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Abstract

Open source licenses are noted for being self-referential. The two dominant licenses

at the early stage of the open source movement were GPL and BSD. GPL says the

next developer cannot go proprietary, and can only go open source with the same

license, namely GPL. BSD says the next developer can go proprietary, and can also go

open source with any open source license, including BSD. We construct the universal

space of all self-referential licenses such as GPL and BSD. We also provide a plausible

explanation of why GPL and BSD stood out from other licenses as the two most natural

choices for the first-generation open source developers.
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1 Introduction

Once a software is developed, its developer has at least two ways to distribute it. The

first is to go proprietary, meaning that she sells copies of the binary code for a profit.

Since the binary code is difficult to interpret, it deters the others from disabling its security

device and making illegal copies. But it also makes it difficult for future developers to
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learn from her source code. In other words, while going proprietary allows the developer

to profit from her effort, it also stifles further development of her original idea.

Another way the developer can distribute her software is to go open source, meaning

that she makes her source code open for everyone to see and copy. By going open source,

she forgoes the profit she could have made from selling copies of the binary code, but

she can gain utilities when future developers, inspired by her source code, develop more

advanced versions. Such utilities may come from pride, prestige, sheer joy of seeing

her idea further developed, or the satisfaction of using a more advanced version of her

original software.

There are two major kinds of license a developer may use when she decides to go open

source. The first is the restrictive kind, as exemplified by the GPL license.1 By sharing

her source code using GPL, the developer is telling future developers, “You can use my

source code to develop a more advanced version. But if you ever want to distribute your

advanced version, you have to go open source instead of going proprietary, and you have

to go open source with the same license I am using, namely GPL.” This kind of open

source licenses are restrictive because they restrict how future developers can distribute

their softwares. In particular, the restriction is a “share-alike” requirement, requiring that

future developers share in the same manner as the original developer.

One the most famous developers who went open source using GPL is Linus Torvalds.

Ever since Linus Torvalds distributed the source code of the first version of Linux using

GPL, all subsequent versions have to be shared alike using the same license. Even when

Red Hat, a for-profit company, developed their commercial version of Linux, called Red

Hat Enterprise Linux (RHEL), they were also bound by GPL to share their source code.

It means that they could not make a profit by selling copies of the binary code. Instead,

they could only make a profit by selling complementary services. Today, Linux powers

millions of smart devices, including smart phones, smart TVs, tablet computers, etc.

The second kind of license a developer can use when she goes open source is the

permissive kind, as exemplified by the BSD license.2 By sharing her source code using

BSD, the developer is telling future developers, “You can use my source code to develop a

1GPL stands for “general public license”.
2BSD stands for ”Berkeley software distribution”. We use BSD as an umbrella term referring to various

BSD-like licenses including, for example, LPPL (to be discussed below), MIT (which is even more permissive
than BSD by not requiring acknowledgement of the licensor), and Apache (which makes explicit certain
permissions that are only implicit in BSD). See, for example, Smith (2022).
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more advanced version, and you can distribute your advanced version in whichever way

you like. You can go proprietary, you can also go open source. If you choose to go open

source, you can use any open source license you like, including BSD.”

One of the most famous developers who went open source using a BSD-like permissive

license is Donald Knuth. While the core of TEX is copyrighted by Donald Knuth and

no changes are permitted, add-on programs are licensed under the LATEX Project Public

License (LPPL), which is very much like BSD (Gaudeul, 2007). The permissive nature

of LPPL allowed subsequent developers to go proprietary and profit from their efforts.

This option encouraged many developers to participate in developing various add-on

programs, with Scientific Workplace being one of the most profitable examples.

The open source movement is nothing short of a revolution in how production is

organized. Many of the most valuable softwares (such as Linux, LATEX, Apache, etc.) might

never have been developed if developers had not learned how to share their contributions

using open source licenses. The movement also had impacts reaching far beyond the

software industry. Projects with user-generated contents such as Wikipedia might never

have been possible if contributors had not learned how to share their contributions using

Creative Common licenses, which in turn were inspired by open source licenses.

While GPL and BSD are the two dominant open source licenses, with their dominance

especially pronounced at the early stage of the open source movement,3 it is important to

recognize that they were inventions of idealistic developers, who invented them more as

their anti-capitalist manifestos, instead of as calculated designs that maximize productiv-

ity. Therefore, it is conceivable that a more careful design exercise can unleash even more

productivity.

A prerequisite of this design exercise is, of course, the construction of the space of

all possible open source licenses, which is the first contribution of this paper. Since

open source licenses restrict future developers’ choices of open source licenses, they are

necessarily self-referential in nature. The construction of the space of all possible open

source licenses hence is the construction of the universal space of self-referential licenses,

where the technique of constructing universal type spaces can help.

3Vendome et al. (2017) study 16,221 Java projects on GitHub. They find that, by 2012, BSD-like licenses
(including MIT and Apache) and various versions of GPL still accounted for more than 90% of all open
source licenses used. Balter (2015) reports that, up to 2015, only 15% of open source projects on GitHub
used a license other than MIT, Apache, or GPL.

3



Our construction of the universal space of self-referential licenses confirms that there

indeed exist many self-referential licenses other than GPL and BSD. More importantly, it is

not always possible to pigeonhole these licenses into either the restrictive or the permissive

camp. For example, a license may be restrictive in the sense that it restricts what restrictions

the next developer can impose on the next-next developer, but is permissive at the same

time exactly because the next-next developer is less restricted.

We shall see that there indeed exist other self-referential licenses that serve purposes

neither GPL nor BSD can serve. However, given the dominance of GPL and BSD at the

early stage of the open source movement, we shall also provide a plausible explanation

of why they stood out from other licenses as the two most natural choices for the first-

generation open source developers.

We develop this explanation in two steps. First, we introduce an axiom called

imposture-proofness to exclude some open source licenses that can be gamed by a devel-

oper by splitting his version of the software into two consecutive versions, with only the

first version subject to the restrictions contained in the previous developer’s open source

license. Among other implications of imposture-proofness, we show that any imposture-

proof open source license that does not allow the next developer to go proprietary is

essentially the same as GPL.

In the second step, we show that, with exponential discounting and a linear structure

of developers, a developer going open source cannot do better than using either GPL

or BSD. If she does not allow the next developer to go proprietary, then her license is

essentially the same as GPL, per the result in the first step. If she does, then BSD gives the

next developer maximum freedom, which is good for her as well. The key in this last step

is that exponential discounting and a linear structure of developers render the interests of

the current and the next developers perfectly aligned when it comes to putting restrictions

on the next-next developer.

Although the open source revolution has rightfully attracted a lot of economic stud-

ies,4 literally fewer than a handful of them have likewise studied open source licenses,

notwithstanding the significant role these licenses played in this revolution. Lerner and

Tirole (2005b) provide a stylized model that differentiates different open source licenses by

a single parameter, namely their “permissiveness”. Their model abstracts away the defin-

4See Subsection 1.1 for a review of this literature.
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ing features of different open source licenses, such as GPL’s “share-alike” requirement

and BSD’s permission to go proprietary, rendering it impossible to discuss the optimality

of mixing-and-matching these features. In two unpublished working papers, Gaudeul

(2004, 2005) compares GPL and BSD using a model less stylized than that of Lerner and

Tirole (2005b). In particular, she explicitly models GPL’s “share-alike” requirement and

BSD’s permission to go proprietary. Her models feature finitely many generations of

developers, rendering open source licenses in her models not self-referential.5

This paper presents a model of open source licenses that has the following two proper-

ties. First, it is rich enough that the defining features of GPL (its “share-alike” requirement)

and BSD (its permission to go proprietary) can be described explicitly, and hence the opti-

mality of mixing-and-matching these features can be meaningfully discussed (in contrast

to Lerner and Tirole, 2005b). Second, it is a model with infinitely many generations of

developers, and hence open source licenses in the model are self-referential (in contrast to

Gaudeul, 2004, 2005).6

This paper is structured as follows. The rest of this section reviews the related literature.

In Section 2, we starts with a basic model that only allows for GPL and BSD. In Section

3, we slightly extend our basic model by introducing two new open source licenses. This

exercise illustrates how our framework allows us to conceive new, never-heard-of open

source licenses, and why it can be difficult to summarize an open source license by a

single parameter called “permissiveness” as in Lerner and Tirole (2005b). We shall also

demonstrate that these newly introduced licenses are not bogus, and can sometimes serve

purposes that neither GPL nor BSD can serve. In Section 4, we go for a fully general model

and construct the universal space of open source licenses.

In Section 5, we introduce the axiom of imposture-proofness, and show that any

imposture-proof open source license that does not allow the next developer to go pro-

prietary is essentially the same as GPL. In Section 6, we use this result from Section 5 to

construct an environment where a developer going open source cannot do better than

using either GPL and BSD. Section 7 concludes with some remarks on possible future

research.
5For example, the penultimate generation’s licenses do not restrict the ultimate generation’s choices of

licenses.
6See Section 7 for more discussions on Gaudeul (2004, 2005).
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1.1 Related Literature

The open source revolution has rightfully attracted a lot of economic studies. Lerner

and Tirole (2002, 2005a) provide some early introduction of this revolution, and Fershtman

and Gandal (2011) a brief survey of the related economics, to economists. Subsequent

studies can be roughly divided into three strands. The first focuses on the competition

between commercial software companies and the open source community—what prices

the companies would set, the chance that they can survive this competition, etc. The

open source community is typically modelled as a group of altruistic members who

both contribute to and benefit from the open source movement. How their collaboration

is facilitated or jeopardised by different choices of licenses is typically not the focus.7

Factors other than the license are instead the focus. For example, Johnson (2002) focuses

on the size of the open source community, Casadesus-Masanell and Ghgemawat (2006) on

demand-side learning, and Economides and Katsamakas (2006) on network externalities.

This paper differs from this strand of studies in that it focuses explicitly on open source

licenses—what options other than GPL and BSD do we have, can they serve purposes that

neither GPL nor BSD can serve, and when can they be ignored without loss of generality?

The second strand is concerned with the kind of altruism that motivates members of

the open source community—are they motivated by warm glow, pride, consumer surplus,

or are they merely motivated by the material payoffs from signalling their competence?

Athey and Ellison (2014) theoretically study how different kinds of altruism affect the

competition between commercial software companies and the open source community;

while Hertel, Niedner, and Herrmann (2003), Lerner, Pathak, and Tirole (2006), Roberts,

Hann, and Slaughter (2006), and Fershtman and Gandal (2007) empirically study related

questions.

In comparison to this strand of studies, our model makes specific assumptions on

the kind of altruism that motivates a developer to go open source. In particular, we

assume that he internalizes part of the consumer surplus that may be generated by future

developers.8 We have not explored the implications of other kinds of altruism such as

warm glow.

The third strand is interested in the governance structure of the open source commu-
7Presumably the license being used is not BSD, as members do not have the option of going proprietary.
8Or, alternatively, he gains an “egoboo” everytime when a more advanced version of his software is

developed. See Footnote 9 for this this alternative interpretation.
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nity. Most of these studies are empirical in nature, taking the form of meticulous case

studies of selected open source projects, and taking advantage of the fact that, for most

such projects, the whole history of interactions is stored as log files in the public domain.

Examples of these studies include Fielding (1999) on the Apache project, Mockus, Field-

ing, and Herbsleb (2002) on the Apache and Mozilla projects, and Han and Xu (2019) on

the Python project. See also von Hippel and von Krogh (2003) and Johnson (2006) for

some general insights distilled from these studies.

In comparison to this strand of studies, our model assumes that each generation of

the software is developed by one and only one developer. The very interesting topic of

intra-generation coordination hence cannot be studied in our stylized model.

2 The Basic Model

In this section, we shall first describe a basic model that is barely rich enough to

accommodate GPL and BSD. We will explain how this basic model can be extended to

accommodate other open source licenses in subsequent sections.

Consider a discrete-time model, where time is indexed by t = 0, 1, 2, . . .. In every

period t, there is one and only one developer, called developer t, who has the potential of

developing a software, called software t. Note that we abuse notation by using the same

index, t, for time, for developer, and for software.

We can think of developer 0 as an original developer such as Linus Torvalds or Donald

Knuth, and software 0 is his original software. For any t > 0, we can think of software

t as a more advanced version of software t − 1, perhaps by adding extra functionalities.

Of course, indirectly via software t − 1, software t is also a more advanced version of any

software s < t − 1.

Developer t will be able to develop software t only if he has an opportunity to learn

from the source code of software t − 1. Apparently, this cannot happen if developer t − 1

chose to go proprietary (i.e., to sell copies of the binary code for a profit), instead of sharing

the source code with the others. Therefore, we shall assume that, if developer t − 1 goes

proprietary, none of the software s ≥ t can be developed. In other words, the game ends

after developer t − 1 goes proprietary.

We assume that if developer t− 1 did not go proprietary, then he must go open source;
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i.e, sharing his source code with the others using one of the open source licenses. In other

words, keeping the software private is not an option. This is not a strong assumption.

When a developer is not going to make a profit out of his creation, any tiny preference of

sharing will prompt him to share.

If developer t − 1 chose to go open source, thus enabling developer t to develop

software t, the game continues to period t. In period t, developer t first draws a tuple

of four variables, θt = (ct, πt,wt,Wt), where ct is his cost of developing software t, πt and

wt are the potential profit and consumer surplus, respectively, if he develops software t

and then goes proprietary, and Wt > wt is the consumer surplus if he develops software

t and then goes open source instead. The tuple θt is drawn from the probability law

P
(
θt |θt−1

)
, where θt−1 = (θ0, . . . , θt−1). We assume that the realization of θt is observable

to all developers s ≥ t.

Upon observing θt, developer t then decides whether to pay the development cost ct

and develop software t. If he decides not to (an option denoted by Q, which stands for

quitting), the game ends.

If he decides to develop software t, he then decides whether to go proprietary or to

go open source using one of the open source licenses. Some of these options may not

be available, depending on the open source license chosen by developer t − 1. We first

enumerate the three different options developer t may have, and then explain which

subsets of these options are available to him given different open source licenses chosen

by developer t − 1.

P: going proprietary

Developer t goes proprietary, realizing potential profit πt and consumer surplus wt,

and the game ends.

G: going open source using the GPL license

Developer t goes open source, thus enabling developer t + 1 to develop software

t + 1. However, if developer t + 1 chooses to develop software t + 1, he has to go

open source using GPL (i.e., choosing G) as well. For developer t, potential profit πt

is forgone, and the consumer surplus is Wt.

B: going open source using the BSD license

Developer t goes open source, thus enabling developer t + 1 to develop software

8



t+1. If developer t+1 chooses to develop software t+1, he can either go proprietary

(i.e., choosing P), or go open source using any of the two licenses (i.e., choosing G

or B). For developer t, potential profit πt is forgone, and the consumer surplus is Wt.

We should hasten to emphasize that what we called the consumer surplus (either wt or

Wt) should more appropriately be understood as the internalizable part of the consumer

surplus. It is the part that current and past developers (i.e., developers s ≤ t) who went

open source can internalize. It is likely only a small part of the whole consumer surplus.

In particular, we do not presume that Wt > πt + wt, which would have been a natural

inequality to assume had we interpreted these as the whole consumer surplus that can

potentially be generated. Indeed, allowing for Wt < πt + wt is necessary to explain why

developer t may sometimes go proprietary.9

For developer t > 0, which of these three options (P, G, and B) are available depends

on what open source license he is subject to (i.e., what open source license developer t− 1

chose). We enumerate these different situations in Table 1.

what developer t can choose
what developer t − 1 chose after developing software t

P the game ended in period t − 1 already
G G
B P, G, and B

Table 1: The basic model.

For developer 0, we assume that all three options (P, G, and B) are available to him,

and hence we may treat him as if he is subject to license B.

Let T be the period when the game ends. The game ends in period T iff (1) ∀t < T,

developer t decided to develop software t and then went open sourse, and (2) developer

T either (2a) decides not to develop software T, or (2b) decides to develop software T and

then goes proprietary. If the game never ends, let T = ∞.

For most of this paper (except for Subsection 3.1), we assume exponential discounting.

9While our favorite interpretation of wt and Wt is the (internalizable part of the) consumer surplus, this
is not the only possible interpretation. Alternatively, one can interpret them as what Raymond (1999) calls
“egoboo”; i.e., the ego boost all developers s ≤ t can gain from their increased visibility and recognition
when the more advanced software t is developed. If the “egoboo” is increasing in the size of the user base,
and if the user base is larger when software t is available for free in an open source manner, then we will
again have Wt > wt.
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For any developer t < T, his payoff is

Ut := −ct+

T−1∑
s=t

βs−tWs+β
T−t
×

0 if developer T does not develop software T

wT if developer T develops software T and goes proprietary
,

(1)

where β ∈ (0, 1) is the common discount factor. In other words, we assume that if developer

t ever incurs the development cost ct but then forgoes his potential profit πt, he does so

because he is altruistic enough to care about current and future consumer surplus.10

As for developer T, his utility is 0 if he decides not to develop software T, or is

πT + wT − cT if he decides to develop software T and then goes proprietary.

We assume that developer t’s choice is observable to all developers s > t. We have

thus described an infinite-horizon observable-action game. The primitives of the game

are the probability law P(· | ·) and the common discount factor β. Our solution concept is

subgame perfect equilibrium.

It is easy to see that, depending on the probability law P(· | ·), it can be strictly optimal

for developer 0 to choose each of the four options (Q, P, G, and B). For example, he would

Quit if c0 is prohibitively large; goes Proprietary if W0 is small compared to π0 + w0 and all

(wt,Wt), t ≥ 1, are likely to be negligible; goes open source using GPL if π0 + w0 is small

compared to W0 and all wt, t ≥ 1, are likely to be negligible; and goes open source using

BSD if π0 + w0 is small compared to W0, w1 is likely to be similar to W1, and all Wt, t ≥ 2

are likely to be negligible.

Without imposing significantly more structure on the probability law P(· | ·), it seems

difficult to fully characterize the conditions under which developer 0 would choose each

of these options. Since our main focus is on what other open source licenses are avail-

able, we shall not pursue such a full characterization here, and shall leave it for future

research. The following example, however, demonstrates how, if we are willing to impose

strong assumptions on the probability law P(· | ·), some interesting characterizations can

be obtained.
10One may wonder whether the consumer surplus Wt generated by software t depends on whether

software t + 1 will be developed, as the latter may supersede the former. In that case we may reinterpret
Wt+1 as the marginal increase in total consumer surplus generated by the creation of software t + 1, taking
into account the creative destruction effect on software t (as well as all the earlier softwares).
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2.1 An Example

Consider the following example. Suppose β = 1/2; and ∀t ≥ 0, wt ≡ w = 1 and

Wt ≡ W = 3. Suppose the joint distribution of ct and πt is iid across t, and is as depicted

in Table 2, where z indexes the correlation between ct and πt (with z = 1 means perfect

positive correlation, and z = −1 means perfect negative correlation).

P(ct, πt) πt = 1 πt = 7
ct = 1 (1 + z)/4 (1 − z)/4
ct = 7 (1 − z)/4 (1 + z)/4

Table 2: Joint distribution of ct and πt.

Note that ct = 1 or 7 with the same marginal probability, and πt = 1 or 7 with the same

marginal probability.

Since this is a stationary environment, we shall further restrict our attention to pure-

strategy Markov perfect equilibrium, in which every developer t follows the same pure

Markov strategy that depends only on (i) the open source license he is subject to, which in

turn is chosen by developer t − 1,11,12 and (ii) the realization of (ct, πt). More formally, let

O := {G,B} denote the set of open source licenses. A pure Markov strategy is a function

σ : (c, π, o) 7→ {Q,P} ∪ O that describes any developer’s choice over {Q,P} ∪ O given his

draw of (c, π) and the open source license o ∈ O that he is subject to, with the restriction

that ∀(c, π), σ(c, π,G) < {P,B}. A pure-strategy Markov perfect equilibrium (hereafter, an

equilibrium) is a Markov strategy σ∗ that is optimal for any developer t among all pure

Markov strategies if all future developers s > t follow the pure Markov strategy σ∗.

Consider any developer t. If he develops software t and goes open source, his gross

payoff (gross of development cost ct) is at least Wt = W = 3 (which is achieved if no future

software is developed), and is at most

Wt + βWt+1 + β2Wt+2 + · · · = W/(1 − β) = 3/(1 − 1/2) = 6

(which is achieved if all future developers develop their softwares and go open source).

Therefore,
11Recall that if developer t − 1 did not choose any open source license, then either he did not develop

software t − 1, or he did but chose to go proprietary. In either case, developer t would not have a chance to
move.

12Recall that we can treat developer 0 as if he is subject to license B.
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1. if ct = 1, he should develop software t, he should go open source ifπt = 1 (because by

going open source he can get at least 3 > 2 = πt + wt), and he should go proprietary

if πt = 7 (provided he has such an option);

2. if ct = 7, he should never go open source (because by going open source he can get

at most 6), and he should not even develop software t if πt + wt < 7 (or, equivalently,

if πt < 6); and

3. if πt = 7 and he has the option to go proprietary, he should develop software t and

then go proprietary.

These observations imply that the equilibrium strategy for a developer who is subject

to license G (and hence cannot choose P or B) and for a developer who is subject to license

B, respectively, must be the ones depicted in Tables 3 and 4.

σ(c, π,G) π = 1 π = 7
c = 1 G G
c = 7 Q Q

Table 3: The equilibrium Markov strategy for a developer who is subject to G.

σ(c, π,B) π = 1 π = 7
c = 1 o ∈ O P
c = 7 Q P

Table 4: The equilibrium Markov strategy for a developer who is subject to B.

Now consider the problem of a developer t who is subject to license B when (ct, πt) =

(1, 1). If he chooses G, all future developers’ behavior will be described by Table 3, and

hence his gross expected payoff (gross of development cost) will be

VG = Wt + (β/2)Wt+1 + (β/2)2Wt+2 + · · · = W/(1 − 1/4) = 3/(1 − 1/4) = 4.

If he chooses B, his payoff will depend on future developers’ license decisions in the

same situation; i.e., it will depend on σ(1, 1,B). Suppose σ(1, 1,B) = B, then his gross

expected payoff will be

VBB = W + β
[(1 + z

4

)
VBB +

(1 − z
4

+
1 + z

4

)
w
]

=
26

7 − z
.
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Suppose, instead, σ(1, 1,B) = G, then his gross expected payoff will be

VBG = W + β
[(1 + z

4

)
VG +

(1 − z
4

+
1 + z

4

)
w
]

=
15 + 2z

4
.

An equilibrium with σ(1, 1,B) = B exists iff VBB ≥ VG; i.e., iff z ≥ 1/2. An equilibrium

with σ(1, 1,B) = G exists iff VG ≥ VBG; i.e., iff z ≤ 1/2. We summarize these with the

following proposition.

Proposition 1 In the example in this subsection, a pure-strategy Markov perfect equilibrium

always exists, and is generically unique. In a pure-strategy Markov perfect equilibrium, developer

0

1. does not develop software 0 if development cost is high and potential profit is low (i.e., when

(c0, π0) = (7, 1));

2. develops software 0 and goes proprietary whenever potential profit is high (i.e., whenever

π0 = 7);

3. develops software 0 and goes open source when both development cost and potential profit

are low (i.e., when (c0, π0) = (1, 1)); he goes open source using BSD if future development

costs and potential profits are sufficiently positively correlated (i.e., if z ≥ 1/2), and using

GPL otherwise.

Intuitively, developer 0 would like to see his idea further developed. However, de-

velopment incurs development costs. In the unfortunate event that the next developer

(i.e., developer 1) finds his development cost high, he will be discouraged from further

developing developer 0’s idea, especially if he is also prohibited from going proprietary

and making a profit out of his effort. If development cost and potential profit are positively

correlated such that a higher potential profit typically accompanies a higher development

cost, then BSD, by allowing developer 1 to go proprietary, will help encourage developer

1 to further develop developer 0’s idea even in this unfortunate event. BSD hence can be

the optimal choice for a developer going open source if development cost and potential

profit are positively correlated, while GPL can be the optimal choice in the case of negative

correlation.
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3 A Simple Extension

The basic model in Section 2 is so flexible that adding new open source licenses is easy.

For example, it is easy to see how anyone, by playing with Table 1, would naturally come

up with the new licenses depicted in Table 5.13 In Table 5, R is simply the mirror image

of G. It refers to itself in its own definition, in exactly the same self-referential manner as

G. But it deviates from G by allowing the next developer to go proprietary. License 1 is

derived from G in a different way. It puts the same restriction on the next developer’s

choices of open source licenses, but deviates from G by also allowing the next developer

to go proprietary. Finally, license

1

is derived from R in exactly the same way as how 1

is derived from G. It puts the same restriction on the next developer’s choices of open

source licenses, but deviates from R by not allowing the next developer to go proprietary.

what developer t can choose
what developer t − 1 chose after developing software t

G G
R P and R
1 P and G1

R

Table 5: A simple extension.

We call R the recursive-BSD license. It pushes the defining feature of BSD (its permission

to go proprietary) to its limit. Not only that the next developer is allowed to go proprietary,

all future developers, to the extent that they have a chance to move, are allowed to go

proprietary as well. This is because, for example, the next developer cannot use GPL

to forbid the next-next developer from going proprietary. In this sense, R is even more

permissive than BSD. Of course, one can also argue that R is more restrictive than BSD, as

it puts more restrictions on how the next developer can restrict the next-next developer.

This is a perfect example of why it can be difficult to summarize an open source license

by a single parameter called “permissiveness” as in Lerner and Tirole (2005b).

We call license 1 the 1-chance-only license. License 1 is unambiguously more restrictive

than R. While it, like R, gives the next developer the permission to go proprietary, it

forbids the next developer from giving the same permission to the next-next developer. In

other words, license 1 gives future developers one and only one chance to go proprietary,

13These authors confess that they had lots of fun filling out Table 5.
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namely in the next period and in the next period only.

We call license

1

the 1-time-forbiddance license. As suggested by the symbol, license

1

in

effect turns the idea of license 1 upside-down. While license 1 allows the next developer to

go proprietary but forbids him and any future developer from allowing their successors

to do the same, license

1

does not allow the next developer to go proprietary but requires

that he and any future developer allow their successors to do so.

Are these new licenses bogus? Are there any reasons why an open source developer

may consider using them? Are there situations where they may serve purposes that

neither GPL nor BSD serve? The answer is a qualified “no”. Indeed, in later sections

we shall develop an environment where these new licenses can be ignored without loss

of generality (see Theorem 6). This amounts to our explanation of why GPL and BSD

stood out from other licenses as the two most natural choices for the first-generation open

source developers.

However, that our “no” answer needs to be qualified also means that it is not univer-

sally true. In the remainder of this section, we shall provide an example where developer

0 strictly prefers to use R instead of either G or B. It involves developers with hyperbolic

discounting, an assumption that will violate the premises of Theorem 6.

3.1 An Example with Hyperbolic Discounting

It has become a common practice in behavioral economics to approximate hyperbolic

discounting using an (α, β)-formulation. Here, we shall instead adopt an (α1, α2, β)-

formulation. Specifically, given any infinite sequence of dated payoffs, {ut,ut+1,ut+2, . . .},

we assume that developer t’s present discounted value is

Ut = ut + α1

(
ut+1 + α2

(
ut+2 + βut+3 + β2ut+4 + · · ·

))
,

where α1 ≤ α2 ≤ β.14

Consider the following example with hyperbolic discounting. Suppose α1 = 1/4,

α2 = 2/4, and β = 3/4; and ∀t ≥ 0, wt ≡ w = 15, and Wt ≡ W = 20. Suppose the joint

distribution of ct and πt is iid across t, and is as depicted in Table 6.

14As will be explained later, α1 actually does not play any role, and hence the restriction α1 ≤ α2 is
redundant. We maintain this restriction only to stay in sync with the hyperbolic-discounting literature.

15



P(ct, πt) πt = 0 πt = 20 πt = 35
ct = 10 ε ≈ 0 0 0
ct = 20 0 (1 − ε)/2 0
ct = 40 0 0 (1 − ε)/2

Table 6: Joint distribution of ct and πt.

Again, since this is a stationary environment, we shall restrict our attention to pure-

strategy Markov perfect equilibrium. Our notations and definitions follow closely those

in Subsection 2.1, except thatO is now the set {G,R, 1,B}, and B is appropriately redefined

as the license that allows the next developer to choose either P or any open source license

o ∈ O.15

As in the example in Subsection 2.1, we can calculate a lower and an upper bounds for

any developer t’s gross expected payoff of going open source, which are

Wt = W = 20

and

Wt + α1

(
Wt+1 + α2

(
Wt+2 + βWt+3 + β2Wt+4 + · · ·

))
= W + α1

(
W + α2

(
W + βW + β2W + · · ·

))
= 35,

respectively. We can obtain a number of observations from these two bounds.

First, from the lower bound we can infer that σ(10, 0, ·) ∈ O (because the gross expected

payoff of going open source is at least 20). This in turn implies that the gross expected

payoff of going open source is strictly higher than 20, because the probability that the next

developer developing his software is strictly positive.

Second, from the upper bound we can infer that σ(40, 35,G) = Q and σ(40, 35,B) =

σ(40, 35,R) = σ(40, 35, 1) = P (because by going open source the gross expected payoff is

at most 35 < 50 = πt + wt). It means the probability of any developer t going open source

is at most 1 − P(40, 35) = (1 + ε)/2 ≈ 1/2. This in turn implies a tighter upper bound for

the gross expected payoff of going open source, which is approximately

W + α1

(W + w
2

+ α2

(W + w
2

+ β
W + w

2
+ β2 W + w

2
+ · · ·

))
= 33

1
8
< 35.

15We ignore license

1

, as it is probably not enforceable (see Section 5).
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From this tighter upper bound we can infer thatσ(20, 20,B) = σ(20, 20,R) = σ(20, 20, 1) =

P (because by going open source the gross expected payoff is strictly less than 35 = πt +wt).

Finally, since the gross expected payoff of going open source is strictly higher than 20,

we have σ(20, 20,G) = G.

These observations imply that the equilibrium Markov strategy must be as depicted

in Tables 7 and 8.

σ(c, π,G) π = 0 π = 20 π = 35
c = 10 G – –
c = 20 – G –
c = 40 – – Q

Table 7: The equilibrium Markov strategy for a developer who is subject to G.

σ(c, π,B/R/1) π = 0 π = 20 π = 35
c = 10 o ∈ O – –
c = 20 – P –
c = 40 – – P

Table 8: The equilibrium Markov strategy for a developer who is subject to B, R, or 1.

Now consider the problem of a developer t who is subject to license B and has drawn

(ct, πt) = (10, 0). If he chooses G, all future developers’ behavior will be described by Table

7, and hence his gross expected payoff will be approximately

VG = W +
α1

2

W +
α2

2

W +
β

2
W +

(
β

2

)2

W + · · ·

 = 23
1
2
.

If he chooses either B, R, or 1, with probability close to 1 the next developer will go

proprietary, and hence his gross expected payoff is approximately

VB/R/1 = W + α1w = 23
3
4
> 23

1
2

= VG.

Therefore, σ(10, 0,B) ∈ {B,R, 1}. To compare these three contenders, note that they

differ only in developer t’s continuation payoff conditional on the event that (ct+1, πt+1) =

(10, 0), and hence it suffices to ask what developer t may want to allow developer t + 1 to

choose in that event (hereafter event E).

17



Conditional on event E, if developer t + 1 chooses G, the present value of developer t’s

continuation payoff will be approximately

VE:G = α1

W +
α2

2

W +
β

2
W +

(
β

2

)2

W + · · ·

 = α1 × 28.

Conditional on event E, if developer t + 1 chooses either B, R, or 1, the present value

of developer t’s continuation payoff will be approximately

VE:B/R/1 = α1 (W + α2w) = α1 × 27
1
2
< α × 28 = VE:G.

Therefore, when choosing among B, R, and 1, developer t would like to choose the one

that only allows developer t + 1 to choose G. This goal can be achieved by choosing 1. We

summarize these with the following proposition.

Proposition 2 In the example in this subsection, a pure-strategy Markov perfect equilibrium

always exists and is unique. In a pure-strategy Markov perfect equilibrium, developer 0

1. develops software 0 and goes proprietary when (c0, π0) = (20, 20) or (40, 35); and

2. develops software 0 and goes open source with the 1-chance-only license 1 when (c0, π0) =

(10, 0).

What is going on? Intuitively, if developer t + 2 is allowed to go proprietary, he is more

likely to develop software t + 2, but the stream of consumer surplus will also more likely

terminate in period t+2. To decide whether to allow developer t+2 to go proprietary, one

is hence trading off consumer surplus in period t + 2 versus consumer surplus in periods

s ≥ t + 3, which depends on that decision maker’s discount rate between periods t + 2 and

t + 3. With hyperbolic discounting, this discount rate is higher for developer t + 1 than for

developer t, meaning that developer t + 1 is more tempted, compared to developer t, to

allow developer t + 2 to go proprietary. Developer t hence may want to choose an open

source license that forbids developer t + 1 from allowing developer t + 2 to go proprietary.

While both G and 1 come with this same forbiddance, 1 has the extra benefit over G in

allowing developer t + 1 to go proprietary. This is a benefit for developer t because, just

like developer t + 1, developer t discounts the future hyperbolically and hence is equally

tempted to allow the next developer to go proprietary.
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The above intuition also explains why we need an (α1, α2, β)-formulation to approx-

imate hyperbolic discounting, instead of the more traditional (α, β) one. The key mis-

alignment between developers t’s and t + 1’s interests lies in their discount rates between

periods t + 2 and t + 3; i.e., between α2 and β. The assumption that α2 ≤ β implies that

developer t is more patient than developer t + 1, and hence will like to limit the latter’s

ability to reap an earlier reward. In contrast, α1 does not play any role in this story, and

the assumption that α1 ≤ α2 can be relaxed without affecting our results.

4 The Universal Space of Open Source Licenses

The new licenses introduced in Section 3 are not the only possible new open source

licenses. Indeed, a little thought would suggest that infinitely many can be generated in

a similar manner. It is hence important to have a sense of how the space of all possible

open source licenses looks like, and then impose some intuitive axioms to weed out the

less interesting ones.

We can define a general space of open source licenses in a manner similar to that in

Sections 2 and 3. For any set X, let P(X) be the set of all nonempty subsets of X.16

Definition 1 Let O be an arbitrary set, with each element o ∈ O corresponding to an open source

license. Let g : O → P({P} ∪ O) be a nonempty correspondence such that, for any o ∈ O,

g(o) ∩ O , ∅. Then, S = (O, g) is a space of open source licenses.

Intuitively, g(o) specifies the (nonempty) set of options available to a developer who

is subject to open source license o.17 We assume that going open source (using some

open source license) must always be an option, which translates into the requirement that

g(o)∩O , ∅. This assumption is natural, as it seems impossible to design any open source

license that forces the next developer to go proprietary.18

16In mathematics, the notation P(X) typically stands for the power set of X, which is the set of all subsets
of X, including the empty set. Here, it will ease our notation if we re-define P(X) as the set of all nonempty
subsets of X instead.

17It goes without saying that quitting, Q, is always an option. We hence omit it from the developer’s
choice set for brevity.

18It seems impossible to stop the next developer from giving up his copyright and putting his source code
in the public domain, which in our model is equivalent to going open source using BSD. It should however
be pointed out that, in reality, there are subtle differences between “putting the source code in the public
domain” and “going open source with the BSD licenses”, and these subtle differences are not captured by
our model.
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We say that a space of open source licenses S = (O, g) is finite if g(o) is finite for every

o ∈ O. Note that the set of open source licenses O needs not be finite even when the space

S = (O, g) is finite, as finiteness refers only to the number of options, |g(o)|, allowed by

each open source license o ∈ O.

A space of open source licenses may contain duplicates of otherwise identical open

source licenses. For example, consider O = {G1,G2}, with g(G1) = {G2} and g(G2) = {G2}.

Then the differences between G1 and G2 are superfluous, and one may for all purposes

regard both as being identical to GPL.

Formally, for any space of open source license S = (O, g), let ∼ be an equivalence

relation on O.19 For any o ∈ O, let [o] denote the equivalence class of o. We shall abuse

notation by sometimes writing P as [P] as well. Let O∼ denote the corresponding quotient

set (i.e., the set of equivalence classes of elements in O). Let µ : O ∪ {P} → O∼ ∪ {P} be the

canonical mapping such that, ∀x ∈ O ∪ {P}, µ(x) = [x]. For any o ∈ O, let (µ ◦ g)(o) = {[x] ∈

O
∼
∪ {P} : x ∈ g(o)}, which is nonempty because g(o) is nonempty. We say that g and ∼ are

compatible if (µ◦ g)(o) = (µ◦ g)(o′) whenever o ∼ o′. If g is compatible with ∼, we can define

g∼ : O∼ → P (O∼ ∪ {P}) such that g∼([o]) = (µ ◦ g)(o) for any o ∈ O. Then S∼ = (O∼, g∼) is

a space of open source licenses. We say that ∼ is nontrivial if there exist distinct o, o′ ∈ O

such that o ∼ o′. If there exists a nontrivial equivalence relation ∼ compatible with g, we

say that S = (O, g) is reducible to S∼ = (O∼, g∼) (or simply reducible); otherwise S = (O, g) is

irreducible.

Consider our earlier example where O = {G1,G2}, g(G1) = {G2}, and g(G2) = {G2}.

The only nontrivial equivalence relation is such that G1 ∼ G2. This equivalence relation

is compatible with g, because (µ ◦ g)(G1) = {[G2]} = (µ ◦ g)(G2). Therefore, S = (O, g) is

reducible to S∼ = (O∼, g∼), where O∼ = {[G2]} and g∼([G2]) = {[G2]}.

Consider the example in Section 2 where O = {G,B}, g(G) = {G}, and g(B) = {P,G,B}.

The only nontrivial equivalence relation is such that G ∼ B. This equivalence relation

is not compatible with g, however, because (µ ◦ g)(G) = {[G]} , {P, [G]} = (µ ◦ g)(B).

Therefore, S = (O, g) is irreducible.

To construct the universal space of open source licenses, SU =
(
O

U, gU)
, we first

recursively construct a sequence of nonempty sets (Θ0,Ω0,Θ1,Ω1, . . .) as follows. Let

19A binary relation ∼ is an equivalence relation if it is reflexive, symmetric, and transitive.
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Θ0 = Ω0 = {0, 1}. For n ≥ 1, let

Θn = P(Ωn−1)

Ωn = Ωn−1 ×Θn

= Ωn−2 ×Θn−1 ×Θn

= · · ·

= Ω0 ×Θ1 × · · · ×Θn

= Θ0 ×Θ1 × · · · ×Θn.

A sequence (θ0, θ1, . . .) is called a restriction hierarchy if θn ∈ Θn for any n ≥ 0. Let Ω∞ be

the set of all restriction hierarchies. Intuitively, an open source licenses can be represented

by a restriction hierarchy (θ0, θ1, θ2, . . .) with

• θ0 specifying whether the next developer—say, developer t—is allowed to go pro-

prietary (where θ0 = 1 means “yes” and θ0 = 0 means “no”),

• θ1 specifying what restrictions developer t is allowed to impose on developer t + 1

regarding the option of going proprietary,

• θ2 specifying what restrictions developer t is allowed to impose on developer t + 1

regarding both (i) the option of going proprietary and (ii) what restrictions developer

t + 1 can impose on developer t + 2 regarding the option of going proprietary,

• . . . , etc.

To illustrate how an open source license can be represented by a restriction hierarchy,

let’s construct the restriction hierarchy (θG
0 , θ

G
1 , . . .) that represents the GPL license G.

To determine θG
0 , we ask whether GPL allows the next developer—say, developer t—to

go proprietary. No, it does not. Therefore, θG
0 = 0.

To determine θG
1 , we ask what options developer t has regarding whether to allow

developer t + 1 to go proprietary. GPL gives developer t only a single option—meaning

that θG
1 must be a singleton. Moreover, that single option is to use GPL as well, whose

first restriction has already been encoded in θG
0 .20 Therefore, θG

1 must be the singleton{
θG

0

}
= {0}.

20The GPL license carries infinitely many restrictions. Here, we are concerned about only its first restric-
tion, namely whether it allows the next developer to go proprietary.
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To determine θG
2 , we ask what options developer t has regarding (i) whether to allow

developer t + 1 to go proprietary, and (ii) whether to allow developer t + 1 to allow

developer t + 2 to go proprietary. GPL gives developer t only a single option—meaning

that θG
2 must be a singleton. Moreover, that single option is to use GPL as well, whose

first two restrictions have already been encoded in θG
0 and θG

1 .21 Therefore, θG
2 must be the

singleton
{(
θG

0 , θ
G
1

)}
= {(0, {0})}.

More generally, for any n ≥ 1, θG
n must be a singleton, and must be the singleton{(

θG
0 , θ

G
1 , . . . , θ

G
n−1

)}
.

The GPL license can hence be represented by the restriction hierarchy
(
θG

0 , θ
G
1 , . . .

)
,

where:

θG
0 = 0,

θG
1 = {0},

θG
2 = {(0, {0})},

θG
3 = {(0, {0}, {(0, {0})})},

θG
4 = {(0, {0}, {(0, {0})}, {(0, {0}, {(0, {0})})})},
....

(2)

Likewise we can construct the restriction hierarchy
(
θR

0 , θ
R
1 , . . .

)
that represents the

recursive-BSD license R. The recursive-BSD license allows the next developer to go pro-

prietary, and hence θR
0 = 1. If the next developer chooses to go open source, the recursive-

BSD license gives him only a single option—meaning that for any n ≥ 1, θR
n must be a

singleton. Moreover, that single option is to use the recursive-BSD license as well, whose

first n restrictions have already been encoded in θR
0 , θR

1 , . . . , and θR
n−1. Therefore, θR

n must

be the singleton
{(
θR

0 , θ
R
1 , . . . , θ

R
n−1

)}
. The recursive-BSD license can hence be represented

21GPL carries infinitely many restrictions. Here, we are concerned about only its first two restrictions,
namely (i) whether it allows the next developer to go proprietary, and (ii) whether it allows the next
developer to allow the next-next developer to go proprietary.
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by the restriction hierarchy
(
θR

0 , θ
R
1 , . . .

)
, where:

θR
0 = 1,

θR
1 = {1},

θR
2 = {(1, {1})},

θR
3 = {(1, {1}, {(1, {1})})},

θR
4 = {(1, {1}, {(1, {1})}, {(1, {1}, {(1, {1})})})},
....

(3)

As our final example, let’s also construct the restriction hierarchy
(
θ1

0, θ
1
1, . . .

)
that

represents the 1-chance-only license 1. The 1-chance-only license allows the next developer

to go proprietary, and hence θ1
0 = 1. If the next developer chooses to go open source, the

1-chance-only license gives him only a single option—meaning that for any n ≥ 1, θ1
n

must be a singleton. Moreover, that single option is to use GPL, whose first n restrictions

have already been encoded in θG
0 , θG

1 , . . . , and θG
n−1. Therefore, θ1

n must be the singleton{(
θG

0 , θ
G
1 , . . . , θ

G
n−1

)}
. The 1-chance-only license can hence be represented by the restriction

hierarchy
(
θ1

0, θ
1
1, . . .

)
, where:

θ1
0 = 1,

θ1
1 = {0},

θ1
2 = {(0, {0})},

θ1
3 = {(0, {0}, {(0, {0})})},

θ1
4 = {(0, {0}, {(0, {0})}, {(0, {0}, {(0, {0})})})},
....

(4)

For any restriction hierarchy (θ0, θ1, . . .), to the extent that it represents an open source

license (not yet, as we shall see shortly), we should be able to extract from θ0 whether it

allows the next developer to go proprietary, and from (θ1, θ2, . . .) what open source licenses

it allows the next developer to use. The first task is easy (θ0 = 1 means “yes”, and θ0 = 0

means “no”), and the second task can be done by defining a correspondence Γ : Ω∞ ⇒ Ω∞

as follows: for any (θ0, θ1, . . .) ∈ Ω∞ and (θ′0, θ
′

1, . . .) ∈ Ω∞, (θ′0, θ
′

1, . . .) ∈ Γ(θ0, θ1, . . .) iff
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∀n ≥ 0,22 (
θ′0, . . . , θ

′

n

)
∈ θn+1 ∈ Θn+1 = P(Ωn) = P (Θ0 ×Θ1 × · · · ×Θn) . (5)

As an illustration, if we apply the correspondence Γ to restriction hierarchies
(
θG

0 , θ
G
1 , . . .

)
,(

θR
0 , θ

R
1 , . . .

)
, and

(
θ1

0, θ
1
1, . . .

)
, we will obtain

Γ
(
θG

0 , θ
G
1 , . . .

)
=

{(
θG

0 , θ
G
1 , . . .

)}
,

Γ
(
θR

0 , θ
R
1 , . . .

)
=

{(
θR

0 , θ
R
1 , . . .

)}
, and

Γ
(
θ1

0, θ
1
1, . . .

)
=

{(
θG

0 , θ
G
1 , . . .

)}
,

confirming the fact that a developer who is subject to open source license G (respectively,

R and 1), if going open source, is only allowed to do so using open source license G

(respectively, R and G).

While an open source license can be represented by a restriction hierarchy, however,

not every restriction hierarchy can be the representation of an open source license. In

order for a restriction hierarchy (θ0, θ1, θ2, . . .) to represent an open source license, it needs

to satisfy a consistency requirement. To motivate this consistency requirement, note that

both θ1 and θ2 contain information on what restrictions developer t is allowed to impose

on developer t + 1 regarding the option of going proprietary, and these two pieces of

information must agree with each other. More generally, for any n ≥ 1, θn and θn+1 must

be consistent in the sense that ProjΩn−1
θn+1 = θn.23

Definition 2 A restriction hierarchy (θ0, θ1, . . .) is consistent if ProjΩn−1
θn+1 = θn for any n ≥ 1.

The reader can readily check that the restriction hierarchies
(
θG

0 , θ
G
1 , . . .

)
,
(
θR

0 , θ
R
1 , . . .

)
,

and
(
θ1

0, θ
1
1, . . .

)
are all consistent, because for any n ≥ 1,

ProjΩn−1
θG

n+1 = ProjΘ0×···×Θn−1

{(
θG

0 , . . . , θ
G
n

)}
=

{(
θG

0 , . . . , θ
G
n−1

)}
= θG

n ,

ProjΩn−1
θR

n+1 = ProjΘ0×···×Θn−1

{(
θR

0 , . . . , θ
R
n

)}
=

{(
θR

0 , . . . , θ
R
n−1

)}
= θR

n , and

ProjΩn−1
θ1

n+1 = ProjΘ0×···×Θn−1

{(
θG

0 , . . . , θ
G
n

)}
=

{(
θG

0 , . . . , θ
G
n−1

)}
= θ1

n.

22We abuse notation by writing Γ((θ0, θ1, . . .)) as Γ(θ0, θ1, . . .), although Γ has only one argument, namely
the vector (θ0, θ1, . . .).

23ProjΩn−1
θn+1 denotes the projection of θn+1 ∈ Θn+1 = P(Ωn) = P (Ωn−1 ×Θn) into Ωn−1, resulting in a

subset of Ωn−1. Consistency requires that this subset is the same as θn ∈ P(Ωn−1).
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Let O1 be the set of all consistent restriction hierarchies.

Lemma 1 For any consistent restriction hierarchy (θ0, θ1, . . .) ∈ O1, the subset Γ(θ0, θ1, . . .) ⊂

Ω∞ is nonempty.

Proof: We first show that there exists θ′0 ∈ θ1. This follows from θ1 ∈ Θ1 = P(Ω0) =

P(Θ0) and P(Θ0) does not contain the empty set.

For any n ≥ 1, assume that there exists
(
θ′0, . . . , θ

′

n−1

)
∈ θn. Since (θ0, θ1, . . .) is consis-

tent, we have ProjΩn−1
θn+1 = θn, and hence

(
θ′0, . . . , θ

′

n−1

)
∈ ProjΩn−1

θn+1 as well. Therefore,

there exists θ′n such that
(
θ′0, . . . , θ

′

n−1, θ
′

n

)
∈ θn+1. By induction, there hence exists a re-

striction hierarchy (θ′0, θ
′

1, . . .) ∈ Ω∞ such that, ∀n ≥ 0, (θ′0, . . . , θ
′

n) ∈ θn+1, implying that

Γ(θ0, θ1, . . .) is nonempty. �

That the restriction hierarchy (θ0, θ1, . . .) is consistent, however, does not guarantee

that those restriction hierarchies in Γ(θ0, θ1, . . .) are also consistent. Therefore, we shall

define

O2 = {(θ0, θ1, . . .) ∈ O1 : Γ(θ0, θ1, . . .) ⊂ O1} ,

and retain only restriction hierarchies in O2.

That every restriction hierarchy (θ′0, θ
′

1, . . .) in Γ(θ0, θ1, . . .) is consistent, however, does

not guarantee that those restriction hierarchies in Γ(θ′0, θ
′

1, . . .) are also consistent. There-

fore, we shall not stop here, and shall continue and recursively define, for any k ≥ 2,

Ok = {(θ0, θ1, . . .) ∈ Ok−1 : Γ(θ0, θ1, . . .) ⊂ Ok−1} .

We shall now define

O
U =

∞⋂
k=1

Ok,

which will be the set of every restriction hierarchy that represents an open source license.24

The reader can readily check that each of
(
θG

0 , θ
G
1 , . . .

)
,
(
θR

0 , θ
R
1 , . . .

)
, and

(
θ1

0, θ
1
1, . . .

)
belongs toOU. Indeed, we have already seen that they are all consistent and hence belong

to O1. For any k ≥ 1, assume that they have already been shown to belong to Ok. Then we

24Readers familiar with the classical construction of the universal type space will recognize that this step
is akin to the imposition of common knowledge of coherency.
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have

Γ
(
θG

0 , θ
G
1 , . . .

)
=

{(
θG

0 , θ
G
1 , . . .

)}
⊂ Ok

by the inductive assumption, and hence
(
θG

0 , θ
G
1 , . . .

)
belongs to Ok+1 as well; and similarly

for
(
θR

0 , θ
R
1 , . . .

)
and

(
θ1

0, θ
1
1, . . .

)
. Therefore, by induction, all of them belong to Ok for any

k ≥ 1, and hence belong to OU. This also shows that OU is nonempty.

Define gU : OU
→ P

(
{P} ∪ OU)

such that, for any consistent restriction hierarchy

(θ0, θ1, . . .) ∈ OU,

gU(θ0, θ1, . . .) =

Γ(θ0, θ1, . . .) if θ0 = 0

Γ(θ0, θ1, . . .) ∪ {P} if θ0 = 1
. (6)

We shall call the pair SU = (OU, gU) the universal space of open source licenses. The

following two theorems justify why this terminology is appropriate. The first theorem

states that SU is in itself a space of open source licenses. The second theorem states

that any finite irreducible space of open source licenses is a sub-space of SU. These two

theorems (except for the “1-to-1” part of Theorem 2) can also be proved as corollaries of

Mariotti, Meier, and Piccione’s (2005) Proposition 3, by recognizing that any finite space

of open source licenses can be made into a compact continuous possibility structure.25

Below we provide an elementary proof without topology for each of these two theorems.

Theorem 1 The universal space of open source licenses SU is in itself a space of open source

licenses.

Proof: We have already seen thatOU is nonempty, as it contains, for example,
(
θG

0 , θ
G
1 , . . .

)
,(

θR
0 , θ

R
1 , . . .

)
, and

(
θ1

0, θ
1
1, . . .

)
. For any o ∈ OU

⊆ O1, by Lemma 1, Γ(o) is a nonempty subset

of Ω∞. Moreover, for any k ≥ 1, Γ(o) ⊆ Ok because o ∈ OU
⊆ Ok+1, and hence Γ(o) is also a

nonempty subset of ∩kOk = OU. Therefore, gU(o)∩OU = Γ(o) , ∅, and hence S =
(
O

U, gU)
is in itself a space of open source licenses. �

Theorem 2 Any finite irreducible space of open source licenses S = (O, g) is a sub-space of the

universal space of open source licenses in the sense that there exists a 1-to-1 mapping f : O → OU,

25We thank Yi-Chun Chen for pointing this out to us.
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called the canonical representation, such that for any o ∈ O,

P ∈ g(o)⇐⇒ P ∈ gU( f (o))

and o′ ∈ g(o)⇐⇒ f (o′) ∈ gU( f (o)).
(7)

We prove Theorem 2 in three steps. We first explicitly construct a mapping f fromO into

the set of all restriction hierarchies Ω∞. We call this mapping the canonical representation

of open source licenses. We then prove that the range of f actually lies inside OU (Lemma

2). Finally, we prove that, if S = (O, g) is finite irreducible, this will be a 1-to-1 mapping

that satisfies (7) (Lemma 3).

We construct the canonical representation f by recursively defining a sequence of

mappings
(

f0, f1, . . .
)
, with each fn a mapping from O into Θn. We first define f0 such that,

for any o ∈ O,

f0(o) =

0 if P < g(o)

1 if P ∈ g(o).

Suppose we have already defined mappings ( f0, . . . , fn), we then define fn+1 such that,

for any o ∈ O,

fn+1(o) =
{(

f0(o′), . . . , fn(o′)
)

: o′ ∈ g(o) ∩ O
}
.

We can now define the canonical representation f : O → Ω∞ such that, for any o ∈ O,

f (o) = ( f0(o), f1(o), . . .).

Lemma 2 The range of the canonical representation f lies inside OU.

Proof: We first prove that, for any o ∈ O, f (o) is a consistent restriction hierarchy. Let

f (o) = (θ0, θ1, . . .). For any n ≥ 1,

ProjΩn−1
θn+1 = ProjΩn−1

fn+1(o)

= ProjΩn−1

{(
f0(o′), . . . , fn(o′)

)
: o′ ∈ g(o) ∩ O

}
=

{(
f0(o′), . . . , fn−1(o′)

)
: o′ ∈ g(o) ∩ O

}
= fn(o) = θn,

(8)

and hence f (o) is a consistent restriction hierarchy.
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Given any o ∈ O. Consider a sequence
{(
θk

0, θ
k
1, . . .

)}
k≥1

of restriction hierarchies such

that (
θ1

0, θ
1
1, . . .

)
∈ Γ( f (o)), and

∀k > 1,
(
θk

0, θ
k
1, . . .

)
∈ Γ

(
θk−1

0 , θk−1
1 , . . .

)
.

(9)

We claim that, ∀k ≥ 1, there exists
{
ok

0, o
k
1, . . .

}
⊂ O such that,

∀n ≥ 0,
(
θk

0, . . . , θ
k
n

)
=

(
f0

(
ok

n

)
, . . . , fn

(
ok

n

))
. (10)

We prove this claim by induction. Consider k = 1. Since (θ1
0, θ

1
1, . . .) ∈ Γ( f (o)), we have,

∀n ≥ 0, (
θ1

0, . . . , θ
1
n

)
∈ fn+1(o) =

{(
f0(o′), . . . , fn(o′)

)
: o′ ∈ g(o) ∩ O

}
,

and hence there exists o1
n ∈ g(o) ∩ O such that (θ1

0, . . . , θ
1
n) =

(
f0

(
o1

n

)
, . . . , fn

(
o1

n

))
.

Assume we have already proved that, for some k ≥ 1, there exists
{
ok

0, o
k
1, . . .

}
⊂ O that

satisfies (10). Since
(
θk+1

0 , θk+1
1 , . . .

)
∈ Γ

(
θk

0, θ
k
1, . . .

)
, we have, ∀n ≥ 0,

(
θk+1

0 , . . . , θk+1
n

)
∈ θk

n+1 = fn+1

(
ok

n+1

)
=

{(
f0(o′), . . . , fn(o′)

)
: o′ ∈ g

(
ok

n+1

)
∩ O

}
,

and hence there exists ok+1
n ∈ g

(
ok

n+1

)
∩O such that (θk+1

0 , . . . , θk+1
n ) =

(
f0

(
ok+1

n

)
, . . . , fn

(
ok+1

n

))
.

By induction, the claim is hence true for all k ≥ 1.

Given any
(
θk

0, θ
k
1, . . .

)
, for any n ≥ 0,

ProjΩn−1
θk

n+1 = ProjΩn−1
fn+1

(
ok

n+1

)
= fn

(
ok

n+1

)
= θk

n,

where the second equality follows from (8), and the last equality follows from (θk
0, . . . , θ

k
n, θ

k
n+1) =(

f0(ok
n+1), . . . , fn(ok

n+1), fn+1(ok
n+1)

)
. Therefore,

(
θk

0, θ
k
1, . . .

)
is a consistent restriction hierarchy.

Since this is true for any
(
θk

0, θ
k
1, . . .

)
in any sequence

{(
θk

0, θ
k
1, . . .

)}
k≥1

that satisfies (9),

we have f (o) ∈ Ok for every k ≥ 1, and hence f (o) ∈ OU. Since this is true for any o ∈ O, we

have proved that the range of f lies inside OU. �

Lemma 3 If S = (O, g) is finite irreducible, the canonical representation f is a 1-to-1 mapping
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that satisfies (7).

Proof: Let S = (O, g) be a finite irreducible space of open source licenses. Define an

equivalence relation ∼ onO such that ∀o1, o2 ∈ O, o1 ∼ o2 iff f (o1) = f (o2). Suppose, by way

of contradiction, f : O → OU is not 1-to-1, then ∼will be a nontrivial equivalence relation.

To arrive at a contradiction, it suffices to prove that ∼ and g are compatible; i.e., it suffices

to prove that, whenever o1 ∼ o2,

(µ ◦ g)(o1) = {[x] : x ∈ g(o1)} =: A1 = A2 := {[x] : x ∈ g(o2)} = (µ ◦ g)(o2).

Since o1 and o2 play symmetric roles, it suffices to prove that, [x] ∈ A1 =⇒ [x] ∈ A2.

Suppose [P] ∈ A1, then f0(o1) = 1. But then f0(o2) = 1 as well because f (o1) = f (o2), and

hence [P] ∈ A2 as claimed.

Suppose [o′] ∈ A1 \ A2, then there exists o′1 ∈ g(o1) such that f (o′1) = f (o′), but for any

o′2 ∈ g(o2), f (o′2) , f (o′). By finiteness of g(o2), there exists n ≥ 0 such that

(
f0 (o′) , . . . , fn (o′)

)
<

{(
f0

(
o′2

)
, f1

(
o′2

)
, . . . , fn

(
o′2

))
: o′2 ∈ g (o2) ∩ O

}
.

Since o′1 ∈ g(o1), we have
(

f0

(
o′1

)
, . . . , fn

(
o′1

))
∈ fn+1 (o1) by the construction of the

canonical representation f . But then we have

(
f0 (o′) , . . . , fn (o′)

)
=

(
f0

(
o′1

)
, . . . , fn

(
o′1

))
∈ fn+1 (o1)

= fn+1 (o2)

=
{(

f0
(
o′2

)
, f1

(
o′2

)
, . . . , fn

(
o′2

))
: o′2 ∈ g (o2) ∩ O

}
,

a contradiction.

It remains to prove that f : O → OU satisfies (7). By the construction of f and gU, we

have

P ∈ g(o) ⇐⇒ f0(o) = 1 ⇐⇒ P ∈ gU (
f (o)

)
= Γ

(
f (o)

)
∪ {P}.

Suppose o′ ∈ g(o). Then, by the construction of f , ∀n ≥ 0, we have
(

f0 (o′) , . . . , fn (o′)
)
∈

fn+1(o). By the construction of Γ, we have
(

f0 (o′) , f1 (o′) , . . .
)
∈ Γ

(
f0(o), f1(o), . . .

)
. Therefore,

by the construction of gU, we have f (o′) ∈ gU (
f (o)

)
.
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Suppose f (o′) ∈ gU (
f (o)

)
. Then, by the construction of gU, we have f (o′) ∈ Γ

(
f (o)

)
. By

the construction of Γ, ∀n ≥ 0, we have
(

f0 (o′) , . . . , fn (o′)
)
∈ fn+1(o). By finiteness of g(o),

there exists o′′ ∈ g(o) such that f (o′′) = f (o′). By the fact that f is a 1-to-1 mapping, we

have o′ = o′′ ∈ g(o). This completes the proof that f satisfies (7). �

5 Imposture-Proof Open Source Licenses

To motivate the idea of imposture-proofness, let’s revisit the 1-time-forbiddance license

introduced in Section 3:

1

going open source with the 1-time-forbiddance license

Developer t goes open source. If developer t+1 chooses to develop software t+1, he

has to go open source with the recursive-BSD license (i.e., choosing R), thus enabling

future developers to go proprietary.

Imagine that developer t − 1 goes open source with license

1

, hoping to prohibit

developer t from going proprietary. One possible way for developer t to game this license

is to split his software t into two successive versions, version t.1 and version t.2, with

version t.1 a more advanced version of software t − 1, and version t.2 a more advanced

version of version t.1. He can roll out version t.1 first, go open source with license R,

thus satisfying the terms in developer t − 1’s license

1

. He can then roll out version t.2,

possibly using a different identity, and then go proprietary, which is allowed by the terms

in version t.1’s license R.

The reason why developer t can game license

1

is that, while

1

precludes P, it allows

for R which in turn allows for P. More generally, any license that tries to preclude option

x but allows for some open source license o that allows for option x can be gamed in a

similar manner. This motivates the following axiom.

Definition 3 Let S = (O, g) be a space of open source licenses. An open source license o ∈ O is

said to be imposture-proof if

o′ ∈ g(o) ∩ O =⇒ g (o′) ⊆ g (o) .

The space S is said to be imposture-proof if every open source license o ∈ O is imposture-proof.
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Note that all the other open source licenses studied in Section 3 (i.e., G, R, and 1) are

imposture-proof open source licenses.

The following theorem is the main result of this section that we shall use in Section 6.

Theorem 3 Let S = (O, g) be an irreducible space of open source licenses that is imposture-proof.

Any open source license o ∈ O that does not allow the next developer to go proprietary (i.e.,

P < g(o)) is identical to the GPL license G in the sense that g(o) = {o}.

Proof: Consider any open source license o ∈ O such that P < g(o). If o′ < g(o) for any

o′ , o, then by the nonemptyness of g(o) ∩ O we must have g(o) = {o}, and we are done.

Therefore, let’s suppose there exists o′ , o such that o′ ∈ g(o). Let’s define an equivalence

relation ∼ such that [o] = g(o) ∪ {o}, and [o′′] = {o′′} for any o′′ < g(o) ∪ {o}. This is a

nontrivial equivalence relation because o′ , o and yet o′ ∼ o. We shall prove that g and

∼ are compatible, and hence S = (O, g) is reducible. To prove compatibility, it suffices to

prove that (µ ◦ g) (o′) = (µ ◦ g)(o) for any o′ ∈ g(o). By imposture-proofness, we have

g (o′) ⊆ g(o) ⊆ g(o) ∪ {o} = [o],

and hence (µ ◦ g) (o′) = {[o]} = (µ ◦ g)(o) as claimed. �

In the rest of this section, we shall categorize different imposture-proof open source

licenses. This categorization, however, will not be used in Section 6. Readers who are

eager to learn why GPL and BSD stood out from other licenses as the two most natural

choices for the first-generation open source developers can skip the rest of this section and

jump to Section 6 without loss.

Given any space of open source licenses S = (O, g) that is imposture-proof, and given

any open source license o ∈ O, let’s recursively define the following:

G0(o) = g(o)

G1(o) =
⋃

o′∈G0(o)∩O

g(o′)

...

Gn(o) =
⋃

o′∈Gn−1(o)∩O

g(o′).
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Since the space S = (O, g) is imposture-proof, we must have

G0(o) ⊇ G1(o) ⊇ G2(o) ⊇ · · · .

Therefore, there exists a first time (possibly infinity), denoted by L(o), such that the

option P is no longer available; i.e., P ∈ Gn iff n < L(o). We say that L(o) is the (upper) level

of open source license o. Among the open source licenses studied in Section 3, we have

L(G) = 0,

L(R) = ∞, and

L(1) = 1.

Lemma 4 Let S = (O, g) be an irreducible space of open source licenses that is imposture-proof.

Any open source license o ∈ O with L(o) = 1 is identical to the 1-chance-only license 1 in the sense

that ∃G ∈ O with g(G) = {G} such that g(o) = {P,G}.

Proof: By definition, L(o) = 1 implies that P ∈ G0(o) = g(o) but P < G1(o) = ∪o′∈g(o)∩Og(o′).

Therefore, ∀o′ ∈ g(o)∩O, P < g (o′), and hence by Theorem 3 is identical to the GPL license

in the sense that g(o′) = {o′}. Irreducibility then implies that there is only one such o′,

denoted by G, and that g(o) = {P,G}. �

For any L ≥ 1, let’s recursively define the L-chances-only license L as follows.

L: going open source with the L-chances-only license

Developer t goes open source. If developer t + 1 chooses to develop software t + 1,

he can either go proprietary (i.e., choosing P), or go open source with either G, 1, 2,

. . . , L-2, or L-1.

Theorem 4 Let S = (O, g) be an irreducible space of open source licenses that is imposture-proof.

Any open source license o ∈ O with L(o) = L ≥ 1 is identical to the L-chances-only license L in

the sense that ∃G, 1, 2 . . . ,L − 1 ∈ O, with g(G) = {G}, g(1) = {P,G}, g(2) = {P,G, 1}, . . . , and

g(L − 1) = {P,G, 1, 2, . . . ,L − 2}, such that g(o) = {P,G, 1, 2, . . . ,L − 1}.

Proof: By Lemma 4, the statement is true for L = 1. Assume we have already proved

that the statement is true for L = 1, . . . ,m, for some m ≥ 1. Consider an open source license
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o ∈ Owith L(o) = m + 1. By definition, L(o) = m + 1 implies that P ∈ G0(o), . . . ,Gm(o) but P <

Gm+1(o). Therefore, ∀o′ ∈ g(o) ∩ O, L(o′) ≤ m, and ∃o′ ∈ g(o) such that L(o′) = m. Therefore,

by the inductive assumption there exist (and, by irreducibility, unique) G, 1, 2 . . . ,m ∈ O,

with g(G) = {G}, g(1) = {P,G}, . . . , and g(m) = {P,G, 1, . . . ,m − 1}, such that

G0(o) ⊆ {P G, 1, . . . ,m} = g(m) ∪ {m} ⊆ G1(o) ∪ {m} ⊆ G0(o),

and hence all inclusions are equality. By induction, the statement is true for any L ≥ 1. �

By imposture-proofness, if L(o) = ∞, then ∃o′ ∈ g(o)∩O such that L(o′) = ∞, and hence

max{L(o′) : o′ ∈ g(o) ∩ O} = ∞. Let’s define

l(o) = min{L(o′) : o′ ∈ g(o) ∩ O}.

We shall call l(o) the lower level of open source license o. Among the open source licenses

studied in Section 3, we have

l(G) = 0,

l(R) = ∞, and

l(1) = 0.

Lemma 5 Let S = (O, g) be an irreducible space of open source licenses that is imposture-proof.

For any open source license o ∈ O, l(o) is either 0 or∞.

Proof: Note that, for any open source license o ∈ O, ∀o′ ∈ g(o), L(o′) ≥ l(o), and∃ o′ ∈ g(o)

such that L(o′) = l(o). Suppose l(o) = L < ∞. Then, by Theorem 4, ∃G, 1, 2 . . . ,L ∈ O, with

g(G) = {G}, g(1) = {P,G}, g(2) = {P,G, 1}, . . . , and g(L) = {P,G, 1, 2, . . . ,L − 1}, such that

L ∈ g(o). By imposture-proofness, G ∈ g(L) ⊂ g(o), and hence l(o) ≤ L(G) = 0. �

Theorem 5 Let S = (O, g) be an irreducible space of open source licenses that is imposture-proof.

Any open source license o ∈ O with L(o) = l(o) = ∞ is identical to the recursive-BSD license R in

the sense that g(o) = {P, o}.
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Proof: Since L(o) = ∞, we have P ∈ g(o). If o′ < g(o) for any o′ , o, then by the

nonemptyness of g(o) ∩ O we must have g(o) = {P, o}, and we are done. Therefore, let’s

suppose there exists o′ , o such that o′ ∈ g(o) ∩ O. Let’s define an equivalence relation

∼ such that [o] =
(
g(o) ∩ O

)
∪ {o}, and [o′′] = {o′′} for any o′′ <

(
g(o) ∩ O

)
∪ {o}. This is a

nontrivial equivalence relation because o′ , o and yet o′ ∼ o. We shall prove that g and

∼ are compatible, and hence S = (O, g) is reducible. To prove compatibility, it suffices to

prove that (µ ◦ g) (o′) = (µ ◦ g)(o) for any o′ ∈ g(o) ∩ O. Since l(o) = ∞, we have L (o′) = ∞,

and hence [P] is contained in (µ ◦ g)(o) as well as in (µ ◦ g) (o′). By imposture-proofness,

we have

g (o′) ∩ O ⊆ g(o) ∩ O ⊆
(
g(o) ∩ O

)
∪ {o} = [o],

and hence (µ ◦ g) (o′) = {[P], [o]} = (µ ◦ g)(o) as claimed. �

We have, up to this point, characterized licenses G, 1, . . . , L, and R. By Lemma 5, all

the remaining imposture-proof open source licenses have the properties of L(o) = ∞ and

l(o) = 0. These include the two BSD licenses studied in Sections 2 and 3, respectively, and

many more.26 Common across these licenses are:

1. All allows the next developer to go proprietary; i.e., P ∈ g(o).

2. All allows the next developer to go open source with a license o′ ∈ O that is restrictive

in the sense that L(o′) < ∞.

3. All allows the next developer to go open source with a license o′ ∈ O that is permissive

in the sense that L(o′) = ∞.

We have not tried to further categorizing these licenses. Indeed, Theorem 6 in Sec-

tion 6 says that many of them will be irrelevant under the assumptions of exponential

discounting and atomless probability law P(· | ·).

26Note that the two BSD licenses studied in Sections 2 and 3, respectively, are not exactly the same—while
both have the flavor of “everything goes”, the meaning of “everything” differs across the two spaces of open
source licenses studied in those two respective sections—and hence should more appropriately be regarded
as different variants of BSD.
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6 Why GPL and BSD are Natural Choices for Developers

In this section, we return to the (possibly non-stationary) setting in Section 2 and

consider all subgame perfect equilibria of the game (instead of restricting our attention

to pure-strategy Markov perfect equilibrium). We shall present an environment where,

in any subgame perfect equilibrium, if developer 0 is ever going to go open source, he

cannot do better than going open source with either GPL or BSD. This result is of interest

because it sheds light on why GPL and BSD stood out from other licenses as the two most

natural choices for the first-generation open source developers.

Theorem 6 Assume (i) exponential discounting and (ii) that the probability law P(· | ·) is atomless.

Let S = (O, g) be an irreducible space of open source licenses that is imposture-proof and contains

open source licenses G,B ∈ O such that g(G) = {G} and g(B) = {P} ∪ O. Then, in any subgame

perfect equilibrium, if developer 0 is ever going to go open source, he cannot do better than going

open source using either G or B.

Proof: We have already seen in Subsection 2.1 that either G or B can be strictly optimal

for developer 0 if these are the only two open source licenses available to him.27 Since

S = (O, g) is irreducible and imposture-proof, by Theorem 3, any open source license o ∈ O

other than G must have the property that P ∈ g(o). Therefore, it suffices to prove that, in

any subgame perfect equilibrium, choosing B is weakly better than choosing any of these

open source licenses for developer 0.

For any open source license o ∈ O such that P ∈ g(o). Suppose developer 0 goes open

source using license o. For any o1 ∈ g(o)∩O, let v1(o1) be developer 1’s gross expected payoff

(gross of development cost c1) if he goes open source with o1, where the expectation is

taken over the realizations of {θt}t≥2, and is taken conditional on the equilibrium strategies

of developers t ≥ 2. Note that v1(o1) = W1 + β × (· · · ) ≥ W1. Let v∗1 = supo1∈g(o)∩O v1(o1).

Developer 1’s optimal strategy is hence

1. not to develop software 1 if θ1 ∈ E0 := {θ1 | c1 > max{π1 + w1, v∗1}};

2. to develop software 1 and go proprietary if θ1 ∈ EP := {θ1 |π1 + w1 > max{c1, v∗1}};

and
27While the example in Subsection 2.1 involves a probability law P(· | ·) that contains atoms, it can be easily

modified into one with an atomless probability law without affecting this conclusion.
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3. to develop software 1 and go open source with one of the open source licenses in

argmaxo1∈g(o)∩O v1(o1) if θ1 ∈ E∗ := {θ1 | v∗1 > max{c1, π1 + w1}}.28

Since P(· | ·) is atomless, the boundaries of events E0, EP, and E∗ have probability 0 and

hence can be ignored.

By going open source with o, developer 0’s gross expected payoff (gross of development

cost c0) is hence

W0 + β
[
P(E0

|θ0) × 0 + P(EP
|θ0) × w1 + P(E∗ |θ0) × v∗1

]
,

which is strictly increasing in v∗1 because v∗1 ≥ W1 > w1. Since v∗1 is weakly increasing in

the set g(o) ∩ O (according to the order of set inclusion), it is maximized at B. This proves

that, in any subgame perfect equilibrium, choosing B is weakly better than choosing any

open source license o ∈ O such that P ∈ g(o). �

In the proof of Theorem 6, the assumption of an atomless probability law P(· | ·) implies

that developer 1 is indifferent (between developing software 1 or not, and between going

proprietary or going open source) with probability 0. If developer 1 is indifferent with

strictly positive probability, how he breaks ties has non-trivial implications on developer

0’s gross expected payoff. If developer 1 breaks ties in a manner that depends on some

payoff-irrelevant details—such as the name of the license, or whether the license allows

for certain irrelevant options—then it is possible that BSD does not fare as well as another

license simply because the former leads developer 1 to break ties in a way that is unfa-

vorable to developer 0. If we alternatively assume that, say, developers always break ties

in favor of developing the software, and in favor of going open source, then we can relax

the assumption of atomless P(· | ·) in Theorem 6.

7 Concluding Remarks

The open source movement is nothing short of a revolution in how production is

organized. It has rightfully attracted a lot of economic studies, but very few on the very

28The sup v∗1 is attainable in this last case because an optimal strategy exists in a subgame perfect
equilibrium.
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licenses that made this revolution possible. This paper is the first attempt to provide a

rich enough model to accommodate infinitely many generations of developers so that the

self-referential features of these licenses can be studied explicitly.

To make such a rich model tractable, we have imposed a linear structure on the

community of developers (i.e., each developer, if he goes open source, can inspire at most

one developer). It should be emphasized that our construction of the universal space of

open source licenses (Section 4) and the categorization of imposture-proof open source

licenses (Section 5) do not depend on this linear structure.

The sufficiency of GPL and BSD (Theorem 6), however, may rely on this linear structure.

Imagine, for example, an alternative, “tree-like” structure where developer 0 can inspire

up to two second-generation developers, A and B. In the absence of developer B, developer

0 finds it optimal to give developer A as much freedom as possible in designing A’s own

open source license. In the presence of developer B, however, this may no longer be true,

thanks to the strategic interaction between A and B.

While it is certainly more realistic to replace our linear structure with a “tree-like”

structure, the cost of doing so is a discontinuous jump in complexity, as a model with a

“tree-like” structure has a lot more free parameters. For starter, softwares A and B are

likely close substitutes of each other, and their substitutability likely depends on whether

one or both of them are proprietary. Similarly, if developers A and B can each inspire up

to two third-generation developers—A inspiring A1 and A2, and B inspiring B1 and B2—

then the substitutability between softwares A1 and B2 is likely lower than that between

A1 and A2, and the whole matrix of these substitutabilities likely depends on which

of these softwares are proprietary. All these parameters may play a role in determining

developer 0’s optimal open source license. A model with a “tree-like” structure also opens

up the possibility of dual licensing—the practice of offering different licenses to different

downstream developers.

Such a more realistic model will be closer to that of Gaudeul (2004, 2005) than to ours.

To keep this more realistic model tractable, she limits her attention to only GPL and BSD,

and to only three generations of developers. The cost of doing so is that other open source

licenses, together with their self-referential features, cannot be studied explicitly.

Finally, when the sufficiency of GPL and BSD (Theorem 6) breaks down (say, in a

model with a “tree-like” structure), the reader will find other open source licenses studied

37



in Sections 4 and 5 relevant again. We hence expect that our results in Sections 4 and 5

will be even more useful for future research that studies more general environments than

what is allowed by our linear structure.
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