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Abstract

We study the foundations of empirical equilibrium, a refinement of Nash equilib-

rium that is based on a non-parametric characterization of empirical distributions of

behavior in games with observable payoffs (Velez and Brown, 2020b). We show that

the refinement can be alternatively defined as those Nash equilibria that are the limits

of increasingly sophisticated regular QRE of Goeree et al. (2005). By contrast, some

empirical equilibria cannot be approximated by all monotone additive randomly per-

turbed payoff models, including monotone structural QRE of McKelvey and Palfrey

(1995). As a byproduct, we answer a question posed by Goeree et al. (2005) regarding

the foundations of QRE models: For a fixed payoff matrix, the empirical content of

regular and monotone structural QRE differ in fundamental ways.
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1 Introduction

This paper studies the foundations of Empirical Equilibrium (EE), a refinement of Nash

equilibrium introduced by Velez and Brown (2020b). The refinement informs full implemen-

tation theory with the insights accumulated from experiments in finite simultaneous-move

games. This paper provides foundations for this refinement and settles its relationship

with previous refinements in the literature. As a byproduct, it considerably advances our

understanding of perturbed payoff models.

A mechanism designer evaluates economic institutions by analyzing the properties of

the outcomes predicted by a non-cooperative solution for the games that ensue under the

institutions. The full implementation approach to mechanism design has two objectives:

(i) to provide agents the oppurtunity to non-cooperatively coordinate on optimal outcomes;

and (ii) that whenever a non-cooperative solution is reached, the society obtains optimal

outcomes.

When the Nash equilibrium prediction is used as the basis for this analysis, condition

(ii) is unattainable by any simultaneous-move mechanism for several different social objec-

tives (Maskin, 1999; Palfrey and Srivastava, 1989; Jackson, 1991). If we allow that some

Nash equilibria are “implausible” and should therefore be excluded from this analysis, then

this conclusion is overly pessimistic. Indeed, when one simply restricts the prediction to

Nash equilibria that involve no weakly dominated behavior, condition (ii) is easily satisfied

in complete information environments (Palfrey and Srivastava, 1991; Jackson, 1992). Pro-

vided one’s definition of “implausible” excludes behavior that is commonly and robustly

found in experimental games, this conclusion would appear too optimistic. Weakly domi-

nated behavior can be persistently observed in experiments, even when frequencies of play

approximate a Nash equilibrium (see Velez and Brown, 2020b).

Retaining the spirit of this full implementation approach, Velez and Brown (2020b)

refine Nash equilibrium based on empirical regularities in experiments, to obtain a more

evidence-based approach for design. They note that in experimental games repeated mul-

tiple times—where agents have a chance to form rational expectations of the other agents’

frequencies of play—Monotone Noisy Best Response Equilibrium (MNBRE) models (in-

cluding Monotone Structural Quantal Response Equilibrium (MSQRE) of McKelvey and

Palfrey, 1995) typically predict final period averages and comparative statics across treat-

ments well (Goeree et al., 2016, 2018b).

Velez and Brown (2020b) reason that if one endorses the hypothesis that a particular

theory is well specified for behavior in a game, one immediately produces a refinement of

Nash equilibrium. For a Nash equilibrium to be empirically relevant (under the hypothesis
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that the theory is well specified) it needs to be in the closure of the empirical content of the

theory. If instead, a Nash equilibrium exists that cannot be arbitrarily approximated by

data generated by the theory, datasets that resemble such Nash equilibrium are necessarily

rejections of the theory.

The family of MNBRE models contains a significant larger set of models than McKelvey

and Palfrey (1995)’s MSQRE. It includes the Regular QRE (RQRE) model of McKelvey and

Palfrey (1996) and Goeree et al. (2005), the control cost model of van Damme (1991), and

the Harsanyi (1973)-type exchangeable perturbation additive randomly perturbed payoff

models of van Damme (1991). Velez and Brown (2020b) note that all of these models

satisfy weak payoff-monotonicity, i.e., between two actions available to an agent, say a and

b, given what other agents are doing, the agent places greater probability on an action a only

if its expected payoff is greater than that of action b.1 Thus instead of defining a refinement

based on a particular parametric theory, they define a refinement based on this property.

An EE is a Nash equilibrium that is in the closure of weakly payoff-monotone behavior.

It logically follows that should data exist that show evidence of an equilibrium that is not

empirical, such data would also falsify all models that satisfy weak payoff-monotonicity.

Mechanism design built upon EE allows the researcher to inform the design with the

accumulated evidence from experiments. MNBRE models capture regularities in games and

provide a rationale why weakly payoff monotone behavior can persist, a point observed since

the introduction of MSQRE (see McKelvey and Palfrey, 1995). Thus, a design based on EE

is balanced between our aforementioned optimistic and pessimistic views. The approach

optimistically recognizes that not all Nash equilibria are plausible. For an equilibrium to

concern the mechanism designer, it must be in the proximity of behavior that can be fit

by some weakly payoff-monotone distribution. To be pessimistically cautious, the approach

accounts for all equilibria that are in the proximity of weakly payoff-monotone behavior.2

Thus, the designer robustly accounts for all behavior rationalized by MNBRE models.

This paper provides a foundation for Velez and Brown (2020b)’s choice of weak payoff-

monotonicity as the basis of plausibility in games and the subsequent definition of EE.

First, we show that EE is on a sweet spot of tractability. On the one hand, since it is

defined based on a general class of theories, it is easier to prove that a given equilibrium is

empirical by approximating it by weakly payoff-monotone behavior instead of constructing

approximation with a particular parametric theory. On the other hand, our first result,

1This property is universally assumed in the related random choice models where payoffs are not observ-
able (c.f., Fudenberg et al., 2015).

2A predecessor of this approach is Tumennasan (2013), who proposes to complete information imple-
mentation in the limits of Logistic QRE. This author makes an additional requirement of convergence that
restricts the admissible mechanisms. See (Velez and Brown, 2020b) for details.
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Theorem 1, reveals that EE can be defined by requiring proximity to behavior satisfying two

more stringent conditions, interiority and payoff-monotonicity (i.e., behavior is ordinally

equivalent to expected payoffs). Since analyzing behavior that satisfies these properties

rules out corner cases, this result significantly reduces the computation of EE in applications

(Sec. 4.1).

Defining EE by means of weak payoff-monotonicity provides a cautious and tractable

base of design.3 Unfortunately, as a non-parametric theory, this property by itself does

not allow us to articulate the idea of increasing sophistication. Consider a two-person

game with a Nash equilibrium in which one agent, Ann, uniformly randomizes on her

action set. Suppose that one can approximate this equilibrium with a sequence of Logistic

QRE behavior in which the parameter of sophistication for Ann converges to zero (uniform

random play operator), and the parameter of sophistication of the other agent converges to

infinity (best response operator).4 Since each Logistic QRE is weakly payoff-monotone, this

equilibrium is empirical. However, it is not clear that one can interpret this equilibrium, and

EE in general, as selecting the limits of increasingly sophisticated, albeit noisy, behavior.

It turns out that this limitation of EE is only superficial. We say that a sequence of

RQRE models is utility maximizing in the limit if any corresponding convergent sequence

of RQRE equilibria needs to converge necessarily to a Nash equilibrium. It turns out that

each EE is the limit of behavior in a sequence of RQRE models that are utility maximizers

in the limit (Theorem 2). This result provides a clear connection of the EE refinement with

the practice in experimental economics: A Nash equilibrium is empirical if and only if in

any neighborhood of it there is a data set consistent with the RQRE model. Moreover,

as the neighborhood is selected smaller, one can always select a near-best-response RQRE

that generates the data.

Given the popularity of the Logistic QRE and, in general, of MSQRE, we determine

if EE can be defined by means of these theories (the Logistic QRE is a particular form

of MSQRE). We show a general result stating that, when at least an agent has at least

three actions available, each family of monotone additive randomly perturbed payoff model,

as defined by Govindan et al. (2003), generates a strict selection form EE (Theorem 3).

These models include both MSQRE and the exchangeable perturbation additive randomly

perturbed payoff models of van Damme (1991). This result explains to some extent the

difficulty that one has in characterizing equilibria that are approachable by these models.

3For instance, it is possible to characterize all social choice functions that fully and robustly implement
themselves in EE in any finite private values model (Velez and Brown, 2020b); and the characterization of
empirical equilibria in winner-bid and loser-bid auctions in a partnership dissolution with complete infor-
mation (Velez and Brown, 2020a).

4Such a sequence can be easily constructed in a symmetric matching pennies game.
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The selection depends on the additive form in which random shocks affect payoffs.

Besides clarifying the relationship of EE and refinements based on monotone additive

randomly perturbed payoff models, Theorem 3 significantly advances our understanding

of these models in both the strategic and random choice domains. Indeed, this theorem

resolves the long standing open question posed by Goeree et al. (2005) of whether the

empirical content of RQRE and MSQRE coincide for a fixed payoff matrix. When one

agent has at least three actions available, the answer is decidedly negative. Combined

with our results on approximation by deterministic perturbed payoff models (Sec. 4.4), this

theorem establishes a fundamental difference of these models in both strategic and random

choice domains (see Sec. 5).

Our final results show that EE can be equivalently defined by approximation by means of

behavior in equilibrium games with deterministically perturbed payoff models, also known

as control cost models (van Damme, 1991). With the usual notation an agent has payoffs

Eσui −
∑

ai∈Ai

ci(σi(ai)),

where ci is a smooth and convex decreasing function that can be interpreted as a deter-

ministic perturbation. Theorem 4 states that one can approximate each EE by behavior in

deterministically perturbed models with vanishing perturbations. Moreover, our proof of

this result shows that perturbation functions can always be constructed as splines whose

number of segments is essentially bounded by the number of actions available to the agent.

Deterministically perturbed models have been central in the study of probabilistic choice

and have been used as a basis of perturbed behavior in the theory of learning in games

(see Fudenberg et al., 2015, and references therein). Thus, Theorem 4 provides not only a

low dimensional base for EE, but also a clear connection with one of the leading random

choice and perturbed games theories. Since deterministically perturbed models are RQRE

models, Theorem 2 is a corollary of Theorem 4.

The remainder of the paper is organized as follows. Sec. 2 introduces the model and

definitions. Sec. 3 presents a series of examples that allow the reader to familiarize with

EE and show that this refinement is independent from the most prominent tremble-based

refinements previously defined in the literature. Sec. 4 presents our results. Sec. 5 discusses

and concludes.
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2 Model

We study the plausibility of Nash equilibria in a finite normal-form game Γ(u) := (N,A, u)

where N := {1, ..., n} is a set of agents; (Ai)i∈N are the corresponding action spaces and

A := A1 × · · · × An the set of action profiles; and u := (ui)i∈N is the profile of expected

utility indices, i.e., functions ui : A → R. To avoid trivialities we assume that each agent

has at least two actions available, i.e., for each i ∈ N , |Ai| ≥ 2. Let U be the set of all

utility profiles. Our interpretation of the game is standard. Agents simultaneously choose

an action. Given that action profile a := (ai)i∈N is chosen, agent i’s payoff is ui(a). Our

analysis will not involve comparisons of behavior across games with different agent sets or

action spaces. Thus, N and A are fixed throughout.

A strategy for agent i is a probability distribution on Ai, denoted generically by σi ∈

∆(Ai). A pure strategy places probability one on a given action. We identify pure strategies

with the actions themselves. A strategy is interior if it places positive probability on each

possible action. A profile of strategies is denoted by σ := (σi)i∈N ∈ Σ(A) := ∆(A1)× · · · ×

∆(An). Given S ⊆ N , we denote a subprofile of strategies for these agents by σS. When

S = N \{i}, we simply write σ−i ∈ Σ(A)−i := ×j∈N\{i}∆(Aj). Consistently, we concatenate

partial strategy profiles as in (σ−i, µi). We consistently use this convention when operating

with vectors, as with action profiles.

Agent i’s expected utility given strategy profile σ is

Eσui =
∑

a∈A

ui(a)σ(a),

where σ(a) = σ1(a1) . . . σn(an). Following our convention of identifying pure strategies with

actions, we write E(σ−i,ai)ui for the utility that agent i gets from playing actions ai when

the other agents play σ−i. We say that an action ai ∈ Ai is weakly dominated by action

âi ∈ Ai if for each a−i ∈ A−i, ui(a−i, âi) ≥ ui(a) with strict inequality for at least an

element of A−i. We say that ai ∈ Ai is a weakly dominated action if there is another action

that weakly dominates it.

The following are the basic prediction for game Γ(u) and three of its most prominent

refinements.

1. (Nash, 1951) A Nash equilibrium of Γ(u) is a profile of strategies σ, such that for each

i ∈ N and each µi ∈ ∆(Ai), Eσui ≥ E(σ−i,µi)ui . We denote this set by N(u).

2. An undominated Nash equilibrium of Γ(u) is a Nash equilibrium of Γ in which no

agent plays with positive probability a weakly dominated action. We denote this set
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by U(u).

3. (Selten, 1975) A perfect equilibrium of Γ is a profile of strategies σ that is the limit

of a sequence of interior strategy profiles {σλ}λ∈N such that for each λ ∈ N and each

i ∈ N , σλi places probability greater than 1/λ on a given action only if it is a best

response to σλ−i. We denote this set by T(u).5

4. (Myerson, 1978) A proper equilibrium of Γ(u) is a profile of strategies σ that is the

limit of a sequence of interior strategy profiles {σλ}λ∈N such that for each λ ∈ N,

each i ∈ N , and each pair of actions {ai, âi} ⊆ Ai, if E(σλ
−i,ai)

ui > E(σλ
−i,âi)

ui, then

σλi (âi) ≤ (1/λ)σλi (ai). We denote this set by P(u).

Our main objective is to study Empirical Equilibrium, a refinement of Nash equilibrium

that is based on an empirical characterization of behavior. That is, we envision that the

researcher samples empirical distributions of behavior in a finite set of normal-form games.

Based on the analysis of the data, the researcher constructs a refutable theory that explains

this behavior. Then, uses this theory to determine the plausibility of Nash equilibria in all

normal-form games. If a Nash equilibrium is not in the closure of the empirical content of

the researchers theory, the researcher would be able to reject the specification of the theory

were they to observe this equilibrium. Thus, under the hypothesis that the researcher’s

theory is well specified, each Nash equilibrium that does not belong to the closure of the

empirical content of the researcher’s theory is implausible. Empirical equilibrium is the

refinement so defined when the researcher endorses the non-parametric theory that each

agent chooses actions with higher probability only when they are better for her given what

the other agents are doing.

Definition 1 (Velez and Brown, 2020b). σ ∈ Σ(A) is weakly payoff-monotone for u if for

each i ∈ N and each pair of actions {ai, âi} ⊆ Ai such that σi(ai) > σi(âi), we have that

E(σ−i,ai)ui > E(σ−i,âi)ui.

Intuitively, a profile of strategies is weakly payoff-monotone for a game if differences in

behavior reveal differences in expected payoffs.

Definition 2 (Velez and Brown, 2020b). An empirical equilibrium of Γ(u) is a Nash equi-

librium of Γ(u) that is the limit of a sequence of weakly payoff-monotone strategies for u.

We denote this set by EE(u).

5Our definition of perfect equilibrium corresponds to Myerson (1978)’s characterization of Selten (1975)’s
perfect equilibrium.
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Player 2
b1 b2

a1 1, 1 0, 0
Player 1 a2 0, 0 0, 0

(a) u1

Player 2
b1 b2

a1 2, 2 2, 1
Player 1 a2 2, 3 0, 0

(b) v1

Table 1: In two games shown N = {1, 2}, A1 = {a1, a2}, A2 = {b1, b2}, and payoffs are shown in the
corresponding table; (a) a game in which the set of empirical equilibria is a proper subset of the set of Nash
equilibria; (b) a game in which there are empirical equilibria in which player 1 chooses a weakly dominated
strategy with positive probability.

It is well known that McKelvey and Palfrey (1995)’s Logistic Quantal Response Equilib-

ria are weakly payoff-monotone distributions. For a sequence of sophistication parameters

converging to utility maximizing behavior, a corresponding sequence of Logistic QRE con-

tains a subsequence converging to a Nash equilibrium (McKelvey and Palfrey, 1995). This

equilibrium is then an EE. Thus empirical equilibria exist for each finite game.

The following property of a strategy profile, which implies weak payoff monotonicity,

will allow us to provide an alternative useful characterization of EE.

Definition 3. σ ∈ Σ(A) is payoff-monotone for u if for each i ∈ N and each pair of actions

{ai, âi} ⊆ Ai, σi(ai) ≥ σi(âi) if and only if E(σ−i,ai)ui ≥ E(σ−i,âi)ui.

3 Empirical equilibrium and tremble based refinements

In this section we study the relationship between empirical EE and undominated, perfect,

and proper equilibria. We do so by analyzing a series of examples showing that these

equilibrium concepts are independent. The main purpose of this discussion is to provide the

reader with clear intuition about EE by contrasting it with these more familiar refinements.6

Example 1. Consider game Γ(u1) in Table 1 (a). This game was proposed by Myerson

(1978) to illustrate that some Nash equilibria are intuitively implausible. There are two

Nash equilibria in Γ(u1), (a1, b1) and (a2, b2). Only (a1, b1) is an EE in this game. Indeed,

for each distribution of actions of player 2, player 1’s utility from playing a1 is greater

than or equal to the utility from playing a2; thus, in a profile of weakly payoff-monotone

distributions of play, agent 1 will always play a1 with probability at least 1/2 (Fig. 1

6In Sec. 4 we discuss two refinements introduced by van Damme (1991) and McKelvey and Palfrey (1995)
that are subrefinements of EE. These studies provide examples showing that these refinements may not be
contained in the set of undominated equilibria. Thus, one can conclude from the examples in van Damme
(1991) and McKelvey and Palfrey (1995) that empirical equilibria may involve weakly dominated actions
are played with positive probability.
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b

b

σ1(a1)

σ2(b1)

0.5
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1

1

(a) EE(u1)

σ1(a1)

σ2(b1)

0.5

0.5

1

1

(b) EE(v1)

Figure 1: (a) Weakly payoff-monotone distributions (shaded area) and Nash equilibria of Γ(u1); σ1(a1) is
the probability with which agent 1 plays a1. Equilibrium (a1, b1) can be approximated by weakly payoff-
monotone behavior. Thus, it is an EE of Γ(u1). Equilibrium (a2, b2) cannot be approximated by weakly
payoff-monotone behavior. Thus, it is not an empirical equilibrium of Γ(u1). (b) Weakly payoff-monotone
distributions and Nash equilibria of Γ(v1); each Nash equilibrium in which agent 1 plays a1 with probability
at least 1/2 is an empirical equilibrium.

(a)); thus, (a2, b2) cannot be approximated by weakly payoff-monotone behavior. If this

game is played and agents behavior is weakly payoff-monotone and approximates a Nash

equilibrium, it is necessarily (a1, b1).

Each refinement that rules out weakly dominated behavior coincides with EE in game

Γ(u1). Undominated equilibria and empirical equilibria are independent, however.

Example 2. Consider game Γ(v1) in Table 1 (b). Player 2 has a strictly dominant strategy

in this game. Thus, in each Nash equilibrium σ of Γ(v1), σ2(b1) = 1. Agent 1 is indifferent

between both actions if agent 2 plays b1. Thus, the set of Nash equilibria of this game is

the distributions in which agent 1 randomizes between both actions and agent 2 plays b1.

Now, let σ be a weakly payoff-monotone distribution for Γ(v1). Since b1 strictly dominates

b2, σ2(b1) ≥ σ2(b2). If σ2(b2) > 0, E(σ2,a1)v
1
1 > E(σ2,a2)v

1
1 . Thus, it must be the case that

σ1(a1) ≥ σ1(a2). If σ2(b2) = 0, E(σ2,a1)v
1
1 = E(σ2,a1)v

1
1 . Thus, σ1(a1) = σ1(a2). Thus, the set

of weakly payoff distributions for Γ(v1) are those at which σ1(a1) ≥ 1/2 and σ2(b1) ≥ 1/2,

except those at which σ2(b1) = 1 and σ1(a1) < 1/2 (Fig. 1 (b)). The set of empirical

equilibria of Γ(v1) are the Nash equilibria in which agent 1 plays a1 with probability at

least 1/2. Since a2 is weakly dominated by a1 for player 1, almost all of these empirical

equilibria involve one player playing a weakly dominated action with positive probability.

Empirical equilibrium does a subtle selection from the Nash equilibrium set. It deter-

mines the plausibility of a strategy based on its relative merits with respect to the alternative

actions that the agent may choose. The following example drives this point home. It il-
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Player 2
b1 b2 b3

a1 1, 1 0, 0 −7− c1,−7− c2
Player 1 a2 0, 0 0, 0 −7,−7

a3 −7− c1,−7− c2 −7,−7 −7,−7

Table 2: N = {1, 2}, A1 = {a1, a2, a3}, A2 = {b1, b2, b3}, and payoffs uc given in the table, where
c := (c1, c2), c1 > 0, and c2 > 0.

lustrates it for a parametric family of games. This family is a generalization of a game

proposed by Myerson (1978) to show that it is possible to introduce weakly dominated

actions in Γ(u1), and considerably change its set of trembling hand perfect equilibria.

Example 3. Consider game Γ(uc) for some c := (c1, c2), c1 > 0, and c2 > 0 (Table 2).

Standard arguments show that for each c > 0,

N(uc) = {(a1, b1), (a2, b2), (a3, b3)},

T(uc) = U(uc) = {(a1, b1), (a2, b2)},

P(uc) = {(a1, b1)}.

In contrast to these refinements, the empirical equilibrium set of Γ(uc) depends on c. First,

note that for no c > 0, (a3, b3) is an empirical equilibrium of Γ(uc). This is so because a2

weakly dominates a3 for player 1. Thus, in any weakly payoff-monotone distribution for

Γ(uc), player 1 plays a2 with a probability that is at least the probability with which

she plays action a3. Thus, no sequence of weakly payoff-monotone distributions for Γ(uc)

converges to (a3, b3). On the other hand for each c > 0, (a1, b1) ∈ EE(uc). Indeed, (a1, b1)

is a strict Nash equilibrium, i.e., a profile of actions that constitute unique mutual best

responses. These type of equilibria are weakly payoff-monotone distributions themselves,

so a constant sequence sustains them as EE.

Let us now examine the plausibility of (a2, b2) in Γ(uc). Think of the payoffs in the

game as dollar amounts. Consider first a small c, say c1 ≈ c2 ≈ 0.01. Let σ be an

empirical distribution of play that approximates (a2, b2). In such a situation, E(σ2,a1)u
c
1 ≈

0 > E(σ2,a3)u
c
1 ≈ −7 and E(σ2,b1)u

c
2 ≈ 0 > E(σ2,b3)u

c
2 ≈ −7. Thus, if expected utility guides

the choices of the players, one can expect that player 1 will play a1 at least as often as a3,

and player 2 will play b1 at least as often as b3. If this is so, action a1 will have a greater

utility than action a2 for player 1, and action b1 will have a greater utility than action b2

for player 2. Thus, if expected utility guides the choices of the agents, σ will not be close

to (a2, b2). Thus, a plausible empirical distribution, i.e., one that is informed by expected

utility for this game, will never be close to (a2, b2).
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Now, consider a large c, say c1 ≈ c2 ≈ 100,000. Again, if σ is an empirical distribution

of play that approximates (a2, b2) and is guided by expected utility, player 1 will be playing

a1 at least as often as a3, and player 2 will be playing b1 at least as often as b3. In contrast

with our previous case, it does not follow that necessarily action a1 will have a greater

utility than action a2 for player 1, and action b1 will have a greater utility than action b2

for player 2. This will only happen if player 1 is playing a1 at least one hundred thousand

times as often as a3, and player 2 is playing b1 at least one hundred thousand times as

often as b3. Thus, it is possible that σ is informed by expected utility, i.e., σ1(a1) > σ1(a3)

and σ2(b1) > σ2(b3), and at the same time E(σ2,a2)u
c
1 > E(σ2,a1)u

c
1, E(σ1,b2)u

c
2 > E(σ1,b1)u

c
2,

σ1(a2) ≈ 1, and σ2(b2) ≈ 1. Essentially, since the possible loss for player 1 from playing a1

is about 100,000.00, player 1 can be scared away from playing a1 if player 2 is playing b3

more than once each 100,000 times she plays b1. This is still compatible with b3 being the

worst alternative given what the other agent is doing.

These arguments can be easily formalized to show that

EE(uc) =

{

{(a1, b1)} if min{c1, c2} ≤ 1,

{(a1, b1), (a2, b2)} Otherwise.

One cannot expect that if one brings these games to a laboratory setting or has the oppor-

tunity to collect field data on them, the threshold min{c1, c2} = 1 will be a good predictor

of a structural change in the behavior of the agents. However, it is reasonable that behavior

in this game will depend on the size of c, as empirical equilibrium predicts, i.e., equilibrium

(a2, b2) will be relevant only for high values of c. Undominated equilibria, perfect equilibria,

and proper equilibria all miss this point. Undominated equilibrium and perfect equilibrium

miss that when c is too low, actions a2 and b2 are de facto “weakly dominated” when they

are played with almost certainty. That is, if they were going to be played with probability

close to one, actions a1 and b1, would be preferred for the respective players. Thus, we can

rule this equilibrium out by means of the following observation. It is not reasonable that we

will observe a distribution of play in which an agent is not playing her unique maximizer of

utility with high probability, say more than random play.

Finally, proper equilibrium dismisses (a2, b2) independently of c. Think of our example

with high c.7 For (a2, b2) to be a proper equilibrium of Γ(uc), for large λ there must

be a distribution of play σλ satisfying two conditions: (i) σλ is close to (a2, b2), and

thus E(σλ
2
,a1)

uc1 ≈ 0 > E(σλ
2
,a3)

uc1 ≈ −7 and E(σλ
2
,b1)
uc2 ≈ 0 > E(σλ

2
,b3)
uc2 ≈ −7; and (ii)

7Not every Proper equilibrium is empirical. Consider for instance the null game u = 0. Each profile
of strategies is a Proper equilibrium of this game. By contrast, only uniform random play is an Empirical
Equilibrium. We thank Yuval Heller for suggesting this simple example.
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σλ1 (a1) > λσλ1 (a3) and σλ2 (b1) > λσλ2 (b3). For distributions where λ ≥ 100,000, a2 and b2

are not maximizing choices for players 1 and 2, respectively, meaning (a2, b2) cannot be a

proper equilibrium. Thus, the reason why proper equilibrium dismisses (a2, b2) for high c

is that it uses the same parameter for proximity to (a2, b2) and for the agents’ reactivity to

differences in expected utility. This allows us to draw a stark difference of this refinement

and empirical equilibrium. Proper equilibrium is a decision-theoretical, thought experiment

in which a utility maximizing agent considers the possibility that another utility maximiz-

ing agent makes a mistake. Confronted with this thought, a utility maximizing agent will

determine a Nash equilibrium as implausible because it is impossible that agents who are

infinitely reactive to expected utility make self-sustaining mistakes arbitrarily close to the

equilibrium. By contrast, empirical equilibrium is an exercise performed by an observer

based on weak payoff monotonicity, a testable property of behavior. The observer knows

that if this property is satisfied by empirical frequencies, only empirical equilibria can be

approximated by data.

4 Results

4.1 Approachability by payoff-monotone behavior

Empirical equilibrium can be equivalently defined by proximity of interior payoff-monotone

behavior.

Theorem 1. σ ∈ EE(u) if and only if σ ∈ N(u) and there is a convergent sequence of

interior payoff-monotone distributions for u whose limit is σ.

The characterization of the set of empirical equilibria by means of approximation of

interior payoff-monotone distributions simplifies its computation. In applications, the com-

putation of this set usually requires two steps. First, one needs to identify conditions

satisfied by each possible empirical equilibrium. Then, one needs to show that each equi-

librium satisfying these properties is an empirical equilibrium. It is in the first step of

this process that Theorem 1 proves to be essential. One can identify all the implications

of proximity to weakly payoff-monotone behavior by assuming only proximity to interior

payoff-monotone behavior. The gain can be considerable in applications, for this avoids the

analysis of corner cases (e.g. Velez and Brown, 2020a).

It is worth noting that computing the set of empirical equilibria of a game usually also

involves a non-trivial second step in which one proves that the candidates one identified

as possible empirical equilibria are actually so. At this point it is more convenient to

construct a sequence of weakly payoff-monotone behavior that converges to the candidate,
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that is actually neither interior, nor payoff-monotone (e.g. Velez and Brown, 2020a). In this

sense, if one were to equivalently define empirical equilibrium based on the empirical content

of payoff monotonicity, Theorem 1 would still be a valuable tool in its characterization in

applications.

Theorem 1 indicates a form of stability of empirical equilibria. Think for instance of an

equilibrium in a game that is itself a non-interior weakly payoff-monotone distribution, e.g.,

a Nash equilibrium in which each agent plays her unique best response.8 One can conclude

that the equilibrium is an empirical equilibrium by taking the respective constant sequence.

Theorem 1 implies that this is not the only sequence that will sustain the argument. One will

always be able to find a sequence of interior payoff-monotone distributions that converges

to the equilibrium. Equivalently, empirical equilibria are never isolated points in the closure

of payoff-monotone behavior.9

4.2 Approachability by regular QRE

In this section we study the foundation of empirical equilibrium by means of regular Quantal

Response Equilibrium models (McKelvey and Palfrey, 1996; Goeree et al., 2005). This

theory assumes that agents are noisy best responders whose frequencies of play depend

solely on the vector of expected utility. Formally, the model is parameterized by a quantal

response function (QRF), i.e., for agent i a function pi : R
Ai → ∆(Ai). For each ai ∈ Ai

and each x ∈ R
Ai , piai(x) denotes the value assigned to ai by pi(x). A QRF pi is regular if

it satisfies the following four properties (Goeree et al., 2005):

(R1) Interiority : pi > 0.

(R2) Continuity : pi is a continuous function.

(R3) Responsiveness: for x ∈ R
Ai , η > 0, and ai ∈ Ai, piai(x+ η1ai) > piai(x).

10

(R4) Monotonicity : for x ∈ R
Ai and {ai, âi} ⊆ Ai such that xai > xâi , piai(x) > piâi(x).

A quantal response equilibrium (QRE) of Γ(u) with respect to a profile of QRFs, p :=

(pi)i∈N , is a fixed point of the composition of p and the expected payoff operator in Γ(u)

(Goeree et al., 2005), i.e., a profile of distributions (σi)i∈N such that for each i ∈ N ,

σi = pi((E(σ−i,ai)ui)ai∈Ai
). When p is regular, we refer to it as an RQRF and to the

corresponding QRE also as regular or RQRE.

8These equilibria are usually referred to as strict (c.f., Harsanyi, 1973).
9Compare for instance with the Nash equilibria that re also behavior strategies in an M -equilibrium

as defined by Goeree and Louis (2021). These equilibria can be isolated M -equilibrium points that are
outside of the closure of weakly payoff-monotone behavior. For instance, equilibrium (a2, b2) in game u1 in
Example 1, is an M -equilibrium strategy. See Sec. 5 for a discussion.

101ai
denotes the vector in R

Ai that has 1 in component ai and 0 otherwise.
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Because RQRFs are interior, monotone, and continuous, each RQRE of Γ(u) is an

interior payoff-monotone distribution for Γ(u). The converse statement is also true. This

implies the empirical content of RQRE is completely characterized by interiority and payoff-

monotonicity.

Lemma 1. Let σ ∈ Σ(A). Then, there is a QRF p such that σ is a RQRE with respect to

p for u if and only if σ is interior and payoff-monotone for u.

Lemma 1 is a consequence of Remark 1 in Sec. 4.4.11 By Theorem 1 we know that

the closure of weakly payoff-monotone and the closure of interior payoff-monotone behavior

coincide. Thus, the closure of the empirical content of RQRE is the closure of weakly

payoff-monotone behavior.

RQRE theory opens the possibility that we provide a foundation of empirical equilibrium

in terms of approximation by behavior associated with agents who are best responders in

the limit. To make this precise we first need to identify the conditions under which this is

so for a sequence of QRFs.

Definition 4. A sequence of QRFs, {pλ}λ∈N is utility maximizing in the limit if for each

u ∈ U and each convergent sequence of QREs of Γ(u) corresponding to a subsequence of

{pλ}λ∈N, its limit is a Nash equilibrium of Γ(u).

We can then define a refinement of Nash equilibrium in the same spirit as EE, but taking

as basis for plausibility of behavior RQRE for increasingly sophisticated RQRFs.

Definition 5. σ ∈ Σ(A) is approachable by RQRE that are utility maximizing in the limit

in Γ(u) if there is a sequence of RQRF profiles, {pλ}λ∈N, which is utility maximizing in the

limit, and a corresponding convergent sequence of QREs for Γ(u), whose limit is σ. We

denote this set by R(u).

Clearly, for each u ∈ U , R(u) ⊆ N(u). The interpretation of this refinement is similar

to that of EE. It differs in that it explicitly models approximation of Nash equilibria by

behavior of agents who are infinitely sophisticated in the limit. One can argue that empirical

equilibrium is a more cautious refinement, for it is based only on observables. Indeed, QRFs

are not observable, and some of their properties, as continuity, are not refutable with finite

data. It turns out that these notions of plausibility of behavior in games coincide, however.

Theorem 2. For each u ∈ U , EE(u) = R(u).

11Lemma 1 is also a consequence of a step in the proof of the main result in Goeree et al. (2018a).
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Theorem 2 allows us to alternatively describe EE in a way that speaks closely to the

practice in experimental economics. If one expects that as players gain experience their

behavior will be fit by increasingly sophisticated RQRE, the only Nash equilibria that can

be approximated by data are the EE.

4.3 Approachability by additive randomly perturbed payoffs models

Two predecessors of EE are the Nash equilibria that are limits of behavior in Harsanyi

(1973)’s randomly perturbed payoff models for exchangeable perturbations (van Damme,

1991) and Logistic QRE approachable equilibria (McKelvey and Palfrey, 1996). These are

subrefinements of EE. In what follows we show that these belong to a general family of

refinements of Nash equilibrium that are strict subrefinements of EE. As a by product,

which we discuss in Sect. 5, we advance our understanding of the empirical content of

monotone randomly perturbed payoff models, a topic that has received attention due to

the popularity of these models for the analysis of data from economics experiments (Goeree

et al., 2005; Haile et al., 2008; Golman, 2011), and the prominence of random utility models

in random choice environments.

We follow Govindan et al. (2003)’s construction of additive randomly perturbed payoff

models. Given Γ(u) = (N,A, u) and a vector of independent Borel probability measures

on R
A, (µi)i∈N , let (Γ(u), µ) be the incomplete information game in which µ := µ1×· · ·×µn

is a common prior on payoff types. Given type ηi ∈ R
A for agent i, her expected utility index

is a ∈ A 7→ ui(a) + ηi(a). Whenever convenient, given an agent, say i, whose action set is

Ai := {a1, ..., aK}, we write a vector x ∈ R
A as (xal)al∈Ai

where xal := (x(a−i,al))a−i
∈ A−i.

The interpretation of these perturbations is that either the observer who models the strategic

situation by means of game Γ(u) does not observe the real payoffs perceived by the agents

(Harsanyi, 1973), or that the agent fails to perfectly recognize the difference of payoffs

between the actions and correctly maximize (McKelvey and Palfrey, 1995). We require

throughout that:

Definition 6 (Govindan et al., 2003). For each i ∈ N , µi is purifying, i.e., for each pair

of different actions {ak, al} ⊆ Ai, and each σ−i ∈ Σ(A)−i, µi assigns probability zero to

the event ηi(ak, ·) − ηi(al, ·) ∈ R
A−i lies on any single prespecified hyperplane in R

A−i

with normal σ−i. Let Bi be the space purifying Borel probability measures on R
A and

B = B1 × · · · × Bn.

The main two models that fit into our framework are Harsanyi (1973)’s, in which each

µi is absolutely continuous with respect to the Lebesgue measure on R
A; and McKelvey

and Palfrey (1995)’s Structural QRE, in which perturbations are perfectly correlated across
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action profiles with the same action for an agent, so they can be identified with measures

on R
Ai , that are further assumed to be absolutely continuous with respect to the Lebesgue

measure on R
Ai .

Consider i ∈ N . The assumption of purifying perturbations implies that for each σ−i ∈

Σ(A)−i and for µi almost every realization of the perturbation ηi, agent i with type ηi has

a unique best response to σ−i. Thus, given µi and σ−i, the probability with which agent i

is observed playing a given action is uniquely defined by utility maximization. Let

Bui,µi

i (σ−i) := (Bui,µi

iai
(σ−i))ai∈Ai

∈ ∆(Ai),

be this distribution. It is easy to see that this function is continuous (Govindan et al., 2003),

and that the fixed points of σ ∈ Σ(A) 7→ (Bui,µi

i (σ−i))i∈N ∈ Σ(A), which exist by Brouwer’s

fixed point theorem, are the set of observable strategies in Bayesian Nash equilibria of (Γ, µ).

We denote the set of profiles σ ∈ Σ(A) that are induced by some Bayesian Nash equilibrium

of (Γ(u), µ) by BNE(u, µ)).

In McKelvey and Palfrey (1995)’s model the best response operator can be further

characterized by the function x ∈ R
Ai 7→ Qµi

i (x), where

σ−i ∈ Σ(A)−i 7→ Bui,µi

i (σ−i) = Qµi

i (E(σ−i,·)ui) ∈ ∆(Ai).

The function Qµi

i which only depends on N , A, and µi, and does not depend on u, is referred

to as a Structural Quantal Response Function (SQRF) (McKelvey and Palfrey, 1995; Goeree

et al., 2005). These functions satisfy R1-R3 in Sec. 4.2, but may violate R4 (Goeree et al.,

2005). The SQRF most commonly used in empirical analysis of experimental data is the

Logistic form, lλ, which is associated with the double-exponential i.i.d perturbation (Goeree

et al., 2018a), and assigns to each ai ∈ Ai and each x ∈ R
Ai the value,

lλiai(x) :=
eλxai

∑

âi∈Ai
eλxâi

. (1)

Additive linear randomly perturbed payoff models also allow us to articulate the idea

that agents’ behavior approximates that of utility maximizers. More precisely, consider a

sequence of purifying perturbations {µλ}λ∈N. We say that this sequence vanishes when

for each i ∈ N and each neighborhood of zero, G, as λ → ∞, µλi (G) → 1. If there is

a convergent sequence of Bayesian Nash equilibria of the respective games (Γ(u), µλ) for

a sequence of vanishing perturbations, the limit of the corresponding induced observable

strategies is necessarily a Nash equilibrium of Γ(u) (c.f., van Damme, 1991). Thus, any

sequence of SQRFs whose corresponding perturbations are vanishing is utility maximizing
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in the limit (see Definition 4).

If additive randomly perturbed payoff models are unrestricted, each possible observable

distribution of behavior in a normal-form game is in the empirical content of this theory.

More precisely, for each σ ∈ Σ(A) and each u ∈ U , there is a purifying perturbation µ such

that σ ∈ BNE(u, µ) (Haile et al., 2008). If this theory is further disciplined by convergence

to Nash behavior, it produces no strict refinement of the Nash equilibrium set.

Proposition 1. For each σ ∈ N(Γ), there is a sequence of full support purifying vanishing

perturbations {µλ}λ∈N and a sequence of corresponding σλ ∈ BNE(Γ, µλ) that converges

to σ.

Thus, requiring proximity to the empirical content of unrestricted randomly perturbed

payoff models does not refine the set of Nash equilibria.

McKelvey and Palfrey (1996) and Goeree et al. (2005) argue that additive randomly

perturbed payoff models lack of refutability, which was most prominently pointed out by

Haile et al. (2008), can be resolved by imposing consistency with payoff monotonicity, a phe-

nomenon for which there is empirical support. Moreover, two attempts have been made with

the purpose of refining the set of Nash equilibria based on monotone randomly perturbed

payoff models. First, van Damme (1991) imposes permutation invariance of perturbations

in Harsanyi’s additive randomly perturbed models. Second, McKelvey and Palfrey (1996)

propose approximation by Logistic QRE, i.e., restrict to a particular parametric family of

perturbations. Both constructions are implicitly imposing that best responses are ordinally

equivalent to expected utility.

The following theorem allows us to identify a sharp difference between these and other

possible approaches based on monotone additive randomly perturbed payoff models and EE.

It states that for each strategy space in which at least an agent has at least three actions

available, one can always construct a payoff matrix so the resulting normal-form game

possesses an empirical equilibrium that cannot be approximated by any additive randomly

perturbed payoff model whose associated best response correspondences are weakly payoff-

monotone.

Definition 7. Let M ⊆ B be the set of perturbations µ for which for each u ∈ U , each

i ∈ N , and each pair {ai, bi}, if B
ui,µi

aii
(σ−i) > Bui,µi

bii
(σ−i), then E(σ−i,ai)ui > E(σ−i,bi)ui.

We refer to µ ∈ M as a perturbation that induces weakly payoff-monotone best responses.

Theorem 3. Suppose that at least an agent has at least three actions available. Then,

there is u ∈ U for which there is σ∗ ∈ EE(u) and ε > 0 such that

{σ : ||σ − σ∗|| < ε} ∩ {σ : ∃µ ∈ M, s.t. σ ∈ BNE(u, µ)} = ∅.
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Theorem 3 reveals that even though additive randomly perturbed payoff models are not

refutable if unrestricted, their empirical content, if restricted by weak payoff-monotonicity

of best responses as suggested by Goeree et al. (2005), is restricted beyond weak payoff-

monotonicity (note that we do not even impose the necessity of perturbations to vanish).

The weakly payoff-monotone behavior that is missed by the empirical content of these

models can be that in the neighborhood of a Nash equilibrium. In particular, this implies

that the refinements proposed by van Damme (1991) and McKelvey and Palfrey (1996)

depend on their structural form of approximation and are strict subrefinements of empirical

equilibrium for some games.

To gain some intuition on Theorem 3, consider three actions Ai = {a1, a2, a3} and a

vector of corresponding expected utilities U1 < U2 < U3 such that U3 − U2 > U2 − U1.

Clearly, there are σi ∈ ∆(Ai) ordinally equivalent to U and in which σi(a2) > 1/3 (Fig. 2).

In such a distribution, the difference in frequency of play between a2 and a3 is smaller

than the difference in frequency of play between a1 and a2. Even though a2 and a3 are

farther away in utility, payoff monotonicity does not imply they have to be farther away

behaviorally. These actions can be more similar in some sense not captured by the difference

in utilities.

A similar point has been made by Fosgerau et al. (2020) in the related domain of random

choice models. These authors observe that Luce’s IIA, which implies the Logit model, is

incompatible with asymmetric changes in behavior for symmetric shifts in utility. As a

response, they devise a deterministically perturbed payoff model (see Sec. 4.4) that captures

them. Theorem 3 goes beyond the observation that the Logit model cannot account for the

asymmetries we identify in our example. It reveals that no additive randomly perturbed

model can.

Since closed-form solutions are available for the Logistic QRE models, one can use

calculus to prove that for none of these models σi(a2) > 1/3. It is actually easier to prove

this at a more general level. The Logistic QRE corresponds to an i.i.d. perturbation, which

in turn is permutation invariant. So consider a permutation invariant µi on R
Ai . Since

perturbations enter linearly in payoffs, we can essentially take any 0 < x < y and consider

the probability with which the actions are played when we draw from a distribution that

obtains the permutations of perturbations 0, x, y with equal probability. Surprisingly, at

most three of these permutations lead a2 to be a maximizer (Fig.2). Thus, no permutation

invariant perturbation, including the distribution that induces the Logit model, induces

σi(a2) > 1/3.

To the length of our knowledge, permutation invariance is the most general known suf-

ficient condition that guarantees a perturbation induces payoff-monotone best responses.
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Figure 2: Permutation invariant random utility does not span all payoff-monotone behavior. The profile
of (expected) utility is such that U1 < U2 < U3 and U3 − U2 > U2 − U1. Let 0 < x < y. Draws a fair dice
with six permutations of {0, x, y} as faces. Given the outcome, add the corresponding draw to the baseline
utility. The probability that action a2 is the maximizer at most 1/3. To see this, observe (right) that a2 can
be the maximizer only when (0, y, x), (x, y, 0) or (y, x, 0) are drawn. However, if a2 is the maximizer when
(y, x, 0), it is not the maximizer when (0, y, x) is drawn.

Theorem 3 does not assume permutation invariance, it only requires that perturbations

induce weakly payoff-monotone behavior. So its proof requires a much more intricate argu-

ment that exploits invariance properties induced by weak payoff-monotonicity. We present

the proof in the Appendix.

4.4 Approachability by behavior in deterministically perturbed payoff

models

We learn from Theorem 2 that if behavior is weakly payoff-monotone and approaches a

Nash equilibrium, there is an RQRE model that fits this behavior. In this section we show

that one can alternatively define empirical equilibrium by approximation by deterministi-

cally perturbed payoff models, a subfamily of RQRE models. In these models, agents are

parameterized by a function that determines an agent’s cost to identify optimal actions in

the game. These models, also known as variational preference models, provide a determin-

istic interpretation of deviations from utility maximization as control costs (van Damme,

1991) and rational inattention (Fosgerau et al., 2020).

A perturbation function for player i is ci : [0, 1] → R∪{∞} with the following properties.

- ci is strictly decreasing with ci(0) = ∞ and ci(1) = 0.

- ci is continuously differentiable on (0, 1].12

12van Damme (1991) assumes that each ci is twice differentiable. One can easily see that Lemmas 4.2.1-
4.2.5 and Theorem 4.2.6. in van Damme (1991) go through with our weaker assumption. One needs
continuous differentiability in order to apply Lagrange’s theorem in Lemma 4.2.3. All other results follow
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- ci is a strictly convex function.

Given a normal-form game Γ(u) = (N,A, u) and a profile of perturbation functions

c := (ci)i∈N we associate a game in which players are N , agent i’s action space is ∆(Ai),

and payoff of action profile σ ∈ Σ(A) is for each i ∈ N ,

Eσui −
∑

ai∈Ai

ci(σi(ai)). (2)

For each σ−i ∈ Σ(A)−i, there is a unique best response for agent i in this game, which solely

depends on the profile of expected utility of the different actions in Γ (Lemma 4.2.1, van

Damme, 1991). Let pci be this function. One can easily see that this function is an RQRF

(van Damme, 1991; Goeree et al., 2018a). Thus, the equilibria of the perturbed game are

the RQRE with respect to (pci)i∈N .

The deterministically perturbed payoffs model is less general than the RQRE model for

it imposes some restrictions of behavior across different extended games, i.e., if one varies

u.13 For fixed u, they are behaviorally equivalent, however. Let σ ∈ Σ(A) be interior and

payoff-monotone for a payoff matrix u. It is well known that since the vector of expected

utilities (Eσ−i
ui(ai))ai∈Ai

is ordinally equivalent to σi, there is a perturbation function ci for

which σi is the maximizer of (2) (see, for instance, Fudenberg et al., 2015). The following

remark follows.

Remark 1. Let σ ∈ Σ(A). Then, there are perturbation functions c such that σ is an

equilibrium of the corresponding perturbed game for u if and only if σ is interior and

payoff-monotone.

Deterministically perturbed payoff models also allow us to easily articulate the idea of

convergence to utility maximization. We say that a sequence of profiles of perturbation

functions, {cλ}λ∈N, vanishes, if for each i ∈ N and each x ∈ (0, 1], limλ→∞ cλi (x) = 0. It is

well known that the behavior in games with vanishing perturbations can converge only to

Nash equilibria of the underlying game (van Damme, 1991, Theorem 4.3.1).14 Thus, for a

sequence of vanishing perturbation functions, its associated sequence of RQRFs are utility

maximizing in the limit.

from convexity and continuity. Our model coincides with Perturbed Utility as defined by Fudenberg et al.
(2015). The greater generality of our model, compared to van Damme (1991)’s, allows us to easily construct
perturbation functions hitting some specific targets of its derivative without matching the second derivative.

13For instance, note that adding a constant to ui does not change the solution to the maximization of (2).
Thus, perturbed payoff models are translation invariant.

14Technically, Theorem 4.3.1 in van Damme (1991) applies only to vanishing sequences of perturbation
functions of the form εf with ε → 0. One can easily see that his argument extends for a general sequence of
vanishing perturbation functions as we define it because our assumption also implies that for each x ∈ (0, 1],
(fλ

i )
′(x) → 0. We have included an explicit proof of this result in an online Appendix.
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Theorem 4. Let σ∗ ∈ EE(u). There is a sequence of perturbation functions {cλ}λ∈N that

vanishes and a corresponding sequence of equilibria {σλ}λ∈N that converges to σ∗.

The family of RQRFs is infinitely dimensional. Thus, Theorem 2 does not point exactly

to a parametric family of models that is well specified for the analysis of experimental

data that one expects to be payoff-monotone. By Theorem 3, the most obvious candidate,

the Monotone SQRE model, including all its parametric incarnations, e.g., the Logistic

form, is not flexible enough to account for some payoff-monotone behavior in finite games.

Theorem 4 implies that the family of perturbed payoff models is enough to generate all

payoff-monotone behavior. Our proof of this result is relatively simple and of independent

interest, so we present it in the body of the paper. It reveals that one can generate all payoff-

monotone behavior with perturbation functions ci obtained as a logarithmic asymptote

stitched to a (|Ai|+ 1)-segment second order spline.

Proof. To prove the theorem one needs to resolve two issues. First, given an interior σ

that is payoff-monotone with respect to a payoff matrix u, one should be able to construct

perturbation functions c whose associated game has σ as an equilibrium. Second, one needs

to guarantee that if {σλ}λ∈N converges to a Nash equilibrium σ∗, the corresponding cλs can

be chosen so they vanish.

Constructing perturbation functions satisfying our admissibility requirements of mono-

tonicity, smoothness, and convexity can be easily achieved by specifying a negative continu-

ous strictly increasing function on (0, 1] that is integrable on any subinterval [a, 1] for a > 0

and whose integral on (0, 1] is −∞. Let c′i be such a function. Then,

ci(x) = −

∫ 1

x
c′i(t)dt,

is a valid perturbation function and its derivative on (0, 1] is c′i.

Let σ be a Nash equilibrium of the game associated with Γ(u) and c. By interiority of

each pci and continuous differentiability and strict convexity of each ci, σ can be characterized

by the first order conditions (Lemma 4.2.3, van Damme, 1991): for each i ∈ N and {al, ak} ⊆

Ai,

E(σ−i,al)ui − E(σ−i,ak)ui = c′i(σi(al))− c′i(σi(ak)). (3)

Thus, given an interior σ, we can construct c whose associated game has σ as an equi-

librium by satisfying (3). If σ is interior and payoff-monotone, this is trivial. Suppose that

σi(a1) ≤ ... ≤ σi(aK). By payoff monotonicity, E(σ−i,a1)ui ≤ ... ≤ E(σ−i,aK)ui. Thus, for
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some ε > 0, one can define c′(1) = 0, c′(σi(aK)) = −ε, and for each l < K,

c′(σi(al)) = c′(σi(al+1)) +
(

E(σ−i,al)ui − E(σ−i,al+1)ui
)

.

It is easy to complete the definition of c′ so it is increasing, continuous, and satisfies the

integrability restrictions. For instance, let s be the minimum probability assigned by σi to

some action. Then, one can define c′(x) = −sc′i(s)/x for x ∈ (0, s] and linearly interpolate

the values already defined on [s, 1]. This generates ci with a logarithmic asymptote on (0, s]

and a |Ai|-segment second order spline on [s, 1]. Guaranteeing that one can select c′ small

enough when σ is close to σ∗ requires an additional detail.

To avoid trivialities assume that σ∗ does not have full support. Let s be the maximum of

the probabilities assigned by σi to actions not in the support of σ∗i . Let b be an action that is

assigned probability s by σi. Let a be an action in the support of σ∗i that is assigned minimal

probability among the actions in its support. If σ∗ is a Nash equilibrium of u and σ is close

to σ∗, it must be that s ≤ s ≈ 0, and σi(a) ≈ σ∗i (a). Thus, one can complete the definition

of c′ requiring that c′i(s+ε) = c′i(σi(a))−ε. By payoff monotonicity, E(σ−i,b)
ui−E(σ−i,a) < 0.

Thus, since the expected utility of actions in the support of σ∗ is the same, for arbitrary

δ > 0, one can choose ε ≈ 0 so c′ is monotone and for each x ∈ (s+ ε, 1], c(x) < δ.

5 Discussion and concluding remarks

We have advanced our understanding of the empirical equilibrium refinement. Empirical

equilibria are defined as the Nash equilibria that are the limit of weakly payoff-monotone

behavior. Alternatively, they can be characterized as those that are the limits of interior

payoff-monotone behavior (Sec. 4.1). This characterization facilitates the computation of

this set in applications. Empirical equilibria are also the Nash equilibria that are the limits

of RQRE behavior for sequences of noisy best responses that approximate best response

operators in the limit (Sec. 4.2). A particular finite dimensional family of RQRE, actually

span the whole empirical content of RQRE for a fixed game (Sec. 4.4). This characteriza-

tion provides a clear connection between this equilibrium refinement and one of the most

popular structural theories for the analysis of data from economics experiments and for the

rationalization of behavior in random choice environments.

In contrast to RQRE approximation, monotone best response additive randomly per-

turbed payoff models do not span the whole empirical content of RQRE for a fixed game

and thus are not a basis to define EE (Sec. 4.3). The result highlights that this refinement

is based only on a refutable theory, weak payoff-monotonicity, and not on implicit or less
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understood cardinal or structural assumptions. At the same time, we also advance our

understanding of additive randomly perturbed payoff models, in particular, the Monotone

SQRE model. Indeed, our results show a clear tradeoff between specification and refutabil-

ity of SQRE models. If there is no reason to rule out behavior beyond payoff monotonicity, a

data analysis based on a parametric version of the SQRE model that guarantees monotonic-

ity may be misspecified. As a consequence, the interpretation of SQRE estimates requires

that specification of the model must be empirically addressed.

Theorem 3 implies that for each action space in which at least one agent has at least

three actions, a payoff matrix exists that admits an empirical equilibrium that is not in the

closure of the empirical content of randomly perturbed payoff models whose best response

correspondences are weakly payoff-monotone. This result can be generalized for the SQRE

model. Trivially, the later requirement can be stated in terms of the corresponding structural

QRFs requiring monotonicity directly on them. More interestingly, one can actually simply

require that SQRFs admit only weakly monotone fixed points.15

There is a precedent for the differences we uncover in the empirical content of additive

randomly perturbed payoff models and deterministically perturbed models. In the random

choice domain, Fudenberg et al. (2015) show that these models are independent when there

are at least four alternatives. These models have the same empirical content with two or

three alternatives. In this domain, the researcher observes the choices of an agent among

menus of alternatives. The researcher observes no payoffs, but observes frequencies of choice

of the same alternative in different menus. The most popular models for the rationalization

of frequencies of play in this context are the random utility model and the variational

preferences model. These correspond exactly to our additive randomly perturbed payoff

models and our deterministically perturbed payoff models where payoffs are replaced by

utility, which is not observable and is adjusted to rationalize behavior. Thus, the source of

the differences we uncover in these models is independent from those previously observed.

We are noting a difference in their empirical content for a particular payoff matrix when

we assume that the perturbations need to produce payoff-monotone behavior for any other

payoff matrix. Note that the difference exists for a payoff matrix as long as there are at

least three actions available to an agent.

The idea to refine Nash equilibrium with proximity to behavior rationalized by Noisy

Best Response models dates back to McKelvey and Palfrey (1996) and van Damme (1991).

McKelvey and Palfrey (1996) propose approachability by Logistic QRE that approach the

best response operator. van Damme (1991) proposes approachability by behavior in additive

15More precisely, one can show, by means of a fixed point argument that if a QRF violates weak payoff
monotonicity, then there is a payoff matrix for which there is a QRE that violates weak payoff monotonicity.
A proof of this result is available in Velez and Brown (2019).
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randomly perturbed payoff models with uniformly vanishing exchangeable permutations,

and by behavior in control cost models with uniformly vanishing costs. These refinements

have a precedent in Harsanyi (1973) and Rosenthal (1989). Our results reveal that EE is

the refinement one obtains when one considers approachability by arbitrary RQRE models

that are utility maximizers in the limit. In this sense EE articulates, in a robust way,

the original spirit of the approachability refinements of McKelvey and Palfrey (1996) and

van Damme (1991). Our results also reveal that this refinement can be given a solid non-

parametric foundation on approachability by weakly payoff-monotone behavior (Velez and

Brown (2020b)’s definition of EE), that turns out to have a simpler characterization in

applications than any refinement based on additive randomly perturbed payoff models.

The idea behind Velez and Brown (2020b)’s definition of EE can be related also to the

meta-theories introduced by Goeree et al. (2018a) and Goeree and Louis (2021). These the-

ories are based on the requirement that differences in utility induce differences in behavior.

This requirement generates an empirical content whose closure contains all weakly payoff-

monotone behavior and can contain isolated Nash equilibrium points that are not empirical.

More precisely, Proposition 3 in Goeree and Louis (2021) states a characterization of dis-

tributions that can be generated by RQRE in terms of M -equilibrium inequalities. This

result is useful in applications, for M -equilibrium can be computed in finite time and its

empirical content contains that of RQRE. However, this proposition only applies to generic

distributions in a set of generic games and thus does not provide a basis of refinement for

all finite games. The set of M -equilibrium behavior can contain isolated points that are not

in the closure of the empirical content of RQRE. Importantly, these isolated points can also

be Nash equilibria. This is an essential difference for the purpose of refining Nash equilib-

rium. For instance, the discoordination equilibrium in Example 1, which corresponds to a

two-person version of the Top Trading Cycles mechanism (see Velez and Brown, 2020b), is

in the empirical content of M -equilibrium.16

As a by product of our characterizations of EE, our results contribute to a better un-

derstanding of the empirical content of RQRE, a subject of substantial current interest.17

Lemma 1 together with Theorem 1 provide a non-parametric characterization of the closure

of this empirical content for a fixed payoff matrix. This is the first characterization of this

set, in a strict sense and for all games. It is worth noting that our proof of Theorem 3

16Goeree and Louis (2021) define a refinement of Nash equilibrium based on their theory, which discards
all weakly payoff monotone behavior. The idea behind EE is to use the proximity to MNBRE models to
select the weakly dominant equilibria that need to be taken into account by a mechanism designer.

17Melo et al. (2019) develop nonparametric tests of the SQRE hypothesis for research environments with
variable payoff matrices. Friedman and Mauersberger (2022) characterize the empirical content of RQRE in
2× 2 games with the additional requirement of symmetry. Friedman and Goncalves (2023) also characterize
symmetric RQRE in binary-action games with a continuum of types.
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can be modified to produce a fixed payoffs non-parametric characterization of the empirical

content of MSQRE for games in which agents have at most three actions. It is interesting

to pursue the development of specification tests based on these characterizations.

Finally, it is also interesting but beyond the scope of this paper to advance applications

of EE and to evaluate its support in data. Velez and Brown (2020b) study full robust

implementation in EE and contrast these results with the accumulated experimental evi-

dence on dominant strategy mechanisms; Brown and Velez (2020) and Velez and Brown

(2020a) theoretically and empirically study full implementation with complete information

and obtain characterizations of EE for popular partnership dissolution auctions.

6 Appendix

Proof of Theorem 1. Payoff monotone distributions are weakly payoff-monotone. Thus we

only need to prove that an empirical equilibrium is always the limit of interior payoff-

monotone distributions. Let µ be weakly payoff-monotone for u ∈ U . Let ε > 0. We prove

that there is an interior γ that is payoff-monotone for u such that ||µ−γ|| < ε. This implies

that σ ∈ N(u) is the limit of a sequence of weakly payoff-monotone distributions for u if

and only if it is the limit of a sequence of interior payoff-monotone distributions for u.

For each i ∈ N , each ζ ∈ (0, 1), and each profile of distributions β ∈ Σ(A), let

f ζi (β) := (1− ζ)µi + ζlλ((E(β−i,ai)ui)ai∈Ai
),

where lλ is the Logistic QRF defined in (1).

Let γζ be a fixed point of f ζ , that exists because f ζ is continuous. Let {ai, âi} ⊆ Ai.

Suppose first that µi(ai) = µi(âi). We know that

lλai((E(γζ
−i,bi)

ui)bi∈Ai
) ≥ lλâi((E(γζ

−i,bi)
ui)bi∈Ai

),

if and only if E
(γζ

−i,ai)
ui ≥ E

(γζ
−i,âi)

ui. Thus, E(γζ
−i,ai)

ui ≥ E
(γζ

−i,âi)
ui if and only if γζ(ai) ≥

γζ(âi). Suppose then that µi(ai) > µi(âi). Since µ is weakly payoff-monotone for u,

E(µ−i,ai)ui > E(µ−i,âi)ui. Since as ζ → 0, γζ → µ, there is c > 0 such that for each ζ < c,

γζi (ai) > γζi (âi) and E
(γζ

−i,ai)
ui > E

(γζ
−i,âi)

ui. Thus, for each pair {ai, âi} ⊆ Ai, there is

c > 0 such that for each ζ < c, E
(γζ

−i,ai)
ui ≥ E

(γζ
−i,âi)

ui if and only if γζ(ai) ≥ γζ(âi). Since

Γ(u) has finite action spaces, there is c > 0 such that for each ζ < c, each i ∈ N , and each

pair {ai, âi} ⊆ Ai, E(γζ
−i,ai)

ui ≥ E
(γζ

−i,âi)
ui if and only if γζ(ai) ≥ γζ(âi).

Proof of Proposition 1. Let u ∈ U and σ ∈ N(u). We prove that there is a sequence of
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vanishing purifying perturbations {γλ}λ∈N and a corresponding sequence of Bayesian Nash

equilibria in the perturbed games whose observable strategy distributions converge to σ. We

construct perturbations with satisfying Harsanyi (1973)’s requirements that can be easily

modified to induce structural QRE models.

We first construct perturbations with compact support. For each Lebesgue measurable

and bounded set with non-empty interior E ⊆ R
A, let U(E) be the uniform distribution on

E, i.e., the normalized Lebesgue measure on it. Let Vε ⊆ R
A be the open ball centered at

zero with radius ε > 0 and for each λ ∈ N let

T ai
λ := {ηi ∈ R

A : ∀a′i ∈ Ai \ {ai},∀a−i ∈ A−i, ηi(a−i, ai) > ηi(a−i, a
′
i) + 1/(2|A−i|λ)},

and

µλi :=
∑

ai∈Ai

σi(ai)U(V1/λ ∩ T ai
λ ).

To understand the structure of µλi , let ai be in the support of σ ∈ N(u). Observe that

for each a′i ∈ Ai and each realization ηi ∈ T ai
λ ,

∑

a−i∈A−i
(ui(a−i, ai) + ηi(a−i, ai))σ−i(a−i)−

∑

a−i∈A−i
(ui(a−i, a

′
i) + ηi(a−i, a

′
i))σ−i(a−i) ≥

mini∈N 1/(2|A−i|λ).

This implies that σi = Bui,µ
λ

i (σ). Thus, σ ∈ BNE(u, µλ). Clearly, the sequence {γλ}λ∈N

is vanishing. Thus, there is a sequence of vanishing perturbations for which σ itself is an

element of BNE(u, µλ).

We now construct a sequence of full support perturbations with associated equilibria

converging to σ. The construction is again based on µλ.

Fix λ ∈ N, and let δ > 0, Kδ := {σ′ ∈ Σ(A) : ||σ − σ′|| ≤ δ}, and σ′ ∈ Kδ. Since

σ ∈ N(u), for each ηi ∈ T ai
λ and each a′i ∈ Ai,

∑

a−i∈A−i
(ui(a−i, ai) + ηi(a−i, ai))σ

′
−i(a−i)−

∑

a−i∈A−i
(ui(a−i, a

′
i) + ηi(a−i, a

′
i))σ

′
−i(a−i) =

∑

a−i∈A−i
(ui(a−i, ai)− ui(a−i, a

′
i))σ−i)(a−i) +

∑

a−i∈A−i
(ui(a−i, ai)− ui(a−i, a

′
i))(σ

′
−i − σ−i)(a−i)+

(ηi(a−i, ai)− ηi(a−i, a
′
i))σ

′(a−i) ≥

{
∑

a−i∈A−i
(ui(a−i, ai)− ui(a−i, a

′
i))(σ

′
−i(a−i)− σ−i(a−i))}+ 1/(2|A−i|λ) ≥

M maxal∈Ai
(σ′i(al)− σi(al)) + mini∈N 1/(2|A−i|λ),

for someM < 0 that depends only on u. Thus, by choosing δ close to zero we can guarantee

that when perturbations follow µλ, each σi is the observable best response to a distribution

that is δ close to σ. Fix this value of δ < 1/λ and denote it by δ(λ). Fix, γ, an arbitrary
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Player 1
a1 a2 . . . aK−1 aK

a∗−1 5 5 . . . 5 5
A−1 \ {a

∗
−1} 1 2 . . . 2 4

Table 3: Game Γ(u) := (N,A, u), N := {1, ..., n}, A1 := {a1, ..., aK} with K ≥ 3, and |A−1| ≥ 2. The
table shows the payoff of agent 1. Each agent j > 1 gets a payoff of 1 if she plays a∗

j and zero otherwise.

full support Borel probability measure on R
A. Let γλ := (1 − δ(λ))µλ + δ(λ)γ. Clearly,

perturbations {γλ}λ∈N vanish as λ→ ∞. Finally, observe that for each σ′ ∈ Σ(A),

||σ − (Bui,γλ

i (σ′−i))i∈N || = ||σ − ((1− δ(λ))σ + δ(λ)ψ(σ′))|| = δ(λ)||σ − ψ(σ′)|| ≤ δ(λ),

where ψ(σ′) = (Bui,γ
i (σ′−i))i∈N . Thus, (Bui,γ

λ

i (·))i∈N : Bδ → Bδ. Since Bδ is compact and

convex, by Brouwer’s fixed point theorem, it has a fixed point in Bδ. Thus, for each λ ∈ N,

there is σλ ∈ BNE(u, γλ) such that ||σ − σλ|| ≤ δ(λ).

We now prove Theorem 3. The game that allows us to prove this result is defined in

Table 3. In this game each agent i 6= 1 has a strictly dominant action. The profile of these

strictly dominant actions for these agents is a∗−1. Agent 1 is indifferent among all actions

if all other agents play their strictly dominant action. Agent 1 has three different types of

actions. Action a1, which is weakly dominated by actions a2, ..., aK−1, which are all payoff

equivalent. All actions {a1, ..., aK−1} are weakly dominated by aK for this agent. The

essential feature of this game is that given any σ−1 for which σ−i(a
∗
−i) < 1, the difference

in agent 1’s expected payoff between actions aK and aK−1 is greater than the difference in

expected payoff between actions a2 and a1.

Lemma 2. Let Γ(u) be the game in Table 3. There is σ ∈ N(u) that belongs to the closure

of {γ : γ is weakly payoff-monotone for u} and in which each agent j 6= 1 plays the strictly

dominant action and σ1(a1) < 1/K < σ1(a2) = · · · = σ1(aK−1) < σ1(aK).

Proof of Lemma 2. Clearly N(u) is the set of distributions in which each j 6= 1 plays the

dominant action and agent 1 arbitrarily randomizes. Let σ be such that each agent j 6= 1

plays the strictly dominant action with certainty, and σ1(a1) < σ1(a2) = · · · = σ1(aK−1) <

σ1(aK). Then, σ ∈ N(u). Let λ ∈ N and σλ be the convex combination that places

(1 − 1/λ) weight on σ and 1/λ on a uniform distribution. Clearly as λ → ∞, σλ →

σ. Thus, there is Λ ∈ N such that for each λ ≥ Λ, σλ is ordinally equivalent to σ.

Since for each λ ∈ N, σλ is interior, E(σλ
−i,a1)

ui < E(σλ
−i,a2)

ui = · · · = E(σλ
−i,aK−1)

ui <

E(σλ
−i,aK)ui, and for each j 6= i, if a∗j ∈ Aj is this agent’s dominant action, E(σλ

−j ,a
∗

j )
uj >

E(σλ
−j ,aj)

uj, and for each pair of actions {aj , a
′
j} ⊆ Aj that are not dominant, E(σλ

−j ,aj)
uj =
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E(σλ
−j

,a′
j
)uj. Thus, σλ is weakly payoff-monotone for u. Thus, σ belongs to the closure of

{γ : γ is weakly payoff-monotone for u}. Thus, for each 1/K < α < 1/(K − 1), there is

σ ∈ N(u) that belongs to the closure of {γ : γ is weakly payoff-monotone for u} and such

that 0 = σ1(a1) < α = σ1(a2) = · · · = σ1(aK−1) < (1− (K − 2)α) = σ1(aK).

Lemma 2 states that there is weakly payoff-monotone behavior for u that is arbitrarily

close to an empirical equilibrium of Γ(u) in which agent 1 plays actions {a2, ..., aK−1}

with probability greater than 1/K. The following proposition identifies restrictions on

distributions generated by additive randomly perturbed payoff models whose best response

operators are weakly payoff-monotone. The proof of Theorem 3 is completed by showing,

based on these restrictions, that it is impossible for these models to generate behavior close

to the equilibrium identified in Lemma 2.

Proposition 2. Let Γ(u) be the game in Table 3 and µ ∈ M. Let σ−i ∈ ∆(A−i) be

such that E(σ−i,a1)ui < E(σ−i,a2)ui = · · · = E(σ−i,aK−1)ui < E(σ−i,aK)ui, and E(σ−i,aK)ui −

E(σ−i,aK−1)ui > E(σ−i,a2)ui − E(σ−i,a1)ui. Then, B
ui,µi

iaK−1
(σ−i) ≤ 1/K.

Proof of Proposition 2. Recall that in our notation Ai = {1, ...,K}. For each k ∈ {1, ...,K}

let vk := E(σ−i,ak)ui, fore each x ∈ R
A, xk :=

∑

a−i∈A−i
x(a−i,ak)σ−i(a−i), and

Xk := {x ∈ R
A : {k} = argmaxl=1,...,Kxl}.

Let µ ∈ M. Consider ūi ∈ R
A for which agent i has equal payoff from each action profile.

Since µ ∈ M, Būi,µi

i (σ−i) = (1/K, ..., 1/K). Thus, for each k = 1, ...,K, µi(Xk) = 1/K.

Since µ ∈ B, for each measurable set G ⊆ R
A,

µi(G) =

K
∑

l=1

µi(G ∩Xk). (4)

Let G := {x ∈ R
A : {K − 1} = argmaxl=1,...,K vl + xl}. Then, Bui,µi

iaK−1
(σ−i) = µi(G). Since

v1 < v2 = · · · = vK−1 < vK ,

µi(G) = µi(G ∩X1) + µi(G ∩XK−1). (5)

Let D1 := v2− v1 and D2 := vK − vK−1. Consider u
′
i ∈ R

A for which y′ := E(σ−i,·)u
′
i is such

that y′1 = · · · = y′K−1 < y′K := y′K−1 +D2 (one can simply make payoffs be independent of
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the action of the other agents). Since µi ∈ M, B
u′

i,µi

ia1
(σ−i) = B

u′

i,µi

iaK−1
(σ−i). Moreover,

B
u′

i,µi

iaK−1
(σ−i) = µi ({x ∈ XK−1 : xK−1 > xK +D2}) ,

B
u′

i,µi

ia1
(σ−i) = µi ({x ∈ X1 : x1 > xK +D2}) .

Thus,

µi ({x ∈ XK−1 : xK−1 > xK +D2}) = µi ({x ∈ X1 : x1 > xK +D2}) .

Since µi ∈ Bi and µi(X1) = µi(XK−1),

µi ({x ∈ XK−1 : xK−1 < xK +D2}) = µi ({x ∈ X1 : x1 < xK +D2}) . (6)

We claim that

µi ({x ∈ X1 : max{x1 −D1, x2, ..., xK−2, xK} < xK−1})

= µi ({x ∈ X1 : max{x1 −D1, x2, ..., xK−1} < xK}) .
(7)

Consider u′′i ∈ R
A for which y′′ := E(σ−i,·)u

′′
i is such that y′′1 < y′′2 = · · · = y′′K := y′′1 +D1.

Observe that

B
u′′

i ,µi

iaK−1
(σ−i) = µi ({x ∈ X1 : max{x1 −D1, x2, ..., xK−2, xK} < xK−1}) + µi(XK−1),

and

B
u′′

i ,µi

iaK
(σ−i) = µi ({x ∈ X1 : max{x1 −D1, x2, ..., xK−1} < xK}) + µi(XK).

Since µ ∈ M, B
u′′

i ,µi

iaK
(σ−i) = B

u′′

i ,µi

iaK−1
(σ−i). Thus, since µi(XK−1) = µi(XK), (7) follows.

Since D2 ≥ D1, by monotonicity of measures with respect to set inclusion

µi ({x ∈ X1 : x1 < xK +D2})

≥ µi ({x ∈ X1 : x1 < xK +D1})

≥ µi ({x ∈ X1 : max{x1 −D1, x2, ..., xK−1} < xK}) .

Replacing (6) and (7) in the first and last expressions of the inequality above yields,

µi ({x ∈ XK−1 : xK−1 < xK +D2})

≥ µi ({x ∈ X1 : max{x1 −D1, x2, ..., xK−2, xK} < xK−1}) .

Now,

µi(G ∩XK−1) = µi(XK−1)− µi ({x ∈ XK−1 : xK−1 < xK +D2}) ,
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and by monotonicity of measures with respect to set inclusion,

µi(G ∩X1) = µi ({x ∈ X1 : max{x1 −D1, x2, ..., xK−2, xK +D2} < xK−1})

≤ µi ({x ∈ X1 : max{x1 −D1, x2, ..., xK−2, xK} < xK−1}) .

Thus,

µi(G ∩X1) + µi(G ∩XK−1) ≤ µi(XK−1) = 1/K.

Thus, by (5),

Bui,µi

iaK−1
(σ−i) = µi(G) = µi(G ∩X1) + µi(G ∩XK−1) ≤ 1/K.

Proof of Theorem 3. Let Γ(u) be the game in Table 3. By Lemma 2, there is σ∗ ∈ N(u)

that belongs to the closure of {γ : γ is weakly payoff-monotone for u} in which each agent

j 6= 1 plays the strictly dominant action and σ∗1(a1) < 1/K < σ∗1(a2) = · · · = σ∗1(aK−1) <

σ∗1(aK). Thus, there is ε > 0 for which for each σ ∈ ∆ such that ||σ − σ∗|| < ε,

σ1(a1) < 1/K < σ1(a2). Let σ that is weakly payoff-monotone for u and ||σ − σ∗|| < ε.

Since σ1(a1) < 1/K < σ1(a2) and σ is weakly payoff-monotone for u, we have that

E(σ−i,a1)ui < E(σ−i,a2)ui. Thus, σ−i(a
∗
−i, a1) < 1, for otherwise E(σ−i,a1)ui = E(σ−i,a2)ui.

Thus, E(σ−i,a2)ui − E(σ−i,a1)ui = (1 − σ−i(a
∗
−i, a1)) > 0 and E(σ−i,aK)ui − E(σ−i,aK−1)ui =

2(1 − σ−i(a
∗
−i, a1)). Thus, E(σ−i,aK)ui − E(σ−i,aK−1)ui > E(σ−i,a2)ui − E(σ−i,a1)ui. Thus,

there is no µ ∈ M such that σ ∈ BNE(u, µ), for otherwise by Proposition 2, σ1(a2) ≤ 1/K.

Thus, {σ : ||σ − σ∗|| < ε} ∩ {σ : ∃µ ∈ M, s.t. σ ∈ BNE(u, µ)} = ∅.

Proof of Theorem 2. Since best response operators in perturbed games are RQRFs, Theo-

rem 2 is a corollary of Theorem 4.
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Appendix not for publication

Lemma 3 (van Damme, 1991). Let {fλ}λ∈N be a sequence of perturbation functions that

vanishes and {σλ}λ∈N a corresponding convergent sequence of equilibria of the games asso-

ciated with Γ(u) and fλ. Then, {σλ}λ∈N converges to a Nash equilibrium of Γ(u).

Proof of Lemma 3. Let {σλ}λ∈N be a convergent sequence such that for each λ ∈ N, σλ

is an equilibrium of the game associated with Γ(u) and fλ. Let σ := limλ→∞ σλ. Let

i ∈ N and ai ∈ Ai be a best response to σ−i for agent i in Γ(u). Suppose that ak ∈ Ai

is not a best response to σ−i for agent i. We prove that σi(ak) = 0. Since as λ → ∞,

σλ → σ, we also have that σλi (ai) → σi(ai), σ
λ
i (ak) → σi(ak), E(σλ

−i,ai)
ui → E(σ−i,ai)ui, and

E(σλ
−i,ak)

ui → E(σ−i,ak)ui. Thus, there is Λ ∈ N such that for each λ ≥ Λ, σλi (ak) ≤ σλi (ai).

Suppose first that σi(ai) = 0. Since σλi (ai) → 0, σλi (ak) → 0. Suppose then that σi(ai) > 0.

By (van Damme, 1991, Theorem 4.2.6), for each λ ∈ N,

E(σλ
−i,al)

ui − E(σλ
−i,ak)

ui = (fλ)′i(σ
λ
i (al))− (fλ)′i(σ

λ
i (ak)).

The left side of the expression above converges to a positive number. Since σλi (al) →

σi(al) > 0 and {fλ}λ∈N vanishes, (fλ)′i(σ
λ
i (al)) → 0. Thus, σλi (ak)) → 0, for otherwise

there is a subsequence of {σλi (ak))}λ∈N that converges in the interior of (0, 1]. If this is so

the right side of the equation above converges to zero. This is a contradiction.

The following proposition formally states our claims in Example 3

Proposition 3. Consider the game Γc in Table 2. Then, for each c > 0,

N(Γc) = {(a1, b1), (a2, b2), (a3, b3)},

T(Γc) = U(Γc) = {(a1, b1), (a2, b2)},

P(Γc) = {(a1, b1)}.

Moreover,

EE(Γc) =

{

{(a1, b1)} if min{c1, c2} ≤ 1,

{(a1, b1), (a2, b2)} Otherwise.

Proof. We first prove that

N(Γc) = {(a1, b1), (a2, b2), (a3, b3)}. Let c := (c1, c2) such that c1 > 0 and c2 > 0. One

can easily see that the action profiles (a1, b1), (a2, b2), and (a3, b3) are the only pure strat-

egy Nash equilibria of Γc. Now, let σ ∈ N(Γc). If σ1(a2) > 0, then σ2(b3) = 0. Then,

σ1(a3) = 0. It follows that either σ is equal to (a1, b1) or (a2, b2). Symmetry implies the

same is true when σ2(b2) > 0. Thus, suppose that σ1 is not a pure strategy. Suppose that
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σ1(a1) > 0, σ1(a2) = 0, and σ2(b2) = 0. Then σ2(b3) = 0. Thus, σ = (a1, b1). A symmetric

argument shows that if σ2(b1) > 0, σ1(a2) = 0, and σ2(b2) = 0, then σ = (a1, b1).

It is well known that at each perfect equilibrium no agent plays a weakly dominated

strategy. Clearly, a3 and b3 are weakly dominated for players 1 and 2, respectively. Thus,

T(Γc) ⊆ {(a1, b1), (a2, b2)}. Now, let t := min{c1, c2}, ε := min{t, t/(3c1), t/(3c2), 1/3}, and

for each λ ∈ N, σλ be the strategy profile for which σλ1 (a1) := εc2/(2λt) and σλ1 (a3) :=

ε/(λt); and σλ2 (b1) := εc1/(2λt) and σ
λ
2 (b3) := ε/(λt). Then,

E(σλ
2
,a1)

uc1 = εc1/(2λt)− (7 + c1)ε/(λt) = −7ε/(λc1)− εc1/(2λt),

E(σλ
2
,a2)

uc1 = −7ε/(λc1),

E(σλ
2
,a2)

uc1 = −(7 + c1)ε/(2λ) − 7(1 − ε/λ− ε/(λc1))− 7ε/(λc1).

Thus, a2 is the unique best response to σλ2 for agent 1. Symmetry implies that b2 is the

unique best response to σλ1 for agent 2. Since σλ1 places probability at most 1/λ in both a1

and a3; σ
λ
2 places probability at most 1/λ in both b1 and b3; and as λ→ ∞, σλ → (a2, b2),

we have that (a2, b2) ∈ T(Γc).

Let Λ > 2 be such that for each λ ≥ Λ, 1−1/(2λ)−1/(3λ2) > max{c1/(3λ
2), c2/(3λ

2), 1/λ}.

Let λ ≥ Λ and σλ be the symmetric profile of strategies such that σλ1 (a2) := 1/(2λ) and

σλ1 (a3) := 1/(3λ2). Thus, E(σλ
2
,a1)

uc1 − E(σλ
2
,a2)

uc1 = 1 − 1/(2λ) − 1/(3λ2) − c1/(3λ
2) > 0.

Clearly, E(σλ
2
,a2)

uc1 > E(σλ
2
,a3)

uc1. Similarly, E(σλ
1
,b1)
uc2 − E(σλ

1
,b2)
uc2 > 0 and E(σλ

1
,b2)
uc2 >

E(σλ
1
,b3)
uc2. Since σλ1 (a1) > σλ1 (a2)/λ, σ

λ
1 (a2) > σλ1 (a3)/λ, σ

λ
2 (b1) > σλ2 (b2)/λ, and σ

λ
2 (b2) >

σλ2 (b3)/λ; and as λ→ ∞, σλ → (a1, b1), we have that (a1, b1) ∈ P(Γc) ⊆ T(Γc).
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