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Abstract

In infinite horizon, heterogeneous-agent and incomplete-market models, the existence of

an interior Ramsey steady state is often assumed instead of proven. This paper makes two

fundamental contributions: (i) We prove that the interior Ramsey steady state assumed by

Aiyagari (1995) does not exist in the standard Aiyagari model. Specifically, a steady state

featuring the modified golden rule and a positive capital tax is feasible but not optimal.

(ii) We design a modified, analytically tractable version of the standard Aiyagari model to

unveil the necessary and/or sufficient conditions for the existence of a Ramsey steady state.

These conditions are shown to be quite demanding and sensitive to structural parameter

values pertaining to the economy’s fiscal space for providing full self-insurance, such as the

government’s capacity to finance public debt, the degree of intertemporal elasticity of sub-

stitution, and the extent of history dependence of individual wealth on idiosyncratic shocks.

In addition, we characterize the basic properties of both interior and non-interior Ramsey

steady states and show that researchers may draw fundamentally misleading conclusions on

optimal fiscal policies (such as the optimal capital tax rate) from their analysis when an

interior Ramsey steady state is erroneously assumed to exist.

JEL Classification: E13; E62; H21; H30

Key Words: Optimal Fiscal Policy, Ramsey Problem, Incomplete Markets, Heterogeneous

Agents

∗We would like to thank Anmol Bhandari, Hal Cole, Dirk Krueger and Juan Pablo Nicolini, as well as the
participants of the 2022 Philadelphia Workshop on Macroeconomics and Economic Policy for helpful comments.
The views expressed are those of the individual authors and do not necessarily reflect the official positions of the
Federal Reserve Bank of St. Louis, the Federal Reserve System, or the Board of Governors.

†Yili Chien is affiliated with the Federal Reserve Bank of St. Louis, P.O. Box 442, St. Louis, MO 63166-0442;
email: yilichien@gmail.com.

‡Yi Wen is affiliated with Antai College of Economics and Management, Shanghai Jiaotong University, Shanghai,
China; email: wenyi001@sjtu.edu.cn.



1 Introduction

When solving the Ramsey taxation problem in a standard Aiyagari model with heterogeneous

agents and incomplete insurance markets, the existence of a Ramsey steady state is often assumed

instead of proven (see, e.g., Aiyagari (1995) and the literature that follows), because proving

the existence of the Ramsey steady state is a daunting challenge in such models due to their

intractability. For example, Aiyagari (1995) openly acknowledges that “It seems quite difficult to

guarantee that a solution to the optimal tax problem converges to a steady state.” (See Aiyagari

(1995) Footnote 14). Yet without such an “existence assumption,” the Ramsey allocation is

difficult to analyze and not even numerically solvable. But, optimal tax policies drawn from the

analyses hinge critically on the validity of such an “existence assumption.” In this paper we refer

to this difficult situation as the Ramsey steady-state conundrum.1

We tackle the Ramsey steady-state conundrum by proving first that an interior Ramsey steady

state with the properties proposed by Aiyagari (1995) or commonly assumed in the literature

does not exist in the standard Aiyagari (1994) model.2 Because of this, erroneously assuming

the existence of such an interior Ramsey steady state have led researchers to draw fundamentally

misleading conclusions about optimal fiscal policies, such as the conclusion that the optimal capital

tax is positive while it in fact could be zero or negative.

The intractability of the standard Aiyagari model is the root cause of the Ramsey steady-state

conundrum and it originates from the infinite history dependence of individual wealth on past

idiosyncratic shocks. This property implies that the wealth distribution may become an infinite

dimensional object in the Aiyagari model, hence making it difficult to obtain the full set of the

Ramsey first-order conditions (FOCs). Yet without obtaining the full set of the Ramsey optimal

conditions, it is impossible to fully analyze the Ramsey allocation or prove the existence of a

Ramsey steady state, let alone to characterize optimal fiscal policies. Nonetheless, this daunting

challenge does not prevent us from falsifying Aiyagari’s result, because we can derive a few more

Ramsey FOCs and show inconsistency between the existence assumption made by Aiyagari (1995)

and these additional FOCs that Aiyagari (1995) omitted from his analysis.

In this paper we also go far beyond such a negative result for the conundrum. To unveil

1This issue was first raised by Chen, Chien, and Yang (2019).
2There may exist two types of Ramsey steady states in general: an interior one and a non-interior one. If all

quantity variables converge to finitely positive values, it is called an interior steady state. Otherwise it is called a
non-interior steady state if one or more quantity variables (such as aggregate consumption) converge to zero.
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the mechanism behind our alarming finding, we design a modified, analytically tractable version

of the standard Aiyagari model to explain why the interior Ramsey steady state assumed by

Aiyagari (1995) does not exist. Working with the power utility function over consumption, u(c) =

c1−σ/(1 − σ), we then characterize the properties of a non-interior Ramsey steady state—which

is shown to be the only possible Ramsey steady state in the standard Aiyagari model if the

intertemporal elasticity of substitution (IES) is less than or equal to 1 (namely, σ ≥ 1). A nice

feature of our modified model is that it converges to the standard Aiyagari model in the limit when

a key parameter in our model changes its value. We find that the conditions for the existence

of an interior Ramsey steady state are quite demanding and sensitive to the government’s fiscal

space for providing full self-insurance (FSI) to borrowing-constrained individuals, which critically

depends on the persistence of idiosyncratic shocks, the degree of risk aversion, and the extent of

history-dependence of individual wealth on idiosyncratic shocks.

Specifically, we use our modified Aiyagari model to show analytically that under the normal

parameter condition of σ ≥ 1, the following results must be true: (i) If the fiscal space permits

an FSI allocation, then an FSI interior Ramsey steady state exists and it is the only possible

Ramsey steady state; furthermore, in such an interior Ramsey steady state the modified golden

rule (MGR) holds and the optimal capital tax is zero.3 (ii) When an interior Ramsey steady state

does not exist but is erroneously assumed to exist, the “optimal” steady-state capital tax always

appears positive in order to be consistent with the MGR; yet the only possible Ramsey steady

state in this case is non-interior, where aggregate consumption approaches zero, the optimal labor

tax goes to 100%, and the capital tax is indeterminate. (iii) An interior Ramsey steady state exists

in our modified Aiyagari model, but it rapidly converges to the non-interior Ramsey steady state

when our modified model approaches the standard Aiyagari model by changing a key parameter

in our model.

On the other hand, when the IES parameter σ < 1 such that the degree of risk aversion is

low or the utility function is sufficiently linear, we show that the following results must hold: If

the fiscal space does not permit an FSI allocation, then the only possible Ramsey steady state is

an interior steady state where the Ramsey Lagrangian multiplier associated with the aggregate

resource constraint diverges, the MGR fails to hold, the interest rate lies below the time discount

rate, and most importantly, the optimal capital tax is non-positive.

3A full self-insurance allocation is defined as a competitive equilibrium allocation where no individual’s borrowing
constraint is strictly binding.
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In addition, we show that solving Aiyagari-type models by assuming that the Ramsey plan-

ner maximizes only the steady-state welfare of a competitive equilibrium can trivially ensure the

existence of an interior Ramsey steady state, but the result distorts the picture of the Ramsey

allocation in a dynamic setting that maximizes the time-zero expected welfare of a competitive

equilibrium. This distortion occurs because the steady-state welfare approach ignores the transi-

tional dynamics of the Ramsey problem. Although it is well known in the literature that optimal

policies may look dramatically different between steady-state welfare analysis and time-zero dy-

namic welfare analysis (see, e.g., Domeij and Heathcote (2004), Heathcote (2005), and, Rohrs and

Winter (2017)), our analytical approach makes a further contribution to the literature by showing

the underlying mechanism driving the sharp differences between these two approaches. The culprit

for obtaining different results for optimal fiscal policies between steady-state welfare analysis and

dynamic welfare analysis in heterogeneous-agents models is the arbitrage opportunity arising from

the gap between the market interest rate and the time discount rate; this gap does not matter

when maximizing the steady-state welfare, whereas it does matter greatly when maximizing the

time-zero expected welfare. This is so because the Ramsey planner opts to take advantage of the

cheap interest rate for debt financing in a dynamic setting by frontloading consumption; however,

such a frontloading incentive disappears in the static welfare analysis.

Brief Literature Review. First, our work is motivated by Straub and Werning (2020), who

questioned the classical zero-capital-taxation result of Judd (1985) by considering the possibility

of an non-interior Ramsey steady state where aggregate consumption approaches zero. This paper

questions instead the positive-capital-taxation result of Aiyagari (1995) by showing that an non-

interior Ramsey steady state is the only possible Ramsey steady state in the standard Aiyagari

model if the IES parameter σ ≥ 1. We obtain our result analytically despite the fact that the

mechanism underlying our non-interior Ramsey steady state is totally different from that of Straub

and Werning (2020).

Second, our analysis relates to the work of Bassetto and Cui (2020), who also argue that when

the government’s fiscal capacity is insufficient to support an FSI allocation, the optimal Ramsey

allocation could converge to a non-FSI interior steady state where the Lagrangian multiplier

diverges. However, in their model, government debt has a “crowding in” effect, whereas in our

model it has a “crowding out” effect on capital accumulation. More importantly, we are able to

prove with certainty that this type of interior Ramsey steady state can emerge only under a high
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degree of IES or low degree of risk aversion (such as under linear utility in consumption) and that

the optimal capital tax is unambiguously non-positive in such a Ramsey steady state.

Third, our work includes our previous work in Chien and Wen (2021a) as a special case, which

utilizes a tractable heterogeneous-agents model with quasi-linear preferences and a regular IES

parameter value to show that the optimal capital tax must be zero in an FSI Ramsey steady state

that can be proven to exist. The intuition provided by Chien and Wen (2021a) indicates that the

desire of the Ramsey planner to frontload consumption by issuing an increasing amount of debt

never goes away unless the market discount rate is equal to the time discount rate, which can

only be achieved in an FSI allocation. We show in this paper that this mechanism is a special

property of structural parameter values pertaining to fiscal capacity and individual risk, and this

result carries through to our more general model. Most importantly, our modified framework can

approximate the standard Aiyagari model arbitrarily well when a key parameter in our model

changes. We also prove that the never-ending purist of an FSI allocation by the Ramsey planner

leads to a non-interior Ramsey steady state because of government’s limited fiscal space to fulfill

the strong precautionary saving motives on the consumer side.

Our work also relates to a large literature in studying the optimal responses of fiscal policies to

aggregate shocks, which originates from the works by Barro (1979) and Lucas and Stokey (1983) in

the representative-agent framework. There is a strong tradition and renewed interest in extending

this literature into a heterogeneous-agents framework, such as Bassetto (2014) and Bhandari,

Evans, Golosov, and Sargent (2021). However, the existence of an interior stationary Ramsey

allocation in a heterogeneous-agents model with both aggregate and idiosyncratic uncertainty is

often assumed instead of proven. We think our modified Aiyagari model can be extended to include

aggregate risks and hence complement this literature by offering a more transparent analysis.

The rest of the paper is organized as follows: Section 2 sets up the standard Aiyagari model

and defines the competitive equilibrium. Section 3 shows that the interior Ramsey steady state

described by Aiyagari (1995) cannot possibly exist. Section 4 builds a modified Aiyagari model to

unveil the mechanism behind the Ramsey steady-state conundrum and provide necessary and/or

sufficient conditions for the existence of various types of Ramsey steady states. Section 5 considers

two modifications of the modified model to further explore the underlying mechanism of our results.

Finally, Section 6 concludes.
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2 A Standard Aiyagari Model

Firms. A representative firm produces output according to the constant-returns-to-scale Cobb-

Douglas technology, Yt = F (Kt, Nt) = Kα
t N

1−α
t , where Y, K, and N denote aggregate output,

capital, and labor, respectively. The firm rents capital and hires labor by paying a competitive

rental rate and real wage, denoted by qt and wt, respectively. The firm’s optimal conditions for

profit maximization at time t satisfy

wt =
∂F (Kt, Nt)

∂Nt

≡MPNt, (1)

qt =
∂F (Kt, Nt)

∂Kt

≡MPKt. (2)

Government. In each period t, the government can issue bonds, Bt+1, and levy both a

flat-rate labor tax τn,t and a flat-rate capital tax τk,t. Denote Qt+1 as the price of the risk-free

government bonds in period t, which pay one unit of consumption goods in period t+1; then, the

risk-free interest rate is given by rt+1 ≡ Q−1
t+1. The flow government budget constraint in period t

is

τn,twtNt + τk,tqtKt +Qt+1Bt+1 ≥ Bt, (3)

where the initial level of government bonds B0 is exogenously given. For simplicity, government

spending is assumed to be zero. Later in this paper, Section 5 considers the case where the

government can impose unconditional lump-sum transfers (or taxes if negative), which is denoted

by Tt .

Individuals. There is a unit measure of ex-ante identical individuals with initial wealth

a0 > 0. Ex post, each individual is subject to an idiosyncratic labor productivity shock in every

period. The shock process follows a finite-state first-order Markov process θt ∈ Z. We denote

θt ≡ {θ0, θ1, ..., θt} as an individual’s shock history up to period t; π(θt) as the unconditional

probability of the realization of state θt; and π(θt+1|θt) as the transition probability of event θt to

θt+1, which is equal to π(θt+1|θt) given that the shock process is first-order Markov.

Denote ŵt ≡ (1− τn,t)wt as the after-tax wage rate. In period t given the shock history θt, let

at+1(θ
t), nt(θ

t), ct(θ
t), and zt(θ

t) be an individual’s asset holding, labor supply, consumption and

labor productivity level, respectively. The budget constraint for an individual with history θt is
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given by

at(θ
t−1) + ŵtzt(θ

t)nt(θ
t)− ct(θ

t)−Qt+1at+1(θ
t) ≥ 0, for all t ≥ 0, (4)

where a0 is the exogenously given initial wealth. All individuals are subject to the following

borrowing constraint in all periods t ≥ 0 regardless of their history θt:

at+1(θ
t) ≥ 0. (5)

The individual’s welfare criterion is given by

U =
∞∑

t=0

βt
∑

θt

[
u(ct(θ

t))− v
(
nt(θ

t)
)]
π(θt), (6)

where β ∈ (0, 1) is the time-discounting factor and the utility function takes the standard power

form:

u(c) =
1

1− σ
c1−σ and v(n) =

1

1 + γ
n1+γ ,

where the IES parameter σ ∈ (0,∞) and the Frisch elasticity parameter γ > 0.

Given the market prices {Qt+1, ŵt}
∞
t=0, the government policies {τn,t, τk,t, Bt+1}

∞
t=0, and the

initial asset holdings a0, each individual chooses a plan {ct(θ
t), nt(θ

t), at+1(θ
t)}∞t=0 to maximize

(6) subject to (4) and (5). Let βtξt(θ
t)π(θt) and βtψt(θ

t)π(θt) denote the Lagrangian multipliers

associated with constraints (4) and (5), respectively; the FOCs with respect to ct(θ
t), nt(θ

t), and

at+1(θ
t) are given, respectively, by

uc,t(θ
t) = ξt(θ

t), (7)

vn,t(θ
t) = ξt(θ

t)ŵtzt(θ
t), (8)

Qt+1ξt(θ
t) = β

∑

θt+1

ξt+1(θ
t+1)π(θt+1|θt) + ψt(θ

t); (9)

where uc,t(θ
t) and vn,t(θ

t) denote, respectively, the marginal utility of consumption and leisure in

period t.

There is no aggregate uncertainty. Government bonds and capital are perfect substitutes as a

store of value for individuals. As a result, the after-tax gross rate of return to capital must equal
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the gross risk-free rate (no-arbitrage condition):

1

Qt

≡ rt = 1 + (1− τk,t)qt − δ, for all t ≥ 0. (10)

2.1 Competitive Equilibrium

Definition 1. Denote At+1 and Ct as the aggregate asset holdings and aggregate consumption

in the end of period t, respectively. Given the initial asset holdings a0, the initial government

bond supply B0, the initial capital stock K0, and the sequence of policies {τn,t, τk,t, Bt+1}
∞
t=0, a

competitive equilibrium is defined as the sequences of prices {wt, Qt+1}
∞
t=0, aggregate allocations

{Ct, Nt, Kt+1, At+1}
∞
t=0, and individual allocations {ct(θ

t), nt(θ
t), at+1(θ

t)}∞t=0, such that

1. given {Qt+1, wt, τn,t}
∞
t=0, the allocations {ct(θ

t), nt(θ
t), at+1(θ

t)}∞t=0 solves the individual’s

problem;

2. the no-arbitrage condition holds: 1/Qt = 1 + (1− τk,t) qt − δ for all t ≥ 0;

3. given {wt, qt}
∞
t=0, the path of aggregate quantity {Nt, Kt}

∞
t=0 solves the representative firm’s

problem;

4. all markets clear:

F (Kt, Nt) + (1− δ)Kt = Ct +Kt+1,

Nt =
∑

θt

nt(θ
t)zt(θ

t)π(θt),

Ct =
∑

θt

ct(θ
t)π(θt),

Bt+1 +
Kt+1

Qt+1

=
∑

θt

at+1(θ
t)π(θt) ≡ At+1 (11)

for t ≥ 0, and the government flow budget constraint holds:

τn,twtNt + τk,tqtKt +Qt+1Bt+1 ≥ Bt

for t ≥ 0.
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Proposition 2. Define θt
h as the shock history of the lucky individuals who receive the highest

productivity shock in every period from 0 to t. Then, the competitive equilibrium has the following

properties:

1. For all t ≥ 0, it must be true that ct(θ
t
h) ≥ ct(θ

t) and at+1(θ
t
h) > at+1(θ

t) ≥ 0 for all

θt 6=θt
h. That is, the borrowing constraints of the lucky individuals with history θt

h are always

slack: at+1(θ
t
h) > 0, which implies that the associated Lagrangian multiplier must be zero:

ψt(θ
t
h) = 0.

2. Since ψt(θ
t
h) = 0 and ψt(θ

t) ≥ 0 for all θt 6= θt
h, the intertemporal price Qt+1 must satisfy

the following equations with equality and inequality for all t ≥ 0:

Qt+1 = β
∑

θt+1

uc,t+1(θ
t+1)

uc,t(θ
t
h)

π(θt+1|θt
h) ≥ β

∑

θt+1

uc,t+1(θ
t+1)

uc,t(θt)
π(θt+1|θt). (12)

3. Most importantly, in the competitive equilibrium’s steady state a liquidity premium exists

such that Q > β (or r < β−1).4

Proof. See Appendix A.1.

Define an FSI allocation as the allocation where all individual borrowing constraints are slack

regardless of their shock history. The above proposition shows that an FSI steady state is impossi-

ble to achieve in the standard Aiyagari model—because it requires Q = β. More specifically, when

Q = β every individual’s marginal utility of consumption would follow a supermartingale and

individual’s asset demand would diverge to infinity, which cannot be a steady-state competitive

equilibrium.

In other words, a positive measure of individuals’ borrowing constraints must be strictly binding

such that Q > β, and there must exist aggregate allocative inefficiency due to overaccumulation

of capital in a laizzes-faire competitive equilibrium. For this reason, Aiyagari (1995) argues that

the best outcome that the Ramsey planner can achieve is an allocation where the MGR holds

by taxing the capital stock in the steady state so that the aggregate allocative efficiency can be

restored in the long run.

4Throughout this paper, a variable without subscript t represents its steady-state value.
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However, Aiyagari makes his argument by relying only on one of the many Ramsey FOCs and

more importantly under the assumption that an interior Ramsey steady state exists with conver-

gent Ramsey Lagrangian multiplier(s). In this paper we will go beyond the Aiyagari’s approach

by deriving more than one Ramsey FOC and showing that the assumption of the existence of

an interior Ramsey steady state leads to contradictions or is inconsistent with additional Ramsey

FOCs.

3 Ramsey Outcome in a Standard Aiyagari Model

To solve the Ramsey problem, we adopt the primal approach by first substituting out all market

prices and policy variables by using a subset of the competitive equilibrium’s conditions, and then

choosing the allocation to maximize social welfare subject to the rest of the equilibrium conditions.

The solution is called a Ramsey allocation or a Ramsey outcome.

3.1 Conditions to Support a Competitive Equilibrium

To facilitate our analysis, define cst (θ
t), ns

t (θ
t), and as

t+1(θ
t) as the consumption share, labor share,

and asset share, respectively, of each individual with history θt in the population:

cst (θ
t) ≡

ct(θ
t)

Ct

, ns
t(θ

t) ≡
nt(θ

t)zt(θ
t)

Nt

, and as
t+1(θ

t) ≡
at+1(θ

t)

At+1
. (13)

To ensure that a Ramsey outcome constitutes a competitive equilibrium, we must show first

that all possible allocations in the choice set of the Ramsey planner constitute a competitive

equilibrium. The choice set includes the individual share variables {cst(θ
t),ns

t (θ
t),as

t+1(θ
t)}∞t=0 and

the aggregate allocation {Ct, Nt, Kt+1, At+1}
∞
t=0. The following proposition states the conditions

that any constructed Ramsey allocation must satisfy to constitute a competitive equilibrium5:

Proposition 3. Given the initial asset holdings a0, the initial capital tax τk,0, the initial govern-

ment bond B0, and the initial capital stock K0, the individual share allocation {cst (θ
t),ns

t (θ
t),as

t+1(θ
t)}∞t=0

and aggregate allocation {Ct, Nt, Kt+1, At+1}
∞
t=0 can be supported as a competitive equilibrium if and

only if they satisfy the following conditions:

5In addition, the initial capital tax rate, τk,0, should be a choice variable for the Ramsey planner. However,
given that the initial capital is pre-installed, taxing the initial capital is essentially the same as allowing a lump-sum
tax. As is standard in the literature, we restrict the planner’s ability to choose τk,0 in the Ramsey problem.
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1. the aggregate resource constraint:

F (Nt, Kt) + (1− δ)Kt − Ct −Kt+1 ≥ 0, ∀t ≥ 0; (14)

2. the implementability condition:

cst (θ
t)C1−σ

t −
(ns

t (θ
t
h))

γ

(cst(θ
t
h))

−σ

Nγ+1
t

(zt(θ
t
h))

γ+1
ns

t (θ
t)+Qt+1C

−σ
t At+1a

s
t+1(θ

t)−C−σ
t Ata

s
t (θ

t−1) = 0 (15)

for all t ≥ 0 and θt, where

Qt+1C
−σ
t = βC−σ

t+1

∑

θt+1

(
cst+1(θ

t+1)

cst (θ
t
h)

)−σπ(θt+1|θ
t
h);

3. the initial-period asset market-clearing condition:

K0

Q0

+B0 = a0, (16)

where the initial bond price satisfies

1

Q0

= 1 + (1− τk,0)MPK0 − δ;

4. the individual marginal rate of substitution conditions:

(ns
t (θ

t
h))

γ

(cst (θ
t
h))

−σ

1

(zt(θ
t
h))

γ+1
−

(ns
t(θ

t))γ

(cst (θ
t))−σ

1

(zt(θt))γ+1
= 0 (17)

for all t ≥ 0 and θt 6= θt
h;

5. the borrowing constraints and their associated complementary slackness conditions:

as
t+1(θ

t) ≥ 0, gs
t (θ

t) ≥ 0, gs
t(θ

t)as
t+1(θ

t) = 0 (18)

for all t ≥ 0 and all θt 6= θt
h, where the function gs

t (θ
t) is defined as (based on equation (12))

gs
t (θ

t) ≡
cst (θ

t)−σ

∑
θt+1

(cst+1(θt+1)−σπ(θt+1|θt)
−

cst (θ
t
h)

−σ

∑
θt+1

cst+1(θt+1)−σπ(θt+1|θ
t
h)
;
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6. and finally the aggregation conditions for shares:

∑

θt

cst (θ
t)π(θt)− 1 = 0, (19)

∑

θt

ns
t (θ

t)π(θt)− 1 = 0, (20)

∑

θt

as
t+1(θ

t)π(θt)− 1 = 0. (21)

Proof. See Appendix A.2.

3.2 Ramsey Outcome

Armed with the above definitions of the share variables as well as Proposition 3, the Ramsey

problem can be written as

max
{cst (θ

t),ns
t (θ

t),as
t+1

(θt),Ct,Nt,At+1,Kt+1}∞t=0

∞∑

t=0

βt




1
1−σ

C1−σ
t

∑
θt(c

s
t )

1−σπ(θt)

− 1
1+γ

N1+γ
t

∑
θt

(
ns

t (θ
t)

zt(θt)

)1+γ

π(θt)




subject to constraints (14) to (21). But before solving the Ramsey problem, we define first the

Ramsey steady state in our economy:

Definition 4. Given {K0, B0, a0}, a Ramsey steady state is a long-run Ramsey allocation where

the aggregate variables {Nt, Ct, Kt+1, At+1} all converge to constant values and the share variables

{cst (θ
t),ns

t (θ
t),as

t+1(θ
t)} converge to stationary distributions. In addition, a Ramsey steady state

is called “interior” if all of the aggregate variables are strictly positive; otherwise, if one or more

of these aggregate variables (such as consumption Ct) converge to zero, the Ramsey steady state

is called “non-interior.”6

Define Qt as the compounded consumption price between time zero and time t : Qt ≡
∏t

j=0Qj .

Denote βtµt and Q
tλt(θ

t)π(θt) as the Ramsey Lagrangian multipliers for constraints (14) and (15),

respectively. The Ramsey FOC with respect to Kt+1 is given by

µt = βµt+1 (MPKt+1 + 1− δ) , (22)

6For example, using the two-class model of Judd (1985), Straub and Werning (2020) show that the Ramsey
outcome could converge to a non-interior Ramsey steady state.
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which is identical to that in Aiyagari (1995).

According to equation (22), Aiyagari (1995) then obtains his famous result of τk > 0 in the

steady state based on the following critical assumptions: (i) an interior Ramsey steady state exists

and (ii) the Ramsey Lagrangian multiplier associated with the aggregate resource constraint µt con-

verges to a positive constant. More specifically, under the assumption that µt converges, equation

(22) implies that the MGR holds in the steady state: 1 = β (MPK + 1− δ). The optimal steady-

state capital tax is chosen such that the no-arbitrage condition, 1 = Q ((1− τk)MPK + 1− δ) ,

is consistent with the MGR:

τk = 1−

1
Q
− (1− δ)

1
β
− (1− δ)

> 0,

which is strictly positive because Q > β in any competitive equilibrium. This implies that the

Ramsey planner “opts” to levy a (permanent) capital tax to select a long-run competitive equi-

librium consistent with the MGR.7

However, we can derive a few more Ramsey FOCs and show that Aiyagari’s assumptions lead

to contradictions with these additional Ramsey FOCs. In particular, we can derive at least three

more Ramsey FOCs with respect to At+1, Nt, and Ct. Among them is a very important Ramsey

FOC in establishing a key result in Proposition 5 with respect to aggregate labor:

βt

Qt
Nγ

t

∑

θt

(
ns

t (θ
t)

zt(θt)

)1+γ

π(θt)+(1+γ)Nγ
t

(ns
t (θ

t
h))

γ

(cst(θ
t
h))

−σzt(θ
t
h)

1+γ

∑

θt

λt(θ
t)ns

t(θ
t)π(θt) =

βt

Qt
µtMPNt,

(23)

where Qt ≡
∏t

j=0Qj. Recall that Qt is the market discounting factor for household intertemporal

budget constraints, which the Ramsey planner must respect, and that β is the Ramsey planner’s

discounting factor for the social welfare function. The wedge between Q and β is the hallmark

feature of Aiyagari-type models and can be exploited to establish our first main result in this

paper. The key step of the proof is that if an interior Ramsey steady state exists where Q > β

and the multiplier µt converges, then since limt→∞
βt

Qt = 0, the above Ramsey FOC with respect

7It is well acknowledged that Aiyagari (1995) also introduces an endogenous government spending in household
utilities. However, the introduction of endogenous government spending does not contribute to the different results
found in this paper. The critical assumptions to uphold the result of Aiyagari (1995) are the interior Ramsey
steady state and the convergence of Ramsey Lagrangian multiplier. It is straightforward to show that even with
endogenous government spending, our results remain unchanged.

12



to Nt in the limit becomes

lim
t→∞

(1 + γ)Nγ
t

(ns(θt
h))

γ

(cs(θt
h))

−σz(θt
h)

1+γ

∑

θt

λt(θ
t)ns

t (θ
t)π(θt) = 0, (24)

which cannot be true because the left-hand side of the above equation is strictly positive in an

interior Ramsey steady state (see the proof in Appendix A.3). Hence, an interior Ramsey steady

state with convergent multiplier µt cannot be the long-run Ramsey outcome. Similarly, we can

use all three Ramsey FOCs in addition to the one with respect to Kt+1 (the only one used by

Aiyagari (1995)) to consider the case where the multiplier µt does not converge. Hence, we have

the following proposition:

Proposition 5. A Ramsey allocation in the standard Aiyagari model has the following properties:

1. Under the parameter condition σ ≥ 1, there does not exist an interior Ramsey steady state

regardless of the convergence property of the Lagrangian multiplier µt. The only possible

Ramsey steady state under σ ≥ 1 must be non-interior with Ct → 0.

2. If σ < 1, an interior Ramsey steady state may exist; however, if it exists it must feature the

following characteristics:

(a) a divergent Ramsey Lagrangian multiplier µt,

(b) failure of the MGR,

(c) a non-positive capital tax τk ≤ 0 .

Proof. See Appendix A.3.

Proposition 5 shows that the interior Ramsey steady state assumed by Aiyagari (1995) cannot

possibly exist. As shown in the proof of Proposition 5, such an interior Ramsey steady state is

inconsistent with the other Ramsey FOCs, which are omitted in the analysis of Aiyagari (1995).

In other words, the common practice of assuming the existence of an interior Ramsey steady state

in the literature might not be innocuous.

In addition, this proposition shows that the result is also sensitive to the utility curvature

parameter σ, which determines the consumer saving behaviors, as it measures both the degree of

risk aversion and the inverse degree of IES. A higher risk aversion implies a stronger incentive for
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precautionary saving to avoid consumption fluctuations, and at the same time a lower IES implies

a lower substitutability between current and future consumption (or a stronger income effect than

substitution effect). Since these two aspects are captured by the same parameter, we can use these

two terms interchangeably in this paper.

Proposition 5 also shows that if σ < 1 such that the degree of risk aversion is low or IES

is sufficiently high, then there may exist an interior Ramsey steady state only if the Lagrangian

multiplier µt diverges such that the MGR fails. This result is consistent with the finding of Bassetto

and Cui (2020), who in a model featuring firms’ borrowing constraints constructed an interior

Ramsey steady state under the condition that σ is zero or sufficiently close to zero. Nonetheless,

we prove more generally in a standard Aiyagari model that if such an interior steady state exists,

the optimal capital tax must be non-positive—this result is still inconsistent with the message of

Aiyagari (1995) regarding the rationale of capital taxation based on the heterogeneous-agents and

incomplete-markets argument.

4 A Modified Aiyagari Model

It may be surprising and even puzzling that an interior Ramsey steady state commonly assumed

in the literature does not exist in a standard Aiyagari model. Note that a steady state featuring

the MGR and positive capital tax as described by Aiyagari (1995) is certainly feasible, but not

optimal to the Ramsey planner. The question is, why does the Ramsey allocation not converge

to such a feasible steady state to uphold the MGR by taxing capital. Also, what are the optimal

level of public debt and the optimal tax rates in the Aiyagari model?

In order to answer these questions, in this section we design a modified and tractable version of

the standard Aiyagari model so as to show clearly the conditions under which an interior Ramsey

steady state with convergent multiplier(s) may or may not exist. This modified Aiyagari model

can also help us understand the properties of both the interior and the non-interior Ramsey steady

states whenever they exist, as well as determine the optimal tax rates for capital and labor in a

corresponding Ramsey steady state.

Our intuition tells us that the key to destroying an interior Ramsey steady state in the standard

Aiyagari model is the government’s inability to provide full self-insurance to individuals due to

limited fiscal space. For example, in a special version of the Aiyagari model with a completely
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degenerate wealth distribution under log-linear preferences, Chien and Wen (2021a) argue that

since precautionary saving due to borrowing constraints is the root cause and the only friction in

heterogeneous-agents models that generates any allocative inefficiency, the Ramsey planner may

opt to flood the economy with a sufficient amount of government bonds to eliminate borrowing

constraints rather than impose a steady-state capital tax to correct the capital-overaccumulation

problem caused by such borrowing constraints. However, in a standard Aiyagari model, an FSI

allocation is infeasible to the Ramsey planner because the household asset demand (and the

required bond supply) would approach infinity when the asset price Qt approaches β.

Hence, to construct a model that can unveil the fundamental mechanisms behind the Ramsey

steady-state conundrum in the standard Aiyagari model, we need a model that can analytically re-

veal the important role of the government’s fiscal space in determining the existence/non-existence

of a Ramsey steady state. In other words, we need a model that not only guarantees the existence

of an interior Ramsey steady state when the fiscal space is sufficient, but also converges to the

standard Aiyagari model in the limit when the fiscal space becomes sufficiently tight or insufficient.

For this purpose, we introduce an ad hoc wealth-pooling technology into an otherwise standard

Aiyagari model to permit partial risk sharing across individuals. Our wealth-pooling technology

follows the spirit of Lucas (1990), Heathcote and Perri (2018), and Bilbiie and Ragot (2021). This

wealth-pooling technology allows individuals with identical idiosyncratic-shock histories in the last

κ-periods (∞ > κ ≥ 0) to share risk by pooling their wealth together in the beginning of each

period after the idiosyncratic shock is realized. As a result, individuals with the same truncated

κ-period shock history make the same consumption and saving decisions, leading to a partially

degenerate wealth distribution. Moreover, our modified model can become arbitrarily close to the

standard Aiyagari model as κ increases to infinity so that the effect of the wealth-pooling tech-

nology becomes ineffective or non-existent—in which case the probability of any two individuals

having identical histories goes to zero as κ → ∞. On the other extreme where κ = 0, individuals

can pool their wealth in the beginning of every period t as long as their current idiosyncratic-shock

status are the same, leading to an almost complete degenerate wealth distribution. Our model thus

includes both the standard Aiyagari model and the model of Chien and Wen (2021b) as special

limiting cases without the need to appeal to log-linear preferences (as in Chien and Wen (2021a))

to gain model tractability. The technical details of the risk-sharing technology is described below.

Individuals and Families. We introduce a unit measure of representative families and
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assume that there is a unit measure of individuals within each representative family. Within each

representative family, there is a family head who is equipped with a wealth-pooling technology

to permit partial risk sharing according to each individual’s truncated history of κ ≥ 0 periods.

Denote the κ-period truncated history in period t as hκt = {θt−κ, θt−κ+1, .., θt} ∈ Zκ. Specifically,

the head of a family can reshuffle asset holdings among individual family members with the

same truncated history hκ. However, the family head cannot reshuffle resources across individual

members across different hκ. Hence, the family head can provide a limited amount of risk sharing

among certain family members while not completely eliminating the idiosyncratic risk faced by

individuals. Without such a limited wealth-pooling technology, or as κ→ ∞, our model becomes

identical or converges to the standard Aiyagari model.

The transition probability from type-hκ individuals to type-hκ′ individuals is then denoted

by π(hκ′|hκ), which is determined by transition probability of the first-order Markov process of

θ. Moreover, the invariant probability of each group hκ is denoted by π(hκ). Also, we label the

group of individuals experiencing the highest shock and the lowest shock in every period during

the entire period of truncated history as hκ
h and hκ

l , respectively.

For simplicity and without loss of generality, we assume that π(hκ) also represents the initial

period’s share of individuals in time 0. The utilitarian welfare criterion of a family head is then

given by

U =
∞∑

t=0

βt
∑

hκ

[u(ct(h
κ))− v (nt(h

κ))] π(hκ). (25)

Denote zt(h
k) as the period-t (current period) labor productivity shock for group hκ. The budget

constraints for type-hκ individuals in period 0 are given by

a0(h
κ) + ŵ0z0(h

κ)n0(h
κ)− c0(h

κ)−Q1a1(h
κ) ≥ 0. (26)

Under the wealth-pooling technology, the total assets available for type-hκ individuals in the

beginning of period t ≥ 1 is given by
∑

hκ
−1
at(h

κ
−1)π(h

κ
−1)π(h

κ|hκ−1). Therefore, for all t ≥ 1, the

budget constraints for type-hκ individuals can be written as

∑

hκ
−1

at(h
κ
−1)π(h

κ
−1)π(h

κ|hκ−1)

π(hκ)
+ ŵtzt(h

κ)nt(h
κ)− ct(h

κ)−Qt+1at+1(h
κ) ≥ 0. (27)
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The individual borrowing constraint is still given by

at+1(h
κ) ≥ 0 for all t ≥ 0 and hκ. (28)

Finally, each family head chooses a plan of {ct(h
κ), nt(h

κ), at+1(h
κ)}∞t=0 to maximize (25) subject

to (26), (27) and (28).

To make the ad hoc wealth-pooling technology meaningful in analytically addressing our prob-

lems at hand, we assume that the idiosyncratic shock process is non-negatively autocorrelated such

that in each period t ≥ 1 the initial wealth of the type-hκ
h individuals is no less than that of the

other individuals in the population. This assumption rules out the uninteresting case where any

individual may become wealthier than type-hκ
h individuals from time to time. More specifically,

if at(h
κ
h) > at(h

κ) for all hκ, then under the assumption that the idiosyncratic shock process is

non-negatively autocorrelated, the following inequality must hold:

∑

hκ
−1

at(h
κ
−1)π(h

κ
−1)π(h

κ
h|h

κ
−1)

π(hκ
h)

≥
∑

hκ
−1

at(h
κ
−1)π(h

κ
−1)π(h

κ|hκ−1)

π(hκ)
for all hκ 6= hκ

h,

which says that the period-t initial asset holdings of hκ
h individuals are no less than that of any

other type of individuals.

Proposition 6. Assume for simplicity that in period 0 the initial asset holdings satisfy a0(h
κ
h) >

a0(h
κ) ≥ 0 for all hκ 6= hκ

h. The competitive equilibrium of the modified Aiyagari model must have

the following properties:

1. For all t ≥ 0, it must be true that ct(h
κ
h) ≥ ct(h

κ) and at+1(h
κ
h) > at+1(h

κ) ≥ 0 for all hκ 6=

hκ
h. That is, the borrowing constraints of type-hκ

h individuals are always slack: at+1(h
κ
h) > 0,

which implies that the Lagrangian multiplier associated with constraint (28) is ψt(h
κ
h) = 0.

Also, depending on the level of Bt, the borrowing constraints of the currently unemployed

individuals may or may not be binding: at+1(h
κ) ≥ 0.

2. Because ψt(h
κ
h) = 0, the intertemporal price Qt+1 can be expressed as

Qt+1 = β
∑

hκ′

uc,t+1(h
κ′

)

uc,t(h
κ
h)

π(hκ
′

|hκ
h) ≥ β

∑

hκ′

uc,t+1(h
κ′

)

uc,t(hκ)
π(hκ

′

|hκ) for all t and hκ 6= hκ
h. (29)
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3. In the steady state, if the individual asset holdings are sufficiently large such that the cor-

responding multiplier ψt(h
κ) = 0 for all individuals regardless of their truncated history hκ,

then the competitive equilibrium in the modified Aiyagari model features FSI with two prop-

erties: (i) consumption equality c(hκ
h) = c(hκ) for all hκ and (ii) a zero liquidity premium

with Q = β (or r = β−1). Otherwise, in the case of only partial self-insurance (absence of

FSI) it must be true that Q > β (or r < β−1).

Proof. See Appendix A.4.

Proposition 6 states that if the asset holdings at+1(h
κ) are sufficiently large for all individuals

regardless of their truncated history hκ, such that every one’s borrowing constraint is slack, then

they can obtain the same level of steady-state consumption regardless of their truncated idiosyn-

cratic history. In this FSI competitive equilibrium, the steady-state market interest rate equals

the time discount rate.

It is well known that a competitive equilibrium featuring FSI is not possible in the standard

Aiyagari model. In our modified Aiyagari model, however, the FSI steady state can be achieved

with only a finite level of asset holdings because the optimal asset demand does not go to infinity

even when Q = β, thanks to the wealth-pooling technology that permits partial risk sharing

across individuals with different histories. Proposition 6 also implies that even if the laissez-faire

competitive equilibrium does not feature FSI because of an insufficient initial asset supply, the

Ramsey planner can potentially achieve the FSI allocation by issuing enough public debt if desired.

Hence, to make our Ramsey problem interesting in the modified Aiyagari model, we assume

that the initial capital K0 and bond supply B0, as well as the initial distribution of household

wealth a0(h
κ), are such that the laissez-faire competitive equilibrium (without further policy

intervention) does not feature FSI. Namely, in the absence of further government intervention

(Bt = B0 for all t > 0), the steady-state competitive equilibrium features consumption inequality

c(hκ
h) > c(hκ) and precautionary saving behaviors with a positive liquidity premium: r < β−1.

4.1 Ramsey Outcome in the Modified Aiyagari Model

To facilitate the analysis below, we define A as the minimum asset level required to achieve

an FSI allocation in the Ramsey steady state, and define φ ≡ A
C

as the ratio between A and

aggregate consumption C in an FSI allocation. Note that the equilibrium value of φ depends on
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the persistence of idiosyncratic shocks and the extent of risk-sharing technology parameter κ; and

φ essentially captures the tightness of the required fiscal space to achieve an FSI interior Ramsey

steady state in our modified Aiyagari model.

Proposition 7. If the fiscal space is sufficient such that φ(1 − β) < 1, then under σ ≥ 1 there

exists an interior Ramsey steady state with the following properties:

1. The allocation features FSI where all individuals have the same steady-state consumption

and non-binding borrowing constraints, and the Lagrangian multiplier associated with the

aggregate resource constraint, µt, converges to finite positive value.

2. The risk-free rate satisfies r = 1/β, the MGR holds, and the steady-state capital tax is zero:

τk = 0.

3. The optimal labor tax rate and optimal debt-to-output ratio depend on φ and are given,

respectively, by

τn = (1− β)
φ(1− β + δβ(1− α))− α

(1− α)(1− β + δβ)
∈ (0, 1),

B

Y
=

(1− β + δ(1− α)β)φ− α

(1− β + δβ)
;

where τn < 1 if and only if the fiscal-space condition φ(1− β) < 1 holds.

4. This is the only possible type of Ramsey steady state.

On the other hand, if the fiscal space is insufficient such that φ(1− β) ≥ 1, then the following

properties hold:

1. Under the parameter condition σ ≥ 1, the only possible Ramsey steady state (if it exists) is

a non-interior allocation with zero aggregate consumption.

2. Under the parameter condition σ < 1, the only possible Ramsey steady state (if it exists) is

an interior allocation with

(a) partial self-insurance and a divergent Lagrangian multiplier µt,

(b) a non-positive capital tax rate τk ≤ 0.

Proof. See Appendix A.5.
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One of the key insights from Proposition 7 is that, under the parameter space σ ≥ 1 and the

fiscal space condition φ(1−β) < 1, the only possible Ramsey steady state is an FSI interior Ramsey

steady state and it necessarily exists; and more importantly the Ramsey planner opts to achieve it

even at the cost of a possibly very high steady-state labor tax rate while still setting the optimal

long-run capital tax rate to zero. Although in such an interior Ramsey steady state the optimal

labor tax rate τn is bounded above from 1—only because of the restriction (1 − β)φ < 1—but τn

could be arbitrarily close to 100% depending on the parameter values that influence the value of

φ. In particular, the value of φ depends critically on the length of the truncated history κ for risk

sharing. A close-to-100% labor tax rate then implies close-to-zero steady-state aggregate output

and consumption. Namely, the Ramsey planner may opt to achieve consumption equality at “all

costs.”

In addition, in this interior steady state the optimal capital tax is zero, suggesting that the

Ramsey planner will never levy a steady-state capital tax to achieve the MGR even if the labor

tax is close to 100%; the MGR is achieved instead by having a sufficiently high public debt-

to-GDP ratio such that the borrowing constraints of all individuals are slack, despite that it is

feasible to use a capital tax to achieve the MGR. In other words, the Ramsey planner never uses

capital taxation to alleviate the burden of labor taxation despite the fact that a close-to-100%

labor tax rate implies close-to-zero labor income and consumption (a similar result also holds in

representative-agent models when exogenous government spending is sufficiently high).8

How can such a long-run FSI allocation be optimal? Common sense seems to tell us that

the marginal benefit of reducing the consumption inequality to achieve FSI must decline with

an increasing stock of public debt (or debt-to-consumption ratio), while the marginal cost of

financing the debt under distortionary labor taxes must also increase rapidly. Therefore, there

should be a trade-off between consumption equality and absolute steady-state consumption such

that at some point taxing capital may become optimal. But this is not the case, surprisingly and

counter-intuitively.

The fundamental reason for such a counter-intuitive result is as follows: Given that the market

discount (interest) rate is lower than the time discount rate (r < β−1 or Q > β)—a hallmark

feature of Aiyagari-type models—the Ramsey planner opts to frontload household consumption

by borrowing more cheaply in the short run as a trade-off for low consumption in the long run,

8For a literature survey on optimal capital taxation in representative-agent models, see Atkeson, Chari, and
Kehoe (1999) or more recent work by Chari, Nicolini, and Teles (2020)
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because the future cost of debt financing is heavily discounted by a higher time-discounting factor

β−1 compared with the market interest rate. Also, consumption frontloading must be supported

by a higher labor supply to increase production, which requires a lower or even negative labor tax

in the transition to incentivize hard working. However, a rapidly growing debt and a low labor tax

rate in the short run must imply a heavy tax burden in the long run to finance the sky-rocketing

government debt.

Therefore, when σ ≥ 1, the consumer’s strong precautionary saving motive and low IES are

consistent with the Ramsey planner’s intention to increase the debt supply and bond growth in

the short run to support consumption frontloading, because the anticipated high labor tax in

the future to finance the burden of government debt leads to higher current saving when the

income effect dominates the substitution effect.9 Namely, individuals are willing to hold more

government debt in the short run in anticipation of a high labor tax rate in the long run if σ ≥ 1,

which facilitates the government’s consumption-frontloading strategy since the Ramsey planner is

then able to issue debt or increase the bond supply more rapidly. This consumption-frontloading

incentive never disappears unless the equilibrium interest rate becomes equal to the time discount

rate, which can only be achieved with an excessive government bond supply (relative to output)

in the FSI allocation where Q = β and the optimal capital tax τk = 0; consequently, the Ramsey

planner must finance the “sky-rocketing” debt by increasing the steady-state labor tax rate, even

if this implies a low (or close to zero) consumption in the remote future (long run). Therefore,

when the fiscal space is not sufficient to support an FSI allocation, under the parameter condition

σ ≥ 1 the only possible Ramsey steady state must be non-interior. Such a dynamic implication

for the Ramsey allocation is consistent with the finding of Albanesi and Armenter (2012), who

argue that frontloading intertemporal distortions induces a first-order welfare gain in a broad class

of second-best economies. Also, the zero-capital-tax result echoes that in a representative-agent

model.

However, without taking into account the transitional dynamics, as in the case of maximizing

only the steady-state welfare, an FSI steady state may not be optimal, because the asymmetric

discounting between Q and β is no longer a relevant issue in this setup (see Section 5 below for

analytical details and more discussions).

9Interestingly, the result found by Straub and Werning (2020) also depends on the IES parameter. The intuition
also hinges on the response of households’ current saving to the change of future tax rate, which is called the
“anticipatory savings effects” in their model.
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The above discussions on the case of σ ≥ 1 also indicate that when σ < 1, since the substitution

effect dominates the income effect and the individual precautionary saving motive is weak, the

anticipated future increase in the labor tax will lead to a reduction instead of an increase in

individuals’ current saving. As a result, the lack of saving motives can significantly limit the

government’s fiscal space to increase debt growth in spite of the planner’s intention to frontload

consumption, thus producing a counterforce against the planner’s pursuit of FSI and consumption

frontloading. In other words, the government is unable to issue as much debt as required to support

consumption frontloading and FSI, resulting in a lower future tax burden in the steady state.

Therefore, the non-interior Ramsey steady state with zero consumption is deterred or detoured

into an interior steady state where the interest rate is lower than the time discount rate (Q > β).

In such a case with a sufficiently tight fiscal space (φ(1 − β) ≥ 1), the Ramsey planner opts to

reduce the extent of consumption frontloading and even subsidize capital to encourage individual

saving so as to support higher future consumption, leading to an interior Ramsey steady state

where the Lagrangian multiplier diverges, the optimal capital tax is non-positive, and the MGR

fails.

This result is reminiscent of that in Bassetto and Cui (2020), who also show that when the

government’s fiscal capacity is insufficient to support an FSI allocation, the optimal Ramsey

allocation converges to a non-FSI interior steady state where the Lagrangian multiplier diverges.

Nevertheless, we are able to prove rigorously that this type of interior Ramsey steady state can

emerge only under a sufficiently high IES or low risk aversion (σ < 1) and that the optimal capital

tax is unambiguously non-positive. In addition, our explanation and intuition for this type of

interior Ramsey steady state are based on the different responses of current saving to the rise

of future tax rate under the planner’s consumption-frontloading incentive (thanks to the wedge

between Q and β), which is controlled by the risk-aversion or IES parameter σ. The different

saving behaviors then lead to different debt-supply policies of the Ramsey planner and eventually

different Ramsey steady states; in contrast, the explanation of Bassetto and Cui (2020) is based

on the Laffer curve and their interior Ramsey steady state is constructed numerically by choosing

different growth rates of government spending and the Lagrangian multiplier.

Notice that the Ramsey planner’s incentive for frontloading consumption is always present

regardless of the IES parameter σ ∈ (0,∞). Also notice that the equivalence between τn < 1

and φ(1− β) < 1 holds in the FSI Ramsey steady state, where the multiplier µt converges. This
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equivalence no longer applies if the multiplier diverges. Therefore, when σ < 1 the fiscal-space

condition φ(1− β) ≥ 1 does not imply a more than 100% labor tax rate; it only implies that the

required asset-to-consumption ratio to achieve the FSI allocation is too high.

A nice property of this modified Aiyagari model is that as κ increases (or as the role of the

wealth-pooling technology diminishes), the model will converge to the standard Aiyagari model;

in this case the asset demand (or the asset-to-consumption ratio φ) will rise with κ to reflect the

increasing demand of self-insurance under σ ≥ 1. As a result, the condition φ(1− β) < 1 becomes

harder and harder to satisfy and the fiscal space of the Ramsey planner becomes tighter and tighter.

Eventually, when the value of κ is large enough, the condition φ(1− β) < 1 will be violated and,

consequently, the interior Ramsey steady state featuring the MGR disappears and becomes (turns

into) the non-interior Ramsey steady state—because under the condition (1− β)φ ≥ 1 and σ ≥ 1

the only possible Ramsey steady state is non-interior regardless of the convergence property of the

multiplier(s), in which case the optimal labor tax goes to 100% asymptotically.

In what follows, we use numerical simulations of the modified Aiyagari model to confirm that

the interior Ramsey steady state featuring the MGR will indeed converge to the non-interior

Ramsey steady state as κ increases.

4.2 Numerical Approximation of the Standard Aiyagari Model

The above theoretical analysis can be confirmed by numerical simulations. In particular, we can

numerically solve the modified Aiyagari model’s FSI Ramsey steady state by ensuring that all

Ramsey FOCs are satisfied under proper parameter values and a given set of values for κ, or as

the length of the truncation history κ extends. To demonstrate, we set the preference parameters

to γ = σ = 2, the capital deprecation rate to δ = 0.1, and the capital’s share to α = 0.35, which

are all standard in the macroeconomic literature. For simplicity, we consider a two-state Markov

process where Z = {e, u}, z(e) = 1 and z(u) = 0. In other words, an individual can work and

receive labor income if θ = e; otherwise, if θ = u, the individual cannot work and has no labor

income. In addition, to demonstrate the mechanism more sharply, the time-discounting factor is

deliberately set to a low value of β = 0.65, which allows less space to raise the value of κ (otherwise

the changes in the Ramsey allocation in our numerical simulations would be less visible before κ

becomes extremely large). In this way, when κ = 0, the Ramsey steady-state labor tax rate would

be very low because the interest-cost burden in an FSI Ramsey steady state is low; however, as κ
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increases from 0 to 10, the optimal rate of steady-state labor tax can rise rapidly to near 100%.

Finally, the transition probability matrix of the θ shock is given by

π =


 π(u|u) π(e|u)

π(u|e) π(e|e)


 =


 0.5 0.5

0.5 0.5


 . (30)

We find that as κ increases from 0 to 10, the implied optimal debt-to-output ratio required

for an FSI interior Ramsey steady state grows rapidly, the steady-steady labor tax τn approaches

100%, and the steady-state aggregate consumption approaches zero. Consequently, the allocation

in the interior Ramsey steady state approaches a non-interior Ramsey steady state, suggesting

that the interior Ramsey steady state featuring the MGR will eventually disappear even within a

finite value of κ. Such a numerical analysis is valid because the interior Ramsey steady state has

been proven to exist in Proposition 7 and can also be proven to exist numerically by solving all of

the Ramsey FOCs.

Figure 1 shows the Ramsey policies and other endogenous variables in the interior Ramsey

steady state as we extend κ from 0 to 10. It shows that as κ increases, namely, as the risk-sharing

capacity brought in by the wealth-pooling technology becomes less and less effective, the implied

optimal steady-state labor tax rate τn (top-left panel or panel[1,1]) rises from 5.5% to nearly 100%.

This is so because the optimal debt-to-output ratio required to support an FSI Ramsey allocation

(top-right panel or panel [1,2]) increases rapidly as the degree of risk embodied in wealth increases.

Consequently, the levels of aggregate consumption, aggregate capital, and aggregate labor (panel

[2,2], panel [2,2] and panel [3,1], respectively) decline toward zero. That is, as κ increases, the

interior Ramsey steady state moves toward the non-interior Ramsey steady state. During this

process of prolonging the past-shock history κ, a gradually rising labor tax rate and declining

labor supply also imply that the total tax revenue (fiscal capacity) will rise first (e.g., for κ < 4)

but eventually decline toward zero, as indicated by the bottom-right panel.

Since our model converges to the standard Aiyagari model (that has no risk-sharing technology)

when κ approaches infinity, our numerical finding thus confirms our theoretical result that under

parameter value σ ≥ 1, an interior Ramsey steady state does not exist in the standard Aiyagari

model. The intuition is as follows: Because the Ramsey planner opts to pursue an FSI allocation to

completely eliminate borrowing constraints—driven by the arbitrage opportunity when the market
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Figure 1: The FSI Ramsey Steady-State with Extended Truncated History
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interest rate lies below the time discount rate—the asset demand in the standard Aiyagari model

will approach infinity when the interest rate approaches the time discount rate (i.e., as Q → β).

Thus, once our modified Aiyagari model approaches the standard Aiyagari model by reducing

the risk-sharing efficacy of the wealth-pooling technology (implied by increasing κ), the optimal

debt level required for sustaining an FSI allocation will rise to infinity accordingly. This rise to

infinity makes the interior FSI Ramsey steady state infeasible as a competitive equilibrium. As a

result, the FSI interior Ramsey steady state eventually disappears and converges to a non-interior

Ramsey steady state.
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Therefore, the numerical exercise indicates that if the IES parameter satisfies σ ≥ 1, then the

only possible Ramsey steady state in the standard Aiyagari model is the non-interior steady state

where the aggregate consumption, aggregate capital stock, aggregate labor, and aggregate output

are all zero, and the optimal labor tax rate is 100%.

4.3 Characterization of a Ramsey Steady State with κ = 0

This subsection considers a further simplified version of our model by setting κ = 0 so as to

illuminate how the persistence of idiosyncratic shocks affects the Ramsey allocation in our modified

Aiyagari model. Continue to assume a two-state Markov process for the idiosyncratic shock process

as in Section 4.2, which means there are only two types of individuals in every period, denoted by

e and u types. In this further simplified case we can go one step further in analytically displaying

the role of shock persistence in determining the fiscal-space condition and proving the existence

of the Ramsey steady state, whether that be interior or non-interior.

When κ = 0, the implementability condition in the FSI Ramsey steady state can be simplified

to
aeπ(e)π(u|e)

π(u)
= cu = ce,

and the asset-to-consumption ratio φ in the fiscal-space condition can be simplified to φ ≡ A
C
=

aeπ(e)
ce

= π(u)
π(u|e)

. According to Proposition 7, under the parameter conditions (1 − β) π(u)
π(u|e)

< 1 and

σ ≥ 1, an FSI interior Ramsey steady state necessarily and uniquely exists where the optimal

labor tax rate and the debt-to-output ratio are given by

τn =
(1− β + δ(1− α)β) π(u)

π(u|e)
(1− β)− α(1− β)

(1− α) (1− β + δβ)
∈ (0, 1),

and

B

Y
=

(1− β + δ(1− α)β) π(u)
π(u|e)

− α

(1− β + δβ)
,

respectively. Clearly, the optimal B/Y ratio required to support FSI is proportional to π(u)
π(u|e)

,

which can be rewritten as π(u)
π(u|e)

= 1
2−(π(u|u)+π(e|e))

. Under a simple two-state Markov process,

π(u|u) + π(e|e) represents the persistence of idiosyncratic shocks.

If the idiosyncratic shock becomes permanent, for example, then π(u|u) + π(e|e) becomes 2

and the value of π(u)
π(u|e)

goes to infinity. In other words, the required B/Y ratio to support FSI
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can be arbitrarily close to infinity even in the case of a quite effective risk-sharing technology

under κ = 0. This finding suggests that once the idiosyncratic shock process becomes highly

persistent or permanent, an interior FSI Ramsey steady state will fail to exist because the condition

(1− β) π(u)
π(u|e)

< 1 will be violated and the steady-state labor tax rate will converge to or exceed 1,

ruling out the FSI interior Ramsey steady state.

In addition, the previous analysis under general κ ≥ 0 shows that there may exist another type

of interior Ramsey steady state where the multiplier µt diverges, the interest rate lies below the

time discount rate (Q > β), and the optimal capital tax is non-positive (τk ≤ 0). By using all the

Ramsey FOCs and constraints in the case κ = 0, the existence of such types of Ramsey steady

states can be guaranteed, as shown in the following proposition:

Proposition 8. If (1− β) π(u)
π(u|e)

≥ 1 and σ ≥ 1, there is no interior Ramsey steady state but there

uniquely exists a non-interior steady state where (i) aggregate consumption Ct, aggregate capital

Kt, and aggregate labor Nt, all converge to zero; (ii) the optimal labor tax rate τn,t converges to

100%; (iii) the optimal capital tax is undetermined; and (iv) the multiplier µt diverges to infinity.

On the other hand, if (1−β) π(u)
π(u|e)

≥ 1 and σ < 1, a non-interior Ramsey steady state does not

exist but there uniquely exists an interior Ramsey steady state featuring (i) a divergent multiplier

µt, (ii) partial self-insurance with Q > β, and (iii) a non-positive capital tax τk ≤ 0.

Proof. See Appendix A.6.

In other words, even under a very effective risk-sharing technology κ = 0, if the idiosyncratic

shock is persistent enough (such that the fiscal-space condition is violated, (1−β) π(u)
π(u|e)

≥ 1), then

the non-interior Ramsey steady state is the only possible Ramsey steady state and it necessarily

exists when σ ≥ 1. This finding indicates that as risk sharing goes to zero (κ→ ∞), the demand

for self-insurance must rise steadily; hence, the condition (1 − β)φ ≥ 1 becomes much easier to

meet even with less persistent idiosyncratic shocks. This outcome further reinforces the message

that a non-interior Ramsey steady state exists and is the only possible steady state in the standard

Aiyagari model under the commonly accepted parameter value σ ≥ 1.

Finally, the above proposition also shows that with a highly persistent idiosyncratic shock

process (such that the fiscal-space condition is violated, (1−β) π(u)
π(u|e)

≥ 1), if individuals’ willingness

to save or hold assets is too weak (under a sufficiently high IES or low risk aversion, σ < 1), then

an interior Ramsey steady state featuring a divergent multiplier can exist; and more importantly,
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this is the only possible Ramsey steady state. In addition, this interior Ramsey steady state must

feature a non-positive capital tax and the failure of the MGR with Q > β. The reason is that under

a sufficiently high IES or low degree of risk aversion, individuals’ saving incentives are reduced

significantly in response to an anticipated rise of the future labor tax under the government’s

consumption-frontloading strategy, making it difficult for the government to issue plenty of debt

during the transition, which forces the Ramsey planner to restraint from excessive consumption

frontloading and debt accumulation. To trade off the insufficient consumption frontloading, the

Ramsey planner then opts to increase the steady-state consumption by reducing the steady-state

labor tax and even subsidizing capital; but the high capital stock in the steady state takes the

allocation further away from the MGR.

5 Additional Analyses

This section considers two additional analyses by utilizing the modified Aiyagari model (with

κ ≥ 0) for two scenarios. The first scenario allows the Ramsey planner to have an additional fiscal

tool—an unconditional lump-sum tax or transfer. In the second scenario, the Ramsey planner

maximizes only the steady-state welfare of the competitive equilibrium. These analyses shed

further light on the Ramsey steady-state conundrum and the insight provided above.

5.1 Scenario 1: Unconditional Lump-Sum Tax/Transfer

The previous sections have revealed the critical importance of public debt in providing self-

insurance and achieving consumption equality in incomplete-market economies. But the analysis is

conducted in the absence of lump-sum transfers. As argued by Werning (2007), there may be good

reasons to avoid lump-sum taxes as a source of government revenue, but it may not be reasonable

to assume away lump-sum transfers as an alternative fiscal tool to public debt in mitigating con-

sumption risk and inequality. This is so because a lump-sum transfer is not only realistic but can

also substitute for public debt in income/wealth redistribution, especially in heterogeneous-agent

models with inequality.

Yet the distinctive role of lump-sum transfers in the presence of government debt is not well

understood in the heterogeneous-agent literature. In this subsection we explore the tractability

of our model to show analytically that a lump-sum transfer is not an effective tool to improve
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consumption inequality in the presence of public debt. In addition, if a lump-sum tax Tt (negative

transfer) is allowed, then the Ramsey planner can even achieve the first-best allocation starting

from the initial period t = 0 and all the way to t → ∞. Specifically, the Ramsey planner opts to

issue plenty of public debt to relax the borrowing constraints of all households and use lump-sum

taxes (Tt < 0) as the only tax instrument to finance public debt (i.e., τn,t = τk,t+1 = 0 for all

t ≥ 1). This result also logically implies that if lump-sum taxes are not allowed but lump-sum

transfers are still available (i.e., under the constraint T ≥ 0), then the Ramsey allocation must

feature T = 0 in the steady state, which is identical to our previous result in Proposition 7 where

T = 0 by assumption.

With lump-sum transfers, the individual budget constraints in the modified model become

a0(h
κ) + ŵ0z0(h

κ)n0(h
κ) + T0 − c0(h

κ)−Q1a1(h
κ) ≥ 0

for t = 0 and

∑

hκ
−1

at(h
κ
−1)π(h

κ
−1)π(h

κ|hκ−1)

π(hκ)
+ Tt + ŵtzt(h

κ)nt(h
κ)− ct(h

κ)−Qt+1at+1(h
κ) ≥ 0

for t ≥ 1. The government budget constraint is rewritten as

τn,twtNt + τk,tqtKt +Qt+1Bt+1 ≥ Bt + Tt.

Definition 9. The first-best allocation is defined as the optimal allocation chosen by a social

planner that maximizes the welfare function (25) subject only to the aggregate resource constraint.

It is straightforward to see that, in the first-best allocation, all individuals have the same con-

sumption regardless of their shock history. Denote {cFB
t , KFB

t+1}
∞
t=0 as the individual consumption

and aggregate capital sequence of the first-best allocation. The following proposition characterize

the Ramsey allocation when lump-sum taxes or transfers are available.

Proposition 10. Set τk,0 = 0 in period 0. Given the initial values of K0 > 0, K0

Q0
+ B0 > 0, the

Ramsey outcome in the modified model with lump-sum taxes/transfers and with a finite κ achieves

the first-best allocation that features ct(h
κ) = cFB

t and FSI in every period t ≥ 0. This allocation

can be implemented by the following policy mix:
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1. The distortionary labor tax and capital tax are zero for all t ≥ 0: τn,t = 0 and τk,t+1 = 0.

2. The sequence of government debt is chosen to satisfy the asset market-clearing condition for

all t ≥ 0:

Bt+1 = At+1 −
βuFB

c,t+1

uFB
c,t

KFB
t+1,

where At+1 is aggregate saving.

3. The steady-state lump-sum transfer is strictly negative and given by T = (β − 1)B < 0.

Proof. See Appendix A.7.

Several subtle implications of Proposition 10 are worth mentioning: First, Proposition 10

indicates that a lump-sum tax is a very powerful tool in our modified model to sustain government

debt; it permits the first-best allocation for the entire dynamic path (from t = 0 to ∞) without

the need to levy distortionary taxes or have state-contingent fiscal tools. Second, the government

prefers using bonds instead of a lump-sum transfer to achieve FSI and consumption equality.

Intuitively, in the Aiyagari-type models with ex-post heterogeneous agents, government bonds are

more suitable than lump-sum transfers to address the lack of self-insurance problem caused by

incomplete insurance markets; hence, the Ramsey planner opts to use debt exclusively instead of

lump-sum transfers. Finally, this also suggests that if lump-sum taxes are not allowed and only

lump-sum transfers are available, then the Ramsey planner will not use lump-sum transfers at all,

which means that the constraint Tt ≥ 0 must be strictly binding at least in the Ramsey steady

state. In other words, using lump-sum transfers financed by a labor/capital tax in the steady state

is never optimal.

Proposition 10 provides an explanation for why an FSI Ramsey steady state tends to prevail

in our modified Aiyagari model. That is, Proposition 10 indicates that the Ramsey allocation in

the absence of lump-sum taxes becomes the first-best allocation with lump-sum taxes and that

this result holds for any finite value of κ. However, as κ increases to infinity, then the first-best

allocation surely becomes infeasible because the required aggregate asset demand to support FSI

approaches infinity. This suggests that in the standard Aiyagari model (where κ = ∞), even

if lump-sum transfers/taxes are available, an interior first-best steady state is never feasible to

the benevolent planer. However, the theoretical property of the Ramsey outcome with lump-sum
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taxes/transfers in a standard Aiyagari model remains an open question (when σ ∈ (0,∞)), which

is left for future research.

5.2 Scenario 2: Maximizing Steady-State Welfare

In Section 4, we mention that when Q > β, the Ramsey planner has incentives to increase the

bond supply to pursue FSI allocation and frontload consumption even if this implies a close-to-

100% labor tax rate in the long run to finance the sky-rocketing public debt-to-GDP ratio. To

further support our argument and the intuition behind it, here we conduct a different kind of

analysis by supposing that the Ramsey planner maximizes only the steady-state welfare of the

competitive equilibrium (as in the works of Aiyagari and McGrattan (1998) and Floden (2001))

instead of the time-zero present value of the dynamic path of social welfare. We will see that the

Ramsey planner’s design of debt and tax policies in this situation differs fundamentally from that

discussed above when the incentive for frontloading consumption is no longer present in a static

optimization problem.

To maximize the steady-state welfare of the economy, the Ramsey problem becomes

max
{c(hκ),n(hκ),a(hκ),w,Q,K}∞t=0

∑

hκ

[u(ct(h
κ))− v (nt(h

κ))] π(hκ)

subject to

F (
∑

hκ

n(hκ)z(hκ)π(hκ), K)− δK −
∑

hκ

c(hκ)π(hκ) ≥ 0, (31)

c(hκ)− wz(hκ)n(hκ) +Qa(hκ)−
∑

hκ
−1

a(hκ−1)π(h
κ
−1)π(h

κ|hκ−1)

π(hκ)
= 0, ∀hκ, (32)

χ(hκ)n(hκ)π(hκ) : wuc(h
κ)z(hκ)− vn(h

κ) = 0, ∀hκ

µq : β
∑

hκ′

uc(h
κ′

)π(hκ
′

|hκ
h)−Quc(h

κ
h),

and for all hκ 6= hκ
h,

a(hκ) ≥ 0, (33)

g(hκ) ≡
uc(h

κ)∑
hκ′ uc(hκ

′)π(hκ′ |hκ)
−

uc(h
κ
h)∑

hκ′ uc(h)π(hκ
′ |hκ

h)
≥ 0, (34)

g(hκ)a(hκ) = 0 = 0. (35)
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Note that this Ramsey problem features no dynamics, as there is no dynamic consideration

for the Ramsey planner. In other words, the “future” is no longer “discounted” compared with

the “present.” We prove that an FSI allocation is no longer optimal, as shown in the following

proposition:

Proposition 11. If the Ramsey planner cares only about the steady-state welfare of the competitive

equilibrium, then an FSI allocation is not optimal regardless of IES, even if FSI is feasible. Instead,

it is optimal to set c(hκ
h) > c(hκ) > c(hκ

l ) and have the borrowing constraints of low-income

individuals strictly binding.

Proof. See Appendix A.8.

The result in Proposition 11 holds for all values of κ and is thus applicable also to the standard

Aiyagari model. This result is intuitive. By maximizing only the steady-state welfare of the

competitive economy, the Ramsey planner no longer has the incentive to exploit the difference

between the interest rate and the time discount rate, since the time discount rate is no longer

relevant in maximizing the steady-state welfare. Consequently, without transitional dynamics the

issue of frontloading consumption also becomes irrelevant. In such a case, the Ramsey planner

opts not to pursue an FSI allocation by equalizing consumption across employed and unemployed

individuals, because the cost of doing so in terms of levying distortionary taxes and issuing too

much debt is too high at the margin, where there is no time discounting. In other words, from the

viewpoint of the competitive equilibrium’s steady-state welfare, the marginal benefit of achieving

FSI by increasing public debt is at some point dominated by the marginal cost of distortionary

taxation, such that the Ramsey planner will stop issuing bonds at a certain level before FSI is

achieved.

6 Conclusion

Capital taxation has been a vital source of government revenues in history and is often viewed

as a critical means for reducing income/wealth inequality. Yet macroeconomic models had been

unable to rationalize this popular practice using representative-agent models until the seminal

work of Aiyagari (1995) that broke the ice. Aiyagari (1995) argued that in heterogeneous-agents

and incomplete-markets models it is optimal for the government to tax capital—because capital
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is overaccumulated under precautionary saving motives. Aiyagari’s analysis, however, is based on

the critical assumption that a Ramsey steady state exists without proof.

In this paper we analyze the Ramsey steady-state conundrum in a class of Aiyagari-type

models. We prove that in the standard Aiyagari model the assumption of the existence of an

interior Ramsey steady state with convergent Lagrangian multiplier(s) (commonly made in both

the theoretical literature and the numerical literature) is incorrect and not innocuous for policy

implications. We show instead that if a Ramsey steady state exists at all in the standard Aiyagari

model, it must be non-interior if σ ≥ 1; alternatively, if σ < 1, an interior Ramsey steady state

(if it exists) must feature a divergent Ramsey Lagrangian multiplier and the optimal capital tax

must be zero or negative.

We then design a tractable version of the Aiyagari model to unveil the mechanisms and condi-

tions behind the various types of possible Ramsey steady states. We find that the conditions for

the existence of an interior Ramsey steady state are quite demanding and sensitive to structural

parameter values pertaining to the economy’s ability to sustain public debt and mitigate idiosyn-

cratic risk. In particular, we prove that an interior Ramsey steady state can exist under certain

fiscal-space conditions, but the steady state either features FSI and a zero capital tax (under

σ ≥ 1) or the failure of the MGR and a non-positive capital tax (under σ < 1); both are in sharp

contrast to the rationale of using heterogeneous-agents and incomplete-markets models to justify

positive capital taxes in the real world. We also prove that if the fiscal-space condition is violated

(as in the standard Aiyagari model), the only possible Ramsey steady state is non-interior under

normal parameter values for IES or risk aversion (i.e., σ ≥ 1).

The key reasons behind our unconventional results are the following: Because of the arbitrage

opportunity created by the gap between the interest rate and the time discount rate in Aiyagari-

type models, the Ramsey planner opts to issue a sufficiently large amount of debt to achieve FSI,

even at the cost of an extremely high labor tax to finance public debt. If the fiscal space is sufficient

and individual saving motives are not too weak (σ ≥ 1), the Ramsey outcome features an interior

FSI steady state where no one is borrowing constrained and the optimal capital tax is zero. The

optimal capital tax is zero in the steady state because the root cause of any allocative inefficiency

(due to incomplete insurance markets) is fully addressed in the FSI allocation by a sufficient supply

of public debt—which can be financed fully by a labor tax (as is also the case in representative-

agent models). This outcome is in sharp contrast to the interior Ramsey steady state imagined
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by Aiyagari (1995). On the other hand, if the fiscal space is insufficient, the dominant motive

of the Ramsey planner to pursue FSI may lead to an unsustainable amount of government debt,

rendering an interior Ramsey steady state non-existent. Hence, the only possible Ramsey steady

state in a standard Aiyagari model with a normal IES parameter is non-interior with zero aggregate

consumption and a 100% labor tax rate in the limit. However, when individual saving motives

are too weak (under σ < 1), the Ramsey planner’s intention to frontload consumption cannot be

supported by a rapidly rising debt level, due to individuals’ weak asset demand for government

debt; it is then optimal for the Ramsey planner to encourage consumption in the long run, leading

to an interior Ramsey steady state; but in such a case the optimal capital tax must be non-positive

and the MGR must fail—still in sharp contrast to the interior Ramsey steady state imagined by

Aiyagari.

Therefore, our analysis not only suggests that Aiyagari-type models cannot rationalize positive

capital taxation in the real world but also that any result obtained in the heterogeneous-agents

literature under the popular practice of assuming the existence of an interior Ramsey steady state

without proof could be dubious and needs to be interpreted with caution.

34



References

Aiyagari, S. R. (1994): “Uninsured Idiosyncratic Risk and Aggregate Saving,” Quarterly Jour-

nal of Economics, 109(3), 659–684.

Aiyagari, S. R. (1995): “Optimal Capital Income Taxation with Incomplete Markets, Borrowing

Constraints, and Constant Discounting,” Journal of Political Economy, 103(6), 1158–75.

Aiyagari, S. R., and E. R. McGrattan (1998): “The optimum quantity of debt,” Journal

of Monetary Economics, 42(3), 447–469.

Albanesi, S., and R. Armenter (2012): “Intertemporal Distortions in the Second Best,”

Review of Economic Studies, 79(4), 1271–1307.

Atkeson, A., V. V. Chari, and P. J. Kehoe (1999): “Taxing capital income: a bad idea,”

Quarterly Review, 23(Sum), 3–17.

Barro, R. J. (1979): “On the Determination of the Public Debt,” Journal of Political Economy,

87(5), 940–71.

Bassetto, M. (2014): “Optimal fiscal policy with heterogeneous agents,” Quantitative Eco-

nomics, 5(3), 675–704.

Bassetto, M., and W. Cui (2020): “A Ramsey Theory of Financial Distortions,” Working

Papers 775, Federal Reserve Bank of Minneapolis.

Bhandari, A., D. Evans, M. Golosov, and T. J. Sargent (2021): “Inequality, Business

Cycles, and Monetary Fiscal Policy,” Econometrica, 89(6), 2559–2599.

Bilbiie, F., and X. Ragot (2021): “Optimal Monetary Policy and Liquidity with Heterogeneous

Households,” Review of Economic Dynamics, 41, 71–95.

Chari, V., J. P. Nicolini, and P. Teles (2020): “Optimal capital taxation revisited,” Journal

of Monetary Economics, 116, 147–165.

Chen, Y., Y. Chien, and C. Yang (2019): “Implementing the Modified Golden Rule? Optimal

Ramsey Capital Taxation with Incomplete Markets Revisited,” Working Papers 2017-003D,

Federal Reserve Bank of St. Louis.

35



Chien, Y., and Y. Wen (2021a): “Optimal Ramsey taxation in heterogeneous agent economies

with quasi-linear preferences,” Review of Economic Dynamics.

(2021b): “Time-inconsistent optimal quantity of debt,” European Economic Review,

140(C).

Domeij, D., and J. Heathcote (2004): “On the Distributional Effects of Reducing Capital

Taxes,” International Economic Review, 45(2), 523–554.

Floden, M. (2001): “The effectiveness of government debt and transfers as insurance,” Journal

of Monetary Economics, 48(1), 81–108.

Heathcote, J. (2005): “Fiscal Policy with Heterogeneous Agents and Incomplete Markets,”

Review of Economic Studies, 72(1), 161–188.

Heathcote, J., and F. Perri (2018): “Wealth and Volatility,” Review of Economic Studies,

85(4), 2173–2213.

Judd, K. L. (1985): “Redistributive Taxation in a Simple Perfect Foresight Model,” Journal of

Public Economics, 28(1), 59–83.

Ljungqvist, L., and T. J. Sargent (2012): Recursive Macroeconomic Theory, Third Edition,

MIT Press Books. The MIT Press.

Lucas, R. (1990): “Liquidity and interest rates,” Journal of Economic Theory, 50(2), 237–264.

Lucas, R. J., and N. L. Stokey (1983): “Optimal Fiscal and Monetary Policy in an Economy

without Capital,” Journal of Monetary Economics, 12(1), 55–93.

Rohrs, S., and C. Winter (2017): “Reducing government debt in the presence of inequality,”

Journal of Economic Dynamics and Control, 82(C), 1–20.

Straub, L., and I. Werning (2020): “Positive Long-Run Capital Taxation: Chamley-Judd

Revisited,” American Economic Review, 110(1), 86–119.

Werning, I. (2007): “Optimal Fiscal Policy with Redistribution,” Quarterly Journal of Eco-

nomics, 122(3), 925–967.

36



A Appendix

A.1 Proof of Proposition 2

Given that individuals have identical initial wealth and that θt
h is the best possible path of id-

iosyncratic shock, then it must be the case that,

at+1(θ
t
h) > at+1(θ

t) ≥ 0 for all t ≥ 0 and θt 6= θt
h,

which implies that the associated multipliers satisfy ψt(θ
t
h) = 0 and ψt(θ

t) ≥ 0. This result together

with equations (9) and (7) lead to equation (12).

Also, it is well know that in any steady state of a competitive equilibrium in the standard

Aiyagari model, it must be the case that Q > β. Otherwise, the individual’s asset demand goes to

infinity, which cannot constitute a competitive equilibrium. For more details, see Aiyagari (1994)

and Ljungqvist and Sargent (2012).

A.2 Proof of Proposition 3

A.2.1 The “If” Part:

Given the initial values of (B0, K0, a0, τk,0), the individual share’s allocation {cst(θ
t),ns

t (θ
t),as

t+1(θ
t)}∞t=0,

and aggregate allocation {Kt+1, Nt, Ct, At+1}
∞
t=0, a competitive equilibrium can be constructed by

using the conditions in Proposition 3 and by following the steps below to uniquely back up the

sequences of the other prices and tax variables:

1. wt and qt are determined by wt =MPNt and qt =MPKt, respectively.

2. Qt+1 ≡
1

rt+1
is determined by

1

rt+1

= Qt+1 = β
C−σ

t+1

C−σ
t

∑

θt+1

(
cst+1(θ

t+1)

cst(θ
t
h)

)−σπ(θt+1|θ
t
h) for all t > 0. (36)

3. τn,t is determined by

ŵt = (1− τn,t)MPNt =
vn,t(θ

t
h)

uc,t(θ
t
h)zt(θ

t
h)

=
Nγ

t (n
s
t(θ

t
h))

γ

C−σ
t (cst (θ

t
h))

−σ

1

(zt(θ
t
h))

γ+1
. (37)

37



4. τk,t is determined by
1

Qt

= 1 + (1− τk,t)MPKt − δ

for all t ≥ 0.

5. Bt+1 is pinned down by the asset market-clearing condition

Bt+1 +
Kt+1

Qt+1
= At+1, for all t ≥ 0.

6. The following constraints are satisfied:

(a) The implementability conditions, displayed in equation (15), can be derived by plugging

equations (37) and (36) into the household budget constraints.

(b) The resource constraint is listed in equation (14).

(c) The individual FOCs (8) are listed in equation (17).

(d) The asset constraint in period 0 is as shown in equation (16).

(e) The individual FOCs (9) and borrowing constraints, which are listed in equation (18)

as constraints in Proposition 3.

(f) The aggregation conditions are as listed in equations (19) to (21).

7. Finally, it is straightforward to verify that the sum of all implementability conditions together

with the aggregate resource constraint imply the government budget constraint.

A.2.2 The “Only If” Part:

The constraints listed in Proposition 3 are trivially satisfied because they are part of the competitive-

equilibrium conditions.

A.3 Proof of Proposition 5

In what follows, we prove that under the parameter condition σ ≥ 1,there is no interior Ramsey

steady state with 1 > Q > β. The proof is done by contradiction. Assume there exists an

interior Ramsey steady state with 1 > Q > β, and consider two possible cases depending on the

convergence of µt:
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1. Suppose µt converges.

(a) The FOC with respect to Nt in equation (23) can be rewritten as

βt

Qt
Nγ

t

∑

θt

(
ns

t(θ
t)

zst (θ
t)

)1+γ

π(θt) + (1 + γ)Nγ
t

(ns
t (θ

t
h))

γ

(cst (θ
t
h))

−σzt(θ
t
h)

1+γ

∑

θt

λt(θ
t)ns

t (θ
t)π(θt)

=
βt

Qt
µtMPNt.

Under Q > β, it must be true that limt→∞
βt

Qt = 0, so the above equation in the limit

becomes

(1 + γ)Nγ lim
t→∞

(ns
t (θ

t
h))

γ

(cst (θ
t
h))

−σzt(θ
t
h)

1+γ

∑

θt

λt(θ
t)ns

t (θ
t)π(θt) = 0,

which must imply limt→∞

∑
θt λt(θ

t)ns
t (θ

t)π(θt) = 0. Also, the same FOC with respect

to Nt can be written in the following way:

lim
t→∞

Nγ
t

∑

θt

(
ns

t(θ
t)

zst (θ
t)

)1+γ

π(θt)

+(1 + γ) lim
t→∞

Qt

βt
Nγ

t

(ns
t(θ

t
h))

γ

(cst (θ
t
h))

−σzt(θ
t
h)

1+γ

∑

θt

λt(θ
t)ns

t (θ
t)π(θt)

= lim
t→∞

µtMPNt,

which implies that not only
∑

θt λt(θ
t)ns

t (θ
t)π(θt) converges to zero but also the speed

at which
∑

θt λt(θ
t)ns

t (θ
t)π(θt) converges to zero in the limit must be greater than Q

β
> 1

(or its convergent rate be lower than β

Q
< 1 in limit) to overcome the explosive growth

in Qt

βt , otherwise the second term on the left-hand side of the above equation would

approach infinity.

(b) The Ramsey FOC with respect to At+1 is given by

C−σ
t

∑

θt

λt(θ
t)as

t+1(θ
t)π(θt)− C−σ

t+1

∑

θt+1

λt+1(θ
t+1)as

t+1(θ
t)π(θt+1) = 0.
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In the limit, since limt→∞Ct = C > 0, the above equation can be written as

lim
t→∞

∑
θt+1 λt+1(θ

t+1)as
t+1(θ

t)π(θt+1)∑
θt λt(θ

t)as
t+1(θ

t)π(θt)
= lim

t→∞

(
Ct

Ct+1

)−σ

= 1. (38)

Given this, we must have

lim
t→∞

∑

θt+1

λt+1(θ
t+1)as

t+1(θ
t)π(θt+1) = lim

t→∞

∑

θt

λt(θ
t)as

t (θ
t−1)π(θt),

where the right-hand side is simply the left-hand side lagged by one period. Therefore,

the above two equations imply

lim
t→∞

∑

θt

λt(θ
t)as

t+1(θ
t)π(θt) = lim

t→∞

∑

θt

λt(θ
t)as

t (θ
t−1)π(θt),

which together with equation (38) gives

lim
t→∞

∑
θt+1 λt+1(θ

t+1)as
t+1(θ

t)π(θt+1)∑
θt λt(θ

t)as
t+1(θ

t)π(θt)
= lim

t→∞

∑
θt+1 λt+1(θ

t+1)as
t+1(θ

t)π(θt+1)∑
θt λt(θ

t)as
t(θ

t−1)π(θt)
= 1.

Namely, the convergent rate of
∑

θt λt(θ
t)as

t (θ
t−1)π(θt) approaches 1 as t→ ∞.

(c) The Ramsey FOC with respect to Ct can be written (after combining with the limiting

Ramsey FOC with respect to At+1) as

lim
t→∞

C−σ
t

∑

θt

(cst)
1−σπ(θt) + (1− σ) lim

t→∞

Qt

βt
C−σ

t

∑

θt

λt(θ
t)cst (θ

t)π(θt) = lim
t→∞

µt,

which implies that for σ 6= 1, not only limt→∞

∑
θt λt(θ

t)cst (θ
t)π(θt) converges to zero

but also the speed at which
∑

θt λt(θ
t)cst (θ

t)π(θt) approaches zero must be greater than

Q

β
> 1 (or its growth rate be lower than β

Q
< 1), otherwise the second term on the

left-hand side of the above equation will explode to infinity.

(d) Consider the household budget constraint for type-θt individual:

cst (θ
t)Ct − ŵtNtn

s
t (θ

t) = Ata
s
t (θ

t−1)−Qt+1At+1a
s
t+1(θ

t).

Multiplying all terms in the above equation by λt(θ
t)π(θt) for each type-θt individual
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and integrating over θt give

Ct

∑

θt

λt(θ
t)cst (θ

t)π(θt)− ŵtNt

∑

θt

λt(θ
t)ns

t(θ
t)π(θt) (39)

= At

∑

θt

λt(θ
t)as

t(θ
t−1)π(θt)−Qt+1At+1

∑

θt

λt(θ
t)as

t+1(θ
t)π(θt),

which (after dividing each term on both sides by
∑

θt λt(θ
t)as

t (θ
t−1)π(θt)) leads to

Ct

∑
θt λt(θ

t)cst (θ
t)π(θt)∑

θt λt(θ
t)as

t (θ
t−1)π(θt)

− ŵtNt

∑
θt λt(θ

t)ns
t (θ

t)π(θt)∑
θt λt(θ

t)as
t (θ

t−1)π(θt)
(40)

= At


1−

Qt+1At+1
C−σ

t+1

C−σ
t

At

∑
θt+1 λt(θ

t+1)as
t+1(θ

t)π(θt+1)∑
θt λt(θ

t)as
t (θ

t−1)π(θt)


 .

Notice that limt→∞

∑
θt+1 λt(θt+1)as

t+1
(θt)π(θt+1)

∑
θt λt(θt)as

t (θ
t−1)π(θt)

= limt→∞

∑
θt+1 λt+1(θt+1)as

t+1
(θt)π(θt+1)

∑
θt λt(θt)as

t (θ
t−1)π(θt)

= 1

by the FOC with respect to At+1, and that limt→∞

∑
θt λt(θt)ns

t (θ
t)π(θt)

∑
θt λt(θt)as

t (θ
t−1)π(θt)

= 0 since the con-

vergent rate of
∑

θt λt(θ
t)ns

t(θ
t)π(θt) to zero is faster than that of

∑
θt λt(θ

t)as
t(θ

t−1)π(θt).

Hence, assuming an interior Ramsey steady state in the limit, the equation above sim-

plifies to

lim
t→∞

∑
θt λt(θ

t)cst (θ
t)π(θt)∑

θt λt(θ
t)as

t (θ
t−1)π(θt)

=
A

C
(1−Q) . (41)

That is, the numerator and the denominator must have the same convergence rate.

Now consider the following cases:

i. If σ 6= 1, we know that limt→∞

∑
θt λt(θt)cst (θ

t)π(θt)
∑

θt λt(θt)as
t (θ

t−1)π(θt)
= 0 since the convergent rate

of
∑

θt λt(θ
t)cst(θ

t)π(θt) to zero is faster than that of
∑

θt λt(θ
t)as

t (θ
t−1)π(θt), then

equation (41) implies that Q = 1, a contradiction.

ii. If σ = 1 and suppose limt→∞

∑
θt λt(θt)cst (θ

t)π(θt)
∑

θt λt(θt)as
t (θ

t−1)π(θt)
= 0, then equation (41) implies

that Q = 1, a contradiction.

iii. If σ = 1 and suppose limt→∞

∑
θt λt(θt)cst (θ

t)π(θt)
∑

θt λt(θt)as
t (θ

t−1)π(θt)
= +∞ or −∞, then equation (41)

suggests that (1−Q) = +∞ or −∞, also a contradiction.

iv. If σ = 1 and suppose
∑

θt λt(θt)cst (θ
t)π(θt)

∑
θt λt(θt)as

t (θ
t−1)π(θt)

converges to a finite value, then it

must be the case that the convergent rate of
∑

θt λt(θ
t)cst (θ

t)π(θt) is the same

as that of
∑

θt λt(θ
t)as

t (θ
t−1)π(θt), which is slower than the convergence rate of
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∑
θt λt(θ

t)ns
t (θ

t)π(θt); namely, we must have the following inequalities in the lim-

iting growth rates (or relationship in the convergence rates):

lim
t→∞

∑
θt+1 λt+1(θ

t+1)ns
t+1(θ

t)π(θt+1)∑
θt λt(θ

t)ns
t (θ

t−1)π(θt)
≤
β

Q
< 1

= lim
t→∞

∑
θt+1 λt+1(θ

t+1)as
t+1(θ

t)π(θt+1)∑
θt λt(θ

t)as
t (θ

t−1)π(θt)
= lim

t→∞

∑
θt λt+1(θ

t)cst+1(θ
t+1)π(θt+1)∑

θt λt(θ
t)cst (θ

t)π(θt)
.

We prove below that this inequality contains a contradiction. Equation (40) implies

ŵtNt

∑

θt

λt(θ
t)ns

t(θ
t)π(θt) (42)

= Ct

∑

θt

λt(θ
t)cst (θ

t)π(θt)−


 At

∑
θt λt(θ

t)as
t (θ

t−1)π(θt)

−Qt+1At+1

∑
θt λt(θ

t)as
t+1(θ

t)π(θt)


 ,

which can be used to form the following limiting relationship in growth rates after

dividing both sides of the equation by its own corresponding one-period lag:

lim
t→∞

∑
θt λt(θ

t)ns
t (θ

t)π(θt)∑
θt−1 λt−1(θt−1)ns

t−1(θ
t−1)π(θt−1)

=

C limt→∞

∑
θt λt(θ

t)cst(θ
t)π(θt)

−A(1 −Q) limt→∞

∑
θt λt(θ

t)as
t (θ

t−1)π(θt)

C limt→∞

∑
θt−1 λt−1(θ

t)cst−1(θ
t−1)π(θt−1)

−A(1 −Q) limt→∞

∑
θt−1 λt−1(θ

t−1)as
t−1(θ

t−2)π(θt−1)

.

Clearly, as shown before the LHS of the above equation cannot be greater than β

Q
;

however, the RHS of the above equation approaches 1, thus leading to a contradic-

tion. To see this, rewrite the RHS (after factoring out A
∑

θt λt(θ
t)as

t (θ
t−1)π(θt) in

the numerator and its one-period lag in the denominator) as

limt→∞A
∑

θt λt(θ
t)as

t (θ
t−1)π(θt)

(
C

∑
θt λt(θt)cst (θ

t)π(θt)

A
∑

θt λt(θt)as
t (θ

t−1)π(θt)
− [1−Q]

)

limt→∞A
∑

θt−1 λt−1(θt−1)as
t−1(θ

t−2)π(θt−1)
(

C
∑

θt−1 λt−1(θt−1)cst−1
(θt−1)π(θt−1)

A
∑

θt−1 λt−1(θt−1)as
t−1

(θt−2)π(θt−1)
− [1−Q]

) ,

which equals to 1 in the limit because limt→∞

∑
θt λt(θt)cst (θ

t)π(θt)
∑

θt λt(θt)as
t (θ

t−1)π(θt)
converges to a
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finite value and limt→∞

∑
θt λt(θt)as

t (θ
t−1)π(θt)

∑
θt−1 λt−1(θt−1)as

t−1
(θt−2)π(θt−1)

= 1.

2. Suppose µt diverges to infinity at a certain rate such that βt

Qtµt does not converge to zero.

Then the following occur:

(a) The Ramsey FOC with respect to Nt in the limit becomes

(1 + γ)Nγ
t lim

t→∞

(ns
t (θ

t
h))

γ

(cst(θ
t
h))

−σzt(θ
t
h)

1+γ

∑

θt

λt(θ
t)ns

t(θ
t)π(θt) =MPN lim

t→∞

βt

Qt
µt > 0.

(b) The Ramsey FOC with respect to At+1 becomes

C−σ
t

∑

θt

λt(θ
t)as

t+1(θ
t)π(θt)− C−σ

t+1

∑

θt+1

λt+1(θ
t+1)as

t+1(θ
t)π(θt+1) = 0,

and hence in the limit

lim
t→∞

∑

θt

λt(θ
t)as

t+1(θ
t)π(θt)− lim

t→∞

∑

θt+1

λt+1(θ
t+1)as

t+1(θ
t)π(θt+1) = 0.

Plugging the above equation into the steady-state version of the FOC with respect to

Ct leads to

lim
t→∞

βt

Qt

∑

θt

(cst )
1−σπ(θt) + lim

t→∞
(1− σ)

∑

θt

λt(θ
t)cst (θ

t)π(θt) = lim
t→∞

βt

Qt
µtC

σ
t ,

Under the assumption Q > β, the equation above becomes

(1− σ) lim
t→∞

∑

θt

λt(θ
t)cst (θ

t)π(θt) = lim
t→∞

βt

Qt
µtC

σ
t > 0,

which leads to a contradiction if σ ≥ 1 because the left-hand side of the above equation

is non-positive.

3. The above proof also indicates that if σ < 1, then it may be possible to have an interior

Ramsey steady state provided that the multiplier µt diverges fast enough. In particular,

denote the steady-state growth rate of µt as gµ. For an interior Ramsey steady state to exist

under σ < 1, a necessary condition is that gµ ≥ Q

β
> 1. Under this necessary condition, the
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steady-state FOC with respect to Kt+1 can be written as

1 = βgµ (MPK + 1− δ) ,

which implies that the MGR fails to hold. In addition, comparing the above equation to

equation (10) suggests that the steady-state capital tax is zero if gµ = Q

β
and negative if

gµ >
Q

β
. Hence, it must be true that τk ≤ 0 if an interior Ramsey steady state exists under

σ < 1. However, without studying all of the Ramsey FOCs, we cannot prove that such an

interior Ramsey steady state with a divergent multiplier under σ < 1 necessarily exists.

4. Finally, the above proof also indicates that under σ ≥ 1, the only possible Ramsey steady

state (if it exists) must be a non-interior one, which (if it exists) must feature Ct → 0. Again,

without studying all of the Ramsey FOCs we cannot prove that such a non-interior Ramsey

steady state necessarily exists.

A.4 Proof of Proposition 6

Given that a0(h
κ
h) > a0(h

κ) and the assumption that the autocorrelation of the shock process is

non-negative, then it must be the case that

at+1(h
κ
h) > at+1(h

κ) ≥ 0 for all t ≥ 0 and hκ 6= hκ
h,

which implies that the associated multipliers on the borrowing constraints satisfy ψt(h
κ
h) = 0 and

ψt(h
κ) ≥ 0. This result together with the household FOCs with respect to at+1(h

κ) and ct(h
κ)

leads to equation (29).

Given such a wealth-pooling technology, the individual steady-state asset demand may remain

finite even if Q = β. This fact opens the possibility that a FSI steady state may exist in such

an economy if the level of aggregate assets is sufficiently large. In such a FSI steady state where

ψ(hκ) = 0 for all hκ, the steady-state version of equation (29) must hold with equality for all hκ,

which implies that (i) Q = β and (ii) c(hκ
h) = c(hκ) for all hκ.
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A.5 Proof of Proposition 7

A.5.1 Ramsey Problem

Denote βtµt, λ0(h
0), βtλt(h

κ), βtχt(h
κ), ζ0, βtµq

t , β
t+1ζ1t (h

κ), βt+1ζ2t (h
κ), and βt+1ζ3t (h

κ) as the

Lagrangian multipliers for the associated constraints listed below. It is straightforward to verify

that the Ramsey planner’s problem can be written as

max
{ct(hκ),nt(hκ),at+1(hκ),wt,Qt+1,Kt+1}∞t=0

∞∑

t=0

βt
∑

hκ

[u(ct(h
κ))− v (nt(h

κ))]π(hκ)

subject to

βtµt : F (
∑

hκ

nt(h
κ)zt(h

κ)π(hκ), Kt) + (1− δ)Kt −
∑

hκ

ct(h
κ)π(hκ)−Kt+1 ≥ 0 ∀t ≥ 0,

λ0(h
0)π(h0) : c0(h

κ)− w0z0(h
κ)n0(h

κ) +Q1a1(h
κ)− a0(h

κ) = 0 ∀hκ,

βtλt(h
κ)π(hκ) : ct(h

κ)− wtzt(h
κ)nt(h

κ) +Qt+1at+1(h
κ)−

∑

hκ
−1

at(h
κ
−1)π(h

κ
−1)π(h

κ|hκ−1)

π(hκ)

= 0 ∀hκ and t ≥ 1,

βtχt(h
κ)nt(hκ)π(hκ) : wtuc,t(h

κ)zt(h
κ)− vn,t(h

κ) = 0 ∀hκ and t ≥ 0,

ζ0 : (1 + (1− τk,0)MPK0 − δ)K0 +B0 −
∑

hκ

a0(hκ) = 0,

βtµq
t : β

∑

hκ′

uc,t+1(h
κ′

)π(hκ
′

|hκ
h)−Qt+1uc,t(h

κ
h) ∀t ≥ 0

and for all hκ 6= hκ
h,

βt+1ζ1t (h
κ) : at+1(h

κ) ≥ 0,

βt+1ζ2t (h
κ) : gt(h

κ) ≥ 0,

βt+1ζ3t (h
κ) : gt(h

κ)at+1(h
κ) = 0,
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where gt(h
κ) is defined as

gt(h
κ) ≡

uc,t(h
κ)∑

hκ′ uc,t+1(hκ
′)π(hκ′|hκ)

−
uc,t(h

κ
h)∑

hκ′ uc,t+1(h)π(hκ
′ |hκ

h)
.

A.5.2 Ramsey FOCs

For all t ≥ 0, the FOCs of the Ramsey problem with respect to Kt+1, wt, Qt+1, at+1(h
κ
h), and

at+1(h
κ) are given, respectively, by

µt = βµt+1 (MPK,t+1 + 1− δ) ,

∑

hκ

λt(h
κ)zt(h

κ)nt(h
κ)π(hκ) =

∑

hκ

χt(h
κ)uc,t(h

κ)zt(h
κ)nt(hκ)π(hκ), (43)

∑

hκ

λt(h
κ)at+1(h

κ)π(hκ) = µq
tuc,t(h

κ
h), (44)

λt(h
κ
h)Qt+1 = β

∑

hκ′

λt+1(h
κ′

)π(hκ
′

|hκ
h), (45)

and

λt(hκ)Qt+1 = β
∑

hκ′

λt+1(h
κ′

)π(hκ
′

|hκ) + ζ1t (h
κ) + ζ3t (h

κ)gt(h
κ). (46)

For all t ≥ 1, the FOCs of the Ramsey problem with respect to nt(h
κ), ct(h

κ
h), and ct(h

κ) are

given, respectively, by

vn,t(h
κ) + λt(h

κ)wtzt(h
κ) + χt(h

κ)nt(hκ)vnn,t(h
κ) = µtMPNtzt(h

κ) (47)

uc,t(h
κ
h) + λt(h

κ
h) + χt(h

κ
h)nt(h

κ
h)wtucc,t(h

κ
h)zt(h

κ
h)−Qt+1µ

q
tucc,t(h

κ
h) (48)

+µq
t−1ucc,t(h

κ
h)π(h

κ
h|h

κ
h) + β

∑

hκ 6=h
κ
h

ζ2t (h
κ)
∂gt(h

κ)

∂ct(h
κ
h)

+
∑

hκ 6=h
κ
h

ζ2t−1(h
κ)
∂gt−1(h

κ)

∂ct(h
κ
h)

+β
∑

hκ 6=h
κ
h

at+1(h
κ)ζ3t (h

κ)
∂gt(h

κ)

∂ct(h
κ
h)

+
∑

hκ 6=h
κ
h

at(h
κ)ζ3t−1(h

κ)
∂gt−1(h

κ)

∂ct(h
κ
h)

= µt,
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uc,t(h
κ) + λt(h

κ) + χt(h
κ)nt(hκ)wtucc,t(h

κ)zt(h
κ) + µq

t−1ucc,t(h
κ)π(hκ|hκ

h) (49)

+β
∑

hκ 6=h
κ
h

ζ2t (h
κ)
∂gt(h

κ)

∂ct(hκ)
+

∑

hκ 6=h
κ
h

ζ2t−1(h
κ)
∂gt−1(h

κ)

∂ct(hκ)

+β
∑

hκ 6=h
κ
h

at+1(h
κ)ζ3t (h

κ)
∂gt(h

κ)

∂ct(hκ)
+

∑

hκ 6=h
κ
h

at(h
κ)ζ3t−1(h

κ)
∂gt−1(h

κ)

∂ct(hκ)
= µt.

A.5.3 Existence of an FSI Interior Ramsey Steady State

By the following steps, we conjecture and verify that there exists an FSI interior Ramsey steady

state featuring (i) c(hκ
h) = c(hκ) > 0 for all hκ, (ii) a(hκ

h) > a(hκ) > a(hκ
l ) = 0 for all hκ 6= hκ

h,

(iii) ζ1(hκ) = 0 for all hκ, (v) Q = β, and (vi) 0 < µ <∞. In the following steps, we show that an

interior Ramsey steady state allocation can satisfy all of the Ramsey FOCs and the constraints in

the Ramsey problem.

1. Consider the steady-state Ramsey allocation with a(hκ
l ) = 0. The steady-state allocation

(c(hκ
h), n(h

κ), {a(hκ)}hκ 6=h
κ
l
, K) can be solved by the following steady-state equations. Note

that the number of unknowns is equal to the number of equations, which is 2κ+1 + 1.

(a) The FOC with respect to Kt+1 in the steady state is (1 equation)

1 = β (MPK + 1− δ) .

(b) The steady state resource constraint is (1 equation)

F (
∑

hκ

n(hκ)z(hκ)π(hκ), K)− δK = c(hκ
h),

(c) Given c(hκ
h) = c(hκ), the steady-state household FOCs with respect to labor are given

by (2κ+1 − 1 equations)

vn(h
κ
h)
z(hκ)

z(hκ
h)

= vn(h
κ)

(d) The implementability conditions of each type-hκagent (2
κ+1 equations) are given by

c(hκ)−
vn(h

κ
h)

uc(h
κ
h)

z(hκ)

z(hκ
h)
n(hκ) + βa(hκ) =

∑

hκ
−1

a(hκ−1)π(h
κ
−1)π(h

κ|hκ−1)

π(hκ)
.
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2. Note that this Ramsey steady-state allocation satisfies all constraints of the Ramsey problem

by construction. We then show that the Lagrangian multipliers of the Ramsey problem can

be correctly solved such that all Ramsey FOCs are satisfied:

(a) Set ζ1(hκ) = 0 for all hκ.

(b) Given Q = β, ζ1(hκ) = 0, and g(hκ) = 0, the steady-state version of the Ramsey FOCs

with respect to at+1(hκ), equations (45) and (46), can be rewritten as

λ(hκ) =
∑

hκ′

λ(hκ
′

)π(hκ
′

|hκ),

which can be satisfied only if λ(hκ
h) = λ(hκ) = λ for all hκ.

(c) Given the power utility assumption and z(hκ)
z(hκ

h)
= vn(hκ)

vn(h
κ
h)
, we know that

vn(h
κ
h)

z(hκ
h)

= vn(hκ)
z(hκ)

=
nt(hκ)

γ

vnn(hκ)
zt(hκ)

for all hκ. The FSI steady-state Ramsey FOCs with respect to nt(h
κ),

equation (47), leads to

vn(h
κ)

z(hκ)
+ λ(hκ)w + χ(hκ)γ

vn(h
κ)

z(hκ)
= µMPN ,

which together with λ(hκ) = λ implies that χ(hκ) = χ for all hκ. The equation above

then can be rewritten as

vn(h
κ)

z(hκ)
+ λw + χγ

vn(h
κ)

z(hκ)
= µMPN. (50)

(d) The steady-state FOC with respect to wt is then

λ = χuc(h
κ
h). (51)

(e) The steady-state version of the Ramsey FOC with respect to Qt+1 is

λ
∑

hκ

a(hκ)π(hκ) = µquc(h
κ
h). (52)

(f) Set ζ2(hκ
l ) = 0. The steady-state Ramsey FOC with respect to ct(h

κ
l ) together with
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a(hκ
h) = 0 gives

uc,t(h
κ
h) + λ+ χnt(h

κ
l )wtucc,t(h

κ
h)zt(h

κ
l ) + µqucc,t(h

κ
h)π(h

κ|hκ
h) = µt. (53)

(g) Hence, the multipliers λ, χ, µq,and µ can be solved by the four FOCs above, namely,

equations (50) to (53).

(h) By properly choosing ζ2(hκ) and ζ3(hκ) for all hκ 6= hκ
l , the remaining FOCs with

respect to ct(h
κ) where hκ 6= hκ

l can be satisfied.

3. The optimal long-run policies, {B, τn,τk}, are pinned down by the following steps:

(a) Q = β by equation (12). Given Q = β, the MGR implies a zero steady-state capital

tax:

τk = 1−

1
Q
− (1− δ)

1
β
− (1− δ)

= 0.

(b) The government debt can be solved by using the asset market-clearing condition: B =
∑

hκ a(hκ)π(hκ)−
K
Q
= A− K

Q
.

(c) By plugging (i)
∑

hκ a(hκ)π(hκ) = φc(hκ
h), (ii) the asset market-clearing condition,

B =
∑

hκ a(hκ)π(hκ)− K
Q
, (iii) the resource constraint in the steady state, ce

K
= MPK

α
−

δ = 1−β+δβ

αβ
− δ, (iv) φ = A

C
=

∑
hκ a(hκ)π(hκ)

c(hκ
h)

, and (v) the MGR implied by the FOC with

respect to K, into the steady-state government budget constraint, the optimal long-run

labor tax rate can be expressed as

τn = (1− β)
B

MPN ×N
= (1− β)

A− K
β

MPN ×N

= (1− β)
(φ C

K
− 1

β
)

MPN×N
Y

K

Y
= (1− β)

φ(1−β+δβ

αβ
− δ)− 1

β

(1− α)

K

Y

= (1− β)
φ(1− β + δβ(1− α))− α

(1− α)(1− β + δβ)
.

In addition, the debt-to-GDP ratio can be expressed as

(1− β)
B

Y
= τn

MPN ×N

Y
= τn(1− α),
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and hence
B

Y
=

(1− β + δ(1− α)β)φ− α

(1− β + δβ)
,

which is an increasing function of φ.

4. Notice that this interior steady state is feasible only if τn < 1; otherwise, it violates the

FOC of employed individuals. The following two steps verify that τn < 1 if and only if

φ(1− β) < 1 :

(a) If φ(1− β) < 1, then

τn =
(1− β + δ(1− α)β)φ(1− β)− α(1− β)

(1− α) (1− β + δβ)
<

(1− β + δ(1− α)β)− α(1− β)

(1− α) (1− β + δβ)
= 1.

(b) If τn < 1, then

(1− β + δ(1− α)β)φ(1− β)− α(1− β) < (1− α) (1− β + δβ) ,

which can be simplified as

(1− β + δ(1− α)β)φ(1− β) < (1− α)δβ + (1− β) ,

and further simplified as φ(1− β) < 1.

A.5.4 Uniqueness of the FSI Interior Ramsey Steady State under σ ≥ 1

This proof follows closely to that in Appendix A.7. To facilitate our proof, define cst (hκ), n
s
t (hκ),

and as
t+1(hκ) as the consumption share, labor share, and asset share, respectively, for individuals

with truncated history hκ in period t. More specifically,

cst(h
κ) ≡

cst (h
κ)

Ct

, ns
t (h

κ) ≡
ns
t (h

κ)zt(h
κ)

Nt

, and as
t+1(h

κ) ≡
at+1(h

κ)

At+1
. (54)

Hence, it must be true that

∑

hκ

cst (h
κ)π(hκ) = 1,

∑

hκ

ns
t (h

κ)π(hκ) = 1, and
∑

hκ

as
t+1(h

κ)π(hκ) = 1. (55)
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A.5.5 Rewriting the Ramsey Problem

By utilizing the share variables in equation (54), we can rewrite the Ramsey Problem in the

following way:

max
{cst (h

κ),ns
t (h

κ),as
t+1

(hκ),Ct,Nt,At+1,Kt+1}∞t=0

∞∑

t=0

βt




1
1−σ

C1−σ
t

∑
θt(c

s
t (h

κ))1−σπ(hκ)

− 1
1+γ

N1+γ
t

∑
θt(n

s
t(h

κ))1+γπ(hκ)




subject to

βtµt : F (Nt, Kt) + (1− δ)Kt − Ct −Kt+1 ≥ 0, ∀t ≥ 0,

λ0(hκ)π(hκ) : c
s
0(hκ)C

1−σ
0 −

(ns
0(h

κ
h))

γ

(cs0(h
κ
h))

−σz0(h
κ
h)

1+γ
Nγ+1

t ns
0(h

κ)+Q1C
−σ
0 a1(hκ)−C

−σ
0 a0(hκ) = 0, ∀hκ,

Qtλt(h
κ)π(hκ) : cst (h

κ)C1−σ
t −

(ns
t (h

κ
h))

γ

(cst (h
κ
h))

−σzt(h
κ
h)

1+γ
Nγ+1

t ns
t (h

κ) +Qt+1C
−σ
t As

t+1a
s
t+1(hκ)

−C−σ
t At

∑

hκ
−1

as
t (hκ,−1)

π(hκ−1)

π(hκ)
π(hκ|h

κ
−1)

= 0, ∀hκ and t ≥ 1,

ζ0 : (1 + (1− τk,0)MPK0 − δ)K0 +B0 −
∑

hκ

a0(h
κ)π(hκ) = 0,

ηst :
∑

hκ

cst(h
κ)π(hκ)− 1 = 0, ∀t ≥ 0,

ηnt :
∑

hκ

ns
t (h

κ)π(hκ)− 1 = 0, ∀t ≥ 0,

ηat :
∑

hκ

as
t+1(h

κ)π(hκ)− 1 = 0, ∀t ≥ 0,

βt+1ζ1t (h
κ) : as

t+1(h
κ) ≥ 0, ∀hκ 6= heκ,

βt+1ζ2t (h
κ) : gs

t (h
κ) ≥ 0, ∀hκ 6= heκ,

and

βt+1ζ3t (h
κ) : gs

t (h
κ)as

t+1(h
κ) = 0, ∀hκ 6= heκ,
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where

Qt+1C
−σ
t = βC−σ

t+1

∑

hκ′

(
cst+1(h

κ′

)

cst (h
κ
h)

)−σπ(hκ
′

|hκ
h),

where Qt is defined as the compounded consumption price between time zero and time t:

Qt ≡

t∏

s=0

Qs,

and the function gs
t is defined as

gs
t(h

κ) ≡
cst(h

κ)−σ

∑
hκ′ (cst+1(h

κ′)−σπ(hκ′|hκ)
−

cst (h
κ
h)

−σ

∑
hκ′ cst+1(h

κ′)−σπ(hκ′|hκ
h)
.

A.5.6 Ramsey FOCs

The Ramsey FOCs with respect to At+1, Nt, and Ct are given, respectively, by

C−σ
t

∑

hκ

λt(h
κ)as

t+1(h
κ)π(hκ)− C−σ

t+1

∑

hκ

λt+1(h
κ)

∑

hκ
−1

as
t+1(h

κ
−1)π(h

κ
−1)π(h

κ|hκ−1) = 0, (56)

βtNγ
t

∑

hκ

(
ns

t(h
κ)

zst (h
κ)

)1+γ

π(hκ)+(1+γ)QtNγ
t

(ns
t (h

κ
h))

γ

(cst (h
κ
h))

−σzt(h
κ
h)

1+γ

∑

hκ

λt(h
κ)ns

t(h
κ)π(hκ) = βtµtMPN,t,

(57)

βtC−σ
t

∑

hκ

(cst (h
κ))1−σπ(hκ) + (1− σ)C−σ

t Qt
∑

hκ

λt(h
κ)cst (h

κ)π(hκ) (58)

−σQt−1βC−σ−1
t

QtC
−σ
t−1

βC−σ
t

At

∑

hκ

λt−1(h
κ)as

t (h
κ)π(hκ)

+σQtC−σ−1
t

∑

hκ

λt(h
κ)

∑

hκ
−1

as
t+1(h

κ
−1)π(h

κ
−1)π(h

κ|hκ−1) = βtµt.

Note that the Ramsey FOC with respect to Kt+1 remains the same as before:

µt = βµt+1 (MPKt+1 + 1− δ) .
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A.5.7 No Interior Ramsey Steady State Featuring Q > β

We now show that under the parameter condition σ ≥ 1, there cannot possibly exist any interior

Ramsey steady state featuring Q > β. The proof is done by contradiction. Consider two possible

cases depending on the convergence of µt:

1. Suppose µt converges. The FOC with respect to Nt in equation (23) can be rewritten as

βt

Qt
Nγ

t

∑

hκ

(
ns

t (h
κ)

zst (h
κ)

)1+γ

π(hκ) + (1 + γ)Nγ
t

(ns
t (h

κ
h))

γ

(cst (h
κ
h))

−σzt(h
κ
h)

1+γ

∑

hκ

λt(h
κ)ns

t (h
κ)π(hκ)

=
βt

Qt
µtMPNt.

Under the assumptions of Q > β and convergent multipliers µt, it must be true that

limt→∞
βt

Qt = 0, so the above equation becomes

lim
t→∞

(1 + γ)Nγ
t

(ns
t (h

κ
h))

γ

(cst (h
κ
h))

−σzt(h
κ
h)

1+γ

∑

hκ

λt(h
κ)ns

t (h
κ)π(hκ) = 0,

which leads to a contradiction with an interior steady state because all terms on the left-hand

side of the above equation are positive.

2. Suppose µt diverges to infinity at a certain rate such that limt→∞
βt

Qtµt converges to a positive

constant. Then in the limit we have the following:

(a) The Ramsey FOC with respect to Nt in the limit is given by

(1 + γ)Nγ lim
t→∞

(ns
t (h

κ
h))

γ

(cst (h
κ
h))

−σzt(h
κ
h)

1+γ

∑

hκ

λt(h
κ)ns

t (h
κ)π(hκ) =MPN lim

t→∞

βt

Qt
µt > 0.

(b) The Ramsey FOC with respect to At+1 is given by

lim
t→∞

∑

hκ

λt(h
κ)as

t+1(h
κ)π(hκ)− lim

t→∞

∑

hκ

λt+1(h
κ)

∑

hκ
−1

as
t+1(h

κ
−1)π(h

κ
−1)π(h

κ|hκ−1) = 0.

Plugging the above equation into the FOC with respect to Ct leads to

lim
t→∞

βt

Qt
C−σ

t

∑

hκ

(cst (h
κ))1−σπ(hκ) + lim

t→∞
(1− σ)C−σ

t

∑

hκ

λt(h
κ)cst (h

κ)π(hκ) = lim
t→∞

βt

Qt
µt.
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Under the assumptions that Q > β and that µt diverges at a certain rate such that

limt→∞
βt

Qtµt > 0, the equation above then becomes

(1− σ)C−σ lim
t→∞

∑

hκ

λt(h
κ)cst (h

κ)π(hκ) = lim
t→∞

βt

Qt
µt > 0,

which leads to a contradiction because the two sides of the equation have opposite signs

if σ ≥ 1.

3. To recap, the above proof shows that under φ(1 − β) < 1, we have the following: (i) If

σ ≥ 1, the FSI interior steady state (with Q = β) exists and is unique; it is impossible to

have an interior Ramsey steady state featuring Q > β. (ii) If σ < 1, it is possible to have

an interior Ramsey steady state with Q > β provided that the multiplier µt diverges at the

proper rate gµ ≥ Q

β
> 1;in such a case the optimal capital tax must be non-positive, as

shown in Appendix 5. Furthermore, under φ(1− β) ≥ 1 and σ ≥ 1, it is impossible for any

form of an interior Ramsey steady state to exist and the only possible Ramsey steady state

is non-interior with Ct → 0.

A.6 The Existence of a Ramsey Steady State When κ = 0 and Z =

{e, u}

A.6.1 Ramsey Problem

With κ = 0 and Z = {e, u}, there are only two groups of individuals, which are denoted by e

and u groups. Any variable denoted with superscript e or u then represents its value for the e or

u group, respectively. Denote βtµt, λ
e
0, λ

u
0 , β

tλetπ(e), β
tλut π(u), ζ

0, βt+1ζ1t , β
t+1ζ2t , and β

t+1ζ3t as

the Lagrangian multipliers for the conditions listed below. It is straight forward to verify that the

Ramsey planner’s problem can be written as

max
{cet ,c

u
t ,n

e
t ,a

e
t+1

,aut+1
,Kt+1}∞t=0

∞∑

t=0

βt {[u(cet )− v (ne
t )]π(e) + u(cut )π(u)}

subject to

βtµt : F (n
e
tπ(e), Kt) + (1− δ)Kt − cetπ(e)− cut π(u)−Kt+1 ≥ 0 ∀t ≥ 0,
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λe0 : u
e
c,0c

e
0π(e)− ven,0n

e
0π(e) +Q1u

e
c,0a

e
1 − uec,0a

e
0 = 0,

λu0 : uec,0c
u
0π(u) +Q1u

e
c,0a

u
1 − uec,0a

u
t = 0,

βtλetπ(e) : u
e
c,tc

e
t − ven,tn

e
t +Qt+1u

e
c,ta

e
t+1 − uec,t

[
aetπ(e)π(e|e) + aut π(u)π(e|u)

π(e)

]
= 0,

βtλut π(u) : u
e
c,tc

u
t +Qt+1u

e
c,ta

u
t+1 − uec,t

[
aetπ(e)π(u|e) + aut π(u)π(u|u)

π(u)

]
= 0,

ζ0 : (1 + (1− τk,0)MPK,0 − δ)K0 +B0 − ae0 − a0u = 0,

βt+1ζ1t : aut+1 ≥ 0,

βt+1ζ2t : gut ≥ 0,

βt+1ζ3t : gut a
u
t+1 = 0,

where Qt+1u
e
c,t is given by

Qt+1u
e
c,t = β

[
uec,t+1π(e|e) + uuc,t+1π(u|e)

]
,

and the function gut is defined as

gut ≡
uuc,t

uec,t+1π(e|u) + uuc,t+1π(u|u)
−

uec,t
uec,t+1π(e|e) + uuc,t+1π(u|e)

.

A.6.2 Ramsey FOCs

We first state the Ramsey FOCs. For all t ≥ 0, the FOCs of the Ramsey problem with respect to

Kt+1, a
e
t+1, and a

u
t+1 are given, respectively, by

µt = βµt+1 (MPKt+1 + 1− δ) , (59)

λetQt+1u
e
c,t = βuec,t+1

(
λet+1π(e|e) + λut+1π(u|e)

)
for t ≥ 0, (60)

and

λutQt+1u
e
c,t = βuec,t+1(λ

u
t+1π(u|u) + λet+1π(e|u)) (61)

+ζ1t + ζ3t g(c
e
t , c

u
t , c

e
t+1, c

u
t+1).
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For all t ≥ 1, the FOCs of the Ramsey problem with respect to ne
t , c

e
t , and cut are given,

respectively, by

ven,t + λet (v
e
n,t + venn,tn

e
t ) = µtMPNt, (62)

(uec,t − µt)π(e) + λet(u
e
c,t + uecc,tc

e
t )π(e)− λetu

e
cc,t(a

e
tπ(e)π(e|e) + aut π(u)π(e|u)) (63)

+λet−1a
e
tπ(e)u

e
cc,tπ(e|e) + λut u

e
cc,tc

u
t π(u)− λut u

e
cc,t(a

e
tπ(e)π(u|e) + aut π(u)π(u|u))

+λut−1a
u
t π(u)u

e
cc,tπ(e|e) + βζ2t

∂gt
∂cet

+ ζ2t−1

∂gt−1

∂cet
+ βaut+1ζ

3
t

∂gt
∂cet

+ aut ζ
3
t−1

∂gt−1

∂cet
= 0,

and

(uuc,t − µt)π(u) + λut u
e
c,tπ(u) + λut−1a

u
t π(u)u

u
cc,tπ(u|e) (64)

+λet−1a
e
tπ(e)u

u
cc,tπ(u|e) + βζ2t

∂gt
∂cut

+ ζ2t−1

∂gt−1

∂cut
+ βaut+1ζ

3
t

∂gt
∂cut

+ aut ζ
3
t−1

∂gt−1

∂cut
= 0.

For t = 0, the FOCs of the Ramsey problem with respect to ne
0, c

e
0, and c

u
0 are given, respectively,

by

ven,0 + λe0(v
e
n,0 + venn,0n

e
0) = µ0MPN,0 + ζ0(1− τk,0)MPKN,0K0,

(uec,0 − µ0)π(e) + λe0(u
e
c,0 + uecc,0c

e
0)π(e)− λe0u

e
cc,0a

e
0

+λu0u
e
cc,0c

u
0π(u)− λu0u

e
cc,0a

u
0 + βζ20

∂g0
∂ce0

+ βau1ζ
3
0

∂g0
∂ce0

= 0,

and

(uuc,0 − µ0)π(u) + λu0u
e
c,0π(u) + βζ20

∂g0
∂cu0

+ βau1ζ
3
0

∂g0
∂cu0

= 0.
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Note that

∂gt
∂cut

=
uucc,t

uec,t+1π(e|u) + uuc,t+1π(u|u)
,

∂gt
∂cet

= −
uecc,t

uec,t+1π(e|e) + uuc,t+1π(u|e)
,

∂gt−1

∂cut
= −

uuc,t−1u
u
cc,tπ(u|u)(

uec,tπ(e|u) + uuc,tπ(u|u)
)2 +

uec,t−1u
u
cc,tπ(u|e)(

uec,tπ(e|e) + uuc,tπ(u|e)
)2 ,

∂gt−1

∂cet
= −

uuc,t−1u
e
cc,tπ(e|u)(

uec,tπ(e|u) + uuc,tπ(u|u)
)2 +

uec,t−1u
e
cc,tπ(e|e)(

uec,tπ(e|e) + uuc,tπ(u|e)
)2 .

A.6.3 Existence of a Non-Interior Ramsey Steady State under κ = 0 and σ ≥ 1

By Proposition 7, we know that if (1− β) π(u)
π(u|e)

≥ 1 and σ ≥ 1, there is no interior Ramsey steady

state. Here we further prove that there exists a non-interior Ramsey steady state under these

parameter conditions.

For this non-interior Ramsey steady state to exist, it must be the case that Ct → 0. So the

proof proceeds by considering an allocation path where (i) cet > cut > 0 for all t < ∞ and (ii)

limt→∞ cet = limt→∞ cut = 0.

1. We first show that this non-interior steady-state allocation can satisfy all constraints and

the Ramsey FOCs:

(a) The resource constraint is satisfied if Kt → 0 since limt→∞ cet = limt→∞ cut = 0.

(b) Given that cet > cut > 0 for t < ∞ and aut = 0, the implementability condition of

the unemployed agents becomes cut = aet
π(e)π(u|e)

π(u)
, which can be satisfied in the limit

by letting aet → 0. In addition, the implementability condition of the employed agents

becomes

cet −
ven,t
uec,t

ne
t +Qt+1a

e
t+1 − aetπ(e|e) = 0,

which is satisfied in the limit given the condition limt→∞Qt+1a
e
t+1 = limt→∞

ven,t

ue
c,t
ne
tπ(e) ≥

0.

(c) The borrowing constraints and complementary slackness conditions of the Ramsey prob-

lem are trivially satisfied.
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2. We then show that this allocation satisfies all Ramsey FOCs by properly choosing the con-

vergence properties of the Ramsey multipliers:

(a) The FOC with respect to Kt+1 can be satisfied if the following condition holds

lim
t→∞

MPKt+1 =
1

limt→∞
µt+1

µt

1

β
− 1 + δ.

Notice that the equation above also implies the following:

i. limt→∞
µt+1

µt
<∞ since limt→∞MPKt+1 ≥ 0.We also know that limt→∞

µt+1

µt
≥ 1.A

convergence of µt+1

µt
then implies that the capital-to-labor ratio Kt

Nt
contained in

MPKt and MPNt must also converge to a finite positive value despite the fact

that limt→∞Kt = limt→∞Nt = 0.

ii. ne
t → 0 given that limt→∞MPKt = limt→∞ α(

ne
tπ(e)

Kt
)1−α <∞ and Kt → 0.

(b) Let λet → ∞ and µt

λe
t
→ 0. The Ramsey FOC with respect to ne

t in equation (62) is

satisfied in the limit as t→ ∞ :

MPN lim
t→∞

µt

λet
= (1 + γ) lim

t→∞
ven,t = 0.

(c) Given ζ1t > 0, ζ2t = 0, aut = 0, and cut = aet
π(e)π(u|e)

π(u)
, the Ramsey FOC with respect to cet

can be rewritten as

uec,t (1 + λet (1− σ)) +
(
λet−1 − λet

)
uecc,tc

u
t

π(u)

π(u|e)
π(e|e) = µt,

which can be further transformed to

1

σλet
+

(
1−

λet−1

λet

)
cut
cet

π(u)

π(u|e)
π(e|e) =

µt

λet

1

uec,t

1

σ
+ 1−

1

σ
.

As t→ ∞, the equation above becomes

0 <

(
1− lim

t→∞

λet−1

λet

)
lim
t→∞

cut
cet

=
π(u|e)

π(e|e)π(u)
(1−

1

σ
). (65)

Hence, given σ ≥ 1 (a necessary condition), the above FOC can be satisfied and does

not lead to contradictions.
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(d) Under the conditions that ζ1t > 0, ζ2t = 0, aut = 0, and cut = aet
π(e)π(u|e)

π(u)
, the Ramsey

FOC with respect to cut can be simplified to

uuc,t + λut u
e
c,t + λet−1c

u
t u

u
cc,t = µt,

which can be rewritten as

1

λet−1

+
λut
λet−1

uec,t
uuc,t

− σ =
µt

λet

λet
λet−1

1

uuc,t
.

Since limt→∞
µt

λe
t

λe
t

λe
t−1

1
uu
c,t

= 0, in the limit the equation above becomes

lim
t→∞

λut
λet−1

uec,t
uuc,t

= σ. (66)

We then have two subcases to consider:

i. σ > 1. Equation (66) can be satisfied if
λu
t

λe
t−1

converges to a finite positive constant.

From 2(c), we know that
ue
c,t

uu
c,t

also converges to a finite positive constant given the

convergence of
cut
cet
.

ii. σ = 1. Equation (66) can be satisfied if both
λu
t

λe
t−1

and
cut
cet

converge to finite positive

values.

Hence, both sub-cases above are possible and do not lead to contradictions.

(e) The FOCs of aet+1 and a
u
t+1 in equations (60) and (61) can be rewritten, respectively, as

π(e|e) +
uuc,t+1

uec,t+1

π(u|e) =
λet+1

λet
π(e|e) +

λut+1

λet
π(u|e), (67)

π(e|e) +
uuc,t+1

uec,t+1

π(u|e) =
λut+1

λut
π(u|u) +

λet+1

λut
π(e|u) +

ζ1t + ζ3t g(c
e
t , c

u
t , c

e
t+1, c

u
t+1)

λut u
e
c,t+1

. (68)

Given σ ≥ 1 and from 2(c) and 2(d), we know that
uu
c,t

ue
c,t
,

λe
t+1

λe
t
,

λu
t+1

λu
t
,

λe
t+1

λu
t
, and

λu
t+1

λe
t

all converge to finite positive constants. Hence, equation (67) is satisfied. In addition,

gt(c
e
t , c

u
t , c

e
t+1, c

u
t+1) also converges to a finite positive constant according to its definition,

so equation (68) can be satisfied if limt→∞
ζ1t +ζ3t g(c

e
t ,c

u
t ,c

e
t+1

,cut+1
)

λu
t u

e
c,t+1

is chosen to be a finite

constant, which is possible and does not lead to contradictions.
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In short, we have shown that a non-interior Ramsey steady state exists and it must feature

divergent multipliers. Also notice that the last equation in (c) in step 2 is the only critical

condition involving the value of σ:

0 <

(
1− lim

t→∞

λet−1

λet

)
lim
t→∞

cut
cet

=
π(u|e)

π(e|e)π(u)

(
1−

1

σ

)
, (69)

which suggests that if σ < 1, the right-hand side of the above inequality is negative; hence,

there cannot exist a non-interior Ramsey steady state in the simplified model with κ = 0.

3. Policy implication

(a) Given cet → 0, ne
t → 0, and MPNt → MPN > 0, it must be true that τn,t → 1 by

equation (37).

(b) The intertemporal price is

Qt+1 = β

[
uec,t+1

uec,t
π(e|e) +

uuc,t+1

uuc,t

uuc,t
uec,t

π(u|e)

]
.

We know that
ue
c,t+1

ue
c,t
,

uu
c,t+1

uu
c,t
, and

uu
c,t

ue
c,t

all converge to finite values larger than or equal to

1 and hence ∞ > limt→∞Qt+1 ≥ β.

(c) The capital tax is determined by

τk,t+1 = 1−

1
Qt+1

− (1− δ)
µt

βµt+1
− (1− δ)

.

Hence, the sign of the capital tax in the limit (limt→∞ τk,t+1) depends on the growth

rate of µt relative to Qt+1

β
in the limit. Given that Kt → 0, the optimal capital tax is

irrelevant.

(d) By the asset market clearing condition, we have Bt → 0.

A.6.4 Existence of an Interior Partial-Insurance Ramsey Steady State under σ < 1

and µt → ∞

By Proposition 7, we know that if (1 − β) π(u)
π(u|e)

≥ 1, there is no interior FSI steady state. In

addition, from section A.6.3, we know that the existence of a non-interior Ramsey steady state

60



requires condition σ ≥ 1. We now prove that there exists an interior non-FSI Ramsey steady

state under σ < 1. This Ramsey steady state is then the only possible Ramsey steady state if

(1− β) π(u)
π(u|e)

≥ 1.

Consider an interior non-FSI Ramsey steady state where (i) ce > cu > 0, (ii) the borrowing

constraint for the unemployed individuals must be strictly binding with au = 0 and hence ζ1 > 0

and ζ2 = 0.

Let guλ, g
e
λ, and gµ denote the steady-state growth rate of λut , λ

e
t , and µ, respectively. We first

show that this Ramsey steady state must feature guλ = geλ = gµ.

1. From the Ramsey FOC with respect to ne, we know that for an interior Ramsey steady state

to exist, the growth rate of λet and µt have to be the same: geλ = gµ.

2. Moreover, we can show that geλ = gµλ by the following steps:

(a) The FOC with respect to ae in the steady state is given by

1 <
Q

β
= π(e|e) +

uuc
uec
π(u|e) = geλπ(e|e) + guλ

λut
λet
π(u|e). (70)

(b) Suppose geλ < guλ, then
λu
t

λe
t
→ ∞. Equation (70) becomes ∞ > π(e|e) + uu

c

ue
c
π(u|e) = ∞,

which is impossible.

(c) Suppose geλ > guλ, then
λu
t

λe
t
→ 0. The FOC with respect to cu (under ζ2t = 0, au = 0, and

aeπ(e)π(u|e) = cuπ(u)) becomes

uuc + guλλ
u
t−1u

e
c + λet−1u

u
ccc

u = gµt−1µt,

which implies
uuc
λet−1

+ guλ
λut−1

λet−1

uec + uuccc
u = gµ

µt−1

λet−1

.

As t→ ∞, the left-hand side is negative and the right-hand side is positive, which is a

contradiction.

(d) So, it must be true that geλ = guλ = gµ.

We show that such an interior steady state cannot exist under the condition that σ ≥ 1 or

µt → µ <∞. Namely, this Ramsey steady state exists only if σ < 1 and the following hold:
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1. Given geλ = guλ, equation (70) implies that

(
uuc
uec

− guλ
λut
λet

)
π(u|e) = (geλ − 1)π(e|e). (71)

2. Under ζ2t = 0, au = 0, and aeπ(e)π(u|e) = cuπ(u), the FOC with respect to ce can be

rewritten as

uec + λetu
e
c(1− σ) = µt + ueccc

u π(u)

π(u|e)

π(e|e)

π(e)
(geλ − 1)λet−1, (72)

and the FOC with respect to cu can be rewritten as

uuc + λet−1u
u
c (1− σ) = µt − λut u

e
c + λet−1u

u
c . (73)

Now, with the above two equations, consider the following cases:

(a) The growth rates satisfy geλ = guλ = 1. Without growth, λe must converge. Equation

(71) then implies λuuec = λeuuc . The difference between equation (72) and equation (73)

gives

(uec − uuc ) + λe(1− σ)(uec − uuc ) = 0,

which implies uec = uuc and contradicts the assumption ce > cu.

(b) The growth rates satisfy geλ = guλ > 1. The sum of the FOCs with respect to ce and cu

can be written as

uecπ(e) + uucπ(u)

λet−1

+
λet
λet−1

uec(1− σ)π(e) + uuc (1− σ)π(u)

=
µt

λet−1

−
λut
λet−1

uecπ(u) + uucπ(u) + ueccc
u π(u)

π(u|e)
π(e|e)(geλ − 1).

Since under positive growth λet−1 → ∞, the above equation becomes

geλu
e
c(1− σ)π(e) + uuc (1− σ)π(u)

= gµ
µt−1

λet−1

− guλ
λut−1

λet−1

uecπ(u) + uucπ(u) + ueccc
u π(u)

π(u|e)
π(e|e)(geλ − 1),
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which together with (71) implies

geλu
e
c(1− σ)π(e) + uuc (1− σ)π(u)

= gµ
µt−1

λet−1

+ π(u)uec

(
uuc
uec

− guλ
λut−1

λet−1

)
+ ueccc

uπ(u)

(
uuc
uec

− guλ
λut−1

λet−1

)

= gµ
µt−1

λet−1

+ π(u)

(
uuc
uec

− guλ
λut−1

λet−1

)
(uec + ueccc

u)

> π(u)

(
uuc
uec

− guλ
λut−1

λet−1

)
uec

(
1− σ

cu

ce

)

> π(u)

(
uuc − guλ

λut−1

λet−1

uec

)
(1− σ) ,

where the last two inequalities utilize the fact that (i) gµ
µt−1

λe
t−1

> 0 and (ii) cu

ce
< 1. Now,

considering the parameter value σ ≥ 1, the above inequality can be simplified to the

following two possible relationships:

0 < geλu
e
cπ(e) < −guλ

λut
λet
uecπ(u) < 0, if σ > 1,

or 0 < 0 if σ > 1,

and

0 >

(
uuc
uec

− guλ
λut−1

λet−1

)
(1− σ) = 0, if σ = 1,

or 0 > 0 if σ = 1;

both of which are self-contradictory.

Third, we show that there indeed exists such an interior Ramsey steady state by showing that

it satisfies all optimal Ramsey FOCs:

1. In this interior Ramsey steady state, there are eight variables to solve, which include

ce, cu, ne, K, ae, geλ, limt→∞
µt

λe
t
, and limt→∞

µt

λu
t
. Notice that gµ = guλ = geλ and limt→∞

λe
t

λu
t
is

known once we know limt→∞
µt

λu
t
and limt→∞

µt

λe
t
.

2. There are eight Ramsey FOCs and constraints that can be used to solve these unknown

variables in the limit:
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(a) In the limit, the Ramsey FOCs with respect to Kt+1, n
e
t , a

e
t+1, c

e
t , and cut are given,

respectively, by

1 = βgeλ (MPK + 1− δ) ,

ven(1 + γ) =MPN lim
t→∞

µt

λet
,

(
uuc
uec

− guλ lim
t→∞

λut
λet

)
π(u|e) = (geλ − 1)π(e|e),

uec(1− σ) = lim
t→∞

µt

λet
+ ueccc

u π(u)

π(u|e)

π(e|e)

π(e)
(geλ − 1)

1

geλ
, (74)

and

uec lim
t→∞

λut
λet

+
1

geλ
cuuucc = lim

t→∞

µt

λet
. (75)

(b) The resource constraint and the implementability conditions for type-e and type-u

individuals are given, respectively, by

F (neπ(e), K)− δK − ceπ(e)− cuπ(u) = 0,

cet −
ven,t
uec,t

ne
t + β

(
π(e|e) +

uuc
uec
π(u|e)

)
ae −

[
aeπ(e)π(e|e)

π(e)

]
= 0,

and

cu =
aeπ(e)π(u|e)

π(u)
.

Finally, recall that in Proposition 7 we have shown τκ is non-positive. Therefore, we have

proved the existence of such an interior Ramsey steady state under σ < 1.

A.7 Proof of Proposition 10

The proof is done by construction. Conjecture that the Ramsey planner can achieve the first-best

allocation starting from period 0. In other words, all constraints except the resource constraint do

not bind: λt(h
κ) = 0 and ζ1t (h

κ) = ζ2t (h
κ) = ζ3t (h

κ) = 0 for all t and hκ. It is then straightforward

to see that the Ramsey planner’s problem becomes the social planner’s problem. In addition, it

is straight forward to verify that the Ramsey FOCs become identical to the optimal conditions of

the first-best allocation.
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Given this first-best allocation {cFB
t , nFB

t (hκ), KFB
t+1}, the following steps show that the Ramsey

planner can choose the corresponding policy in order to achieve the first-best allocation.

1. The optimal conditions of the first-best allocation implies that
vFB
n,t (h

κ)

uFB
c,t zt(hκ)

= MPNFB
t and

Qt+1 = β
uFB
c, t+1

uFB
c, t

, which together with equation (59) further imply that the optimal labor tax

and capital tax are both zero for all t ≥ 0:

τn,t = 1−
vFB
n,t

uFB
c,t

= 0,

τk,t+1 = 1−

1
Qt+1

− (1− δ)
µt

βµt+1
− (1− δ)

= 0.

As a result, the government budget constraint is then reduced to

β
uFB
c t+1

uFB
c t

Bt+1 −Bt = Tt. (76)

2. Consider the case where at+1(h
κ
l ) = 0 for all t ≥ 0. By the asset market-clearing condition,

Bt+1 = At+1−β
uFB
c, t+1

uFB
c, t

KFB
t+1 for all t ≥ 0, we show the sequences of Tt and at+1(h

κ) for hκ 6= hκ
l

can be chosen to satisfy the implementability conditions in the following steps:

3. T0 is chosen to satisfy the implementability condition of an unemployed agent at period 0 :

T0 = cFB
0 − a0(h

κ
l )−MPNFB

0 z0(h
κ
l )n0(h

κ
l );

for hκ 6= hκ
l , a1(h

κ) is chosen such that the implementability condition of hκ individuals is

satisfied by

β
uFB
c 1

uFB
c 0

a1(h
κ) = a0(h

κ) + T0 +MPNFB
0 z0(h

κ)n0(h
κ)− cFB

0 > 0,

which is strictly positive given a0(h
κ) > a0(h

κ
l ) and z0(h

κ) > z0(h
κ
l ).

4. For any t ≥ 1, given at(h
κ), Tt and at+1(h

κ) are chosen to satisfy the implementability

condition of type-hκ
l and type-hκ individuals:

Tt = cFB
t −

∑

hκ
−1

at(h
κ
−1)π(h

κ
−1)π(h

κ
l |h

κ
−1)

π(hκ)
−MPNFB

t zt(h
κ
l )nt(h

κ
l ),

65



and for hκ 6= hκ
l , a1(h

κ) is chosen such that the implementability condition of type-hκ

individuals is satisfied by

β
uFB
c t+1

uFB
c t

at+1(h
κ) =

∑

hκ
−1

at(h
κ
−1)π(h

κ
−1)π(h

κ|hκ−1)

π(hκ)
+ Tt +MPNFB

t zt(h
κ)nt(h

κ)− cFB
t > 0,

which is strictly positive given at(h
κ) > at(h

κ
l ) and zt(h

κ) > zt(h
κ
l ).

5. Therefore, as shown by the steps above, the first-best allocation can be implemented by the

Ramsey planner. Finally, the steady-state government budget constraint is simply given by

T = B(β − 1), which implies T is negative (lump-sum tax) if B > 0.

A.8 Proof of Proposition 11

Denote µ, λ(hκ)π(hκ), ζ1(hκ), and ζ3(hκ) as the Lagrangian multipliers for constraints (31), (32),

(33) and (35), respectively. The Ramsey FOCs with respect to c(hκ) and a(hκ) are given, respec-

tivley, by

uc(h
κ) = µ+ λ(hκ), (77)

and

λ(hκ)π(hκ)Q =
∑

hκ
−1

λ(hκ−1)π(h
κ)π(hκ−1|h

κ)− ζ1(hκ)− ζ3(hκ)g(hκ). (78)

The proof is done by contradiction. Consider a Ramsey steady state featuring FSI: c(hκ) =

c(hκ
h) > 0, a(hκ) ≥ 0, ζ1(hκ) = 0, Q = β, and g(hκ) = 0 for all hκ. Then, the Ramsey FOC with

recpet to consumption in equation (78) implies λ(hκ) = λ(hκ
h) for all hκ. As a result, equation

(78) can be simplified as

π(hκ)Q =
∑

hκ
−1

π(hκ)π(hκ−1|h
κ),

which together with Q = β gives β = 1, a contradiction. Thus, an FSI allocation where c(hκ) = c

for all hκ cannot be the outcome of the static Ramsey problem that maximizes the steady-state

welfare of the competitive equilibrium.
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