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Abstract

We set out a model of the stock market in which investors with heterogeneous beliefs
update their type based on the past performance of neighbours in an arbitrary social network.
We study how the network structure and the degree of agents’ attention to performance
affect the coupled price-type dynamics. Types converge to a group-consensus characterised
by network centrality if updating is purely social and to either the group’s most fundamental
or most chartist type if updating is purely performance-based, with the time to convergence
being finite and proportional to the network diameter. For intermediate cases, we identify two
key mechanisms which can make group-consensus non-monotonic with respect to investors’
attention to performance. These results shed light on when performance-based updating
from social networks is stabilising – or destabilising – for asset prices. As an application, our
model can explain price bubbles and price oscillations by network-performance effects.

Keywords: Asset pricing, social networks, heterogeneous beliefs, opinion dynamics.
JEL-Classification: D84, D85, G11, G40.

[T]he time has come to move beyond behavioral finance to “social finance”, which
studies the structure of social interactions, how financial ideas spread and evolve,
and how social processes affect financial outcomes. (David Hirshleifer, 2015)

1. Introduction

A central question in the emerging field of social finance is: how do social networks
influence beliefs, investment decisions, and asset prices? This question is motivated by
empirical evidence pointing to a role of social networks in investment decisions. Shiller and
Pound (1989) surveyed 131 investors and found that many stock purchases were influenced
by interactions with personal contacts, such as friends and relatives. Hong et al. (2005) show
that U.S. mutual fund managers’ holdings are similar to those of other fund managers in
the same city, while Ivković and Weisbenner (2007) show that households are more likely to
purchase stocks from a particular industry if their neighbours did so. Shive (2010) finds that
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social interactions affect trading decisions and realised returns, and the same result has been
found in asset pricing experiments (see Steiger and Pelster, 2020). Despite this evidence,
relatively little is known about the mechanisms by which different social network structures
affect investor beliefs and asset price dynamics.

In this paper, we therefore set out a social network model of asset prices. Belief updating
in the model depends on a generic social network – such that agents imitate others – and also
on a performance component. As a result, beliefs and prices evolve as a coupled dynamics.
We contribute to the literature by highlighting the separate roles of the network and the
performance component in shaping belief and price dynamics, and by relating these dynamics
to concrete features of the network and market conditions. Our results therefore shed light
on when performance-based updating from a social network is stabilising – or destabilising –
for asset prices. Two numerical applications show how the model can explain price bubbles
and belief-price oscillations by network-performance effects without any exogenous shocks.

In our model, heterogeneous agents with different initial beliefs form expectations about
future asset prices, which feed into price determination. Similar to Brock and Hommes (1998)
and several other influential papers we focus on fundamentalist and chartist beliefs, but we
go beyond past work by endogenising the degree of trend-following of individuals.1 Our
agents are located on an exogenously given (possibly directed) network such that agents’
observation of past investment decisions and returns of other agents is restricted to their
network. We allow general network structures for which investors belong either to closed
subgroups or are outside such groups; this is important in the context of financial markets
as there are some well-known ‘opinion leaders’ who influence a large number of investors but
may be little influenced by others (e.g. Warren Buffett), yet empirical evidence also indicates
that investors are influenced by close contacts such as friends and relatives (e.g. Shiller and
Pound (1989)), in which case clustering will be observed.

Based on observation of neighbours, agents revise their beliefs, weighing in their own and
others’ past success: belief types of strongly-performing agents receive higher weight than
the beliefs of poorly-performing agents. Beliefs and stock prices thus evolve as a system
of coupled dynamics, with network structure influencing beliefs and price determination,
and prices feeding back on beliefs by determining which neighbours investors pay most
attention to when updating (performance feedback). Such performance-based imitation has
been shown to be important for price dynamics in experimental asset markets (Kroll and Levy
(1992); Schoenberg and Haruvy (2012)) and estimated models with performance feedback
help to explain booms / crashes and some empirical features of price returns such as heavy
tails and volatility clustering (see Chiarella et al. (2014); Hommes et al. (2017)).

The long-run type distribution in our model depends on the strength of the performance
feedback. On the one hand, if belief updates are independent of past performance, then
the updating of belief types is equivalent to a model of opinion dynamics due to DeGroot
(1974) where agents in strongly connected and closed groups reach a long-run consensus
and each agent’s influence on the consensus is determined by their network centrality. Price
converges in this case if the long-run average type determined by network centrality is not too

1See, for example, Beja and Goldman (1980), Chiarella (1992) and Lux and Marchesi (1999).
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strongly chartist. At the other extreme, if the performance feedback is so strong that only
the very best past performers are imitated within each agent’s network, then only the most
fundamental or the most chartist initial type will be adopted in the long-run (depending on
the initial average type) and price converges only if the adopted type is not too strongly
chartist. Interestingly, adoption of extreme types is guaranteed only if the outside supply
of shares is zero. If, instead, the outside supply of shares is positive, then the performance
ranking of agents is reversed if the price breaches an endogenous threshold. In the latter
case, adoption of extreme initial types can be guaranteed only if the initial price and types
are restricted such that the threshold is not crossed prior to type convergence.

In the case of intermediate performance feedback, consensus types cannot be charac-
terised analytically. However, we provide sufficient conditions for price convergence and
show that, under these conditions, types are guaranteed to converge on a consensus in closed
subgroups whereas heterogeneous types prevail (in general) in the other groups, mirroring
the outcome in the two polar cases. Thus, in general, heterogeneous beliefs will co-exist
alongside consensus beliefs (for those within closed groups). In line with this, some asset
price experiments have documented convergence of beliefs on a common price predictor (e.g.
Hommes et al. (2005), Bao et al. (2017)), while others find that heterogeneity persists.

With intermediate performance feedback, there are two key mechanisms – reversal of
performance ranking and a lagged network structure effect – which make consensus non-
monotonic, in general, with respect to investors’ attention to performance. As a result,
anything goes in the sense that all possible consensuses can be a long-run outcome for some
parameter constellations. We therefore present two numerical applications. In the first, there
are many strong chartists and one fundamental investor. The chartists update their beliefs
by observing others, but the fundamentalist agent believes so strongly in the fundamentals
of the asset that this agent’s investment decision is not influenced by others. We show that
price bubbles emerge and the size of the bubble increases with performance feedback since
chartists initially outperform the fundamentalist investor. In the second application, we
show that the combination of the network and a sufficiently strong performance feedback
leads to permanent oscillations in types and asset prices. Both applications have a network
structure in which one or more ‘opinion leaders’ are followed by the other agents, and the
dynamics arise endogenously from initial conditions without any exogenous shocks.

We are not the first to study the implications of social interactions for asset prices. Kir-
man (1993) and Lux (1995) set out models in which herding is possible because investors are
more likely to imitate the dominant type in the population, while Alfarano and Milaković
(2009) enrich the Kirman-Lux herding model with local networks. In a similar vein, Cont
and Bouchaud (2000) and Iori (2002) consider models of herding in a random networks
setting, whereas Chang (2007) studies social interactions when utility exhibits an exoge-
nous preference for social conformity as in Brock and Durlauf (2001). Relative to these
papers, our model differs in allowing arbitrary network structures and endogenous weighting
of neighbours based on past performance.

The closest paper to ours is Panchenko et al. (2013), in which a version of the Brock and
Hommes (1998) model with an explicit social network is introduced, allowing them to relax
the complete network assumption behind the baseline model. They study three particular
local networks and find they have quite different implications for regions of stability and
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price volatility. Our framework differs from this literature in several respects. First, we
do not assume agents to be either fundamentalist or chartist, but instead allow continuous
types between these polar cases. Our continuous-types specification is motivated by survey
evidence showing that investors use both fundamental and technical analysis but to differ-
ing degrees (Frankel and Froot (1990); Menkhoff (2010)).2 Second, whereas the Brock and
Hommes model has endogenous shares of investors adopting fixed types, our model endo-
genises both the population shares and the types, thus allowing for type consensus. Finally,
we put minimal restrictions on the network structures, allowing for all possible directed (in-
cluding undirected) networks. Our model thereby facilitates the study of consensus types
and the implications for asset prices under arbitrary network structures.

We are able to relate price and type dynamics to aspects of the network and market
conditions, such as distance between agents (diameter), network centrality, asset supply,
and initial price and types. Some previous works have highlighted the impact of network
topologies on price volatility and trading volume (Ozsoylev and Walden (2011); Han and
Yang (2013)), but they study information transmission in rational expectations models, in
contrast to our behavioural setting.3 By comparison, we provide conditions such that asset
prices converge, or not, on the rational expectations solution (fundamental price) when there
is performance feedback; our paper thus sheds light on when performance-based updating
from social networks is stabilising – or destabilising – for asset prices.

Our paper also contributes to the classical opinion dynamics literature on networks orig-
inated by DeGroot (1974) and extended to multiple settings (e.g. the wisdom of the crowds,
Golub and Jackson, 2010) which studies the result of repeated weighted average updating
of an initially exogenously given object (the individual opinions). A common assumption in
this literature is that updating weights are independent of time and reflect only the network
position. Some effort has been made to abstract from this assumption and allow updating
weights to vary with time to account for e.g., the persuasion bias (DeMarzo et al., 2003),
arrival of new information in every period (Jadbabaie et al., 2013), cultural traits (Buechel
et al., 2014), conformity (Buechel et al., 2015), or to find general convergence conditions
(Lorenz, 2005, 2007). In all these models the updating weights (and the way they change)
are exogenously given. We present a model of type updating that resembles the opinion
dynamics in the sense that types are updated according to repeated weighted averaging.
However, the weights are proportional to each individual’s performance on a market. We
thus contribute to the opinion dynamics literature by allowing beliefs to influence market
decisions and the resulting success on the market to influence the way that beliefs are formed.

In such a setting of coupled opinion dynamics and market interaction, we derive general
convergence conditions for the type and price dynamics. Because of the stock market ap-
plication, there is an interesting difference between weighing in performance and updating
the actual types. The investment decision is made based on the type distribution from one

2To our knowledge, the only asset pricing model with mixed fundamentalist and trend-following beliefs
is Barberis et al. (2018), in which there is no social interaction and individual types are purely exogenous.

3Both Ozsoylev andWalden (2011) and Han and Yang (2013) build on the seminal paper of Hellwig (1980),
and hence the problem they study (information and its price/welfare implications) and the assumptions about
agents’ cognitive abilities (rational rather than behavioural) are very different to our paper.
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time step before. So the updating weight depends on types with a two period lag while the
update itself is from past types. We also find that classical convergence to consensus may
not obtain if individuals only update from best-performing agents or if price diverges.

The paper proceeds as follows. In Section 2 we set out the model, and Section 3 presents
our main results on long-run price and type dynamics. In Section 4 we explain two key
mechanisms at work in the case of finite performance effect, and in Section 5 we provide two
applications (price bubbles and price oscillations). Finally, we conclude in Section 6.

2. Model

Consider a finite set of risk-neutral investors N = {1, . . . , n} and let time be discrete,
t ∈ N. At each point in time t ∈ N, agents choose holdings of a risky asset xi

t with unknown
return (in fixed supply X ≥ 0) and a riskless bond (in flexible supply). Agents buy the
risky asset at price pt and sell it at price pt+1 having received (stochastic) dividends dt+1;
the riskless bond has a known return r > 0 and price of 1. Both price pt+1 and realisations
of dividends dt+1 are unknown in period t such that the unknown (excess) return of the
asset is given by Rt+1 = pt+1 + dt+1 − (1 + r)pt. At each point in time t ∈ N, agents i ∈ N
are characterised by their wealth wi

t and their subjective expectation Ẽi
t about the future

asset price pt+1 and dividends dt+1. We explain in Section 2.3 how these expectations are
determined by an agent’s type. Agents are myopic and choose holdings of the risky asset and
the riskless bond to maximize expected next period wealth Ẽi

tw
i
t+1. Investors can take short

positions, but investments into the risky asset are subject to a quadratic cost that depends
on the parameter ϕ > 0, such that total transaction costs in period t are given by ϕ

2
(xi

t)
2.

Therefore, at any t ∈ N, each investor i ∈ N solves the problem:

max
xi
t

Ẽi
tw

i
t+1

s.t. wi
t+1 = (pt+1 + dt+1)x

i
t + (1 + r)(wi

t − ptx
i
t)−

ϕ

2
(xi

t)
2 (1)

where wi
t − ptx

i
t denotes the holdings of the riskless asset. The first term in Equation (1)

is the payoff on stocks (dividend plus resale price); the second term is the gross return on
holdings of the riskless asset; and the third term is the portfolio transaction cost.

The first-order condition yields the following demand schedule:4

xi
t = δ

(
Ẽi

t [pt+1 + dt+1]− (1 + r)pt

)
(2)

where δ = 1/ϕ. Equation (2) shows the demand of agent i ∈ N for the risky asset at any
given price pt. As is standard, demand is proportional to the expected excess return on the
risky asset.

Dividends follow a stochastic process:

dt = d̄+ εt (3)

4The demand schedule (2) has the same form as under mean-variance utility (see e.g. Hommes (2021):
p. 171); thus, assuming risk-neutral investors who face a transaction cost is convenient but not essential.
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where d̄ > 0 and εt is chosen from some IID distribution with mean 0 and support in an
interval [d−, d+] such that d− < 0 and d+ > 0.5 Agents know the dividend process, and
hence their subjective expectations coincide with the objective (rational) expectation:

Ẽi
t [dt+1] = Et(dt+1) = d, ∀i. (4)

where Et(.) denotes the conditional expectation operator with respect to past realisation of
dividends dt.

Next, we present the details of investor types. First, consider the two cases of fundamen-
talists and chartists before introducing the hybrid types.

2.1. Fundamentalists

Fundamentalists forecast future stock prices by calculating the expected stock market
price in a world where all investors are fundamentalists.6 Formally, the price expectation of
a pure fundamentalist is

Ẽf
t [pt+1] = pf :=

d̄− X
nδ

r
(5)

where pf is the fixed fundamental price.
The fundamental price pf is a benchmark notion of ‘fundamental solution’. In particular,

the fundamental price is the price for which the aggregate demand for stocks equals the
fixed supply X when all investors are fundamentalists with rational expectations Et(.). The
fundamental price p∗t must then satisfy∑

i∈N

xi
t = X ⇔ δ

(
nEt(p

∗
t+1) + nEt(dt+1)− n(1 + r)p∗t

)
= X.

Given IID dividends with mean d̄, we have Et(dt+1) = d and hence p∗t is constant. Setting
p∗t = pf gives the expression in (5). Note that this is lower than the fundamental price of d̄/r
in Brock and Hommes (1998) as we allow shares to be in positive net supply in our model.7

2.2. Chartists

Chartists base their expectations on the most recent observed price, pt−1. In particular,
the subjective price expectations of chartists are given by

Ẽc
t [pt+1] = pt−1. (6)

This specification for chartist beliefs follows Brock and Hommes (1998), except that they
allow chartists to place some weight on the fundamental belief, pf . There is no loss of
generality, however, since we allow investors to weight the two polar beliefs according to
their type g in the general model that follows.

5Our assumption that dividends are drawn from a fixed interval is not restrictive since the interval can
be chosen arbitrarily large. Note that assuming d− ≥ −d̄ will ensure non-negative dividends.

6Note that such expectation formation is a misspecified model of actual market prices because it ignores
the presence of chartists (see Section 2.2).

7Clearly, setting X = 0 as in Brock and Hommes (1998), the fundamental prices coincide in both models.
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2.3. g-Traders

We consider more general types of investors who form their price expectation by following
a rule of thumb that takes a weighted average between the price expectation of a fundamen-
talist and a price expectation of a chartist. Let git ∈ R+ denote the weight that such a trader
i ∈ N attaches to the chartist’s price expectation at some point of time t ∈ N. We call this
trader a git-trader. The price expectation of an git-trader is, hence, given by:

Ẽi
t [pt+1] = gitẼ

c
t [pt+1] + (1− git)Ẽ

f
t [pt+1] = gitpt−1 + (1− git)p

f . (7)

The price expectation of a git trader nests the polar cases of fundamentalist, when git = 0,
and chartist when git = 1. More generally, git traders arrive at a price expectation by taking
a weighted average of the fundamentalist and chartist beliefs (if git ≤ 1). Note that we
also allow git > 1, in which case the agent expects the price to move further away from the
fundamental price in the future. We call such agents strong chartists.

The git investors use fundamental and technical information as in Barberis et al. (2018),
but we allow git to be endogenously determined by the network of agent i and the relative
performance of different members in the network. Our setup also differs from that in Brock
and Hommes (1998) because they consider fixed types, with the probability to switch type
determined by the relative performance (fitness) of the different predictors, as agents observe
performance of all others on a complete network.

By comparison, we allow investor beliefs to deviate from the polar cases of fundamentalist
and chartist and place no restrictions on the network structure. As noted in the Introduction,
there is considerable evidence that real-world investors combine fundamental and technical
information when making forecasts and are influenced by social ties.

2.4. Market clearing

For the stock market to clear, we require that
∑

i∈N xi
t = X. By Eqs. (2) and (4), market

clearing implies∑
i∈N

xi
t = X ⇔ δ

(∑
i∈N

Ei
t(pt+1) + nd̄− n(1 + r)pt

)
= X.

Using (7) and rearranging the market clearing condition, the equilibrium stock price can be
written in the form:

pt =
d+

(
1−

∑
i∈N

git
n

)
Ẽf

t [pt+1] +
(∑

i∈N
git
n

)
Ẽc

t [pt+1]− X
nδ

1 + r
. (8)

From (5) and (6) we can simplify (8) by using the notation of average type ḡt :=
∑

i∈N
git
n
,

and considering the deviation from the fundamental price, p̃t := pt − pf to get the law of
motion of the price dynamics:

p̃t =
gt

1 + r
p̃t−1. (9)

From this law of motion, we can already conclude that asset price converges to the
fundamental price if average belief type ḡt converges to a value smaller than 1 + r, while
price diverges if average type is of too strong chartist nature in the long-run.
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2.5. Return and Fitness

To derive excess returns per share, consider the demands xi
t and investor types git for all

agents i ∈ N at some point in time t ∈ N,

xi
t = δ

(
Ẽi

t [pt+1] + d− (1 + r)pt

)
= δ

(
gitp̃t−1 +

X

nδ
− (1 + r)p̃t

)
(10)

where d = rpf + X
nδ

has been used (compare (5)). From the law of motion of the price (9),
we then receive

xi
t = δ

(
[git − gt]p̃t−1 +

X

nδ

)
. (11)

Equation (11) has a particularly nice interpretation when X = 0: agents less optimistic than
the average will short-sell the asset and agents more optimistic than the average will buy the
asset. If last period’s price is below the fundamental price, then more fundamentalist type
agents expect the price to increase more (i.e. are are more optimistic), while the opposite is
true if last period’s price is above the fundamental price.

Similar algebra can be used to show that the excess return per share is

Rt = pt + dt − (1 + r)pt−1 = p̃t +
X

nδ
− (1 + r)p̃t−1 + εt

=

(
gt

1 + r
− (1 + r)

)
p̃t−1 +

X

nδ
+ εt. (12)

Combining the two results, the fitness measure or net profits at time t can be written as

ui
t =Rtx

i
t−1 =

[(
gt

1 + r
− (1 + r)

)
p̃t−1 +

X

nδ
+ εt

]
δ

(
[git−1 − gt−1]p̃t−2 +

X

nδ

)
. (13)

Note that if returns per share are positive, the agents with highest demand (the most
optimistic agents) will have the highest fitness, whereas if returns per share are negative the
best-performing agent is the least optimistic.

2.6. Performance Ranking and Critical Price

Who the most optimistic agents are, depends on the sign of the price deviation from the
fundamental price. By (11), the more chartist an agent’s type, the higher the demand if
price deviation p̃t is positive while the inverse holds for negative price deviation, i.e.

p̃t−2 > 0 ⇒ git−1 > gjt−1 ⇔ xi
t−1 > xj

t−1.

Hence, depending on the sign of the returns there will be a performance ranking. If
Rt > 0, then the most extreme chartist type performs best, while if Rt < 0, then the most
fundamentalist type performs best. There is a critical price level at which returns switch
sign such that when the price crosses this critical price level a switch in performance ranking
occurs. To see this we can rewrite (12) using (9) to obtain,

sgn(Rt) = sgn(pcritt ) · sgn(pcritt − p̃t) s.t. pcritt :=
ḡt

(1 + r)2 − ḡt
·
(
X

nδ
+ εt

)
(14)
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which holds for all ḡt ̸= (1 + r)2 where sgn denotes the sign function.8

Clearly, the best-performing agents can then be found among the extreme types (the
most chartist or the most fundamental type). We denote the set of best-performing agents
from some subset of agents S ⊂ N at time t ∈ N as Umax

t (S) := {i ∈ S | ui
t ≥ uj

t ∀j ∈ S}. It
will turn out that these are either those with maximal or minimal type, which is denoted by
gmax
t (S) := max{git | i ∈ S}, respectively gmin

t (S) := min{git | i ∈ S}. For S = N , we simply
write gmax

t := gmax
t (N), respectively gmin

t := gmin
t (N). Analogously, the set of agents from

S ⊂ N with maximal or minimal type are denoted by Gmax
t (S) := {i ∈ S | gi = gmax

t (S)},
respectively Gmin

t (S) := {i ∈ S | gi = gmin
t (S)}. For S = N , we analogously drop the

argument and write Gmax
t := Gmax

t (N).

2.7. The Network, Type Updating

We consider a directed network given by a n × n matrix A with entries aij ∈ {0, 1}. If
aij = 0, then investor i does not observe investor j. If, instead, aij = 1, then i observes
j’s type, and j’s returns and fitness uj

t . We assume that aii = 1 for all i ∈ N such that
each agent always observes their own type and returns. Denote by N i := {j ∈ N : aij = 1}
the set of traders that i observes and by M i := {j ∈ N : aji = 1} the set of traders that
observe i. By above assumption, we have i ∈ N i and i ∈ M i. For a subset S ⊂ N we denote
by M(S) := {j ∈ N | ∃i ∈ S : aji = 1} the set of agents who observe agents in S. Further,
denote by Ā the matrix with entries āij =

1
|N i|aij which is row stochastic.

A path in the network from node i to node j of length k ∈ N exists if there is a sequence
of connected nodes (i1, . . . ik) such that ail,il+1 = 1 for all 1 ≤ l ≤ k − 1 and i1 = i and
ik = j. Note that a path of length k from i to j exists, if and only if we have (Ak)ij > 0
where Ak denotes the k-th power of the matrix A. The set of nodes that lie on a path that
starts in node i are defined as P i := {j ∈ N |∃k ∈ N : (Ak)ij > 0}. Clearly P j ⊆ P i for all
j ∈ P i. The distance between two nodes i and j in network A is defined as the minimal
path length denoted by d(i, j) := min{k ∈ N : (Ak)ij > 0}. If two nodes are not connected
by a path, we set d(i, j) = ∞. A network is called strongly connected if d(i, j) < ∞ for all
i, j ∈ N . We further define the distance between two sets of nodes B,C ⊂ N by d(B,C) =
mini∈B,j∈C d(i, j). The diameter of the network is given by D(A) = maxi,j∈N d(i, j).

We assume that each trader is only influenced by those she observes in the network.
Similarly to the Brock and Hommes model, traders evaluate the performance of other traders
they observe and each investor updates according to the logit response model such that:

git+1 =

(∑
k∈N i

exp(γuk
t )

)−1 ∑
j∈N i

exp(γuj
t)g

j
t , ∀i ∈ N. (15)

There are two important differences in (15) relative to the Brock and Hommes model.
First, in our model agents i ∈ N do not update from the entire set of agents N , but, as in

8The sign function is defined by sgn(x) =


+1 if x > 0

0 if x = 0

−1 if x < 0
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Panchenko et al. (2013), only update from their neighbours N i. Second, in contrast to Brock
and Hommes (1997, 1998), where relative fitness (the ratio exp(γuj

t )/
∑

k∈N exp(γuk
t )) determines

the probability with which an agent adopts one of the polar types, an agent’s type in period
t+1 is a weighted average of those traders she observes in her network giving higher weight to
more successful individuals. The parameter γ measures the performance feedback to beliefs.
It is similar to the intensity of choice in the Brock and Hommes model measuring how fast
agents switch between different prediction strategies.

Denoting the updating weights by ãij(t) =
(∑

k∈N i exp(γuk
t )
)−1

exp(γuj
t), and the (col-

umn) vector of types by gt = (g1t , . . . , g
n
t )

′, the matrix Ã(t) = (ãij(t))i,j∈N presents the law
of motion of the type dynamics in the sense that (15) can be expressed as

gt+1 = Ã(t)gt. (16)

Note that Ã(t) is always row stochastic by (15) such that each iteration is a weighted
average of the type vector of the previous period. Further, for any finite γ, we have ãij(t) = 0
if and only if aij = 0 for any t ∈ N. This means that in the course of repeated updating,
agents can only influence each other if they are connected by a path in the network A.

2.8. Closed and Strongly Connected Groups and the Rest of the World

Recall that agents can only influence each other if they are connected by a path in the
network A. This motivates the following definition (compare also Buechel et al., 2015).

Definition 1. Let Π(N,A) = {C1, C2, ..., CK ,R} be a partition of N into K(≥ 1) groups and
the (possibly empty) rest of the world R such that:

• Each group Ck is strongly connected, i.e. j ∈ P i for all i, j ∈ Ck, for all k = 1, . . . , K.

• Each group Ck is closed, i.e. P i ⊆ Ck for all i ∈ Ck, for all k = 1, . . . , K.

• The (possibly empty) rest of the world R consists of the agents who do not belong to

any closed and strongly connected set, i.e. R = N \
K⋃
k=1

Ck.

A subgroup of agents is strongly connected if there exists a path from every i to every j
within that group. If the entire player set is strongly connected, we call the network strongly
connected. A subgroup of agents is closed if agents within that group only observe others
from the same group (i.e. there is no influence from types outside this group). The only
interaction across closed groups is through the market, but updating of types only occurs
between members of the same group. The rest of the world are those agents whom none of
the others listen to and who themselves have a path to some closed and strongly connected
group. Obviously, every network has at least one strongly connected and closed group.

With a suitable renumeration, the matrix A can be organized into irreducible blocks
ACk for k = 1, . . . , K (which correspond to the closed and strongly groups of the partition
Π(N,A)) and the possibly empty rest of the world. Clearly for any given (i.e. finite) γ, the
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matrices A and Ã(t) have the same block structure for all t ∈ N since aij > 0 ⇔ ãij(t) > 0
such that

A =


AC1 0

. . .

0 ACK
AR1 · · · ARK ARR

 ⇒ Ã(t) =


ÃC1(t) 0

. . .

0 ÃCK (t)

ÃR1(t) · · · ÃRK(t) ÃRR(t)

 . (17)

From this we can infer steady states of the type dynamics. A steady state vector of types
g = (g1, . . . , gn)′ must be invariant to the law of motion Ã(t), i.e. g = Ã(t)g. Since any Ã(t)
is row stochastic and such that ãij(t) = 0 if and only if aij = 0, the only potential steady
state vectors of types are such that consensus in every closed and strongly connected group
is obtained, i.e. for each Ck it must be that gi = gj for all i, j ∈ Ck. The consensus reached in
each closed and strongly connected group may differ. On the other hand, every type vector
such that some consensus is reached in each closed and strongly connected group (and some
additional conditions on the types of the rest of the world are satisfied) is a steady state of
the type dynamics. Hence, there is a continuum of steady states of the type dynamics.

Regarding the steady-state price, we see from (9) that there is a unique fundamental
steady state price p̃ = 0 if the steady state average type g differs from (1+r), whereas if
average type equals (1+r) then there is a fundamental steady state price and a continuum
of non-fundamental steady state prices p̃ ̸= 0.

2.9. Timing and Initial Conditions

From time period t ≥ 0 on, the dynamics evolve according to what has been described
above. In other words, at the beginning of each time period t ≥ 0, investor’s types are given
by git ∈ R+ for all i ∈ N with stock holdings of last period xi

t−1 and the last period’s price
deviation given by p̃t−1 = pt−1 − pf . Investors then form their demands xi

t according to (11)
such that the price deviation p̃t can be derived from the price deviation p̃t−1 according to
the law of motion in (9). From this, returns Rt are realised and fitness ui

t of each investor
i ∈ N is given by (13). Investors observe the fitness of others in their network and at the
end of period t update their type according to (15).

To have a consistent model, we need assumptions for the period before type updating
occurs for the first time, i.e. before t = 0. We assume that initially there is a price of the
stock p−2 (and hence p̃−2), which may be interpreted as the price at the emission of the stock,
and there are investors types gi−1 for all i ∈ N . We assume that p−2 ̸= pf .9 Given gi−1 and
p̃−2, demand xi

−1 can be computed according to (11) yielding equilibrium price p−1 such that
p̃−1 is determined by (9). At the end of period −1, we set gi0 = gi−1 for all i ∈ N (updating
of the types can only occur once the agents realise differences in performance). In period 0,
price p̃0 and demand xi

0 are determined by (9) and (11), respectively, and performance ui
0 is

9If p−2 = pf , then the price will always remain at the fundamental price, all types will predict the same
price, and types will evolve according to network effects only, i.e. as if γ = 0, see Section 3.1.
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evaluated according to (13), and at the end of period 0, the first type updating occurs such
that gi1 is determined by (15). We can therefore refer to p̃0 as the initial price.10

For all periods t ≥ 1, demand, price, fitness, and types are determined by (9) – (15).

3. Dynamics

Types and prices co-evolve over time: the price dynamics depend on the average type
and the type dynamics depend on the performance of agents, determined by previous types
and price. We thereby study a coupled dynamics of prices and types. The only exception is
when there is no performance feedback effect, i.e. γ = 0. We start with this case to study
the network effect in isolation. We then establish general conditions for convergence of price
and types for arbitrary but finite performance feedback effect. Finally, we study the other
polar case where the performance feedback becomes infinitely strong such that γ → ∞.

3.1. γ = 0: Pure network-based updating

We first take a brief look at the dynamics when γ = 0. In this case, agents simply update
their own type through their network independently of how others perform such that the
updating rule (15) implies that the updating weights are given by ãij(t) = āij for all t ∈ N,
or, equivalently,

(15)
γ=0⇒ git+1 =

1

|N i|
∑
j∈N i

gjt . (18)

Hence, the dynamical system (16) can be written as

gt+1 = Ã(t)gt =
(
Ā
)t+1

g0. (19)

The dynamics of types do not depend on fitness, and are, therefore, completely indepen-
dent of prices and stock holdings. Agents just observe their neighbours’ types and adopt
the average of these types in the next period independently of how each of their neighbours
performs. Such a dynamic model is closely related to a model of opinion dynamics first
formulated by DeGroot (1974). Since we assumed agents observe their own type and fitness
such that the diagonal of A is strictly positive, the matrix Ā is aperiodic. From standard
results, the type dynamics converge and we can characterize the terminal types.

Proposition 1. Suppose γ = 0. For each strongly connected and closed group Ci, let vi be
the (unique) left-unit eigenvector of ÃCi

such that entries of vi sum to 1, and let 1i be the
| Ci | ×1 vector with all entries equal to 1. Denoting Ā∞

Rk := (I− ĀRR)
−1ĀRk, the types of

traders converge to

lim
t→∞

gt = lim
t→∞

(Ã)tg0 =


11v

′
1 0

. . .

0 1Kv
′
K

Ā∞
R1 · · · Ā∞

RK 0

 g0.

10In all examples in the paper we specify only the initial price p̃0 since the initial values at earlier dates
can be inferred from the equation for the price dynamics, (9), in conjunction with the initial types.
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for any realisation of the dividends. Price converges to the fundamental price if limt→∞ ḡt <
1 + r, price converges to some price other than the fundamental price if limt→∞ ḡt = 1 + r,
and price diverges to ±∞ if limt→∞ ḡt > 1 + r.

Note that agents in different closed and strongly connected groups do not influence each
other. To focus on what happens in one closed and strongly connected group, suppose
first that the network is strongly connected, i.e. the partition from Definition 1 is such that
Π(N,A) = {N} which is equivalent to d(i, j) < n for all i, j ∈ N . From Proposition 1, we
can conclude that in this case all players reach a consensus and

lim
t→∞

ḡt = lim
t→∞

git =
∑
j∈N

vjgj0 ∀i ∈ N

where v is the left-hand unit eigenvector of Ã with entries summing to one, i.e. v = vÃ
and

∑
j∈N vj = 1 which is a measure of centrality of agents in the network, also called

eigenvector-centrality. Hence, the social influence of an agent depends on their initial type
weighted by their network centrality. In this case, price converges to the fundamental price
if and only if the sum of initial types weighted by the eigenvector centrality sum to less than
1 + r. Note that an agent with a type that exceeds unity believes that the price will move
away from the fundamental price. Hence, if there are not many strong chartists or if the
strong chartists are not central in the network, price will converge to the fundamental price.

The same considerations are true for each closed and strongly connected group Ck itself
since there is no influence from other groups neither through the network nor through the
market: a consensus is reached in Ck and the influence of each agent i ∈ Ck on the consensus
depends on the agent’s eigenvector centrality in their group (the entry of the left-hand unit
eigenvector of the matrixACk). The more central an agent in their group, the more influential
is that agent for the type consensus in their group.

Each agent in the rest of the world then ends up with a weighted average of consensuses
in the strongly connected and closed groups. Hence, the initial type of any agent from the
rest of the world will not influence their or any other agents’ terminal type. The weights
with which agents from the rest of the world average over the consensuses in closed and
strongly connected groups are according to the connections from the rest of the world to the
strongly connected and closed groups weighted by the mutual connections within the rest of
the world (I − ĀRR)

−1 =
∑∞

k=0(ĀRR)
k.11 This also implies that the long-run types in the

rest of the world are generically heterogeneous.

3.2. γ ≥ 0: Mixed network- and performance-based updating

Now we turn on the performance effect. In such a setting, the dynamics of types and prices
become highly complex and stochastic: asset prices depend on beliefs, resulting performance
depends on stochastic dividends, and belief updating then depends on the network and
performance. Nevertheless, we can make some concrete statements about price and type
convergence even in this setting, as the following sections show.

11Note that ĀRR has a spectral radius strictly smaller than 1 since, by definition of the rest of the world,
each row of ĀRR sums to a value strictly less than 1. Therefore, (I−ARR) is always invertible.
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3.2.1. Price convergence for (finite) γ ≥ 0

Consider first the price dynamics for positive performance feedback. We will show that
the coupled dynamics are still ensured to converge under fairly general assumptions. We first
show in Proposition 2 that price always converges to the fundamental price if no extreme
chartist types exist initially. On the other hand, if only extreme chartists exist initially, then
the price will diverge. This insight may seem trivial given the law of motion of the price
dynamics (9) and the nature of type updating being a repeated weighted average, but the
second part of the Proposition 2 shows that these conditions are quite tight.

We then establish in Proposition 3 that under price convergence, types will also converge
such that in all closed and strongly connected groups a consensus is established. If the price
converges to the fundamental price we can also characterize the types in the rest of the world
as a function of the consensuses in the closed and strongly connected groups.

Proposition 2. If gmax
0 < 1 + r, then price converges to the fundamental price (for all

realisations of dt). Further, if g
min
0 > 1 + r, then price diverges to +∞ or −∞.

If gmax
0 > 1+r, then for any strongly connected network A and any distribution of types g,

there exist initial conditions such that price diverges to +∞ or −∞, while if gmin
0 < 1 + r

then for any strongly connected network A and any distribution of types g, there exist initial
conditions such that price converges to the fundamental price even when dividends are non-
stochastic dt = d̄ for all t ∈ N.

The first part of the result is straightforward. By the nature of weighted average updating
of types, the convex hull of types never expands over time. Hence, at each point in time t ∈ N,
the average type ḡt is always contained in the interval of initial extreme types [gmin

0 , gmax
0 ].

Hence, if gmax
0 < 1 + r then ḡt < 1 + r for all t ∈ N. By the law of motion of the price

dynamics (9), price convergence to the fundamental price is implied. Note that convergence
is smooth in the sense that price deviation p̃t does not change sign and its absolute value is
strictly decreasing. Analogously, price divergence is straightforward if gmin

0 > 1 + r.
Although this may seem trivial, the second part of the result shows that these conditions

are quite tight in the sense it is not possible to have any more general conditions on the initial
type distribution without additional conditions on the performance feedback parameter γ,
or other initial conditions. While for stochastic dividends this may not be surprising since
there may exist realisations of dividends that lead to the adoption of one of the extreme
types, this result also holds for non-stochastic dividends. We illustrate this in Example 1.

Example 1. Consider the case where n = 2 such that the two agents observe each other, i.e.
a12 = a21 = 1. Initially, let agent 2 be a fundamentalist g20 = 0. If the initial type of agent 1
is not too extreme such that g10 < 1 + r, then by Proposition 2, price will converge to the
fundamental price. Instead, suppose that g10 = 1+ r+ ε for some 0 < ε < (1 + r)2 − (1 + r).
Then, by the second part of Proposition 2, we can find initial conditions for price p̃, outside
supply of shares X, and performance feedback parameter γ such that price diverges.

To illustrate this, consider the deterministic skeleton of the dividends process, dt = d̄ for
all t ∈ N, and let initial price p̃0 relate to X, δ, and r such that 0 < p̃0 <

1+r+ε
2(1+r)2+1+r+ε

X
2δ
. For

any X > 0, clearly such an initial price p̃0 exists since δ, ε, r > 0, and ε < (1+ r)2 − (1+ r).
Above assumption on the initial price implies that p0 < pcrit0 and, hence, R0 > 0 by (14).
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Therefore agent 1 (the more optimistic agent which is the one with a more chartist type)
obtains higher profit than agent 2, implying u1

0 > u2
0 since dividends are non-stochastic.

Note that for any γ ∈ R+, both agents obtain a consensus after one period since both use
the same updating rule,

g11 = g21 =
1

exp(γu1
0) + exp(γu2

0)

(
exp(γu1

0)g
1
0 + exp(γu2

0)g
2
0

)
.12

After reaching this consensus, types will not change henceforth, git = g11 for all i ∈ {1, 2}
and t ∈ N. For γ → ∞, both agents will adopt the type with maximal fitness,13 and hence
g11 = 1

exp(γu1
0)+exp(γu2

0)
(exp(γu1

0)g
1
0 + exp(γu2

0)g
2
0) → g10 = 1+r+ε. Thus, there exists a γ̄ ∈ R+

such that 1
exp(γu1

0)+exp(γu2
0)
(exp(γu1

0)g
1
0 + exp(γu2

0)g
2
0) > 1 + r for all γ > γ̄ since ε > 0. This,

however, implies ḡt > 1 + r for all t ≥ 1. Hence, price will diverge by (9).

The second part of Proposition 2 usually requires large performance feedback parameter γ
to ensure that small violations of the condition gmax

0 < 1 + r actually lead to violations of
the statement of the first part of Proposition 2. We will later show that for any network and
small enough price deviations, the types will converge to gmax

0 as γ → ∞ (see Proposition 5,
part 2b) providing a generalisation of the type convergence observed in Example 1.

Recall that in the DeGroot case the terminal types are characterised by the average of
initial types weighted by the eigenvector centrality, and the terminal average type determines
if price converges. In that case, for arbitrarily small violations of the condition gmax

0 < 1 + r
to lead to price divergence we would need an eigenvector centrality that is arbitrarily close
to 1 of the agent(s) with initial type equal gmax

0 , which can only be achieved if that agent
forms the only closed and strongly connected set (i.e. for particular network structures).
Instead, Proposition 2 holds for arbitrary networks.

3.2.2. Type convergence for (finite) γ ≥ 0

Having derived conditions for price convergence, we can now turn our attention to the
dynamics of types. Recall that γ ≥ 0 is a measure of how much agents weigh in performance
of others in their updating. Performance itself depends on the stochastic dividends and
the type distribution of two periods ago when the investment decision was made. All this
implies that the weights with which each agent updates from their neighbours are highly
time-dependent and stochastic.

Although the weights change over time, updating of types is still a weighted average at
each time step. Moreover, from (17), we know that the block structure will be preserved.
Hence, as long as some of the weights do not converge to 0 (or jump between positive and
0 values), agents will always find a consensus in each closed and strongly connected group
due to an ergodicity property. The following result makes use of this.

Proposition 3. Suppose that limt→∞ p̃t exists and let γ ∈ R+. Then, gi∞ := limt→∞ git
exists and is such that for all closed and strongly connected groups Ck there exists gCk∞ ∈

12Recall that gi−1 = gi0 for all i ∈ N is assumed as an initial condition and used here.
13See also Equation (20) and the accompanying discussion
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[gmin
0 (Ck), gmax

0 (Ck)] such that gi∞ = gCk∞ for all i ∈ Ck. If limt→∞ p̃t = 0, then the beliefs in

the rest of the world converge to gl∞ =
∑K

k=1 el
(
I− ĀRR

)−1
ĀRk1kg

Ck
∞ for all l ∈ R where

el denotes the l−th unit vector of dimension |R|.

The proof of Proposition 3 rests on the fact that for bounded price, given γ (which is,
hence, finite), and bounded dividends being drawn from the interval [d̄ + d−, d̄ + d+], the
profits ui

t are bounded.14 Hence, if i observes j in the network, i.e. aij > 0, then i will also
update from j such that the corresponding updating weights in the law of motion can be
bounded away from 0, i.e. there exists a δ > 0 such that ãij(t) ≥ δ for all t ∈ N. The
resulting ergodicity property ensures convergence to a consensus.

Together with Proposition 2, we can conclude that price converges to the fundamental
price and types converge to a consensus in each closed and strongly connected group, if there
are initially no extremely strong chartists in the population, i.e. if gmax

0 < 1 + r. Because of
the weighted-average nature of updating, the consensus is such that it is from the interval
from min type to max type in each strongly connected group. As an additional remark to
Proposition 3, note that the consensus in each strongly connected and closed group gCk∞ will
be strictly contained in this interval, i.e. gCk∞ ∈ (gmin

0 (Ck), gmax
0 (Ck)) for any (finite) γ ∈ R+ if

gmin
0 (Ck) ̸= gmax

0 (Ck).
If the price converges to the fundamental price, then in the long-run there are no differ-

ences in performance between types since all types will use more and more similar forecasts
once the price gets closer and closer to the fundamental price. Hence, in the long-run agents
from the rest of the world will use a DeGroot type updating, implying that each link is given
equal weight. As a result, the way the terminal type of each agent in the rest of the world
is formed is the same as in Proposition 1, which is a weighted average of the consensuses in
the closed and strongly connected groups which generically differs from other agents within
the rest of the world.

Note that while Proposition 3 provides conditions that guarantee the existence of a
long-run consensus in each closed and strongly connected group, it provides little guidance
on the consensuses themselves. In fact, the consensuses are analytically intractable for
finite performance parameter, though not when γ → ∞. We therefore turn next to infinite
performance effect γ → ∞ and characterise terminal types in this case. We return to the
case of finite performance effect after these results have been presented to allow us to ‘inspect
the mechanisms’ behind analytical intractability of this case in some detail and show that
in this case all feasible consensuses can be reached by just varying outside supply of shares
X and performance feedback parameter γ (see Section 4).

3.3. γ → ∞: Pure performance-based updating

Consider the polar case where performance becomes infinitely important, γ → ∞. In
this case, agents update from their best-performing neighbours, i.e. only the performance of

14The assumption that dividend shocks are drawn from a bounded interval comes in handy here. If,
instead, this interval is allowed to be unbounded, then Proposition 3 will still hold almost surely.
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those neighbours with maximal fitness matter. In particular, we obtain

(15)
γ→∞⇒ git+1 = lim

γ→∞

∑
j∈N i exp(γu

j
t)g

j
t∑

k∈N i exp(γuk
t )

=
1

|Umax
t (N i)|

∑
j∈Umax

t (N i)

gjt . (20)

When γ → ∞, the network plays only a minor role: agents are still restricted to update
from those they observe, but they only update from the best-performing agents within that
set. Hence, we only have that aij = 0 ⇒ ãij(t) = 0 for any t ∈ N, but the other direction
does not hold anymore for γ → ∞.

Note that the case γ → ∞ was not covered by Proposition 3. The reason is that conver-
gence to consensus may not obtain if γ → ∞ (even if price converges) because the crossing
of the critical price (14) can potentially lead to cycling behaviour of types. In this section
we first provide an example of non-convergence of types when γ → ∞ (Section 3.3.1), before
providing conditions for which types will converge, such that a consensus is reached in each
closed and strongly connected group (Sections 3.3.2 – 3.3.3). For the latter, we find condi-
tions for which no switch in the performance ranking occurs, such that we have monotonic
convergence of the type dynamics in (20) and obtain analytically tractable results.

We assume throughout Section 3.3 that dividends are non-stochastic, though we later
relax this assumption in a numerical example (see Section 3.3.4).

3.3.1. Non-convergence of types when γ → ∞
Consider the undirected wheel network where each agent is connected to its successor

and its predecessor.15 Suppose n = 5 for which the wheel network is illustrated in Figure 1
omitting own links. Let initial types be given by g0 = (0, 1

3
, 1
2
, 2
3
, 1). Further, we consider

1

2

34

5

Figure 1: The wheel network for n = 5.

deterministic dividends dt = d̄ for all t ∈ N. Finally, let p̃0 be such that 1/2
(1+r)2−1/2

X
nδ

<

p̃0 < 1+r
(1+r)2−1/6

X
nδ
, which exists for any r ≥ 0. Since ḡ0 = 1

2
, the first inequality implies

that p0 > pcrit0 . Thus, by (14) initial return (relative to investment in the riskless asset)
is negative, R0 < 0, implying ui

0 > uj
0 if and only if gi−1 < gj−1 by (13) such that more

fundamental types (from period −1) are performing better. Since by assumption gi−1 = gi0
for all i ∈ N , all agents adopt the minimal type from their neighbours in period 1 such that
types become g1 = (0, 0, 1

3
, 1
2
, 0) with average type being given by ḡ1 =

1
6
.

15The wheel network is defined by aij = 1 if and only if |j − i| ∈ {0, 1, n− 1}.
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Further, from (9) we get that p̃1 =
1

6(1+r)
p0. Above assumption p̃0 <

1+r
(1+r)2−1/6

X
nδ

implies

that p̃1 <
1/6

(1+r)2−1/6
X
nδ

= pcrit1 which means that returns in period 1 are positive, i.e. R1 > 0.

Hence, ui
1 > uj

1 if and only if gi0 > gj0 by (13) such that more chartist types (from period 0)
are performing better. Thus, all agents update by adopting the type (of period 1) from the
neighbour with the maximal type in period 0. Thus, types become g2 = (0, 1

3
, 1
2
, 0, 0) with

average type being unchanged at ḡ2 =
1
6
.

Hence, pcrit2 = pcrit1 and p̃2 =
1

6(1+r)
p̃1 < pcrit2 . Analogous arguments to above imply that

R2 > 0, hence, ui
2 > uj

2 if and only if gi1 > gj1. Agents, again, average over types of those
neighbours with maximal type in period 1. The neighbours of agent 1 all have the same
type in period 1, hence agent 1 takes the average over neighbour’s types in period 2 such
that g13 = (1

3
+0+0)1

3
. Agent 2 updates from agent 3’s type in period 2 and all other agents

update from agent 4’s type in period 2 which results in the type vector g3 = ((1
3
)2, 1

2
, 0, 0, 0).

Inductive arguments lead to the types in any period t being given by:

gi3 =


1

3t−1 if i+ t+ 1 is divisible by 5
1
2

if i+ t is divisible by 5

0 else

Clearly, types do not converge to a consensus. Instead, oscillating dynamics emerge. The
technical reason that Proposition 3 does not apply here is that for γ → ∞ updating weights
ãij(t) may converge to zero. As a result, the ergodicity property may fail to hold, and
oscillating dynamics result from the switch in performance ranking.

We now provide conditions such that classical convergence to consensus is guaranteed
when γ → ∞ by ensuring that the critical price is not crossed.

3.3.2. Characterisation of Consensus Beliefs for Zero Outside Supply of Shares

For the case of zero outside supply of shares X = 0, characterising terminal types (and
hence long-run price dynamics) turns out to be analytically tractable. Depending on the
prevailing average type, either the more fundamental types are doing better in terms of
fitness (if ḡt < (1+r)2) or the more chartist types are (if ḡt > (1+r)2). The technical reason
for this is that when X = 0 the critical price is zero, such that no switch in performance
ranking can occur in this case if average type stays below (above) the (1 + r)2 threshold;
see (14). Intuitively, if the initially best-performing agents remain the best performers, then
eventually their type should be adopted by all other agents along paths in the network. This
result is shown for arbitrary network structures in Proposition 4.

Proposition 4. Suppose X = 0. For γ → ∞, we get the following

1. If ḡ0 < (1 + r)2, then any agent adopts the most fundamental type on their path in
finite time, i.e for all i ∈ N , t ≥ 2d(i, Gmin

0 (P i))− 1, we have git → gmin
0 (P i).

2. If ḡ0 > (1 + r)2, then any agent adopts the most chartist type on their path in finite
time, i.e for all i ∈ N , t ≥ 2d(i, Gmax

0 (P i))− 1, we have git → gmax
0 (P i).
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3. Price converges to the fundamental price if ḡ0 < (1+r)2 and
∑

i∈N gmin
0 (P i) < n(1+r),

price converges (to some finite limit) if ḡ0 < (1 + r)2 and
∑

i∈N gmin
0 (P i) = n(1 + r),

and price diverges if ḡ0 < (1 + r)2 and
∑

i∈N gmin
0 (P i) > n(1 + r), or ḡ0 > (1 + r)2.

With Proposition 4 we can compare the case γ → ∞ with the other polar case (γ = 0)
that we already studied in Proposition 1 to isolate the network effect from the performance
effect. Here, instead, fitness becomes infinitely important and agents only update from the
best-performing agents in their network, i.e. to whom there exist a path.

Who the best-performing agents are, depends on the average type in the population. As
explained above, if ḡt < (1 + r)2, then the best-performing agents are those with minimal
type (with a one period lag), and vice versa for ḡt > (1+r)2. Hence, if initial average type is
above (1+r)2, then higher types initially perform better, implying that the maximal types in
each neighbourhood are adopted. This means that average type is not decreasing, such that
ḡt > (1 + r)2 for all t ∈ N . Intuitively speaking, strong chartist beliefs become reinforcing
in the sense that strong chartists expect the price to move away from the fundamental price
which indeed happens if there are sufficiently many strong chartists, i.e. if the initial average
type is large. As a result, types converge to the maximal type in each group and price
diverges for any network structure.

On the other hand, if initial average type is small enough, then fundamental expectations
are doing better and these beliefs become reinforcing. Note that price may still diverge in
this case (which occurs for sure if initial average type is below (1+r)2 and the initial minimal
type is above (1+r)), but more fundamental expectations are still yielding a higher fitness in
every period, ensuring convergence to the minimal type. For a strongly connected network,
this implies that the globally minimal type will be adopted by all other agents in finite time
since for every agent i ∈ N there exists a path to any other agent, i.e. P i = N . Hence, only
a subset of initial types matter for the consensus and hence for whether price converges.
One implication is that if investors focus strongly on performance, then one weak enough
chartist (type < 1+ r is enough) is enough to stabilise asset prices, regardless of the network
centrality of that agent.

Clearly, the same considerations outlined above hold within each closed and strongly
connected group. These groups then converge to one of the extreme types from their group
which is summarized in the following Corollary.

Corollary 1. Suppose X = 0. For γ → ∞, we get the following:

• If ḡ0 < (1 + r)2, then any closed and strongly connected group C forms a consensus on
the most fundamental type from their group in finite time, i.e. git → gmin

0 (C) for all
t ≥ 2D(AC)− 1, i ∈ C.

• If ḡ0 > (1 + r)2, then any closed and strongly connected group C forms a consensus
on the most chartist type from their group in finite time, i.e. git → gmax

0 (C) for all
t ≥ 2D(AC)− 1, i ∈ C.

Moreover, each agent in the rest of the world i ∈ R will adopt a type that is given by
the best-performing consensus out of the closed and strongly connected groups to which i
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has a path. Clearly, agents from the rest of the world may obtain heterogeneous long-run
types since they may be connected to different closed and strongly connected groups.

If the initial average type is small enough, then the terminal average type will depend
on the minimum types reached within each strongly connected and closed group and the
population shares. In this case, a single group will be pivotal for the terminal average type
(and thus whether price converges) if the minimum type in the group is smaller than (1+ r)
and the group has a sufficiently large population share to make the average terminal type
also smaller than (1 + r).

In a strongly connected network, the best-performing type (which is either the globally
minimal or maximal initial type) will be adopted by the entire population. Hence, contrary
to the case of pure social updating, network centrality plays no role for terminal type if
agents only pay attention to performance. The network structure does affect, however, time
to convergence which is finite and does not exceed the threshold 2D(A)− 1. The reason is
the following. If the best-performing type is adopted by some agent i ∈ N at time t ∈ N,
then all agents j who directly observe i (such that aji = 1) will have adopted this type
themselves at latest by time step t+2 and will remain with this type forever. Since the first
updating occurs in period 1, the maximal convergence time is given by the twice the length
of the longest path in the network reduced by 1, i.e. 2D(A)− 1 where D(A) is the diameter
of the network. If all agents observe all other agents aij = 1 for all i, j ∈ N (i.e. a complete
network), then convergence will obtain after 1 period.

Lastly, note that if we have a strongly connected network where some initial type is a
pure fundamentalist and we are in Part 1 of Proposition 4, then we will have convergence
on the pure fundamental type in at most 2D(A)− 1 periods, and hence also convergence to
the fundamental price in at most 2D(A) − 1 periods, such that mispricing is eliminated in
finite time. This result speaks to a common notion that stock markets are inefficient in the
short run but efficient in the long-run – but with the added observation that the network
influences how quickly mispricing is eliminated via the network diameter D(A). If instead,
there exists a strongly connected and closed group that does not have a pure fundamental
investor, then convergence to the fundamental price is not possible in finite time.

3.3.3. Partial Characterisation of Consensus Beliefs for Positive Outside Supply

We were able to characterise the long-run properties and bound the time to convergence
in the zero outside supply case for γ → ∞ since no switch in performance ranking occurs.
Similarly, we now derive conditions for the positive outside supply case such that the critical
price is not crossed. If the initial price deviation has the opposite sign as the critical price,
then critical price will never be crossed. Otherwise, assuming the initial price deviation to
be small enough (in absolute value) or large enough also ensures that the critical price will
not be crossed. Putting things together, we are in a position to derive a result for γ → ∞.

Proposition 5. Suppose X > 0. For γ → ∞, we get the following:

1. A closed and strongly connected group C forms a consensus on the most fundamental
type in finite time, i.e. git → gmin

0 (C) for all t ≥ 2D(AC) − 1, if one of the following
conditions is satisfied:

20

Electronic copy available at: https://ssrn.com/abstract=4037357



(a) ḡ0 < (1 + r)2 and p̃0 < 0, or

(b) gmin
0 > (1 + r)2 and (1+r)2D(AC)−1

(gmax
0 )2D(AC)−2((1+r)2−gmax

0 )
X
nδ

≤ p̃0 < 0, or

(c) gmax
0 < (1 + r)2 and (1+r)2D(AC)−1

(gmin∗
0 )2D(AC)−2((1+r)2−gmax

0 )
X
nδ

≤ p̃0 where gmin∗
0 := min{1 +

r, gmin
0 }.

2. A closed and strongly connected group C forms a consensus on the most chartist type in
finite time, i.e. git → gmax

0 (C) for all t ≥ 2D(AC)− 1, if one of the following conditions
is satisfied:

(a) ḡ0 > (1 + r)2 and p̃0 > 0, or

(b) gmax
0 < (1 + r)2 and 0 < p̃0 ≤ 1

(1+r)2D(AC)−3((1+r)2−gmin
0 )

X
nδ
, or

(c) gmin
0 > (1 + r)2 and p̃0 ≤ − 1+r

gmin
0 −(1+r)2

X
nδ
.

3. The rest of the world adopts the most fundamental type on their path, gjt → gmin
0 (P j)

for all j ∈ R, t ≥ 2d(j,Gmin
0 (P j))− 1 if ḡ0 < (1 + r)2 and p̃0 < 0, while it adopts the

most chartist type on their path, gjt → gmax
0 (P j) for all j ∈ R, t ≥ 2d(j,Gmax

0 (P j))− 1
if ḡ0 > (1 + r)2 and p̃0 > 0.

The cases 1a and 2a of Proposition 5 are analogous to the case of zero outside supply of
shares when γ → ∞; see Proposition 4. If ḡ0 < (1 + r)2 and p̃0 < 0, then types will never
increase and since the price deviation stays negative, no switch in performance ranking ever
occurs. Similarly if ḡ0 > (1 + r)2 and p̃0 > 0, then types will never decrease, and again
no switch in performance ranking occurs. In both cases we get convergence to consensus
for closed and strongly connected groups in finite time where time to convergence must be
smaller than twice the diameter of the group. In this case, the rest of the world adopts the
most fundamental (resp. most chartist) type.

To ensure that no switch in performance ranking occurs in the remaining cases, we assume
for small enough initial types (gmax

0 < (1 + r)2) and positive price deviation (p̃0 > 0) that
the latter is either small enough (case 2b) or large enough (case 1c) such that no switch in
performance ranking occurs before types in a closed and strongly connected group form a
consensus. If price deviation stays below the critical price for sufficiently many time periods,
then agents will converge on the most chartist type (case 2b). Similarly, if price deviation
stays above the critical price for sufficiently many time periods, then agents form a consensus
on the most fundamental type (case 1c). The assumption of gmax

0 < (1 + r)2 is needed to
ensure that no switch in performance ranking occurs by crossing the threshold (1 + r)2.
Analogous considerations hold for gmin

0 > (1 + r)2 and p̃0 < 0 (cases 1b and 2c).
The cases are not exhaustive because it is not analytically tractable to characterise the

long term convergence properties if a switch in performance ranking occurs, even in the case
of γ → ∞. The rest of the world only adopts the minimum (resp. the maximum type) if we
can ensure that performance ranking does not switch for any t ∈ N. This is only true if we
are in case 1a (resp. 2a) of Proposition 5.
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Though the most fundamental types are the only survivors of evolutionary competition
if the outside supply of shares is zero and price converges to the fundamental price, Proposi-
tion 5 shows that this need not be the case when shares are in positive outside supply. Thus,
in general, price stability can coexist with convergence on the most chartist type. To put it
differently, fundamental beliefs can be driven out of the market even if the price converges
on the fundamental price as in Proposition 5, case 2b.

Whether price converges to the fundamental price depends on whether the terminal
average type is smaller than (1 + r), and in a strongly connected network the (terminal)
consensus type will be reached in at most 2D(A)−1 periods for all the cases in Proposition 5
since the only closed and strongly connected group is the entire set of agents, C = N . Hence,
for positive outside supply of shares, we still have that consensus on a pure fundamental type
is possible in finite time (at most 2D(A)− 1 periods), and in such cases price is guaranteed
to equal the rational expectations solution (fundamental price) for all t ≥ 2D(A)− 1.

It is worth pointing out that in all the cases in Proposition 5, we only get convergence on
one of the extreme types. Clearly, for any finite γ ≥ 0, the consensus of each group will lie
between the extreme types (if these do not coincide), as shown by Proposition 3. Moreover,
if either p̃0 < 0 and gmin

0 > (1+ r)2 or p̃0 > 0 and gmax
0 < (1+ r)2, then it is possible to move

between the two extreme consensuses by just altering the outside supply of shares. Since the
consensus is continuous in γ (as the limit of continuous linear mappings), this implies that
by just varying performance parameter γ and the outside supply of shares X, we are able
to generate all feasible consensuses, i.e. all consensuses which are included in convex hull of
the initial types. In this sense, this can be interpreted as an ‘anything goes’ result.

3.3.4. The Impact of Stochastic Dividends for γ → ∞
To characterize the terminal types in Propositions 4 and 5 we assumed dividends were

non-stochastic. Clearly, for small enough variance of dividend shocks, both results should
be robust. We demonstrate this and study the effect of stochastic dividends in this section.

Consider a wheel network as in Section 3.3.1 with n = 10 agents and the initial types
given by g0 =

(
0, 1

10
, 2
10
, 3
10
, 4
10
, 6
10
, 7
10
, 8
10
, 9
10
, 1
)
. We let γ → ∞ and consider the case of

stochastic dividends, with the shocks εt drawn from a truncated-normal distribution with
standard deviation σd. We set X = 0.25, r = 0.04, ϕ = 0.4 and d = 0.5. We truncate the
normal distribution to the interval [−d, d], which guarantees dividends are non-negative.

In Figure 2 we show the impact of increasing the shock variance, starting from a very
low value. We plot both the consensus (left panels) and the period in which the consensus
was reached (right panels) for 200 different sequences of dividend shocks; we consider both
positive initial price deviations (blue) and negative initial price deviations (orange) because
our analytical results in Proposition 5 suggest that whether the asset is initially overvalued
or undervalued matters for the consensus type.

For sufficiently low variance (top panel), we see that the predictions of Proposition 5 hold:
consensus is reached in 6 periods in all simulations and for positive initial price deviation
the consensus is the pure chartist type (Proposition 5, 2a), while for negative initial price
deviation the consensus is the minimal type (Proposition 5, 1a), i.e. the pure fundamentalist.
This is intuitive since the sign of the realized return – which determines the fitness ranking
of agents – will be unaffected for sufficiently small shocks (see (12)–(13)). As variance
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Figure 2: Consensus and speed of agreement in the wheel network when there are dividend shocks

is increased, the consensus and date of agreement deviate, in some simulations, from the
predictions of Proposition 5 for the deterministic case. For instance, while the bulk of
simulations have consensus at the polar types, there are several exceptions for which the
consensus is a mixed chartist-fundamentalist type, and in some cases the consensus is closer
to the opposite pole, showing a substantial shift in opinion (left, middle and bottom panels).

Time to consensus is much higher in some cases, and amounts to hundreds of periods for
some simulations with intermediate variance (middle right). There does not appear to be any
clear-cut relationship between time to consensus and shock variance, but the maximum time
to consensus is highest in the intermediate variance case (cf. middle and bottom right). A
potential explanation is as follows: if variance takes on intermediate values, then performance
ranking will switch with low probability. Hence, with some probability this may happen in
the first period and then not for some time, which may lead to alternating dynamics similar
to Example 3, implying slow convergence rates. As variance is increased, the probability to
update from different types increases, leading to less extreme convergence times.

For consensus the relationship is clearer: we see many more examples of consensus away
from the poles in the highest variance case (bottom left), as well as substantial deviations of
the consensus type from the deterministic case in Proposition 5. Even for small variances,
the consensus becomes very difficult to predict. In short, both type and price dynamics may
be disturbed materially by small shocks if investors are strongly focused on performance.
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4. Positive performance effect γ > 0: Inspecting the mechanisms

In this section we explain two key mechanisms underlying the type dynamics and elab-
orate on the main obstacles for analytical tractability in the case of a finite but positive
performance parameter γ. In this case, both the network effect and the performance effect
are present when updating, i.e. higher weight will be given to better performing agents, but
some weight is also given to any connected agent. We first explain how a reversal of per-
formance ranking due to crossing of the critical price impacts on the dynamics and then we
illustrate a surprising effect that occurs in some network structures, through a mechanism
that we refer to as a lagged network structure effect (since it relates to the lagged updating
of types). The combination of both these effects may lead to an anything goes result.

4.1. Reversal of performance ranking

The critical price in (14) generally plays a role in the type dynamics whenever X > 0
and γ > 0 – and it is also the reason that for γ → ∞ it was necessary to bound the initial
price in the case where supply is positive (see Section 3.3.3). To better understand the role
of the critical price, consider the standard case of not excessively many strong chartists,
such that ḡt < (1 + r)2, and take dividends as non-stochastic: εt = 0. Then, pcritt > 0 and,
hence, returns are positive Rt > 0 if and only if p̃t < pcritt . In this case, (13) implies that
low types are doing better for p̃t > pcritt or p̃t < 0 while high types are performing better if
0 < p̃t < pcritt . The other case where there are many strong chartists such that ḡt > (1+r)2 is
opposite: pcritt < 0 is implied and, hence, returns are positive Rt > 0 if and only if p̃t > pcritt .
Observing fitness given by (13) implies that low types are doing better for p̃t < pcritt or p̃t > 0
while high types perform better if pcritt < p̃t < 0.

To interpret this, suppose that the price deviation from the fundamental price p̃t is
positive and ḡt < (1 + r), such that the asset is overvalued and there are not excessively
many strong chartists. In this case, the price deviation from the fundamental price p̃t will
decrease (see (9)) such that asset price pt also decreases and approaches the fundamental
price from above. Therefore, higher types are more optimistic than lower types at any point
in time, meaning that more chartist types buy more of the risky asset. The intuition is that
with decreasing asset price, the returns from investing in stocks are smaller than the returns
from investing in the riskless asset, i.e. pt+d̄

pt−1
− 1 < r and lower types are performing better.

Note that when the outside supply of shares is zero, i.e. X = 0, we simply have that the
returns from investing in the asset approach d̄

pf
from below where d̄

pf
= r, implying that low

types (i.e. more fundamental) always perform better.
Now consider the case of positive outside supply of shares. The returns from investing

in the asset become d̄
pf

= d̄
d̄
r
− X

nδ

> r when price approaches the fundamental price since the

positive outside supply lowers the fundamental price. Hence, when the asset price approaches
the fundamental price from above, it is actually the high types who perform better. The
critical price where such a switch in performance occurs is given by (14). Note that if we
had instead assumed a negative price deviation, then the critical price (which is positive)
would not have been crossed. Therefore, if supply is positive, the price and type dynamics
can be highly asymmetric to whether the asset is initially overvalued or undervalued.
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The difference between critical price pcritt defined in (14) and the price deviation p̃t de-
termines the sign of the returns and, hence, the performance ranking. That performance
ranking can switch makes it very difficult to derive analytical results for the long-run con-
sensus. A switch in performance ranking may even happen multiple times when the price
is strictly decreasing, because the critical price changes over time with the average type; an
example where price crossed the critical price multiple times is provided in Example 2.

Example 2. To see that the price can cross the critical price multiple times, consider the
following network being defined by A given in Figure 3 for large n.

A =



1 1 0 . . . 0
1 1 . . . 1 0
0 1 . . . 1 0
...

...
. . .

...
...

0 1 . . . 1 0
0 1 . . . 1 1
0 . . . 0 1 1


1 2

3

4

5

6

7

8

910

Figure 3: The network configuration for Appendix 2 defined by the matrix A for arbitrary n and illustrated
as a graph for n = 10 omitting the self loops.

Let the initial types be g0 = (ε, 1, 1−ε, . . . , 1−ε)′ such that ḡ0 → 1−ε for large n. Suppose

that initial price satisfies
(
max

{
(1−ε)

(1+r)2−(1−ε)
, (1+r)2

((1+r)2−ε)(1−ε)

})
X
δn

< p̃0 < 1+r
(1+r)2−(1−ε)

X
δn
. For

sufficiently small ε > 0 such a p̃0 exists.
Since by assumption p̃0 >

(1−ε)
(1+r)2−(1−ε)

X
δn
, we get that p̃0 > pcrit0 for large n. Hence, R0 < 0

and, therefore, the performance ranking favours low types. The best-performing agent in
period 0 is the one with minimal type, which is agent 1. For γ → ∞, agent 2 will adopt
agent 1’s type while all others are only connected to others with minimal type equal to 1− ε.

Hence, g1 = (ε, ε, 1 − ε, . . . 1 − ε)′ implying ḡ1 → 1 − ε for n large, and, therefore,
pcrit1 → pcrit0 . From (9), we get p̃1 =

ḡ1
1+r

p̃0, implying that p̃1 < pcrit1 since p̃0 <
1+r

(1+r)2−(1−ε)
X
δn

by assumption. Hence, R1 > 0 and, therefore, the performance ranking now favours high
types. Thus, the best-performing agent in period 1 is the one with maximal type in period 0,
which is agent 2. For γ → ∞, all traders other than trader n will adopt agent 2’s type from
period 1 in period 2 since all are connected to agent 2 except for agent n.

Hence, g2 = (ε, . . . , ε, 1 − ε)′ implying ḡ2 → ε, and, therefore, pcrit2 → ε
(1+r)2−ε

X
δn

for

n → ∞. From (9), we get p̃2 =
ḡ2ḡ1

(1+r)2
p̃0, implying that p̃2 > pcrit2 since p̃0 >

(1+r)2

((1+r)2−ε)(1−ε)
X
δn

by assumption. The price crosses the critical value therefore at least three times in this
example since it will eventually fall below the critical value again.

4.2. Lagged network structure effect: non-monotonic consensus and ‘anything goes’

An obvious problem for analytically characterising a consensus (if existing) is when the
critical price is crossed since performance ranking is reversed; see (14). To rule this out, we
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may assume deterministic dividends dt = d̄ for all t ∈ N and zero outside supply of shares
X = 0. Then by (14) the critical price is zero and fitness given by (13) thus simplifies to

X = 0 ⇒ ui
t = δ

(
ḡt − (1 + r)2

)(git−1

ḡt−1

− 1

)
(p̃t−1)

2 (21)

which is obtained using (9).
Here, we have the very clear relation between types and performance that we exploited

in Proposition 4: if average type ḡt is below (1 + r)2, then those agents which had more
fundamental (i.e. lower) types in period t − 1 perform better, while the reverse holds for
average type above (1 + r)2. Intuitively, one may expect to see that types then decrease
with increasing performance feedback parameter γ. Indeed, this would be the case if fitness
relates proportionally to types within the same period. However, because of the one-period
lag between investment and realisation of profits, this relation may not hold in certain
network structures.

To illustrate this point we employ a bipartite network with the following structure: there
are n = k+l traders, initial chartists C = {1, ..., k} and fundamentalists F = {k+1, ..., k+l},
such that initial types are given by gi0 = 1 for all i ∈ C and gj0 = 0 for all j ∈ F . Let the
network be given by the complete bipartite network with loops,16 such that each agent listens
to themselves and those agents with a different initial type, as illustrated in Figure 4.17

1 2 ... k-1 k

k+lk+l-1k+l-2...k+2k+1

Figure 4: The complete bipartite network of the two sets C = {1, ..., k} and F = {k + 1, ..., k + l}.

Example 3. First, consider the symmetric case of the complete bipartite network in Figure 4
with equal population shares of initial chartists and fundamentilists |C| = k = |F | = l = 5
(and hence n = 10). Let the exogenous initial conditions be X = 0, δ = 2, r = 0.04,
dt = d̄ = 0.1 for all t, and p0 = 2.75. These values imply a fundamental price pf = 2.5,
such that the initial price deviation is p̃0 = 0.25 > 0. Since there are only two distinct initial
types and all traders of the same type use the same updating rule, there are only two distinct
types at any point in time (for any γ). The dynamics of these two distinct individual types
git, average type ḡt, and price deviation p̃t are displayed in Figure 5 for different values of γ.

In the case where γ = 0 (first column of Figure 5), fitness has no effect on updating. The
alternation of the type dynamics is entirely caused by the network because each agent mainly

16Formally the complete bipartite network with loops between sets C and F is defined as gij = 1 if and
only if i ∈ C and j ∈ F or j ∈ C and i ∈ F or i = j

17Note that for all networks drawn in this paper, we have omitted the self loops from each agent to
themselves for the sake of simplicity.
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Figure 5: Dynamics of individual types, average type and price in the bipartite network for various γ

updates from the other type of agents (as well as herself). Since the alternation in individual
types is symmetric, the average type remains constant at ḡt = 0.5 at any time t ∈ N. From
Proposition 1, we already know that the type dynamics converge to a consensus and because
each agent is in a symmetric network position, the eigenvector centralities are the same for
all agents. Hence, consensus is obtained on limt→∞ git = 0.5 for all i ∈ N .

For increasing values of γ, we observe several effects. First, there is an initial decrease in
average type. Compared to the type dynamics for γ = 0, the low types increase by a smaller
magnitude and the high types decrease by a greater magnitude for increasing values of γ in
period 1. This is because more fundamental types receive higher fitness and this is adopted
with higher weight for larger values of γ since types are the same in the initial two periods.

Second, from period 1 on, average type increases although it is still that the low types
receive higher fitness. The reason can be found in the above described effect that individuals
update with a one period lag. Agents who had low types in period t−1 now have high types in
period t because of the bipartite nature of the network. Finally, we observe that the oscillation
of type dynamics flattens for higher values of γ. This is because the initial decrease in average
type is greater for higher values of γ such that the reverse effect from period 1 on becomes
smaller and smaller since types are already very low by period 2.

The drift towards more chartist types from period 1 is due to the ‘lagged network structure
effect’ mentioned at the start of this section. In particular, since types are updated with
higher weights to neighbours with higher past fitness, higher weight is given to those investors
who were more successful in period t − 1. Figure 5 illustrates that there exist network
structures such that the resulting updating weights are inconsistent with the performance
ranking, such that average type drifts towards worse performing types for t ≥ 1.

Given that direction of average type can be reversed, it is natural to ask whether reversals
could ‘overshoot’, such that stronger focus on performance (higher γ) could imply a higher
average type than when performance is ignored (i.e. γ = 0). We now show that this happens
when we change the population shares in Example 3, such that the consensus becomes non-
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monotonic with respect to the performance feedback parameter.

Example 3 (continued). Now consider the bipartite network in Figure 4 where the initial
chartists have a higher population share such that |C| = k = 16 and |F | = l = 4 (and hence
n = 20). Let the initial conditions be the same as in Example 3. The dynamics of the average
type ḡt for γ = 0, 20 and how the consensus varies with γ are displayed in Figure 6.

Figure 6: Left: Dynamics of average type for γ = 0 (blue) and γ = 20 (red). Right: Consensus versus γ.

In this example, average type alternates (contrary to the symmetric case in Figure 5).
This is again due to the network structure since such alternating dynamics of the average
type are observed for γ = 0 in the left hand panel of Figure 6. The initial drop in average type
is amplified when the performance feedback parameter increases with the same explanation
as above. From period 1 on, however, more weight is given to the worse performing agents
for γ = 20 compared to γ = 0 (because of the lagged network effect described in above); as
a result, average type drifts more towards chartist types when γ = 20, despite the fact that
fundamentalists are outperforming chartists at any point in time.

The right hand panel of Figure 6 shows how consensus varies in this example with the
performance feedback parameter γ. Clearly, the impact of the performance feedback param-
eter on consensus is non-monotonic, and suggests that behavioural agents concerned with
performance may in fact settle on worse performing (higher) types. This counter-intuitive
result arises because by combining repeated-average updating with a fitness measure (past
profitability) that depends on previous types, our agents fail to internalise the channel that
‘imitating those who imitate you’ can be problematic (from a performance perspective) if
there are substantive differences in type.

In Figure 6, we see that this problem is corrected for high enough values of γ (e.g. > 25)
since the initial downwards kick outweighs the type reversals lagged network effect. We have
seen in Proposition 4 that for γ → ∞ consensus will be attained on best-performing type (i.e
the fundamental type in this example), since the lagged network effect is absent.

The parameter setting of Example 3 producing Figure 6 makes clear that, with certain
network structures, worse performing types may be adopted with higher weight when the
performance feedback parameter γ increases but remains finite, such that the consensus may
drift away from the best-performing type. Clearly, this result is not restricted to bipartite
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networks, though more clustered networks will be less prone to such type reversals. Real
world networks usually do exhibit some clustering and will less likely observe such a theo-
retic effect. However, in light of these examples, general (analytical) results on the relation
between consensus and performance feedback parameter γ are not possible.

To illustrate the variety of possible consensuses even more in the bipartite network, we
now also allow the supply of shares to be positive, i.e. X > 0, such that crossing of the
critical price (and hence a reversal of performance ranking) becomes possible, and we study
the implications for the dynamics of the average type and the long-run consensus.

Example 3 (continued). We now return to the symmetric bipartite network previously de-
fined with k = l = 5, except that we allow supply X to be positive, such that there is a
positive critical price: pcritt := ḡt

(1+r)2−ḡt
· X
δn

> 0; see (14). All other parameters values are
unchanged and we keep the initial price deviation fixed at p̃0 = 0.25 as in Example 3. We
investigate numerically how consensus is influenced by the performance feedback parameter
γ at different values of the outside supply of shares X; see Figure 7.

Figure 7: Left: Long-run consensus varying with X and γ. Right: Dynamics of individual and average types
for X = 6.5 and different values of γ.

When X = 0, increasing γ lowers the long-run consensus (Figure 7 left, blue line) as
previously shown in Example 3. Hence, for high enough γ, we see a consensus at the pure
fundamental type of 0. For sufficiently small X > 0, we see a similar pattern: consensus
falls as the performance effect is strengthened and approaches 0 for sufficiently high γ (red
line, X = 5); intuitively, this is because there is no reversal in performance ranking and
hence higher values of γ lower the average type at date 1 as well as flattening the subsequent
(alternating) type dynamics (analogous to Figure 5).

However, as X is increased further, the increase in net supply raises pcrit0 somewhat
relative to the initial price deviation p̃0 = 0.25. At X ≈ 5.8 the initial return R0 switches
from negative to positive and hence for higher supply, the initial update instead favours the
chartists C (see (14) and the dicussion that follows). Thus, if outside supply is sufficiently
high, the type consensus increases as γ is increased and converges on the chartist type of 1
when the performance effect is sufficiently strong (Figure 7 left, green line).
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The most interesting cases occur at intermediate values of X such that there is a non-
monotonic relationship between consensus and the performance feedback parameter. For
X = 7.5 (Figure 7, purple line), consensus initially falls as γ is increased, but then increases
once sufficiently large values of γ are reached. For X = 6.5 we instead see a U-shape
because, even at intermediate values of γ, the initial update is not so central in determining
the consensus, since it can be reversed or offset by the subsequent type dynamics.

We examine the case X = 6.5 in more detail in the right side of Figure 7. The U-shape
relationship for the consensus arises because, although the initial update increases the average
type (the initial return R0 is positive and hence ui

0 > uj
0 if and only if gi0 > gj0), a modest

increase in average type in period 1 can be more than reversed in subsequent periods such
that average type eventually falls below its starting value of 0.5 (see γ = 3, left panel); we
see a similar pattern for γ = 11 (middle panel), except that the changes in average type are
exacerbated.

These results are related to the additional lag in updating weights, i.e. the network struc-
ture effect mentioned above. Hence, both this and the performance ranking effect can play an
important role in shaping the consensus when both effects are present. Finally, note that as
stated below Proposition 3, the consensus is strictly contained in the interval between maximal
and minimal initial type, in contrast to the result when γ → ∞ (see Proposition 5).

Example 3 illustrates the two effects at play here: even when the critical price is not
crossed, the lagged updating may lead to type reversals for some networks structures implying
that consensus is in general not monotonic with respect to performance feedback. When
additionally the ranking of types is reversed due to crossing of the critical price, which is
possible if supply X is positive, then Figure 7 shows that all achievable consensuses (i.e.
that are included in the convex hull of initial types) can be achieved by just varying the
outside supply of shares X and the performance feedback parameter γ. Thus, Example 3
illustrates the ‘anything goes’-result discussed below Proposition 5, and there is little hope
for analytically characterising long-run types for finite γ without restricting the network
structures and other parameters.

5. Applications

We close by presenting two applications – asset price bubbles and price oscillations.
These applications are motivated by evidence from experimental asset markets, as well as
our desire to highlight some concrete implications for asset prices via numerical results
for some interesting cases not settled by our analytical results. We consider deterministic
dividends in this section to make clear that the results do not require exogenous shocks.

5.1. Price bubbles

As a first application, we consider an example with price bubbles in the sense of posi-
tive deviations from the fundamental price that initially grow to reach a peak before price
collapses and returns to the fundamental value. Following the seminal paper of Smith et al.
(1988), such ‘bubbly’ price dynamics have been documented in numerous studies of ex-
perimental asset markets, and it has been found that introducing communication between
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participants affects the incidence of asset price bubbles.18 In our example, the bubble dy-
namics are generated by the network without any exogenous disturbance to asset prices
or fundamental values. Besides highlighting the possibility of price bubbles, our example
has the network effect and the performance effect either competing against each other, or
reinforcing one other, depending on the value of the average type ḡt.

Consider a network with one pure fundamentalist, agent 1, who does not listen to any
other agents (i.e. a1j = 1 if j = 1 and 0 otherwise). The remaining agents, 2 to n, start out as
strong chartists but update their types based on their network, with the weights depending
upon performance when γ > 0. For convenience we set g0 = (0, 2, ..., 2) and n = 10, so that
ḡ0 = 1.8. Agents i = 2, . . . , 10 listen to each of their nearest neighbours, i.e. aij = 1 if and
only if |j − i| ∈ {0, 1, n − 1} and i > 1. Hence, the network matches the wheel network
considered in Section 3.3.1, except that agent 1 does not listen to agent 2 or agent 10.

With the terminology used in this paper, agent 1 forms the only strongly connected and
closed group while the rest of the world is composed of the agents 2,...,10. Note that this
example can be interpreted as a world with a ‘die hard’ fundamentalist (agent 1) and many
followers who either follow the fundamentalist directly (agents 2,10) or follow her indirectly
by following her followers or her followers’ followers (agents 3 to 9); intuitively, we may think
of this example as ‘one Warren Buffet and many sheep’.

1

2 3

45678

9 10

Figure 8: The network configuration of Section 5.1 for n = 10 omitting the self loops.

We set r = 0.04, d = 0.02, ϕ = 1 and choose a zero net supply of shares, X = 0, so that
the fitness ranking among agents depends only on the average type ḡt relative to (1+r)2 (see
(21)). Initially we keep n fixed at 10 so that chartists (‘sheep’) outnumber the fundamentalist
by 9 to 1; however, we later consider the impact of varying n. Note that when γ = 0, the
fitness ranking is irrelevant and hence the updating, of agents 2 to 10, depends on the (local)
average computed from their own type and their neighbour on either side, whereas agent 1
always keeps g1t = 0. As a result, the type dynamics for γ = 0 are guaranteed to converge
smoothly to zero, giving us a benchmark to compare with the case when both a network
effect and a performance effect are present (γ > 0).

The price follows a stylised ‘bubble’ dynamic, first increasing for several periods to reach
a peak before collapsing and returning to the fundamental price (see Figure 9). The right
panel shows the corresponding average type dynamics. Price initially increases because
ḡ0 = 1.8 > 1 + r, and it goes on increasing for several periods while ḡt remains above 1 + r.

18Noussair et al. (2001), Oechssler et al. (2011), Schoenberg and Haruvy (2012), Steiger and Pelster (2020).
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Figure 9: Asset price bubbles and type dynamics

Only after several rounds of updating has the fundamentalist type spread sufficiently through
the population to lower the average type below (1 + r), so that price starts falling and the
bubble collapses. Hence, the price ‘bubble’ here is generated by a network effect.

Once we turn on the performance effect (γ > 0), we see that the bubble is prolonged
and peaks at a higher value. At the same time, the bubble becomes strongly asymmetric,
with price collapsing rather quickly after reaching its peak (left panel). This dynamic occurs
because while the average type satisfies ḡt > (1 + r)2 ≈ 1.082, more optimistic agents earn
higher returns and hence chartist beliefs outperform the pure fundamentalist; however, once
ḡt is below (1 + r)2, the performance ranking is reversed, and there is a shift toward more
fundamental beliefs, which can be seen in the dramatic decline of ḡt soon after period 10
(dashed lines, right panel). This decline is especially evident in the case of γ = 5 (purple
dashed line). Note that price quickly collapses once ḡt < (1+r) (left panel) because a falling
price, which itself makes expectations more conservative, is reinforced by a fall in average
type ḡt, so that price declines are exacerbated.

Note that while the network effect wins the ‘battle’ against the performance effect up to
γ = 5, this result is reversed in the final case (γ = 5.244, green dashed line). That is, once γ
is large enough, the performance effect is strong enough that ḡt always exceeds (1 + r)2. In
this case the reversal in performance ranking does not happen (see right panel) and since the
terminal average type exceeds (1 + r), we have a perpetual bubble for which price diverges
to +∞.19 We thus see that the importance placed on performance, as controlled by feedback
parameter γ, has both quantitative and qualitative implications for the dynamics.

The findings here are consistent with the theoretical results earlier in the paper. In this
example the agents 2,..,10 form the rest of the world and Proposition 1 implies that for
γ = 0, the rest of the world will adopt a weighted average of the consensuses in the closed
an strongly connected groups. The same is true for any finite γ if the price converges to the
fundamental price by Proposition 3. Since the only closed and strongly connected group is

19Clearly, consensus does not obtain in this case since the ‘die hard’ fundamentalist has type of 0 while
the remaining agents have types above the average (though arbitrarily close to it for sufficiently large n).
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the singleton set composed of agent 1, Propositions 1 and 3 thereby imply that the types
of the agents 2,...,10 converge to the fundamental type of agent 1 if price converges to the
fundamental price. In contrast for γ → ∞, since the initial average type is above (1 + r)2,
Proposition 4 implies that the rest of the world will converge to the maximal type from
their path which is clearly their initial type. Hence, for γ → ∞, the initial types of agents
2, . . . , 10 will never change, leading to price divergence.

How sensitive are the results to the mass of chartists, as determined by n? Figure 10
varies the number of agents at three different values of gamma, including the case γ = 0 (no
performance effect, left panel). We see that increasing n raises the magnitude and persistence

Figure 10: Sensitivity of bubble paths to increasing the mass of chartists

of the price bubble; intuitively, this is because a large population of chartists corresponds to
greater initial optimism, which takes longer to die out as the fundamentalist belief spreads.
At the same time, the diameter of the network increases for greater n which has a reinforcing
effect, implying that it takes longer for all agents to adopt the fundamental belief. For the
cases with positive γ (Fig. 9, middle and right panel), the bubble is amplified and more
persistent when investors are more focused on performance, and even small increases in n
have substantial effects on the bubble size and duration. Due to the switch in the performance
ranking noted above, a strong asymmetry develops as n is increased: the bubbles build over
many periods, but the price collapses very quickly after reaching its peak.

Although we only plot cases where price converges, the case γ = 1.33, n = 11 (right panel
of Figure 10, dashed purple) is right on the border, and hence a small increase in γ will lead
to price divergence as seen above. Note that there is some degree of substitutability of γ
and n in this example, in the sense that increasing either γ or n while holding the other
parameter fixed will increase the magnitude and persistence of the price bubble and, for
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sufficiently large values, will imply that there is a perpetual bubble so that price diverges to
+∞. There is an important distinction here since if γ = 0 (performance effect absent), then
regardless of how large n is, types will converge on a consensus of 0 (pure fundamentalist)
and hence the price bubble will always collapse, giving price convergence to the fundamental
price. By contrast, if γ > 0 then for large enough n we may have the average type settle
above 1+r so that the bubble never ends and price diverges. Again, we see that performance
has both quantitative and qualitative implications for price and type dynamics.

Although in the above example the performance effect makes price divergence ‘more
likely’, this is not a general result. With the parameters chosen in this example, the initial
average type is greater than (1+ r)2, and hence Proposition 4, part 3 implies that the rest of
the world converges to the maximal type on their path when performance becomes infinitely
important. Clearly, this maximal type can be found in rest of the world itself, leading to price
divergence with increasing performance feedback parameter. More generally, depending on
the example at hand, the performance effect may lead to price divergence, have no impact
on long-run price dynamics, or lead to price convergence when it would otherwise be absent.

5.2. Price oscillations

In this section we provide an example in which there can be never-ending price oscillations
in the absence of external shocks. The presence of price oscillations – or ‘recurrent bubbles’
– has been seen in studies of experimental asset markets with multiple repeated rounds of
the same group of participants (see e.g. Hommes et al. (2005) or Bao et al. (2017)).

We assume there are n = 3 agents. Agents 1 and 3 are “extreme agents” who listen only
to themselves, i.e. for i ∈ {1, 3}, aij = 1 if j = i and 0 otherwise. Agent 2 listens to both
agents 1 and 3, so a2,j = 1 for j ∈ {1, 2, 3}. Agent 1’s initial type is g10 = 1 and Agent
3’s initial type is g30 = (1 + r + ε)2, where ε = 0.001. Since these agents update only from
themselves, g1t = 1 and g3t = (1 + r + ε)2 for all t ∈ N. Agent 2’s initial type is g20 = 1 + r,
and their subsequent types g2t , for all t ≥ 1, will depend on their updates from past types
(of all agents), which are weighted according to their relative performance. It follows that
any changes in the average type gt must come from changes in Agent 2’s type.

The other parameters are set atX = 3, r = 0.04, d = 0.5 and ϕ = 0.5, giving δ = 1/ϕ = 2.
Together these parameters imply a fundamental price of pf = 1

r
(d−X(nδ)−1) = 0. The initial

deviation from the fundamental price is set at p̃0 = 10.
Consider first the benchmark of DeGroot updating (γ = 0) where the performance effect

is absent. In this case, Agent 2 updates from 1 and 3 with equal weight of 1/3 and hence
their first update is g21 = 1

3
[1 + (1 + r) + (1 + r+ ε)2] ≈ 1.0412 > 1 + r. It follows that all of

Agent 2’s subsequent types g2t = 1
3
[1+ g2t−1+(1+ r+ ε)2] are increasing, implying g2t ≥ 1+ r

for all t ∈ N. The average type thus satisfies gt > 1+ r and hence price will diverge to +∞.
We therefore focus in what follows on cases where γ > 0. It turns out that this is sufficient
to prevent price divergence; as we shall see, the presence of permanent price fluctuations is
closely linked to the size of the performance feedback parameter γ.

We start by plotting some time series for the price deviation p̃t and the average type gt
at select values γ ∈ {2.5, 5, 6, 7.5} (see Figure 11). For sufficiently low values of γ, price
is attracted to a non-fundamental steady state in which the price deviation is positive and
average type settles on 1 + r (see left panel), implying that the terminal belief of Agent 2 is
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Figure 11: Time series for selected values of the performance parameter γ.

smaller than (1+ r).20 For γ = 5 we see visible oscillations in the asset price and the average
type that dampen over time. Once γ is large enough, however, the fluctuations in price and
average type no longer die out (right panels). Both price and average type follow cycles of
consistent amplitude and frequency, with the fluctuations larger for γ = 7.5 than for γ = 6.
The latter cycles remain as the simulation horizon is increased, while for γ = 5 (middle left)
the price deviation converges on a (non-fundamental) steady state with average type equal
to 1 + r and the price deviation lower than for γ = 2.5 (left panel).

The intuition for the persistent price fluctuations is quite simple. When the average type
gt < 1+ r, iterations of the price equation imply that price is falling, while if gt > 1+ r price
is increasing (see (9)). Therefore, for price to fluctuate continually, the average type must
fluctuate between values < 1+ r and values > 1+ r. This is exactly what we see is the lower
right panels of Figure 11, and recall that these fluctuations come from the type updates of
Agent 2, who changes their weighting of types according to performance. Agent 1 (moderate
chartist) receives a higher weight once price exceeds a critical value, which leads price to
start falling, at which point performance again favours Agent 3 (strong chartist) and price
starts increasing again. The critical prices at which the switches in performance occur are
given by (14) and although the critical price is unique, it depends on average type gt – and
hence there are both upper and lower price thresholds at which the switches occur.21

The simulations in Figure 11 leave open the question of whether the same pattern is

20Let g2,∞ be the terminal belief of Agent 2. Given a terminal average type of g∞ = 1 + r, we have
1+ r = 1

3 [1+g2,∞+(1+ r+ε)2] =⇒ g2,∞ = 3(1+ r)− [1+(1+ r+ε)2] = (1+ r)(1−2ε)− (r2+ε2) < 1+ r.
21Note that since the critical price is decreasing in gt, the upper (lower) price threshold ‘kicks in’ when

average type is low (high). Therefore, the peaks and troughs in price and type are not coincident.
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observed for a wide range of γ values. We therefore conducted a bifurcation analysis with
respect to γ – and we found that the general pattern is preserved. In Figure 12 we plot
the attractors for price deviation and average type for 7 different γ values in simulations of
15,000 periods in which the last 1,500 observations are plotted.22

Figure 12: Price and average type attractors for selected values of γ.

For γ > 0 we find that the price dynamics converge. If γ is small enough, the at-
tractors collapse to a single point – in particular, price and average type converge to a
non-fundamental steady state in which price deviation is positive (left panel) and average
type equals 1 + r (right panel), as seen in the above simulations. For high enough values
of γ (≈ 5.1), we see a qualitative change in the dynamics: there are permanent price and
type cycles, as visible in the attractors of Figure 12. The cyclical behaviour of the price
and average type is indicated by the ‘oval shape’ attractors seen for values such as γ = 5.2
(purple) and γ = 6 (green); see left and right panel. Note that for moderate values of γ the
attractors are ‘solid’; however, as γ is increased further, some further qualitative changes
emerge: the type attractor becomes strongly asymmetric and contains ‘gaps’, i.e. not all
regions between the min and max are ‘hit’. Note that the asymmetry of the type attractor
also implies that price deviations get larger on the upside as γ is increased, so that the risky
asset is often strongly overvalued (left panel).

6. Conclusion

There has been considerable interest in the influence of social ties on investment decisions,
yet much formal work has relied on models in which social factors do not play an important
role. As argued by Hirshleifer (2015), “the time has come to move beyond behavioral finance
to social finance.” In this paper we moved in this direction by studying the impact of network
structure on belief formation and asset prices in a setting where prices and belief types evolve

22We picked a relatively small number of values to keep the attractors discernible from one another.

36

Electronic copy available at: https://ssrn.com/abstract=4037357



as a system of coupled dynamics. Our model builds on a benchmark asset pricing model
by allowing investors to be connected via arbitrary social networks and to adopt continuous
types on the spectrum from pure fundamentalist to arbitrarily strong chartist.

The influence of the social network on price and type dynamics depends on investors’
attention to past performance when agents update their belief type. We obtained a sharp
characterisation of the long-run type distribution for the polar cases where (i) updates are
purely social, and (ii) agents only update from best-performing neighbours. For pure social
updating, the long-run type distribution and price dynamics depend on network centrality
as in the opinion dynamics literature. However, if only the best performer(s) within each
agent’s network are imitated, then (depending on initial price and average type), either the
most fundamental type or the most chartist type in each closed subgroup is adopted in finite
time, and price converges if these extreme types are not too strongly chartist.

In this case of updating from best-performers, the network only affects the time to con-
sensus, and price can converge to the rational expectations solution (fundamental price) in
finite time if there are one or more pure fundamentalists. For intermediate performance feed-
back, the network matters in shaping the consensus belief, and we provided conditions such
that a long-run consensus is reached, although the consensus itself is analytically intractable.
Particularly, we showed that anything goes in the sense that all achievable consensuses are
achieved by just varying the outside supply of shares and the performance feedback param-
eter. Our two applications – price bubbles and price oscillations – illustrated some concrete
implications of network-performance effects in the absence of exogenous shocks.

Relative to previous work, these results clarify how asset price and type dynamics depend
on concrete features of networks and market conditions – such as distance between agents
(diameter), network centrality, asset supply, and initial price and initial types – and when
the most fundamental type or most chartist type will survive if investors are strongly focused
on performance. Our results thereby provide an understanding of when performance-based
updating from a social network is stabilising – or not – for asset prices. An important
implication of our results is that policymakers concerned with financial market stability will
require information not just on social networks, but also on the extent to which observed
differences in performance affect investment decisions.

There are several promising avenues for future research. First, it would be of interest
to investigate whether the model does a good job at replicating empirical stylised facts in
stock markets when it is disciplined with networks that display a high degree of clustering as
in the data. An investigation of price and type dynamics under some empirically plausible
network structures – along the lines of the exercise in Panchenko et al. (2013) – would be a
useful contribution. Second, estimation of the model could shed light on model performance,
as well as helping to discipline model parameters in numerical analysis.

Last but not least, an important finding from several studies of experimental asset mar-
kets is that after a sufficiently large number of rounds with a group of participants, beliefs
appears to coordinate on a common predictor (see Hommes et al. (2005), Hommes et al.
(2008), Bao et al. (2017))). Since the standard framework of discrete types cannot, by defi-
nition, replicate such belief-type consensus (except as an extreme case), an open question is
whether our model of continuous types would provide an improved fit to experimental asset
market data while helping to explain this important stylised fact.
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Appendix A. Two Lemmas for the case of γ → ∞

Lemma 1. Let γ → ∞ and suppose there exists t̄ ∈ N such that sgn(Rt) = sgn(R0) or
ḡt = 0 for all t ≤ t̄. Then the following holds:

1. If p̃0R0 < 0, then git ≥ gmin
t−1(N

i) ≥ git+1 for all i ∈ N , for all t ≤ t̄.

2. If p̃0R0 > 0, then git ≤ gmax
t−1 (N

i) ≤ git+1 for all i ∈ N , for all t ≤ t̄.

Proof. First, note that sgn(p̃0) = sgn(p̃t) holds for all t ∈ N such that ḡt ̸= 0 by (9). With
the assumption of the Lemma, this implies sgn(R0p̃0) = sgn(Rtp̃t) for all t ≤ t̄.

1. Consider the case p̃0R0 < 0, implying p̃tRt < 0 or ḡt ̸= 0 for all t ≤ t̄. Note that if
there exists t′ ≤ t̄ such that ḡt′ = 0 then git′ = 0 for all i ∈ N , and by weighted average
updating (by row stochasticity of Ã) there is nothing to show since then git′ = 0 for all
i ∈ N , t′ ≥ t is implied.

Therefore, suppose for the remainder that p̃tRt < 0 holds for all t ≤ t̄. Note that
sgn(Rt) = −sgn(p̃t) implies ui

t > uj
t if and only if git−1 < gjt−1 by (13) (since sgn(p̃t) =

sgn(p̃t−1) = sgn(p̃t−2)). Hence, more fundamental types perform better for any t ≤ t̄.

First, consider t = 0 and let γ → ∞. By (20), each agent i ∈ N only updates from
those with maximal fitness in their neighbourhood, i.e. from those with minimal type.
Note, gi−1 = gi0 for all i ∈ N by assumption on initial conditions. Hence, Umax

0 (N i) =

Gmin
−1 (N

i) = Gmin
0 (N i) for all i ∈ N recalling that Umax

t (N i) := argmaxj∈N i{uj
t} and,

similarly, Gmin
t (N i) := argminj∈N i{gjt}.

We therefore get the following:

gi1 =
1

|Umax
0 (N i)|

∑
j∈Umax

0 (N i)

gj0 =
1

|Gmin
0 (N i)|

∑
j∈Gmin

0 (N i)

gj0 = min
j∈N i

gj0 ≤ gi0 ∀i ∈ N,

since i ∈ N i for all i ∈ N . Thus, p̃0R0 < 0 implies gi1 ≤ gi0 for all i ∈ N .

Further suppose for some t ≤ t̄ we have git ≤ git−1 for all i ∈ N . We show that this
implies git+1 ≤ git for all i ∈ N . Since Rtp̃t < 0, we get similar to above:

git+1 =
1∣∣Gmin

t−1(N
i)
∣∣ ∑
j∈Gmin

t−1(N
i)

gjt ≤
1∣∣Gmin

t−1(N
i)
∣∣ ∑
j∈Gmin

t−1(N
i)

gjt−1 = min
j∈N i

gjt−1 ∀i ∈ N

By weighted average updating (by row stochasticity of Ã) we have git ≥ minj∈N i gjt−1

for all i ∈ N . Hence, we have shown that if p̃0R0 < 0, then gi1 ≤ gi0 and if p̃tRt < 0
and git ≤ git−1, then

git+1 ≤ min
j∈N i

gjt−1 ≤ git. ∀i ∈ N, (A.1)

Induction implies that (A.1) holds for all t ≤ t̄ which is what we had to show.
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2. Now, consider the case p̃0R0 > 0 which is completely analogous to above. p̃0R0 > 0
implies p̃tRt > 0 for all t ∈ N for which there exists i ∈ N such that git ̸= 0. Note that
we will show that for all such t ∈ N, we have git ≤ git+1. Hence, if there exists a i ∈ N
such that gi0 > 0, then this will hold for all t ≤ t̄.

Note that sgn(Rt) = sgn(p̃t) implies ui
t < uj

t if and only if git−1 < gjt−1 by (13). Hence
more chartist types are always performing better at any point in time t ≤ t̄.

Analogously to above for t = 0, we get because of the initial assumptions,

gi1 =
1

|Umax
0 (N i)|

∑
j∈Umax

0 (N i)

gj0 =
1

|Gmax
0 (N i)|

∑
j∈Gmax

0 (N i)

gj0 = max
j∈N i

gj0 ≥ gi0 ∀i ∈ N.

Assuming git ≥ git−1 for all i ∈ N , we get from Rtp̃t > 0 that:

git+1 =
1∣∣Gmax

t−1 (N
i)
∣∣ ∑
j∈Gmax

t−1 (N
i)

gjt ≥
1∣∣Gmax

t−1 (N
i)
∣∣ ∑
j∈Gmax

t−1 (N
i)

gjt−1 = max
j∈N i

gjt−1 ∀i ∈ N

and, hence,
git+1 ≥ max

j∈N i
gjt−1 ≥ git. ∀i ∈ N, t ≤ t̄. (A.2)

Lemma 2. Let γ → ∞ and and suppose there exists t̄ ∈ N such that sgn(Rt) = sgn(R0) or
ḡt = 0 for all t ≤ t̄. Then the following holds:

1. If p̃0R0 < 0, then git → gmin
0 (P i) ∀i ∈ N , t ∈ N : 2d(i, Gmin

0 (P i))− 1 ≤ t ≤ t̄.

If for a closed and strongly connected group C we have t̄ ≥ 2D(AC) − 1, then git →
gmin
0 (C) for all t ≥ 2D(AC)− 1.

2. If p̃0R0 > 0, then git → gmax
0 (P i) ∀i ∈ N , t ∈ N : 2d(i, Gmax

0 (P i))− 1 ≤ t ≤ t̄.

If for a closed and strongly connected group C we have t̄ ≥ 2D(AC) − 1, then git →
gmax
0 (C) for all t ≥ 2D(AC)− 1.

Proof. For some agent i ∈ N , recall that P i := {j ∈ N |∃k ∈ N : (Ak)ij > 0} denotes the set
of agents to which there exists a path from i. Since ajj = 1 for all j ∈ N , we have j ∈ P j

for all j ∈ N . Further recall that for any M ⊆ N , we denote by gmin
t (M) := min{gj0|j ∈ M}

the minimal initial type of all agents in the set M and by gmax
t (M) := max{gj0|j ∈ M} the

maximal initial type of all agents in the setM for some point in time t ∈ N. Clearly, P j ⊆ P i,
and hence, gmin

t (P i) ≤ gmin
t (P j) while gmax

t (P i) ≥ gmax
t (P j) for all j ∈ P i, t ∈ N. Note that

by weighted average updating (by row stochasticity of Ã), we have gjt+1 ≥ gmin
t (P j) ≥

gmin
t (P i) ≥ gmin

t−1(P
i) and gjt+1 ≤ gmax

t (P j) ≤ gmax
t (P i) ≤ gmax

t−1 (P
i) for all j ∈ P i, t ∈ N.

1. Consider the case p̃0R0 < 0 such that (A.1) holds for all t ≤ t̄ by Lemma 1. Hence,
the first inequality in (A.1) must be satisfied with equality if mink∈Nj gkt−1 = gmin

t−1(P
i)
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for some j ∈ P i. Thus, all agents j ∈ P i who listen to agents within the set Gmin
t−1(P

i)
must adopt gmin

t−1(P
i) at latest by period t+ 1. Hence,

Gmin
t+1(P

i) ⊇
⋃

j∈Gmin
t+1(P

i)

M j(Gmin
t−1(P

i)) ∀t ∈ N. (A.3)

Note that (A.1) also implies Gmin
t+1(P

i) ⊇ Gmin
t (P i) for all t ∈ N. Since, further, by

assumption on initial conditions, Gmin
−1 (P

i) = Gmin
0 (P i), (A.3) implies

Gmin
t+1(P

i) ⊇

{
Gmin

t (P i) if t is even⋃
j∈Gmin

t (P i) M
j(Gmin

t (P i)) if t is odd

Since j ∈ M j for all j ∈ N , the set Gmin
t (P i) just expands over the path P i at latest

at every odd time-step by the neighbours of the previous set. Thus, each agent j ∈ P i

within distance d(j, Gmin
0 (P i)) of the agents with initial minimal types of P i has adopted

this minimal type at latest at time step 2d(j,Gmin
0 (P i))− 1 and will keep it from there

for all t ≥ 2d(j,Gmin
0 (P i))− 1 as long as t ≤ t̄.

Now, for a closed and strongly connected set C, we have by definition P i = P j for all
i, j ∈ C. Thus if t̄ ≥ 2D(AC) − 1, then all agents in C obtain a consensus on gmin

0 (C)
after at most 2D(AC) − 1 steps where, as before, AC is the matrix A restricted to
the set C and D(AC) is the length of the longest path within the network AC. Since
gi2D(AC)−1 = gmin

0 (C) for all i ∈ C if t̄ ≥ 2D(AC)−1, these will not change henceforth by

the nature of weighted average updating. Hence, git = gmin
0 (C) for all t ≥ 2D(AC)− 1.

2. Now, consider the case p̃0R0 > 0 such that (A.2) holds for all t ≤ t̄ by Lemma 1.
Analogously to above, we conclude that for any i ∈ N ,

Gmax
t+1 (P

i) ⊇

{
Gmax

t (P i) if t is even⋃
j∈Gmax

t (P i) M
j(Gmax

t (P i)) if t is odd

Thus, for a closed and strongly connected set C, all agents in C obtain a consensus on
gmax
0 (C) after at most 2D(AC)− 1 steps and do not change types after that.

Appendix B. Proofs of the Main Results

Proof of Proposition 1. The type dynamics characterization follows from standard results of
the DeGroot model (see e.g. Golub and Jackson, 2010; Buechel et al., 2015). If the limit
average type ḡ∞ is below 1 + r, then there exists a t′ ∈ N such that ḡt′ < 1 + r for all t ≥ t′

which implies by Eq (9) that limt→∞ p̃t = 0, i.e. price converges to the fundamental price. If
the limit average type is above 1 + r, then there exists a t′ ∈ N such that ḡt′ > 1 + r for all
t ≥ t′ which implies by Eq (9) that price diverges (to +∞ if p̃t > 0 and to −∞ if p̃t < 0). If
ḡ∞ = 1 + r, then for any ϵ > 0 there exists tϵ such that |ḡt − (1 + r)| < ϵ for all t ≥ tϵ. By
Eq (9), price will settle on some value.
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Proof of Proposition 2. Note gmax
t+1 ≤ gmax

t and gmin
t+1 ≥ gmin

t for all t ∈ N by row stochasticity

of Ã. Hence if gmin
0 > 1 + r, then ḡt > 1 + r for all t ∈ N, implying

∏t
k=1

ḡk
1+r

t→∞−→ ∞ and,
hence, price diverges by (9). On the other hand, if gmax

0 < 1+ r, then ḡt < 1+ r for all t ∈ N
implying

∏t
k=1

ḡk
1+r

t→∞−→ 0 and, hence, price converges by (9). Further 0 ≤ ḡt
1+r

< 1 for all
t ∈ N implying smooth convergence as stated.

Now suppose some vector of types g0 ∈ Rn
+ with gmax

0 > 1+ r. Given any network A, we
show that there are initial conditions such that price diverges: let X > 0 such that we are
in the case of positive outside supply of shares, consider the case of large feedback to beliefs,
i.e. γ → ∞, non-stochastic dividends, dt = d̄ for all t ∈ N, and let the initial price deviation
p̃ be positive, but small enough such that

0 < p̃0 <
(1 + r)2D(A)−1

(gmax
0 )2D(A)−1

1 + r

n(1 + r)2 − (1 + r)

X

δn
. (B.1)

Note that the later exists since the right-hand side is positive. Since p̃t =
1

(1+r)t
(
∏t

k=1 ḡk)p̃0

and ḡt ≤ gmax
0 for all t ∈ N, we have p̃t ≤ (gmax

0 )t

(1+r)t
p̃0 ≤ (gmax

0 )2D(A)−1

(1+r)2D(A)−1 p̃0 for all 0 ≤ t ≤ 2D(A)−1.

Together with (B.1), we get p̃t < 1+r
n(1+r)2−(1+r)

X
δn

for all 0 ≤ t ≤ 2D(A) − 1. Now, if

1 + r < gmax
t , then 1+r

n
< ḡt, implying p̃t ≤ 1+r

n(1+r)2−(1+r)
X
δn

< ḡt
(1+r)2−ḡt

X
δn

if ḡt < (1 + r)2 and,

hence by (14), Rt > 0. If, instead, ḡt ≥ (1 + r)2, then trivially Rt > 0. Hence, Rtp̃t > 0
(since ḡt >

1+r
n

and hence p̃t > 0) for all 0 ≤ t ≤ 2D(A)− 1.
By Lemma 2, this implies that each agent i ∈ N within distance d(i, Gmax

0 ) of the
agents with initial maximal types has adopted the maximal type at latest at time step
2d(i, N(gmax

0 )) − 1 and will keep it from there forever, since the network is strongly con-
nected and, hence, we have P i = N for all i ∈ N . Therefore, type-convergence to maximal

type is obtained at latest at time step 2d
(
(N \ Gmax

0 ), Gmax
0

)
− 1 ≤ 2D(A) − 1, i.e. for all

t ≥ 2D(A) − 1: git = gmax
0 for all i ∈ N . Further, since gmax

0 > 1 + r, we get ḡt > (1 + r)
for all t ≥ 2D(A)− 1 implying price divergence. Clearly, this holds also for finite but large
enough γ, i.e. there exists γ̄ such that for all γ > γ̄ price diverges.

Finally suppose that gmin
0 < 1+r. Showing the possibility of price convergence in this case

for some type vector g and some strongly connected network A works analogously to above
by assuming the initial price to be large enough such that by Lemma 2 even after 2D(A)−1
rounds of updating, we still have Rt < 0. Hence, Rtp̃t < 0 for all 0 ≤ t ≤ 2D(A) − 1
such that by Lemma 2 types converge on the minimal type gmin

0 , i.e. for all t ≥ 2D(A)− 1:
git = gmin

0 for all i ∈ N . Since gmin
0 < 1 + r, price converges.

Proof of Proposition 3. By assumption p̃t is bounded for all t ∈ N. Since dividends are are
bounded, dt ∈ [d̄− d−, d̄+ d+], and γ is some (finite) non-negative real number, we get that
ut
i is bounded for all i ∈ N for all t ∈ N. Hence, there exists ζ > 0 such that

(ã(t))ij :=

(∑
k∈N i

exp(γuk
t )

)−1

exp(γuj
t) > ζ ⇔ aij > 0 ∀t ∈ N

(otherwise as stated before, (ã(t))ij = 0).
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Now, for all strongly connected and closed groups Ck (see Definition 1), denote by ACk
the restriction of A to Ck. Hence, ÃCk(t) is strongly connected with a positive diagonal and
each entry is bounded below by ζ. Thus, for each t ∈ N , the matrix ÃCk(t, t+n), defined by

ÃCk(t, t+ n) := ÃCk(t+ n) · ÃCk(t+ n− 1) · . . . · ÃCk(t),

is strictly positive with all entries bounded below by ζn for every closed and strongly con-
nected group Ck. Finally note that ÃCk(t, t + n) is still row stochastic since the product of
two row stochastic matrices is also row stochastic. If such a sequence of sub-accumulations
ÃCk(t, t+n) appears infinitely often, then by Lorenz (2007), Theorem 3.2.33 convergence to
consensus in all closed and strongly connected groups is obtained. Hence, denoting by gCk

t

the type vector in period t ∈ N restricted to Ck, we get that

lim
t→∞

gCk
t = lim

T→∞
ÃCk(0, T )g

Ck
0

exists, and is such that consensus is achieved, i.e. gi∞ = gj∞ for all i, j ∈ Ck. Since all Ã(t) are
row stochastic, the consensus must be such that gCk∞ ∈ [gmin

Ck , gmax
Ck ] such that the consensus

in the interior of the interval if gmin
Ck ̸= gmax

Ck .
Finally, if limt→∞ p̃t = 0, then expectations of all types converge to the fundamen-

tal price, limt→∞ Ẽi
t [p̃t+1] = 0. Hence, limt→∞ ui

t = limt→∞ uj
t for all i, j ∈ N . Thus,

limt→∞ ãij(t) =
1

|Ni| =: āij for all i ∈ R. Thereby limt→∞ ÃRR(t) = limt→∞ ĀRR(t) = 0, and

hence limt→∞ ÃRk(0, t) =
(
I − ĀRR

)−1
ĀRk . Thus, limt→∞ gR

t =
(
I − ĀRR

)−1
ĀRkg

C.

Proof of Proposition 4. Let X = 0. By (14), we get sgn(Rt) = −sgn(p̃t) if 0 < ḡt < (1 + r)2

while sgn(Rt) = sgn(p̃t) if ḡt > (1 + r)2. If 0 = ḡt for some t ∈ N then git = 0 for all
i ∈ N and by weighted average updating convergence to the fundamental belief is obtained
in which case there is nothing to show.

1. Suppose now ḡ0 < (1 + r)2 then sgn(R0) = −sgn(p̃0) and by part 1 of Lemma 1, we
get that gi0 ≥ gi1 for all i ∈ N . Hence, ḡ1 < (1 + r)2, implying sgn(R1) = −sgn(p̃1).
Repeatedly applying part 1 of Lemma 1 implies that git+1 ≤ git < (1 + r)2 for all t ∈ N
and hence, sgn(Rt) = −sgn(p̃t) for all t ∈ N.
Lemma 2 then implies that for beliefs we have git → gmin

0 (P i)) for γ → ∞ for all time
steps t ≥ 2d(i, Gmin

0 (P i)) − 1 for all i ∈ N. In particular, each closed and strongly
connected group C obtains a group consensus on git → gmin

0 (C) for all i ∈ C and each
agent in the rest of the world j ∈ R does not change after obtaining the belief gmin

0 (P j)
since Rtp̃t < 0 for all t ∈ N such that ∃i ∈ N : git ̸= 0 implying that Lemma 2 holds for
all t ∈ N.

2. If instead ḡ0 > (1 + r)2 then R0p̃0 > 0 and by part 2 of Lemma 1, we get, completely
analogously to above, that gi0 ≤ gi1 for all i ∈ N . Hence, ḡ1 > (1 + r)2, implying
R1p̃1 > 0. Repeatedly applying part 2 of Lemma 1 implies that (1 + r)2 < git ≤ git+1

for all t ∈ N and hence, Rtp̃t > 0 for all t ∈ N.
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Lemma 2 then implies that for beliefs we have git → gmax
0 (P i) for γ → ∞ for all time

steps t ≥ 2d(i, Gmin
0 (P i))− 1. In particular, each closed and strongly connected group

C obtains a group consensus on git → gmax
0 (C) for all i ∈ C and each agent in the rest of

the world j ∈ R does not change does not change after obtaining the belief gmax
0 (P j)

since Rtp̃t > 0 for all t ∈ N such that ∃i ∈ N : git ̸= 0 and hence Lemma 2 holds for all
t ∈ N.

3. Clearly, if ḡ0 > (1 + r)2 price diverges since from Case 2 we have ḡt > (1 + r)2 for
all t ∈ N, implying price divergence by (9). Instead, suppose that ḡ0 > (1 + r)2 < 0.
By Case 1, git = gmin

0 (P i) for all i ∈ N , t ≥ 2D(A) − 1. Hence, ḡt =
1
n

∑
i∈N gmin

0 (P i)
for all t ≥ 2D(A) − 1 implying that price converges to the fundamental price, i.e.
p̃t → 0, if 1

n

∑
i∈N gmin

0 (P i) < 1 + r, price converges to some finite limit price, if
1
n

∑
i∈N gmin

0 (P i) = 1 + r and price diverges if 1
n

∑
i∈N gmin

0 (P i) > 1 + r, see (9).

Proof of Proposition 5. Let γ → ∞ and X > 0.

1. Consider some closed and strongly connected group C. We show that for each of the
cases in Proposition 5, part 1, we have Rtp̃t < 0 or ḡt = 0 for all t ≥ 2D(AC)− 1 such
that the critical price is not crossed within the first 2D(AC)− 1 periods.

(a) Suppose p̃0 < 0 and ḡ0 < (1 + r)2. Then p̃t < 0 for all t ∈ N such that ḡt > 0 by
(9). As before, in case ḡt = 0 there is nothing to show. Further, pcrit0 > 0 and,
hence, p̃0 < 0 < pcrit0 implying R0 < 0 by (14). Repeatedly applying part 1 of
Lemma 1 implies that git ≥ git+1 for all t ∈ N. Hence, p̃t < 0 < pcritt for all t ∈ N
such that ḡt > 0 implying Rtp̃t < 0 for all t ∈ N such that ḡt ̸= 0.

(b) Next consider the case gmin
0 > (1+r)2 and let (1+r)2D(AC)−1

(gmax
0 )2D(AC)−2((1+r)2−gmax

0 )
X
nδ

≤ p̃0 < 0.

Note that gmax
0 ≥ ḡt > (1+ r)2 for all t ∈ N by weighted average updating. Hence

for all t ≤ 2D(AC)− 1 we get,

p̃t =

∏t
k=1 ḡk

(1 + r)t
p̃0 ≥

(gmax
0 )t−1

(1 + r)t
ḡtp̃0 ≥ −(1 + r)2D(AC)−t−1

(gmax
0 )2D(AC)−t−1

ḡt
gmax
0 − (1 + r)2

X

nδ
> pcritt

since pcritt = − ḡt
ḡt−(1+r)2

and 0 > p̃0 ≥ (1+r)2D(AC)−1

(gmax
0 )2D(AC)−2((1+r)2−gmax

0 )
X
nδ

has been used.

Note that (14) gives us Rt > 0 and, hence, Rtp̃t < 0 for all t ≤ 2D(AC)− 1.

(c) Finally, let gmax
0 < (1 + r)2 and (1+r)2D(AC)−1

(gmin∗
0 )2D(AC)−2((1+r)2−gmax

0 )
X
nδ

≤ p̃0. Note that

gmin∗
0 = min{1 + r, gmin

0 } > 0 is implicitly assumed here, otherwise the condition
on the initial price cannot be satisfied. Further, gmin∗

0 ≤ ḡt ≤ gmax
0 for all t ∈ N

by weighted average updating. Hence for all t ≤ 2D(AC)− 1 we get,

p̃t =

∏t
k=1 ḡk

(1 + r)t
p̃0 ≥

(
gmin∗
0

)t−1

(1 + r)t
ḡtp̃0 ≥

(1 + r)2D(AC)−t−1(
gmin∗
0

)2D(AC)−t−1

ḡt
(1 + r)2 − gmax

0

> pcritt
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since pcritt = ḡt
(1+r)2−ḡt

and 0 < (1+r)2D(AC)−1

(gmin∗
0 )2D(AC)−2((1+r)2−gmax

0 )
X
nδ

≤ p̃0 has been used.

Note that (14) gives us Rt < 0 and, hence, Rtpt > 0 for all t ≤ 2D(AC)− 1.

Since we have shown that Rtp̃t < 0 or ḡt = 0 for all t ≥ 2D(AC)− 1 is satisfied in all
of the above cases, Part 1 of Lemma 2 implies that the strongly connected group C
obtains a consensus on gmin

0 which gives us the desired result.

2. Again, consider some closed and strongly connected group C. We show that for the
remaining cases in Proposition 5 we have Rtp̃t > 0 for all t ≥ 2D(AC) − 1 which is
works mostly analogously to part 1.

(a) Suppose p̃0 > 0 and ḡ0 > (1 + r)2. Then p̃t > 0 for all t ∈ N by (9). Further,
pcrit0 < 0 and, hence, p̃0 > 0 > pcrit0 implying R0 > 0 by (14). Repeatedly applying
part 1 of Lemma 1 implies that git ≤ git+1 for all t ∈ N. Hence, p̃t > pcritt for all
t ∈ N implying Rtp̃t > 0 for all t ∈ N.

(b) Next consider the case gmax
0 < (1+r)2 and let 0 < p̃0 ≤ 1

(1+r)2D(AC)−3((1+r)2−gmin
0 )

X
nδ
.

By weighted average updating we get ḡt < (1+ r)2 for all t ∈ N since gmax
t+1 ≤ gmax

t

for all t ∈ N. Hence for all t ≤ 2D(AC)− 1 we get,

p̃t =

∏t
k=1 ḡk

(1 + r)t
p̃0 ≤

(1 + r)2t−2

(1 + r)t
ḡtp̃0 ≤

1

(1 + r)2D(A)−t−1

ḡt
(1 + r)2 − gmin

0

X

nδ
< pcritt

since pcritt = ḡt
(1+r)2−ḡt

and where 0 < p̃0 < 1
(1+r)2D(AC)−3((1+r)2−gmin

0 )
X
nδ

has been

used. Note that (14) gives us Rt > 0 and, hence, Rtp̃t > 0 or ḡt = 0 for all
t ≤ 2D(AC)− 1.

(c) Finally, let gmin
0 > (1 + r)2 and p̃0 ≤ − 1+r

gmin
0 −(1+r)2

X
nδ

< 0. Note that gmin
0 ≤ ḡt ≤

gmax
0 for all t ∈ N by weighted average updating. Hence for all t ≤ 2D(AC) − 1
we get,

p̃t =

∏t
k=1 ḡk

(1 + r)t
p̃0 ≤

(
gmin
0

)t−1

(1 + r)t
ḡtp̃0 ≤ −

(
gmin
0

)t−1

(1 + r)t−1

ḡt
gmin
0 − (1 + r)2

< pcritt

since pcritt = − ḡt
ḡt−(1+r)2

and where p̃0 ≤ − 1+r
gmin
0 −(1+r)2

X
nδ

< 0 has been used. Note

that (14) gives us Rt < 0 and, hence, Rtpt > 0 for all t ≤ 2D(AC)− 1.

Applying Part 1 of Lemma 2 by setting t̄ = 2D(A) − 1 implying t̄ ≥ 2D(AC) − 1 for
all closed and strongly connected groups C gives us the desired result.

3. Finally note that for p̃0 < 0 and ḡ0 < (1 + r)2 we have shown Rtp̃t < 0 or ḡit for all
t ∈ N in case 1a and for p̃0 > 0 and ḡ0 > (1 + r)2 we have shown Rtp̃t > 0 or ḡit for all
t ∈ N. Hence, by Lemma 2 we get the desired result for the rest of the world.
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