem. The solution depends qualitatively

on the size of �. If � is below
p
5�1
2
= 0:618 then the solution is in the interior of the

feasible set. For higher � values, the solution is on the boundary of the feasible set.

In particular,

aSB =

( �
(1 + �)2 �2e�(1+�)

� 1
1�� if � 2 (0;

p
5�1
2
]

e�
1

�(1��) if � 2 (
p
5�1
2
; 1)

and

tSB =

(
(1 + �)

�
aSB

��
if � 2 (0;

p
5�1
2
]

1
�

�
aSB

��
if � 2 (

p
5�1
2
; 1)

:

Note that 1 + � � 1
�
if and only if � �

p
5�1
2
.

It can be veri�ed that aSB < aFB for all � 2 (0; 1). On the other hand, tSB < tFB

if � < 0:492 and tSB > tFB if � > 0:492. Thus, the threshold is distorted below the

�rst-best if � is small. It is also when � is small that the second-best solution is in

the interior of the feasible set and therefore that tSB < tC(aSB). The reason is that

the agent is more productive the smaller � is. Then, it is relatively more important

for the principal to manipulate �(a; t) than W (a; t).

The probability that the agent succeeds is 1 � F (tSBjaSB) = minfe�(1+�); e�
1
� g.

This is u-shaped in � and minimized at � =
p
5�1
2
. Since 1 � F (tSBjaSB) < e�1, the

agent succeeds less often in the second-best than in the �rst-best. This is despite the
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fact that the threshold may be lower in the second-best. In such cases, however, the

second-best action is much lower too. N

Example 4 demonstrates the possibility that tSB < tFB. Nevertheless, it is a

fairly general conclusion that the second-best threshold is higher than the socially

optimal threshold that implements aSB (rather than aFB). Thus, the threshold is too

stringent for the action that is actually taken in equilibrium.

To be more precise, assume that for any action a, there is a unique and interior

threshold that maximizes social surplus. Let bt(a) = argmaxt (�(a; t)� a) denote the
threshold in question. Assume that (a;bt(a)) is feasible in the second-best problem
for any a. Then, tSB � bt(aSB). This follows from the fact that given aSB, threshold

t = bt(aSB) dominates any t < bt(aSB) from the principal�s point of view, since the latter
has lower social surplus and gives more rent to the agent. For instance, in Example

4 it holds that bt(a) = a� � 1
�
a� = t

C
(a), implying that (a;bt(a)) is feasible. Indeed,

note that bt(aSB) = �aSB�� < minf(1 + �) �aSB�� ; 1
�

�
aSB

��g = tSB as claimed. An
implication is that the price in the salesman example is set above the monopoly price

for the demand curve described by 1� F (�jaSB).

Corollary 3 Assume that the MLRP holds. Assume that bt(a) = argmaxt (�(a; t)� a)
is unique and interior for all a and that (a;bt(a)) is feasible in the second-best problem
for any a. Then, tSB � bt(aSB).
Example 5: The central argument in the proof of Corollary 3 relies only on the

feasibility of (aSB;bt(aSB)) in the second-best problem, but stating the condition that
way is somewhat more obscure since aSB is endogenous. The second speci�cation in

Proposition 9 illustrates the issue. Here bt(a) = c for all a. While (aFB;bt(aFB)) =
(aFB; tFB) was shown to be feasible, it is not a given that (a;bt(a)) is feasible for all
a since tC(a) < c is possible when a is small. The appendix considers in detail an

example in which F (xja) = 1 � e�
x

a� , x 2 [0;1), a 2 [0; 1], and � 2 (0; 1) as in
Example 4, and where �(a; t) is as in the second speci�cation in Proposition 9, but

with v(x) = x� c. It is shown that the second-best action is never in the range where
t
C
(a) < c. Hence, tSB � c = bt(aSB). N
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5.2 Intrinsically important success probabilities

Assume in the following that the principal�s bene�t function takes the form

�(a; t) = �(a) + �(F (tja)); (1)

where � and � are continuous functions. Here, �(a) is some direct bene�t deriving

from the agent�s action, such as �(a) = E[Xja]. In contrast, �(F (tja)) describes
an additional bene�t (or cost) that depends only on the probability that the agent

fails or succeeds. This formulation is inspired by Li and Yang�s (2020) monitoring

problem. In their setting, monitoring is costly and modelled by partitioning [x; x]

into a number of performance categories. They assume that the principal wishes to

induce the highest possible action.

Li and Yang (2020) devote particular attention to the special case in which mon-

itoring costs depend only on the number of categories. If the cost of additional

categories is high enough, then two categories (success and failure) are optimal. The

results in Sections 3 and 4 are then relevant. Unlike Li and Yang (2020) these results

allow a comparison of �rst-best and second-best actions.

However, Li and Yang (2020) also allow for monitoring cost functions that depend

on the probability of success. This produces a bene�t function as in (1). In fact, they

assume that the naming of the categories do not matter for monitoring costs, which

means that the cost is symmetric in the probability of success/failure. Moreover,

�(F (tja)) is maximized when F (tja) = 0 and when F (tja) = 1, because in either case
there is e¤ectively only one performance category. Thus, there is a �rst-best solution

with tFB = x and another with tFB = x (assuming the support of X is bounded).

This is in contrast to the previous subsection, where tFB is assumed to be unique and

interior. In Li and Yang (2020), it is reasonable to assume that � is u-shaped and

minimized at F (tja) = 1
2
, i.e. when the two categories are equally �large.�

There are other applications of bene�t functions of the form in (1). For instance,

assume that there is a �xed cost of processing the payment of the bonus. Then,

�(F (tja)) is increasing in its argument, because the larger the probability is that the
agent fails, the less likely the principal is to have to incur the cost. A similar situation

occurs if the principal derives status from overseeing a tough test with a high failure

rate. In these cases, tFB = x. Conversely, � is decreasing if a failure means that

the principal will have to incur �xed costs of restarting a research endeavour or incur
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search costs to replace the agent. Then, tFB = x.

Alternatively, consider some professional body that controls the admission of can-

didates or apprentices into a �club�(e.g. a guild or other professional organization,

or the tenure committee of a university department). This body may have in mind

an ideal size, or pass-rate. In this case, tFB is interior.

The �rst-best problem is to maximize

S(a; t) = �(a)� a+ �(F (tja));

which evidently means that whatever action is chosen, t must be calibrated to ensure

that F (tja) achieves a value that maximizes �(F (tja)), if such a t value exists. Since
supt �(F (tja)) is independent of a, any �rst-best action must maximize �(a) � a, or
aFB 2 argmaxa (�(a)� a).
The second-best problem is to maximize

�(a; t)�W (a; t) = [�(a)� a� U(a; t)] + �(F (tja)):

Assuming the MLRP is satis�ed, U(a; t) is strictly decreasing in t on TC(a) for all

a 2 (a; a). To continue, assume that �(F (tja))� U(a; t) is strictly increasing in t on
TC(a) for all a 2 (a; a). This holds if � is either increasing or if it is not too sensitive
to changes in the probability of failure. Then, if the second-best action is interior, the

accompanying threshold, tSB, must be the highest feasible threshold, whether this is

determined by a budget constraint or an implementability constraint. The arguments

in Sections 3 and 4 are now relevant, as they describe in which direction along the

boundary of the feasible set to move in order to increase �(a) � a � U(a; t). The
next question is then whether a move in said direction also changes F (tja) in such
a way that �(F (tja)) increases, whereas a move in the opposite direction decreases
�(F (tja)). If so, the two e¤ects reinforce each other.
To illustrate, consider the upper boundary or prong of the feasible set described

in Section 3. Moving leftward along this boundary both increases the threshold and

decreases the action. Thus, such a move increases F (tja). This is bene�cial if � is
increasing, such as when there is a cost of processing the bonus. A similar argument

holds when � is u-shaped and the budget is su¢ ciently large.

Corollary 4 Assume that the MLRP and CDFC hold and that the principal faces
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a budget constraint, b < 1. Assume the bene�t function takes the form in (1) and

that �(F (tja))� U(a; t) is strictly increasing in t for all t 2 (x; x) and all a 2 (a; a].
Assume that aFB is unique and interior and that either

1. � is weakly increasing, or

2. � is u-shaped and minimized whenever F (tja) = q 2 (0; 1), while b is so large
relative to q that F (tja) � q along the upper boundary of the feasible set.11

In either case, any second-best action is no greater than aFB.

Turning to implementability constraints in the sense of Section 4, environments

in which F (xja) is degenerate have particularly interesting and clear-cut properties.
Since the agent receives a constant amount of rent on the boundary of the feasible

set, the principal can focus on maximizing social surplus, subject to feasibility.

Corollary 5 Assume that F (xja) is regular and that F (xja) = 1 for all x 2 [x; x].
Assume that the bene�t function takes the form in (1) and that �(F (tja)) � U(a; t)
is strictly increasing in t in the interior of I. Then, absent budget constraints, any
interior second-best action maximizes S(a; tC(a)).

Example 6: Assume once again that F (xja) is an exponential distribution with
mean h(a). Assume �rst that h(a) = a�, � 2 (0; 1) and a = 0. Then, as can be seen
from Example 4, F (tC(a)ja) is constant.12 In other words, �(F (tja)) does not change
along the boundary of I. Thus, aSB and aFB coincide. The welfare cost of moral
hazard in this case comes only from the fact that tSB is distorted away from tFB.

More generally, for any concave h(�) for which h(0) = 0 and F (xja) is regular, it
holds that

F (t
C
(a)ja) = 1� e�

h(a)

ah0(a) � 1� e�1 > 1

2
:

Assume next that h(a)
ah0(a) is increasing. Then, F (t

C
(a)ja) increases and moves further

away from 1
2
as a increases. For example, F (xja) is regular and h(a)

ah0(a) is strictly

increasing if h(a) = ln(1 + a). In such cases, if � is either (i) increasing or (ii) u-

shaped and minimized at F (tja) = 1
2
�which is plausible in Li and Yang�s (2020)

problem �then aSB exceeds aFB when the latter is interior. N
11In Example 1, F (tja) � F (x0(a)ja) = e�1 on the upper prong of the feasible set, regardless of

how large or small b is. More generally, once b is large enough that a can be implemented, a further
increase in b causes the upper prong to shift upward, and F (tja) thus approaches 1 as b!1.

12This is also the case for the Kumaraswamy distribution in Example 2 when � > 1 and a = 0.
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6 Discussion

6.1 Binary versus continuous actions

Proposition 4 has some relevance to the literature that uses the �rst-order approach

with a continuum of actions but two outcomes on the one hand, and the literature

that assumes binary actions and two outcomes.

Corollary 6 Assume NUCx holds. If t0; t 2 (x; x) and t0 > t then AC(t) = [a; a] if
AC(t0) = [a; a]. In this case, the �rst-order approach is valid for any �xed threshold

that is below t0. That is, the �rst-order condition is su¢ cient for incentive compatibil-

ity. Likewise, AC(t0) = fa; ag if AC(t) = fa; ag. In this case, for any �xed threshold
that is above t, only a and a can be implemented and the model reduces to a binary

action model with two outcomes.

Thus, consider an environment with an exogenous threshold. If the threshold is

small and it is easy to succeed, then the �rst-order approach is valid and a continuum

of actions can be implemented. In contrast, if it is hard to succeed then only the two

extreme actions can be implemented. Hence, there is a link between how stringent

the criterion for success is and whether it is appropriate to model the agent as having

e¤ectively a continuum of actions or binary actions.

6.2 More information gathering

In the salesman example, the agent is a middleman between the �rm (principal) and

the customer. The latter is a sentient being that can perhaps be persuaded to reveal

more information. Thus, it is worthwhile considering more re�ned ways in which the

principal can gather information about the agent�s performance.

For instance, the principal can simply ask the customer to report his willingness-

to-pay (promising that it will not impact the price that he pays) and let the agent�s

compensation be based on this report. Strictly speaking, in the model the customer

would have no incentive to misreport, but in reality it is not hard to imagine that the

customer would be concerned that a truthful report would lead to price discrimination

in future interactions. Moreover, since the salesman is the middleman, he would have

an incentive to misrepresent the customer�s report.
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Similarly, the principal could instruct the salesman to present the customer with

a menu of options. Self-selection then reveals more detailed information about the

customer�s willingness-to-pay. The menu would consist of combinations of prices and

accompanying probabilities of acquiring the good. This may once again give the agent

an incentive to misrepresent his interaction with the customer. Putting aside that

possibility, the fundamental fact remains that the principal is once again distorting

the o¤er that is made to the customer away from the o¤er that would have been made

in the absence of moral hazard concerns. When faced with a privately informed cus-

tomer, a �xed monopoly price is normally optimal. The menu of options is desirable

only because it may help reveal more information about the agent�s performance and

thus alleviate the moral hazard problem. This paper focuses on the simplest possible

kind of distortions, which involves manipulating a threshold.

7 Conclusion

This paper endogenizes the criteria for success that form the basis of the agent�s

compensation. These criteria are disciplined by the agent�s underlying performance

technology and possibly a budget constraint. Depending on whether the budget

constraint or implementability constraints are more restrictive, the second-best action

may be distorted upwards or downwards compared to the �rst-best, but it is typically

the case that the criteria for success are in some sense too stringent. For instance, in

situations such as the salesman example, the terms that are o¤ered to the customer

are distorted in order to make it cheaper to incentivize the agent, who acts as a

middleman. Charging a price that is above the monopoly price makes it more di¢ cult

for the agent to sell the product and gives him stronger incentives to try harder. Thus,

the distortion that comes from the moral hazard problem spills over into the market.

The model is su¢ ciently tractable that the �rst-order approach is not needed.

Indeed, many of the central results come from tackling the implementability problem

in more generality. A key observation is that the second-best solution is often on the

boundary of the feasible set. Thus, the solution is sensitive to the properties of the

performance technology in a way that is absent when the �rst-order approach is valid.

31



References

Athey, S., 2002, �Monotone Comparative Statics under Uncertainty,�The Quarterly

Journal of Economics, 117: 187�223

Bond, P. and A. Gomes, 2009, �Multitask principal�agent problems: Optimal con-

tracts, fragility, and e¤ort misallocation,�Journal of Economic Theory, 144: 175�211.

Chade, H. and J.M. Swinkels, 2020, �The no-upward-crossing condition, comparative

statics, and the moral-hazard problem,�Theoretical Economics, 15: 445�476

Demougin, D. and C. Fluet, 2001, �Monitoring versus incentives,� European Eco-

nomic Review, 45: 1741-1764.

Dye, R.A., 1986, �Optimal monitoring policies in agencies,�RAND Journal of Eco-

nomics, 17: 339-350.

Innes, R.D., 1990, �Limited Liability and Incentive Contracting with Ex-ante Action

Choices,�Journal of Economic Theory, 52: 45-67.

Jewitt, I., O. Kadan and J.M. Swinkels, 2008, �Moral hazard with bounded pay-

ments,�Journal of Economic Theory, 143: 59-82.

Kim, S.K., 1995, �E¢ ciency of an Information System in an Agency Model,�Econo-

metrica, 63: 89�102.

Kirkegaard, R., 2017, �Moral Hazard and the Spanning Condition without the First-

Order Approach�, Games and Economic Behavior, 102: 373-387.

Li, A. and M. Yang, 2020, �Optimal incentive contract with endogenous monitoring

technology,�Theoretical Economics, 15: 1135-1173.

Poblete, J. and D. Spulber, 2012, �The form of incentive contracts: agency with

moral hazard, risk neutrality, and limited liability,�RAND Journal of Economics,

43: 215-234.

Rogerson, W.P., 1985, �The First-Order Approach to Principal-Agent Problems,�

Econometrica, 53 (6): 1357-1367.

32



Appendix A: Omitted proofs

Proof of Proposition 1. Fix a threshold t. The statement is trivial if t 2 fx; xg
since only a can be implemented in that case. Thus, assume that t 2 (x; x) and

assume that there are at least two implementable actions. Using a standard argument,

compare two implementable actions, a and a0, with a0 > a. Incentive compatibility

requires that

B(a0; t) (1� F (tja0))� a0 � B(a0; t) (1� F (tja))� a

if a0 is induced and

B(a; t) (1� F (tja))� a � B(a; t) (1� F (tja0))� a0

if a is induced. Combining the two yields

B(a0; t) (F (tja)� F (tja0)) � a0 � a � B(a; t) (F (tja)� F (tja0)) :

Since F (tja)� F (tja0) > 0, it follows that B(a0; t) � B(a; t). Then, 1� F (tja0) > 1�
F (tja) implies thatW (a0; t) > W (a; t). Finally, it follows from incentive compatibility
and B(a0; t) � B(a; t) that

U(a0; t) = B(a0; t) (1� F (tja0))� a0

� B(a0; t) (1� F (tja))� a
� B(a; t) (1� F (tja))� a
= U(a; t):

This completes the proof.

Proof of Proposition 2. Since log-supermodularity survives integration, the

MLRP implies that the distribution function F (xja) as well as the survival function
1� F (xja) are also strictly log-supermodular; see e.g. Athey (2002, Lemma 3). This
observation is relevant because W (a; t) can be written

W (a; t) =

�
@ ln (1� F (tja))

@a

��1
:
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It follows immediately from simple di¤erentiation that W (a; t) is strictly decreasing

in t. Thus, U(a; t) =W (a; t)� a is strictly decreasing in t as well.

Proof of Proposition 3. In text.

Proof of Lemma 1. Fix some t 2 (x; x). The contract (a; t) is incentive compatible
if and only if it is true that there is no pro�table deviation, or

B(a; t) (1� F (tja))� a � B(a; t) (1� F (tja0))� a0

for all a0 2 [a; a]. For any a 2 (a; a), the �rst-order condition dictates that the

bonus is B(a; t) = �1
Fa(tja) . Then, keeping in mind that Fa(tja) < 0 when t 2 (x; x), a

rearrangement of the �rst condition yields

F (tja) + (a0 � a)Fa(tja) � F (tja0)

for all a0 2 [a; a]. Thus, the tangent line to F (tj�) through a must lie always below
the function itself. This is the case if and only if a 2 AC(t). This establishes the
feasible set on (a; a) � (x; x). For a 2 fa; ag, note �rst that a zero bonus induces
a regardless of the threshold. Likewise, for any t 2 (x; x), a su¢ ciently high bonus
makes the agent�s expected utility globally increasing in a and therefore incentivizes

action a.

Proof of Proposition 4. The result is trivial if AC(t) = (a; a). Thus, assume

AC(t) 6= (a; a). Given an interior threshold, t, an action a� 2 (a; a) is in AC if and
only if

F (tja�) + (a� a�)Fa(tja�) � F (tja)

or

F (tja�)� F (tja) + (a� a�)Fa(tja�) � 0

for all a 2 A. Conversely, a� is not in AC(t) if there exists any a 2 [a; a] for which
the inequality is violated.

Since it is assumed that AC(t) 6= (a; a), there must be some interior action that
is not in AC(t). Select a� to be one such point, a� =2 AC(t). Then, there exists some
other action, a, for which the above inequality is violated, or

F (tja�)� F (tja) + (a� a�)Fa(tja�) > 0: (2)
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Di¤erentiate the left hand side with respect to t to get

@ (F (tja�)� F (tja) + (a� a�)Fa(tja�))
@t

= f(tja�)� f(tja) + (a� a�) fa(tja�)

= f(tja�)� f(tja)� F (tja
�)� F (tja)
Fa(tja�)

fa(tja�)

=

Z a�

a

�
fa(tjz)�

Fa(tjz)
Fa(tja�)

fa(tja�)
�
dz

=

Z a�

a

Fa(tjz)
�
fa(tjz)
Fa(tjz)

� fa(tja�)
Fa(tja�)

�
dz

=

Z a�

a

Fa(tjz)
�
fa(tjz)
Fa(tjz)

� fa(tja�)
Fa(tja�)

�
dz:

Recall that Fa(tjz) < 0. By NUCx,
fa(xjz)
Fa(xjz) is increasing in z. Thus, if a

� > a then

the term in the parenthesis is negative. Hence, the integral is positive. Similarly, if

a� < a, then

@ (F (tja�)� F (tja) + (a� a�)Fa(tja�))
@t

= �
Z a

a�
Fa(tjz)

�
fa(tjz)
Fa(tjz)

� fa(tja�)
Fa(tja�)

�
dz:

In this case, the term in the parenthesis is positive, and the right hand side is therefore

positive as well. In other words, regardless of whether a is smaller or larger than a�,

an increase in t causes the term on the left in (2) to weakly increase. Thus, (2)

is still satis�ed. This means that a� is still not implementable when t increases; it

remains better to deviate to a. Thus, the set of implementable actions cannot grow

as t increases. This proves the result.

Proof of Proposition 5. Fix an interior action a. Due to CAT, Faa(�ja) must
be negative when t is large enough. Such threshold are not incentive compatible

and cannot implement a. Combined with NUCx, Faa(�ja) is therefore either always
negative or it is �rst-positive-then-negative in t.

Given NUCx, recall that if t0; t 2 (x; x) and t0 > t then AC(t0) � AC(t). Thus, if
a =2 AC(t) then a =2 AC(t0). In words, if some threshold t cannot implement a then
no higher threshold works either.

Combining the two observations implies that if TC(a) is not empty then it must

take the form (x; t
C
(a)], where tC(a) < x.

Proof of Proposition 6. If Faa(tj�) < 0 for all a then AC(t) = fa; ag because
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the extreme actions are the only actions on the convex hull of F (tj�) in this case.
If Faa(tj�) � 0 for all a then AC(t) = [a; a]. NDCa permits only one additional

possibility, namely that Faa(tj�) is �rst-negative-then-positive as a increases. In this
case, the set of actions on the convex hull of F (tj�) either consists only of fa; ag or of
a and an interval that extends to a. In the latter case AC(t) = fag[ [aC(t); a], where
aC(t) 2 (a; a).

Proof of Corollary 1. This follows from combining the conclusion that AC(t)

shrinks when t increases with the conclusion that AC(t) = fag [ [aC(t); a].

Proof of Proposition 7. Recall that U(a; tC(a)) = �a, or

W (a; t
C
(a)) = a� a

for a 2 (a; a]. Thus, if action a 2 (a; a] is implemented with threshold tC(a), then
the cost of implementation is a � a. Similarly, a can be implemented with a zero
bonus. At the other end of the support, for action a there is no bene�t to making

the threshold exceed tC(a) since the indi¤erence condition must also hold at such

thresholds (the binding incentive compatibility constraint is the no-jump constraint

to a). Thus, implementation costs are continuous in a.

In summary, the principal�s payo¤ is

�(a)� a+ a;

which by de�nition is no greater than �(aFB)� aFB + a. In this form, the problem is
easy to solve. Simply induce action aFB by picking the threshold t = tC(aFB). Thus,

the �rst-best action is implemented, and it is implemented with the highest feasible

threshold.

Proof of Proposition 8. The proof is outlined in the text, but it remains to

prove that the indi¤erence curve crosses tC(a) at most once, and if so from above. It

has already been shown that expected utility is globally decreasing in t. Similarly,

expected utility is increasing in a on the feasible set, and indeed on the superset where

Faa(tja) > 0. Thus, on this superset of the feasible set, the slope of the indi¤erence
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curve is positive and equal to

dt

da jU(a;t)=c
=

Faa(tja)(1� F (tja))
�f(tja)Fa(tja)� fa(tja) (1� F (tja))

> 0;

where the denominator is positive by the fact that the MLRP implies that the survival

function 1� F (tja) is log-supermodular in (a; t).
Next, any point on the boundary of the feasible set, (a; tC(a)), is characterized by

the condition that

F (tja)� F (tja) + (a� a)Fa(tja) = 0:

This boundary has also been proven to have positive slope. The slope equals

dt
C
(a)

da
= � (a� a)Faa(tja)

f(tja)� f(tja) + (a� a) fa(tja)
> 0:

Now compare the slopes at any point of intersection. Since it turns out to be easier

to compare the inverse functions, consider

T (a; t) =
da

dt jU(a;t)=c
� da

C(t)

dt

= Faa(tja)
��
� f(tja)
(1� F (tja)Fa(tja)� fa(tja)

�
�
�
�f(tja)� f(tja)

(a� a) � fa(tja)
��

= Faa(tja)
�
� f(tja)
(1� F (tja)Fa(tja) +

f(tja)� f(tja)
(a� a)

�
= Faa(tja)

�
� f(tja)
1� F (tja)Fa(tja) +

(f(tja)� f(tja))Fa(tja)
F (tja)� F (tja)

�
by de�nition of (aC(t); t)

= �Fa(tja)Faa(tja)
�

f(tja)
1� F (tja) �

f(tja)� f(tja)
F (tja)� F (tja)

�
= �Fa(tja)Faa(tja)� (f(tja) (F (tja)� F (tja))� (f(tja)� f(tja)) (1� F (tja)))

(1� F (tja)) (F (tja)� F (tja))

= �Fa(tja)Faa(tja)� (f(tja) (F (tja)� 1) + f(tja) (1� F (tja)))
(1� F (tja)) (F (tja)� F (tja))

= �Fa(tja)Faa(tja) (1� F (tja))
F (tja)� F (tja)

�
f(tja)

1� F (tja) �
f(tja)

1� F (tja)

�
:

Since Fa < 0; Faa > 0 and F (tja) � F (tja) > 0, the term in front of the brackets in

the last line is positive. By MLRP, 1� F (tja) is log-supermodular in (a; t), implying
that f(tja)

1�F (tja) is decreasing in a. Therefore, the term in the brackets is positive too.
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Thus,
da

dt jU(a;t)=c
� da

C(t)

dt
� 0

or
dt
C
(a)

da
� dt

da jU(a;t)=c
� 0;

at any point of intersection. Thus, the indi¤erence curve is �atter than tC(a) in (a; t)

space at any point of intersection.

The rest of the proof follows the argument in the text.

Proof of Proposition 9. Assume �rst that �(a; t) = v(t)(1 � F (tja)). The �rst-
best threshold, tFB, is then between c and x. Given tFB, the �rst-best action, aFB,

then solves the problem

max
a
v(tFB)(1� F (tFBja))� a:

However, this is equivalent to maximizing the agent�s utility with respect to a, for a

�xed threshold tFB and a �xed bonus, b = v(tFB) > v(c) = 0. Hence, the optimal

action must necessarily be on the convex hull of F (tFBj�). Thus, (aFB; tFB) 2 I.
Note that this does not require F to be regular.

Assume next that �(a; t) =
R x
t
v (x) f(xja)dx and that F is regular. Note that the

�rst-best threshold is tFB = c. Any �rst-best action, aFB, solves

max
a

Z x

c

v (x) f(xja)dx� a

or

max
a

Z x

c

v0 (x) (1� F (xja)) dx� a:

As always, the �rst-best (aFB; tFB) is implementable in the second-best problem if

aFB is at one of the corners. Thus, consider the more interesting case in which aFB

is interior. The �rst- and second-order conditions are

�
Z x

c

v0 (x)Fa(xjaFB)dx = 1

�
Z x

c

v0 (x)Faa(xjaFB)dx � 0:
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Recall that F is regular. By NUCx, the second-order condition necessitates that

Faa(cjaFB) � 0. By de�nition,Z x

c

v0 (x)
�
1� F (xjaFB)

�
dx� aFB �

Z x

c

v0 (x) (1� F (xja)) dx� a for all a 2 [a; a]

Using the �rst-order condition, this can be rewritten asZ x

c

v0 (x)
�
F (xja)� F (xjaFB)

�
dx�

�
a� aFB

� Z x

c

v0 (x)Fa(xjaFB)dx � 0 for all for all a 2 [a; a];

orZ x

c

v0 (x)
�
F (xja)�

�
F (xjaFB) +

�
a� aFB

�
Fa(xjaFB)

��
dx � 0 for all a 2 [a; a]:

(3)

Thus, the tangent line to F (xj�) through aFB is �in expectation�below the function
F (xj�) at any possible alternative action. Now, (aFB; tFB) is implementable in the
second-best problem if and only if

F (cja0)�
�
F (cjaFB) +

�
a0 � aFB

�
Fa(cjaFB)

�
� 0 for all a 2 [a; a]: (4)

Thus, assume to the contrary that there exist some a0 6= aFB such that

F (cja0)�
�
F (cjaFB) +

�
a0 � aFB

�
Fa(cjaFB)

�
< 0:

Since Faa(cjaFB) � 0 it holds by NDCa that Faa(cja) � 0 for all a � aFB. This
rules out that a0 > aFB. Since a0 < aFB, NDCa further implies that

F (cja)�
�
F (cjaFB) +

�
a� aFB

�
Fa(cjaFB)

�
< 0:

In words, (aFB; c) is not implementable because the agent could pro�tably deviate to

a. Indeed, regularity implies that if the threshold increases from c to some higher level,

then the new contract is also not implementable (see Figure 2) because a deviation

to a remains pro�table. That is,

F (xja)�
�
F (xjaFB) +

�
a� aFB

�
Fa(xjaFB)

�
< 0 for all x 2 [c; x):
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However, this violates (3). Thus, (4) must hold and it now follows that (aFB; tFB) 2 I.

Proof of Corollary 2. The corollary follows from the proof in the text that

tSB � tFB and aSB � aFB cannot be jointly optimal, as a consequence of Propositions
1 and 2.

Proof of Corollary 3. In text.

Proof of Corollary 4. The corollary is trivial if aFB is not implementable. Hence,

assume aFB is implementable. The corollary is also trivial if the second best action

is a, so assume that there is a second-best action that is larger than a. Then, since

�(F (tja)) � U(a; t) is strictly increasing in t, the optimal contract is on the upper
boundary of the feasible set. By the argument leading to Proposition 3, any rightward

move along this boundary starting from a = aFB must decrease �(a) � a � U(a; t).
Such a change also decreases F (tja) and therefore �(F (tja)) if the latter is weakly
increasing. Thus, both e¤ects work in the same direction and it follows that a � aFB

cannot be second-best in this case. If �(F (tja)) is u-shaped but F (tja) � q along the
upper boundary of the feasible set, then it once again holds that a rightward move

along this boundary lowers �(F (tja)). The conclusion is again that a � aFB cannot
be second-best.

Proof of Corollary 5. Since �(F (tja)) � U(a; t) is strictly increasing in t, any
solution to the second-best problem in which the action is interior must take the form

(a; t
C
(a)). By the argument leading to Proposition 7, U(a; tC(a)) is constant. Hence,

�(a; t
C
(a))�W (a; tC(a)) is proportional to S(a; tC(a)) and the corollary follows.

Proof of Corollary 6. The corollary follows from Proposition 4.
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Appendix B: Details of Examples 4 and 5

Details of Example 4: Assume that �(a; t) = t(1 � F (tja)). To begin, consider
a more general speci�cation of the distribution function than in the main text. In

particular, assume that the agent�s performance is exponentially distributed with

mean h(a), where h0(a) > 0, h00(a) < 0, and h(0) = 0. Thus, F (xja) = 1 � e�
x

h(a) ,

x 2 [0;1), and where a belongs to an interval of the form [0; a]. The fact that

h0(�) > 0 implies that the MLRP and the NUCx hold.
Assume that a is large enough that h(a) � a. Since

max
t
�(a; t) = h(a)e�1 < h(a) � a

this implies that S(a; t) < 0 for all t. Thus, social surplus from a is smaller than

social surplus from a. This in turn means that a cannot be optimal in the �rst-best

or second-best problems. This corner can therefore be ignored. Assume also that

h0(0) > e. This implies that the �rst-best action exceeds a (see the next paragraph).

These assumptions are satis�ed if h(a) = a�, � 2 (0; 1) and a 2 [0; 1].
The �rst-best problem is to maximize �(a; t)� a or

max
a;t
te�

t
h(a) � a:

The necessary �rst-order condition for tFB reveals that tFB

h(aFB)
= 1. This implies that

the agent succeeds with probability 1�F (tFBjaFB) = e�1 regardless of the functional
form of h. Utilizing tFB = h(aFB) in the �rst-order condition for aFB yields the

conclusion that aFB is uniquely determined by h0(aFB) = e, which in turn pins down

tFB = h(aFB).

Turning to the implementability problem, note that

Faa(xja) = �
"
d

da

�
h0(a)

h(a)2

�
+ x

�
h0(a)

h(a)2

�2#
xe�

x
h(a) :

The �rst term inside the brackets is negative, while the second is positive. Thus,

Faa(�ja) changes sign as x increases. Hence, the CDFC is not satis�ed, but NUCx
and CAT are. Since the second term is decreasing in a, NDCa automatically holds

if the �rst term does not increase to fast in a. It can be veri�ed that this is true if
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h(a) = a�, � 2 (0; 1) and a 2 [0; 1].
Proceeding under the assumption that NDCa is satis�ed, any (a; t) on the bound-

ary of the feasible set is characterized by

F (tj0) = F (tja) + (0� a)Fa(tja):

Utilizing F (tj0) = 1, this can be solved for

t
C
(a) =

h(a)2

ah0(a)
;

which is tC(a) = 1
�
a� if h(a) = a�, � 2 (0; 1).

The principal�s second-best problem is to maximize �(a; t)�W (a; t), or

max
a;t
te�

t
h(a) � h(a)

2

h0(a)

1

t
;

subject to feasibility. It is surprisingly easy to solve the �rst-order conditions simul-

taneously if the feasibility constraint is ignored. Each �rst-order condition can be

solved for e�
t

h(a) . Equating these expressions and simplifying yields an equation that

is linear in t but non-linear in a. Thus, it is easy to solve for t, for any given a.

Substituting this back into one of the �rst-order conditions then makes it possible

to solve (either numerically or analytically) for a, and with it the accompanying t

value. Once a solution has been obtained, it can then be veri�ed whether it satis�es

the feasibility constraint. If it does not, then the second-best solution must be on the

boundary of the feasible set. In this case, the second-best solutions takes the form

(aSB; t
C
(aSB)), where aSB solves

max
a
�(a; t

C
(a))�W (a; tC(a)):

Note that the main role of the h(0) = 0 assumption is to provide a convenient an-

alytical characterization of tC(a). However, recall that since F (�j0) is degenerate in
this case, W (a; tC(a)) equals the �rst-best implementation costs, or W (a; tC(a)) = a

(see the discussion leading up to Proposition 7).

Applying the procedure to the example where h(a) = a�, � 2 (0; 1), yields the
analytical solution in the main body of the text. N
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Details of Example 5: Assume that F (xja) = 1�e�
x

a� , x 2 [0;1), a 2 [0; 1], and
� 2 (0; 1) as in Example 4, and that �(a; t) =

R x
t
v (x) f(xja)dx, with v(x) = x� c for

some c 2 (0;1). From Example 4, tC(a) = 1
�
a�. Note that tC(a) < c if a is small.

Recall that �(a; t) is increasing in t for t < c and thatW (a; t) is globally decreasing

in t on the feasible set. Thus, given some interior second-best action, aSB, the second-

best threshold must be no smaller than c whenever such a threshold is feasible. The

only way a smaller threshold can be optimal is when tC(a) < c, i.e. when aSB is

small. It will now be shown that the second-best action cannot be interior and in this

range.

Thus, consider implementing an action for which tC(a) < c, or a < (�c)
1
� . As men-

tioned, the optimal threshold is then t = tC(a). Thus, wage costs areW (a; tC(a)) = a,

while

�(a; t
C
(a)) =

Z 1

t
C
(a)

(x� c) 1
a�
e�

x

a� dx

= e�
1
�

�
1 + �

�
a� � c

�
:

The principal�s expected payo¤ is

�(a; t
C
(a))�W (a; tC(a)) = e�

1
�

�
1 + �

�
a� � c

�
� a;

which is evidently concave in a. The �rst derivative is

d
�
�(a; t

C
(a))�W (a; tC(a))

�
da

= e�
1
� (1 + �) a��1 � 1;

which is positive when a is small. It is increasing in a for all a < (�c)
1
� if c is so small

that c < 1
�

�
1
1+�

� �
��1
e

1
��1 = c. In this case, it cannot be optimal to induce an action

a < (�c)
1
� , since inducing a marginally higher action leads to higher expected payo¤.

Thus, assume that c is large, or c � c. Then, the �rst-order condition is satis�ed at

a� =

 
e
1
�

1 + �

! 1
��1

;
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at which point expected pro�t is

�(a�; t
C
(a�))�W (a�; tC(a�)) = e�

1
�

 
(1� �) 1

�

�
1

� + 1

� 1
��1

e
1

��1 � c
!

= e�
1
� ((1� �) c� c) ;

but this is negative for all c � c. Hence, this cannot be part of the second-best

solution because inducing a = 0 gives zero payo¤ to the principal. N

44



Appendix C: Non-regular distribution functions

Example 7: Assume that F (xja) is the normal distribution with variance �2 and
mean h(a), with h0(a) > 0 and h00(a) � 0. An implication of h0(a) > 0 is that the

MLRP and the NUCx are satis�ed. The sign of Faa(xja) is determined by the sign
of 
(a; x) = h(a)�x

�
� h00(a)

h0(a)2 . The sign depends on x, implying that the CDFC is not

satis�ed. However, CAT is satis�ed. Whether NDCa is satis�ed depends on h(a) and

possibly �. It is su¢ cient that 
(a; x) is increasing in a for the NDCa to hold. This

is the case if h(a) = k � e�a for some k 2 R. Note that if 
(a; x) is increasing in a
for some �, then this remains the case as � decreases. Thus, the NDCa is more likely

to hold the less noisy the distribution is.

Next, assume that �2 = 1 and h(a) =
p
a, a 2 [0; 4]. Then, 
(a; x) = 1p

a
�x+

p
a.

For any x 2 R, this is minimized where a = 1 and it is therefore no smaller than

2 � x. Consequently, if t � 2 then Faa(tj�) � 0 for all a 2 [0; 4] and all actions can
thus be implemented. However, if x > 2 then Faa(xj�) changes sign. For instance,
Faa(2:1j�) is zero at a = 0:5327 and a = 1:8773, and is positive-negative-positive as a
increases. The NDCa does not hold in this case. Indeed, it can be veri�ed that the set

of implementable actions with threshold t = 2:1 is AC(2:1) = [0; 0:2776] [ [2:6013; 4].
Thus, there is a �hole� in the set of actions that can be implemented. Finally, if

t � 2:5 then Faa(tj�) is �rst-positive-then-negative. Then, the set of implementable
actions consists of a and a set of action close to (and including) a. This is a mirror

image of the conclusion in the third part of Proposition 6, which assumes NDCa.

Note that in the h(a) =
p
a example, Proposition 4 implies that tC(a) is u-shaped

in a. Thus, it has a downwards-sloping portion (as in Figure 1) and an upwards-

sloping portion (as in Figure 2). As in the case with budget constraints in Figure

1, it is thus possible that aSB < aFB and tSB > tFB. Section 4 focused on the

NDCa assumption in part to highlight that budget constraints and implementability

constraints can lead to opposite conclusions.

The h(a) =
p
a setting is interesting for a couple of reasons. First, h0(0) = 1,

meaning that the marginal return in the agent�s expected performance to a small

increase his action starting from zero is in�nite. This may or may not be realistic.

Second, the model is isomorphic to a setting in which h(a) = a but where the agent�s

cost function is c(a) = a2 rather than a. The latter speci�cation is common in e.g.

the literature on rank-order tournaments. N
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