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1 Introduction

How decision makers revise their beliefs after receiving information is a foundational problem

in economics and game theory. While the benchmark model of Bayesian updating is broadly

appealing for a variety of reasons, is has two major issues. First, it is incomplete; a well-

known limitation of Bayesian updating is that it is not defined for zero-probability events.1

Second, it is descriptively limited; there is robust experimental evidence that people’s beliefs

systematically deviate from what Bayesian updating prescribes.2 We resolve these limitations

of Bayesian updating by introducing the Inertial Expected Utility (IEU) representation: a

complete theory of belief updating that unifies Bayesian and non-Bayesian updating rules.

The IEU addresses these two issues by recasting the problem of belief updating as a

problem of belief selection subject to simple constraints. For each event E, our DM selects a

new belief µE that is (i) consistent with E and (ii) closest to her initial belief. That is, her new

belief µE is the element of ∆(E) that is “closest” to µ among all of the probability measures

over E. Because our DM is influenced by her prior, beliefs may exhibit “inertia,” we refer to

this behavior as Inertial Expected Utility. We provide a complete behavioral analysis of IEU

and demonstrate that it provides a unifying framework for understanding many different forms

of belief updating in the literature.

The IEU representation depends on three axioms. The first two postulates are standard:

SEU Postulates imposes a subjective expected utility representation for each conditional

preference, and Consequentialism ensures that for any event E, the DM only considers

states within E possible. The third axiom, Dynamic Coherence, was introduced by Ortoleva

(2012) to characterize the Hypothesis Testing model (HT).3 To interpret this axiom, say that

an event A is revealed implied by event B if every state that the DM believes is possible after

learning B is also an element of A. That is, Ac is revealed to be null after B. Dynamic

Coherence requires that this “revealed preference” over events is acyclic. Surprisingly, the

IEU and HT require precisely the same axioms and thus are behaviorally equivalent despite

their stark difference in appearance.4

Because our notion of updating is based on optimization, IEU allows us to naturally extend

updating to zero-probability events, thereby offering a complete theory of updating. The IEU,

1This is an important issue in sequential games, as particular off-path beliefs are used to support certain equi-
libria. Accordingly, complete theories of belief updating, such as the Conditional Probability System introduced
by Myerson (1986a,b), have been proposed.

2For instance, they may exhibit confirmation bias, the representativeness heuristic, under- or over-reaction,
or a myriad of other biases (see Benjamin (2019) for a discussion).

3In the HT, an agent’s behavior is in accord with SEU, yet she also has a second-order belief and thus has
multiple beliefs in mind. She updates her prior according to Bayes’ rule if she receives “expected” information.
When information is “unexpected,” she rejects her prior and uses her second-order belief to select a new belief
according to a maximum likelihood rule. This suggests an interpretation of an essentially Bayesian agent who
is nevertheless open to fundamentally shifting her worldview.

4The proofs however are significantly different and deriving the IEU representation is nontrivial.

2



however, is not the first to address updating for zero-probabilty events. The most prominent

such theory is Myerson’s Conditional Probability System (CPS) (Myerson, 1986a,b), which

was motivated by the Sequential Equilibria of Kreps and Wilson (1982). We provide a simpler

behavioral foundation for CPS and clarify its relation to HT. We show that CPS is a special of

IEU and therefore it is also a special case of HT. We also explicitly construct the subjective

distance functions used in both CPS and HT.

The IEU may also accommodate non-Bayesian updating, a feature that sets it apart

from the CPS. In particular, we introduce a form of distorted belief updating that we call

h-Bayesian and provide an axiomatic characterization of this form of updating. This novel

updating rule has a non-trivial connection to the well-known α− β rule from Grether (1980).

Further, this rule allows for history-dependent updating and therefore it can capture a wide

array of context effects.

The remainder of this paper is structured as follows. In section 2, we introduce the

formal framework and our notion of updating. We provide behavioral foundations of the IEU

representation in section 3. In section 4 we discuss the connection to CPS and HT. We then

show in section 5 how to extend the IEU to settings with signal structures and provide an

explicit distance function that generates α− β rule from Grether (1980). We conclude with a

discussion of related literature in section 6.

2 Model

2.1 Basic Setup

We study choice under uncertainty in the framework of Anscombe and Aumann (1963). A DM

faces uncertainty described by a nonempty and finite set of states of nature S = {s1, . . . , sn}. A

nonempty subset E of S is called an event, and Σ is a algebra of events. Let X be a nonempty,

finite set of outcomes and ∆(X) be the set of all lotteries over X, ∆(X) :=
{
p : X → [0, 1] |∑

x∈X p(x) = 1
}

.

We model the DM’s preference over acts. An act is a mapping f : S → ∆(X) that assigns

a lottery to each state. Any act f that assigns the same lottery to all states (f(s) = p for all

s ∈ S) is called a constant act. Using a standard abuse of notation, we denote by p ∈ F the

corresponding constant act. Hence, we can identify the set of lotteries ∆(X) with the constant

acts. The set of all acts is F := {f : S → ∆(X)}. A preference relation over F is denoted by

%. As usual, � and ∼ are the asymmetric and symmetric parts of %, respectively.

The DM’s behavior is depicted by a family {%E}E∈Σ of preference relations, each defined

over F . We write % in place of %S , and we call % the initial preference. Say that E is %-null

(or simply null) if fEg ∼ g for any f, g ∈ F . Otherwise, E is non-null. Similarly, we say E is

%A-null if fEg ∼A g for any f, g ∈ F .
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We denote by ∆(S) the set of all probability distributions on S. For notational convenience,

for each µ ∈ ∆(S) and each si ∈ S, we will sometimes write µi in place of µ(si): the probability

of state si according to µ. For any µ and event E such that µ(E) > 0, let BU(µ,E) denote

the Bayes’ updating of µ conditional on E.

Finally, let ‖ · ‖ denote the Euclidean norm. For any set A and a function d on A, we write

arg min d(A) = {x ∈ A | d(y) ≥ d(x) for any y ∈ A} (whenever this is well-defined).

2.2 Inertial Updating

As a new piece of information E ∈ Σ emerges, the DM revises % given E. The new preference

is denoted by %E and governs the DM’s conditional choice in light of E.

Definition 1 (Distance Function). A function d : ∆(S) → R is a distance function with

respect to µ ∈ ∆(S), denoted by dµ, if dµ(µ) < dµ(π) for any π ∈ ∆ \ {µ}.

This property on distance function ensures that the current belief is unique, in that all

different beliefs are in fact considered to be different.

Definition 2 (IEU). A family of preference relations {%E}E∈Σ admits an Inertial Expected

Utility representation if there are a Bernoulli utility function u : X → R, a prior µ ∈ ∆(S), a

distance function dµ : ∆(S)→ R such that for each E ∈ Σ, the preference relation %E admits

a SEU representation with (u, µE), meaning that for any f, g ∈ F ,

(1) f %E g if and only if
∑
s∈E

µE(s)u
(
f(s)

)
≥
∑
s∈E

µE(s)u
(
g(s)

)
,

where

(2) µE ≡ arg min
π∈∆(E)

dµ(π).

Since ∆(E) is convex, arg minπ∈∆(E) dµ(π) will be unique when dµ is strictly quasi-convex.

In fact, the following much weaker condition will be suffice: for any π, π′ ∈ ∆(S) with π 6= π′,

if dµ(π) = dµ(π′), then there is α ∈ (0, 1) such that dµ(απ + (1− α)π′) < dµ(π).

2.3 Notions of Distance

Our DM’s notion of distance is subjective. Thus, our framework allows for a wide variety

distance notions and consequently a wide variety of updating behaviors. In this section, we

discuss a few examples of distance functions.
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Definition 3 (Bayesian Divergence). For a strictly increasing and strictly concave function

σ : R+ → R, let dµ be given by

(3) dµ(π) = −
n∑
i=1

µi σ

(
πi
µi

)
.

Proposition 1. For any non-null E ∈ Σ,

µE = arg min
π∈∆(E)

−
n∑
i=1

µi σ

(
πi
µi

)
= BU(µ,E)

Moreover, Equation 3 “includes” the KL divergence as a special case (σ(x) = ln(x)).

However, since ln(0) = −∞, the KL divergence is not well-defined when sp(µ) ⊆ sp(π).

Therefore, we focus our attention to σ that is well defined on R+. For example, σ(x) =

ln(αx+ β) where α, β > 0 is a well-defined, strictly increasing, and strictly concave function.

Using the intuition from Bayesian Divergence, we can introduce a “perturbed” version

of this distance notion to capture non-Bayesian beliefs.

Definition 4 (h-Bayesian). Let dµ(π) =
∑n

i=1 h(µi)σ( πi
h(µi)

), where h : R+ → R and σ

satisfies the conditions from Bayesian Divergence. Then µE = BU(h(µ), E) for any non-

null E ∈ Σ.

The h-Bayesian distance notion captures a form of non-Bayesian updating where the agent

is Bayesian with respect to biased beliefs. When h(µi) = (µi)
α, this corresponds to a spe-

cial case of Grether’s α − β rule (Grether, 1980) where α = β. For α < 1, this captures

under-reaction to information and base-rate neglect, while α > 1 captures over-reaction to

information. It is straightforward to generalize h to capture more general belief distortions,

including asymmetric reactions based on prior beliefs like confirmation bias (á la Rabin and

Schrag (1999)) or over(under) reaction to small(large) probabilities (Kahneman and Tversky

(1979)). Since we only require h to be independent of the current information, the h-Bayesian

distance can also capture features of history or reference dependence. In section 5, we show

that our model nests the general version of Grether’s α− β rule.

We can also use a support-dependent Bayesian divergence to obtain updating rules for

zero-probability events. For any π ∈ ∆(S), let sp(π) denote the support of π.

Definition 5 (Support-Dependent Bayesian Divergence). Let

dµ(π) =

−
∑

si∈sp(π) µi σ
(
πi
µi

)
−M |{sp(π) ∩ sp(µ)}| if µ(sp(π)) > 0,

−
∑

si∈sp(π) µ
∗
i σ
(
πi
µ∗i

)
otherwise.
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Suppose µ∗ has a full-support and M > σ(1)− σ(0). Then

µE =

BU(µ,E) if µ(E) > 0,

BU(µ∗, E) otherwise.

The form belief updating rule above was used in Galperti (2019) and is a special case of

Myerson (1986a,b) and Ortoleva (2012).

A final example that we wish to mention is the Euclidian distance.

Definition 6 (Euclidean distance). Let dµ(π) = ||µ− π||. Then

µE(s) = µ(s) +
1− µ(E)

|E|
for any E ∈ Σ and s ∈ E.

Here, prior odds are “ignored” when updating beliefs: probability is allocated to the remaining

states (i.e., those in E) uniformly.

3 Axiomatic Characterization

In this section, we present three behavioral postulates that characterize the family of IEU

preferences. Our first axiom imposes the standard SEU conditions of Anscombe and Au-

mann (1963) on each (conditional) preference relation %E . Because these conditions are well-

understood, we will not provide a formal discussion of the conditions.

Axiom 1 (SEU Postulates). For each E ∈ Σ, the following conditions hold.

(i) Weak Order: %E is complete and transitive.

(ii) Archimedean: For any f, g, h ∈ F , if f �E g and g �E h, then there are α, β ∈ (0, 1)

such that αf + (1− α)h �E g and g �E βf + (1− β)h.

(iii) Monotonicity: For any f, g ∈ F , if f(s) %E g(s) for each s ∈ S, then f %I g.

(iv) Nontriviality: There are f, g ∈ F such that f �E g.

(v) Independence: For any f, g, h ∈ F and α ∈ (0, 1], f %E g if and only if αf+(1−α)h %E

αg + (1− α)h.

(vi) Invariant Risk Preference: For all lotteries p, q ∈ ∆(X), p %E q if and only if p % q.

The next axiom is standard and ensures that the DM forms a new belief that is consistent

with the available information.
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Axiom 2 (Consequentialism). For any E ∈ Σ and all f, g ∈ F ,

f(s) = g(s) for all s ∈ E =⇒ f ∼E g.

The next axiom, Dynamic Coherence, was introduced in Ortoleva (2012), and a more

careful discussion may be found there. In our setting, we say that an event A is revealed implied

by event B if every state that the DM believes is possible after learning B is also an element

of A. Dynamic Coherence requires that this “revealed preference” over events is acyclic.

Axiom 3 (Dynamic Coherence). For any A1, . . . , An ⊆ S, if S \ Ai is %Ai+1-null for each

i ≤ n− 1 and S \An is %A1-null, then %A1=%An .

If Aci is Ai+1 null, then Ai is revealed implied by Ai+1. Since Dynamic Coherence

implies this relation is acyclic, the revealed preference satisfies SARP. Using the result of

Matzkin (1991), an extension of Afriat (1967) to general budget sets, SARP is a necessary and

sufficient condition for having a subjective distance function for belief selection.

Theorem 1. The following are equivalent.

(i) A family of preference relations {%E}E∈Σ admits an IEU representation.

(ii) It satisfies SEU Postulates, Consequentialism, and Dynamic Coherence.

(iii) It admits an IEU representation with respect to a continuous, strictly convex distance

function.

For a simple intuition behind our result, note that under SEU Postulates and Conse-

quentialism, our DM has a conditional belief µE with support contained in E. Consequently,

we may view each event E as generating a “budget set,” ∆(E), from which the DM may choose

her conditional belief. The conditional belief, µE , is therefore “revealed preferred” to any other

belief in the budget set. Dynamic Coherence ensures that this revealed preference satisfies

SARP, allowing for the construction of a distance measure that generates these beliefs.

3.1 Bayesian Updating

Our main theorem does not require Dynamic Consistency, and in fact our axioms are

independent of this classic postulate. Similar to results from Ghirardato (2002) and Epstein

and Breton (1993), imposing Dynamic Consistency in our setting ensures that conditional

beliefs are consistent with Bayesian updating whenever possible. Recall that fEh denotes that

conditional act that returns f(s) for s ∈ E and h(s) otherwise.

Axiom 4 (Dynamic Consistency). For all non-null events E ∈ Σ and f, g, h ∈ F ,

fEh % gEh if and only if f %E g.
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Proposition 2. A family of preference relations {%E}E∈Σ satisfies SEU Postulates, Con-

sequentialism, Dynamic Coherence, and Dynamic Consistency if and only if it admits

an IEU representation and µE = BU(µ,E) for each non-null E.

Since Dynamic Consistency has been discussed extensively, (both Ghirardato (2002)

and Epstein and Breton (1993) include excellent discussions), we will not discuss this result

further. Instead, we simply wish to remark that Dynamic Consistency makes no restric-

tions on beliefs evolve after ex-ante null events, which is a major drawback of the standard

model. One of the primary motivations of IEU is to provide a coherent common framework

for handling belief revision after null events, which we discuss in section 4.

3.2 Non-Bayesian Updating: Characterizing h-Bayesian Updating

One of the key insights provided by IEU is that distance minimization can be viewed as a

unifying framework that accommodates many updating behaviors. In this section, we expand

upon this insight by characterizing two special cases of h-Bayesian updating.

The h-Bayesian distance involves distortion of the prior before conditioning. Both of

the special cases that we characterize involve disciplining the ways in which these likelihoods

may be distorted. We begin by introducing our first postulate, which is a mild monotonicity

condition ensuring that the DM preserves the “more likely than” judgments implied by her

prior.

Axiom 5 (Monotonicity). For any E ∈ Σ, s, s′ ∈ E, and x, y ∈ X,

x{s}y % x{s′}y if and only if x{s}y %E x{s′}y.

To understand Monotonicity, consider a DM placing bets on the outcome of a draw from

an urn containing red, blue, and yellow balls. Suppose S = {r, b, y}, µ = (16/20, 3/20, 1/20),

and E = {b, y}. Under Dynamic Consistency, relative likelihoods are exactly preserved

and so a Bayesian DM continues to believe that b is three times as likely as y upon learning

E. Without Dynamic Consistency, the IEU would place no restrictions on the conditional

relative likelihoods of b and y. Since our DM believed that E was quite unlikely ex-ante, it

is plausible that she is now less confident in her judgment about the relative odds of b and

y. Consequently, she may desire to further modify her belief so that y is becomes more likely.

For example, she may now think that b is only twice as likely as y, resulting in the posterior

µE = (2/3, 1/3). Notice that b is still more likely that y; she does not entirely disregard her

previous judgments. This restriction is precisely the content of Monotonicity.

Proposition 3. A family of preference relations {%E}E∈Σ satisfies SEU Postulates, Conse-

quentialism, Dynamic Coherence, and Monotonicity if and only if it admits an IEU rep-
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resentation and there is a strictly increasing hE : [0, 1]→ [0, 1] such that µE = BU(hE(µ), E)

for any non-null E.

Since hE is increasing, the comparative likelihood judgments from her prior are maintained

by her posterior. Notice however that hE is event dependent, and so the way in which beliefs

are adjusted may change across events. The following axiom strengthens Monotonicity to

ensure that her distortions are consistent across events.

Axiom 6 (Independence of Irrelevant Information). For any E1, E2 ∈ Σ, s, s′ ∈ E1∩E2,

and x, y, z ∈ X,

x{s}z %E1 y{s′}z implies x{s}z %E2 y{s′}z.

We can now characterize monotone h-Bayesian updating.

Proposition 4. A family of preference relations {%E}E∈Σ satisfies SEU Postulates, Con-

sequentialism, Dynamic Coherence, and Independence of Irrelevant Information if

and only if it admits an IEU representation and there is a strictly increasing h : [0, 1]→ [0, 1]

such that µE = BU(h(µ), E) for any non-null E.

4 Updating After Zero-probability Events

One of the well-known weaknesses of Bayesian updating is that it is not defined for zero-

probability events. This is particularly problematic in game theoretic settings, where beliefs

are induced by the equilibrium strategies and any action off the equilibrium path is a zero-

probability event. In contrast, our notion of belief updating is well-defined for zero-probability

events. Thus, IEU provides a way to extend (non-)Bayesian updating to all events.

4.1 Conditional Probability System

Perhaps the most well-known method for handling choice conditional on (ex-ante) null-events

is the conditional probability system (CPS) introduced by Myerson (1986a,b). The devel-

opment of CPS is closely related the developments of Perfect Bayesian Equilibrium and its

refinements. PBE requires that agents’s beliefs are Bayes-consistent with the prior whenever

possible. However, PBE does not make any restrictions when Bayes’ rule is not applicable.

Hence, PBE may allow for some unreasonable beliefs for actions off the equilibrium path. The

Sequential Equilibria of Kreps and Wilson (1982) refines the PBE by requiring that any belief

in sequential equilibria should be a limit of full-support beliefs after applying Bayes rule ac-

cordingly. Checking whether conditional beliefs can be supported by full-support beliefs is not

easy task and Myerson (1986a,b) shows that this limit requirement of sequential equilibria is

equivalent to the following simple condition.
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Definition 7. A conditional probability system is a collection of conditional probability

functions p(·|E), one for each event E ∈ Σ, such that for all G ⊆ F ⊆ E, F 6= ∅.

(4) p(G|E) = p(G|F )p(F |E),

When p(F |E) 6= 0, Equation 4 reduces to Bayes’ rule. However, when p(F |E) = 0, it

implies that p(G|E) = 0 as well, and so it places no restriction directly on p(G|F ).

A major distinction between CPS and IEU is that CPS requires Bayesian updating when-

ever possible, whereas a major goal of the current paper is to provide a unifying framework

that allows for Bayesian and non-Bayesian updating. Further, the CPS framework places no

restrictions on how beliefs change conditional on null events, whereas IEU disciplines belief

revision even for null events.

Axiom 7 (Conditional Consistency). For all E ∈ Σ, %E-feasible A ⊂ E, and f, g, h ∈ F

fAh %E gAh if and only if f %A g.

Conditional Consistency implies Dynamic Consistency but also has bite on events

that are (ex-ante) %S-null. In essence, Conditional Consistency extends the logic of Dy-

namic Consistency to all conditional preferences E and nested events that are %E-feasible.

Theorem 2. A family of preference relations {%E}E∈Σ satisfies SEU Postulates, Conse-

quentialism, and Conditional Consistency if and only if it admits a CPS representation.

Proposition 5. Suppose a family of preferences {%E}E∈Σ admits a CPS representation. Then

there are µ0, . . . , µK ∈ ∆(S) such that sp(µ0), . . . , sp(µK) is a partition of S and for any E ∈ Σ,

µE = BU(µk
∗
, E) where k∗ = min{k | sp(µk) ∩ E 6= ∅}.

Moreover, there are M0, . . . ,MK > 0 such that {%E}E∈Σ has an IEU representation with

respect to the following distance function:

dµ(π) = −
∑

si∈sp(π)

µk
∗
i σ
( πi
µk
∗
i

)
−Mk∗ |{sp(π) ∩ sp(µk∗)}|,

where k∗ = min{k | sp(µk) ∩ sp(π) 6= ∅}.

Proposition 5 shows that the CPS representation is generated by a support-dependent

bayesian distance. Further, posterior selection under the CPS representation is “ordered” and

the DM selects the first µk that is consistent with the event E.
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4.2 Hypothesis Testing

A more recent addition to the literature on updating after zero-probability events is the Hy-

pothesis Testing model (HT) of Ortoleva (2012). Such an agent will update using Bayes’ rule

for expected events: events with probability above some threshold ε. When an event E is

unexpected (i.e., under the agent’s prior µ(E) ≤ ε), the agent rejects her prior, updates a

second-order prior over beliefs, and selects a new belief according to a maximum likelihood

procedure. Formally, a HT representation is given by a triple, (µ, ρ, ε), consisting of a prior

µ ∈ ∆(S), a second order prior ρ ∈ ∆(∆(S)), and a threshold ε ∈ [0, 1) with the requirement

that µ = arg maxπ∈∆(S) ρ(π). Then, for any E ∈ Σ,

µE =

BU(µ,E) if µ(E) > ε,

BU(πρE , E) otherwise.

where πρE = arg maxπ∈∆(S) ρ(π)π(E).

It turns out that HT is behaviorally equivalent to IEU.

Corollary 1. A family of preference relations {%E}E∈Σ admits an HT representation if and

only if is admits an IEU.

This corollary immediately follows from our Theorem 1 and Theorem 1 of Ortoleva (2012).

However, it is important to note that our proofs are quite different. Further, we also explicitly

construct a distance function that generates any HT representation.

For an intuition behind the construction of this distance, note that HT involves multiple

beliefs and is non-Bayesian only for certain events (e.g., unexpected events). For simplicity,

consider the case of ε = 0. Then, an event is expected if it is given positive probability by

the prior, and so an event is surprising if and only if it was considered “impossible” under the

prior. Thus, the support of the event and prior have a non-empty intersection in the former

case and are disjoint in the latter. Correspondingly, the distance function must distinguish

between potential beliefs with over-lapping supports and non-overlapping supports. However,

once this restriction is accommodated, the distance function is almost Bayesian.

By Proposition 2 of Ortoleva (2012), we can assume that ρ(π) 6= ρ(π′) for any two distinct

π, π′ ∈ ∆ without loss of generality.

Proposition 6. For any HT representation, (µ, ρ, ε), let

dµ(π) =

−
∑

s∈sp(π) µ(s)σ
(π(s)
µ(s)

)
−M |{sp(π) ∩ sp(µ)}| if µ(sp(π)) > ε,

−
∑

s∈sp(π) π
ρ
sp(π)(s)σ

( π(s)
πρ
sp(π)

(s)

)
+M(|S|+ 1− |sp(π)|) otherwise.

11



Suppose M > σ(1)− σ(0). Then for any E ∈ Σ,

µE =

BU(µ,E) if µ(E) > ε,

BU(πρE , E) otherwise.

The details of this construction can be found in Appendix A.2.

4.3 Relating HT and CPS

In light of Corollary 1 and Proposition 5, it follows that CPS is a special case of HT.

Theorem 3. For each family of {%E}E∈Σ CPS preferences, there exists an equivalent family

of HT preferences with ε = 0.

The construction of an HT representation for a given CPS is instructive however, as it

illustrates a key behavioral distinction between the two models. Indeed, it sheds light on why

this implication cannot be reversed. Of course, this is not surprising for HT with ε > 0.

However, even when ε = 0, HT preferences may be inconsistent with CPS preferences. The

reason for this is due to the way in which the selection of new beliefs occurs in HT. The

following example illustrates this distinction.

Example 1. Consider rolling a die, which may land on a face, a corner, or an edge. Suppose

that we enumerate the faces (from 1 to 6, as usual) as well as the eight corners (from 1 to 8)

and the twelve edges (from 1 to 12). Hence, the state space is

(5) S =
{
s1

1, . . . , s
6
6︸ ︷︷ ︸

:=F

, s1
7, . . . , s

8
14︸ ︷︷ ︸

:=C

, s1
15 . . . s12

26︸ ︷︷ ︸
:=E

}
Then let A1 = C ∪ E, A2 = E, and suppose πS is uniform over F , πA1 is uniform over C and

πA2 is uniform over E. Let ρ(πS) = 1−2γ, ρ(πA1) = γ+α, ρ(πA2) = γ−α, for 0 < α < γ < 1
14

and let (u, ρ, 0) be the corresponding Hypothesis Testing Representation.

Consider the event B = {s8
14, s

1
15, s

2
16, s

3
17} and note that B ∩ C 6= ∅ 6= B ∩ E. Intuitively,

B “crosses” two distinct levels of ex-ante null events, and becomes non-null after either A1 or

A2: πA1(B) > 0 and πA2(B) > 0. For sufficiently small α each of the following hold.

1. %S is represented by (u, π).

2. %A1 is represented by (u, πA1). This follows because πA1(A1) = πA2(A1) = 1 and for

α > 0,

πA1(A1)ρ(πA1) = γ + α > γ − α = πA2(A1)ρ(πA2).

12



3. %B is represented by (u, πB), where πB = BU(πA2 , B) because

πA1(B)ρ(πA1) =

(
1

8

)
(γ + α) <

(
3

12

)
(γ − α) = πA2(B)ρ(πA2).

for small enough α.

The family of conditional beliefs generated by this HT does not constitute a CPS. Consider

events A1, B = {s8
14, s

1
15, s

2
16, s

3
17} and B′ = {s8

14}. Hence, B′ ⊆ B ⊆ A1. However, we have

πA1(B′)︸ ︷︷ ︸
:=p(B′|A1)

= 1 6= 0 · 1

8
= πB(B′)︸ ︷︷ ︸

:=p(B′|B)

· πA1(B)︸ ︷︷ ︸
:=p(B|A1)

,

violating the condition in Definition 7.

The relationships between the three models is illustrated in Figure 1.

HT with ε > 0 HT with ε = 0

CPS

IEU=HT

Figure 1: Illustration of Model Relationships

4.4 Other approaches

Finally, another approach to dealing with null events is the Lexicographic Probability System

(LPS) of Blume et al. (1991). While LPS also involves a collection of probability distributions,

LPS utilizes the entire collection of distributions in the evaluation process via a lexicographic

ordering. Consequently, a DM described by LPS will violate Archimedean Continuity, (see Ax-

iom 1(ii)) of the ex-ante preference. Further, LPS replaces (Savage) null-events with “infinitely

more likely than,” so that null-events are effectively precluded.

5 Incorporating a Signal Structure

We close by illustrating that our framework can incorporate standard signal structures utilized

in experimental settings and games by considering a richer state space (e.g., S has a product

structure).

13



Let K be the payoff relevant state space and M be the set of all signals. For each k ∈ K
and m ∈M , let P (k) be the (unconditional) probability that the payoff relevant state k occurs

and P (m|k) be the (conditional) probability that the DM receives the signal m when the

state is k. Indeed, learning a signal will be equivalent to learning an event in an expanded

state space, S = K ×M . Specifically, receiving signal m is equivalent to learning the event

{(k,m)}k∈K in S.

Let µ be the prior on S, so that µkm = P (m|k)P (k) for each (k,m). In the case of Bayesian

updating, the connection between our framework and the signal structure is straightforward.

Note that the KL divergence generates Bayesian updating in the signal structure framework:

P (k|m) =
µkm∑

k′∈K µk′m
=

P (m|k)P (k)∑
k′∈K P (m|k′)P (k′)

.

A similar connection is possible for non-Bayesian updating rules. For example, consider

now the following distance function:

dµ(π) =
∑

(k,m)∈K×M

(∑
m∈M

µk′m

)d−c
µckm log

(
πkm
µkm

)
.

This distance generates

P (k|m) =

(∑
m∈M µk′m

)d−c
µckm∑

k′∈K
(∑

m∈M µkm
)d−c

µckm

=
(P (m|k))c (P (k))d∑

k′∈K(P (m|k′))c (P (k))d
,

the non-Bayesian updating rule proposed by Grether (1980).

6 Related Literature

A few papers have studied minimum distance updating rules. Perea (2009) axiomatizes imaging

rules, which are minimum distance rules utilizing Euclidean distance. Under imaging, for each

E ⊆ S a posterior π is selected that minimizes dµ(π) = ‖φ(µ) − φ(π)‖, where π ∈ ∆(E) and

φ is an affine function. Our model includes this as a special case. More recently, Basu (2019)

studies AGM (Alchourrón et al., 1985) belief revision. Within this setting, he establishes

an equivalence between updating rules that are AGM-consistent, Bayesian, and weak path

independent and lexicographic updating rules. He then turns to minimum distance updating

rules and shows that every support-dependent lexicographic updating rule admits a minimum

distance representation. In contrast, we allow for non-Bayesian updating.

As we have shown, our model can capture some forms of non-Bayesian updating, which

has a large literature (see Benjamin (2019) for an excellent summary of experimental findings

and behavioral models). Some axiomatic papers on non-Bayesian updating include Epstein

14



(2006) and Epstein et al. (2008). Both papers utilize Gul and Pesendorfer (2001)’s theory of

temptation to study a DM who may be tempted to use a posterior that is inconsistent with

Bayesian updating. More recently, Kovach (2020) utilizes the conditional preference approach

and characterizes conservative updating : posterior beliefs are a convex combination of the prior

and the Bayesian posterior.

A Proofs of Main Results

A.1 Proof of Theorem 1

Proof of Theorem 1. Note that (iii) trivially implies (i). Let us first show that (i) implies

(ii). Suppose {%E} admits an IEU representation with respect to (µ, u, dµ). The IEU rep-

resentation indeed satisfies SEU postulates. We now prove the necessity of Consequentialism

and Dynamic Coherence.

Consequentialism. Take any E ∈ Σ and f, g ∈ F such that f(s) = g(s) for all s ∈ E. Since

µE(E) = 1 and f(s) = g(s) for all s ∈ E, we have∑
s∈S

µE(s)f(s) =
∑
s∈E

µE(s)f(s) =
∑
s∈S

µE(s)g(s) =
∑
s∈E

µE(s)g(s);

i.e., f ∼E g.

Dynamic Coherence. Take any A1, . . . , An ⊆ S such that S \ Ai is %Ai+1-null for each

i ≤ n − 1 and S \ An is %A1-null. Equivalently, µAi+1(Ai) = 1 for each i ≤ n − 1 and

µA1(An) = 1. Since µAi+1 ∈ ∆(Ai) and µAi = arg minπ∈∆(A) dµ(π), dµ(µAi) ≥ dµ(µAi+1).

Similarly, we have dµ(µAn) ≥ dµ(µA1). Therefore, we have

dµ(µA1) ≥ dµ(µA2) ≥ . . . ≥ dµ(µAn) ≥ dµ(µA1);

i.e., dµ(µA1) = dµ(µAn). Hence, µA1 = µAn ; i.e., %A1=%An .

Let us now show that (ii) implies (iii). Suppose {%E}E∈Σ satisfies SEU Postulates,

Consequentialism, and Dynamic Coherence. Since % satisfies SEU postulates, there is

(µ, u) such that % has a SEU representation with (µ, u). Since %E satisfies SEU postulates,

there is (µE , uE) such that %E has a SEU representation with (µE , uE). By Invariant Risk

Preference, uE(p) ≥ uE(q) and u(p) ≥ u(q) for any p, q ∈ ∆(X). Without loss of generality,

let us assume that uE = u. Hence, %E has a SEU representation with (µE , u).

Let us know discuss implications of Consequentialism. For any E ∈ Σ and all f, g ∈ F
and p, q ∈ ∆(X) such that p � q and f(s) = g(s) = p for all s ∈ E and f(s) = p and g(s) = q
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for any s ∈ Ec. By Consequentialism, we have f ∼E g; equivalently,∑
s∈S

µE(s)f(s) = u(p) =
∑
s∈E

µE(s)g(s) = µE(E)u(p) + (1− µE(E))u(q).

In other words, we have µE(E) = 1; i.e., µE ∈ ∆(E).

Afriat’s theorem for general budget sets. To obtain the Inertial EU representation, we

use an extension of Afriat’s theorem (Afriat (1967)) for general budget sets due to Matzkin

(1991). To state Afriat’s theorem for general budget sets, some notations are necessary. Let

Z be a convex, bounded subset of Rn+. Let D = (xt, Bt)t∈T be a data set where xt ∈ Bt is the

observed consumption bundle that is chosen from the budget set Bt ⊂ Z at observation t ∈ T .

We assume that for each t ∈ T , (xt, Bt) is co-convex subset of Z; i.e., (i) Z \ Bt is open and

convex; (ii) for any e ≥ 0 and x ∈ Z \Bt, x + e ∈ Z implies x + e ∈ Z \Bt; (iii) for any e > 0,

xt + e ∈ Z implies xt + e ∈ Z \Bt.

Let us now define the following revealed preference relation on {xt}t∈T . We say xt is

revealed preferred to xs, denoted by xt %R xs if xs ∈ Bt. We say xt is strictly revealed

preferred to xs, denoted by xt �R xs if xs ∈ Bt and xt 6= xs. Finally, we say the data set

D = (xt, Bt)t∈T satisfies the Strong Axiom of Revealed Preferences (SARP) if %R is acyclic;

i.e., there is no sequence xt1 ,xt2 , . . . ,xtL such that xti %R xti+1 for each i ≤ n − 1 and

xtL �R xt1 .

Theorem 1 of Matzkin (1991). The data set D = (xt, gt)t∈T satisfies SARP if and only if

there is a strictly increasing, continuous, strictly concave utility function u : Z → R such that

for any t ∈ T ,

u(xt) > u(x) for any x ∈ Bt \ {xt}.

To apply the above theorem, let us arbitrarily label the set of all events: Σ = {Et}t∈T .

Then let Z = ∆(S) and xt = µEt and Bt = ∆(Et) for each t ∈ T . Let D = (xt, Bt)t∈T .

Note that Z is a convex, bounded subset of Rn+. Let us show that (xt, Bt) is co-convex

subset of Z. First, Z \Bt is open and convex in Z. Second, for any x ∈ Z and e ≥ 0, x+e ∈ Z
implies e = 0. Hence, (ii) and (iii) of co-convexity are trivially satisfied.

Let us now show that Dynamic Coherence implies that D = (xt, Bt)t∈T satisfies SARP.

Take any sequence xt1 ,xt2 , . . . ,xtL such that xti %R xti+1 for each i ≤ L− 1 and xtL %R xt1 .

To prove SARP, we shall show that xtL = xt1 . By definition of the revealed preference relation

%R, xti %R xti+1 is equivalent to xti+1 ∈ ∆(Eti). In other words, µEti+1
∈ ∆(Eti) for each

i ≤ L− 1. Similarly, µEt1 ∈ ∆(EtL).

Note that µEti+1
∈ ∆(Eti) implies µEti+1

(Eti) = 1; equivalently, µEti+1
(S \ Eti) = 0. In

other words, S \ Eti is %Eti+1
-null for each i ≤ L − 1. Similarly, S \ EtL is %Et1

-null. By
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Dynamic Coherence, %Et1
=%EtL

; equivalently, µEt1 = µEtL . In other words, xt1 = xtL

Since D = (xt, Bt)t∈T satisfies SARP, by Theorem 1 of Matzkin (1991), there is a strictly

increasing, continuous, strictly concave utility function u : Z → R such that for any t ∈ T ,

u(xt) > u(x) for any x ∈ Bt \ {xt}.

Let dµ = −u. Then since Bt = ∆(Et) and xt = µEt ,

µEt = arg min
π∈∆(Et)

dµ(π).

Finally, note that dµ is continuous and strictly convex.

A.2 Proof of Proposition 6

Consider a Hypothesis Testing representation (µ, ρ, ε).

Proof. We first establish some notation. Let πρA = arg maxπ∈∆(S) ρ(π)π(A) for any ρ ∈
∆(∆(S)). We denote the support of π by sp(π). For any B ⊆ S, let

f(B) = −
∑
s∈B

µ(s)σ(
µ(s)

µ(B)
) when µ(B) > 0

and

g(B) = −
∑
s∈B

πρB(s)σ(
πρB(s)

πρB(B)
).

Note that 0 ≤ f(B), g(B) < +∞. Let

M = max
B,B′⊆S

{|f(B)− f(B′)|, |f(B)− g(B′)|, |g(B)− g(B′)|}+ 1.

Recall the distance function:

dµ(π) =

−
∑

s∈sp(π) µ(s)σ
(π(s)
µ(s)

)
−M |{sp(π) ∩ sp(µ)}| if µ(sp(π)) > ε,

−
∑

s∈sp(π) π
ρ
sp(π)(s)σ

( π(s)
πρ
sp(π)

(s)

)
+M(|S|+ 1− |sp(π)|) otherwise.

Take any A ⊆ S and s ∈ A.

Case 1. We shall show that µA = BU(πρA, A) when µ(A) ≤ ε.

For any π ∈ ∆(A), since π(A) = 1, we have sp(π) ⊆ A. Therefore, µ(sp(π)) ≤ µ(A) ≤ ε.
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Hence, we have

dµ(π) = −
∑

s∈sp(π)

πρsp(π)(s)σ(
π(s)

πρsp(π)(s)
) +M(|S|+ 1− |sp(π)|) for any π ∈ ∆(A).

Take any B ⊆ A. For any π ∈ ∆(A) with sp(π) = B,

dµ(π) = −
∑
s∈B

πρB(s) log(π(s)) +M(|S|+ 1− |B|).

Since M(|S| + 1 − |B|) is fixed for given B, the above distance function leads to Bayesian

posterior µB such that µB(s) =
πρ
sp(π)

(s)

πρ
sp(π)

(B)
for any s ∈ B. Hence, dµ(µB) = g(B) + M(|S| +

1 − |B|). Note that if B ⊂ A, then dµ(µB) > dµ(µA) since g(B) + M(|S| + 1 − |B|) >

g(A) + M(|S| + 1 − |A|), which is equivalent to M(|A| − |B|) ≥ g(A) − g(B) and by the

definition of M , we have M(|A| − |B|) ≥ M > |g(A) − g(B)| ≥ g(A) − g(B). Therefore, µA

minimizes dµ(π) subject to π ∈ ∆(A). Hence, µ∆(A)(s) = µA(s) =
πρA(s)

πρA(A)
.

Case 2. We shall prove that µA = BU(µ,A) when µ(A) > ε. Take any π ∈ ∆(A).

Case 2.1. µ(sp(π)) ≤ ε.

By the argument for µ(A) ≤ ε, dµ(µA) ≤ dµ(π) for any π ∈ ∆(A) with µ(sp(π)) ≤ ε.

Moreover, dµ(µA) = g(A) + M(|S| + 1 − |A|) ≥ g(A) + M . Hence, g(A) + M ≤ dµ(π)

for any π ∈ ∆(A) with µ(sp(π)) ≤ ε. We now show that there is a π ∈ ∆(A) such that

dµ(π) < g(A) +M .

Let πA be a Bayesian posterior such that πA(s) = µ(s)
µ(A) for any s ∈ A. Then sp(πA) =

sp(µ) ∩A. Hence, µ(sp(πA)) = µ(sp(µ) ∩A) = µ(A) > ε. Therefore,

dµ(πA) = −
∑

s∈sp(πA) µ(s) log( µ(s)
µ(A))−M |sp(πA) ∩ sp(µ)|. Moreover,

dµ(πA) = −
∑

s∈sp(πA)

µ(s) log(
µ(s)

µ(A)
)−M |sp(πA) ∩ sp(µ)| ≤ −

∑
s∈A

µ(s) log(
µ(s)

µ(A)
) = f(A)

since sp(πA) ⊆ A and µ(s) log( µ(s)
µ(A)) ≤ 0 for each s. Hence, dµ(πA) ≤ f(A) < g(A) + M by

the definition of M .

Case 2. µ(sp(π)) > ε.

In ther case, we have dµ(π) = −
∑

s∈sp(π) µ(s) log(π(s)) −M |{sp(π) ∩ sp(µ)}|. Take any

B ⊆ A ∩ sp(µ). Take any π ∈ ∆(A) such that sp(π) = B. Since |{sp(π) ∩ sp(µ)}| = |B|,

dµ(π) = −
∑
s∈B

µ(s) log(π(s))−M |B|.

When B is fixed, the above leads to Bayesian posterior πB such that πB(s) = µ(s)
µ(B) for any
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s ∈ B. In other words, πB minimizes dµ(π) subject to sp(π) = B. Hence, we obtain dµ(πB) =

f(B)−M |B|.
By the definition of M , if B ⊂ A ∩ sp(µ), then

dµ(πB) = f(B)−M |B| > dµ(πA∩sp(µ)) = f(A ∩ sp(µ))−M |A ∩ sp(µ)|.

Hence, πA∩sp(µ) minimizes dµ(π) subject to µ ∈ ∆(A). Finally, note that πA∩sp(µ) = πA since

µ(A ∩ sp(µ)) = µ(A) and πA(s) = µ(s)
µ(A) = µ(s)

µ(A∩sp(µ)) = πA∩sp(µ)(s) for each s ∈ A. Therefore,

µ∆(A)(s) = πA(s) =
µ(s)

µ(A)
.

B Consequentialism and Weighted IEU

In this section, we relax generalize our main result by relaxing Consequentialism. Following

out analogy to revealed preference theory, Consequentialism ensures that E is equivalent

to the budget set ∆(E). By dropping Consequentialism, we allow for the DM to perceive

a subjective budget set from which she may choose. We do however impose two natural

conditions on her behavior.

Definition 8 (WIEU). A family of preference relations {%E}E∈Σ admits an Weighted

Inertial Expected Utility representation if there are a Bernoulli utility function u : X → R,

a prior µ ∈ ∆(S), a distance function dµ : ∆(S) → R, and a weight δ ∈ [0, 1] such that for

each E ∈ Σ, the preference relation %E admits a SEU representation with (u, µE), where

(6) µE ≡ δ µ+ (1− δ) arg min
π∈∆(E)

dµ(π).

Definition 9 (Conditional Null Event). We say E is a conditional %A-null event if there is

α ∈ (0, 1] such that for any f ∈ F and p, q ∈ ∆(X),

f E w ∼ p implies f E w ∼A αp+ (1− α)w.

wE q ∼ p implies wE q ∼A αp+ (1− α)q.

Axiom 8 (Conditional Dynamic Coherence). For any A1, . . . , An ⊆ S, if S \Ai is condi-

tional %Ai+1-null for each i ≤ n− 1 and S \An is conditional %A1-null, then %A1=%An .

Axiom 9 (Relative Tradeoff Consistency). For any E1, E2, A1, A2 ∈ Σ such that Ei is

conditional %Ai-null, p, q, r ∈ ∆, and α ∈ [0, 1],

If wE1 q ∼ p and wE1 q ∼A1 αp+ (1− α)q, then
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wE2 q ∼ r implies wE2 q ∼A2 α r + (1− α)q.

Second, we require that her subjective belief in E weakly increases after she is told that E

has occurred. While Consequentialism demands that the DM is convinced of E, our novel

axiom as Partial Trust only demands that she puts more stock in E.

Axiom 10 (Partial Trust). For any E ⊆ S and p, q, r ∈ ∆(X) with p � q,

pEq % r implies pEq %E r.

These two conditions ensure a structurally similar representation to Theorem 1. The main

distinction is that the the budget set is a function of the DM’s “trust” in the information. In

particular, for each event E our DM assign it a trust value t(E). The subjective budget set

can be viewed as a convex combination of the prior and ∆(E), where t(E) is the weight placed

on ∆(E). Note that whenever t(E) = 1, our DM satisfies consequentialism at E.

Conjecture 1. Suppose % has a full-support. The following are equivalent.

(i) A family of preference relations {%E}E∈Σ admits a Weighted Inertial EU represen-

tation.

(ii) It satisfies SEU Postulates, Conditional Dynamic Coherence, Partial Trust, and

Relative Tradeoff Consistency.

(iii) It admits an Weighted IEU representation with respect to a continuous, strictly convex

distance function.
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