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Abstract. In a decision problem comprised of multiple choices, a person may fail to take

into account the interdependencies between her choices. To understand how people make

decisions in such problems, we design a novel experiment and revealed preference tests that

determine how each subject brackets her choices. In separate portfolio allocation under risk,

social allocation, and induced payoff function shopping experiments, we find that 40-43%

of our subjects are consistent with narrow bracketing while only 0-15% are consistent with

broad bracketing. Classifying subjects while adjusting for models’ predictive precision, 74%

of subjects are best described by narrow bracketing, 13% by broad bracketing, and 6% by

intermediate cases.
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1. Introduction

Many decisions consist of multiple interdependent parts, and considering each in isolation

may lead to different choices than when considering the whole. For instance, a person might

invest differently in her retirement account if she evaluated the account’s distribution of

returns on its own instead of as part of her overall portfolio. How a person takes into
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account the whole of her problem when choosing in its individual parts, or how she brackets

the decision, is of first-order importance for understanding, interpreting, and predicting her

choices. For instance, bracketing determines which outcomes of a given choice are evaluated

as gains and which as losses, whether an outcome is evaluated as fair, and the rate of

intertemporal substitution and thus is a crucial determinant of behavior in many economic

settings.

While economists have devoted considerable intellectual energy to studying preferences to

explain choices in these and other domains, comparatively little is known about bracketing.

Existing experiments (e.g. Tversky & Kahneman 1981) show that some people do not broadly

bracket their choices, i.e. they fail to consider them jointly. However, there are other ways

that people could bracket, such as narrowly bracketing by focusing only on the part of the

problem at hand, or doing something in between these two extremes. Previous work has

limited power to detect failures of broad bracketing and even less to detect failures of narrow

bracketing, let alone other forms of behavior. Since preferences and choice bracketing jointly

determine behavior, separating the two presents a challenging inference problem. This leaves

open the empirical question: how do people bracket their choices?

To solve this inference problem, this paper develops a novel experimental design and

revealed preference tools that allow us to uncover how a person brackets her choices. In

our experiments, each decision is explicitly broken down into its component parts. The

alternatives chosen in its constituent parts determine the overall outcome for the decision,

and a person’s payoff depends only on the overall outcome, not on how it arose. Since both

bracketing and preferences jointly determine choice but neither are directly observed, we

provide revealed-preference tests for broad and narrow bracketing that control for unobserved

preferences. We conduct novel experiments that study a portfolio choice task under risk (Choi

et al., 2007) and a social allocation task (Andreoni & Miller, 2002; Fisman et al., 2007), and

then apply our revealed preference approach to test broad bracketing, narrow bracketing, and

a model of partial-narrow bracketing (Barberis et al., 2006; Rabin & Weizsäcker, 2009) while

controlling for unobserved preferences. We also conduct a third experiment that directly

induces a payoff function over fictitious goods, and thus measures choice bracketing directly.
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Across the three experiments, we find that 40-43% of subjects are consistent with narrow

but not broad bracketing, 0-15% are consistent with broad but not narrow bracketing, and the

remainder are inconsistent with both. Because it places considerable restrictions on behavior,

the substantial number of subjects whose behavior closely adheres to the testable content of

narrow bracketing provides strong support for narrow bracketing as a model of how people

make multiple interrelated choices. The existence of a notable minority of subjects whose

behavior closely adheres to broad bracketing, even when most do not, suggests population-

level heterogeneity in bracketing. Moreover, we find a lower fraction of broad bracketers in

the Risk and Social Experiments than in the Shopping Experiment. This suggests that broad

bracketing is more common in tasks that are more familiar or those where broad bracketing

“objectively” improves payoffs.

All economic modeling makes an assumption, usually implicit, about how agents bracket

their choices, so predictive accuracy crucially depends on whether assumptions about brack-

eting are behaviorally accurate. Our design allows us to compute how far each subject’s

behavior is from the set of behavior allowed by broad, narrow, and partial-narrow bracket-

ing, and then assign them to the model with the best predictive success (Selten, 1991). We

find that 74% of subjects are best described as narrow bracketers and 13% as broad brack-

eters, while only 6% are classified as partial-narrow bracketers, though these fractions differ

across our three experiments.1 The notable heterogeneity we find, and differences across

domains, suggest that work assuming homogeneous bracketing compromises its predictive

validity, regardless of whether narrow or broad is assumed. Moreover, the results suggest

that partial-narrow bracketing is not a predictively-useful generalization of its polar cases.

To illustrate how the design of our Risk and Social Experiments enables individual-level

tests of both narrow and broad bracketing that control for unobserved preferences, consider

Decision 1 of the Risk Experiment. It consists of two parts, in each of which a subject

allocates a fixed budget of tokens between two assets whose payoff depends on the result

of a (single) roll of a six-sided die. In Part 1, the subject has 10 tokens to divide between

Assets A and B; Asset A pays out $1 if the die rolls 1-3 and $0 otherwise, while Asset B

1The test does not classify the remaining 8%.
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pays $1.20 if the die rolls 4-6 and $0 otherwise. In Part 2, the subject has 16 tokens to

divide between Assets C and D; Asset C pays out $1 if the die rolls 1-3 and $0 otherwise,

while Asset D pays $1 if the die rolls 4-6 and $0 otherwise. This decision permits direct

tests of both narrow and broad bracketing that require only that the subject ranks lotteries

in accord with first-order stochastic dominance. Moreover, if we assume that people are

risk averse over 50-50 lotteries, then we additionally obtain a point prediction for broad

bracketers and a distinct point prediction in Part 2 for narrow bracketers, since in each

case the subject can maximize expected value while eliminating risk within their bracket.

These point predictions enable powerful individual-level tests of choice bracketing based only

on weak non-parametric assumptions about preferences. Collecting all such implications of

narrow and broad bracketing across the five decisions in our Risk and Social Experiments,

0% and 10% of subjects respectively pass our test of broad bracketing while 43% pass our

test of narrow bracketing in each experiment.

Our design also enables us to conduct novel revealed preference tests of broad and narrow

bracketing. These tests compare allocations in pairs of decisions to control for unobserved

preferences, and thus require even fewer assumptions about underlying preferences. In Deci-

sion 2 of the Risk Experiment, the set of feasible decision-level bundles over state-contingent

payments contains that of Decision 1. Thus a broad bracketer who chooses a bundle in their

intersection in Decision 2 must make choices that generate the same decision-level bundle

over payments in Decision 1. Similarly, Decision 5 is identical to Part 1 of Decision 1, so

a narrow bracketer should make the same choice in both. These revealed preference tests

can be deployed in almost any other economic setting, and allow us to efficiently conduct

individual-level tests of both broad and narrow bracketing with minimal assumptions about

preferences. We nevertheless obtain only slightly higher pass rates for broad bracketing (20%

in each experiment) and narrow bracketing (45% and 53%). These results establish that a

plurality of subjects pass our most demanding tests of narrow bracketing, while 0-20% pass

our tests of broad bracketing.

Our Shopping Experiment allows us to directly test how a person brackets by inducing their

payoff function over fictitious goods. Decision 1 consists of two “stores” that sell fictitious
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apples and oranges at different relative prices, and the subject has fixed budget at each store.

The subject’s payoff is determined according to an induced payoff function from the final

bundle of apples and oranges bought in all stores in the decision. In this design, narrow

and broad bracketing each make direct and distinct predictions – and these predictions are

the same for every subject who prefers more money to less. In fact, we also obtain point

predictions for intermediate cases of partial-narrow bracketing (Barberis et al., 2006; Rabin

& Weizsäcker, 2009) given the degree of narrow bracketing; we can thus identify where a

partial-narrow bracketer lies between the two extremes of broad and narrow bracketer from

her choices. Yet our experiment suggests that broad and narrow bracketing explain most of

the population, with 88% of subjects measured to parameter ranges consistent with one or

the other (24% and 64%, respectively).

The powerful, individual-level tests of both narrow and broad bracketing in our experi-

ments provide a comprehensive picture of how people bracket their choices. While the close

adherence to narrow bracketing by a large fraction of our subjects supports the conven-

tional wisdom among behavioral economists, we also find heterogeneity in bracketing that

varies across economic settings. Existing work that attributes heterogeneity in choices solely

to preferences may thus be misattributing some of this heterogeneity, leading to erroneous

conclusions about preferences and welfare. Our results also provide the first evidence that

intermediate degrees of partial-narrow bracketing are not useful for describing many people.

Nonetheless, we find violations of both narrow and broad bracketing as well as some people

consistent with neither of the two. The lack of evidence for intermediate cases suggests that

narrow bracketing may arise due to unawareness of how to bracket broadly, lack of appreci-

ation for the payoffs of doing so, or as a heuristic to simplify decision-making, rather than

an intermediate bias that pulls a decision-maker away from the broad bracketing benchmark

and towards narrow bracketing.

The paper proceeds as follows. Section 2 exposits formal models of broad, narrow, and

partial-narrow bracketing, our revealed preference conditions for each model, and simple

implications of these tests that we test in our experiments. We introduce our experimental

designs in Section 3, the results of our experiments in Section 4, and discuss their implications
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in Section 5. We discuss other work on choice bracketing in Section 6 and also provide a

detailed comparison of our design and identification strategy to Tversky & Kahneman (1981)

and Rabin & Weizsäcker (2009).

2. Theory

We start by introducing formal tests of broad, narrow, and partial-narrow bracketing

that we will apply to our experiment, but can also be deployed in wide variety of economic

settings. A reader uninterested in formal theory may skip to Section 3, where we explain

how our tests apply to our experiment.

We consider a data set describing the choices of a decision-maker (DM) who faces decision

problems involving bundles of goods in Rn
+. Each decision potentially consists of multiple

concurrent parts, but consumption following a decision problem only depends on the final

bundle of goods obtained from all parts in that decision. We index each decision by t and

each part by k.

We observe a finite sequence of T choices from decision problems

D =
{(
xt,k, Bt,k

)}
(t,k)

with xt,k denoting the alternative selected and Bt,k indicating the feasible set from part k of

decision t. The alternative consumed for a given decision t is labeled xt and is the sum of

the choices in each part k of t:

xt =
∑

{(t′,k′):t′=t}
xt

′,k′
.

We assume that each decision problem is faced independently from and in the same set of

economic circumstances as the others.2 Thus there are no complementarities across decision

problems – only among parts within the same decision problem.3 For instance, in each of our

experiments, one of T decisions is randomly selected and paid out. A real world analogue

consists of a scanner data set with purchases at different stores (parts — different k) in a
2The order of the parts does not matter, and in our experiment it will be varied. We assume that the
DM behaves identically in decisions t and s when Bt,k = Bs,π(k) for any permutation π over all the parts
corresponding to decision t.
3This is analogous to assumptions used in empirical revealed preference analysis Crawford & De Rock (2014)
and in empirical tests of decision theoretical axioms and models that use more than one decision.
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given time period (t), where the DM consumes these purchases after buying at all stores but

before the next period.

We are interested in understanding how the DM takes into account the other parts in a

decision when choosing in each part. In particular, does she take into account that good i

in part k is a perfect substitute for good i in part k′? Following the behavioral economics

literature, we consider three models of how a person brackets the parts of an underlying

decision.

Neoclassical economics considers rational DMs who take the interaction between all the

parts fully into account. We call this broad bracketing. Let Bt denote the feasible set of final

bundles for the decision problem,

Bt =

 ∑
{(t′,k′):t′=t}

xt
′,k′ : xt′,k′ ∈ Bt,k

 .
Formally, the data set is rationalized by broad bracketing if there exists an increasing utility

function u : Rn
+ → R so that xt maximizes u over Bt,

xt = arg max
x∈Bt

u (x)

for every t ∈ T . That is, a broad bracketer recognizes that her parts define an underlying

budget set, and she chooses in all parts to maximize some utility function over the underlying

budget set.

A number of experiments have documented that subjects fail to broadly bracket. Instead,

they propose that agents optimize within each part in isolation. That is, they ignore the

possibility of substituting across parts. We follow the literature in calling this narrow brack-

eting. Formally, the data set is rationalized by narrow bracketing if there exists an increasing

u : Rn
+ → R so that

xt,k = arg max
x∈Bt,k

u (x)

for every part (t, k). That is, the DM has an underlying preference over alternatives but

maximizes this preference part-by-part.4

4A narrow bracketer acts as if she perceives alternatives correctly and maximizes a well-behaved preference
over them, but misperceives the budget set. In contrast, a DM who misperceived correlation, e.g. Eyster
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Finally, we consider the possibility of an intermediate model lying between the two ex-

tremes. We focus on one example, called partial-narrow bracketing. Given α ∈ [0, 1], we say

that the data set is rationalized by α-partial-narrow bracketing if there exists an increasing

u : Rn
+ → R so that

xt,k = arg max
x∈Bt,k

αu (x) + (1− α)u
 ∑
{(t′,k′):t′=t,k′ 6=k}

xt
′,k′ + x


for every part (t, k). The partial-narrow bracketing model is inspired by Barberis et al.

(2006) and Barberis & Huang (2009), as adapted by Rabin & Weizsäcker (2009, p. 1513).5

The DM takes into account her choices in the other parts but only partially. This is captured

in the broadly bracketed utility term, which is weighted by (1 − α). The remaining weight

is attached to her payoff from her choice in the current part, as if there were no other parts.

When α = 0, the model coincides with broad bracketing, and when α = 1, it coincides

with narrow. The partial-narrow bracketing model defines a “personal equilibrium” (PE) of

an intrapersonal game (Kőszegi & Rabin, 2006). We can strengthen the model’s predictive

power by assuming that the DM selects her “preferred personal equilibrium” (PPE): the PE

that maximizes the α-weighted average of the sum of narrowly-bracketed utilities and the

overall broadly bracketed utility (i.e. the partial-narrow objective function).6

In real world settings, we observe neither the utility function u nor the degree of partial-

narrow bracketing α. Nonetheless, the three models have distinct testable implications for

observable choices. We turn now to describing these implications.

& Weizsäcker (2016) or Ellis & Piccione (2017), perceives the choice set correctly but misperceives the
alternatives themselves.
5The first two papers consider an average of the certainty equivalents, u−1(E[u(xt)]) +
b0

∑
{(t′,k′):t′=t,k′ 6=k}

v−1(E[v(xt,k)]). Unlike our specification, they allow for the narrow utility function

to differ from the broad utility function and assume expected utility. The algorithm in Theorem 1 can be
adapted to allow for different narrow and broad utility functions (u 6= v) at the cost of less predictive power.
Our specification is closest to Rabin & Weizsäcker (2009, p. 1513), although they also assume expected
utility.
6In this problem, a collection of bundles from each choice set the that jointly maximizes the partial-narrow
objective (known as a “choice acclimating personal equilibrium” in Kőszegi & Rabin (2007)) is also a PE and
is thus a PPE. As a result, standard tools can be used to determine that a maximizer exists under standard
assumptions on u and {Bt,k}k.
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Even though we do not observe u, observe that the subject’s choice reveals her preference

among a set of alternatives determined by how she brackets and that may or may not equal

her actual budget set. We use this observation to design direct tests of bracketing that

compare choices in pairs of decisions or parts of decisions. To conduct a test of narrow

bracketing, we compare a part of a first decision problem to the exact same choices when it

is part of another decision (for example, as its own standalone decision). To conduct a test

of broad bracketing, we compare two decisions for which the feasible aggregate alternatives

overlap. We formalize the above predictions as follows, specialized to the case where each

decision has at most two parts.

Prediction 1 (NB-WARP). Suppose D is rationalized by narrow bracketing.

If (xt,k, Bt,k), (xt′,k′
, Bt′,k′) ∈ D and xt′,k′ ∈ Bt,k ⊆ Bt′,k′ , then xt,k = xt

′,k′ .

Prediction 2 (BB-WARP). Suppose D is rationalized by broad bracketing.

For decisions t, t′ in D, if xt′ ∈ Bt ⊆ Bt′ , then xt = xt
′ .

These two predictions, as the names suggest, reflect the appropriate manifestations of

WARP in our setting. Narrow bracketing requires that WARP holds when comparing any

pair of parts of decisions, even when they are part of economically different decisions. Broad

bracketing implies that WARP holds at the decision problem level, comparing final bundles

that are feasible in both aggregate budget sets.

The next prediction reflects the appropriate manifestation of monotonicity in our setting.

Prediction 3 (BB-Mon). Suppose D is rationalized by broad bracketing.

For any decision t in D and any y ∈ Bt, y ≥ xt if and only if y = xt.

BB-Mon requires that the subject chooses on the frontier of her aggregate budget set in

a given decision. For a decision with two Walrasian budget sets with different price ratios,

this implies that the DM makes an extreme allocation in at least one of the budgets. In the

part where good i is relatively cheaper, she must exhaust the budget on good i, or consume
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none of good i in the other part. Otherwise, she forgoes the opportunity to consume more

of each good.7

The above predictions are necessary but not sufficient conditions for the various types of

bracketing. To obtain such conditions, we extend the logic of the above to include indirect

implications, in the same manner that Strong Axiom of Realed Preference (SARP) extends

the logic of the Weak Axiom (WARP). In our setting, a bundle x is directly revealed preferred

to y in the data set D, written xPDy, if there exists a budget set B so that (x,B) ∈ D and

y ∈ B\{x}, and the data set D satisfies SARP if the binary relation PD is acyclic. Theorem

1 combines these indirect implications to provide necessary and sufficient conditions for a

given data set to be consistent with a particular form of bracketing.

Broad bracketing implies that the DM maximizes her underlying preferences on a feasible

set defined at the decision-problem level, i.e. over Bt rather than Bt,k. With this specification

of budget sets, one can apply SARP to the ancillary data set

DBB =
{(
xt, Bt

)}
t∈T

.

These tests may need to be adapted (as in Forges & Minelli 2009) because Bt is typically

non-linear even if each Bt,k is linear.

Similarly, narrow bracketing implies that the DM maximizes an underlying preference on

a feasible set equal to each part, i.e. over Bt,k rather than Bt. As above, one can apply

SARP to an ancillary data set. In this case, the data set is

DNB =
{(
xi, Bi

)}N
i=1

where each data point (xi, Bi) corresponds to a data point from a part and vice versa;

formally, there exists a bijection b from {1, . . . , N} to the pairs (t, k) of decisions and parts

so that (xi, Bi) =
(
xb(i), Bb(i)

)
for every i. That is, DNB is the original data set but where

each part is treated as a separate, independent observation.

We clarify that applying SARP to the data sets DBB and DNB captures the complete

implications for broad and narrow bracketing, respectively.
7For narrow bracketing, the equivalent condition requires that the subject consumes on the budget line.
Since this is forced in our experimental implementation, we do not formally include it here.
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Theorem 1. The following are true:

(i) The data set DBB satisfies SARP if and only if D is rationalizable by broad bracketing,

(ii) The data set DNB satisfies SARP if and only if D is rationalizable by narrow bracketing,

and

(iii) There exists a decidable algorithm that outputs 1 if and only if D is rationalizable by

α-partial-narrow bracketing.

Theorem 1 provides standard, albeit indirect, tests for broad and narrow bracketing. These

conditions are readily applied and provide tests for the models of bracketing with only

minimal restrictions on preferences. Moreover, they can be easily augmented to include

additional structure on preferences. For instance, we impose that preferences are symmetric

when we apply these tests to our experiments.

The algorithm that tests α-partial-narrow bracketing is described in Appendix A. It re-

duces the problem of determining whether D is consistent with α-partial-narrow bracketing

to that of a standard linear programming problem. We elaborate on the ideas behind the

partial-narrow test here, and provide a formal proof in Appendix A.

The algorithm starts by mapping the DM’s choice in each part into both the narrow

bundle and final (broad) bundle it generates. It then performs a revealed preference analysis

on these bundle pairs that tests for the existence of a u such that utility of each pair is

the additive sum of the utilities of the narrow and final bundles each evaluated according

to u and weighted α and 1 − α respectively. The choices in the other parts determine the

overall feasible set that applies for a part. This test is based on Clark’s (1993) test of

expected utility over lotteries but where utilities are weighted by α and 1− α instead of by

objectively-given probabilities. The PPE version of the test then checks for the existence of

dominating combinations of choices across parts.

We can make tighter predictions by imposing more structure on the utility function that

rationalizes the data. The main piece of structure we impose is that the DM treats each of the

dimensions symmetrically, as induced by our experimental designs.8 The revealed preference

8Formally, the rationalizing utility function u invariant to permutations: for any bijection π : {1, . . . , n} →
{1, . . . , n}, u (x1, . . . , xn) = u

(
xπ(1), . . . , xπ(n)

)
.
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tests above are easily adapted to include symmetry. Specifically, symmetry implies that if

(x, y)R (x′, y′), then (y, x)R (x′, y′), (x, y)R (y′, x′), and (y, x)R (y′, x′). These restrictions

can be straightforwardly combined with each of NB- and BB-SARP and our partial-narrow

bracketing tests (PNB Tests). In Appendix B, we derive some immediate implications of

symmetry. For instance, a narrow bracketer should purchase at least as much of the cheaper

good in each part (NB-Sym). Similarly, a broad bracketer should purchase at least as much

of the good that has a cheaper overall cost in each part (BB-Sym). By inducing and assuming

symmetric preferences, we will increase the predictive power of all models, especially partial-

narrow bracketing.

3. Experimental Design

We design and conduct three experiments to test the models of bracketing in different

domains of choice and to measure α in an induced-value experiment. In each experiment,

a participant faces five decision rounds, each consisting of one or two parts.9 Each part

consists of all feasible integer-valued bundles of two goods obtained from a linear (or in one

case, a piece-wise linear) budget set. At the end of the experiment, exactly one decision

is randomly selected and all goods purchased in its parts determine the aggregate bundle

that determines payments.10 By design, there are no complementarities across decisions. We

implement this experimental design to study choice bracketing in three domains of interest:

portfolio choice under risk (Risk), a social allocation task (Social), and a consumer choice

experiment in which we induced subjects’ payoff function (Shopping).

In the Risk Experiment, each part of every decision asks the subject to choose an integer

allocation of tokens between two assets. Each asset pays off on only one of two equally likely

states: Asset A (or C) pays out only on a die roll of 1-3 whereas Asset B (or D) pays out

only on a die roll of 4-6. The payoff of each asset varies across decision problems and across

9Compared to choice-from-budget-set experiments like Choi et al. (2007), each subject faces fewer rounds of
decisions in our experiment and each budget set is coarser to allow us to conduct the experiment on paper.
We made this design choice to minimize potential for learning to bracket, and also to slow down subjects’
progression through the experiment to encourage slow and deliberate decision-making.
10In the Social Experiment we modify this procedure slightly: one person-decision pair per anonymous group
of two subjects is randomly selected to determine payments of another anonymous group of two subjects.
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parts. Because each decision problem uses assets with two equally likely states, preferences

over portfolios of monetary payoffs for each state should be symmetric across states.

In the Social Experiment, each part of every decision asks the subject to choose an integer

allocation of tokens between two anonymous other subjects, Person A and Person B. The

value of each token to A and B varies across decision problems and across parts. Because the

two recipients are anonymous, we expect preferences to be symmetric across money allocated

to A versus B.11

In the Shopping Experiment, each part of every decision asks the subject to choose a bundle

of integer quantities of fictitious “apples” and “oranges” subject to a budget constraint.

The monetary payment for the experiment is calculated from the final bundle in the round

that counts according to the function $pay = 2
5

(√
#apples +

√
#oranges

)2
.12 Any subject

who prefers more money to less will wish to maximize this payoff function regardless of

their underlying utility function, but how they attempt to do so will depend on how they

bracket in each decision. As a result, this induced-value design allows us to test models

of choice bracketing without having to estimate utility. Moreover, by assuming that their

utility function over goods takes the known form generated by the payoff function, that is,

u(#apples,#oranges) = 2
5

(√
#apples +

√
#oranges

)2
, α can be identified from any decision

that consists of two parts with different price ratios (Theorem 2 in Appendix A).

Our experimental budget sets, summarized in Table 1, are designed to allow us to conduct

our revealed preference tests in our Risk and Social Experiments, and to conduct analogous

tests that make use of the induced payoff function in our Shopping Experiment. Throughout,

we refer to part k of decision t as Dt.k, or Dt if a round has only one part.

We designed our experiment to enable the comparisons across decisions needed to perform

our NB- and BB-WARP tests. A one-part round, D5, is identical to D1.1 and to D3.2 in

Risk and Social Experiments, that is, B1,1 = B3,2 = B5,1. Similarly, the one-part round

Decision 4 is identical to D1.2, that is B1,2 = B4,1. This allows us to test by NB-WARP

11Note that the budgets in the Risk and Social Experiments were designed to be identical up to the translation
across domains.
12Subjects were provided with a payoff table (Appendix E, Figure 20) to calculate the earnings that would
result from any possible final bundle, so could maximize earnings without having to manually compute this
function.
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Risk Social Shopping

Decision Part I Asset A/C Asset B/D I VA VB I pa po

D1 1 10 ($1, $0) ($0, $1.20) 10 $1 $1.20 8 2 1
2 16 ($1, $0) ($0, $1) 16 $1 $1 24 2 2

D2 1 14 ($2, $0) ($0, $2) 14 $2 $2 32 2 1 (for 1st 8), 2

D3 1 10 ($1, $0) ($0, $1) 10 $1 $1 30 3 3
2 10 ($1, $0) ($0, $1.20) 10 $1 $1.20 24 3 2

D4 1 16 ($1, $0) ($0, $1) 16 $1 $1 12 1 1

D5 1 10 ($1, $0) ($0, $1.20) 10 $1 $1.20 48 6 4

I: income for a part (in tokens)
($x, $y) indicates one VA: value/token to A pa: price/apple

unit of asset pays $x/$y VB : value/token to B po: price/orange
if the die roll is 1-3/4-6

Table 1. Experimental Tasks

by comparing each of D1.1 and D3.2 to D5, and by comparing D1.2 to D4: NB-WARP

requires x1,1 = x3,2 = x5 and x1,2 = x4. In order to test BB-WARP, Decision 2 is a one-part

round that lies on top of the aggregate budget set of the two-budget-set round Decision 1,

B1,1 + B1,2 ⊂ B2,1. Given the nature of this overlap, BB-WARP requires that if x2
B ≥ 6

then 1.2x1,1
B + x1,2

D = 2x2
B. These tests can falsify narrow and broad bracketing without

assumptions on preferences other than completeness and transitivity.

Sessions took place in two experimental economics labs in Canada from June 2019 to Feb-

ruary 2020. Subjects were recruited from the labs’ student participant pools. The experiment

was conducted on paper. After the instructions had been read aloud and subjects were given

the opportunity to ask questions privately, participants completed a brief comprehension

quiz, and the experimenter individually checked answers and explained any errors. Only one

round was handed out to a subject at a time, and that round was collected before the next

round was handed out. Subjects indicated each choice by highlighting the line corresponding

to their choice for each part using a provided highlighter. Subjects were allowed no other aids
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at their desk when making choices. The order of decisions was varied across participants.13

Instructions, experimental materials, and details of the experimental procedure are provided

in Appendix E.14

4. Results

This section reports the results of our experimental tests of the models of bracketing. For

each test, we also compute results allowing for one or two “errors” relative to its requirements.

We define an error as how far we would need to move a subject’s allocations for them to

pass that test, measured in lines on the decision sheet(s).15 For instance, in Risk and Social,

a subject is within one error of passing a test if shifting one token from one asset/person to

the other in a single part could lead them to pass. They are within two errors of passing

a test if shifting two tokens from one asset/person to the other, either in the same part or

in different parts of any decision, could lead the revised allocations to pass. For predictions

that require Walrasian budget sets, we modify the tests to account for discreteness in our

experiment. We visually represent all the data underlying our tests in Appendix B.

4.1. Risk and Social Experiments: How subjects behave. Consider Decision 1 in the

Risk Experiment. Since Asset B in the first part is a perfect substitute for Asset D in the

second, logic familiar from comparative advantage requires that the subject first purchases it

in the part where it has a lower opportunity cost. Consequently, a broad bracketer necessarily

allocates all of her wealth in the first part to Asset B before she allocates any to Asset D in

the second (as required by BB-Mon). If preferences are symmetric across the two equally-

likely states, then broad bracketing further requires that x1,1
A = 0. With risk aversion, broad

bracketing makes even stronger predictions. The allocation x1,1
A = 0 and x1,2

C = 14 obtains

a risk-free return of $14, and any other feasible allocation results in a first- or second-order

13We perform every pairwise test of the effect of the order in which decisions were faced separately for each
experiment. Every such rank-sum test yields a p-value > 0.10 with the exceptions of D1.2 and D2 in the
Shopping Experiment (p = 0.07, 0.02 respectively); we attribute the latter difference to sampling variation,
while the former may reflect learning, which we discuss in 4.5.
14The three experiments were separately pre-registered through the Open Science Framework. Our analysis
follows our plans with only minor modifications for expositional purposes that do not affect the interpretation
of our results.
15Example decision sheets are provided in Figures 12, 13, 16, and 19 in Appendix E.
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stochastically dominated distribution over returns at the decision-level. In contrast, a narrow

bracketer facing Decision 1 allocates at least half of her budget to Asset B in Part 1. If she

is also risk-averse, then she allocates exactly half her budget in Part 2 to each asset.

Figure 1. D1 allocations in Risk

To compare how our subjects perform to this benchmark, Figure 1 plots the joint distri-

bution of their allocations in D1. The x-coordinate describes their allocation to Asset A in

D1.1, and the y-coordinate their allocation to Asset C in D1.1. The above discussion shows

that broad bracketers will have allocations on the y-axis, and a risk-averse broad bracketer

will select the allocation
(
x1,1
A , x1,2

C

)
= (0, 14). Narrow bracketers will select allocations with

x1,1
A ≤ 5, and risk-averse narrow bracketers will also select x1,2

C = 8. The plot shows that few

subjects are close to consistent with broad bracketing. Indeed, only a single subject makes

an allocation close to the prediction of risk-averse broad bracketing. Narrow bracketing,

even with risk aversion, does much better and is consistent with the modal allocation of(
x1,1
A , x1,2

C

)
= (4, 8). Three subjects select

(
x1,1
A , x1,2

C

)
= (0, 0), as a risk-seeking agent would

do under either narrow or broad bracketing.
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Figure 2. D3.2 vs. D5 allocations in Risk

In our design, narrow bracketing makes strong predictions across decisions that have a

part in common. For instance, D3.2 and D5 both ask subjects to allocate 10 tokens between

identical assets with identical prices. A narrow bracketer would make the same allocation

in each of the two parts. To show this, Figure 2 plots each subject’s allocation in D3.2

against their allocation in D5. The x-coordinate describes their allocation to Asset C in

D3.2, and the y-coordinate their allocation to its counterpart, Asset A in D5. A narrow

bracketer’s choices will fall on the 45-degree line as required by NB-WARP, and the farther

the allocations are from that line the farther the subject is from narrow bracketing. In the

plot, we can see that this prediction of narrow bracketing holds exactly for 54 of the 99

subjects.

4.2. Risk and Social Experiments: Revealed Preference Tests of NB-WARP, BB-

WARP, and BB-Mon. We begin by performing the simple, direct tests of bracketing

developed in Section 3: NB-WARP, BB-WARP, and BB-Mon (Table 2).

First, we show that very few subjects are broad bracketers. There is only a single pair of

decisions (1 and 2) where choices could directly violate BB-WARP. For that pair, we test

BB-WARP by comparing the final bundle for Decision 1 to the final bundle for Decision 2:

for any choice of x2 in Decision 2 with x2
A ≤ 8, the same final bundle can be achieved in
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Risk Social
# errors 0 1 2 0 1 2

NB-WARP (D1.1 and D5) 56 76 89 45 70 77
NB-WARP (D1.2 and D4)) 56 74 81 63 78 82
NB-WARP (D3.2 and D5) 54 76 83 49 75 80
NB-WARP (D1.1 and D3.2) 49 76 85 51 83 87

NB-WARP (all) 29 44 61 28 54 64
BB-WARP (D1 and D2) 13 20 87 16 20 94

BB-Mon (D1) 12 13 15 14 14 14
BB-Mon (D3) 14 16 18 17 17 18
BB-Mon (both) 7 8 10 12 12 12

# subjects 99 102
Entries count the # of subjects who pass test at the listed error allowance.

Table 2. Tests of NB-WARP and BB-WARP

Decision 1. In each of Risk and Social, only 20% of subjects are within one error of passing

BB-WARP.16

We next test BB-Mon in Decisions 1 and 3. Since good i in the first part is a perfect

substitute for good i in the second, logic familiar from comparative advantage requires that

the subject first purchases the good in the part where it has a lower opportunity cost. As

a consequence, she must make at least one extreme allocation among the two parts. For

instance in Decision 1, it requires that either x1,1
A = 0 or x1,2

D = 0. Even fewer subjects

are consistent with BB-Mon than with BB-WARP. In Risk and Social respectively, we find

that 8% and 12% of subjects are within one error of passing BB-Mon in both decisions.

Looking separately at Decisions 1 and 3, between 13% - 17% of subjects are within one error

of passing BB-Mon, so economically-significant bracketing-related dominance violations are

the norm rather than the exception among our subjects.

16Allowing for two errors substantially raises pass rates of BB-WARP in Risk and Social. While the vast
majority of subjects, 66% in Risk and 84% in Social, allocate equally between assets/people A and B in
Decision 2, if a subject allocates x2

A > 8, then BB-WARP is trivially satisfied.
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All told, the BB-WARP and BB-Mon tests provide evidence showing that 80%-92% of

subjects are not broad bracketers. These rates of violations of broad bracketing are qualita-

tively similar but higher to those found by Tversky & Kahneman (1981) (73%) and Rabin &

Weizsäcker (2009) (28%-66%), and very close to the structural estimates of the latter (89%).

In these prior experiments, each part consisted of a pairwise choice, so failures of broad

bracketing are detected only for a particular range of risk preferences. In contrast, there are

many ways a subject could reveal their failure to bracket broadly in our experiments, which

give us more power to detect failures.

While previous work only falsifies broad bracketing, our design allows us to test narrow

bracketing as well. We test NB-WARP by comparing the allocation in each of the two parts

that appear multiple times. Specifically, D1.1, D3.2, and D5 are all the same, as are D1.2

and D4. NB-WARP requires that she makes the same choice in a given part whenever it

appears. Figure 2 illustrates the behavior underlying the NB-WARP test comparing D3.2

vs. D5 test in Risk. The large mass of subjects on the 45-degree line shows that many but

not all subjects pass NB-WARP.

Our tests find that NB-WARP does much better than either BB-WARP or BB-Mon.

Between 75-77% of subjects in Risk and 69-81% of subjects in Social are within one error of

passing each of the pairwise NB-WARP tests. If we jointly conduct all possible NB-WARP

tests and allow for one error, 44% and 53% pass in Risk and Social respectively.17 While

narrow bracketing does much better, some subjects are inconsistent with both NB-WARP

and BB-WARP, even after allowing for one error. This could result from some other form of

bracketing, such as partial-narrow, or simply noisy behavior.

Result 1. When allowing for one error, 45% and 53% of subjects pass NB-WARP, 20% and

20% pass BB-WARP, and 16% and 17% pass BB-Mon in the Risk and Social Experiments,

respectively.

By design, symmetry is a natural restriction in our experiments – the two states are equally

likely in Risk, and the two other individuals are anonymous in Social. Thus, we can conduct
17In contrast, randomly-generated choices have only a 0.4% chance of being within one error of passing all
NB-WARP tests.
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similar decision-by-decision tests of narrow, broad, and partial-narrow bracketing while as-

suming symmetric preferences – using the restrictions implied by symmetry to eliminate the

need to compare across decisions. We call these tests NB-Sym, BB-Sym, and PNB-Sym, and

derive and perform them in Appendix B. Unsurprisingly, we observe very similar pass rates

for our NB-Sym tests of narrow bracketing as we did for NB-WARP. However, we observe

lower pass rates of BB-Sym – no subjects in Risk pass it when allowing for one error, and

only 10% of subjects pass it in Social. Pass rates are much higher for PNB-Sym – when

allowing for one error across both Decisions 1 and 3, 89% and 75% pass in Risk and Social

respectively – but this includes only 23% and 21% additional subjects beyond those that

pass either NB-Sym or BB-Sym.

We next conduct our revealed preference tests of symmetric versions of the three models

considered using the entire set of decisions for each subject. These tests are demanding. For

example, all three tests make point predictions in Decisions 2 and 4. Random behavior has

less than a 10−5 chance of passing either BB- or NB-SARP with two errors, and less than a

10−2 chance of passing the PNB Algorithm with two errors (see Appendix D). Table 3 shows

how many subjects pass each test.

Risk Social
# errors 0 1 2 0 1 2
NB-SARP 23 34 43 15 36 44
BB-SARP 0 0 0 8 10 10
PNB-PPE 49 59 71 31 58 69
PNB-PE 51 63 75 39 67 76
# subjects 99 102
Entries count the # of subjects who pass each test at the listed error allowance.

Table 3. Full Tests of Symmetric Models

We compare results of the tests that allow for up to two errors. Strikingly, we find that no

subjects pass BB-SARP in Risk while 10% of subjects in Social pass it. Substantially more

pass NB-SARP – 43% of subjects in each experiment. While notably fewer subjects pass

BB-SARP than either BB-WARP or BB-Mon, a similar number of subjects pass all NB-

WARP restrictions with one error as pass the more demanding NB-SARP with two errors.
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These results strongly support that a plurality of our subjects are well-described as narrow

bracketers and reinforce the relative rarity of broad bracketing.

Even allowing for two errors, only about half of subjects pass either BB- or NB-SARP.

Our test of partial-narrow bracketing diagnoses how many of these behave consistently with

intermediate degrees of bracketing. We find that 28% of subjects in Risk and 15% of subjects

in Social pass the PNB-PPE test but neither BB-SARP nor NB-SARP.18 Only 4% of subjects

in Risk and 7% of subjects in Social pass the PNB-PE test but not the PNB-PPE test. This

leaves 22% and 26% of subjects in Risk and Social inconsistent with all models of bracketing

considered.

Result 2. When allowing for two errors relative to each test, 43% of subjects in both settings

pass NB-SARP. Only 0% and 10% of subjects respectively pass BB-SARP, while an additional

28% and 15% of subjects pass the PNB PPE tests but neither NB- nor BB-SARP, in the

Risk and Social Experiments, respectively.

The tests reported in Result 2 require both that preferences are symmetric and that choices

reveal strict preferences. Consequently, subjects with linear preferences, such as those who

maximize expected or total payoffs, may fail our tests.19 A subject with linear preferences

makes the same choices in any data set regardless of how she brackets, so the presence

of linear preferences does not bias our results in favor of a given type of bracketing.20 Five

subjects in Risk and two subjects in Social make choices consistent with linearity throughout

the experiment. However, they have limited influence on our overall results. Out of these

seven subjects, one each in Risk and in Social pass the tests for narrow bracketing. The

other subject in Social is within one error of passing all tests of broad bracketing. Two

other subjects in Risk always allocated their entire portfolio to Assets B/D, consistent with

either risk-seeking or risk-neutral expected utility preferences. Consequently, the two pass

18Broad and narrow bracketing are both special cases of partial-narrow bracketing, and thus any subject
who passes BB- or NB-SARP will also pass this test.
19Risk- or inequity-seeking preferences also predict extreme choices that are also consistent with linear
preferences.
20Indeed, linear preferences are the unique class of preferences that can be simultaneously consistent with
both narrow and broad endowment bracketing (Appendix A, Theorem 3)
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BB-WARP and NB-WARP but fail NB-Sym and BB-Sym. The remaining three subjects

are not within two errors of passing any of the tests.

4.3. Shopping Experiment: Induced-Value Tests and Estimates of α. The tests of

our predictions thus far assume that utility is not observed. When utility is known, as in our

Shopping Experiment, narrow and broad bracketing each make unique predictions in each

decision.21 To test the models, we compare how far each subject’s choices are from each

model’s predictions (Table 4).

D1 D3 Both Full
# errors 0 1 2 0 1 2 0 1 2 0 1 2

NB 23 23 60 53 65 69 20 21 49 15 16 40
BB 20 21 27 23 24 24 12 14 17 11 13 15

PNB-PPE 44 45 95 76 91 98 32 36 68 26 29 56
PNB-PE 44 45 95 76 93 98 32 36 70 26 29 57
# subjects 101

Entries count the # of subjects who pass each test at the listed error allowance.
Table 4. Shopping Tests

Testing all implications of narrow bracketing in each of Decisions 1 and 3, 23% and 64%

of subjects are respectively within one error of the predictions of narrow-bracketed maxi-

mization, while 21% are consistent in both. Allowing two errors raises pass rates to 59%

for Decision 1 and 49% for both.22 Testing the full set of implications of narrow-bracketed

maximization on all choices made in the experiment, 40% of subjects are within two errors

of being consistent with all implications of narrow-bracketed maximization.

In contrast, 21%, 24%, and 14% of subjects are within one error of being consistent with

broadly-bracketed maximization in Decisions 1, 3, and both, respectively. When allowing for
21Narrow-bracketed maximization implies x1,1

a = 1, x1,2
a = 6, x3,1

a = 5, and x3,2
a = 4. Broad-bracketed

maximization implies x1,1
a = 0, x1,2

a = 10, x3,1
a = 10, and x3,2

a = 0.
22The sharp difference between one- and two-error tests in Decision 1 but not Decision 3 results from the
fact that 40 subjects selected x1,1

a = 2, x1,1
o = 4, which is the second-best available bundle from a narrow

bracketer’s perspective but is two lines away from the best bundle of x1,1
a = 1, x1,1

o = 6 – due to the
discreteness of the budget set, one apple and five oranges is between these bundles. We note that this
deviation is in the opposite direction of that predicted by broad or partial-narrow bracketing, and 32 of
these subjects also selected x1,2

a = x1,2
o = 6.
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two errors, those numbers remain similar. Using all decisions in the experiment, only 15%

of subjects are within two errors of being consistent with all implications of broad-bracketed

maximization.

Partial-narrow bracketing appears to describe few additional subjects beyond those consis-

tent with narrow and broad bracketing in each test. In Decisions 1, 3, and both respectively,

when allowing for one error, only 1%, 2%, and 1% of subjects are consistent with partial-

narrow bracketing but neither narrow nor broad bracketing. When testing the full implica-

tions of each model, partial-narrow bracketing (PPE version)23 accommodates at most one

additional subject whether allowing for zero, one, or two errors.

Result 3. In the Shopping Experiment, allowing for two errors, 40% of subjects pass nar-

row bracketing, 15% pass broad bracketing, and one additional subject passes partial-narrow

bracketing.

Since we induce the payoff function, we are able to measure α exactly (up to limits imposed

by discretization of the budget sets) under the assumption that the induced payoff function

acts as their utility function.24 To that end, we compute the point predictions of the partial-

narrow bracketing model for each α ∈ {0, .01, .02, . . . , .99, 1} for Decisions 1 and 3, and

obtain distinct predictions for nine distinct ranges of α. We assign each subject to the range

of α for which their choices exhibit the fewest errors relative to that range’s predictions.

We find that 64% of subjects are classified to a range that includes full narrow bracketing,

α = 1, and 24% are classified to a range that includes full broad bracketing, α = 0 (Figure

3). Strikingly, no subjects are classified to the range α ∈ [.25, .72), in spite of this range

comprising 47% of the parameter space considered.

23The PE is always unique in Decision 1, and is unique in Decision 3 except for α ∈ [.14, .18], in which case
there are two PE.
24If instead they are a partial-narrow bracketer with α ∈ (0, 1) but apply a concave utility-for-money function
on top of their induced payoff function before maximizing, then the procedure we used applied to each decision
separately will recover bounds on a transformation of their true α, with the transformation depending on
the shape of their utility-for-money function. However, this procedure will correctly classify subjects who
are either full broad bracketers (α = 0) or full narrow bracketers (α = 1), and will assign intermediate values
of α to subjects whose values are between the two extremes.
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Figure 3. Distribution of estimated values α

Result 4. In the Shopping Experiment, we find that 64% of subjects are best fit by α = 1,

24% by α = 0, and none by any α ∈ (.25, .72].

4.4. Classifying subjects to models. The tests thus far do not make any adjustment for

the fact that partial-narrow bracketing nests narrow and broad bracketing as polar cases,

and thus can accommodate more behavior. To compare the predictive success of each model

at the subject level, we use a subject-level implementation of the Selten score (Selten, 1991;

Beatty & Crawford, 2011). For each subject and each model (symmetric versions for Risk

and Social, using the induced payoff function for Shopping), we calculate the number of

errors the subject exhibits relative to that model. Then, we calculate the number of possible

choice combinations in the experiment that are consistent with that model and that number

of errors, which we divide by the total number of possible combinations of choices in the ex-

periment to compute the measure for each subject i and model m ∈ {broad,narrow,partial}
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as predictive_successi,m = 1− #predictive_area_for_i,m
#all_possible_choices .25 We use all choices made in the exper-

iment to assign each subject to the model with the highest predictive success; in cases where

every rationalizing model-error pair for a subject would rationalize more than one million

possible combinations of choices in our experiment, we categorize them as “Unclassified”.

# Selten Score Maximized
Risk Social Shopping

Broad Bracketing 3 10 27
Narrow Bracketing 77 77 68

Partial-Narrow (PPE) 6 2 4
Partial-Narrow (PE) 0 4 1

Unclassified 13 9 1
Table 5. Classification of subjects

We find that across the three experiments, 67-78% of subjects are classified as narrow

bracketers (Table 5). In contrast, 3%, 10%, and 27% of subjects are classified as broad

bracketers in the Risk, Social, and Shopping Experiments respectively. However, almost no

one was classified as a partial-narrow bracketer – 6%, 6%, and 5% in the Risk, Social, and

Shopping Experiments were so classified, even after considering both the more predictively-

precise PPE and the more permissive PE versions of partial-narrow bracketing. This suggests

that partial-narrow bracketing does not help explain many subjects’ behavior beyond what

can be explained by its two polar cases.

Result 5. Judging each model’s fit by its predictive success, 67-78% of subjects are classified

as narrow bracketers, 3-27% are classified as broad bracketers, and 5-6% are classified as

partial-narrow bracketers across the three experiments.
25In the Risk and Social Experiments, there are (11× 17)× 15× (11× 11)× 17× 11 = 63, 468, 735 possible
combinations of choices. Symmetric narrow bracketing allows 6, 87, and 606 possible combinations of choices
when allowing for zero, one, and two errors, respectively, whereas symmetric broad bracketing allows 12, 116,
and 585 combinations of choices, symmetric partial-narrow bracketing (PPE) allows 35,797, 200,828, and
597,728 combinations, and symmetric partial-narrow bracketing (PE) allows 116,267, 619,375, and 1,725,466
combinations. Thus, a subject whose choices are consistent with partial-narrow bracketing will be classified
as a partial-narrow bracketer if and only if they are sufficiently far from being consistent with both broad
and narrow bracketing.
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4.5. Secondary analyses.

Aggregate statistical analysis. Our preceding analysis focuses on subject-level tests, which

reveal substantial heterogeneity in how people bracket. In contrast, an aggregate analysis

masks this heterogeneity. While a notable number of subjects fail each NB-WARP test, the

data fail to reject the null hypothesis that average subject behavior satisfies NB-WARP.

Matched-pairs t-tests that separately compare D1.1 to D5, D3.2 to D5, and D1.2 to D4 in

Risk and Social (p = 0.84, 0.16, 0.97 respectively for Risk, p = 0.38, 0.13, 0.19 for Social)

fail to reject. Similarly, we strongly reject the null hypothesis that average subject behavior

satisfies BB-WARP despite a substantial minority of subjects satisfying it at the individual-

level, at least in the Social Experiment. A matched-pairs t-test comparing aggregate bundles

in D1 to D2 in Risk and Social (p < 0.001 for Risk, p < 0.001 for Social) strongly rejects the

null hypothesis.26 These results are generally consistent with our finding from individual-

level analysis that most subjects are best described by narrow bracketing. Nonetheless, the

aggregate tests fail to uncover heterogeneity in behavior.

For the Shopping Experiment, we separately compare allocations in each of D1.1, D1.2,

D3.1, and D3.2 to the point predictions of each of narrow and broad bracketing (eight t-

tests total, p = 0.06 for D1.1 test of narrow bracketing, p < 0.001 for all other tests), and

strongly reject both narrow and broad bracketing. If we ended here, we might incorrectly

find in favor of partial-narrow bracketing, even though we only classify 5 subjects in the

Shopping Experiment to that model. These tests further reinforce that our main individual-

level analysis detects meaningful heterogeneity across subjects, whereas aggregate tests can

produce misleading conclusions.

Differences across experiments. One unexpected finding, apparent from the results provided

thus far, is that the rate of broad bracketing varies widely across experiments: we classify as

broad bracketers 27% of subjects in the Shopping, 10% in Social, and 3% in Risk. We find

the difference between Social and Risk is particularly noteworthy since the two experiments

are designed to be exactly the same except for the underlying domain. The probability that

26This test uses only those subjects who selected a bundle in D2 that would be feasible in the decision-level
D1 choice set.
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each observed difference in broad bracketing rates between experiments arose purely from

sampling variation is small (p = .08 for Risk vs. Social, p ≤ 0.01 for each of Shopping vs.

Social, Shopping vs. Risk, Fisher’s exact tests).27

Learning to broadly bracket? We find some weak evidence from the Shopping Experiment

that subjects tend to make decisions that are more consistent with broad bracketing in the

second two-budget-set round they face. We compute the number of errors a subject makes

in each of Decisions 1 and 3 relative to optimal decisions implied by broad bracketing with

the induced payoff function. 52 subjects deviate less severely from broad bracketing in the

second two-part round than in the first, while 35 exhibit the opposite pattern (p = .09, sign

test); the average difference is .99 fewer errors in the second two-part round (p = .01, paired

t-test).

However, we do not find analogous evidence in the Risk and Social Experiments. In these

experiments, the difference in the deviation from the broad bracketing benchmark implied

by BB-SARP with symmetric preferences is approximately zero from the first to the second

two-budget round. The average difference is -.16 in Risk (p = .70, matched-pairs t-test)

and 0.53 in Social (p = .25). In Risk, 48 subjects exhibit a smaller deviation from broad

bracketing in the first two-budget round compared to the second whereas 44 exhibit the

opposite pattern (p = .75, sign test); the analogous numbers are 45 and 43 in Social 36

(p = .92).

5. Discussion

Narrow bracketing is a crucial ingredient of applications of prospect theory to explain

behavior, both in experiments (Kahneman & Tversky, 1979) and outside of them (Camerer

2004, Table 5.1). Since it is impossible to avoid all other risks, a broad bracketer will not

exhibit noticeable loss aversion in a moderate-stakes risk-taking opportunity; outcomes of

larger-stakes risks will primarily determine what counts as a gain or loss outcome rather

than the risk being evaluated (Barberis et al., 2006). In other domains, bracketing plays

an equally central role in understanding and modeling behavior, but assumptions about
27In addition, in Social, a subject’s choices determine the payment of other subjects, which, a priori, we
worried may bias subjects in this experiment against broad bracketing as compared to the Risk experiment.
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it are usually implicit. For example, Sobel (2005, p. 400) remarks that in experiments

studying social decisions, a subject should “maximize her monetary payoff in the laboratory

and then redistribute her earnings to deserving people later... if the concern for inequity

was ‘broadly bracketed.’” However, the literature he surveys finds ample evidence consistent

with subjects caring about narrowly-bracketed equity (e.g. Charness & Rabin, 2002) and

inconsistent with such a form of broadly-bracketed equity. The individual-level measures of

choice bracketing obtained from our laboratory experiments provide an empirical basis for

judging the descriptive realism of assumptions made about bracketing in practice, and our

experimental approach provides the convenient tool that will enable future experiments to

obtain useful individual-level measures of choice bracketing.

We found that 40-43% of our subjects pass our tests of narrow bracketing and 0-15% of our

subjects pass our tests of broad bracketing, a fraction that varies across experiments. After

adjusting for predictive power, 67-78% of our subjects are classified as narrow bracketers, only

3-27% are classified as broad bracketers, and 4-6% are classified as partial-narrow bracketers.

At least two-and-a-third times (in Shopping) and up to 26 times (in Risk) as many subjects

are classified as narrow bracketers than as broad bracketers. Taken together, our results

suggest that a majority of people tend to narrowly bracket, while a noticeable minority

broadly bracket.

We find a notable minority of subjects who are consistent with neither broad nor narrow

bracketing. While some of these subjects pass our tests of partial-narrow bracketing, few

are classified as partial-narrow bracketers after adjusting for predictive success. Our results

thus suggest that this model of partial-narrow bracketing is not an empirically useful gen-

eralization of its polar cases. By ruling out partial-narrow bracketing as a common mode

of decision-making, our findings suggest that failures of broad bracketing do not come from

incorrectly combining their choices in different parts of the problem. Potential explanations

include inability or unwillingness to analyze the entirety of their choice, unawareness that

fully appreciating the bundles available leads to higher payoffs, or a rational choice to em-

ploy narrow bracketing to simplify their choice. Our study has focused on measurement and

does not attempt to disentangle these explanations. However, we note that our experiment
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is the first to test partial-narrow bracketing and to measure α. Further, there may be the

opportunity for new descriptive models to better capture the behavior of the subjects not

well-described by polar cases. We hope that future work will build on our design to either

corroborate or refine this point.

We found surprising differences in broad bracketing rates across domains. Specifically,

more subjects broadly bracketed in the induced payoff Shopping Experiment than in Social,

and more in Social than in Risk. This was not hypothesized ex-ante, but taking it at face

value has a number of implications. It suggests, for instance, that the narrow or broad

classification is not absolute, i.e. some people bracket differently in different situations.

Evidence of some learning to broadly bracket from the Shopping Experiment further supports

this interpretation.

In Risk and Social, decisions involve a subjective element that may differ depending on

one’s preferences, unlike in Shopping. This subjective, as opposed to objective, task distinc-

tion may mediate how people bracket. Perhaps broad bracketing requires a form of reasoning

that people are more likely to engage in when facing a “problem-solving task” than a “choose

what you like” task. We think this is an interesting direction for future work.

Our framework for revealing choice bracketing takes the breakdown of decisions into parts

as observed or pre-specified by the researcher and our experiment implemented a particular

such breakdown. Moreover, we purposefully limit the complementarities between parts by,

for instance, ruling out transfering wealth between budgets. This simplifies analysis but the

distinction may not be obvious in more complicated real-world settings where choice data is

insufficiently rich. We hope future experiments will build on our design to understand how

people bracket in richer decision environments and thereby provide more direct guidance for

both modeling and improving choice bracketing in applications.

6. Related Literature

Most existing direct evidence on how people bracket their choices is derived from Tversky

& Kahneman (1981), in which subjects face the decision problem described in Table 6. This

design can rule out broad bracketing and does so for the 73% of their subjects who choose
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A and D (which generates a first-order stochastically-dominated distribution over outcomes

compared to the pair of choices B and C). It cannot, however, falsify narrow bracketing since

any pattern of choices except A and D is consistent with expected utility under either narrow

or broad bracketing.28 Hence without further restrictions, their results are uninformative

about the choice bracketing of subjects who do not choose A and D. Rabin & Weizsäcker

(2009) revisit this design with incentivized choices, and only 28% of their subjects make the

A and D choice. This raises the question of how to classify the remaining 72% of subjects:

the design lacks the power to distinguish how they bracket their choices. In contrast, in

our design, both narrow and broad bracketing are testable from a single decision without

parametric assumptions on utility.

Table 6. Tversky and Kahneman’s Decision problem

Imagine that you face the following pair of concurrent decisions. First, examine
both decisions, then indicate the options you prefer.

Decision (i). Choose between:
A. a sure gain of $240 [85%] B. 25% chance to gain $1000,

and 75% chance to gain nothing [16%]
Decision (ii). Choose between:

C. a sure loss of $750 [13%] D. 75% chance to lose $1000,
and 25% chance to lose nothing [87%]

Our classification exercise is individual-level and non-parametric, and it allows heterogene-

ity in preferences and bracketing at the subject level. Rabin & Weizsäcker (2009) estimate a

parametric structural model from unincentivized survey data based on versions of Table 6 to

estimate the fraction of narrow and broad bracketers. Under the assumption that subjects

have homogeneous risk preferences but may differ in their bracketing, they find that 11%

of their population brackets broadly. Despite the considerable difference in experimental

designs and identification strategies, we obtain a similar fraction of broad bracketers. But

whereas they classify the remaining 89% as narrow bracketers, our design allows a richer

space of possible behavior for each subject, and our analysis suggests that 14% of the pop-

ulation is not well-described by either broad or narrow bracketing.

28The combination of strictly concave utility-for-money and narrow bracketing rules out AD and BD, while
strictly convex utility-for-money and narrow bracketing requires BD.



REVEALING CHOICE BRACKETING 31

Since Tversky and Kahneman’s work, a number of related experiments and attendant

behavioral concepts have been proposed. Read et al. (1999) introduce the umbrella term

“choice bracketing” to refer to how an individual groups “individual choices together into

sets” and Thaler (1999) defines “mental accounting” as “the set of cognitive operations used

by individuals and households to organize, evaluate, and keep track of financial activities”. In

particular, the concepts of endowment bracketing (Kahneman & Tversky, 1979), mental bud-

geting (Thaler, 1985), and temporal bracketing (Benartzi & Thaler, 1995; Gneezy & Potters,

1997) have been particularly relevant within behavioral and experimental economics.29

Kahneman & Tversky (1979) find that, when subjects are endowed with experimental

income and then given a choice between lotteries, they make almost identical choices re-

gardless of the experimentally-endowed income. However, they make different choices when

the amount of experimental endowment is instead explicitly incorporated into the prizes

of available lotteries to create an economically-identical choice problem. We refer to this

as “endowment bracketing”. Recent work by Exley & Kessler (2018) arrives at a similar

finding in a social allocation task: respondents tend to allocate equal numbers of money-

valued tokens from a given account between two anonymous others, regardless of their initial

endowments.30 Imas (2016) provides evidence consistent with broader bracketing of paper

losses from past gambles together with a current decision, but more narrowly bracketing

when past losses have been realized. Endowment bracketing emerges as a special case of our

framework where all but one part of an underlying decision are degenerate.

In the context of repeated decision-making under risk, the question arises as to how risks

that resolve at different times are temporally bracketed, together or apart. Gneezy & Potters

(1997) show that subjects invest less in a risky asset when decisions are made and returns

shown period-by-period than when they must make their investment choices for the next

three periods in advance. They explain this behavior in terms of “myopic loss aversion”

(Benartzi & Thaler, 1995), that is, loss aversion applied myopically at the horizon of a given

29Koch & Nafziger (2019) study the empirical relationship between experimental measures of mental bud-
geting, endowment bracketing, and choice bracketing in the Tversky-Kahneman 1981 task.
30Relatedly, (Thaler, 1985) provides some evidence that most people evaluate outcomes from different sources
as if the sources constitute separate “mental accounts” evaluated narrowly and then added up. Evers & Imas
(2019) use this mental accounting approach to derive and test for preferences over the timing of outcomes.
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decision. Their experimental designs can be modeled in our framework, and if underlying

preferences are loss averse, then our definition of narrow bracketing implies myopic loss

aversion. In a rather different design, recent evidence from Heimer et al. (2020) suggests

that some subjects behave as if they do not narrowly bracket future risk-taking opportunities

when making a current risk-taking decision; however, their between-subjects design is unable

to measure the prevalence of different types of bracketing.

Thaler (1985; 1999) introduces the idea of mental budgeting to capture a consumer who

brackets broadly within categories of goods, but narrowly across categories. This provides a

particular approach to specifying choice brackets. The mental budgeting approach has been

useful in applications to finance (e.g. as in the disposition effect of Shefrin & Statman 1985

and Odean 1998), the study of flypaper effects (Hines & Thaler, 1995; Abeler & Marklein,

2017), and some consumption choices (Hastings and Shapiro 2013; 2018). Recent work

derives mental accounts endogenously: Kőszegi & Matějka (2020) derive mental accounts as

a response to attention costs in a rational inattention framework, and Lian (2019) does so in

a framework in which a decision-maker has different imperfect information in each part.31,32

Our approach to bracketing allows different parts to involve the same goods, and our

experimental tests rely on this feature. In contrast to mental budgeting, a part (e.g. one

store) may have goods from many categories, and a category may be involved in many parts.

Nevertheless if a specification of categories is given, then our theoretical approach could

be modified to test the hypotheses of (i) broad bracketing within each category, and (ii)

narrow bracketing across categories. We see this as a fruitful direction for future work; Blow

& Crawford’s (2018) theoretical revealed preference characterization of unobserved mental

accounts is a step in this direction.
31However, Lian models each decision variable as a choice in R whereas we study parts in Rn. His model can
be applied to our setting by mapping each of Lian’s decision variables to a relevant “part”, and assuming
that information is the same for all decision variables within each part. One substantive consequence is that
we assume that good i in part k ought to be a perfect substitute for good i in part k′, which cannot be
accommodated in Lian’s model under his assumption of strictly concave utility. In Lian’s model, a narrow
thinker will best respond to her conditional expectation about her behavior in other parts – which will only
generate what we term “narrow bracketing” if a decision-maker expects that, on average, other parts in a
decision involve buying zero of each good.
32Related work by Galperti (2019) endogenously derives mental budgets as an optimal response to allow a
person to counteract present bias while allowing flexibility to respond to taste shocks that affect intratemporal
trade-offs.
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Appendix A. Theoretical Appendix: Proofs, Derivations, and PNB

Algorithm

Proof of Theorem 1. Parts (i) and (ii) follow the usual proof that SARP holds if and only if

a data set is rationalizable; see e.g. Forges & Minelli (2009).

To see (iii), fix α and D. Our approach will be to map the choices in D to an ancillary

data set Dα of choices from lotteries over a finite subset Y ⊆ Rn. Then, it will be shown that

Dα is consistent with expected utility if and only if D is rationalizable by α-partial-narrow

bracketing.

We first introduce some notation. For each pair (t, k), let xt,−k = ∑
j 6=k x

t,j, pt,k =

(α, xt; (1 − α), xt,k), a lottery over Rn. From these lotteries, let Y ⊆ Rn be a finite set

that includes the union of the supports of the lotteries pt,k, as well as the vector 0; it will

be convenient to take Y equal to this set but that is inessential. Denote by ∆Y the finite

support lotteries over Y . The budget set

Qt,k =
{

(α, y; (1− α), y′) ∈ ∆Y : there exists x ∈ Bt,k so that y′ ≤ x+ xt,−k, y ≤ x
}

is a finite set of lotteries over Y that includes pt,kand any others that are affordable. The

ancillary data set is

Dα =
{(
pt,k, Qt,k

)}
(t,k)

where any other interdependencies between the lotteries are ignored.
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Observe that if the data is rationalized by α-PNB, then there exists an EU preference V

over ∆Y so that

V
(
pt,k

)
> V

(
qt,k

)
∀qt,k ∈ Qt,k\pt,k.

Let u be the utility index of V and extend to Rn
+ by

u∗(z) = max
y≤z,y∈Y

u(y).

Then for any x ∈ Bt,k\xt,k,

αu(xt,k) + (1− α)u(xt,k + xt,−k) > αu∗(x) + (1− α)u∗(x+ xt,−k).

Conditions under which Dα is rationalized by expected utility are well-known. Here, we

follow Clark (1993) to get a utility index u over Y .

As standard, p is directly revealed preferred to q, written p � q, if p = pt,k and q ∈ Qt,k for

some index (t, k). Define p % q if p � q or p = q. We say that p is indirectly reveal preferred

via independence to q, written p%̃q, whenever there exist r, p1, . . . , pn, q1, . . . , qn ∈ ∆Y ,

α ∈ (0, 1], and λ1, . . . , λn > 0 so that

αp+ (1− α)r =
n∑
i=1

λipi

αq + (1− α)r =
n∑
i=1

λiqi

pi % qi for all i = 1, . . . , n
n∑
i=1

λi = 1

and p�̃q holds whenever at pi � qi for some i. The Linear Axiom of Revealed Preference

(LARP) is that q%̃p implies that p�̃q does not hold. Theorem 3 of Clark (1993), combined

with the finiteness of Dα, implies that %̃ has an expected utility rationalization. Conclude

Dα satisfies LARP if and only if D is rationalized by α-partial-narrow bracketing.

The following algorithm inputs Dα and outputs 1 if and only D is rationalized by α-

partial-narrow bracketing for any rational number α ∈ [0, 1]. For concreteness, set Y =

{y1, y2, . . . , ym}. We can identify p ∈ ∆Y with p ∈ Rm so that pi = p(yi).
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Define the matrix A with rows given by pt,k − qt,k for each qt,k ∈ Qt,k\pt,k. A is an m×D

matrix interpreted as strict preference, where D is the number of data points extracted.

Similarly, let B be an m × D′ matrix with rows given by p − q where p and q represent

comparisons including weak preference, such as implications of symmetry.

Let ~1 be a 1×D matrix of ones, ~0 a 1×D′ matrix of zeroes and

Â =

 A B

~1 ~0

 .
Let b̂ be an m+ 1 vector with the first m components 0 and the last 1. Solve the system

min
y∈Rm+1

yT b̂

s.t.ÂTy ≥ 0

for y. The Ellipsoid algorithm provides a polynomial-time solution to this. Let y∗ be the

solution, if one exists. There are two cases:

There is no solution to ÂTy ≥ 0 or y∗ satisfies y∗T b̂ ≥ 0. Then, Farkas’s Lemma implies

there exists φ ≥ 0 so that Âφ = b̂. Defining λi = φi∑
φi
, we see that LARP fails since λi > 0

for some pi � qi and
∑m+1
i=1 λipi = ∑m+1

i=1 λiqi. So return 0. Observe [A,B]φ = 0 and b̂Tφ = 1.

The program is unbounded below or y∗T b̂ < 0. Then, Farkas’s Lemma implies there does

not exist any φ ≥ 0 so that Âφ = b̂. If there existed λ1, . . . , λm+1 that led to a failure of

LARP, taking φi = λi would give φ ≥ 0 so that Âφ = b̂. Conclude LARP is satisfied and

return 1.

To see why this algorithm works, note that if p�̃q, then there exists λ > 0 and a1, . . . , an ∈

A so that

λ(p− q) =
∑

φiai

for φi > 0. This is equivalent to p − q ∈ cone(co(A)). LARP holds if p − q ∈ cone(co(A)),

then q − p /∈ cone(co(A)) , or equivalently 0 /∈ cone(co(A)). That is, there does not exist

φ1, . . . , φD ≥ 0 so that ∑φi = 1 and λ > 0 so that

λ
D∑
i=1

φiAi = 0;
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here Ai is the ith row of A. The λ is redundant, so this can be rewritten as

Aφ = 0

~1φ = 1

for some vector φ ∈ RDand ~1 is 1×D matrix of ones.

To specialize the above algorithm to preferred personal equilibrium partial-narrow brack-

eting, we perform the analysis decision by decision. Letting n(t) be the number of parts in

decision t, we consider the lottery

pt = α
( 1
n
, xt,k

)n(t)

k=1
+ (1− α)

(
1, xt

)
to be chosen from the budget set

Qt =

α
( 1
n
, yk

)n(t)

k=1
+ (1− α) (1, y) ∈ ∆Y : there exists zk ∈ Bt,k so that yk ≤ zk and y ≤

n(t)∑
k=1

zk


is a finite set of lotteries over Y that includes pt,kand any others that are affordable. The

ancillary data set

DPPE,α =
{(
pt, Qt

)}
(t)

replaces Dα, and the rest of the proof goes through. �

Theorem 2 (Identification of α.). Suppose that u is a known differentiable and strictly

quasi-concave function and D is rationalized by partial-narrow bracketing. Further suppose

that for some t, k, Bt,kis a Walrasian budget set for prices pt,k, and n = 2, pt,1
1
pt,1

2
6= pt,2

1
pt,2

2
,

lim
x1→0+

∂u(x1,x2)
∂x1

= +∞ for all x2 > 0, and lim
x2→0+

∂u(x1,x2)
∂x2

= +∞ for all x1 > 0.

Then, there exists a unique α that rationalizes choices.

Proof of Theorem 2. Suppose the assumptions of the Theorem are satisfied. In the partial-

narrow bracketing model, the marginal utility per dollar of spending on good j in decision

k is given by:

1
pt,kj

(
(1− α)∂u(xt,1 + xt,2)

∂xj
+ α

∂u(xt,k)
∂xj

)
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for k = 1, 2. By the limit conditions, if α > 0, then xt,kj > 0 for j = 1, 2 and k = 1, 2; thus

xt,k1 = 0 or xt,k2 = 0 implies α = 0. If 1
pt,k

2
∂u(xt,k)/∂x2 = 1

pt,k
1
∂u(xt,k)/∂x1 for both k, then

set α = 1. Now suppose that 1
pt,k

2
∂u(xt,k)/∂x2 6= 1

pt,k
1
∂u(xt,k)/∂x1 and an interior allocation

is chosen in budget set k. The first-order condition for an interior maximizer equates the

marginal utility per dollar across the two goods; rearranging this condition, we obtain

α =
1
pt,k

1
∂u(xt,1 + xt,2)/∂x1 − 1

pt,k
2
∂u(xt,1 + xt,2)/∂x2

1
pt,k

1
∂u(xt,1 + xt,2)/∂x1 − 1

pt,k
2
∂u(xt,1 + xt,2)/∂x2 + 1

pt,k
2
∂u(xt,k)/∂x2 − 1

pt,k
1
∂u(xt,k)/∂x1

for k = 1, 2. It remains to verify that the expression on the right-hand side always lies

in the interval (0, 1). Since 1
pt,k

2
∂u(xt,k)/∂x2 6= 1

pt,k
1
∂u(xt,k)/∂x1, the solution satisfies (1 −

α)
(

1
pt,k

1

∂u(xt,1+xt,2)
∂x1

− 1
pt,k

2

∂u(xt,1+xt,2)
∂x2

)
= α

(
1
pt,k

2

∂u(xt,k)
∂x2

− 1
pt,k

1

∂u(xt,k)
∂x1

)
. Thus, if α ∈ (0, 1), the

denominator and numerator have the same sign, and the denominator is strictly larger in

absolute value – therefore the expression is well-defined and thus α is identified from choices.

�

.

Joint implications of narrow and broad bracketing. To study the joint implications of broad

and narrow bracketing we consider endowment bracketing in a rich domain. We thus suppose

that we observe an infinite data set on all decisions that each consist of a binary part and

a second degenerate part summarized by its only available bundle z. Suppose that when a

person has bundle z ∈ Rn
+ in their second part and must make a binary choice, she applies

a complete, transitive, continuous, and strictly increasing binary relation %z (call such a

binary relation a well-behaved preference). In this domain, we say that a person broadly

brackets if x %z y ⇐⇒ x + z %0 y + z; a person narrowly brackets if x %z y ⇐⇒ x %z′ y

for all z′ ∈ Rn
+.

Theorem 3. The family of well-behaved preferences {%z}z∈Rn
+

satisfies both narrow and

broad bracketing if and only if there exists a vector u ∈ Rn
++ such that x %z y if and only if

x · u ≥ y · u.
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Proof. The “if” direction is immediate. So now consider the “only if” direction.

We do so by constructing a utility representation for %0. Since %0 is a well-behaved

preference relation, for each x ∈ Rn
+ there exists a unique number κ ∈ R+ such that x ∼0 κ1;

define u(x) = κ for each x and the corresponding κ. By strict monotonicity, u represents

%0.

Now suppose x ∼0 y. Then, by narrow bracketing, x ∼x y and x ∼y y. By broad

bracketing, 2x ∼0 y + x and x + y ∼0 2y. By transitivity, 2x ∼0 2y. But since for each

x, y ∈ Rn
+, .5x, .5y ∈ Rn

+, it follows that x ∼0 y implies .5x ∼0 .5y as well. Now suppose

that for every natural number of at most a, we have shown that x ∼0 y =⇒ ax ∼0 (a −

b)x+ by ∼0 ay for every natural number b ≤ a. Fix β ∈ (0, 1]. Then, by narrow bracketing,

ax ∼βx (a − b)x + by and (a − c)x + cy ∼βy ay for all b, c ≤ a. Thus by broad bracketing,

(a+β)x ∼0 (a−b+β)x+by and (a−c)x+(c+β)y ∼0 (a+β)y. Setting b = c+β, transitivity

implies (a + β)x ∼0 (a + β)y. By induction, it follows that x ∼0 y implies βx ∼0 βy for

all κ ∈ R+. Thus, u(x) = u(y) = u(κ1) = κ =⇒ u(λx) = u(λy) = u(λκ1) = λκ for all

λ > 1. Since the utility of arbitrarily small bundles is well-defined, the preceding holds for

λ ∈ (0, 1) as well. Thus u is homogeneous of degree 1.

Next, take x, y, z ∈ ∆n (the n-dimensional unit simplex) – we will establish additive

linearity on that subspace, and then by the homogeneity, the result follows. Suppose x ∼0 y.

By the homogeneity of u, λx ∼0 λy; by narrow bracketing, λx ∼(1−λ)z λy, thus by broad

bracketing, (1−λ)x+λz ∼0 (1−λ)y+λz. Thus %0 satisfies the Independence Axiom on ∆n,

so there exists a vector u ∈ Rn\{0} such that preferences can be represented by u(x) = x ·u.

By homogeneity of degree 1, , we extend this representation to all of Rn
+. �

Derivations of predictions and their experimental implementations. First, observe that if

relation P is acyclic, it must be anti-symmetric.

Derivation of Prediction 1 (NB-WARP). Suppose xt′,k′ ∈ Bt,k ⊆ Bt′,k′ . By the definition of

P in NB-SARP, xt′,k′
Px for all x ∈ Bt′,k′\{xt′,k′}. Since Bt,k ⊆ Bt′,k′ , it follows that xt′,k′

Px

for all x ∈ Bt,k\{xt′,k′}. But if xt,k 6= xt
′,k′ , the definition of P would imply xt,kPxt′,k′ , which

would violate acyclicity. Thus xt,k = xt
′,k′ .
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Discretized implementation in our experiment. In all of our tests of NB-WARP, we have

Bt,k = Bt′,k′ exactly. We thus test NB-WARP exactly, without needing to adjust for dis-

creteness.

Derivation of Prediction 2 (BB-WARP). Suppose xt′ ∈ Bt ⊆ Bt′ . By the definition of P

in BB-SARP, xt′,k′
Px for all x ∈ Bt′\{xt′}. Since Bt ⊆ Bt′ , it follows that xt′Px for all

x ∈ Bt\{xt′}. But if xt 6= xt
′ , the definition of P would imply xtPxt′ , which would violate

acyclicity. Thus xt = xt
′ .

Discretized implementation in our experiment. In the Risk and Social experiments, coB1,1 +

coB1,2 ⊆ coB2,1. In particular, B2,1 = {($0, $28) ; ($2, $26) ; . . . ; ($28, $0)}}, whereas B1,1 +

B1,2 = {($0, $28) ; ($1, $27) ; . . . ; ($16, $12) ; ($17, $10.80) ; . . . ; ($26, $0)}. Consider two cases.

If x2,1
A ≤ $16, the bundle chosen in B2,1 is exactly affordable in B1,1 + B1,2. The caveat

is that the set B1,1 + B1,2 has a higher resolution in this range. We do not adjust for this,

implicitly interpreting their choice from B2,1 as revealing their preferences over the coB2,1.

However, if this leads a subject to fail BB-WARP, if their preferences are well-behaved, they

would choose in B2,1 one of the closest bundles to their preferred bundle in coB2,1 and be

within one error away from passing BB-WARP.

However, if x2
A > $16, then the person reveals a sufficiently strong preference for per-

son/state A over B that their desired bundle in B2 is not affordable in coB1,1 + coB1,2 and

thus they trivially pass BB-WARP.

Derivation of Prediction 3 (BB-Mon). Suppose xt,21 > 0, xt,12 > 0, and pt,11 ≤ pt,12 , pt,21 >

pt,22 . Let ε = min{xt,21 , xt,12 }. Consider the alternative pair of choices (yt,1, yt,2) given by

yt,1 =
(
xt,11 + pt,1

2
pt,1

1
ε, xt,12 − ε

)
and yt,2 =

(
xt,21 − ε, x

t,2
2 + pt,2

1
pt,2

2
ε
)
. By construction, (yt,1, yt,2) is

affordable. We have that

yt,11 + yt,21 = xt,11 + xt,21 + pt,1
2 −p

t,1
1

pt,1
1

ε ≥ xt,11 + xt,21 , and

yt,12 + yt,22 = xt,12 + xt,22 + pt,2
1 −p

t,2
2

pt,1
2

ε > xt,12 + xt,22

where the inequalities respectively follow from pt,11 ≤ pt,12 and pt,21 > pt,22 . But xtPyt would

violate monotonicity; thus such an xt,1, xt,2 pair could not pass BB-SARP.

Discretized implementation in our experiment. The argument in the proof applies with min-

imal modification to our discretized experiment, and thus we apply the conditions directly.
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Online Appendix

Appendix B. Supplementary Data Visualizations

Risk and Social Experiments. First, we plot histograms of allocations in each part in Risk

and Social Experiments (Figures 4 and 5). Notice that while the two experiments have

a similar number of subjects (99 and 102 respectively), the y-axis scale differs across the

two histograms. This reflects greater variation in behavior in the Risk than in the Social

Experiment in D2 and D4. In both experiments, the vast majority of subjects make an equal

allocation between assets/persons A and B, consistent with strict symmetric preferences. In

Risk, 69 subjects make equal allocations in D4 (79 are within one token of doing so) while in

Social the corresponding number is 90 subjects (97 within one token). While some variation

in behavior is the norm in experiments, prior normative, behavioral, and experimental work

on risk preferences generally suggests that risk aversion over 50-50 lotteries is not just strongly

modal but a nearly universal. This illustrates the value of including D2, D4, and D5 in our

Risk Experiment to enable us to apply WARP-style tests which do not require assumptions

about preferences.
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Figure 4. Allocations in Risk by part
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Figure 5. Allocations in Social by part
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Figure 6 plots the aggregate (i.e. decision-level) allocations to die rolls 1-3/4-6 (Risk)

and Person A/B (Social) in Decision 1 (shown in red) and in Decision 2 (shown in blue);

the size of each circle is proportional to the number of subjects making an allocation. Our

BB-WARP is based on a comparison of these allocations for each individual. While the blue

dots (D2) lie on a line with slope -1 extending from (0, 28) to (28,0), almost all of the mass

in red (D1) lies below that line – indicating subjects who made D1 choices that resulted

in a dominated overall bundle. Since it is impossible in Decision 1 to obtain an aggregate

bundle that allocates strictly more than $16 to die roll 1-3/Person A, the very small number

of subjects (10 in Risk, 6 in Social) who make such an allocation in Decision 2 automatically

pass BB-WARP.

Figure 6. Aggregate allocations in D1 (red) and D2 (blue)

Figure 7 plots the individual-level allocations to Asset A/C in D1.1, D3.2, and D1.2 against

their allocation in D5, D5, and D4 respectively. NB-WARP tests that the person makes the

same allocation in each pair of parts, and is satisfied by all dots on line through (0,0) with

a slope of 1.
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Figure 7. Comparison of identical parts

Shopping Experiment. Figure 8 plots histograms of purchases in each part. The histograms

for D2, D4, and D5, which each have a single part, show very good adherence to value

maximization: 91% of these allocations maximize payoffs exactly, and there are only 4

allocations (all in D2) in which subjects are more than two errors from the optimal allocation.

The histograms for D1.1, D1.2, D3.1, and D3.2 illustrate close adherence to the predictions

of full narrow bracketing with the exception that many subjects purchase two apples in D1.1

when narrow bracketing predicts they should buy only one,33 and broad bracketing implies

they should buy no apples.

33Note that since the price of oranges is half that of apples in D1.1 and lines correspond to numbers of
oranges here, this counts as two errors relative to the narrow bracketing prediction. For a narrow bracketer,
this is a very “small” mistake in terms of narrowly-assessed payoffs.
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Figure 8. Allocations in Shopping by part



REVEALING CHOICE BRACKETING 49

Further notes. With the exception of the PNB Algorithm, results in this paper were computed

in R (R Core Team, 2020), and made use of the tidyr package (Wickham & Henry, 2020).

Plots generated using ggplot2 (Wickham, 2016) and ggpubr (Kassambara, 2020).

Appendix C. Tests Assuming Symmetry

C.1. Testable conditions. We present the following testable implications of narrow, broad,

and partial-narrow bracketing when underlying preferences are required to be symmetric.

Prediction 4 (NB-Sym). Suppose D is rationalized by symmetric narrow bracketing and

each Bt,k is a Walrasian budget set for prices pt,k.

If pt,kj ≥ pt,ki , then xt,ki ≥ xt,kj .

With narrow bracketing, symmetry’s implications are straightforward. The subject should

purchase at least as much of the cheaper good. With broad and partial-narrow bracketing,

the implications are more subtle.

Prediction 5 (BB-Sym). Suppose D is rationalized by symmetric broad bracketing, and

each Bt,k is a Walrasian budget set for prices pt,k and income I t,k. Then,

(i) if Bt = Bt,1 + Bt,2,pt,11 = pt,12 , and pt,2i > pt,2j , then xt,1i + xt,2i ≤ xt,1j + xt,2j ; if in addition
It,2

pt,2
j

≤ It,1

pt,1
i

, then xt,2i = 0, and

(ii) if Bt = Bt,1 and pt,1i ≥ pt,1j , then xt,1j ≥ xt,1i .

Prediction 6 (PNB-Sym). Suppose D is rationalized by symmetric partial-narrow brack-

eting and each Bt,k is a Walrasian budget set for prices pt,k. Then,

(i) if Bt = Bt,1 +Bt,2, pt,11 = pt,12 and pt,2i > pt,2j , then xt,2j ≥ xt,2i and xtj ≥ xti, and

(ii) if Bt = Bt,1 and pt,11 ≥ pt,12 , then xt,12 ≥ xt,11 .

For an intuition, recall the logic of comparative advantage. The opportunity cost of

consuming good i from Bt,1 is lower than in Bt,2, and vice versa for consuming good j. A

DM should purchase at least as much of the good in the part where it is cheapest relative to

the other good. With broad bracketing, this specialization is extreme: if a subject purchases

positive amounts of good i from the second part, then she must exhaust the budget of the
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first on good i. Otherwise, she forgoes the opportunity to consume more of each. The DM

purchases the good only where it is cheapest, until switching to purchasing the other good.

With partial-narrow, the specialization is less extreme as the DM weighs the effect of less

consumption of the more expensive good in the part as well as in the decision overall.

C.2. Tests of NB-, BB-, and PNB-Sym. Symmetric preferences are natural in our

experimental setup, and in the decisions with equal prices, such as Decision 2, the majority

of subjects allocate evenly. By testing this property’s implications in other choices, we obtain

more powerful tests that do not rely on cross-decision comparisons. This power comes at

the cost of having to jointly test bracketing and that underlying preferences are symmetric.

To the extent that these properties are compelling in our environment, the next set of tests

distinguish the three models of bracketing.

Risk Social
# errors 0 1 2 0 1 2

NB-Sym (D1) 62 73 84 41 72 82
NB-Sym (D3) 60 74 82 34 76 82
NB-Sym (both) 46 57 65 22 46 67
BB-Sym (D1) 1 1 1 11 11 12
BB-Sym (D3) 6 7 8 14 14 14
BB-Sym (both) 0 0 0 10 10 10
PNB-Sym (D1) 90 92 93 63 95 99
PNB-Sym (D3) 91 94 96 67 96 97
PNB-Sym (both) 86 88 92 46 77 93

# subjects 99 102
Entries count the # of subjects who pass each test at the listed error allowance.

Table 7. Tests of NB-, BB-, and PNB-Sym

We thus test NB-Sym, BB-Sym, and PNB-Sym, using all of each condition’s implications

for a given decision. In Decision 1 tests, we find that 63% and 40% of subjects pass NB-Sym

in the Risk and Social Experiments respectively. These pass rates increase to 74% and 71%

if we allow for one error. We find quantitatively similar results for Decision 3. Pass rates
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go down to 46% and 22% when we require a subject to pass NB-Sym in both Decisions 1

and 3 – but these numbers increase to 58% and 45% when we allow for one error across

both decisions. Thus most, but not all, subjects pass this test of the conjunction of narrow

bracketing with symmetric preferences.

Turning to tests of broad bracketing, 1% and 11% of subjects pass BB-Sym in Decision

1 of the Risk and Social Experiments respectively. Allowing for one error does not increase

pass rates at all, though one additional subject is within two errors of passing. We obtain

slightly higher pass rates (6% and 14%) in Decision 3. This discrepancy can be traced to

the relative strength of BB-Sym in these decisions. It makes a point prediction in Decision

1 but allows two possible choices in Decision 3. No subjects pass BB-Sym in both Decisions

1 and 3 for Risk, even when allowing for two errors. In Social, 10% of subjects pass, which

does not change when allowing for up to two errors. Thus these tests suggest that only a

small minority of subjects are close to consistent with broad bracketing.

Our PNB-Sym tests of partial-narrow bracketing have higher pass rates, as expected –

91% and 62% for Risk and Social Experiments respectively in Decision 1. Allowing one

error raises pass rates to include the vast majority of subjects – 93% and 93% respectively.

We obtain quantitatively similar results for Decision 3. However, allowing one error, only

18% and 12% pass PNB-Sym and neither BB-Sym nor NB-Sym in Decision 1 in the two

experiments. We find that 87% and 45% pass PNB-Sym in both decisions, while 89% and

75% do so when allowing for one error. However, this means that, when allowing for one

error of tolerance, only 31% and 20% of subjects pass PNB-Sym in both Decision 1 and

3 who pass neither BB-Sym nor NB-Sym. Thus, partial-narrow bracketing only somewhat

helps to account for behavior in our experiments, in spite of the model’s relatively weak

implications in our experiment without parametric assumptions about utility.

Result 6. When allowing for one error in the Risk and Social Experiments, 58% and 45%

of subjects pass NB-Sym and 0% and 10% pass BB-Sym; only 31% and 20% pass PNB-Sym

but not NB- nor BB-Sym.
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Appendix D. Power

For each test presented in Tables 2, 3, and 4 we compute the probability that randomly-

generated choices would pass each. This approach to analyzing the power of revealed pref-

erence tests follows Bronars (1987), and has been used in Andreoni & Miller (2002, p. 744)

and Choi et al. (2007, p. 1927), among other papers.

Risk/Social
# errors 0 1 2

NB-WARP (D1.1 and D5) 0.091 0.256 0.405
NB-WARP (D1.2 and D4)) 0.059 0.170 0.273
NB-WARP (D3.2 and D5) 0.091 0.256 0.405
NB-WARP (D1.1 and D3.2) 0.091 0.256 0.405

NB-WARP (all) 0.0005 0.004 0.014
BB-WARP (D1 and D2) 0.427 0.517 0.591

BB-Mon (D1) 0.144 0.278 0.401
BB-Mon (D3) 0.174 0.331 0.471
BB-Mon (both) 0.025 0.071 0.134

Table 8. Probability of Random Choice Passing NB-/BB- WARP tests

Risk/Social
# errors 0 1 2
NB-SARP 1×10−7 1×10−6 8×10−6

BB-SARP 2×10−7 2×10−6 9×10−6

PNB-PPE 6×10−4 3×10−3 9×10−3

PNB-PE 2× 10−3 9× 10−3 3× 10−2

Table 9. Probability of Random Choice Passing Full Tests
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D1 D3
# errors 0 1 2 0 1 2

NB 0.009 0.043 0.111 0.007 0.035 0.091
BB 0.009 0.034 0.077 0.007 0.021 0.042

PNB-PPE 0.043 0.179 0.333 0.035 0.126 0.224
PNB-PE 0.043 0.179 0.333 0.041 0.147 0.238

Both Full
# errors 0 1 2 0 1 2

NB 6×10−5 5× 10−4 0.002 2× 10−8 3× 10−7 2× 10−6

BB 6×10−5 4× 10−4 0.001 2× 10−8 2× 10−7 2× 10−6

PNB-PPE 5× 10−4 0.003 0.011 2× 10−7 2× 10−6 1× 10−5

PNB-PE 6× 10−4 0.004 0.012 2× 10−7 3× 10−6 2× 10−5

Table 10. Probability of Random Choice Passing each Shopping Test

Appendix E. Additional Details of the Experiments

We provide a list of the different orders, instructions and quizzes for all experiments,

sample decision sheets for each, and the payoff table for the Shopping Experiment. An

experimental round of choices was stapled together with the cover sheet on the first page.
Table 11. Orders

Order Risk Social Shopping
(D1.1,D1.2), D2, (D3.1,D3.2), D4, D5 1M 14 24 15
(D1.2,D1.1), D2, (D3.1,D3.2), D4, D5 1L 16 14 15
(D1.1,D1.2), D2, (D3.2,D3.1), D4, D5 1H 19 15 17
(D3.2,D3.1), D2, (D1.1,D1.2), D4, D5 2X34 0 6 0
D4, (D3.2,D3.1), D2, (D1.2,D1.1), D5 2F 15 14 16
D4, (D3.1,D3.2), D2, (D1.2,D1.1), D5 2L 18 16 20
D4, (D3.2,D3.1), D2, (D1.1,D1.2), D5 2H 17 13 18

Total 99 102 101

34Note that order 2X was unintended: it was printed, and run, due to a copy-and-paste error. However, we
saw no reason to exclude it from our analysis.
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Figure 9. Risk: Instructions

Investment task 

There will be five rounds of the investment task.  The first page of each round will announce the number of 

accounts in that round.  At the end of each round, raise your hand so that the experimenter can collect your 

decisions and give you the decision sheet for the next round.  At the end of all rounds, one round will be 

randomly selected to be the “round that counts”.  You will be paid your earnings from the round that counts 

based on (and only based on) your decisions in that round.  Since any round could be the round that counts, you 

should behave in each round as if it is the round that counts. 

In each round of this task, you will buy risky investments in up to two different “investment accounts”.  Each 

investment generates a return that depends on a roll of a six-sided dice.  You have a separate budget for each 

account that can be spent only in that account.  The dice will be rolled once, and you receive the returns from all 

your investments in all accounts in that round. 

 

Example 

As an example, suppose that in the round-that-counts you have two accounts. 

You have 20 ECU in Account 1, which has two investments available; each investment costs 1 ECU per unit. 

One unit in Asset A pays 

$0.40 if the dice roll is 1, 2, or 3; 

$0.10 if the dice roll is 4, 5, or 6. 

One unit in Asset B pays 

$0.25 if the dice roll is 1, 2, or 3; 

$0.25 if the dice roll is 4, 5, or 6. 

 

You have 15 ECU in Account 2, which has two investments available; each investment costs 1 ECU per unit. 

One unit in Asset C pays 

$0.60 if the dice roll is 1 or 2; 

$0.00 if the dice roll is 3, 4, 5, or 6. 

One unit in Asset D pays 

$0.30 if the dice roll is 1 or 2; 

$0.30 if the dice roll is 3, 4, 5, or 6. 

Suppose that  

In Account 1: you allocate 5 ECU to Asset A and 15 ECU to Asset B; 

In Account 2: you allocate 8 ECU to Asset C and 7 ECU to Asset D. 

Then, if the dice roll is 2, you will be paid: 

5 × $0.40 + 15 × $0.25 + 8 × $0.60 + 7 × $0.30 = $12.65. 
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Figure 10. Risk: Quiz

Please answer the following questions and raise your hand after you have done so. 

 

Question. 

Suppose that a round has two accounts.  Do your purchases in Account 1 affect what items you can afford to purchase in 

Account 2? 

 

YES / NO (highlight one) 

 

 

Question. 

Suppose that in a round of the experiment has two accounts.  Account 1 has two assets available, A and B.  Account 2 

has two different assets available, C and D. 

Each unit of Asset A pays $0.50 if the dice roll is 1 or 2 and $1.00 if the dice roll is 3, 4, 5, or 6; 

Each unit of Asset B pays $1.00 if the dice roll is 1 or 2 and $0.50 if the dice roll is 3, 4, 5, or 6. 

Each unit of Asset C pays $0.50 if the dice roll is 1 or 2 and $0.00 if the dice roll is 3, 4, 5, or 6; 

Each unit of Asset D pays $0.00 if the dice roll 1 or 2 and $1.00 if the dice roll is 3, 4, 5, or 6. 

 

Suppose that you invest as follows: 

in Account 1, you invest 2 ECU in Asset A and 6 ECU in Asset B; 

in Account 2, you invest 4 ECU in Asset C and 2 ECU in Asset D. 

 

1. If this round determines your payment, then how much will you earn if the dice roll is 2? 

 

___________________________ 

 

 

2. If this round determines your payment, then how much will you earn if the dice roll is 6? 

 

___________________________ 
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Figure 11. Risk: Cover Sheet for Round 1 (order 1M)

Subject #  Session  

Round 1 

In round 1, you have 2 investment accounts. 
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Figure 12. Risk: D1.1 Decision Sheet

Investment Account 1 

 

You have 10 ECU available in Account 1.  Two assets are available for purchase, Asset A and Asset B. 

The price of Asset A is 1 ECU per unit. 

The price of Asset B is 1 ECU per unit. 

 

One unit in Asset A pays 

$1.00 if the dice roll is 1, 2, or 3; 

$0.00 if the dice roll is 4, 5, or 6. 

One unit in Asset B pays 

$0.00 if the dice roll is 1, 2, or 3; 

$1.20 if the dice roll is 4, 5, or 6. 

 

 

Please highlight a feasible combination of purchases of Asset A and Asset B from the list below. 

 

0 units of Asset A and 10 units of Asset B. 

1 unit of Asset A and 9 units of Asset B. 

2 units of Asset A and 8 units of Asset B. 

3 units of Asset A and 7 units of Asset B. 

4 units of Asset A and 6 units of Asset B. 

5 units of Asset A and 5 units of Asset B. 

6 units of Asset A and 4 units of Asset B. 

7 units of Asset A and 3 units of Asset B. 

8 units of Asset A and 2 units of Asset B. 

9 units of Asset A and 1 unit of Asset B. 

10 units of Asset A and 0 units of Asset B.  
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Figure 13. Risk: D1.1 Decision Sheet

Investment Account 2 

 

You have 16 ECU available in Account 2.  Two assets are available for purchase, Asset C and Asset D. 

The price of Asset C is 1 ECU per unit. 

The price of Asset D is 1 ECU per unit. 

 

One unit in Asset C pays 

$1.00 if the dice roll is 1, 2, or 3; 

$0.00 if the dice roll is 4, 5, or 6. 

One unit in Asset D pays 

$0.00 if the dice roll is 1, 2, or 3; 

$1.00 if the dice roll is 4, 5, or 6. 

 

Please highlight a feasible combination of purchases of Asset C and Asset D from the list below. 

0 units of Asset C and 16 units of Asset D. 

1 unit of Asset C and 15 units of Asset D. 

2 units of Asset C and 14 units of Asset D. 

3 units of Asset C and 13 units of Asset D. 

4 units of Asset C and 12 units of Asset D. 

5 units of Asset C and 11 units of Asset D. 

6 units of Asset C and 10 units of Asset D. 

7 units of Asset C and 9 units of Asset D. 

8 units of Asset C and 8 units of Asset D. 

9 units of Asset C and 7 units of Asset D. 

10 units of Asset C and 6 units of Asset D. 

11 units of Asset C and 5 units of Asset D. 

12 units of Asset C and 4 units of Asset D. 

13 units of Asset C and 3 units of Asset D. 

14 units of Asset C and 2 units of Asset D. 

15 units of Asset C and 1 unit of Asset D. 

16 units of Asset C and 0 units of Asset D. 
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Figure 14. Social: Instructions

Division task 

There will be five rounds of a task where you will asked to allocate tokens between two other participants who 

will herein be labelled “person A” and “person B”.  They will not be told your identity, and you will not be told 

their identities.  That is, you will remain completely anonymous to each other. 

In each round of this task, you will have tokens in up to two different accounts.  You decide how to allocate 

tokens between person A and person B in each account.  The value per token allocated to each of A and B may 

vary across rounds and across accounts.  You have a separate budget of tokens for each account that can be 

allocated only in that account.  Payments for a given round will be determined by the sum of the value of all 

tokens allocated in all accounts in that round. 

The first page of each round will announce the number of accounts in that round.  At the end of each round, 

raise your hand so that the experimenter can collect your decisions and give you the decision sheet for the next 

round. 

You and every other participant has numbered a sealed envelope at the beginning of the experiment.  Each 

participant has been randomly allocated to a group and role (A or B); this is recorded in the envelope.  The 

round that counts to determine your payment has also been randomly selected and recorded in each envelope.  

Your group has been randomly and anonymously matched to determine the payment of another group and one 

round of your choices will determine the earnings of person A and person B in that group.  Since each round 

could be the round that counts and actually determines a two other subjects’ payments, you should treat each 

round as if it is the round that counts. 

 

Example 

As an example, suppose that in the round-that-counts there are two accounts. 

There are 10 tokens in Account 1. 

One token is worth $0.80 to A and $0.60 to B. 

 

There are 12 tokens in Account 2. 

One token pays $1.00 to A and $0.20 to B. 

 

Suppose that 

In Account 1: you allocate 4 tokens to A and 6 tokens to B. 

In Account 2: you allocate 2 tokens to A and 10 tokens to B. 

Then, 

A’s earnings are 4 × $0.80 + 2 × $1.00 = $5.20; 

B’s earnings are 6 × $0.60 + 10 × $0.20 = $5.60. 
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Figure 15. Social: Quiz
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Figure 16. Social: D5 Decision Sheet

Account 1 

 

You have 10 tokens available in Account 1. 

Each token allocated to A is worth $1.00. 

Each token allocated to B is worth $1.20. 

 

 

Please highlight a feasible allocation of tokens between A and B. 

 

0 tokens for A and 10 tokens for B. 

1 token for A and 9 tokens for B. 

2 tokens for A and 8 tokens for B. 

3 tokens for A and 7 tokens for B. 

4 tokens for A and 6 tokens for B. 

5 tokens for A and 5 tokens for B. 

6 tokens for A and 4 tokens for B. 

7 tokens for A and 3 tokens for B. 

8 tokens for A and 2 tokens for B. 

9 tokens for A and 1 token for B. 

10 tokens for A and 0 tokens for B. 
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Figure 17. Shopping: Instructions

Shopping Task 

There will be five rounds of the shopping task.  At the end of all rounds of the experiment, one round will be 

randomly selected to be the “round that counts”.  You will be paid your earnings from the round that counts 

based on (and only based on) your decisions in that round.  Since any round could be the round that counts, you 

should behave in each round as if it is the round that counts. 

In each round of this task, you will buy up to two different fictitious “fruits” at up to two “stores”.  You have a 

separate gift certificate (denominated in experimental currency units – ECUs) at each store that can be spent 

only at that store.  However, your monetary earnings for the experiment are based on the total amount of each 

fruit in your final bundle for a round after you have completed your shopping at all stores. 

The first page of each round will announce the number of stores in that round.  At the end of each round, raise 

your hand so that the experimenter can collect your decisions and give you the decision sheet for the next round. 

 

How Your Payment is Determined 

Your monetary payment will be calculated from your final bundle in the round that counts according to the 

function 

𝑃𝑎𝑦𝑚𝑒𝑛𝑡 =
2

5
(√#𝑎𝑝𝑝𝑙𝑒𝑠 + √#𝑜𝑟𝑎𝑛𝑔𝑒𝑠)

2
. 

To help you calculate the payment you would receive for a final bundle, we have provided tables at the end of 

the experiment that indicates the payment that would result from all possible final bundles (and some 

impossible ones). 

 

As an example of how your payment will be calculated, suppose you buy: 

1 apple and 5 oranges at Store 1, 

2 apples and 6 oranges at Store 2. 

Then your final bundle is  

3 apples and 11 oranges. 

To calculate your payment locate the entry in the “3 apples” column and the “11 oranges” row of the payment 

table. 

Notice three features of the payment table: 

(i) A final bundle with more of every fruit earns a higher payment. 

(ii) A mix of fruits earns a higher payment: a final bundle with 5 apples and 5 oranges earns you a 

higher payment than a final bundle with 8 apples and 2 oranges, which in turn earns a higher 

payment than a final bundle with 10 apples and 0 oranges. 

(iii) A final bundle with 7 apples and 3 oranges earns the same final payment as a final bundle with 3 

apples and 7 oranges. 

If the prices of apples and oranges are not the same, you thus face a trade-off between buying as many units 

of fruit as possible versus buying a mix that includes both fruits. 
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Figure 18. Shopping: Quiz

 

How to Shop in each Store 

You will have a separate gift certificate at each store denominated in Experimental Currency Units (ECUs).  

The page for each store will present you with the prices of the fruits in that store.  You must highlight one of the 

feasible apple-orange-watermelon combinations at each store to spend your gift certificate.  Feasible 

combinations will be denoted in a list.  If that combination does not appear in the, then it is not affordable with 

your gift certificate at that store. 

 

To illustrate how you make your decision in each store, consider the following hypothetical store; you have a 6 

ECU gift certificate for this store, and apples and oranges each cost 1 ECU per unit of fruit.  Then your store 

page will be laid out as follows. 

 

Store     

You have a 6 ECU gift certificate to spend. 

The price of apples is 1 ECU per apple. 

The price of oranges is 1 ECU per orange. 

 

Please highlight a feasible combination of apples and oranges from the list below to make your purchase from 

this store. 

0 apples and 6 oranges. 

1 apple and 5 oranges. 

2 apples and 4 oranges. 

3 apples and 3 oranges. 

4 apples and 2 oranges. 

5 apples and 1 orange. 

6 apples and 0 oranges. 

 

Question 1. 

How much would you earn if a round with only the store above was the round that counts, and you had chosen 

the bundle you indicated above? 

 

Question 2. 

Suppose that the round that counts had two stores.  In Store 1, you bought 1 apple and 4 oranges.  In store 2, 

you bought 3 apples and 5 oranges. What would your earnings be for the experiment? 
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Figure 19. Shopping: D3.2 Decision Sheet

Store 2

You have a 24 ECU gift certificate at Store 2. 

The price of apples is 3 ECU per apple. 

The price of oranges is 2 ECU per orange. 

 

Please highlight a feasible combination of apples and oranges from the list below to make your purchase from 

this store. 

 

0 apples and 12 oranges. 

0 apples and 11 oranges. 

1 apple and 10 oranges. 

2 apples and 9 oranges. 

2 apples and 8 oranges. 

3 apples and 7 oranges. 

4 apples and 6 oranges. 

4 apples and 5 oranges. 

5 apples and 4 oranges. 

6 apples and 3 oranges. 

6 apples and 2 oranges. 

7 apples and 1 orange. 

8 apples and 0 oranges. 
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Figure 20. Shopping Payoff Table
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