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Abstract. A seller trades with q out of n buyers who have valuations a1 ≥ a2 ≥ . . . ≥
an > 0 via sequential bilateral bargaining. When q < n, buyer payoffs vary across equilibria

in the patient limit, but seller payoffs do not, and converge to

max
l≤q+1

[
a1 + a2 + . . .+ al−1

2
+ al+1 + . . .+ aq+1

]
.

If l∗ is the (generically unique) maximizer of this optimization problem, then each buyer

i < l∗ trades with probability 1 at the fair price ai/2, while buyers i ≥ l∗ are excluded from

trade with positive probability. Bargaining with buyers who face the threat of exclusion

is driven by a sequential outside option principle: the seller can sequentially exercise the

outside option of trading with the extra marginal buyer q + 1, then with the new extra

marginal buyer q, and so on, extracting full surplus from each buyer in this sequence and

enhancing the outside option at every stage. A seller who can serve all buyers (q = n)

may benefit from creating scarcity by committing to exclude some remaining buyers as

negotiations proceed. An optimal exclusion commitment, within a general class, excludes a

single buyer but maintains complete flexibility about which buyer is excluded.

1. Introduction

Consider a seller whose supply is valuable to multiple buyers. If the seller is a monopo-

list, this is a classical setting, which is well understood under various assumptions regarding

information and price discrimination. Under complete information and perfect price discrim-

ination, the monopolist extracts all surplus from every buyer. We investigate what happens

in the complete information setting when the terms of trade are determined by bargaining

between the seller and each individual buyer. What profits does the seller earn and which

buyers does she trade with in a bargaining game with fixed supply? What payoffs do buyers

get? If there is no scarcity and the seller serves all buyers, then the standard equal (“fair”)

division of surplus between the seller and each buyer should be expected. However, if there

is scarcity and some buyers are necessarily “excluded,” then the seller should be able to

exploit the competition among buyers and obtain higher than fair prices. This suggests that

the seller may benefit from limiting supply, and leads to a related question: if the seller may

∗New York University; dilip.abreu@nyu.edu
†Stony Brook University; mihai.manea@stonybrook.edu
Date: February 23, 2023.
We thank the co-editor Asher Wolinsky and four anonymous referees for constructive suggestions, Faruk
Gul and colleagues at NYU and Stony Brook for helpful comments, and Marc Claveria Mayol and James
Gluzman for careful proofreading.



2

reduce supply or place more general restrictions on the sets of buyers she transacts with,1

what restrictions will be most profitable and what outcomes will emerge?

We consider a market in which a seller contracts independently with q out of n individual

buyers with respective values (net of seller cost) of a1 ≥ a2 ≥ . . . ≥ an > 0. For convenience,

we use language suggesting that the seller is offering q units of the same good for sale,

and each buyer has unit demand. However, the seller’s transactions with each buyer may

be idiosyncratic; the main restriction we impose is that there are no externalities between

buyer valuations. We study the following bargaining game, which we refer to as the game

with supply q. Negotiations occur over time, and players have a common discount factor

δ ∈ (0, 1). In each round, the seller strategically picks a buyer to bargain with, and with

equal probability each of the two players proposes a price to the other. If the proposal is

accepted, the seller trades with the buyer at the proposed price, the buyer exits the game,

and the seller continues to bargain with the remaining buyers in the next round. If the

proposal is rejected, bargaining proceeds with the same set of buyers in the next round. The

game ends when the seller has traded with q buyers.

We analyze Markov perfect equilibria (MPEs) of the game with supply q—subgame perfect

equilibria in which each player’s strategy in a round depends only on the set of buyers with

whom the seller has not already traded, and actions taken within that round. Our main

results concern limit MPE outcomes as δ goes to 1. We will frequently affix the qualifiers

“limit” and “asymptotic” to describe limit outcomes in families of MPEs for δ → 1 (but

drop qualifiers for brevity in some cases).

If q = n, so all buyers can be served, then the seller splits the surplus equally with each

individual buyer, and her profits converge to a1/2+a2/2+ . . .+an/2 as δ → 1. This is closely

related to the classic result on convergence of (symmetric) non-cooperative bargaining in the

style of Rubinstein (1982) to the Nash (1950) bargaining solution (Binmore 1980; Binmore,

Rubinstein and Wolinsky 1986).

Suppose next that supply is smaller than the number of buyers (q < n). For the remainder

of the introduction (but not in the formal treatment), we assume for simplicity that buyer

values are distinct. Consider first the case in which the seller has unit supply (q = 1).

Proposition 1 in Manea (2018) characterizes MPEs in this simple case. If a2 ≤ a1/2, then

the seller bargains exclusively with buyer 1, and trade takes place at expected price a1/2,

reflecting the equal split that would be obtained in a standard bargaining game between the

seller and buyer 1. In this case, the value of the outside option of trading with buyer 2 is

too low to enhance the seller’s bargaining power in negotiations with buyer 1. If a2 > a1/2,

then for high δ, the seller randomizes between buyers 1 and 2 in equilibrium, and each buyer

1The importance of exclusion restrictions in the context of individually negotiated agreements with multiple
agents has been examined in the applied literature. Gal-Or (1997) emphasizes the power of exclusion in an
early paper. In the health economics literature, the phenomenon of insurance companies offering “narrow”
hospital networks has been widely noted (e.g., Howard 2014; Liebman 2018; Ho and Lee 2019; Ghili 2022).
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trades at prices converging to a2, but the probability of bargaining (and trading) with buyer

2 converges to 0 as δ goes to 1. Now, the outside option of trading with buyer 2 is binding,

and the seller exercises it with positive but vanishing probability as players become patient.

An outside option principle emerges from this analysis of MPEs: the seller trades with buyer

1 with limit probability 1 at a limit price of max(a1/2, a2).2 Therefore, when q = 1 trade is

asymptotically efficient, and buyer 2 provides an endogenous outside option that has a limit

equilibrium value of a2.3

By analogy with the unit supply case, one might conjecture that when q > 1 the seller

should attain asymptotic profits of

(1)

q∑
i=1

max
(ai

2
, aq+1

)
.

However, this conjecture is incorrect. The formula above may be rationalized in terms of

the following presumptions: (1) the seller trades efficiently (with limit probability 1) with

buyers 1, . . . , q ; (2) bargaining with each of the buyers 1, . . . , q is driven by a fixed outside

option provided by the extra marginal buyer q+1; (3) the (limit) value of the outside option

provided by buyer q + 1 in equilibrium is aq+1 (i.e., buyer q + 1 has zero limit payoff). It

turns out that the first two presumptions are incorrect, as they fail to take into account

the dynamic nature of outside options under sequential bargaining. For instance, consider a

setting with n = 3, q = 2 and suppose that a3 > a1/2, so that both buyers 2 and 3 constitute

binding outside options in bargaining with buyer 1 in subgames where the seller has a single

unit left. In this case, trading with buyer 2 in the first round at the highest possible price of

a2 is not (asymptotically) more profitable than trading with buyer 3 at a price of a3. Indeed,

in the next round, when bargaining with buyer 1, the seller obtains a price of a2 if buyer

2 is available as an outside option, but a lower price of a3 if buyer 3 is the outside option.

In either case, the seller’s profit would be a2 + a3. Hence, buyer 2 is valuable to the seller

both directly as a trading partner, and indirectly as an outside option when bargaining with

buyer 1 in the event that the seller trades with the lower value buyer 3 first. Therefore,

buyer 2 might not necessarily manage to “outbid” buyer 3 in the first round. This suggests

that trade need not be asymptotically efficient when q > 1, which we confirm in examples

with n = 3, q = 2.

2The assumption of Markov equilibrium behavior is important for this conclusion. In Abreu and Manea
(2022), we show that subgame perfect equilibria in the setting with n = 2, q = 1 are extremely permissive—
the price may be above or below the outside option price, and the allocation may be asymptotically inefficient
in either case. We proceed to propose refinements that are behaviorally plausible in the context of this
bargaining environment and yield the intuitive predictions of the outside option principle. Although these
refinements do not imply Markov behavior (they are weaker and not expressed in terms of stationarity),
they provide support for Markovian predictions in the bargaining game considered here.
3In the original treatment (Binmore 1985; Binmore, Rubinstein and Wolinsky 1986; Sutton 1986; Binmore,
Shaked and Sutton 1989), outside options were assumed to have exogenous values that can be obtained by
traders without bargaining with third parties.
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Despite the possibility that the extra marginal buyer q + 1 trades with positive limit

probability in a family of MPEs for δ → 1, we show that the seller extracts full surplus from

buyer q+1 (hence, the third presumption above is correct). This property of MPEs allows us

to replace the outside option principle when there is only one unit for sale with a sequential

outside option principle in the context of our dynamic bargaining process with multiple units

being traded bilaterally. The seller can sequentially exercise outside options by trading with

the extra marginal buyer q+ 1 at limit price aq+1, then trading with the new extra marginal

buyer q at limit price aq (buyer q becomes extra marginal in the subgame with supply q−1),

and so on, thereby enhancing the outside option at every round. However, exercising outside

options in this sequence implies that a more valuable buyer will be ultimately excluded, and

it may be optimal for the seller not to pursue this strategy up to the exclusion of buyer 1,

but instead interrupt it by excluding some buyer l. Absent the threat of replacing a buyer

i ≤ l − 1 with some higher value buyer, the seller cannot extract full surplus from buyer i.

However, we show that each buyer i must pay at least a fair limit price of ai/2 in any family

of MPEs for δ → 1. This leads to the following lower bound on the seller’s asymptotic MPE

profits:

(2) M∗q := max
l≤q+1

[
a1 + a2 + . . .+ al−1

2
+ al+1 + . . .+ aq+1

]
.

Surprisingly, we find that the asymptotic lower bound M∗q also constitutes an upper bound

on the seller’s asymptotic MPE profits, and hence the seller’s profits must converge to M∗q

in any family of MPEs for δ → 1.

The static optimization problem displayed in (2) yields the seller’s payoffs in the dynamic

bargaining game with supply q < n. The optimization problem is also informative about

the seller’s behavior, in particular about which buyers get to trade with certainty and which

buyers face the threat of exclusion in equilibrium. In the generic case in which the static

optimization problem has a unique maximizer l∗, we show that in any MPE for high δ, buyers

i < l∗ are guaranteed to be included—and trade at the fair price ai/2—while buyers i ≥ l∗

are excluded with positive probability. Furthermore, if l∗ 6= q + 1, then buyer l∗ is included

with limit probability 1 as δ → 1.

Our model does not yield unique MPEs. Even in the limit as δ → 1, the set of buyers

who trade and buyers’ payoffs can vary across convergent sequences of MPEs. Despite MPE

multiplicity, we can determine buyer payoffs from coarse information about the structure of

trading paths in a family of MPEs in question. In particular, given that the formula for

seller profits applies in every subgame and that the seller is indifferent between the buyers

she approaches with positive probability in any round, the price at which each buyer trades

in equilibrium is reflected in the difference in seller profits before and after the trade. If the

seller trades with positive probability with a buyer in a round, then the buyer’s payoff in

the subgame starting with that round can be inferred from the implied equilibrium price
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without knowing the precise probability of trade with the buyer in that round or granular

details of possible paths of trade with the buyer in subsequent rounds.

We also consider a strategic situation in which the seller has unconstrained supply (q = n),

but might find it profitable to sharpen competition between buyers by excluding some buyers

in the course of negotiations. An exclusion commitment specifies the subset of buyers to

be excluded from future negotiations depending on the set of buyers who have already

traded. This general formulation of exclusion commitments allows for elaborate patterns

of exclusion. We seek to identify optimal exclusion commitments in this framework. Given

potential multiplicity of MPEs of the bargaining game induced by an exclusion commitment,

the optimal commitment could vary depending on whether it is defined with respect to

the supremum or the infimum of equilibrium seller payoffs (or some other selection rule).

Nevertheless, we find that an optimal exclusion commitment can be defined unambiguously

and takes a simple form: no buyer is excluded from bargaining until n−1 units are sold, and

then the remaining buyer is always excluded. Under this commitment, the seller excludes a

single buyer, but has complete flexibility through the sequential trading process regarding

who is excluded. Therefore, maintaining a single unit of shortage at every stage allows

the seller to extract all potential benefits of exclusion, and the seller does not benefit from

exclusion commitments that treat buyers asymmetrically or create additional scarcity. The

game with optimal exclusion commitment is identical to the game with exogenous supply

q = n−1, and the results developed for the setting with exogenous supply characterize MPE

outcomes under the optimal commitment.

Our permissive formulation of exclusion commitments implies that our conclusion is corre-

spondingly strong, while the optimal commitment we identify is simple and does not exploit

the permitted complexity. Thus, skeptics who feel that complex commitments are implausi-

ble may be reassured by the simplicity of the result, and others need not be concerned that

allowing for additional complexity might lead to higher seller payoffs.

Finally, we briefly consider exclusion commitments in settings in which the seller has an

exogenous supply constraint q < n. We argue that in this case the seller does not benefit

from making commitments to exclude buyers at any stage before all available q units are

sold. In particular, a reduction in supply is detrimental to the seller. This result echoes

the intuition from the setting with unconstrained supply that any existing scarcity induces

sufficient competition among buyers to deliver the gains of the sequential outside option

principle.

We contrast our findings with those of Ho and Lee (2019), who were the first to analyze

exclusion commitments in the context of a general model of bargaining in networks. In

their formalization of exclusion commitments specialized to our setting, the seller “targets”

a fixed network (subset of buyers).4 After announcing the network, the seller simultaneously

4Also motivated by the questions of network endogeneity and optimal exclusion, Liebman (2018) considers a
bargaining model between a health insurer and several hospitals in which the insurer commits to a network
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dispatches independent “representatives” to bargain with a designated in-network buyer and

any excluded buyer. The network is achieved in equilibrium with probability that converges

to 1 as δ → 1. Their delegated-agent bargaining protocol delivers formula (1), with buyer q+1

providing a fixed outside option for each representative. Unlike in our setting, in the model

of Ho and Lee the seller may benefit from reducing supply. Ho and Lee’s representatives

are compartmentalized and cannot effectively coordinate with one another, whereas in our

model the seller internalizes the dynamic implications of sequential bilateral trades with

individual buyers.5 Our more conventional bargaining protocol enables the seller to extract

higher profits via the sequential outside option principle embodied in formula (2).

The rest of the paper is organized as follows. Section 2 introduces the bargaining model,

and Section 3 provides a preliminary lemma and an example. In Section 4 we develop

some key bargaining theoretic principles that are used in Section 5 to establish uniqueness

and deliver the formula for asymptotic seller profits. Section 6 characterizes included and

excluded buyers, and Section 7 presents the result on buyer payoffs. Sections 8 and 9

formalize our notion of exclusion commitments, identify the optimal exclusion commitment,

and contrast our results with those of Ho and Lee (2019). Section 10 concludes. Proofs

omitted in the main body of the paper can be found in the Appendix, and some computations

are relegated to an online Appendix.

2. Model

Consider a market where an agent, player 0, signs bilateral contracts with q out of n

players from the set N = {1, 2, . . . , n}. To fix terminology, we refer to player 0 as the seller,

to the players in N as buyers, and to the bilateral contracts as goods. In this language, the

seller has q ≤ n units of a good, and each of the n buyers has unit demand.6 Assume that

buyer i’s value for the good (net of seller cost) is ai, where a1 ≥ a2 ≥ . . . ≥ an > 0, and these

values are common knowledge. There are no externalities: buyer values are independent of

who else gets a unit of the good.

The seller trades with individual buyers sequentially. In every round t = 0, 1, . . ., the seller

(strategically) selects a buyer i to bargain with (among those who have not yet traded).

Bargaining between the seller and buyer i in round t proceeds via the random-proposer

size and then bargains with randomly selected hospitals. His analysis restricts attention to equilibria with
immediate agreement, but equilibria with this property do not exist when bargaining frictions are small and
hospitals (“buyers” in our setting) are heterogeneous. As this is the case we are primarily interested in,
a direct comparison with his results is not possible. Taking a cooperative approach, Ghili (2022) studies
network formation in the pairwise stability framework of Jackson and Wolinsky (1996) assuming that payoffs
are determined by Nash bargaining. Manea (2021) discusses an example in which if buyers make offers more
frequently than the seller, the seller is better off dealing with a single buyer instead of all buyers.
5Stole and Zwiebel (1996) and Arie, Grieco and Rachmilevitch (2018) also analyze bargaining models in
which a player signs bilateral contracts with several others in sequence, but in their models the order in
which negotiations proceed is exogenous, and exclusion does not occur in equilibrium.
6The seller may customize the “good” for each buyer upon purchase; the setting with multiple units of a
homogenous good is a special case.
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protocol: with probability 1/2 each of the two players proposes a price, and the other decides

whether to accept or reject the proposal. If the proposal is accepted, the seller trades with

buyer i at the proposed price, buyer i exits the game, and the seller continues to bargain

with the remaining buyers in round t+ 1. Otherwise, bargaining proceeds with the same set

of buyers in round t + 1. The game ends when the seller trades all q units.7 Players have

a common discount factor δ ∈ (0, 1): payoffs obtained in round t are discounted by δt. The

game has perfect information.

We call this the bargaining game with exogenous supply q, or the game with supply q for

short. We will also be interested in situations in which there is no inherent scarcity, i.e.,

q = n, but the seller may strategically commit to exclude some buyers in order to enhance

competition. The model with exclusion commitments is described and analyzed in Section

8.

We analyze Markov perfect equilibria (MPEs) of the game with supply q, which are sub-

game perfect equilibria in which each player’s strategy in every round depends only on the

state S—the set of buyers with whom the seller has not already traded—and the actions

taken within the round (including nature’s random selection of proposer). By definition, in

an MPE, behavior in any subgame that starts at the beginning of a bargaining round (before

the seller’s selection of a bargaining partner) in state S does not depend on the history of

play prior to that round. We refer to any such subgame as subgame S. Our main results

concern limit MPE outcomes as δ → 1.

3. A Preliminary Lemma and an Example

Our first lemma provides basic scaffolding for the arguments that follow. It establishes

that in any MPE and from every state, the seller reaches an agreement with every buyer she

chooses to bargain with in equilibrium. Hence, the game with supply q ends in q rounds.

The result also provides recursive equations relating expected payoffs to the probabilities

with which the seller bargains with buyers in different states, and shows that the difference

in prices at which a buyer trades in a given state depending on which party wins the coin

toss to propose vanishes as δ → 1.

Lemma 1. Consider an MPE of the game with supply q and a state S with |S| > n− q. If

the seller chooses to bargain with buyer i with positive probability in state S, then the seller

and buyer i reach agreement with conditional probability 1 in that round. The expected payoff

uj(S) of player j ∈ S ∪{0} and the probability πi(S) with which the seller chooses to bargain

7Proposition 4.ii in Rubinstein and Wolinsky (1990) introduced this “voluntary matching” bargaining pro-
tocol (their wording emphasizes the seller’s strategic selection of bargaining partner, in contrast to random
matching) in a setting with unit supply. We employed similar bargaining protocols in Abreu and Manea
(2012, 2022) and Manea (2018). This bargaining protocol is distinct from the “random proposer” protocol
of Elliott and Nava (2019) and Talamas (2019, 2020) whereby a “proposer” is randomly recognized in every
round, and the proposer strategically selects a bargaining partner but also makes the offer.
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with buyer i in state S jointly satisfy the following conditions:

u0(S) ≥ 1

2
(ai + δu0(S \ {i})− δui(S)) +

1

2
δu0(S), with equality if πi(S) > 0;

ui(S) = πi(S)

(
1

2
(ai + δu0(S \ {i})− δu0(S)) +

1

2
δui(S)

)
+
∑

k∈S\{i}

πk(S)δui(S \ {k}),

where u0(S \ {i}) = ui(S \ {k}) = 0 if |S| = n − q + 1. If the variables uj(S) and πj(S)

derived from a family of MPEs for a sequence of discount factors going to 1 converge to

limits denoted ūj(S) and π̄j(S), and if πi(S) > 0 along the sequence for some buyer i ∈ S,

then any transaction between the seller and buyer i in state S takes place at the common

limit price ai − ūi(S) regardless of which player is the proposer.

The proof of Lemma 1 and other proofs omitted in the main body of the paper appear

in the Appendix. To understand the inequality for the seller’s expected payoff in state S

of an MPE, note that the seller may select buyer i for bargaining in state S, and if chosen

to propose, can offer a price arbitrarily close to ai − δui(S) that i will accept; following an

agreement with buyer i, the seller obtains a continuation equilibrium payoff of δu0(S \ {i}).
When buyer i is chosen to propose, the seller may at worst reject i’s offer and enjoy a

continuation payoff of δu0(S); in equilibrium, buyer i will make an offer that makes the

seller indifferent between accepting and rejecting. If the seller bargains with buyer i with

positive probability in state S, then her realized payoff from trading with i should be equal

to her equilibrium payoff u0(S). The buyer payoff equations have a similar interpretation.

For the rest of the paper, we use the notation ui(S) and πi(S) from Lemma 1 for the

payoffs and mixing probabilities associated with state S in any MPE under consideration,

with ūi(S) and π̄i(S) denoting the corresponding limits of these variables (when they exist)

in a family of MPEs for a sequence of discount factors going to 1. We simplify notation by

writing ui, πi, ūi, π̄i for the variables ui(N), πi(N), ūi(N), π̄i(N) associated with the initial

state N , respectively.

An example. With the preliminary analysis in place, we are able to solve simple examples.

This exercise is helpful in developing appropriate conjectures and steering us away from

plausible conjectures that turn out to be false. We are interested in the following questions,

which concern limit equilibrium outcomes as δ → 1: Is the MPE unique? If not, does

each buyer trade with the same probability in all MPEs? Are buyer payoffs constant across

MPEs? Are seller payoffs constant across MPEs?

We consider an example in which a seller with supply q = 2 bargains with three buyers

with values a1 = 4, a2 = 3, a3 = 1. This example demonstrates that the answer to each of

the first three questions is negative. The negative answer to the second question implies that

MPEs are not always asymptotically efficient. Interestingly, the example is consistent with

the answer to the fourth question being positive.
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In this example, there are three classes of MPEs for δ close to 1: a first one in which

π1 = 0 and π2, π3 > 0; a second one in which π2 = 0 and π1, π3 > 0; and a third one in which

π1, π2, π3 > 0. The limit values for δ → 1 of every player i’s payoff ūi, the seller’s mixing

probabilities (π̄1, π̄2, π̄3) in the initial state, and each buyer i’s total trading probability Π̄i

in the three classes of MPEs are displayed in the table below. In every class of MPEs, the

seller’s payoff converges to 4, buyer 3’s payoff converges to 0, and buyer 1’s probability of

trade converges to 1 for δ → 1. Moreover, after the first trade, the seller trades with the

highest valuation remaining buyer with limit probability 1. It follows that the set of buyers

the seller trades with is {1, 3} with the corresponding limit probability π̄3, and {1, 2} with

complementary probability. That is, trade is inefficient with limit probability π̄3.

a1 = 4, a2 = 3, a3 = 1 ū0 ū1 ū2 ū3 (π̄1, π̄2, π̄3) Π̄1 Π̄2 Π̄3

π1 = 0;π2, π3 > 0 4 2 1 0 (0, 1, 0) 1 1 0

π2 = 0;π1, π3 > 0 4 1.5 1.5 0 (1, 0, 0) 1 1 0

π1, π2, π3 > 0 4 1.5 1 0 (0.5, 0.25, 0.25) 1 0.75 0.25

We walk the reader through the solution of this example in the online Appendix. The

precise computation of MPEs for a fixed δ is challenging. Nevertheless, we can determine the

asymptotic values of equilibrium variables in the different classes of MPEs in this example

by taking the limit δ → 1 in the equilibrium conditions from Lemma 1. Here we establish

uniqueness only of limit variables corresponding to each class of MPEs, but it can be shown

that in this example there exist exactly three MPEs for sufficiently high δ.

We first describe the MPEs in subgames following trade with one buyer, in which the

seller has a single unit remaining. Proposition 1 of Manea (2018) characterizes the unique

MPE outcomes for such subgames. In states {i, 3} (i = 1, 2), the outside option of trading

with buyer 3 is not sufficiently valuable to improve the seller’s bargaining position with

buyer i, and the seller sells the remaining unit with probability 1 to buyer i at expected

price ai/2: πi({i, 3}) = 1, u0({i, 3}) = ui({i, 3}) = ai/2, u3({i, 3}) = 0. In state {1, 2},
the outside option of trading with buyer 2 is binding, and the seller randomizes between

buyers 1 and 2 in equilibrium, but the probability of bargaining (and trading) with buyer 2

converges to 0 as δ goes to 1, and buyer 1 trades with limit probability 1 at limit price a2:

π̄1({1, 2}) = 1, ū0({1, 2}) = 3, ū1({1, 2}) = 1, ū2({1, 2}) = 0.

Lemma 1 applied to the initial state {1, 2, 3} implies that if MPE payoffs and bargaining

probabilities in every state converge for a sequence of discount factors δ → 1, then the limit

variables satisfy the following conditions:

πi > 0 for all δ =⇒ ū0 = ai + ū0(N \ {i})− ūi(3)

π̄i < 1 =⇒ ūi =
∑

k∈N\{i}

π̄k
1− π̄i

ūi(N \ {k}).(4)
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Note that we already know the limit continuation values ū0(N \ {i}) and ūi(N \ {k}) for

subgames following the first trade.

Consider the class of MPEs, in which π1 = 0 and π2, π3 > 0. In this case, (3) implies that

ū0 = a2 + ū0({1, 3})− ū2 = a3 + ū0({1, 2})− ū3, which leads to ū2 − ū3 = 1. If π̄2 < 1, then

(4) implies that ū2 = 0, and hence ū3 = −1, which is impossible. It follows that π̄2 = 1,

which by (4) leads to ū1 = 2 and ū3 = 0, implying that ū2 = 1 and ū0 = 4.

The second class of MPEs is similar to the first, with the roles of buyers 1 and 2 in-

terchanged. Analogous arguments imply that π̄1 = 1 and yield the limit payoffs for this

class.

In the third family of MPEs, we have that π1, π2, π3 > 0, and (3) implies that ū0 =

a1 + ū0({2, 3})− ū1 = a2 + ū0({1, 3})− ū2 = a3 + ū0({1, 2})− ū3, which leads to ū1− ū2 = 0.5

and ū2 − ū3 = 1. If π̄3 = 1, then (4) implies that ū2 = 0, and hence ū3 = −1, which is

impossible. Thus, π̄3 < 1, leading to ū3 = 0 via (4). It follows that ū1 = 1.5 and ū2 = 1.

Taking the limit δ → 1 in the payoff equations for buyers 1 and 2 from Lemma 1, we obtain:8

1.5 = π̄1 × 1.5 + π̄2 × 2 + π̄3 × 1

1 = π̄1 × 1.5 + π̄2 × 1 + π̄3 × 0.

Then, π̄1 + π̄2 + π̄3 = 1 leads to the unique solution π̄1 = 0.5, π̄2 = π̄3 = 0.25.

The first two MPEs are asymptotically efficient for δ → 1: in both cases the network of

included buyers is {1, 2} with limit probability 1.9 However, the third MPE is asymptotically

inefficient because in this case the set of included buyers is {1, 3} with limit probability 0.25.

Although limit buyer payoffs and probabilities of trade vary across the three classes of MPEs

for this example, limit seller payoffs do not, and are equal to 4 in all MPEs. In Section 5,

we prove that limit MPE seller payoffs are unique in general, and derive a formula for their

value which in this example reduces to ū0 = a2 + a3. Other common features of MPEs in

this example, which will also be explained by our results, are that buyer 1 trades with limit

probability 1 and that buyer 3 gets zero limit payoff.

4. Key Lemmas

We now develop some core results upon which our subsequent analysis builds. These

results are intuitive, and indeed familiar in the case q = 1, but their complete proofs for the

case q > 1 are not straightforward. We present proof sketches at the end of the section.

Lemma 2 shows that in any family of MPEs for the game with supply q for a sequence

of discount factors going to 1, no buyer i can acquire the good for less than the “fair” price

ai/2 in the limit. This is intuitive because within each round in which the seller bargains

8The payoff equation for buyer 3 does not generate any restriction on limit mixing probabilities because
buyer 3 gets limit payoff 0 in every state.
9It is not always the case that asymptotically efficient MPEs exist, as the example in the online Appendix
illustrates.
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with buyer i, the seller and buyer i make offers with equal probability, but the seller has

the additional advantage of choosing her bargaining partner and possibly trading with other

buyers if agreement is not reached in the current round.

Lemma 2 (Buyers pay at least fair prices). In any family of MPEs for the game with supply

q for discount factors δ ∈ (0, 1),

lim sup
δ→1

ui ≤
ai
2
.

Lemma 3 establishes that in the game with supply q < n, the payoffs of buyers q+1, . . . , n

converge to 0 as δ → 1.10 To get some perspective on this result, assume that buyer values are

distinct. For q = 1, the result asserts that all buyers other than the buyer with the highest

value have zero limit payoffs. This is an implication of Proposition 1 of Manea (2018). In

this case, the highest valuation buyer trades with limit probability 1, and all other buyers

with limit probability 0. The case q > 1 is more subtle: with sequential trade, a high value

buyer is valuable to the seller both as a direct trading partner in the current round and as a

better outside option when trading with other buyers in the future, and therefore might not

necessarily manage to “outbid” a lower valuation buyer. In particular, when q > 1, buyer

q + 1 may trade with positive limit probability in MPEs for δ → 1, as we have seen in the

example from the previous section.

Lemma 3 (Buyers q + 1, . . . , n get zero payoffs under supply q). For any q < n and any

family of MPEs for the game with supply q and discount factors δ ∈ (0, 1), the payoffs of

buyers q + 1, . . . , n converge to 0 as δ → 1.

Lemma 4 below establishes that a buyer i who trades with probability 1 in a sequence

of MPEs for δ → 1—even when this occurs with some delay and perhaps stochastically in

any given round—pays at most the fair price ai/2 in the limit. This result may be viewed

as a counterpoint to the outside option principle—a buyer who is never under the threat of

exclusion in equilibrium cannot be exploited (relative to fair pricing) by the seller.

Lemma 4 (At most fair pricing with sure trade). Let (σδz)z≥0 be a sequence of MPEs for

the game with supply q in which the discount factors δz converge to 1 as z →∞. If the seller

trades with buyer i with probability 1 under σδz for all z ≥ 0, then

lim inf
z→∞

ui ≥
ai
2
.

We emphasize that “sure trade” in the naming of Lemma 4 refers to trade with exact

probability 1 in a family of MPEs for a sequence of discount factors converging to 1. As

discussed in the context of subgames in the example from the previous section, when a1 >

a2 > a1/2 in the setting with unit supply, trade with buyer 1 takes place with limit probability

10The result implies that every buyer i ≤ q with ai = aq+1 also gets a zero limit payoff (via an argument
that exchanges the labels of buyers i and q + 1). Hence, buyers with values that do not exceed the extra
marginal value get zero limit payoffs.
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1 as δ → 1, but in this case the outside option of trading with buyer 2 is binding, and buyer

1 pays a limit price of a2, which is above the fair price a1/2.

Lemmata 2 and 4 have the following corollary.

Corollary 1 (Fair pricing with sure trade). Let (σδz)z≥0 be a sequence of MPEs for the game

with supply q in which the discount factors δz → 1 as z →∞. If the seller trades with buyer

i with probability 1 under σδz for all z ≥ 0, then the expected payoff of buyer i converges to

ai/2 as z →∞.

While this result echoes classic results on convergence to the Nash bargaining solution

in Rubinstein-style alternating-offer bargaining (Binmore 1980; Binmore, Rubinstein and

Wolinsky 1986), the argument here is more involved due to the presence of other buyers,

the seller’s strategic (and typically stochastic) selection of bargaining partner at every stage,

and the resultant non-stationary interaction between the seller and each buyer. In general,

the exact price a buyer pays in MPEs for a fixed δ depends on the state in which the buyer

trades, but the result shows that if the buyer is certain to trade, then all these prices converge

to the fair price as δ → 1.11

The example from the previous section demonstrates that although trading with exact

probability 1 is a sufficient condition, it is not a necessary condition for fair pricing in the

limit. Indeed, in the first class of MPEs in the example, buyer 1 trades with probability

smaller than 1 but converging to 1 for δ → 1 and obtains a limit payoff of a1/2 (buyer 2 is

in an analogous situation in the second class of MPEs).

We briefly turn to the game with unconstrained supply, i.e., q = n. By Lemma 1 and

Corollary 1, in every MPE of the game with supply q = n, the seller trades with each buyer

i with probability 1 in one of the first n rounds at an expected discounted price converging

to ai/2 as δ → 1. This implies the following corollary.

Corollary 2. In any family of MPEs of the game with supply q = n for discount factors

δ ∈ (0, 1), the seller’s profit converges to
∑

i∈N ai/2 as δ → 1.

We conclude the section by sketching some key steps in the proofs of Lemmata 2-4. Readers

satisfied with the intuitions provided above may proceed to the next section. Consider an

MPE for the game with discount factor δ. An important implication of Lemma 1 that the

11We establish a result of a similar flavor for a network setting in earlier work (Abreu and Manea 2012). In
that model, every link generates a unit surplus and each player needs to trade with a neighbor. We show
that every player who is guaranteed to trade in equilibrium—even when trade occurs in an evolving network
and potentially with different neighbors—obtains asymptotic payoffs of at least 1/2. Elliott and Nava (2019)
also obtain a related result in a network setting with heterogeneous link values. In the efficient MPEs they
analyze, every pair of players who trade with each other with probability 1 face a stationary environment of
trading opportunities with other neighbors, but these outside options cannot be binding. Consequently, each
such pair effectively trades in a stationary two-player bargaining game, and agreements reflect “Rubinstein
payoffs” independent of the state of the network.
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proofs rely on is that

(5) ui =
2πi(1− δ)
2− δ − δπi

× ai + δu0(N \ {i})
2

+
∑

k∈N\{i}

πk(2− δ)
2− δ − δπi

× δui(N \ {k}).

Moreover, we have that

(6)
2πi(1− δ)
2− δ − δπi

+
∑

k∈N\{i}

πk(2− δ)
2− δ − δπi

= 1.

Therefore, formula (5) expresses buyer i’s payoff as a convex combination of a term reflecting

his expected payoff (ai+δu0(N \{i}))/2 in the event the seller bargains with him, and terms

reflecting his payoff δui(N \ {k}) in the event the seller trades with another buyer k in the

initial state. Indeed, a trade between the seller and buyer i creates a value of ai for the

buyer and profits δu0(N \ {i}) in the continuation subgame for the seller. If πi = 1, then

the weight 2πi(1− δ)/(2− δ − δπi) on the first term equals 1, and the two players share the

total gains from trade ai + δu0(N \ {i}) equally. Lemma 2 shows that the seller is able to

avoid such hold-ups in equilibrium whenever the seller’s continuation profits have a positive

limit. More generally, it is possible that limδ→1 πi = 1 in a sequence of MPEs for δ → 1,

and the weight 2πi(1 − δ)/(2 − δ − δπi) has a positive limit, which depends on πi’s rate

of convergence to 1 as δ → 1. For instance, in the first class of MPEs for the example in

the previous section, the weight corresponding to buyer 2 converges to 2/5 as δ → 1. By

contrast, if limδ→1 πi < 1, then the weight converges to 0. In this case, buyer i’s asymptotic

payoffs are driven exclusively by his payoffs in subgames following trades with other buyers.

Taking the limit δ → 1 in (5) for a sequence of MPEs in which all state variables converge,

we derive formula (4) from the previous section, which we repeat here for convenience:

(7) ūi =
∑

k∈N\{i}

π̄k
1− π̄i

ūi(N \ {k}).

This formula facilitates inductive arguments in the proofs of Lemmata 2-4, with the case

π̄i = 1 requiring separate treatment. While in the latter case, formula (5) is not informative

about buyer i’s limit payoff without knowledge of πi’s rate of convergence to 1 as δ goes to

1, it carries the information that ūk = ūk(N \ {i}) when applied for buyers k 6= i, which we

leverage in the proofs.

The proof of Lemma 2 proceeds by induction on q (with base case q = 0). For the inductive

step, it is sufficient to establish that ūi ≤ ai/2 for all i ∈ N for any sequence of MPEs in

which the state variables converge as δ → 1. From the induction hypothesis, we know that

ūi(N \ {k}) ≤ ai/2 for all k 6= i. If ū0(N \ {i}) = 0, then it is easy to reach the conclusion

from (5) and (6): each term in the convex combination describing buyer i’s payoff, including

(ai+δu0(N \{i}))/2, is asymptotically bounded above by ai/2. If π̄i < 1, then the conclusion

follows directly from (7). We are left with the case π̄i = 1 and ū0(N \ {i}) > 0 (which, as

noted earlier, arises for i = 2 in the first class of MPEs in the example from the previous



14

section). The latter inequality implies that the seller trades with some buyer k ∈ N \ {i}
with positive limit probability in the second round of the game after an agreement with i,

i.e., π̄k(N \{i}) > 0. As π̄i = 1, the arguments above imply that ūk = ūk(N \{i}). It follows

ū0 = ai − ūi + ak − ūk + ū0(N \ {i, k}). The seller may deviate to first trading with buyer

k at a price converging to ak − ūk, and then trading with buyer i at a price converging to

ai − ūi(N \ {k}) to obtain a limit profit of ak − ūk + ai − ūi(N \ {k}) + ū0(N \ {i, k}). For

this deviation not to be profitable for the seller for high δ in the sequence of MPEs, it must

be that ūi ≤ ūi(N \ {k}), which proves the inductive step via the induction hypothesis.

The proof of Lemma 3 also proceeds by induction on q. For the inductive step, consider a

buyer i ≥ q+ 1. We need to argue that ūi = 0. As in the case of Lemma 2, it is sufficient to

establish this for a sequence of MPEs in which state variables converge as δ → 1. A trade

with any buyer k 6= i leads to a game with supply q − 1 in which the induction hypothesis

implies that ūi(N \ {k}) = 0. If π̄i < 1, then (7) leads to ūi = 0. To deal with the delicate

case in which π̄i = 1, we consider a deviation whereby the seller switches the order of trades

with buyer i and another buyer k if q > 1 like in the proof of Lemma 2 (or trades with

another buyer j for which aj ≥ ai at limit price aj if q = 1).

For Lemma 4, we argue inductively that ūi ≥ ai/2 for every buyer i that trades with

probability 1 in a sequence of MPEs with δ → 1. Consider such a buyer i. If πk > 0 along

a subsequence, then buyer i must trade with probability 1 in subgame N \ {k}, which by

the induction hypothesis implies that ūi(N \ {k}) ≥ ai/2. The inductive step follows from

noting that the payoffs (ai + δu0(N \ {i}))/2 and δui(N \ {k}) in the convex combination

(5) are asymptotically bounded below by ai/2.

5. Seller Profits

The main result of this section establishes that the seller’s MPE payoffs are essentially

unique for δ close to 1, and provides a simple formula for the seller’s limit profit. The

uniqueness of asymptotic seller payoffs is unexpected in light of the example discussed in

Section 3, which showcases multiple MPEs that are not asymptotically equivalent in terms

of buyer payoffs or trading probabilities.

Theorem 1 (Seller profits). In any family of MPEs of the game with supply q < n for

discount factors δ ∈ (0, 1), the seller’s expected profit converges as δ → 1 to

(8) M∗q := max
l≤q+1

[
a1 + a2 + . . .+ al−1

2
+ al+1 + . . .+ aq+1

]
.

To prove this theorem, we argue that M∗q constitutes both an upper and a lower bound

on the seller’s asymptotic profit in every sequence of MPEs for the game with supply q for

δ → 1. The first result establishes the upper bound.
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Lemma 5 (Upper bound on seller profits). In any family of MPEs for the game with supply

q < n for discount factors δ ∈ (0, 1),

lim sup
δ→1

u0 ≤M∗q.

We sketch the proof of Lemma 5 here. Consider an MPE of the game with supply q < n.

Let l be the smallest index of a buyer who trades with probability smaller than 1 in the

MPE. We have that l ≤ q + 1. By Lemma 1, the MPE generates a probability distribution

over sequences of q buyers that the seller trades with in the first q rounds of the game.

By definition, there exists at least one such sequence S that excludes buyer l but includes

buyers 1, 2, . . . , l − 1. Since choosing to bargain with buyers in the sequence S is optimal

for the seller, it must be that the seller’s MPE payoff is equal to her expected payoff from

trading over S. As S arises with positive probability in equilibrium, each buyer j < l trades

with probability 1 in the subgame following agreements with his predecessors in S. Lemma

4 implies that the (limit) expected discounted price the seller collects from buyer j in the

subgame is at most aj/2. Hence, the seller’s limit payoff from trading with buyers 1, . . . , l−1

over S does not exceed a1/2+ . . .+al−1/2. The seller receives no payment from buyer l along

S, and can at most extract all surplus from the remaining q − l + 1 buyers with the highest

valuations. If follows that the seller’s limit profit is bounded above by M∗q.

Surprisingly, it is also the case that the seemingly coarse upper bound M∗q constitutes a

lower bound on the seller’s asymptotic profits in MPEs for the game with supply q as δ → 1.

Lemma 6 (Lower bound on seller profits). In any family of MPEs of the game with supply

q < n for discount factors δ ∈ (0, 1),

lim inf
δ→1

u0 ≥M∗q.

To prove this result, let l∗ be a maximizer in the optimization problem defining M∗q, and

consider a family of MPEs of the game with supply q < n for discount factors δ ∈ (0, 1).

The seller may deviate from her equilibrium strategy to a strategy that generates trades

with buyers in the sequence q + 1, q, . . . , l∗ + 1, l∗ − 1, . . . , 1 over a fixed but long enough

time horizon with probability arbitrarily close to 1. Under this deviation, the seller bargains

successively with each buyer in the sequence, rejecting all offers and waiting to become the

proposer. Upon being selected to propose to buyer i, the seller makes an offer that buyer

i accepts in equilibrium. By Lemma 3, for high enough δ, buyer i = q + 1, q, . . . , l∗ + 1

will accept price offers arbitrarily close to ai when it is his turn to trade. Similarly, by

Lemma 2, buyer i = l∗−1, . . . , 1 will accept price offers arbitrarily close to ai/2. Over a long

enough time horizon, the seller will win the coin toss against all buyers in the sequence with

probability arbitrarily close to 1, and the deviation secures seller profits arbitrarily close to

M∗q for high δ. We conclude that the seller’s asymptotic profits in the family of MPEs are

bounded below by M∗q.
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Since the two bounds on the seller’s asymptotic payoffs in the game with supply q delivered

by Lemmata 5 and 6 coincide, they must be tight. Therefore, in any family of MPEs for the

game with supply q, the seller’s profits converge to M∗q as δ → 1, which proves Theorem 1.

We remark that while the strategy underlying the proof of Lemma 6 enables the seller to

achieve her limit MPE payoff M∗q asymptotically in the game with supply q, it does not

necessarily describe the seller’s behavior in any MPE, and may even be played with limit

probability 0 as δ → 1. Indeed, when the maximizer in (8) is unique and different from q+1,

this is an implication of forthcoming Theorem 2.

Sequential outside option principle. Theorem 1 yields a sequential outside option prin-

ciple for settings in which a seller trades sequentially with several, but not all, potential

buyers. Recall that the standard outside option principle implies that if the seller has one

unit for sale and there are multiple buyers, the second highest valuation is a lower bound on

the price the seller can extract from the highest-value buyer. Similarly, if there are q units

for sale and n buyers, if we think of the extra marginal buyer q+1 as a static outside option,

q · aq+1 should be a lower bound on seller profits.12 In our dynamic bargaining process, the

seller can sequentially exercise the outside option by trading with the extra marginal buyer

q + 1 first, the new extra marginal buyer q next, and so on; the outside option provided

by the extra marginal buyer improves every round. In particular, this argument implies

that the seller can extract a profit of a2 + . . . + aq+1 by trading in sequence with buyers

q + 1, q, . . . , 2. This is the value of the maximand in (8) for l = 1. Our formula for seller

profits (8) recognizes that it might be too costly to exclude buyers with high valuations, and

combines Lemma 3 with Lemma 2. The latter implies that the seller can trade with buyers

from a top interval of valuations at fair (or better) prices.

For another perspective on the sequential exercise of outside options, we revisit the example

from the introduction in which n = 3, q = 2 and a3 > a1/2. As argued there, trading with

buyer 2 in the first round even at the highest possible price of a2 is not more valuable than

trading with buyer 3 at a price of a3 (which is feasible in the limit for δ → 1 by Lemma 3).

This is because in the next round, when bargaining with buyer 1, the seller can demand a

price of a2 if buyer 2 is available as an outside option, but a lower price of a3 if buyer 3 is the

outside option. In either case, the seller’s limit profit is a2 + a3. This example shows that

buyers who are more valuable for inclusion may also be more valuable for exclusion when

additional units remain to be sold to even more valuable buyers.

Extension to random matching. Our bargaining protocol allows the seller to strategi-

cally choose which buyer she bargains with in every round. An alternative protocol entails

random matching between the seller and individual buyers according to exogenously given

probabilities. The protocol with strategic choice of bargaining partner is easier to work with

12The model of Ho and Lee (2019) applied to our setting actually predicts limit seller payoffs of q ·aq+1 when
the outside option provided by buyer q+1 is binding for buyers 1, . . . , q. See Section 9 for further discussion.
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and also seems more natural in our setting, in which the seller with multiple units may wish

to trade only with a particular subset of buyers. An awkwardness of the random matching

protocol is that the seller gets matched to bargain with buyers that she does not have an

incentive to trade with, and such matches lead to delay in equilibrium. Nevertheless, our

results extend: the seller can replicate strategic choice of bargaining partners simply by

waiting to be matched with a desired buyer at an expected cost of delay that vanishes as

δ → 1. At a high level, this is why Theorem 1 and the supporting lemmata extend with

minor modifications. We provide details in the Appendix.

6. Included and Excluded Buyers

Theorem 1 reveals a close connection between the maximum M∗q in the simple static

optimization problem displayed in (8) and the seller’s profits in the complex dynamic bar-

gaining game with supply q < n. As we have seen concretely in the example from Section

3, the seller can attain the total profits M∗q in a variety of ways and from different sets of

buyers in equilibrium. Nevertheless, Theorem 2 below shows that the optimization problem

is also informative—via its maximizers l—about which buyers are certain to trade and which

buyers face the threat of “exclusion” in the game.

Generically, the static optimization problem has a unique maximizer l∗. For this generic

case, we show that every buyer i < l∗ trades with probability 1 in any MPE for high enough δ.

The converse is also true: every buyer i ≥ l∗ trades with probability less than 1 in MPEs for

high δ. Thus, buyers i < l∗ are guaranteed to be “included”—and hence by Corollary 1 trade

at the fair price ai/2 in the limit as δ → 1—while buyers i ≥ l∗ are “excluded” with positive

probability in equilibrium for high δ. We establish that if l∗ 6= q + 1 and al∗ > al∗+1, then

buyer l∗ trades with limit probability 1 in any family of MPEs with δ → 1. In this case, l∗

is the buyer with the highest value that is excluded with positive probability in equilibrium,

but the probability of excluding l∗ vanishes as δ → 1. However, if l∗ = q + 1, then in MPEs

for high δ, the seller trades with the top q buyers with probability 1, and hence trades with

buyer l∗ with probability 0. We also prove that the seller trades only with buyers with the

top q + 1 valuations, extending the logic of “two is enough for competition” to situations

with multiple transactions: an extra buyer is enough for competition. In the Appendix, we

state and prove a general version of the theorem that also deals with non-generic cases in

which the static optimization problem (8) has multiple maximizers. Proofs for various parts

of the result track the evolution of the formula for seller profits in subgames as trade takes

place (and involve further use of the supporting lemmata).

Theorem 2 (Included and excluded buyers). Suppose that the optimization problem dis-

played in (8) has a unique maximizer l∗. Then, there exists δ < 1 such that the following

statements hold for every MPE of the game with supply q and discount factor δ > δ.

• The seller trades with buyer i with probability 1 if and only if i < l∗.
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• If l∗ 6= q+ 1 and al∗ > al∗+1, then the seller trades with buyer l∗ with limit probability

1 as δ → 1.

• If l∗ = q + 1, then the seller trades exclusively with buyers 1, . . . , q.

• The seller trades with probability 0 with any buyer i for which ai < aq+1.

The result also highlights subtle differences between the static optimization problem defin-

ing M∗q and the equilibrium of the dynamic bargaining game: the missing term correspond-

ing to the value of buyer l∗ in the formula for M∗q does not translate into buyer l∗ carrying

all the burden of exclusion in the game. Indeed, buyer l∗ is almost certain to be included in

the limit δ → 1. In particular, this means that the strategy delivering the lower bound on

limit seller profits in the proof of Theorem 1 is played with limit probability 0 in MPEs for

δ → 1.

An example with n = 3, a1 = a2 = 3, a3 = 1 shows that weakening the hypothesis

al∗ > al∗+1 to require that al∗ > an in Theorem 2 does not guarantee the conclusion that

buyer l∗ trades with limit probability 1. In this example, we have that l∗ = 1 and a1 > a3,

but there exists a family of MPEs with π̄1 = π̄2 = 1/4 and π̄3 = 1/2. In this family of MPEs,

the seller trades with buyer l∗ = 1 with limit probability 3/4 < 1 as δ → 1.13

7. Buyer Payoffs

Suppose that q < n. A key conclusion of our analysis is that seller limit payoffs are unique

across MPEs, and we have found a simple formula for this unique value expressed only in

terms of buyer valuations. We have also seen by example that buyers’ limit payoffs may

vary across MPEs. What can then be said about a buyer’s limit payoffs along a sequence

of MPEs? Frequently quite a bit, even with relatively coarse information about the class of

MPEs in question: we can often infer limit buyer payoffs from the support of seller’s mixing

probabilities in certain states without knowledge of these probabilities.

We will say that a family of MPEs of the game with supply q for a sequence of discount

factors δ going to 1 is convergent if all associated variables ui(S) and πi(S) converge as δ → 1,

and for every i ∈ S ⊆ N either πi(S) = 0 or πi(S) > 0 uniformly for all δ in the sequence.

Note that every family of MPEs contains a subfamily that is convergent according to this

definition. As in earlier sections, we use bar notation for corresponding limit variables.

Lemma 1 implies that in any convergent family of MPEs,

(9) πi(S) > 0 =⇒ ūi(S) = ai + ū0(S \ {i})− ū0(S).

Since Theorem 1 yields explicit formulae for ū0(S) and ū0(S \{i}), this allows us to compute

buyer i’s asymptotic payoff in state S without knowledge of the exact probability πi(S) (as

long as this probability is positive) or granular details of the different paths of trade with

13Similarly to examples we discuss in Section 3, this example admits two other families of MPEs with π1 = 0
and π2 = 0, respectively.



19

buyer i starting from state S. We seek to express buyer i’s limit payoff in the overall game

as an expectation of ūi(S) over a minimal set of states S for which πi(S) > 0.

Fix a convergent family of MPEs, and consider a (possibly empty) sequence of trades with

buyers i1, . . . , ik distinct from i such that πi(N \{i1, . . . , ik}) > 0 and πi(N \{i1, . . . , ik′}) = 0

for k′ < k. Let Ii denote the set of sequences (i1, . . . , ik) with this property. Note that every

trade of buyer i occurs after one and only one sequence in Ii, either immediately or following

intermediate trades with other buyers. Hence, buyer i’s limit payoff in the overall game can

be expressed as an expected value of the payoffs ūi(N \ {i1, . . . , ik})—for which condition

(9) delivers an explicit formula—over sequences (i1, . . . , ik) in Ii.
To develop this analysis, let π̄i1,...,ik = π̄i1(N)π̄i2(N \ {i1}) . . . π̄ik(N \ {i1, . . . , ik−1}) de-

note the probability that the seller trades in sequence with buyers i1, . . . , ik (with the value

corresponding to the empty sequence understood to be 1), and define

θ̄i(S) =
∑

(i1,...,ik)∈Ii:{i1,...,ik}=N\S

π̄i1,...,ik .

We have that

ūi =
∑

(i1,...,ik)∈Ii

π̄i1,...,ik ūi(N \ {i1, . . . , ik}) =
∑
S3i

ūi(S)
∑

(i1,...,ik)∈Ii:{i1,...,ik}=N\S

π̄i1,...,ik

=
∑
S3i

θ̄i(S)ūi(S) =
∑
S3i

θ̄i(S)(ai + ū0(S \ {i})− ū0(S)).

We have established the following result.

Proposition 1 (Buyer payoffs). In any convergent family of MPEs for the game with supply

q < n,

ūi =
∑
S3i

θ̄i(S)(ai + ū0(S \ {i})− ū0(S)).

Note that if πi(N) > 0, then Ii consists only of the empty sequence, and vice versa. In this

case, θ̄i(N) = 1 and θ̄i(S) = 0 for all other S ⊂ N containing i, and Proposition 1 implies

that ūi = ai + ū0(N \{i})− ū0(N) (consistent with (9)). If the seller’s randomization among

buyers in the initial state has full support, then the result characterizes every buyer’s limit

payoff. Proposition 1 neatly summarizes what can be said more generally about buyer i’s

limit payoff using minimal information about the seller’s mixing probabilities along paths of

play that end with buyer i’s first chance to trade (with positive probability in equilibrium).

The computation of buyer i’s limit payoff in a convergent family of MPEs requires knowledge

of the seller’s mixing probabilities for other buyers who get opportunities to trade before i

has a chance, but not of the probabilities with which the seller bargains with buyer i in

different states. In some cases, the seller’s mixing probabilities for those other buyers may

be inferred from their limit payoffs, which in turn can be determined from Proposition 1.

We revisit the example from Section 3 to illustrate how Proposition 1 (along with Theorem

1) can be used to quickly derive buyers’ limit payoffs and trading probabilities. In that
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example, there are three classes of MPEs for high δ. In the third class of MPEs, the seller

mixes with full support between the three buyers in the initial state, and Proposition 1 pins

down limit payoffs for all buyers as discussed above. In the first class of MPEs, the support

of the seller’s mixing in the initial state is formed by buyers 2 and 3, and Proposition 1

immediately determines ū2 and ū3. This information can be plugged in the limit payoff

equation of buyer 2 to infer that π̄2 = 1. Hence, θ̄1({1, 3}) = 1, and Proposition 1 leads

to ū1 = a1 + ū0({3}) − ū0({1, 3}), where ū0({1, 3}) = a1/2 and, by definition, ū0({3}) = 0.

Similarly, limit buyer payoffs and trading probabilities in the second class of MPEs can

be directly derived via Proposition 1 and the limit buyer payoff equations. Nonetheless,

limit buyer payoff equations do not always carry sufficient information about limit mixing

probabilities, as an example we discuss in the online Appendix demonstrates.

8. Optimal Exclusion Commitments When q = n

We now turn to a strategic situation in which the seller has unconstrained supply q = n, but

might find it profitable to increase competition between buyers via exclusion commitments.

We model such commitments as follows. An exclusion commitment E is a function from

the set of all subsets of N to itself such that E(S) ⊆ S, E({i}) = {i} for all i ∈ N , and

E(S) ⊆ E(S \{i}) for all i ∈ S \E(S). In the game with exclusion commitment E , bargaining

proceeds like in the game with supply q, but trade is restricted by E : after a history in

which the seller has not yet traded with a subset of buyers S, she excludes the buyers in

E(S), and may only bargain with buyers in S \ E(S); the game ends when E(S) = S. The

condition E({i}) = {i} for i ∈ N ensures that the seller ultimately excludes at least one

buyer from trade. The condition E(S) ⊆ E(S \ {i}) for i ∈ S \ E(S) requires that exclusions

be irreversible: if the seller is committed to exclude a buyer at a given stage, she eliminates

that buyer from all future negotiations.14 As in the case of the game with exogenous supply,

the payoff relevant state for the definition of MPEs in the game with exclusion commitment

E is given by S and the actions in the current round.

A salient class of exclusion commitments, which treats buyers symmetrically, is the q̃-

supply commitment for q̃ < n. This commitment, denoted by E q̃, is specified by E q̃(S) = S

if |S| > n − q̃, and E q̃(S) = ∅ otherwise. This means that the game ends exactly after q̃

trades. Hence, the game with q̃-supply commitment is identical to the game with supply q̃.

We seek to derive optimal exclusion commitments for the seller under the least and the

most favorable selection of MPEs asymptotically as δ → 1. Let Σδ(E) denote the set of MPEs

in the game with an exclusion commitment E in which players have a common discount factor

14If buyer j is excluded in state S but not in state S \ {i} for some buyer i with whom trade is allowed
in state S, then the potential competition offered by buyer j when bargaining with buyer i in state S is
unnecessarily lost. For instance, in a situation where E(S) = S \ {i} and j ∈ S \ E(S \ {i}), buyer i would
be a “gateway” to accessing buyer j from state S and could “hold up” the seller for half of the profits she
later collects from buyer j. Our formulation of exclusion commitments precludes such hold-ups (but allows
for others; see footnote 15).
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δ, and u0(σ, δ) denote the seller’s expected payoff under a strategy profile σ. We investigate

the following bounds and their associated optimal exclusion commitments E :

M = max
E

lim inf
δ→1

inf
σ∈Σδ(E)

u0(σ, δ)

M = max
E

lim sup
δ→1

sup
σ∈Σδ(E)

u0(σ, δ).

Our main result about optimal exclusion commitments shows that the two bounds coincide,

and are achieved by the same exclusion commitment: the (n − 1)-supply commitment. As

the game with the (n − 1)-supply commitment is identical to the game with supply n − 1,

Theorem 1 implies that the common value of the bounds is M∗(n−1).

Theorem 3 ((n−1)-supply commitment is optimal). The (n−1)-supply commitment solves

the maximization problems associated with both M and M , and furthermore M = M =

M∗(n−1).

The proof leverages the body of results developed thus far. Since the (n − 1)-supply

commitment is one of the exclusion commitments E allowed in the optimization problem

defining M , and by Theorem 1, the seller’s profit in any family of MPEs for the game with

supply n− 1 converges to M∗(n−1) for δ → 1, it follows that M ≥M∗(n−1).

Lemmata 1 and 4 generalize to the game with any exclusion commitment without substan-

tial changes in the proofs.15 Then, a straightforward adaptation of the argument for Lemma

5 implies that in every family of MPEs for the game with any exclusion commitment E for

discount factors δ ∈ (0, 1), the limit superior of the seller’s expected profit as δ → 1 does not

exceed M∗(n−1). Hence, M ≤ M∗(n−1). As M ≥ M , we conclude that M = M = M∗(n−1),

which means that the (n−1)-supply commitment is optimal for both optimization problems.

This optimal exclusion commitment entails that the seller commits to exclude a single

buyer but allows the seller the flexibility to decide dynamically which buyer is excluded.16

15While Lemma 2 is not directly needed for the arguments here, we note parenthetically that it extends to the
game with exclusion commitment E with straightforward proof modifications if E is path independent, that
is, for every state S that can be reached in the game and all i 6= j ∈ S, we have that j ∈ (S \{i})\E(S \{i})
if and only if i ∈ (S \ {j}) \ E(S \ {j}) (a key step in the argument for Lemma 2 concerns a deviation by
the seller to a strategy that changes the order of trade for a pair of buyers). An example of an exclusion
commitment that violates path independence for which Lemma 2 does not hold is given by E({1, 2, 3}) =
{3}, E({1, 3}) = {1, 3}, E({2, 3}) = {3} in a setting with n = 3, q = 2. Under this commitment, buyer 3 is
always excluded, and the seller can trade with buyer 2 after buyer 1, but not the other way around. This
game has a family of MPEs in which buyer 1 gets limit payoff a1/2 + a2/4.
16This is not always the only optimal commitment. For instance, if the optimization problem defining
M∗(n−1) has a maximizer l∗ > 1, then modifying the (n− 1)-supply commitment to rule out paths of trade
that exclude buyer 1 generates another optimal exclusion commitment E (E differs from En−1 only in that
E({1, i}) = {i} for i 6= 1). To achieve the asymptotic bound M∗(n−1) in the game with exclusion commitment
E , the seller can first trade with buyer 1 at a limit price of at least a1/2, which is feasible by the extension of
Lemma 2 to path independent exclusion commitments (such as E) mentioned in footnote 15, and then reach
a subgame in which E reduces to a (n− 2)-supply commitment, in which we know from Theorem 1 that the
seller can obtain an asymptotic payoff of a2/2 + . . .+ al∗−1/2 + al∗+1 + . . .+ an.
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Therefore, maintaining a single unit of shortage at every stage allows the seller to extract all

potential benefits of exclusion, and the seller does not benefit from exclusion commitments

that treat buyers asymmetrically or create additional scarcity.

Theorem 2 implies that the (generically unique) maximizer l in the optimization problem

defining M∗(n−1) represents a cutoff for the buyers who are included with certainty in MPEs

under the optimal exclusion commitment for high δ. By Corollary 1, these buyers must trade

at fair prices in the limit δ → 1. The other buyers face the risk of exclusion in MPEs and

may have to pay higher than fair prices (as discussed in the context of Corollary 1, some of

these buyers can also trade at fair prices).

By definition, an exclusion commitment requires that at least one buyer does not trade.

It is possible that the seller attains higher profits without excluding any buyer: formally,

this corresponds to the game with supply q = n, in which the seller obtains limit profits∑
i∈N ai/2 by Corollary 2. Theorem 3 implies that the seller is better off with an optimal

exclusion commitment whenever M∗(n−1) >
∑

i∈N ai/2. Note that this is often the case. The

condition M∗(n−1) ≤
∑

i∈N ai/2 is equivalent to al ≥ al+1 + . . .+an for all l ≤ n−1, which in

turn implies that al ≥ 2al+2 for all l ≤ n− 2. This requires extreme differences in valuations

be maintained consistently through the sequence of buyers: if there exist three consecutive

buyers whose valuations do not drop by half, optimal commitments would strictly dominate

having no commitments.

Similarly, the condition l∗ 6= n invoked in Theorem 2 for the game with supply n−1 is likely

to be satisfied: l∗ = n implies that M∗(n−1) =
∑

i∈N\{n} ai/2 <
∑

i∈N ai/2. When l∗ = n,

buyers 1, . . . , n− 1 are served with certainty in the game with (n− 1)-supply commitment.

In this case the seller would be better off in the game without exclusion, in which she trades

with all buyers with certainty.

When bargaining with an optimal commitment dominates bargaining without commit-

ment, the threat of exclusion enables the seller to extract higher payoffs by flexibly serving

n − 1 of the group of n buyers than she would by serving any subset of n − 1 buyers with

certainty, and indeed by serving all n buyers with certainty. It follows directly that one or

more buyers must trade with positive probability at higher than fair prices.

We conclude this section with a general MPE existence result.

Proposition 2 (Existence). An MPE exists for the game with any exogenous supply and

for the game with any exclusion commitment.17

9. Optimal Exclusion in the Game with Supply q < n

Does a seller with supply q < n benefit from making exclusion commitments stricter than

her exogenous supply constraint? An exclusion commitment E is more restrictive than the

17For q < n, the game with supply q is identical to the game with q-supply commitment, so the only game
with exogenous supply outside the class of games with exclusion commitments is the game with supply q = n.



23

q-supply commitment Eq if E(S) = S whenever |S| = n − q and, furthermore, E(S) = S

for some S with |S| > n − q. Again, the argument for Lemma 5 can be easily adapted to

show that M∗q is an upper bound on limit profits the seller can obtain using any exclusion

commitment that is more restrictive than Eq. On the other hand, Theorem 1 shows that

the seller’s limit profit in the game with supply q is M∗q. It follows that in the setting with

supply q < n, the seller does not benefit from making commitments to exclude buyers at

any stage before all available q units are sold.18 In particular, for any q̃ < q, the q̃-supply

exclusion commitment is detrimental to a seller with supply q (this follows directly from

noting that M q̃ < M q). This conclusion reiterates the intuition from the previous section

that any existing scarcity that persists through the trading process (q < n) is sufficient

to create all the competition between buyers needed to capture the gains delivered by the

sequential outside option principle, and further exclusion does not benefit the seller.

This result does not hold in Ho and Lee’s (2019) delegated-agent model of bargaining with

threat of replacement. In that model, the seller announces a set of buyers (“network”) she

will “target.” The network consists of the most valuable q̃ ≤ q buyers. The seller then assigns

a representative to each buyer in the announced network, and instructs each representative

to bargain only with her assigned buyer and any buyer outside the network. Ho and Lee

show that the announced network forms in equilibrium with limit probability 1 as δ → 1,

and the seller’s limit profit is
∑q̃

i=1 max (ai/2, aq̃+1). This expression may be rewritten as

max
l≤q̃+1

[
a1 + a2 + . . .+ al−1

2
+ (q̃ − l + 1)aq̃+1

]
.

Observe that

max
l≤q̃+1

[
a1 + . . .+ al−1

2
+ (q̃ − l + 1)aq̃+1

]
≤ max

l≤q̃+1

[
a1 + . . .+ al−1

2
+ al+1 + . . .+ aq̃+1

]
= M∗q̃.

The difference al+1 + . . .+ aq̃+1 − (q̃ − l + 1)aq̃+1 ≥ 0 in the expressions being maximized in

the two optimization problems above is due to the fact that under Ho and Lee’s bargaining

protocol, every representative relies on the outside option provided by the extra marginal

buyer q + 1 when bargaining with her assigned buyer. In particular, if a representative

exercises the outside option of trading with buyer q+ 1, her assigned buyer does not become

available to the other representatives as a more valuable outside option. In other words,

the protocol followed by the seller’s representatives rules out the strategy underlying our

sequential outside option principle. For a fixed q̃, the total profits the seller achieves in

the setting of Ho and Lee are lower than M∗q̃ in general due to both the difference in the

maximand for every l ≤ q̃ − 1 and the possibility that the two optimization problems have

different maximizers l.

18Note, however, that there are exclusion commitments E more restrictive than Eq that generate the same
limit profits as Eq. This is the case, for instance, if E({1, 3}) = {3} and E(S) = Eq(S) for all other states S
in the example from Section 3. If q ≤ n− 2, this is also the case if E(S) = Eq(S) ∪ {q + 2, . . . , n} for all S.
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A seller with supply q < n may benefit from reducing supply to some q̃ < q in the setting

of Ho and Lee. As noted above, the resulting total profits in this case are smaller than

or equal to M∗q̃. In our setting, the seller cannot benefit from restricting supply because

M∗q̃ < M∗q. For a concrete example, suppose that q = 4 in a market with n = 5, a1 = a2 =

a3 = a4 = 3, a5 = 2. Under the protocol of Ho and Lee, a commitment to supply only three

of the four units increases seller profits from 8 to 9. In our model, the optimal exclusion

commitment does not require a supply reduction and generates profits of 11 in this example.

10. Conclusion

This paper analyses bilateral bargaining between a seller and multiple buyers. Our analysis

applies equally to a buyer negotiating with multiple sellers. The results are most interesting

when the seller is unable to serve all buyers either because supply is limited or because the

seller commits to excluding some potential buyers. There are numerous examples of a buyer

negotiating with multiple sellers (and vice versa). In such situations, our results reveal that

commitments to operate with fewer than the available number of suppliers (respectively,

buyers) could be a highly effective bargaining tool. We quantify the resultant benefits.

Our main results characterize seller profits, buyer payoffs and trading probabilities under

exogenous supply constraints. We also investigate optimal exclusion commitments in the ab-

sence of supply constraints. In the process, we formalize exclusion commitments in a general

way. Our analysis uncovers some key bargaining theoretic principles for the environments

considered. On the one hand, buyers cannot hold up the seller in the sense of paying less

than fair prices. On the other hand, buyers who are included with certainty must trade

at exactly fair prices. Our theory yields a novel sequential outside option principle that

captures the role of scarcity in inducing competition between buyers when several successive

transactions are possible. With sequential trade, the outside option changes dynamically,

and in particular may become increasingly more attractive, enabling a seller who contracts

with multiple buyers to extract more surplus than if she were to threaten buyers with a static

outside option, as assumed in preceding research on exclusion. We show that in equilibrium

the seller optimally chooses a top segment of buyers to include with certainty at fair prices,

and exploits the others via the sequential outside option principle.

In many applications, there are externalities between buyers. A buyer’s marginal value

may depend on the set of buyers that the seller ultimately contracts with. In future research,

we seek to address this generalization. We also hope to explore extensions to settings with

multiple sellers and multiple buyers.

Appendix

Proof of Lemma 1. Let ui(S) denote the expected payoff of player i ∈ S ∪ {0} in subgame

S, and πi(S) the probability with which the seller chooses to bargain with buyer i ∈ S in

state S under an MPE.
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Note that in subgame S the seller can trade only with buyers in S. It follows that the

total surplus created in subgame S is bounded above by
∑

i∈S ai. As u0(S) ≥ 0, we have

that

(10)
∑
i∈S

ui(S) ≤
∑

i∈S∪{0}

ui(S) ≤
∑
i∈S

ai.

Hence, there exists i ∈ S such that ui(S) ≤ ai.
19 Since the seller has the option to bargain

with buyer i in the first period of subgame S and make an acceptable offer that leaves buyer

i with utility arbitrarily close to δui(S), but otherwise demand positive prices and refuse all

offers in the future, we have that

u0(S) ≥ 1

2
(ai − δui(S)) > 0.

As every buyer i ∈ S will reject offers that yield utility smaller than δui(S) in state

S of the MPE, the payoff the seller receives when making an offer is bounded above by

maxi∈S(ai + δu0(S \ {i})− δui(S)). Standard arguments demonstrate that the seller expects

a payoff of δu0(S) in the event the buyer chosen for bargaining is selected to be the proposer

(regardless of whether the offer is accepted or rejected). Then, u0(S) > 0 implies that

maxi∈S(ai + δu0(S \ {i}) − δui(S)) > δu0(S). As the seller can obtain a payoff arbitrarily

close to ai + δu0(S \ {i})− δui(S) by making an acceptable offer to buyer i, it must be that

πi(S) > 0 only if i maximizes the expression ai + δu0(S \ {i})− δui(S). For such i, we know

that ai + δu0(S \ {i})− δui(S) > δu0(S).

Optimality of MPE strategies requires that if πi(S) > 0, and the seller is selected to

be the proposer, then she makes an offer that yields utility δui(S) for buyer i and utility

ai + δu0(S \ {i}) − δui(S) > δu0(S) for the seller, and buyer i must accept the offer with

probability 1 in equilibrium. Similarly, if buyer i is the proposer, he makes an offer that

yields utility δu0(S) for the seller, and the seller accepts it with probability 1. The payoff

equations follow.

Finally, we prove the statement regarding limit prices. When the seller makes an offer

to buyer i in subgame S under σδz , the price is given by ai − δzui(S), which converges

to ai − ūi(S) as z → ∞. If instead buyer i is the proposer, then the price is given by

δzu0(S)− δzu0(S \ {i}), which converges to ū0(S)− ū0(S \ {i}) as z →∞. If π̄i(S) > 0, then

we have that

u0(S) =
1

2
(ai + δzu0(S \ {i})− δzui(S)) +

1

2
δzu0(S),

which leads to ai − ūi(S) = ū0(S) − ū0(S \ {i}) by taking the limit z → ∞. Hence, the

transaction between the seller and buyer i in state S takes place at the common limit price

ai − ūi(S) regardless of which of the two players is selected to be the proposer. �
19The only change necessary to extend this proof to the game with an exclusion commitment E involves
replacing the set S with the set of buyers S \E(S) who are still permitted to trade in state S in this sequence
of arguments. By definition, under any exclusion commitment E , only buyers in S \ E(S) can trade in
subgame S.
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Proof of Lemma 2. We establish the result for all games with supply q by induction on q.

The base case q = 0 is trivial as all buyers receive zero payoffs in a degenerate game in which

no trade is possible.

For the inductive step, consider the game with supply q, and fix a corresponding family

of MPEs (σδ)δ∈(0,1). We use the notation and conventions from the proof of Lemma 1. It

is sufficient to show that if ui converges over a sequence of δ’s going to 1, then its limit is

at most ai/2 for every buyer i. We can assume by passing to a subsequence (δz)z≥0 → 1

that all equilibrium variables uj, uj(S), πj, πj(S) converge as z → ∞ to limits denoted by

ūj, ūj(S), π̄j, π̄j(S). We need to prove that ūi ≤ ai/2 for all i ∈ N .

Following an agreement with buyer k, players reach subgame N \{k}—a game with supply

q − 1, in which the induction hypothesis applies. Hence, ūi(N \ {k}) ≤ ai/2 for all k 6= i.

Fix a discount factor δ belonging to the sequence (δz) and a buyer i ∈ N such that πi > 0

under σδ. By Lemma 1, we have that

u0 =
1

2
(ai + δu0(N \ {i})− δui) +

1

2
δu0(11)

ui = πi

(
1

2
(ai + δu0(N \ {i})− δu0) +

1

2
δui

)
+

∑
k∈N\{i}

πkδui(N \ {k}).(12)

Solving the pair of equations (11) and (12) with unknowns u0 and ui and reorganizing terms,

we obtain formula (5) from Section 4 (when πi = 0, this formula follows directly from (12)

even though (11) is not valid in this case). The identities (6) and (7) from Section 4 will

also be useful.

If π̄i < 1, then (7) leads to

ūi =
∑

k∈N\{i}

π̄k
1− π̄i

ūi(N \ {k}) ≤
ai
2
.

If ū0(N \{i}) = 0, then for any ε > 0, there exists z such that if z ≥ z, then δzu0(N \{i}) ≤
2ε and δzui(N \ {k}) ≤ ai/2 + ε for all k ∈ N \ {i}. Equations (5) and (6) then lead to

ui ≤ ai/2 + ε for all z ≥ z. Hence, ūi ≤ ai/2.

For the rest of the proof, assume that π̄i = 1 and ū0(N \ {i}) > 0. The latter inequality

implies that the seller trades with some buyer k ∈ N \ {i} with positive limit probability

in the second round after reaching the agreement with i under σδz . Hence, q ≥ 2 and

π̄k(N \ {i}) > 0.

Since π̄i = 1 > 0, taking the limit z →∞ for in equation (11) for δ = δz we obtain

(13) ū0 = ai + ū0(N \ {i})− ūi.

Similarly, π̄k(N \ {i}) > 0 implies that

(14) ū0(N \ {i}) = ak + ū0(N \ {i, k})− ūk(N \ {i}).
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As π̄i = 1, it must be that

(15) ūk = ūk(N \ {i}).

Putting equalities (13)-(15) together, we obtain

(16) ū0 = ai + ak + ū0(N \ {i, k})− ūi − ūk.

Since the seller may bargain with buyer k in state N and with buyer i in state N \ {k},
we have that

ū0 ≥ ak + ū0(N \ {k})− ūk
ū0(N \ {k}) ≥ ai + ū0(N \ {i, k})− ūi(N \ {k}),

and hence

(17) ū0 ≥ ai + ak + ū0(N \ {i, k})− ūi(N \ {k})− ūk.

Then, (16) and (17) imply that ūi ≤ ūi(N \ {k}). Since ūi(N \ {k}) ≤ ai/2, we conclude

that ūi ≤ ai/2. �

Proof of Lemma 3. We prove the claim for all games with supply q and any number of buyers

n > q by induction on q, with the base case q = 0 being trivial like in the proof of Lemma

2 (applying the inductive hypothesis requires a reindexing of the buyers in decreasing order

of valuations in subgames). For the inductive step, consider a family of MPEs (σδ)δ∈(0,1) of

a game with supply q for q ≥ 1, and a buyer i ≥ q+ 1. If buyer i’s payoff under σδ does not

converge to 0 for δ → 1, then there exists a sequence of discount factors going to 1 for which

i’s payoff converges to a positive limit. By passing to a subsequence, we can assume that

the other equilibrium variables also converge. We use bar notation for the limits of these

variables over the subsequence. We will establish that ūi = 0, contradicting the hypothesis

above.

For any k ∈ N \ {i}, buyer i’s value is among the highest q in subgame N \ {k}. Since

subgame N \ {k} is a game with supply q − 1, the induction hypothesis implies that

(18) ūi(N \ {k}) = 0, ∀k ∈ N \ {i}.

If π̄i < 1, then (7) implies that

ūi =
∑

k∈N\{i}

π̄k
1− π̄i

ūi(N \ {k}).

Using (18), we conclude that ūi = 0.

Consider now the case π̄i = 1. Applying (7) for buyers j 6= i, we obtain ūj = ūj(N \ {i}).
If q = 1,20 then ū0 = ai − ūi ≤ ai ≤ a2. As n ≥ 2, there exists j ∈ {1, 2} \ {i} for which

ūj = uj(N \ {i}) = 0. Since the seller may deviate to trading with such a buyer j at a limit

price of aj, it follows that ū0 ≥ aj. We conclude that a2 ≤ aj ≤ ū0 = ai − ūi ≤ ai ≤ a2,

20The case q = 1 follows from Manea’s (2018) Proposition 1. Here we provide a self-contained treatment.
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which is possible only if all weak inequalities hold with equality. In particular, ai − ūi = ai
leads to ūi = 0, as claimed.

Now suppose that q ≥ 2. Then the game with supply q does not end after the seller trades

with buyer i in the first round. In subgame N \ {i}, there exists a fixed j 6= i such that

π̄j(N \ {i}) > 0. The conditions π̄i > 0 and π̄j(N \ {i}) > 0 along with Lemma 1 lead to

ū0 = ai − ūi + ū0(N \ {i}) = ai − ūi + aj − ūj(N \ {i}) + ū0(N \ {i, j}).

As ūj = ūj(N \ {i}), we obtain

(19) ū0 = ai − ūi + aj − ūj + ū0(N \ {i, j}).

The seller has the option to deviate and trade with buyer j first at a limit price of aj− ūj,
and with i second at a price of ai− ūi(N \{j}) = ai (by (18), we have that ūi(N \{j}) = 0).

Optimality of the seller’s strategy in the sequence of MPEs requires that this deviation does

not generate a higher limit profit for the seller:

(20) ū0 ≥ aj − ūj + ai + ū0(N \ {i, j}).

Formula (19) and inequality (20) imply that ūi ≤ 0, and hence ūi = 0. �

Proof of Lemma 4. We prove the result by induction on q, with the base case q = 0 being

trivial as all buyers trade with probability 0, not 1, in a degenerate game. Following an

agreement with buyer k, players reach subgame N \{k}—a game with supply q−1, in which

the induction hypothesis applies.

For the inductive step, consider a game with supply q and a corresponding family of MPEs

(σδz)z≥0 with limz→∞ δz = 1 such that the seller trades with buyer i with probability 1 under

σδz for all z ≥ 0. Again, we use the notation from the proof of Lemma 1 for variables

associated with this family of MPEs.

It is sufficient to prove that if ui converges along a subsequence of (δz)z≥0, then its limit

is at least ai/2. We can assume by passing to a subsequence that all equilibrium variables

uk, uk(S), πk, πk(S) converge as z → ∞ to limits denoted by ūk, ūk(S), π̄k, π̄k(S), and fur-

thermore that the set K = {k ∈ N |πk > 0 under σδz} is constant for all z ≥ 0.21 We need

to show that ūi ≥ ai/2.

Fix ε > 0. For k ∈ K, we have that πk > 0, and the assumption that the seller trades

with buyer i with probability 1 under σδz for all z implies that the seller trades with buyer

i with probability 1 in subgame N \ {k} under σδz for all z. The induction hypothesis then

shows that ūi(N \ {k}) ≥ ai/2 for all k ∈ K \ {i}. Hence, there exists z such that if z ≥ z,

21The sequence ((uk(S), πk(S))k,S ,K)z≥0 derived from the family of MPEs (σδz )z≥0 is contained in a com-
pact subset of an Euclidean space, so by the Bolzano-Weierstrass theorem it admits a convergent subsequence.
Since K can take only a finite set of values, convergence on component K of the subsequence is equivalent
to K being constant starting at some point in the subsequence.
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then δzui(N \ {k}) ≥ ai/2− ε for all k ∈ K. Given the definition of K, note that the range

N \ {i} can be replaced by K \ {i} in the summations from equations (5) and (6). Then,

ai + δu0(N \ {i})
2

≥ ai
2

and δzui(N \ {k}) ≥ ai/2− ε,∀k ∈ K \ {i},

imply that ui ≥ ai/2 − ε for all z ≥ z. As ε > 0 was chosen arbitrarily, it follows that

ūi ≥ ai/2, as asserted. �

Proof of Lemma 5. Fix a family of MPEs (σδ)δ∈(0,1) for the game with supply q < n. For

every δ ∈ (0, 1), there exists at least one buyer with whom the seller trades with probability

smaller than 1 under σδ; let l(σδ) ∈ N be the smallest index among buyers with this property.

Clearly, l(σδ) ≤ q + 1.

It is sufficient to prove that if u0 converges along a sequence (δz)z≥0 going to 1, then its

limit does not exceed M∗q. We can assume by passing to a subsequence that all equilibrium

variables uk, uk(S), πk, πk(S) converge as z → ∞ to limits denoted by ūk, ūk(S), π̄k, π̄k(S).

Since N is finite, the subsequence can be selected to additionally satisfy l(σδz) = i for a fixed

i ≤ q + 1 and all z ≥ 0. We need to establish that ū0 ≤M∗q.

By Lemma 1, for every z ≥ 0, the MPE σδz generates a probability distribution over

sequences of q buyers the seller selects for bargaining and ensuing agreements. As l(σδz) = i,

there exists one such sequence S that arises with positive probability under σδz and excludes

buyer i. By passing to a subsequence of (δz)z≥0 if necessary, we can assume that S is the

same for all z. Since trading over S is a best response for the seller under the MPE σδz , the

seller’s equilibrium payoff is equal to her expected payoff from selecting bargaining partners

in the sequence S.22

As S arises with positive probability under σδz and l(σδz) = i, each buyer j < i is guar-

anteed to trade under σδz in the subgame following agreements with his predecessors in the

sequence S. Lemma 4 implies that the expected discounted price in the agreement with

buyer j along S converges to a limit less than or equal to aj/2 as z →∞.

Clearly, the seller cannot extract a price greater than aj from any buyer j > i in the

sequence S. Since the seller does not trade with buyer i over S, and there are q buyers in S,

we have that

ū0 ≤
a1 + a2 + . . .+ ai−1

2
+ ai+1 + . . .+ aq+1 ≤M∗q.

�

22To better understand this claim, note that every Markov behavior strategy of the seller can be decomposed
into two dimensions: mixing probabilities between buyers in every state at the beginning of a round, and
proposal and acceptance decisions at every state within a round. In an MPE, the seller’s strategy must
be optimal against buyer strategies (and moves by nature), and hence the seller’s decisions on the first
dimension should also be optimal when we fix her play on the second dimension and the others’ strategies.
This implies that the seller should be indifferent between all sequences of buyers that occur in equilibrium
(given the expected payoffs derived from bargaining with each buyer over each such sequence).
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Proof modifications for the game with random matching. Suppose that in every state S, each

buyer i ∈ S is randomly matched to bargain with the seller with probability pi(S) > 0. Let

ui(S) denote the expected payoff of player i ∈ S ∪ {0} in subgame S, and πi(S) be the

probability that the seller trades with buyer i in state S (conditional on reaching state S,

but not conditional on buyer i being randomly matched with the seller in state S; thus,

πi(S) ≤ pi(S)). As in the benchmark model, it is sufficient to consider families of MPEs for

discount factors δ → 1 in which the variables ui(S) and πi(S) converge. It is useful to focus

on subfamilies of MPEs with the additional property that the support of π(S) is constant

for every state S, so that for any fixed pair i ∈ S, either πi(S) > 0 or πi(S) = 0 uniformly in

the subfamily. With random matching, the seller may be matched with a buyer with whom

agreement is not incentive compatible, and this will cause trading delay. The analogue of the

immediate agreement property from Lemma 1 in the model with random matching is that

in every state, there is a buyer with whom the seller trades with probability 1 conditional on

being matched: for every S, there exists i ∈ S such that πi(S) = pi(S). The payoff equations

under random matching can be written as follows:

u0(S) =
∑
k∈S

πk(S)

(
1

2
(ak + δu0(S \ {k})− δuk(S)) +

1

2
δu0(S)

)
+

(
1−

∑
k∈S

πk(S)

)
δu0(S)

ui(S) = πi(S)

(
1

2
(ai + δu0(S \ {i})− δu0(S)) +

1

2
δui(S)

)
+

∑
k∈S\{i}

πk(S)δui(S \ {k}) +

(
1−

∑
k∈S

πk(S)

)
δui(S).

While the seller is no longer indifferent between trading with every buyer i ∈ S for which

πi(S) > 0, optimality of the seller’s strategy implies that in every state S the seller should

be indifferent between all buyers in the support of π(S) in the patient limit. For a family

of MPEs in which πi(S) > 0 and state variables converge to limits denoted by a bar, this

means that

ū0(S) = ai − ūi(S) + ū0(S \ {i}).

As in the case of the game with strategic choice of bargaining partner, in state S buyer i

trades at an asymptotic price of ai − ūi(S) regardless of whether he wins the coin toss to

propose when getting matched. Taking the limit δ → 1 in buyer i’s payoff equation for the

initial state N , the asymptotic indifference property leads to the following counterpart to

(7):

(21)
∑

j∈N\{i}

π̄j > 0 =⇒ ūi =
∑

k∈N\{i}

π̄k∑
j∈N\{i} π̄j

ūi(N \ {k}).

This condition plays a key role in extending the proofs of Lemmata 2-6 to the model with

random matching.
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Formulae (5) and (6) rely on the seller’s exact indifference when mixing between buyers

and do no have immediate analogues in the setting with random matching. The use of these

formulae in the treatment of the case ū0(N \ {i}) = 0 in the proof of Lemma 2 can be

circumvented by noting that ū0(N \ {i}) = 0 implies that q = 1. The game with random

matching for q = 1 can be analyzed separately to argue that ūi ≤ ai/2.

The proof of Lemma 4 relies more extensively on (5) and (6). We can deal with the case∑
j∈N\{i} π̄j > 0 via (21). Consider now the case

∑
j∈N\{i} π̄j = 0. It must be that for high

enough δ, we have that πi = pi(N) and πj < pj(N) for j 6= i. It follows that

ai + δu0(N \ {i})− δui ≥ δu0 ≥ aj + δu0(N \ {j})− δuj,∀j 6= i.

Then, the seller’s payoff equation leads to

u0 ≤
∑
k∈N

πk

(
1

2
(ai + δu0(N \ {i})− δui) +

1

2
δu0

)
+

(
1−

∑
k∈N

πk

)
δu0.

This leads to an upper bound for u0 that depends on ui, which can be substituted in buyer

i’s payoff equation to obtain a lower bound on ui similar to the right hand-side of (5):

ui ≥
2πi(1− δ)

(1− δ + δ
∑

j∈N πj)(2− 2δ + δ
∑

j∈N\{i} πj)
× ai + δu0(N \ {i})

2
+

∑
k∈N\{i}

πk(2− 2δ + δ
∑

j∈N πj)

(1− δ + δ
∑

j∈N πj)(2− 2δ + δ
∑

j∈N\{i} πj)
× δui(N \ {k}).

The sum of the coefficients in the equation above simplifies to∑
j∈N πj

1− δ + δ
∑

j∈N πj
,

which converges to 1 as δ → 1 (both the numerator and the denominator converge to

π̄i > 0).23 This makes it possible to proceed with the inductive proof of Lemma 4 as in the

benchmark model.

For the game with random matching, the crucial step identifying the sequence of buyers

S in Lemma 5 does not rely on exact indifference for the seller, but instead uses the seller’s

asymptotic indifference. We can construct a sequence over which trade occurs with positive

probability (this can be defined based solely on the support of every π(S), which is constant

in the subfamily of MPEs under consideration)—and hence generates the seller’s asymptotic

MPE payoff—which excludes buyer l and includes buyers 1, . . . , l − 1. This allows us to

extend Theorem 1 to the model with random matching. �

23This expression can be interpreted as the present value of a prize of 1 received at a stochastic time in an
environment where the probability of getting the prize at a given date conditional on not having received it
earlier is

∑
j∈N πj , which reflects the fact that the first trade takes place with probability

∑
j∈N πj in the

game with random matching.
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Theorem 2 (General version). Let l∗ and l̄∗ be the smallest and the largest indices l that

achieve the maximum in (8), respectively, and let l(σ) denote the lowest index of a buyer

with whom the seller trades with probability less than 1 under strategy profile σ. There exists

δ < 1 such that every MPE σ of the bargaining game with supply q for any discount factor

δ > δ satisfies the following conditions and leads to the following outcomes:

• l(σ) is a maximizer in the optimization problem (8).

• If i < l∗, then the seller trades with buyer i with exact probability 1.

• If i ≥ l̄∗, then the seller trades with buyer i with probability smaller than 1.

• If ai < aq+1, then the seller trades with buyer i with probability 0.

Furthermore, every family of MPEs (σδ)δ∈(0,1) of the game with supply q for discount factors

δ ∈ (0, 1) has the following asymptotic properties for δ → 1:

• If i < l̄∗, then the probability that the seller trades with buyer i converges to 1, and

the expected payoff of buyer i under σδ converges to ai/2.

• If l̄∗ 6= q + 1 and al̄∗ > al̄∗+1, then the probability that the seller trades with buyer l̄∗

also converges to 1.

• If l̄∗ = q+ 1, then the seller trades with buyers 1, . . . , q with probability converging to

1.

Proof of general version of Theorem 2. We prove the first part of the result by contradiction.

If the claim is not true, then there exist a sequence of discount factors δz → 1 and associated

equilibria σδz such that l(σδz) is not a maximizer in the optimization problem (8). Moreover,

the sequence may be selected such that l(σδz) = j for some fixed j and all z ≥ 0. Then, the

argument from Lemma 5 shows that

ū0 ≤
a1 + a2 + . . .+ aj−1

2
+ aj+1 + . . .+ an ≤M∗q.

Since ū0 = M∗q by Theorem 3, it follows that j achieves the maximum M∗q in the optimiza-

tion problem (8), contradicting the assumption l(σδz) = j is not a maximizer in (8).

The second part of the result follows from the first. Since l(σ) is a maximizer in (8) for

every MPE σ when δ > δ, the definition of l∗ implies that l∗ ≤ l(σ).

The proof of the third part proceeds by contradiction similarly to the first part. If the

claim is not true, then there exists a buyer i ≥ l̄∗ and a sequence of discount factors (δz)z≥0

such that the seller trades with buyer i with probability 1 under σδz for all z ≥ 0. As

above, (δz)z≥0 can be selected so that l(σδz) = j for a fixed j and all z. Since i trades with

probability 1 under σδz , we have that j 6= i, and hence i > j. Moreover, each buyer in the

set K = {1, 2, . . . , j − 1, i} trades with probability 1 under σδz for all z.

Following steps analogous to the proof of Lemma 5, the seller’s payoff under σδz is equal

to her expected payoff from selecting bargaining partners in a fixed sequence that excludes

buyer j and includes each buyer k ∈ K at a limit (discounted) price of at most ak/2. This

means that the seller obtains at most fair prices from buyers 1, 2, . . . , j − 1 and can extract
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at most full surplus from a set of q − j + 1 buyers different from buyer j, with strictly less

than full surplus extraction from buyer i. We conclude that

ū0 <
a1 + . . .+ aj−1

2
+ aj+1 + . . .+ aq+1 ≤M∗q,

which contradicts Theorem 3.

For the fourth part, we argue by induction on q that for all q ≥ 0, in every MPE of

the game with supply q for high enough δ, any buyer i for which ai < aq+1 trades with

probability 0 (applying the inductive hypothesis requires a reindexing of buyers in subgames

as in Lemma 3). The base case q = 0 is trivial.

To prove the inductive step, assume that q ≥ 1, and fix a buyer i for which ai < aq+1.

Suppose that there exists a sequence of MPEs of the game with supply q for discount factors

(δz)z≥0 converging to 1 along which the seller trades with buyer i with positive probability in

the first period of the game. By passing to a subsequence of (δz)z≥0 along which all relevant

MPE variables converge, we have that

ū0 ≤ ai + ū0(N \ {i}).

Since the seller has the option to first trade with buyer q + 1 at a limit price of aq+1 by

Lemma 3, the optimality of her equilibrium strategy implies that

ū0 ≥ aq+1 + ū0(N \ {q + 1}).

Note that both subgames N \ {i} and N \ {q + 1} have supply q− 1. When applied to each

subgame, Theorem 1 implies that the seller’s limit payoff depends only on the top q buyer

values. Since i > q + 1, buyers k ≤ q have the top q valuations in either subgame, and

hence ū0(N \ {i}) = ū0(N \ {q+ 1}). However, aq+1 > ai generates a contradiction with the

inequalities above. This argument establishes that for sufficiently high δ, the seller does not

trade with buyer i in the first period of any MPE.

As buyer i does not have one of the top q values in subgame N \ {j} for any j 6= i, the

induction hypothesis implies that in all MPEs for high enough δ, the seller should trade with

buyer i with probability 0 in every such subgame. Therefore, the seller trades with buyer i

with probability 0 in any MPE for high enough δ.

For the second half of the result, fix a family of MPEs (σδ)δ∈(0,1) of the game with supply

q for discount factors δ ∈ (0, 1).

We first prove the claim regarding payoffs in the first statement. For an argument by

contradiction, assume that the expected payoff of buyer i < l̄∗ does not converge to ai/2 as

δ → 1. Consider a sequence of discount factors δz → 1 such that buyer i’s payoff under σδz

converges to a different limit ūi. By Lemma 2, ūi ≤ ai/2, so it must be that ūi < ai/2. As

z →∞, the seller can deviate from σδz0 to successively trade with buyer i at a limit price of

ai − ūi, then with each buyer j = q + 1, q, . . . , l̄∗ + 1 at limit price aj by Lemma 3, and then

with each buyer j = 1, . . . , l̄∗ − 1 different from i at a limit price of at least aj/2 by Lemma
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2. This deviation delivers the following lower bound on the seller’s limit profit:

ū0 ≥ ai− ūi+al̄∗+1 + . . .+aq+1 +
l̄∗−1∑

j=1,j 6=i

aj
2
>
a1 + a2 + . . .+ al̄∗−1

2
+al̄∗+1 + . . .+aq+1 = M∗q,

where the strict inequality is a consequence of ai − ūi > ai/2, and the equality follows from

the definition of l̄∗. Thus, ū0 > M∗q, contradicting Theorem 3.

We established that ūi = ai/2 for every buyer i < l̄∗. Lemma 2 then implies that every

such buyer trades with limit probability 1 under σδ as δ → 1.

We prove the next part also by contradiction. Assume that l̄∗ 6= q + 1 and al̄∗ > al̄∗+1,

and suppose that the probability that the seller trades with buyer l̄∗ under σδ does not

converge to 1 for δ → 1. Then, there exists a sequence of discount factors δz → 1 such that

the probability that the seller trades with buyer l̄∗ under σδz converges to a limit less than

1, and MPE variables converge. It follows that there exists a path over which the seller

trades under σδz with limit probability greater than 0 as z →∞ with a sequence of buyers

(i1, . . . , iq) that does not include l̄∗.

As argued above, each buyer i < l̄∗ obtains a limit payoff of ai/2 under σδz as z → ∞.

Since Lemma 2 implies that buyer i pays a limit price of at least ai/2 in every state he

trades with the seller, buyer i should pay a price that converges to ai/2 in every subgame

that arises with positive limit probability under σδz as z →∞.

Let k be the largest index such that ik > l̄∗. Note that k is well defined given the

assumption that l̄∗ 6= q + 1. Consider the subgame S := N \ {i1, . . . ik−1}, which has supply

q − k + 1. It must be that π̄ik(S) > 0.

Define J = S \ {l̄∗, ik}. For j ∈ J , we have that j < l̄∗, so the seller obtains a limit price

of exactly aj/2 when trading with buyer j as argued above. The seller can extract a price

of at most aik from buyer ik, so her limit profit in subgame S does not exceed

M(S) :=
aik+1

+ . . .+ aiq
2

+ aik .

Applying Theorem 1 to subgame S, we get that ū0(S) ≥M(S). Hence, ū0(S) = M(S).

Since π̄ik(S) > 0, we have that π̄l̄∗(S) < 1, and a version of formula (7) leads to

(22) ūl̄∗(S) =
∑

j∈S\{l̄∗}

π̄j(S)

1− π̄l̄∗(S)
ūl̄∗(S \ {j}).

Subgame S \ {ik} has supply q − k, and contains q − k buyers ik+1, . . . , iq > l̄∗. Lemma 3

implies that ūl̄∗(S \ {ik}) = 0.

Consider now any j ∈ J with π̄j(S) > 0, so that subgame S \ {j} is reached with positive

limit probability under σδz as z → ∞. As argued above, the seller trades with buyer j at

limit price aj/2 in subgame S, and has to trade with every other buyer j′ ∈ J \ {j} with

limit probability 1 at limit price aj′/2 in subgame S \ {j}. Hence,

ū0(S \ {j}) = M(S)− aj/2 & ūj′(S \ {j}) = aj′/2,∀j′ ∈ J \ {j}.
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Since the maximum total surplus achievable in subgame S \ {j} is
∑

j′∈J\{j} aj′ + al̄∗ , it

follows that

ūl̄∗(S \ {j}) ≤
∑

j′∈J\{j}

aj′ + al̄∗ − ū0(S \ {j})−
∑

j′∈J\{j}

ūj′(S \ {j}) = al̄∗ − aik .

As π̄ik(S) > 0, ūl̄∗(S \ {ik}) = 0, ūl̄∗(S \ {j}) ≤ al̄∗ − aik for all j ∈ J with π̄j(S) > 0, and

al̄∗ − aik ≥ al̄∗ − al̄∗+1 > 0, equation (22) implies that

ūl̄∗(S) < al̄∗ − aik .

However, in subgame S, the seller can deviate from σδz0 to bargain with l̄∗ and trade at

limit price al̄∗ − ūl̄∗(S) > aik , and then bargain with each buyer j ∈ J and trade at a limit

price of at least aj/2 by Lemma 2 for z →∞. This deviation generates a limit profit greater

than M(S) for the seller, contradicting ū0(S) = M(S).

The last bullet point follows from the fact that when l̄∗ = q + 1, the seller trades with

each of the q buyers i < l̄∗ with limit probability 1. If l̄∗ = l∗ = q + 1, then the seller must

trade with buyers 1, . . . , q with exact probability 1 for sufficiently high δ. �

Proof of Proposition 2. We establish the existence of an MPE for the bargaining game with

exclusion commitment. The proof for the bargaining game with exogenous supply is analo-

gous.

Consider the game with an exclusion commitment E . It will be convenient to use the

notation I(S) := S \ E(S). We inductively construct MPE expected payoffs and bargaining

probabilities for all players working backward from terminal states. Let m be the maximum

number of trades possible under E . In every subgame in which the seller has traded with

exactly m buyers (terminal nodes), the payoffs of all players are 0. Assuming that we

specified MPE strategies for subgames in which the seller has traded with at least m′ + 1

buyers, we next construct MPE expected payoffs and bargaining probabilities for subgames

in which the seller has traded with exactly m′ buyers. Consider such a subgame S. We will

argue that the constructed payoffs satisfy

ui(S) ≥ 0, ∀i ∈ I(S) ∪ {0}(23) ∑
i∈I(S)∪{0}

ui(S) ≤
∑
i∈I(S)

ai.(24)

Consider a candidate payoff profile (ui(S))i∈I(S) for the “active” buyers in state S contained

in the simplex

U = {(ui(S))i∈I(S)|ui(S) ≥ 0,∀i ∈ I(S);
∑
i∈I(S)

ui(S) ≤
∑
i∈I(S)

ai}.

We construct a correspondence F : U ⇒ U as follows. For every (ui(S))i∈I(S) ∈ U , let u′0(S)

be the payoff the seller can attain by making acceptable offers to optimally selected buyers



36

and Π(S) ⊆ ∆(I(S)) the set of optimal bargaining probabilities for the seller in state S:

u′0(S) =
1

2− δ
max
i∈I(S)

(ai + δu0(S \ {i})− δui(S))(25)

Π(S) = ∆
(

arg max
i∈I(S)

(ai + δu0(S \ {i})− δui(S))
)
.(26)

The correspondence F maps (ui(S))i∈I(S) to the set of profiles (u′i(S))i∈I(S) given by

(27)

u′i(S) = πi(S)

(
1

2
(ai + δu0(S \ {i})− δu′0(S)) +

1

2
δui(S)

)
+

∑
k∈I(S)\{i}

πk(S)δui(S \ {k})

for any selection of bargaining probabilities π(S) ∈ Π(S).

F is convex-valued because Π(S) is a convex set for every element of U .

We next argue that the range of F is indeed included in U . For any (ui(S))i∈I(S) ∈ U ,

there exists i ∈ I(S) such that ai > δui(S). Otherwise,
∑

i∈I(S) ui(S) ≥ (
∑

i∈I(S) ai)/δ >∑
i∈I(S) ai. It follows that there exists i ∈ I(S) such that ai + δu0(S \ {i})− δui(S) > 0, and

hence u′0(S) > 0.

Then, for any π(S) ∈ Π(S), the condition πi(S) > 0 implies that u′0(S) < ai + δu0(S \
{i}) − δui(S), which leads to δu′0(S) < ai + δu0(S \ {i}) − δui(S). Therefore, ai + δu0(S \
{i})− δu′0(S) > δui(S) ≥ 0. Since all other terms appearing on the right-hand side of (27)

are non-negative, we conclude that u′i(S) ≥ 0 for all i ∈ I(S).

We are left to show that
∑

i∈I(S) u
′
i(S) ≤

∑
i∈I(S) ai. Given conditions (25) and (26), u′0(S)

solves the following equation for any π(S) ∈ Π(S):

(28) u′0(S) =
∑
i∈I(S)

πi(S)

(
1

2
(ai + δu0(S \ {i})− δui(S)) +

1

2
δu′0(S)

)
.

Summing up equations (27) over all i ∈ I(S) and equation (28), we obtain∑
i∈I(S)∪{0}

u′i(S) =
∑
i∈I(S)

πi(S)(ai + δ
∑

k∈(I(S)\{i})∪{0}

uk(S \ {i}))

≤ max
i∈I(S)

(
ai + δ

∑
k∈I(S\{i})

ak

)
≤
∑
i∈I(S)

ai.

The first inequality follows from the fact that condition (24) holds for subgame S \ {i}
(formally, we set uk(S \ {i}) = 0 for k ∈ E(S \ {i})), and the second from the requirement

that E satisfies E(S) ⊆ E(S \{i}) for i ∈ S \E(S) = I(S), and hence I(S \{i}) ⊆ I(S)\{i}.
Since u′0(S) varies continuously with (ui(S))i∈I(S), and Π(S) has closed graph as a corre-

spondence defined on U , it follows that F has closed graph. Kakutani’s fixed-point theorem

then implies that F has a fixed point (ui(S))i∈I(S). We then define u0(S) to be the corre-

sponding u′0(S) and recover the probabilities (πi(S))i∈I(S) associated with the fixed point.

We can now construct an MPE. In state S, the seller chooses to bargain with buyer i

with probability πi(S). When the seller bargains with buyer i, if the seller is selected to be
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the proposer, she offers an acceptable price that gives the buyer utility δui(S), and similarly

the buyer makes an acceptable offer that gives the seller utility δu0(S). A simple inductive

argument combined with the payoff equations above proves that the constructed strategies

generate the expected payoffs given by u. By the single-deviation principle, the specification

of bargaining probabilities and offers in state S, in conjunction with the assumed behavior

in subgames following a trade in state S, induces an MPE. �
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