
Do taxspots matter?*

A. Citanna† M. Tvede‡

NYU AD U Sheffield

January 12, 2023

Abstract

Should the government run an uncertain fiscal policy to finance its liabilities? We call the re-
sulting extrinsic uncertainty taxspots, and study under what conditions taxspots are optimal, and
persistent, in standard Ramsey problems.

Keywords: Ramsey taxation, sunspots, lottery equilibrium.

JEL: D51, D52, D84, E62, H21

*We thank Julio Davila, Aditya Goenka, Pietro Reichlin, and Etienne Wasmer for their comments.
†New York University Abu Dhabi, UAE, ac6609@nyu.edu
‡University of Sheffield, UK, m.tvede@sheffield.ac.uk

1



1 Introduction

A standard principle in public finance (see, e.g., Barro (1979)) is that, under the usual assumption
of risk aversion, taxation should be designed so as to smooth out lifetime consumption, aiming at
fiscal certainty over time. Yet, tax uncertainty is recognized as a feature of many tax systems, in and
outside the group of OECD countries, usually with a negative view.1 We study when and how efficient
fiscal policies must instead create fiscal uncertainty, or ‘taxspots’. Taxspots equilibria are competitive
equilibria where uncertainty stems (only) from variation in taxes. Taxspot equilibria then give new
insights on the properties of optimal taxes. We focus on Ramsey problems, where taxes are linear in
income and the planner is benevolent.

To illustrate the emergence of taxspots, we first examine a version of Lucas and Stokey’s (1983)
model of linear labor income taxation in a market economy where the government can issue a full set
of state-contingent bonds. Here taxspots affect labor income taxes, and create stochastic variations
in the workers’ labor supply. Taxspots occur at the optimal fiscal policy in a large set of economies
–dense in a sense we make precise, and under usual regularity conditions. The intuitive reason is that,
under sufficient prudence, uncertain future disposable income spurs consumers to work more. The
additional income can increase average consumption, compensating the individuals for the additional
risk faced. However, without additional frictions taxspots have limited impact on the economy: as
the government can issue state- (that is, taxspot-) contingent bonds, resulting in market completeness,
taxspot uncertainty essentially dies out in finite time.

Next, we move to an economy with only capital. When capital is considered, the mechanism
through which taxspots are beneficial to the economy becomes more transparent. The Ramsey prob-
lem requires the planner to accumulate capital with a ‘demand constraint’, that is, capital investment
must be consistent with the individual’s perceived optimal intertemporal consumption trade-off. If
the government starts off with insufficient capital or large enough liabilities, as is assumed in standard
analyses of the problem, the Ramsey planner needs to increase capital investment, that is, savings. As
it is well known, this can obtained with either a lower or a higher interest rate, depending on the in-
tertemporal elasticity of substitution —when the elasticity is lower than one, a lower interest rate (i.e.,
a positive capital tax) spurs higher investment. However, due to prudence, an increase in uncertainty
also may spur higher investment. If prudence is large enough to offset the negative effect of additional
consumption uncertainty (an adverse effect for risk averse individuals), then taxspots can be used to
raise the demand for capital.

Again in a model where the government may issue a full set of state-contingent debt (as in, e.g.,
Chamley (1986) and Chari, Christiano and Kehoe (1994)), we confirm the above intuition: enough
prudence induces taxspots, that is, a taxspot-free fiscal policy is suboptimal under enough prudence.
Slight perturbations of the utility and of government initial liabilities parameters, away from the stan-

1See, e.g., Tax Certainty, the IMF/OECD 2017 Report for the G20 Finance Ministers.
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dard isoelastic utility with elasticity coefficient less than one, also lead to the Pareto superiority of
taxspots. When optimal taxspots are considered, almost surely zero average capital taxes obtain in
stationary, ergodic solutions. However, as in the pure labor economy, since the government can issue
a complete set of bonds, taxspots again essentially die off in finite time.

We then look at economies where the government cannot issue intertemporal bonds. Simultane-
ously, we consider a technology with both capital and labor, and (as in Judd (1985)) add population
heterogeneity, via the introduction of hand-to-mouth workers and capitalists. If there is a desire for
redistribution from capitalists to workers, then optimal taxspots arise persistently. Taxspots are no
longer constrained to vanish in finite time. Thus, taxation dynamics can break with the serial correla-
tion of government expenditures, and may display history dependence.

When workers supply labor elastically, we prove that persistent taxspots are optimal under suf-
ficient workers’ prudence and if government expenditure is large enough.2 However, taxspots are
coupled with the issuance of ‘employment insurance bonds’, i.e., subsidies or lump-sum taxes to
workers that are contingent on taxspots.

We finally consider economies where the hand-to-mouth workers supply labor inelastically (as in
Straub and Werning (2020)). Here taxspots affect capital taxes, that is, the capitalists’ consumption
and investment decisions. In the same environments considered in Straub and Werning, we claim
the suboptimality of a taxspot-free long-run capital tax, possibly under a slight utility perturbation.
Taxspots are welfare dominating with a strong enough precautionary savings motive for the capital-
ists, and occur infinitely often.3 Straub and Werning (2020) have argued that, with low elasticity
of intertemporal substitution, the optimal long-run capital tax is deterministic, and positive. While
a ‘front-loading’ taxspot policy Pareto improves over any purely deterministic capital tax, generally
optimal taxspots are not necessarily a substitute for a positive average capital tax. Optimal taxspots
do lower the average tax relative to a path-equivalent deterministic tax policy (i.e., ‘ceteris paribus’)
if workers are imprudent.4

The general observation of the uncertain nature of optimal fiscal policy all the more applies if there
are other frictions that fiscal policy must face —strategic, as when the government has limited ability
to commit or there are politico-economical consideration to fiscal spending (as in, e.g., Acemoglu,

2A sufficient condition is that public sector expenditure must exceed the capital share of output. This is not inconsistent
with casual observation on the public finances of many countries (e.g., on average Denmark’s capital share is 35% and
public sector’s expenditure is 50% of GDP; in France, public sector’s expenditure is 60% of GDP, and the capital share
is around 30. Ancillary assumptions on the elasticities of intertemporal substitution for consumption guarantee that
regularity conditions are satisfied (for example, the workers’ elasticity of intertemporal substitution is less than one). See
Section 4.1.

3Our result does not cover the log utility case, aligning with Lansing’s (1999) findings that log utility is a knife-edge
case.

4Prudence has been correlated with wealth (see e.g., Noussair, Traumann and van de Kuilen, 2014) so it is not at all
improbable that workers, whose wealth is low, display imprudence. Straub and Werning (2020) allow workers’ utility to
display imprudence.
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Golosov, Tsyvisnki (2011)); informational, as when firms have noisy signals when maximizing prof-
its (as in, e.g., Angeletos and La’O (2020)); or technological, such as when trade occurs through
bilateral matching in labor market models a la Pissarides (2000)— introducing an infinite sequence of
constraints. We conjecture taxspots to be a robust feature of optimal fiscal policy even if these more
realistic constraints are placed on the planner. In this sense, our choice of a simple, if not so realistic,
framework for fiscal policy helps understanding the origins of fiscal uncertainty. In fact, our taxspots
are implementable by making fiscal policy depend on ’sentiments’, or higher-order beliefs circulating
in the market, along the interpretation provided in Angeletos and La’O (2020) and related literature.
However, the reason why here fiscal policy should be made dependent on such extrinsic uncertainty
is not informational, but resides in consumers’ preferences, i.e., prudence and risk aversion.

Two studies have offered a positive view of legislative tax uncertainty, Bizer and Judd (1989)
and Hasset and Metcalf (1999). Both make specific parametric assumptions on the tax process. The
former evaluates welfare improvements on the basis of a comparison of direct efficiency loss and
tax revenue increase. The latter measures improvements due to tax uncertainty in terms of reduced
delays in the time to invest, and attributes the positive effects of tax uncertainty to a jump diffusion
assumption of the tax process.

Our results confirm Hagedorn’s (2010), who also challenged the common belief (see, e.g., Chari
et al. (1994)) that efficient taxes are supposed to smooth out the dynamics of government expendi-
tures and future liabilities. In fact, our sufficient conditions for taxspots resemble his. As a difference,
Hagedorn pointed to the possibility of 2-period deterministic cycles, and his conditions are intertem-
poral.5 We show that fiscal policy can be uncertain, within time periods. We further interpret the
condition as related to prudence, and establish a link between a random Ramsey problem and taxspot
equilibria.

Cole and Kubler (2012) study the computational problems arising from the use of public ran-
domizations in the Marcet and Marimon’s (2019) recursive formulation of a planning problem with
incentive constraints. They give general conditions to use the saddlepoint solution method, but do not
study conditions under which lotteries are Pareto improving.

We tie the planner’s problem to competitive equilibria with ‘extrinsic’ uncertainty, as in Shell
and Wright (1993) and related literature on sunspots and lotteries in static economies. We dub the
equilibria corresponding to optimal random taxes ‘taxspots’ because, and unlike the case of sunspots,
from the viewpoint of the private economy uncertainty here is on taxes —over and beyond the possibly
uncertain flow of government expenditure. Absent tax uncertainty, as individuals are risk averse,
there would be no effect of extrinsic uncertainty on equilibria when markets are complete.6 Here,
some tax randomness survives even if markets are complete. Thus, our results are similar in spirit

5Hassler, Krusell, Storesletten and Zilibotti (2008) also found optimal oscillatory taxes, but due to time-varying, non-
geometric capital depreciation rates.

6With inelastic labor supply, equilibria are sunspot-free when taxes are deterministic even with totally incomplete
markets, provided a mild condition on the production function is satisfied.
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to Garratt, Keister, Cheng-Zhong and Shell (2002), where there are nonconvexities stemming from
indivisibilities (see also Rogerson (1988)), and to Kehoe, Levine and Prescott (2002), where they are
generated by incentive problems. As a difference, the nonconvexity here shows up through the lack
of concavity –not of quasi-concavity–of the constraints. Also, here nonconvexity is a necessary but
not sufficient condition for lotteries to matter.7

Section 2 presents the issues in the context of a Lucas-Stokey economy. Section 3 considers
an economy with capital only, and government bonds. Section 4 finally expands into a workers-
capitalists economy without government bonds. The Appendices contain proofs, organized by part of
the arguments across the different economies studied: existence proofs (Appendix A), suboptimality
proofs (Appendix B), characterization of optimal taxspots (Appendix C), and a perturbation argument
(Appendix D).

2 A pure labor economy

It is instructive to start with the simplest Ramsey taxation model, following Lucas-Stokey (1983).
An infinite horizon economy faces an uncertain and exogenous stream of government expenditures
gt , t ≥ 0, with values gt ≥ 0 in a finite set G and with transition probability π : G → ∆(G). A history
is gt = (g0, ...,gt). Hereafter, if not otherwise stated all processes are adapted to the tree generated by
the Markov chain on G. The set of bounded such processes with values in R is denoted L(R), and the
set of bounded sequences is ℓ(R).

The economy is populated by representative individuals with discounted expected utility pref-
erences over consumption ĉt ≥ 0 and leisure xt ∈ [0,1], with felicity index v and discount factor
β ∈ (0,1),

E0 ∑
t≥0

β
tv(ĉt ,xt).

For every t ≥ 0, material balance of resources requires

ĉt +gt ≤ 1− xt .

The government also receives state-contingent repayment obligations b̂0,t , t ≥ 0, from the past: b̂0,t(gt)

is the amount of payments the government promises to make at date t if history gt has realized, with
supt |b̂0,t |< ∞.

There are competitive markets for labor, the consumption good and government debt. Given gt

and b̂0,t , t ≥ 0, the government chooses a process of taxes (labor income linear tax rates) τt , t ≥ 0 and

7Goenka and Prechac (2006) found that, with enough prudence, sunspots could be better for some individuals in a
two-period incomplete markets economy. We show in Section 3 that tax-induced uncertainty can be better even in a
representative agent infinite horizon economy with complete markets.
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a process b̂t , t > 0, with b̂t = (b̂t,s,s ≥ t) of future debt restructuring plans to satisfy the government
sequential budget

Et ∑
s≥t

psb̂t,s + ptgt = ptτt(1− xt)+Et ∑
s≥t+1

psb̂t+1,s,

where ps > 0, for s ≥ t, is the price of consumption at time s in time-0 dollars. It is assumed that at
any history gt there is a complete set of debt plans, one for each future contingency.

Individuals at time t, having invested in government liabilities b̂t at time t − 1 and given taxes τt

and prices ps for s ≥ t, choose consumption ĉt and leisure xt as well as their holdings of government
liabilities b̂t+1 with respect to all future contingencies s > t, facing the budget

pt ĉt +Et ∑
s≥t+1

psb̂t+1,s ≤ pt(1− τt)(1− xt)+Et ∑
s≥t

psb̂t,s.

At any date s > t the difference b̂t+1,s − b̂t,s for individuals is a rebalancing in their asset portfolio;
for the government, it is a restructuring of its liabilities. Using the present value definition, and since
markets are dynamically complete,

bt ≡ Et ∑
s≥t

ps

pt
b̂t,s

we can write the budget equivalently as

pt ĉt +Et pt+1bt+1 ≤ pt(1− τt)(1− xt)+ ptbt ,

where b0 (i.e., b̂0,t , t ≥ 0) is given. Individuals only care about the present value of all future positions
at any date t, and adjust their positions at date t in order to carry the proper amount of purchasing
power in the successor states. Additionally, bt ≥ bt for every t > 0, where bt is a ‘natural’ debt limit,
essentially necessary for the individual optimum to exist with sequential budgets.

An equilibrium with taxes τt and liabilities b̂0,t ,gt , t ≥ 0, is a vector of consumption-leisure allo-
cations, portfolios and price processes (ĉt ,xt ,bt , pt) , t ≥ 0, such that the individual solves

max
(ĉ,x,b)

E0 ∑
t≥0

β
tv(ĉt ,xt)

s.t.

{
pt ĉt +Et pt+1bt+1 ≤ pt(1− τt)(1− xt)+ ptbt , t ≥ 0

bt+1 ≥ −bt+1, t ≥ 0

with b0 (i.e., b̂0) given; and markets clear.

Assumptions on utilities. Following the relevant literature, we assume that utilities v are con-
tinuous functions v : R2

+ → R∪{−∞}, at least C 3 on R2
++, strictly increasing and concave in the

arguments. We define shorthands vĉt ≡ vĉ(ĉt ,xt) and vxt ≡ vx(ĉt ,xt) for the first derivatives, similarly
vĉĉt , vxĉt = vĉxt and vxxt for the second derivatives, and so on.
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2.1 The standard Ramsey problem

In this context, the Ramsey problem is to find the best (linear) tax and debt combination constrained
by (competitive) market equilibrium, and given the government expenditure process and the initial
liabilities b0. As standard, the Ramsey problem is expressed in ‘primal form’, i.e., in the allocation
space (ĉ,x). To this end, using the fact that markets are complete and a natural debt limit implies a
transversality condition at the optimum,

lim
t→∞

E0 pt+1bt+1 = 0,

the individual budget can be cast equivalently in Debreu form. Thus, given τt and b̂0,t , t ≥ 0, individ-
uals solve the consumption-leisure planning problem

max
(ĉ,x)

E0 ∑
t≥0

β
tv(ĉt ,xt)

s.t. E0 ∑
t≥0

pt [ĉt − b̂0,t − (1− τt)(1− xt)] ≤ 0.

Note that ĉt − b̂0,t − (1− τt)(1− xt) is equal to the government surplus at time t, or τt(1− xt)− (gt +

b̂0,t).
The corresponding first order conditions (FOC) are necessary and sufficient,8 and using an Inada

condition (see A1.b below) they admit an interior solution, i.e., ĉt > 0 (then, via market clearing,
xt < 1), and xt > 0, all t ≥ 0. They are

β
tvĉt = vĉ0 and ptvxt = (1− τt)vĉt .

After substitution of the FOC into the budget constraint, and using market clearing to eliminate xt , the
standard Ramsey problem at liabilities (b̂0,t ,gt), t ≥ 0, is

max
ĉ∈L(R+) : ĉt≤1−gt all t≥0

U(ĉ) ≡ E0 ∑
t≥0

β
tUt(ĉt)

s. to F(ĉ) ≡ E0 ∑
t≥0

β
tat(ĉt) = 0,

where
Ut(ĉt) ≡ v(ĉt ,1−gt − ĉt)

at(ĉt) ≡ vĉt(ĉt − b̂0,t)− vxt(ĉt +gt).

Dependence of at , thus of F , on b̂0,t ,gt is made explicit solely when necessary.

8Variables (ĉ,x) are in L(R2
+). When endowed with the sup-norm topology, L(R2

+) is naturally isomorphic to ℓ+∞ ×ℓ+∞ .
This space has a positive orthant with nonempty interior. The individual problem is convex, and at positive summable
prices p the constraint set also has nonempty interior. Thus, Luenberger (1969, Thm 1, p. 217, and its Corollary) applies.
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Equation F(ĉ) = 0 is an ‘intertemporal Euler equation’. The choice of fiscal financing instru-
ments τ and b̂s,s > 0 is implicit via the choice of ĉ, thus of x via market clearing. The allocation
affects marginal utilities and then identifies taxes via τt = 1− vxt/vĉt , prices via the FOC, and finally
government debt b̂s using the sequential (individual) budget, as markets are complete.

The standard Ramsey problem: preliminaries

We follow the usual approach (see, e.g., Ljundqvist and Sargent (2012) and, implicitly, Messner et al.
(2018)) of characterizing the Ramsey problem via the auxiliary problem

max
ĉ∈L(R+):ĉt≤1−gt ,all t≥0

U(ĉ)

s.t. F(ĉ) ≥ 0.
(M-RP)

In problem M-RP the planner is allowed to run a surplus in its intertemporal budget –and correspond-
ingly, individuals spend more than their after-tax lifetime income. However, problem M-RP is shown
to be a relaxed version of problem RP. Properties of problem M-RP are known, but it is useful to spell
out the assumptions and state the ensuing results.

First, let c̃t be the unconstrained maximum of the per period utility Ut(ĉ), all ĉ ∈ [0,1−gt ], and let
aĉt be the first and aĉĉt the second derivative of at(ĉt), and Uĉt and Uĉĉt the first and second derivative
of Ut(ĉ). We use a superscript ∗ when derivatives are computed at a solution ĉ∗ to problem M-RP.
Consider the following assumptions:9

A1.a There exists ĉo ∈ ×t,gt (0,1−gt) with ∞ > F(ĉo)> 0 and U(ĉo)>−∞.

A1.b For every t ≥ 0 and gt there exists āt(gt) such that at(ĉ) < āt(gt) for all ĉ ∈ [0,1 −
gt ], and E0∑t≥0β t āt < ∞, and (i) v(0,xt) = v(ĉt ,0) = −∞ or (ii) limĉ→0 aĉt(ĉ) > 0 and
limĉ→1−gt aĉt(ĉ)< 0.

A1.c E0 ∑t≥0 β tvĉ(c̃t ,1−gt − c̃t)(gt + b̂0,t)≥ 0.

9Here as in later sections, we give sufficient conditions for existence of a solution, to cover the most interesting cases.
Some cases may be excluded -like here the separable quadratic case, which may violate A1.b. However, in such case
existence is straightforward as all functions are continuous and bounded. Assumption A1.a guarantees nonemptiness of
the constraint set. It holds for an open set of government liabilities g, b̂0 including a neighborhood of zero, via existence of
standard competitive equilibrium. Indeed, at an interior competitive equilibrium ĉe a feasible change in the consumption
sequence at a single date event has nonzero impact DF(ĉe,0,0) on the constraint by concavity of v. By continuity of
F in the parameters (b̂0,g), the impact will be nonzero in a neighborhood of zero. Assumption A1.b suffices to have
interiority of a solution. It is consistent with standard Inada conditions on v for zero consumption and leisure. It is
satisfied by separable utilities of the isoelastic family with (RRA) coefficient for consumption σ greater than 1 (recall that
σ(ĉ)≡−vĉĉ(ĉ)ĉ/vĉ(ĉ)) only if b̂0,t > 0, all t > 0 –however small. Assumption A1.c implies that the initial liabilities b̂0,g
are asking for resources to be saved from the economy. This condition is satisfied when b̂0,t ≥ 0, i.e., when indeed b̂0 is a
process of government liabilities.
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A1.d aĉĉ(ĉ,0,0)< 0 all scalars ĉ ∈ (0,1] and every t ≥ 0.

Assumption A1.c is standardly used to show that problem M-RP relaxes problem RP, and also
to eliminate trivial cases where the ‘unconstrained optimum’ is a solution. Assumption A1.d is a
sufficient condition implying convexity of the constraint set, thus the validity of the Kuhn-Tucker
conditions: a Slater (or ‘positivity’) condition delivers the saddlepoint property of the Lagrangian as
a necessary condition for any solution.10 The set of economies satisfying this concavity condition is
nonempty, as it includes the case (used, e.g., in Lucas and Stokey (1983)) of separable quadratic v.

Lemma 1 Under A1.a,b,c: 11

(i) A solution ĉ∗ to the modified Ramsey problem M-RP exists, and all solutions are interior.

(ii) Any solution to problem M-RP is also solution to problem RP.

Under A1.a-d:

(iii) There exist a neighborhood O of zero government liabilities and a scalar λ ≥ 0 such that
U∗

ĉt +λa∗ĉt = 0, every t ≥ 0.

(iv) If b̂0,t(gt) = b̂0,t(gt), then ĉ∗t (g
t) = ĉ∗(gt).

The proof of Lemma 1.i-ii follows from the proof of Lemma 2, which is provided in Appendix A.
Lemma 1.iii-iv are standard results following from the convexity of the problem under A1.d, and their
proof is omitted. Lemma 1.iv is the main feature of the solution to the Ramsey problem under A1.d:
when b̂0,t only depends on current expenditure, consumption and leisure at time t also only depend
on current expenditure. This feature shows that optimal taxes (and debt) are used to smooth out the
expenditure shocks. Put it differently, serial correlation in taxes and government debt is inherited from
the serial correlation in government expenditures.

The question remains on what happens when A1.d is not satisfied. Observe that, even without
A1.d, problem M-RP still has solutions and represents the Ramsey problem. However, F is not guar-
anteed to be concave. Not only this entails well-known issues both with the necessity and sufficiency
of the FOC, as per se they may not identify a saddlepoint, but the lack of concavity of F may also
imply that the standard Ramsey problem does not deliver a welfare-maximizing tax solution. This we
explore next.

10Marcet and Marimont (2019) also offer a solution technique based on the use of a regularity, or invertibility, constraint
qualification condition. This difference is immaterial for our main point of discussion.

11Existence under A1 may be restricted to a neighborhood of zero government liabilities, as customary, since a compet-
itive equilibrium may not exist, even without expenditures and taxes, unless endowments are restricted. The size of this
neighborhood can be quite large, allowing for significantly nonzero government expenditures or initial debt.
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2.2 The Ramsey problem is not a social optimum

We show that, outside the cases covered by the usual solution method (in particular, by A1.d), a
planner can do better by using lotteries over processes ĉt , t ≥ 0.

A 2-point lottery (ĉ1t , ĉ2t ,µ) over consumption at gt is a pair of consumptions and a probability
with ĉit ∈ [0,1−gt ] for both i and µ ∈ ]0,1[ where ĉ1t occurs with probability µ > 0 and ĉ2t with
probability 1−µ . The lottery (ĉ1t , ĉ2t ,µ) Pareto improves (at gt) upon ĉ∗ provided Eµ [Ut(ĉt)] >

Ut(ĉ∗t (g
t)) and Eµ [at(ĉt)]≥ at(ĉ∗t (g

t)) so the expected utility is higher and the constraint in problem
M-RP is satisfied. Indeed, for β̂ t ≡ π(gt)β t , Eµ [at(ĉt)]≥ at(ĉ∗t (g

t)) implies

E0 ∑
t ′ ̸=t

β
t ′at ′(ĉ

∗
t ′)+ ∑

ĝt ̸=gt
π(ĝt)β tat(ĉ∗t (ĝ

t); b̂0,t(ĝt), ĝt)+ β̂
tEµ [at(ĉt)] ≥ F(ĉ∗) ≥ 0.

Thus, lottery µ does not run a government deficit, and yet dominates ĉ∗. If such a dominating lottery
exists, it leads us to consider a relaxed problem in lotteries where surpluses are possible – but are not
optimal.

The following is shown in Appendix B.

Proposition 1 For an RP optimum ĉ∗ assume there is a date-event gt for which a∗ĉt ̸= 012 and τ∗t > 0.
Suppose

−
a∗ĉĉt
a∗ĉt

> −
U∗

ĉĉt
U∗

ĉt
. (D)

Then there is a 2-point lottery with Eµ ĉt > ĉ∗t that Pareto improves upon ĉ∗.

As τt(ĉt) = Uĉt/vĉt , under τ∗t > 0, if a∗ĉt ̸= 0, then by optimality a∗ĉt < 0. Hence, condition D
requires that the curvature of at and Ut be of the opposite sign. When a is strictly concave, i.e., under
A1.d, condition D is never satisfied. If a∗ĉĉt < 0 and a∗t = a∗ĉt = 0, then there is only one point satisfying
at ≥ 0, and again there is no room for uncertain taxes. Similarly, when (b̂0,t ,gt) = (0,0), all t ≥ 0,
condition D cannot be met, because in such case ĉ∗ is a competitive equilibrium without taxes, i.e.,
U∗

ĉt = 0, all t, and indeed any solution to RP is already the unconstrained global maximum for the
function U(ĉ).

As a corollary to Proposition 1, a little algebra suffices to list sufficient conditions for D to obtain.

Corollary 1 Suppose that U∗
ĉt > 0 and a∗ĉt ̸= 0 at some date-event gt , t ≥ 0. A 2-point lottery Pareto

improves over ĉ∗ at gt if:

12Condition a∗ĉt ̸= 0 is a regularity property, which in the infinite horizon optimal taxation problems is often assumed,
and we follow the literature on this. The case when T < +∞ leads to a∗ĉt ̸= 0 generically. What if a∗ĉt = 0 whenever
U∗

ĉt > 0? Then,

ĉ∗t =−
(v∗ĉĉt − v∗ĉxt)b̂0,t − (v∗xxt − v∗ĉxt)gt −U∗

ĉt
U∗

ĉĉt
(KE)

We note that when b̂0,t = 0, it must be U∗
ĉt ≥ (v∗ĉxt − v∗xxt)gt .
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(i) ĉ∗t > b̂0,t , and v∗ĉĉĉt is positive and large enough;

(ii) b̂0,t ≥ ĉ∗t , and either v∗ĉĉxt or v∗ĉxxt is large enough.

We notice that the conditions implying D never violate standard assumptions of risk aversion and
prudence (the third partials vĉĉĉt and vxxxt are positive, i.e., both marginal utilities for consumption
and leisure are convex, implying a precautionary savings and precautionary working behavior). In
fact, they show that when prudence is sufficiently high relative to risk aversion, and if there is room
for taxes in the standard Ramsey problem, random taxes can be Pareto improving.

Thus, condition D depends on the strength of prudence, i.e., of the third derivatives of v, as ex-
plicitly stated in Corollary 1. As such, it has economic appeal: when prudence is strong enough to
overcome risk aversion, i.e., the concavity of Ut , uncertainty in the form of spreads over consumption
can be Pareto improving.

One can also regard condition D as quite pervasive if differences in preferences are judged minimal
when they result in differences in utilities only around an arbitrary small neighborhood of the RP
solution. In Appendix D we formally explore this notion of minimality via utility perturbations.
We now provide an example in which, after a small perturbation making vĉĉĉ > 0 sufficiently large,
lotteries do strictly better.

An example. We look at a finite economy with a single period, t = 0. Let g0 = g = 0 and
b̂0,0 = b = 0.13. Then, the RP problem is the static problem maxv(ĉ,1− ĉ) s. to a(ĉ;0.13,0) = 0.
Assume that

v(ĉ,x) =
(
0.002ĉ−4 + x−4)−1/4

.

Then, vĉ =
(
0.002ĉ−4 + x−4)−5/4 ĉ−5 and vx =

(
0.002ĉ−4 + x−4)−5/4 x−5, while

a(ĉ;0.13,0) =
(
0.002ĉ−4 + x−4)−5/4

[0.002ĉ−5(ĉ−b)− (1− ĉ)−5ĉ]

Let ĉ∗ (i.e., ĉ∗,x∗ with x∗ = 1− ĉ∗) be the solution to the static problem. It is easily seen that ĉ∗ =
0.184337 ̸= c̃ = 0.223928, the unconstrained maximum, and U∗

ĉ > 0, while a∗ĉ < 0 (a achieves its
maximum at 0.159502). Thus, we are in case (i) of the Corollary, and a perturbation of the third
derivative of u, making vĉĉĉ sufficiently large implies that condition D in Proposition 1 applies. None
of the maintained assumptions on utility (except, of course, A1.d) has been violated.

From a mathematical viewpoint, it is not difficult to see that the issue of suboptimality of the
deterministic fiscal policy stems not so much from the lack of convexity of the set of consumptions
ĉ where a(ĉ;b,g) ≥ 0, rather from the lack of concavity of a. Even if a is quasi-concave, there is
still a possibility of Pareto improving lotteries, provided condition D is met. In the example, this is
seen by truncating the domain of a to the left of its maximum –the function is now monotone, but
suboptimality still obtains. It is the nonconvexity of the hypograph of F , not of its upper contour sets,
which matters here. We will come back to this later.

11



c

U(c),a(c)

1

c̃

ĉ∗
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Figure 1: No taxspots and taxspots.

Finally, we comment on the average tax induced by the Pareto-improving lottery. Imposing some
standard ‘normality’ assumptions for consumption and leisure,

vxxt − vĉxt ≤ 0 and vĉĉt − vĉxt ≤ 0,

the impact of a consumption increase on the tax is negative:

dτt

dĉt
=

vxt(vĉĉt − vĉxt)− vĉt(vĉxt − vxxt)

(vĉt)2 < 0.

Hence, the Pareto-improving 2-point lottery lowers taxes in one state. Its overall effect on the average
tax is however ambiguous. When the optimal tax function is concave, the average tax induced by the
Pareto-improving lottery may actually decrease.

2.3 Optimal lotteries, and taxspots

Given the limitations of the standard Ramsey problem, we are then lead to consider lotteries directly
as policy instruments. We recast the planning problem in the space of lotteries over consumption
plans.

A consumption plan is a process adapted to the filtration {Gt}t≥0, i.e., an element of C =

×t≥0 ×gt∈Gt [0,1− gt ]. To avoid decentralization issues with t = 0 randomizations, we restrict ran-
domizations to periods t > 0, and with some abuse of notation we denote by ∆(C) the set of (Borel)
probability measures over C so restricted.

Then, given liabilities b̂0,t ,gt , t ≥ 0, the planner solves

max
µ∈∆(C)

∫
C

U(ĉ)dµ

s.t.
∫

C
F(ĉ)dµ = 0.

(E-RP)
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A solution µ∗ to E-RP is interior if µ∗(C\
o
C) = 0 where

o
C is the interior of C, i.e., where 0 < ĉt <

1−gt , all t ≥ 0.

Lemma 2 Under A1.a,b,c a solution µ∗ to problem E-RP exists, and all solutions are interior.

For a proof, see Appendix A. We can easily give a ‘taxspot’ interpretation to the optimal lottery
solving E-RP. Let length-t histories be pairs ω̂ t = (gt ,st), where st = (s0,s1, ...,st) and sτ ∈ S = [0,1],
all τ < t. Processes are sequences of random variables adapted to the filtration generated by histories
ω̂ t .

Let νt , t ≥ 0 be a process of distributions over S. A competitive equilibrium with taxspots at
liabilities b̂0,t ,gt , t ≥ 0, is a process (ĉt ,xt ,bt , pt ,τt) , t ≥ 0, of consumption, leisure, bond holdings,
prices and taxes, and a distribution process νt , t ≥ 0 such that

max
ĉ,x,b

E0,ν∑t≥0β tv(ĉt ,xt)

s.t.

{
pt ĉt +Et,ν pt+1bt+1 ≤ pt(1− τt)(1− xt)+ ptbt , t ≥ 0

bt+1 ≥ −bt+1, t ≥ 0,

with b0 (i.e., b̂0) given, and markets clear, ĉt + gt = 1− xt . Here, expectations Et,ν , t ≥ 0, are taken
relative to the expenditure and the taxspot uncertainty, st , and we stress the use of the taxspot distri-
bution process νt , t ≥ 0 by adding a corresponding subscript.13 If the taxspot is a continuous variable,
this market presumes the existence of a continuum of Arrow securities, or of linearly independent
assets.

The taxspot variable distribution process νt is going to be derived from optimal lottery µ∗. The
existence of an optimal taxspot equilibrium does not generally imply persistent policy uncertainty. In
fact, market completeness implies that optimal taxspot uncertainty essentially resolves in finite time.
That is, any optimal lottery is payoff equivalent to a lottery that translates into taxspots only at finitely
many dates. This is stated in the following proposition, proved in Appendix C.

Proposition 2 If µ∗ is a lottery over consumption processes solving problem E-RP at fiscal liabilities
(b̂0,t ,gt), t ≥ 0, then there exists process (ĉt ,xt ,bt , pt ,τt) , t ≥ 0, and process distribution νt , t ≥ 0 such
that together they are a competitive equilibrium with taxspots at the given liabilities. Moreover, every

13That is, let ν t
π be the probability measure over histories ω̂ t induced by π and ντ ,τ ≤ t: for any cylinder B =×τ≤tBτ

where each Bτ ∈ B[0,1], the Borel σ -algebra on [0,1], it is

ν
t
π({gt}×B; ω̂

0) = ∑
τ≤t

π(gt)
∫
×τ≤t Bτ

dνt(st |ω̂ t)dνt−1(st−1|ω̂ t−1)...dν1(s1|ω̂1)dν0(s0|ω̂0),

and
E0,ν∑

+∞

t=0β
tv(ĉt ,xt) =

∫
E0∑

+∞

t=0β
tv(ĉt ,xt)dν = ∑

t≥0
β

t
∫

v(ĉt ,1−gt−ĉt)dν
t
π .
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optimal taxspot lottery is payoff equivalent to a taxspot equilibrium where uncertainty dies off in finite
time.

Hence, and when b̂0,t is measurable with respect to current expenditures, if A1.d holds, by Lemma
1.iv the optimal fiscal policy is only a function of current expenditures. When A1.d instead does not
hold, and if condition D is met, optimal taxes are random and are no longer a deterministic function of
current expenditure. Optimal fiscal policy may create randomness which conflicts with the smoothing
role of taxes. In other words, serial correlation on government debt does not necessarily follow the
serial correlation of government expenditures. However, any equilibrium with taxspot uncertainty
can be recast as an equilibrium with uncertainty dying off in finite time. Thereafter, either τ∗t = 0, or
condition D fails, and the Lucas and Stokey’s (1983) solution does not hold anymore.

3 A pure capital economy

The previous section showed an economy where taxspot uncertainty generates fluctuations within a
single time period, as opposed to via intertemporal cycles. We now move to the case of an economy
with capital, where taxspots will affect the intertemporal marginal rate of substitution via random
capital taxation. The economy’s output is given by a standard concave constant return to scale tech-
nology f (Kt ,Nt) where Kt is aggregate capital and Nt aggregate labor. To focus on capital taxation,
we simplify and assume that: 1) f (Kt ,Nt) = AKt +BNt where A > 0 and B > 0; and 2) households do
not derive utility from leisure, but inelastically supply their unitary endowment of leisure, and Nt = 1,
all t –the population size is normalized to one. Capital is normalized to kt ≥ 0, and f (kt) now denotes
the production function, while the depreciation factor is δ ∈ [0,1]. We write f̂ (kt) = f (kt)+(1−δ )kt .
Initial capital, k0 > 0 is given. Firms rent capital from households at profit-maximizing rental rates,
and we let R̂t = f̂ ′(kt) be the gross return on capital. Here and below, for enhanced readability we use
the general notation for marginal productivity even though with this production function it is constant.
Government initial liabilities b̂0 and expenses g are given as before. Material balance is

ct + kt+1 = f̂t(kt)≡ f̂ (kt)−gt . (M)

We continue to assume that the government (and the economy) has access to a complete set of assets
(government bonds are state-contingent). Markets for the single physical good and government bonds
are competitive. The government taxes away wages —as labor is provided inelastically. It then
chooses a sequence of capital linear tax rates τt , t > 0 and a sequence bt , t > 0 of debt levels to satisfy
the government budget

bt +gt = τt R̂tkt +qt+1·bt+1 +B.

where qt+1 is the bond price vector and pt , the price of consumption at time t, is normalized to one.

14



To avoid trivial tax solutions, we apply here a standard restriction on fiscal instruments: only
future capital income taxes τt , t > 0 can be selected. This must be imposed to avoid trivial front-
loading –financing any future expenditure by amassing (present value) of all needed resources at time
zero with a non-distortive capital tax. Thus, τ0 = 0 is also given. Also, throughout we focus on taxes
τt on capital wealth R̂tkt as opposed to on capital income, Rtkt , but the distinction is largely irrelevant
for our analysis.

Individuals have utility u(ct) from consumption ct ≥ 0 at time t. Having invested in capital kt and
government bonds bt at time t −1 and given taxes τt and prices qt+1, individuals choose consumption
ct , capital kt+1 ≥ 0, as well as their holdings of government bonds bt+1 ≥ −bt+1, where bt+1 is a
natural debt limit, facing the budget constraint

ct + kt+1 +qt+1 ·bt+1 ≤ (1− τt)R̂tkt +bt

where b0 and k0 are given.
We maintain standard assumptions on utility: u :R+→R∪{−∞} is continuous, strictly increasing

and concave, and C 3 on R++.
Along the lines used for the individual problem without capital, under our Inada’s conditions

(precisely stated below, as A2.c) it can be shown that a solution to the individual problem is interior
(ct > 0 and kt+1 > 0, all t ≥ 0) and must satisfy the budgets as equalities, and

uct = βEtuct+1(1− τt+1)R̂t+1

qt+1 = βπt+1|t
uct+1
uct

0 = lim
t→∞

E0β
tuctkt+1 = lim

t→∞
E0β

tuct+1bt+1.

Since markets are complete, as in Section 2.1 we can equivalently compress the sequential budgets
into a single budget constraint, after multiplying the budget at t > 0 by pt = β tuct/uc0 for t > 0, and
normalizing p0 = 1. Letting

ât(ct)≡ uct(ct − b̂0,t),

and after substitution of market clearing, the primal Ramsey problem is, for given k0 and R̂0,

max
k∈L(R):0≤kt+1≤ f̂t(kt)

Û(k)≡ E0∑t≥0β tu( f̂t(kt)− kt+1)

s.t. F̂(k)≡ E0∑t≥0β t ât( f̂t(kt)− kt+1) = R̂0k0uc0.
(RP-K)

Once the allocation process (c,k) is found, tax rates are derived implicitly as before, using the FOC
for capital and the definition of R̂t .

Just like in the previous section, we consider economies where the taxation problem is nontrivial.
To this end, let k̃(k0) be the ‘adjusted optimal growth’ solution, i.e., a solution to RP-K without the
constraint F̂(k) = R̂0k0uc0, and let ũc0(k0)≡ uc( f̂0(k0)− k̃1(k0)). Now F̂(k̃) can be greater than, equal
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or less than R̂0k0ũ(k0) depending on the values of b̂0. These possibilities affect how we relax the RP-
K problem. Hereafter, we focus on the case where F̂(k̃(k0)) < R̂0k0ũc0(k0). Then, we consider the
auxiliary problem14

max
k

Û(k)

s.t. F̂(k)≥ R̂0k0uc0.
(M-RP-K)

As in Section 2.1, problem M-RP-K allows the planner to run a primary surplus in the intertemporal
budget of the government.

We give sufficient conditions to establish existence of an interior solution to M-RP-K. Let K =

{k ∈ L(R) | kt+1 ∈ [0, f̂t(kt)], t ≥ 0,k0 given} and
o
K be its interior,where kt+1 ∈ (0, f̂t(kt)), all t. Then,

we make the following assumptions:

A2.a There exists an interior ko such that ∞ > F̂(ko)> R̂0k0uo
c0 and Û(ko)>−∞.

A2.b There exists a positive maximum accumulation level k̄ : k̄ = f̂ (k̄)−maxgt .

A2.c For all t ≥ 0 and gt there exists āt(gt) such that ât( f̂t(kt)− kt+1) ≤ āt(gt) for all interior k,
E0∑t≥0β t āt < ∞, and (i) u(0) =−∞ or (ii) limc→0 ât(c) =−∞.

A2.d F̂(k̃(k0))< R̂0k0ũc0(k0).

A2.a is used to determine nonemptiness of the constraint set. In requiring a uniform upper bound
to the period utility, A2.b can be weakened to simply ask that utility is bounded from above on the
feasible set, but the stronger form is enough for our purposes here. It is implied here by A > δ .
A2.c plays the role of A1.b in Section 2.1. A2.d mimics A1.c: the unconstrained (zero tax) optimum
growth cannot be a solution to RP-K. It holds for sufficiently high initial liabilities gt , b̂0,t , for at
least some t ≥ 0, and when labor taxes cannot alone always finance gt . The latter is satisfied if, e.g.,
B < g = mingt . Under A2, problem M-RP-K is a relaxation of problem RP-K, and it has an interior
solution. The proof follows the logic of Lemma 2, and it is left to the reader.15

14A mirror image situation occurs when F̂(k̃(k0))> R̂0k0uc(c̃0(k0)). Then, the relaxed problem takes the form of utility
maximization under the constraint F̂(k)≤ R̂0k0uc0.

15The case when u is isoelastic must be treated separately, as A2.c may fail –for instance, when b̂0,t = 0 for all t ≥ 0.
However, in the latter case and when σ ̸= 1, then F̂(k) = Û(k)(1−σ), and the constraint in problem RP can be written as
Û(k)(1−σ) = R̂0k0uc0, so product continuity of the constraint over a product compact, connected subset of K is readily

established (using A2.b, and u(0) = −∞ when σ > 1, when this product compact set is contained in
o
K). When A2.a,d

hold, a highest utility feasible k satisfying the previous equation then exists by the Intermediate Value Theorem. When
σ > 1, A2.a,d hold immediately. When σ < 1, and if A2.d is violated, then A.2a holds for ko = k̃, and A2.d holds for the
feasible process with ct = 0 all t ≥ 0. If instead A2.d holds, then additional parametric conditions must guarantee A2.a.
When σ = 1, the constraint is substituted with an initial condition on k1, pinning down its value, so clearly the RP-K
problem has a solution –optimal growth starting from k1 as initial value.
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Lemma 3 Under A2:

(i) A solution k∗ to the modified Ramsey problem M-RP-K exists, and it is always interior.

(ii) At any solution k∗ to M-RP-K it is F̂(k∗) = R̂0k0u∗c0.

Average taxes. Before we address the optimal tax, we need to introduce a notion of average tax.
Indeed, uncertainty of gt already implies indeterminacy of ex-post tax rates —a well-known result
found in Zhu (1990). Here, uncertainty may stem directly from τt . Thus, hereafter we focus on the
long-run behavior of average taxes. Following the literature, we define an average capital tax via the
marginal returns kernel as follows. Let ψt+1 ≡ uct+1R̂t+1/Etuct+1R̂t+1, and note that ψt+1 > 0 and
Etψt+1 = 1. Let Ψ be the measure over histories defined using ψt+1π as the density, and let EΨ

t be
the expectation taken with respect to this probability measure. The Ψ-average capital tax is

EΨ
t τt+1 ≡ 1− uct

βEtuct+1R̂t+1
.

3.1 Pareto improving lotteries

With no government expenditure uncertainty, and in fact with gt = g, all t, and thus with a determin-
istic (interior, via Lemma 3) solution to problem M-RP-K, the first order conditions (FOC) for capital
and no arbitrage then lead to16

(1− τt+1)R̂t+1 =
1

qt+1
.

Suppose that (A+ 1− δ )β = 1. If the solution to M-RP-K is a steady state, combining no arbitrage
and the FOC, it is

(1− τ) f̂ ′(k) =
1
q
=

1
β
= f̂ ′(k),

implying τ = 0, the celebrated Chamley-Judd result. However, it is not at all obvious that, absent
concavity of ât , problem M-RP-K represents the normative standard for capital taxes, or that average
taxes should then be zero. We explore this point next.

We start off by reproducing in this setting condition D, and the Pareto suboptimality of the solution
to the standard Ramsey problem. Let

Ut,t+1(kt+1) ≡ u( f̂t(kt)− kt+1)+βEtu( f̂t(kt+1)− kt+2),

at,t+1(kt+1) ≡ ât( f̂t(kt)− kt+1)+βEt ât+1( f̂t(kt+1)− kt+2).

The following is proved in Appendix B.
16As in the pure labor economy, problem M-RP-K is convex if âcct < 0 all t. Together with condition A2.a, this means

that the Kuhn-Tucker conditions can be used to characterize its solutions. Alternatively a regularity condition, i.e., that
DF̂(k∗) be onto, can lead to stationarity of the Lagrangian for problem M-RP-K, i.e., to FOC, as necessary for a solution.
A similar proof is provided for Lemma 5.
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Proposition 3 Let k∗ be a solution to problem M-RP-K and let EΨ
t τ∗t+1 > 0 and a′∗t,t+1 ̸= 0 at some

t > 0. Then, if

−
a′′∗t,t+1

a′∗t,t+1
>−

U ′′∗
t,t+1

U ′∗
t,t+1

(D-K)

a 2-point lottery at t Pareto improves over the M-RP-K solution. Further, Eµkt+1 > k∗t+1.

The statement obviously applies to ex-post tax rates when there is no government expenditure
uncertainty to start with.

We note that when the Ψ-average tax is positive, U ′∗
t,t+1 > 0. This and optimality imply that

a′∗t,t+1 ≤ 0. If a′∗t,t+1 ̸= 0, a weak regularity condition, it is then a′∗t,t+1 < 0, and the condition of the
statement implies a′′∗t,t+1 > 0. Simple algebra shows that the following sufficient conditions lead to
D-K.

Corollary 2 Suppose that EΨ
t τ∗t+1 > 0 and â∗ct ̸= 0 at some date-event gt , t ≥ 0. A 2-point lottery

Pareto improves over c∗ at gt if c∗t > b̂0,t and u∗ccct is positive and large enough.

When u is isoelastic, it is

âcct = ucct(ct)(1−σ +σ b̂0,t/ct)−uct(ct)σ b̂0,t/c2
t .

When b̂0,t = 0 for all t > 0 and σ > 1, it is âct = uct(ct)(1−σ)< 0 and âcct = ucct(ct)(1−σ)> 0, so
function ât is decreasing and convex, not concave, but condition D-K does not obtain, as

U ′
t,t+1 = a′t,t+1/(1−σ) and U ′′

t,t+1 = a′′t,t+1/(1−σ).

However, an arbitrarily small increase in the third-order derivative coefficient is going to deliver con-
dition D-K, and if EΨ

t τ∗t+1 > 0, lotteries can do better than the solution to M-RP-K. Thus, condition
D-K can be seen to hold pervasively around the isoelastic case, in the sense made formal in Appendix
D.

In a world with no government expenditure uncertainty to start with, the claim that optimal taxes
are deterministic and positive in a steady state (or in the long run) implies that EΨ

t τ∗t+1 = τ∗t+1 > 0 for
some large t. Hence, the previous proposition and corollary show that such a claim cannot be robust,
especially around isoelastic utilities. Lotteries over capital, and thus taxspots, would ‘typically’ be
optimal in that case.

Risk aversion and prudence. In the capital economy, when positive (average) capital taxes are
obtained, and U ′∗

t,t+1 > 0, it is βEtuct+1R̂t+1 − uct > 0, which means that the planner wants to trade
off consumption today for capital (i.e., consumption tomorrow), but this trade-off is cut short by the
Euler equation condition: the planner needs to convince the individual to demand more capital at t.
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Inducing a higher demand for capital is tantamount to inducing higher savings. In problem M-RP-
K, the planner does so by controlling the implicit (average) rate of return βEtuct+1(1− τt+1)R̂t+1.
However, a second method exists to raise savings, namely by leveraging on the individual’s prudence
via mean-preserving spreads in returns. Condition D-K states that, for any additional uncertainty to
pay off, prudence should be large enough to overcome the negative effect of the additional uncertainty
due to risk aversion. Under isoelastic utilities this is not possible, because the two properties are linked
by the same parameter, σ ; but for arbitrarily close utilities, and σ ̸= 1, taxspot uncertainty pays off.
In the particular case where σ > 1, it is well-known that lowering the (average) return rate is going to
increase the demand for capital. Thus, increasing taxes corresponds to raising the demand for capital.
Whether or not injecting spreads is enough to eventually substitute out a lower average return, or an
increase in taxes, relative to the first best is discussed further below.

3.2 Optimal taxspots

With lotteries we modify the Ramsey problem as we did for the labor-only economy. A capital process
k adapted to the filtration {Gt}t≥0 generated by histories gt is an element of K. For every t ≥ 0 and
every gt , consumption is derived using feasibility. To focus on decentralizable lotteries, we impose
no randomization over k1, and let ∆(K) be the set of (Borel) probability measures over K satisfying
this restriction. The extended Ramsey problem now is, given initial liabilities b̂0,t ,gt , t ≥ 0, and initial
capital k0,

maxµ∈∆(K)

∫
Û(k)dµ s. to∫

[F̂(k)− R̂0k0uc0]dµ = 0
(E-RP-K)

A solution µ∗ to E-RP-K is interior if µ∗[K\
o
K] = 0. Existence of an interior solution is established,

via the use of a ‘relaxed’ problem, using Lemma 3 and following the logic of Lemma 2. We state the
result without proof.

Lemma 4 Under A2, a solution µ∗ to problem E-RP-K exists, and all solutions are interior.

To go from optimal lotteries to taxspot equilibria we can also mimic what we did in Section 2.3. To
define a taxspot equilibrium, we let {Ft}t≥0 be the filtration generated by histories ω̂ t = (gt ,st), t ≥ 0,
where st ∈ S = [0,1], and consider processes adapted to {Ft}t≥0. A competitive taxspot equilibrium
at liabilities b̂0,t ,gt , t ≥ 0, is a process

(
ct ,kt ,bt ,qt , R̂t ,τt

)
, t ≥ 0, and a distribution process νt , t ≥ 0

over histories st , t ≥ 0 with st ∈ [0,1], such that

maxc,k,bE0,ν∑t≥0β tu(ct) s. to
ct + kt+1 +qt+1 ·bt+1 ≤ (1− τt)R̂tkt +bt t ≥ 0

bt ≥−bt , t > 0,
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given b0 and k0 > 0, and bt a natural debt limit, with R̂t = f̂ ′(kt) and market clearing

ct + kt+1 ≤ f̂t(kt).

Here, again expectations E0,ν are taken relative to the expenditure and to the taxspot uncertainty, st .17

An argument in all similar to the one offered in Section 2.3 delivers taxspots equilibria from optimal
lotteries solving E-RP-K, with the property that randomness essentially disappears in finite time. The
proof of this proposition is also left to the reader.

Proposition 4 If µ∗ is a lottery over capital processes solving E-RP-K at fiscal liabilities (b̂0,t ,gt),

t ≥ 0, then there exists process (ct ,kt ,bt ,qt , R̂t ,τt), t ≥ 0, and distribution process νt , t ≥ 0 such that
they constitute a competitive equilibrium with taxspots at those liabilities. Moreover, every optimal
taxspot lottery is payoff equivalent to a taxspot equilibrium where uncertainty dies off in finite time.

As in Section 2.3, Proposition 3 can be used to establish that at the optimal taxspot equilibrium
condition D-K fails because either average taxes are zero or a regularity condition fails. Like for the
economies without capital, market completeness implies that there is always an equilibrium where
all taxspot uncertainty will be resolved in finite time, and will not occur over more than three sample
paths of capital growth, thus at no more than two dates. We now revisit the question of whether
optimal taxspot (average) tax rates are positive ‘in the long run’. Now the average must take into
account the optimal taxspot distribution ν∗

t , t > 0. Let ψt+1,ν∗(ω t+1)≡ uct+1R̂t+1/Et,ν∗uct+1R̂t+1 and
let Ψ(ν∗) be the measure over histories defined using ψt+1,ν∗dν∗t

π,t−1 as the density, and let EΨ(ν∗)
t be

the expectation taken with respect to this probability measure.
Using a form of regularity, we start by giving a martingale condition that characterizes nonnega-

tive average taxspots. Let IE denote the intertemporal Euler constraint in M-RP-K, F̂(k) ≥ R̂0k0uc0;
let MKT denote the market clearing constraint. We say that a constraint is binding if relaxing the
constraint is improving the value function. We say that a taxspot equilibrium satisfies regularity if

(a) constraint IE is binding;

(b) constraint MKT is binding at all t ≥ 0.

Next, for any pair ω t = (gt ,kt), let

Mt(ω
t)≡ âct(ω

t)

uct(ω t)
,

or in short, Mt =
âct
uct

. We prove the next statement in Appendix C.

17That is, letting ν t
π be the probability measure over histories (gt ,st) induced by π and ντ ,τ ≤ t, it is

E0,ν ∑
t≥0

β
tu(ct) =

∫
E0 ∑

t≥0
β

tu(ct)dν = ∑
t≥0

β
t
∫

u(ct)dν
t
π .
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Lemma 5 Under regularity, at an optimal taxspot equilibrium it is EΨ(ν∗)
t τt+1 ≥ 0 if and only if Mt

is a supermartingale under Ψ(ν∗), and equals zero if and only if Mt is a martingale at t ≥ 0.

With isoelastic utility with coefficient σ ̸= 1 and with b̂0,t = 0, by the definition of Mt the latter is
always a martingale, and τ̄t+1 = 0, all t ≥ 0. Process Ψt(ν

∗), t ≥ 0 defined via

Ψt(ν
∗)≡ Π

t
t ′=0

uct ′+1R̂t ′+1

Et ′,ν∗uct ′+1R̂t ′+1

is itself a nonnegative martingale, and the equivalent martingale condition can be written equivalently
as

Ψt(ν
∗)Mt ≥ EtΨt+1(ν

∗)Mt+1,

stating that Ψt(ν
∗)Mt , t ≥ 0 is a bounded (super)martingale at equilibrium, and by Doob’s Martingale

Convergence Theorem both Mt and Ψt(ν
∗)Mt converge almost surely to a finite random variable.

Next, we specialize to environments where the E-RP-K problem is stationary with a regular, sta-
tionary, ergodic solution over a compact state space. Specifically, let G× [0,1] be the compact state
space with element z = (g,s). We assume that all policy functions at the taxspot equilibrium are
continuous time-invariant functions of the states, i.e., in particular,

ct = c(zt), kt+1 = k(zt), and bt+1 = b(zt).

Thus, Mt = M(zt) and EΨ(ν∗)
t τt+1 = τ̄(zt). Let Pr be the transition probability over z derived from νπ

and the policy functions. Then, Pr is continuous as a function of zt . For any Borel set B ⊂ G× [0,1]
let

µ
∞(B)≡ lim

j→∞
Pr[zt+ j ∈ B|zt ]

all t ≥ 0, be the corresponding stationary, ergodic distribution.

Proposition 5 Under regularity, at an optimal stationary, ergodic taxspot equilibrium either
EΨ(ν∗)

t τt+1 = 0, µ∞-a.s., or if µ∞{z : τ̄(z)> 0}> 0, then µ∞{z : τ̄(z)< 0}> 0.

The proof follows Zhu (1990) closely, and is therefore left to the reader. As we found out in
Section 3.1, in the ‘convex â’ case, except for the knife-edge case with isoelastic utility and b̂0,t = 0, all
t > 0, taxspots are Pareto dominating. We just showed that at a (regular) stationary taxspot equilibrium
(average) capital taxes are then zero. In particular, when σ > 1 and b̂0,t = b̂0 ̸= 0, all t > 0, long-term
average capital taxes will be zero.

4 Capital, labor, and no government bonds

So far we have underlined the economic intuition for the optimality of taxspots, but we have yet to
show an environment where taxspots significantly matter –i.e., they occur more than finitely many
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times at every equilibrium. To this end, we now move to study an economy where there are no
government bonds. Thus, there are no financial markets. To focus on purely endogenous uncertainty,
and to simplify notation, hereafter we assume no initial uncertainty (thus, gt is deterministic).

In fact, it is easy to cast our study in a Judd (1985) - inspired variant of the economy above
where there is also heterogeneity in the population: in addition to our existing individuals owning
capital k0 and the production technology, and dubbed ‘capitalists’, there are hand-to-mouth ‘workers’
who supply labor. That is, we add an individual with per-period utility v(ĉt ,xt), where ĉt ≥ 0 is the
worker’s consumption and xt ∈ [0,1] is leisure. Workers also are endowed with some nontaxable
wealth et ≥ 0. The production function is f (kt ,1− xt), where kt is per capita capital –we borrow the
notation from the previous sections when possible. The sizes of the populations of capitalists and
workers are normalized to one.

In the competitive market, the government taxes both labor and capital income. With τx
t and τk

t

the labor and capital tax rates, respectively, the government budget then is

b̂0,t +gt = τ
x
t wt(1− xt)+ τ

k
t R̂tkt ,

where wt is the wage, and the workers’ budget is

ĉt ≤ (1− τ
x
t )wt(1− xt)+ et ,

while the capitalists’ budget is

ct + kt+1 ≤ b̂0,t +(1− τ
k
t )R̂tkt ,

where k0 (and thus, R̂0) is given. Market clearing is modified to

ĉt + ct + kt+1 ≤ f̂t(kt ,1− xt),

all t ≥ 0, where f̂t(kt ,1− xt) = f (kt ,1− xt)+(1−δ )kt + et −gt .
Beyond the maintained assumptions on u and v, we also impose that:

• For ĉ > 0 and 0 < x < 1,

lim
x→0

vx(ĉ,x)
vĉ(ĉ,x)

= ∞ and lim
x→1

vx(ĉ,x)
vĉ(ĉ,x)

= 0.

• f : R2
+ →R+ is continuous, C 2 on R2

++, differentially strictly increasing and concave, exhibit-
ing constant returns to scale.

At a competitive equilibrium, profit-maximizing firms rent capital and labor, setting their demand
for capital and labor so that R̂t = f1(kt ,1− xt)+ 1− δ and wt = f2(kt ,1− xt). Further, first order
conditions for labor and capital mimic those found in previous sections, namely,

vxt

vĉt
= (1− τ

x
t )wt and βuct+1(1− τ

k
t+1)R̂t+1 = uct .
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Using the primal approach, equilibrium constraints in the Ramsey problem, now dubbed RP-WK,
are

F1,t(z) ≡ f̂t(kt ,1− xt)− ĉt − ct − kt+1 = 0, all t ≥ 0

F2,t(z) ≡ βuct+1(ct+1 + kt+2 − b̂0,t+1)−uctkt+1 = 0, all t ≥ 0

F3,t(z) ≡ vĉt(ĉt − et)− vxt(1− xt) = 0, all t ≥ 0

lim
t→∞

β
tuctkt+1 = 0

where z ≡ (ĉ,x,c,k) are the sequences of workers’ consumption and leisure, and capitalists’ con-
sumption and investment, and k0 is given. Here F2,t = 0 and F3,t = 0 are the first order condition for
capital and leisure, respectively, after substitution of the agents’ budget constraints –used as defini-
tions of (1− τk

t )R̂t and (1− τx
t )wt . Letting Ut(z,θ) = (1− θ)v(ĉt ,xt)+ θu(ct) for 0 ≤ θ < 1, and

Ft = (F1,t ,F2,t ,F3,t), consider the modified Ramsey problem

max
z∈ℓ(R4

+)
U(z,θ)≡ ∑

t≥0
β

tUt(z,θ)

s.t.

 Ft(z) ≥ 0, all t ≥ 0,

lim
t→∞

β
tuctkt+1 = 0, and k0 given.

(M-RP-WK)

In problem M-RP-WK, the planner is allowed to run a primary surplus at any date t ≥ 0, but never a
deficit.18 Surpluses cannot be carried over to the future, or borrowed against in the past, though.

To establish existence of an interior solution to M-RP-WK, we introduce the following notation
and assumptions. Let Z =C×X ×C×K ⊂ ℓ(R4

+) the set of sequences of workers’ consumption and
leisure, capitalists’ consumption and capital z = (zt , t ≥ 0) satisfying

zt ∈ Zt = {(ĉt ,xt ,ct ,kt+1) ∈ R4
+ : 0 ≤ ĉt ,ct ,kt+1 ≤ f̂t(kt ,1− xt),0 ≤ xt ≤ 1};

and let
o
Z be its interior —where in particular xt ∈ (0,1) all t ≥ 0. Sequence z is interior if it is in

o
Z.

Let σu(c) for any scalar c > 0 be the capitalist’s RRA coefficient. We assume that

A3.a There exists an interior zo : Ft(zo)≥ 0, all t ≥ 0, and limt→∞ β tuo
ctk

o
t+1 = 0, and U(zo,θ)>−∞.

A3.b There exists a maximum accumulation level k̄ : k̄ = f̂ (k̄,1), and mingt = g > limKL→0 f̂ (K,L).

A3.c Either (i) b̂0,t ≥ b > 0 for all t ≥ 0, and limc→0 uc(c) = ∞; or (ii) b̂0,t = 0 all t ≥ 0, and σu(c)> 1
all c > 0 and limy→∞ ∑t ′≥t u−1

c (y/(β t ′−t)) = 0, all t ≥ 0.

18To see this, observe that, as βuct+1(1 − τk
t+1)R̂t+1 = uct and vxt = vĉt(1 − τx

t )wt at any corresponding market
equilibrium, the inequalities F2,t(z) ≥ 0 and F3,t+1(z) ≥ 0 imply ct+1 + kt+2 ≥ b̂0,t+1 +(1− τk

t+1)R̂t+1kt+1 and ĉt+1 ≥
et+1 + (1− τx

t+1)wt+1(1− xt+1). From feasibility, and using the equilibrium values of R̂t+1 and wt+1, it is seen that
b̂0,t+1 +gt+1 ≤ τx

t+1wt+1(1− xt+1)+ τk
t+1R̂t+1kt+1.
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A3.d Either (i) v(0,x) = v(ĉ,0) =−∞; or (ii) F3,t(z)< 0 when ĉtxt = 0, xt < 1.

The assumptions on v imply that a vanishing disposable salary yields a vanishing supply of labor,
which contradicts feasibility with positive government expenditures.

Our assumptions are more specific than in previous sections, but guarantee existence in the im-
portant benchmark cases we focus on below.

Lemma 6 Under our maintained assumptions on u,v and f , and A3, a solution z∗ to problem M-RP-
WK exists, and solutions are interior. Further, ĉ∗t > et , all t ≥ 0, and liminft c∗t > 0.

Next, we impose conditions that imply that M-RP-WK is a relaxation of RP-WK, i.e., that at a
solution the constraints hold as equalities. These conditions mimic A2.d in ruling out that the adjusted
optimal growth solution is still a solution in problem M-RP-WK. They are more complex because here
there are multiple trade-offs that need not to vanish. For all t ≥ 0, let σut ≡ σu(ct), and consider the
matrix

At =

[
− f2(kt ,1− xt) −1

Dxt F3,t Dĉt F3,t

]
.

Consider the following conditions: for all t ≥ 0,

f2(kt ,1− xt) =
vx(ĉt ,xt)

vĉ(ĉt ,xt)
⇒ ĉt ≤ et + f2(kt ,1− xt)(1− xt) (R1)

(1−θ)β
f1t

detAt
(vĉtDxt F3,t − vxtDĉt F3,t)−θuct−1 > 0. (R2)

Condition (R1) states that for any capital level, the unconstrained maximum for workers is attainable
without subsidies. Condition (R2) is a priori compatible with any labor income tax value. It states
that the economy’s constrained best leaves room for cross-time transfers from capitalists to workers.
Condition (R2) requires detAt ̸= 0, a regularity condition. The latter is non-vacuous: economies
where v is separable in ĉ and x, the RRA coefficient satisfies σĉvt ≡ σĉv(ĉt) > 1 and where et = 0,
display this property at every t.

Lemma 7 (i) If at z∗ (R1) holds, Fj,t(z∗) = 0, j = 1,3, all t ≥ 0.

(ii) If in addition (R2) holds, then it is F2,t(z∗) = 0, all t ≥ 0.

Lemma 7 shows that, under (R), the planner will never optimally run primary surpluses. Hereafter,
we confine our attention to environments where condition (R) holds. We obtain first order conditions.
First, write the sequence of inequality constraints in problem M-RP-WK as F(z) ≥ 0, where F =

Ft , t ≥ 0. A solution z∗ to problem M-RP-WK is regular if the linear map DF(z∗) is onto. Without
regularity or other constraint qualifications, the Kuhn-Tucker conditions are not useful to characterize
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a solution to the optimization problem. Under regularity, the Kuhn-Tucker theorem can be applied to
claim the usual dual characterization.19 To further guarantee the existence of summable nonnegative
multipliers, we follow Rustichini (1998). Summability is satisfied in problem M-RP-WK at any
regular solution. Let f2t ≡ f2(kt ,1− xt), and κt+1 ≡ kt+1/ct .

Lemma 8 Let a solution z∗ to problem M-RP-WK satisfy condition (R). Then,

(i) z∗ is regular, and there is a process of nonnegative multipliers νt ,λt ,φt , t > 0 such that z∗ satis-
fies 

νtuct = (1−θ)vĉt +φt [vĉt + vĉĉt(ĉt − et)− vĉxt(1− xt)]

νtuct f2t = (1−θ)vxt +φt [vxt − vxxt(1− xt)+ vĉxt(ĉt − et)]

λt = λt−1(
σut−1

σutκt+1
+1−σut

b̂0,t
κt+1

)+ 1
σutκt+1

(νt −θ)

βνt+1uct+1R̂1t+1 −νtuct = (λt −λt−1)uct .

(ii) φtνt > 0 if and only if τx∗
t > 0, all t ≥ 0.

Note that if b̂0,t = et = 0, σut > 1 and v is separable and σĉvt > 1, all t ≥ 0, and θ = 0, then a
solution exists, condition (R2) holds, all t > 0, all solutions are regular and the first order conditions
hold.

4.1 Pareto improving lotteries

It is easy to see that in M-RP-WK the Euler equation function F2 is not generally concave. In par-
ticular, suppose that u is isoelastic with coefficient σu > 1. The left-hand side of F2,t is convex, not
concave.20 Similarly, F3,t is not generally concave. If v is separable, it is

(ĉt − et ,1− xt) ·D2F3,t · (ĉt − et ,1− xt) = 2vĉĉt(ĉt − et)
2 +2vxxt(1− xt)

2

−vxxxt(1− xt)
3 + vĉĉĉt(ĉt − et)

3

19See Luenberger, either Thm 1, p. 243, or Thm 1, p. 249, which signs the dual linear map.
20Putting probability µ on

(
ĉ1

t+1,c
1
t+1
)

and 1−µ on
(
ĉ2

t+1,c
2
t+1
)

such that each satisfies market clearing at initial capital
kt+1 and investment kt+2, and also, say,

βu1
ct+1(c

1
t+1 + kt+2 − b̂0,t+1)−uctkt+1 > 0 > βu2

ct+1(c
2
t+1 + kt+2 − b̂0,t+1)−uctkt+1,

by appropriate choice of µ we obtain

0 = µβu1
ct+1(c

1
t+1 + kt+2 − b̂0,t+1)+(1−µ)βu2

ct+1(c
2
t+1 + kt+2 − b̂0,t+1)−uctkt+1

> βu(cµ

t+1)(1−σu)+βuct+1(c
µ

t+1)(kt+2 − b̂0,t+1)−uctkt+1

= βuct+1(c
µ

t+1)(c
µ

t+1 + kt+2 − b̂0,t+1)−uctkt+1

by convexity of u(c)(1−σu) and of uc. Thus
(
ĉµ

t+1,c
µ

t+1,kt+2
)

with cµ

t+1 = µc1
t+1 +(1−µ)c2

t+1 and ĉµ

t+1 + cµ

t+1 + kt+2 =

f̂t+1(kt+1) is not in the constraint set without lotteries.
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and this can be positive if vĉĉĉt > 0 and large enough –an insight we encountered in Section 2.2.
As before, these observations are not themselves sufficient to claim suboptimality of the standard

Ramsey policy. However, using the property that at a solution ĉt > et and xt ∈ (0,1), and that labor
taxes are positive at some t, we now construct a 2-point lottery that Pareto improves over the Ramsey
solution using the lack of concavity of F3,t .

Proposition 6 Suppose that at a regular M-RP-WK optimum z∗ at some t ≥ 0 it is τx∗
t > 0 and

−
dzt ·D2F∗

3,t ·dzt

DF∗
3,t ·dzt

>−dzt ·D2U∗
t ·dzt

DU∗
t ·dzt

(D-WK)

for some dz∈ ℓ(R4) with DF∗
\(3,t) ·dz= 0. Then, there is a 2-point lottery that Pareto improves over z∗.

Further, the Pareto improving policy lottery has Eµ ĉt > ĉ∗t , and f ∗2tdxt =−dĉt . When v is separable,
condition D-WK is satisfied provided v∗ĉĉĉt is positive and large enough.

The Pareto improving lottery of Proposition 6 yields Et,µF3,t(z) ≥ 0, and only perturbs workers’
consumption and their labor supply –not capitalists’ consumption or investment. An optimal lottery
then involves lotteries at least over (ĉt ,xt) at every t. It solves

maxµ∈∆(Z)
∫

U(z,θ)dµ s. to
F1,t(z) = 0 all t ≥ 0,

Et,µF2,t(z) = 0 and
Et,µF3,t(z) = 0 µ-a.e., all t ≥ 0,

limt ′→∞ β t ′Et,µuct+t ′kt+t ′+1 = 0 all t ≥ 0.

(E-RP-WK)

As Et,µF3,t(z)≥ 0 both in this lottery problem and for the Pareto-improving lottery of Proposition 6,
these lotterizations need an interpretation as decentralized equilibria. At any corresponding taxspot
equilibrium, and for every t ≥ 0, the workers budget becomes

qt ·bt = 0

ĉs,t = et +(1− τ
x
s,t)ws,t(1− xs,t)+bs,t , µ − a.e.

for some (complete) set of one-period assets bt , where bs,t is an Arrow security paying in taxspot state
s, and the government budget is

b̂0,t +gt +bs,t = τ
x
s,tws,t(1− xs,t)+ τ

k
s,t R̂s,tkt ,

where R̂s,t = f1(kt ,1− xs,t)+ 1− δ . If a lottery does not affect capitalists’ consumption and invest-
ment, just as it happened in our construction for Proposition 6, then ct + kt+1 = b̂0,t +(1− τk

st)R̂s,tkt

for all s, i.e., (1− τk
s,t)R̂s,t is s-invariant (though capital taxes vary with s if there is labor supply

uncertainty, i.e., labor income taxspots).
Although bonds bt do not allow for intertemporal government budget deficits, they add financial

instruments to the government policy toolkit: a bs,t < 0 contributes to financing government expendi-
ture over and beyond labor and capital income tax revenues.
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When optimal taxspots are persistent. Importantly, our previous remarks on the vanishing
nature of taxspot uncertainty do not apply here, and taxspot uncertainty may not vanish in finite time.

Proposition 7 Suppose that A.3 holds. Then, there exists a solution µ∗ to E-RP-WK, and all solutions
are interior. If at any solution to M-RP-WK condition (R) holds and workers are taxed at all t ≥ 0,
then modulo a small utility perturbation, at the corresponding optimal taxspot equilibrium of every
solution µ∗ there are taxspots infinitely often, µ∗-almost surely. If minet > 0, then limtn→∞ µ∗

tn is not
a Dirac measure.

Thus, taxspots are persistent, i.e., they occur infinitely often, in all economies of Proposition 7. To
see that the set of these economies is nonempty and contains economically interesting cases, suppose
that gt = g > f̂1(k̄1,1)k̄1 ≥ f̂1(k,1)k for all k : k ≤ k ≤ k̄, and that θ = 0. Further, let et = e > 0. If v
is separable with

σĉv >
e1−σ ĉv

minvx(1− x)
, (1)

then it is verified that condition (R) holds and τx∗
t > 0 for all t at any solution to M-RP-WK, and

Proposition 7 applies.

4.2 Inelastic labor supply

In this subsection we consider the special case studied by Straub and Werning (2020), where workers
supply labor inelastically, i.e., xt = 1 all t ≥ 0, and b̂0,t = 0, gt = g and et = 0 for all t ≥ 0. With
some slight abuse of notation we let v(ĉt ,0) = v(ĉt) and ft(kt ,1) = ft(kt). Workers can still be taxed
or subsidized, but in a lump-sum fashion. Letting Tt be this transfer, the government budget becomes

g+Tt = τt R̂tkt ,

the worker’s budget is ĉt = f̂ (kt)− f̂ ′(kt)kt +Tt , and the capitalists’ budget and market clearing are
unchanged. The equilibrium constraints in the Ramsey problem now are only the transversality con-
dition and (F1,t ,F2,t)(ĉ,c,k) = 0 —here the sequences (ĉ,x,c,k) with xt = 1 all t ≥ 0 are denoted
(ĉ,c,k). We let T0,τ0 also to be derived from ĉ0,c0,k0 via the workers’ and the government bud-
gets at t = 0. These equations, together with F1,0(ĉ,c,k) = 0 imply the remaining capitalist’s budget
constraint at t = 0. The modified Ramsey problem in this special case is dubbed M-RP-WKSW.

As we did in the previous section, under A3 existence of a solution to M-RP-WKSW can be
preliminarily established —a proof now left to the reader. Problem M-RP-WKSW is a relaxation of
the Ramsey problem provided condition (R) holds. Here, condition (R) actually reduces to a simplified
version of (R2), or

(1−θ)β f̂1tvĉt −θuct−1 > 0, (R2’)

which holds for all small enough θ . We then write first order conditions as in Straub and Werning
(2020), using our regularity result —in fact, it can be shown that regularity always holds here. Using
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Lemma 8, we establish the existence of a sequence of multipliers λt ≥ 0 such that optimal consump-
tion implies

λt = λt−1(
σut −1
σutκt+1

+1)+
1

σutκt+1
(
(1−θ)vĉt −θuct

uct
)

and the FOC for capital is

(1−θ)[βvĉt+1R̂t+1 − vĉt ] = (λt −λt−1)uct .

It is immediately verified that an interior steady state with converging multipliers cannot exist
when u is isoelastic with σu > 1 and for all θ sufficiently small, and that capitalists’ consumption
cannot converge to zero at any limit. As Straub and Werning (2020) note, paraphrasing Lansing
(1999), at an interior steady state when (1−θ)vĉ > θuc the r.h.s. of the FOC for capital is positive
and so, from the l.h.s., R̂ > 1/β , and a positive capital tax emerges. Under these conditions, however,
namely σu > 1, it may be possible to use lotteries to increase welfare, as we show next.

When labor supply was elastic, we perturbed it to obtain a Pareto improvement, exploiting the
non-concavity of F3,t . Here, we are going to exploit the potential lack of concavity of F2,t , and perturb
instead the capitalist’s consumption and investment in a way consistent with the government inability
to run deficits —and without introducing any bond.

We need the following notation. For an interior optimal solution z∗ = (ĉ∗,c∗,k∗) to M-RP-WKSW,
let Z= {dz ∈ ℓ(R3) : z∗±dz > 0} be the set of admissible changes, and

∆U = {dz ∈ Z : DU∗ ·dz > 0}

be the set of Pareto-improving changes. Letting F∗
2\t = F2,t ′(z∗) all t ′ ̸= t,

T F∗
2\t = {dz ∈ Z : DF∗

1,t ′ ·dz = 0 all t ′ > 0 and DF∗
2\t ·dz = 0}

is the tangent space to the Euler equations except for at some time t > 0.
Changes dz in T F∗

2\t are feasible at every t ′, and budget balanced at every t ′ ̸= t+1. If a solution to
M-RP-WKSW is given, then every time we consider a Pareto-improving deviation dz ∈ ∆U ∩T F∗

2\t ,
by optimality and regularity it must be that DF∗

2,t ·dz < 0. That is, and interpreting the direction dz as
a policy change, if we find a policy that increases the planner’s objective while being budget balanced
in every period but at date t +1, it must run a primary deficit at that date. We are then looking for a
lottery randomizing between policy dz∈∆U∩T F∗

2\t and its opposite, −dz, such that the average effect
on the Euler equation at t is nonnegative (and it is zero at every other date). Indeed, and reverting to
the corresponding competitive equilibrium, since with uncertainty the Euler equation must hold only
in expectations, this requirement is coherent with obtaining budget-balance at both realizations dz and
−dz: even if F2,t(z∗+dz) = DF∗

2,t ·dz+o(||dz||)< 0, this is consistent with requiring feasibility and
the capitalist’s budget ct+1+kt+2 = Rt+1kt+1 to hold in both lottery realizations, while βuct+1(ct+1+

kt+2)< uctkt+1, or βuct+1Rt+1/uct < 1.
We then arrive at the following result.
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Proposition 8 Let z∗ be a solution to problem M-RP-WKSW where, at some t > 0,

−
dz ·D2F∗

2,t ·dz

DF∗
2,t ·dz

>−dz ·D2U∗ ·dz
DU∗ ·dz

(D-WKSW)

for some dz ∈ ∆U ∩T F∗
2\t . Then, a 2-point lottery at t Pareto improves over z∗.

As in Section 3, the intuition for Proposition 8 is that prudence can be exploited to increase the
capitalists’ savings with taxspot uncertainty.

Condition D-WKSW states that, since by concavity the r.h.s. is positive, it must be that dz ·D2F∗
2,t ·

dz > 0, and large enough. The size of this second-order or curvature effect of F∗
2,t generally depends

on u∗ccct+1, and must be larger than the curvature of the utility, which depends on v∗ĉĉt+1 and, if θ > 0,
on u∗cct+1. This again opens the door to third-order derivative perturbations that do not change the
slope or curvature of the utility.

Condition D-WKSW presumes that ∆U ∩ T F∗
2\t is nonempty for some t > 0: that a Pareto-

improving budget balanced policy running a deficit at t +1 > 0 exists. In the following, we establish
the existence of such a direction dz ∈ ∆U ∩T F∗

2\t for some t > 0 when the elasticity of substitution
is less than one and the solution to problem M-RP-WKSW features a perennial desirable redistribu-
tion from capitalists to workers, as in Straub and Werning’s economies, and their limiting optimal
behavior.

Lemma 9 Suppose σut = σu > 1 and the solution z∗ to problem M-RP-WKSW approaches a limit as
t → ∞ where τk∗ > 0. Then, for any θ sufficiently close to zero, there is date t > 0 and a change
dz ∈ ∆U ∩T F∗

\2,t such that DF∗
2,t ·dz < 0. Further,

EµF2,t(z∗+dz) = βEt,µuct+1(c∗t+1 +dct+1)(c∗t+1 +dct+1 + k∗t+2 +dkt+2)−u∗ctk
∗
t+1 ≥ 0. (DEC)

Combining Proposition 8 and Lemma 9, the suboptimality of a deterministic fiscal policy arises
in economies arbitrarily close to those with isoelastic utility with elasticity less than one considered
by Straub and Werning (2020).

The policy change dz we construct in Lemma 9 is built by arbitrarily picking dct+1 and dkt+2, and
then deriving the consequent dct+2 and dkt+3. Since we have some freedom in the choice of the first
elements, it is of interest to see if the corresponding policy results in ‘front loading’: dτt+1 > 0 and
dτt+3 < 0. The following proposition offers insights into the Pareto improving lottery.

Proposition 9 Suppose σut = σu > 1 and that the solution z∗ to problem M-RP-WKSW approaches
a limit as t → ∞ where τk∗ > 0, and θ is sufficiently close to zero. If f (k) = kα for some positive
α < 1, then the Pareto improving policy of Lemma 9 can be front-loading, and Eµτt+1 ≥ τ∗t+1 and
Eµτt+3 < τ∗t+3.
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For other production functions, e.g., f (k) = α −α/(1+ k) for some α > 0, the Pareto-improving
policy is not guaranteed to be front loading.

Introducing lotteries, the extended Ramsey problem becomes

maxµ∈∆(Z)
∫

U(z,θ)dµ s. to
F1,t(z) = 0,

βEt,µuct+1(ct+1 + kt+2)−uctkt+1 = 0 all t ≥ 0,µ-a.e.,
limT→∞ β TEt−1,µuct+T kt+1+T = 0, all t ≥ 0

(E-RP-WKSW)

where µ is a probability measure over sequences (ĉt ,ct ,kt+1) , t ≥ 0. Again, we note that µ does not
allow averaging F2,t through the initial value uctkt+1 at t, as it would if we required Et,µ [βuct+1(ct+1+

kt+2)− uctkt+1] = 0. Decentralization of this second type of randomization would require insurance
bonds. Instead, decentralization of a solution to problem E-RP-WKSW through taxspots can be
established without introducing any bonds. The proof of this, together with existence, follows what
we have seen in previous sections, and therefore it is omitted.

Again, due to market incompleteness, taxspot uncertainty may not vanish in finite time.21 Indeed,
the policy change dz we construct in Lemma 9 and use in Proposition 8 has the property that, at the
resulting time t constraint, the associated Pareto-improving lottery µ does not randomize on ct ,kt+1,
as per (DEC), and also leads to F2,t ′(z∗+dz) = 0 at all t ′ ̸= t. This is a key property to decentralizing
the lottery via taxspots in this setting, as it too does not require issuing any bonds. Further, such a
policy change is admissible, and can be used to move away from any deterministic long-run candidate
solution, in the relaxed version of (E-RP-WKSW) —thus, of problem (E-RP-WKSW) itself when the
two problems have the same solutions.

Proposition 10 Let σut = σu > 1 and θ be close to zero. Then, a solution µ∗ to problem E-RP-WKSW
exists, and all solutions are interior. Further, modulo a small utility perturbation, at the corresponding
optimal taxspot equilibrium of every solution µ∗ there are taxspots infinitely often, µ∗-almost surely.

Convergence to a deterministic steady state, with positive capital taxation, may still happen if
the taxspot uncertainty gets smaller as t grows arbitrarily large. A martingale characterization of the
optimal average tax is possible, along the lines of what introduced in Section 3.2, but weaker than
Lemma 5. There is no obvious way to compare the lottery and no lottery solution paths. However, if
the two paths were to overlap, workers’ imprudence would be enough to lower the average tax. Recall
that imprudence obtains when the marginal utility is concave —a condition not excluded in Straub
and Werning (2020).

Proposition 11 Let σut = σu > 1 and θ be close to zero. At the optimal taxspot equilibrium, if vĉt/uct

is a supermartingale under Ψ(ν∗) at t ≥ 0, then the Ψ(ν∗)-average capital tax is nonnegative at

21Note that without fiscal uncertainty there are no sunspots at equilibrium provided f ′′t / f ′t +1 is nonzero.
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t ≥ 0. If workers are imprudent, τnl
t+1 > Et,ν∗τt+1 where τnl

t+1 is the optimal deterministic tax at a
path-equivalent history.

One should observe that the no government liabilities restriction and the presence of taxspots ef-
fectively creates market incompleteness, which in itself could be a reason to support positive taxes in
the long run. In fact, it is at this point straightforward to see that if the government were able to issue a
full set of state-contingent bonds, the results of Section 3 would apply also to this capital-labor hetero-
geneous agents economy. The government budget would be expressed as in that section, allowing for
deficits to be run at any date t, and the capitalists’ sequential budgets could be equivalently reduced to
a single intertemporal constraint. Zero average taxes would result at any stationary Ramsey solution,
and this would involve taxspots only at finitely many dates.

5 Conclusions

Taxspots are optimal when prudence is large enough relative to risk aversion, even with a represen-
tative agent and complete markets. Taxspots matter in the long run when the government ability to
transfer money across periods is limited (incomplete markets), and the government would want to tax
(workers or capitalists). When the labor supply is inelastic, and the capitalists’ intertemporal elastic-
ity of substitution is less than one, the optimal capital tax is not deterministic (as instead assumed in,
e.g., Straub and Werning 2020). Effects on the sign of the average tax are ambiguous, but there are
situations –for example, if workers are imprudent– where the average tax declines thanks to taxspots.
The quantitative assessment of the impact of taxspots on welfare remains an open question for future
research.

6 Appendix A: Existence, basic properties of solutions

Proof of Lemma 2: We are going to show that the modified problem

maxµ∈∆(C)

∫
C U(ĉ)dµ s. to∫

F(ĉ)dµ ≥ 0
(E-M-RP)

has a solution. The set C is endowed with the product topology and the product Borel σ -algebra. Let
o
C =×t≥0 ×gt∈Gt (0,1−gt), and

Ū = sup
{∫

U(ĉ)dµ | µ ∈ ∆(
o

C)and
∫

F(ĉ)dµ ≥ 0
}
.

For (ūt)t≥0 with ūt =Ut(c̃t), ūt ≤ v(1,1) = ū. Then, the partial sums UT (ĉ) =E0 ∑
T
t=0 β t [Ut(ĉt)− ū]≤

0 are nonincreasing functions of T for any ĉ in C, and thus the limit exists, implying the existence of
U(ĉ), although the limit could be −∞.

31



Notice that Ū >−∞, because of the existence of ĉo as per A1.a. Also, Ū ≤ E0∑β t ūt <+∞. With

the weak∗-topology ∆(
o

C) is a metrizable space. By definition of sup, there is a sequence {µn}n≥0

with µn ∈ ∆(
o
C) and

∫
F(ĉ)dµn ≥ 0 for every n, such that

lim
n→∞

∫
U(ĉ)dµ

n = Ū .

Since each [0,1− gt ] is compact in the Euclidean space, C is compact in the product topology via
Tychonoff’s Theorem, ∆(C) is a compact space in the weak∗ topology, and there is a weak∗ convergent
subsequence µn. Define µ to be its limit. Further, since U is product continuous on C, it is

∫
U(ĉ)dµ =

Ū .
It is shown in turn that: µ[C\

o
C] = 0;

∫
F(ĉ)dµ ≥ 0. This implies that µ is a solution to problem

E-M-RP.
To see that µ[C\

o
C] = 0, suppose otherwise, and assume that (A1.b.i) holds. Then,

Ū =
∫

U(ĉ)dµ =
∫

C\
o
C

U(ĉ)dµ +
∫

o
C

U(ĉ)dµ

≤
∫

C\
o
C

U(ĉ)dµ + ū < Ū

since the first integral equals −∞, a contradiction.
If (A1.b.ii) holds, then for every t there is ct > 0 small enough such that aĉt(ĉ)> 0 all ĉ ≤ ct (and

aĉt(ĉ)< 0 all ĉ ≥ 1−gt − ct), all gt , all t. Suppose, contrary to the statement, that µ(B′)> 0 for

B′ = {ĉ : ∃t,gt with ĉt(gt)< ct − ε}

and for some ε > 0. Again, liminf µn(B′) > 0. Then, let r : C → C be the (continuous) function
defined as

r(ĉ) =

{
ĉ ĉ ∈ B′∁

ĉct if ĉ ∈ B′,

where

ĉct ,t(g
t) =


ct if ĉt(gt)≤ ct −2ε

2(ct − ε)− ĉt(gt) if ct −2ε < ĉt(gt)≤ ct − ε

ĉt(gt) otherwise

Then, let µn
ct

be the measure defined via∫
U(ĉ)dµ

n
ct
=
∫

U(r(ĉ))dµ
n.

As ct < c̄t(gt), from concavity and monotonicity of Ut it is∫
U(ĉ)dµ

n
ct
>
∫

B′
[U ′(ct)ε +U(ĉ)]dµ

n +
∫

B′c
U(ĉ)dµ

n >U ′(ct)εµ
n(B′)+Ū −1/n,
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Further, as aĉt(ĉt(gt))> 0 for any t,gt : ĉt(gt)≤ ct , it is∫
E0∑β

tat(ĉ)dµ
n
ct
> E0∑β

tat(ĉt)dµ
n ≥ 0,

so that µn
ct
∈ ∆(

o
C)and

∫
F(ĉ)dµn

ct
≥ 0. However,

lim
∫

U(ĉ)dµ
n
ct
≥U ′(ct)ε liminf µ

n(B′)+Ū > Ū ,

contradicting the definition of Ū .
Suppose now liminfT

∫
E0 ∑

T
t=0 β tat(ĉt)dµ < 0. Then there is T > 0 such that

∫
E0

T−1

∑
t=0

β
tat(ĉt)dµ +E0 ∑

t≥T
β

t āt < 0.

As for every n, ∫
F(ĉ)dµ

n ≤
∫

E0

T−1

∑
t=0

β
tat(ĉt)dµ

n +E0 ∑
t≥T

β
t āt ,

and by continuity of at on
o
C,

lim
n→∞

∫
E0

T−1

∑
t=0

β
tat(ĉt)dµ

n =
∫

E0

T−1

∑
t=0

β
tat(ĉt)dµ,

it is
0 ≤ liminfn→∞

∫
F(ĉ)dµn ≤ limn→∞

∫
E0 ∑

T−1
t=0 β tat(ĉt)dµn +E0 ∑t≥T β t āt

=
∫
E0 ∑

T−1
t=0 β tat(ĉt)dµ +E0 ∑t≥T β t āt < 0,

a contradiction. Therefore liminfT
∫
E0 ∑

T
β tat(ĉt)dµ ≥ 0.

Next, let ϕT (ĉ) =E0 ∑
T
t=0β t(at(ĉt)− āt) and Φ(T ) =

∫
ϕT (ĉ)dµ , for all T . From at(ĉt)− āt(gt)<

0 for all ĉt ∈ [0,1−gt ] and all gt , t ≥ 0, we get that ϕT (ĉ) is a nonincreasing sequence of (integrable)
nonpositive functions. Thus, Φ(T ) is a nonincreasing sequence of real numbers, with

Φ(T )≥ Φ(T +1)>−ε −E0

T+1

∑
t=0

β
t āt

for all T > T̄ (ε) and all ε > 0, where the last inequality comes from the liminfT result. We conclude,
by definition of F(ĉ) and the Monotone Convergence Theorem, that∫

[F(ĉ)−E0 ∑
t≥0

β
t āt ]dµ = lim

T

∫
ϕT (ĉ)dµ = lim

T
Φ(T )≥−E0 ∑

t≥0
β

t āt

implying
∫

F(ĉ)dµ ≥ 0, as wanted. Thus, µ is a solution to problem E-M-RP.
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The proof is concluded by showing that, under A1.c, at any solution to E-M-RP the constraint is
binding. If not, and

∫
F(ĉ)dµ > 0, then for ε > 0 consider the lottery µε = (1− ε)µ + εδc̃, where δc̃

is the Dirac on the feasible, maximum per period utility process c̃t , t ≥ 0. By A1.c, for ε small enough∫
F(ĉ)dµε > 0, while by definition of c̃,

∫
U(ĉ)dµε >

∫
U(ĉ)dµ , a contradiction ends the proof. ■

Proof of Lemma 6: Write the sequence of inequality constraints in problem M-RP-WK as F(z)≥
0, where F = Ft , t ≥ 0. Define

Ū = sup
{

U(z,θ) | z = (ĉ,x,c,k) ∈
o
C×

o
X ×

o
C×

o
K and F(z)≥ 0, limβ

t ′uct+t ′kt+t ′+1 = 0
}
.

By A3.b, we can assume without loss of generality that Ut(z,θ) ≤ 0 all t ≥ 0, so that U(z,θ) =

limT ∑
T
t=0Ut(z,θ) exists and is finite for all z ∈

o
Z. By A3.a it is Ū >−∞. By definition of sup, there

is {zn}n≥0 ⊂
o
Z with F(zn)≥ 0 and such that

lim
n→∞

U(zn,θ) = Ū .

As {zn}n≥0 ⊂ Z, and Z is compact in the product topology by Tychonoff’s Theorem, there is a subse-
quence converging to z.

At this point the proof proceeds along the lines of the proof of Lemma 3. It is verified in turn

that z ∈
o
Z; that U(z,θ) ≥ Ū ; and that F(z) ≥ 0 and limt β tuctkt+1 = 0, so z is a solution to problem

M-RP-WK.
Since F3,t(zn) ≥ 0, it is vn

ĉt(ĉ
n
t − et) ≥ minx∈[0,1] vx(1 − x) ≥ 0, thus ĉt ≥ et . Then, as

limKL→0 f (K,L) < g, it is kt+1 ≥ k > 0 and xt ≤ x̄ < 1, all t ≥ 0. If et = 0, under A3.d.i, as
limĉtxt→0 vt(ĉt ,xt) = −∞, or if under A3.d.ii limĉtxt→0 F3,t(z) < 0 for every t ≥ 0, it must be ĉt > 0
and xt > 0, all t ≥ 0. When minet > 0, ĉt ≥ c for some c > 0, all t ≥ 0.

As the utility function Ut(.,θ) is continuous and bounded from above, U(.,θ) is product upper
semicontinuous, and U(z,θ) = limnU(zn,0)≥ Ū .

Clearly, by continuity of all functions involved, 0 ≤ limn F1,t(zn) = F1,t(z) and 0 ≤ limn F3,t(zn) =

F3,t(z), all t ≥ 0.
Under condition A2.c.i, the strong Inada condition limc→0 uc(c) = ∞ and b̂0,t > b > 0 all t ≥ 0

imply interiority of ct . To see this, observe that by the uniform boundedness of b̂0,t there exist a finite
positive ā such that ā ≥ uct(ct − b̂0,t) all t ≥ 0.

Then, by contradiction suppose that ct = 0 for some t ≥ 0, and then cn
t < ε for some ε > 0 and all

n large enough. The transversality condition and F2,t ′(zn)≥ 0, all t ′, at any fixed n imply

∑
t ′≥t

β
t ′−tun

ct ′(c
n
t ′ − b̂0,t ′)≥ un

ct−1kn
t+1/β
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for all t ≥ 0. Then, as limn→∞ un
ct = ∞, for some t ′′ < t and all n large enough

0 > ∑
t ′≥t ′′,t ′ ̸=t

β
t ′−t ′′ ā+β

t−t ′′un
ct(c

n
t − b̂0,t)

≥ ∑
t ′≥t ′′,t ′ ̸=t

β
t ′−t ′′un

ct ′(c
n
t ′ − b̂0,t ′)+β

t−t ′′un
ct(c

n
t − b̂0,t)

= ∑
t ′≥t ′′

β
t ′−t ′′un

ct ′(c
n
t ′ − b̂0,t ′)≥ un

ct ′′−1kn
t ′′+1/β > 0

(2)

a contradiction.
Then, for every t the function F2,t(.) is continuous at z, and we obtain limn F2,t(zn) = F2,t(z), all

t ≥ 0.
Next, suppose limt β tuctkt+1 > 0, a violation of the transversality condition at z. Then, for any

ε > 0 it must be that there exists a sequence tn with limn→∞ tn = ∞ such that cn
tn < ε for all n large

enough. However, for any such n, using the transversality condition at n and F2,t(zn)≥ 0, all t, again
we obtain

0 > ∑
s≥1

β
sā+un

ctn(c
n
tn − b̂0,tn)

≥ ∑
s≥0

β
sun

ctn+s(c
n
tn+s − b̂0,tn+s)≥ un

ctn−1kn
tn+1/β > 0

a contradiction.
If instead A3.c.ii holds, we show that ct > c > 0, all t ≥ 0 holds true.
Let Rt,t ′ = Rt+1 · ... ·Rt ′ , all t ≥ 0, t ′ > t, and Rt,t = 1. Recall that there are k̄,k > 0 such that for

every t ≥ 0 and n ≥ 1, k̄ ≥ kn
t ≥ k. Assume by contradiction that for every t ≥ 0, liminfn→∞ cn

t = 0.
First, for every t ≥ 0 and every n ≥ 1, using the capitalist’s budget constraints,

∑
t ′≥t

1
Rn

t,t ′
ct ′ ≥ Rn

t kn
t

because of transversality, i.e., limt→∞ β tuc(cn
t )k

n
t+1 = 0. Second, for every t ≥ 0 and n ≥ 1,

uc(cn
t ) ≥

uc(cn
t−1)

βRn
t ′

so for every t ′ ≥ t and n ≥ 1

uc(cn
t ′) ≥ uc(cn

t )

β t ′−tRn
t,t ′

.

Therefore, for every t ′ ≥ t and n ≥ 1,

cn
t ′ ≤ u−1

c

(
uc(cn

t )

β t ′−tRn
t,t ′

)
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and the right-hand side divided by Rt,t ′ is decreasing in Rt,t ′ because σu(c) > 1 for all c > 0. Third,
for every t, t ′ ≥ 0 with t ′ ≥ t and n ≥ 1, Rn

t,t ′ ≥ k/k̄ so 1/Rn
t,t ′ ≤ k̄/k. Hence, for every t, t ′ ≥ 0 with

t ′ ≥ t and n ≥ 1,

k ≤ kn
t ≤ 1

Rn
t

∑
t ′≥t

1
Rn

t,t ′
u−1

c

(
uc(cn

t )

β t ′−tRn
t,t ′

)
≤
(

k̄
k

)2

∑
s≥0

u−1
c

(
k̄
k

uc(cn
t )

β s

)
.

Since limx→∞ ∑s≥0 u−1
c (x/β s) = 0, but k > 0, while the function u−1

c (.) is independent of t and n, for
every t ≥ 0 and n ≥ 1 there is c > 0 such that cn

t ≥ c.
Then, liminfctkt+1 > 0. As a result, F2,t(z) is continuous in z, and 0 ≤ limn F2,t(zn) = F2,t(z), all

t ≥ 0. Finally, it is checked that limn limt β tun
ctk

n
t+1 = limt limn β tun

ctk
n
t+1 = 0.

As we already know that U(z,θ)≥ Ū , we have established existence. ■

Proof of Lemma 7: i) Suppose that F3,t(z∗) > 0 at some t ≥ 0. As f ∗2tv
∗
ĉt ̸= v∗xt , consider the

change dĉt ,dxt such that dxt = −dĉt/ f2t (all other variables are unchanged), and v∗ĉtdĉt + v∗xtdxt =

(v∗ĉt − v∗xt/ f ∗2t)dĉt > 0 for some dĉt . Then, all constraints are satisfied and the objective function
increases, a contradiction.

Next, suppose that F1,t(z∗) > 0. Since v is concave, using F3,t(z∗) = 0, it is verified that either
Dxt F

∗
3,t ̸= 0 or Dĉt F

∗
3,t ̸= 0. Assuming at no loss of generality that the former is nonzero, then v∗ĉt ̸=

v∗xt
Dĉt F∗

3,t
Dxt F∗

3,t
. Consider dĉt ,dxt such that

dxt =−
Dĉt F

∗
3,t

Dxt F
∗
3,t

dĉt

(all other variables are unchanged). Then,

v∗ĉtdĉt + v∗xtdxt = (v∗ĉt − v∗xt
Dĉt F

∗
3,t

Dxt F
∗
3,t
)dĉt > 0

for some dĉt , again a contradiction. □

ii) Suppose F2,t > 0 for some t ≥ 0, and assume (R) holds. We consider changes dct−1,dĉt ,dxt ,dkt

at some t > 0 such that dct−1 =−dkt and

dĉt = f1t
Dxt F3,t

detAt
dkt and dxt =− f1t

Dĉt F3,t

detAt
dkt .

Then, feasibility holds at t −1, t, and we have F3,t = 0 as well. For small enough changes, F2,t > 0 as
well. The impact on the objective is

[(1−θ)β
f ∗1t

detAt
(v∗ĉtDxt F

∗
3,t − vxtDĉt F

∗
3,t)−θuct−1]dkt .

If t = 1, then the impact on the objective can be made positive for some dk1 ̸= 0, a contradiction.
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Now consider t > 1, and suppose that condition (R2) holds, all t > 0. Then, we transfer consump-
tion from capitalists at t − 1 to workers at t: dkt > 0. The impact on the objective again is positive.
As for equation F2,t−1, it is

dkt − (σut−1 −1+σut−1κt)dct−1 ≥ 0, or

(σut−1 +σut−1κt)dkt > 0,

as dkt > 0, a contradiction. ■

Proof of Lemma 8: Under (R), we can write problem M-RP-WK in its equivalent formulation
where the constraint set is defined by the map F̃ : ℓ(R4

+)→ ℓ(R3) whose coordinates F̃t(ĉ,x,c,k) are,
for t ≥ 0, F̃j,t(ĉ,x,c,k) = Fj,t(ĉ,x,c,k) for j = 1,3, and

F̃2,t(ĉ,x,c,k) = β ∑
j≥0

β
juct+1+ j(ct+1+ j − b̂0,t+1+ j)−uctkt+1.

By Lemma 6, we consider an interior solution. For any dξ ∈ ℓ(R4) and for each t ≥ 0, F̃2,t is perturbed
using capital kt+1, and F̃1,t and F̃3,t are perturbed using workers’ consumption and leisure. More
precisely, let dz = (dĉ,dx,dc,dk) be defined recursively by, for all t ≥ 0, given the τ-th coordinates
dzτ = (dĉτ ,dxτ ,dcτ ,dkτ+1) with τ < t and dk0 = 0: dct = 0; dkt+1 = − 1

uct
dξ2,t ; and dĉt ,dxt are

chosen so that[
dξ1,t

dξ3,t

]
−

[
DF̃∗

1,t

DF̃∗
3,t

]
· (dĉ\t ,dx\t ,dc\t ,dk\t+1) =

[
DF̃∗

1,t

DF̃∗
3,t

]
· (dĉt ,dxt ,0,dkt+1), (*)

and (dĉ\t ,dx\t ,dc\t ,dk\t+1) is the vector dz where we have zeroed the τ-th coordinates dzτ , τ ≥ t.
Note that DF̃∗

3,t · (dĉt ,dxt ,0,dkt+1) = 0, all t ≥ 0. Further,[
DF̃∗

1,t

DF̃∗
3,t

]
·dz =

[
DF̃∗

1,t

DF̃∗
3,t

]
· (dĉ\t+1,dx\t+1,dc\t+1,dk\t+2)

and [
DF̃∗

1,t

DF̃∗
3,t

]
· (dĉ\t ,dx\t ,dc\t ,dk\t+1) =

[
DF̃∗

1,t

DF̃∗
3,t

]
· (0,0,0,dkt) =

(
f ∗1tdkt

0

)
,

so that dz is well-defined. Also, as detAt ̸= 0, (*) can be solved for (dĉt ,dxt), all t ≥ 0. Thus,
dξ = DF̃(z∗) · dz. Further, as dξ2 ∈ ℓ(R) and at an interior solution inft≥0 uct > 0, and {dkt}t≥0 is
bounded, kt ∈ [k,k] with k > 0, then dξ1 ∈ ℓ(R). Finally, by construction z∗+dz > 0 for small enough
changes dz. Thus, the linear map DF̃∗ is onto –and so is DF∗. Existence of a positive Lagrange vector
follows from Luenberger (1969, Thm 1, p. 249).

Next, DF̃∗ is a matrix-representable linear operator, as DF̃∗
t is summable at every t. Finally, DF̃∗

is upper triangular, i.e.,

Dĉt′ F̃
∗
1,t = Dxt′ F̃

∗
1,t = Dct′ F̃

∗
1,t = 0 all t ′ < t,
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and Dkt′
F̃∗

1,t = 0 all t ′ < t; Dĉt′ F̃
∗
3,t = Dxt′ F̃

∗
3,t = 0 all t ′ < t, and Dct′ F̃

∗
3,t = Dkt′

F̃∗
3,t = 0 all t ′; while

Dct′ F̃
∗
2,t = Dkt′

F̃∗
2,t = 0 all t ′ < t, and Dĉt′ F̃

∗
2,t = Dxt′ F̃

∗
2,t = 0 all t ′.

Thus, Theorem 5.5 and its Corollary in Rustichini (1998) apply and deliver summable nonnegative
multipliers ν̂t , λ̂t , φ̂t , t > 0. It is now just a matter of straightforward calculations to see that the first
order conditions are as stated, where we rearrange the multipliers λ̂2,t so that λtβ = ∑t ′≤t λ̂2,τβ−t ′ .
Clearly, they are also the first order conditions for the recursive formulation which uses Ft . □

ii) Multiplying the first FOC equation by ĉt , the second by (1−xt), and subtracting the latter from
the former, and using F∗

3,t = 0, we get

νtuct( f2t(1− xt)− ĉt)+φt(ĉt ,1− xt)D2vt(ĉt ,1− xt) = 0,

and by concavity of v, f2t(1− xt) > ĉt as φtνt > 0, hence τx
t > 0, as wanted. For the other direction,

let τx
t > 0. Observe that from the previous equation, if φt = 0, then νt = 0, but equating the first two

FOC yields (1−θ)(vĉt f2t − vxt) = 0, thus via F∗
3,t = 0 it is τx

t = 0, a contradiction. Then, φt > 0, and
the previous equation and concavity of v imply νt > 0. ■

7 Appendix B: Pareto improving lotteries.

Proof of Proposition 1: Suppose that ĉ∗ is a solution to problem M-RP

maxE0 ∑t β tUt(ĉt) s.to
E0 ∑t β tat(ĉt)≥ 0

with τ∗t > 0 at some gt and t ≥ 0. As τ∗t =U∗
ĉt/vĉt > 0 and vĉt > 0, it is U∗

ĉt > 0. If a∗ĉt ̸= 0 and since
U∗

ĉt > 0, by optimality of ĉ∗ it is a∗ĉt < 0, and E0 ∑t β tat(ĉ∗t ) = 0.
Hereafter we drop reference to history gt from ĉ∗t (g

t) and b̂0,t(gt), denoting them ĉ∗t and b̂0,t ,
respectively. Let P : R→R be the polynomial in dĉ of derivatives of Ut up to the second order, where
all derivatives are evaluated at ĉ∗t (and x∗t = 1−gt − ĉ∗t ). If dĉ∈ Bε(0) a small enough neighborhood of
zero, P is a second-order Taylor approximation of Ut at ĉ∗t . Similarly, let φ : R→R be the polynomial
in dĉ of derivatives of at up to the second order evaluated at ĉ∗t . That is,

P(dĉ) = Ut(ĉ∗t )+U∗
ĉtdĉ+

1
2

U∗
ĉĉt(dĉ)2,

φ(dĉ) = at(ĉ∗t )+a∗ĉtdĉ+
1
2

a∗ĉĉt(dĉ)2,

Consider the 2-point lottery µ over consumption where ĉ1t = ĉ∗t +dĉ and ĉ2t = ĉ∗t −dĉ. Using the
second-order approximations, let

Eµ [P(dĉ)] = µP(dĉ)+(1−µ)P(−dĉ)
Eµ [φ(dĉ)] = µφ(dĉ)+(1−µ)φ(−dĉ)
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and observe that at dĉ = 0 we obtain back Eµ [P(0)] =Ut(ĉ∗t ) and Eµ [φ(0)] = at(ĉ∗t ).
Suppose we find dĉ ∈ Bε(0) such that

Eµ [P(dĉ)]>Ut(ĉ∗t ), and

Eµ [φ(dĉ)]> at(ĉ∗t ).
(LP)

Then, we have found a 2-point lottery at gt better than the M-RP solution. After substitution of the
relevant derivatives, a 2-point lottery at gt is better than the M-RP solution if we can find a nonzero
dĉ ∈ Bε(0) such that

(2µ −1)U∗
ĉtdĉ+

1
2

U∗
ĉĉt(dĉ)2 > 0,

(2µ −1)a∗ĉtdĉ+ 1
2a∗ĉĉt(dĉ)2 > 0.

(LP-in)

As a∗ĉt = 0 is excluded here, and dĉ ̸= 0, then let µ and dĉ solve

1−2µ =
1
2

a∗ĉĉt
a∗ĉt

dĉ. (3)

Equation (3) is consistent with µ being a probability provided

0 <
1
2
−

a∗ĉĉt
4a∗ĉt

dĉ <
1
2
,

which occurs for dĉ (i.e., ε) small enough. Substituting equation (3) into the first inequality of (LP-in),
we obtain equivalently

1
2

U∗
ĉĉt

U∗
ĉt
(dĉ)2 >

1
2

a∗ĉĉt
a∗ĉt

(dĉ)2

which is implied by condition D for dĉ ̸= 0. To assure that the second inequality in (LP-in) is satisfied,
we choose dĉ > 0. By optimality of ĉ∗, a∗ĉt < 0, and we can lower µ slightly from its (3) value so that
the last inequality in (LP-in) still holds.

Finally, from 1
2U∗

ĉĉt(dĉ)2 > (1−2µ)U∗
ĉtdĉ and U∗

ĉt > 0>U∗
ĉĉt , we obtain (1−2µ)dĉ=−Eµdĉ< 0,

thus Eµ ĉt > ĉ∗t . ■

Proof of Proposition 3: We follow the logic of the proof of Proposition 1. Suppose that k∗ is a
solution to problem M-RP-K where τ̄∗t+1 ≡ EΨ

t τ∗t+1 > 0 at some gt and t ≥ 0 (the average capital tax
is positive). By optimality of k∗ it is F̂(k∗) = R̂0k0u∗c0. Since

U ′
t,t+1(kt+1) = βEtuct+1R̂t+1 −uct ,

and τ̄∗t+1 > 0, it is U ′∗
t,t+1 > 0.

We consider changes in consumption in the two subsequent periods t and t + 1 so that market
clearing holds. Thus, the changes are adjusted by, and equivalent to, changes in capital stock kt+1.

Hereafter we drop reference to histories from k∗t+1(g
t), denoting it simply k∗t+1. With some abuse

of notation, let P : R→R be the second-order polynomial in dk of derivatives of Ut,t+1 with respect to
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kt+1 up to the second order, where all derivatives are evaluated at k∗t+1, i.e., P is a second-order Taylor
approximation of Ut,t+1 at k∗t+1, and similarly φ : R→ R is a second-order approximation of at,t+1 at
k∗t+1. Consider the 2-point lottery µ over capital where k1t+1 = k∗t+1+dk and k2t+1 = k∗t+1−dk, with
dk ∈ Bε(0) a small enough neighborhood of zero.

Using the second-order approximations P and φ , after substitution of the relevant derivatives, and
further using a′∗t,t+1 ̸= 0, we conclude that under (D-K) a 2-point lottery at gt Pareto improves over k∗

since it implies the existence of a nonzero solution dk,µ to

(2µ −1)U ′∗
t,t+1dk+

1
2

U ′′∗
t,t+1(dk)2 > 0 (4)

(2µ −1)a′∗t,t+1dk+
1
2

a′′∗t,t+1(dk)2 > 0. (5)

and

1−2µ =
1
2

a′′∗t,t+1

a′∗t,t+1
dk. (6)

Finally, as
U ′′

t,t+1(kt+1) = ucct +βEtucct+1R̂2
t+1 +βEtuct+1 f ′′(kt+1),

it is U ′′∗
t,t+1 < 0 by concavity of u and f , and U ′∗

t,t+1 > 0 and (D-K) further imply a′′∗t,t+1/a′∗t,t+1 < 0, while
from (4) it is (1−2µ)dk < 0. Thus, either k1t+1 > k∗t+1 with probability µ > 1/2, or k1t+1 < k∗t+1

with probability µ < 1/2, and Eµkt+1 > k∗t+1, as wanted. ■

Proof of Proposition 6: We consider dzt = (dĉt ,dxt ,dct ,dkt+1) where (dct ,dkt+1) = 0 and
f2tdxt = −dĉt . Let z∗t be the initial optimal solution component at t > 0, and consider assigning
probability µ to z1t = z∗t + dzt and 1− µ to z2t = z∗t − dzt . Let dz be a change in z which is zero at
every t ′ ̸= t. The effect of dz on utility U is of the order

P(dz) =U∗+DU∗
t ·dzt +

1
2

dzt ·D2U∗
t ·dzt

and it is
φ(dz) = F∗

3t +DF∗
3t ·dzt +

1
2

dzt ·D2F∗
3t ·dzt

on F3t , while by construction F3t ′(z∗+dz) = 0 all t ′ ̸= t, and F2t ′(z∗+dz) = 0 = F1t ′(z∗+dz) = 0 all
t ′ ≥ 0. Hence, by regularity, if

EµP(dz)>U∗ and Eµφ(dz)> F∗
3t = 0,

then we will have found a Pareto improving lottery. Zooming in on Eµφ(dz), it is

Eµφ(dz)−F∗
3t = (2µ −1)DF∗

3t ·dzt +
1
2

dzt ·D2F∗
3t ·dzt .

Suppose dĉt > 0. Then DU∗
t · dzt = (vĉt − vxt

f2t
)dĉt > 0, and under our regularity assumptions it is

DF∗
3t ·dzt < 0. Thus, if µ satisfies

2µ −1 =
−1

2dzt ·D2F∗
3t ·dzt

DF∗
3t ·dzt
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then Eµφ(dz) = F∗
3t = 0. Plugging into the expression for EµP(dz), we obtain EµP(dz)>U∗ if and

only if

−1
2

dzt ·D2F∗
3t ·dzt

DF∗
3t ·dzt

>−1
2

dzt ·D2U∗
t ·dzt

DU∗
t ·dzt

.

By continuity, for a closeby µ , a 2-point lottery Pareto improves over the standard solution. Since
2µ−1> 0 and dĉt > 0, it is Eµ ĉt > ĉ∗t , as wanted. The last statement follows from direct computation
of D2F3,t . ■

Proof of Proposition 8: We follow the logic of the proof of Proposition 1. Suppose that z∗ =
(ĉ∗,c∗,k∗) is an interior solution to problem M-RP-WKSW. By optimality and Lemma 7, it is F∗

2 = 0
(and F∗

1 = 0).
Consider a 2-point lottery µ over processes (ĉ,c,k) where (ĉi,ci,ki) = z∗+dzi, i = 1,2, and dz1 =

−dz2 and dz2 = dz as stated in the assumption. Again with some abuse of notation, let P : Z → R
be the polynomial in dz ∈ Z of derivatives of U up to the second order, where all derivatives are
evaluated at z∗. For dz sufficiently small, P is a second-order Taylor approximation of U at z∗; and
similarly let φ : Z → R be a second-order approximation of F2,t computed at z∗. Further, letting
Eµ [P(dz)] = ∑i µiP(dzi), for µi ≥ 0, i = 1,2, and ∑i µi = 1; similarly defining Eµ [φ(dz)], we see that
Eµ [P(0)] = U∗ and Eµ [φ(0)] = F∗

2,t . Thus, if at nonzero dz2 = dz ∈ ∆U ∩T F∗
2\t , and for probability

µ1 = µ > 0 it is
(1) ∑i µiP(dzi)>U∗ and

(2) ∑i µiφ(dzi) > F∗
2,t ,

(LP)

then we have found a 2-point lottery Pareto improving over the M-RP-WKSW solution.
Indeed, suppose such dzi exist. By (DF∗

1,t ′, t
′ ≥ 0,DF∗

2\t) onto, for every ε > 0 we can find dzi,ε ∈ Z
such that DF∗

1,t ′ · dzi,ε = ε1 all t ′ ≥ 0 and DF∗
2\t · dzi,ε = ε1 ≫ 0. Then, DF∗

1,t ′ ·αdzi,ε ≫ 0 all t ′ ≥ 0
and DF∗

2\t ·αdzi,ε ≫ 0 for every α > 0. Now, letting dz′i = dzi +αdzi,ε , i = 1,2, we have

Eµ [P(dz′)] = U∗+∑
i

µi[DU∗ ·dzi +
1
2

dzi ·D2U∗ ·dzi]

+α ∑
i

µi[DU∗ ·dzi,ε +
1
2
[2dzi ·D2U∗ ·dzi,ε +αdzi,ε ·D2U∗ ·dzi,ε ]

and Eµ [P(dz′)] > U∗ as α can be taken arbitrarily small. A similar argument can be used to ob-
tain Eµ [φ(dz′)] > F∗

2,t , F2\t(z∗ + dz′i) ≫ 0, and F1,t ′(z∗ + dz′i) > 0, all t ′ ≥ 0. Hence, the pro-
cesses (ĉ′i,c

′
i,k

′
i) = z∗ + dz′i are feasible and satisfy all the constraints, and the 2-point lottery over

(ĉ′i,c
′
i,k

′
i) , i = 1,2 Pareto-improves over z∗.

To verify that LP has a solution, write LP-2 as equality by choosingµ and dz2 so that

1−2µ =−1
2

dz2 ·D2F∗
2,t ·dz2

DF∗
2,t ·dz2

,
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which is consistent with µ being a probability provided dz2 is small enough. Using the µ , substituting
into LP-1, and further using the assumption DU∗ ·dz2 > 0, we obtain

−
dz2 ·D2F∗

2,t ·dz2

DF∗
2,t ·dz2

>−dz2 ·D2U∗ ·dz2

DU∗ ·dz2

or D-WKSW. ■

Proof of Lemma 9: Hereafter, we write σt for σut . Pick a t > 0 and let dzt ′ = 0 for all t ′ <
t + 1, and dzt ′ = 0 for t ′ > t + 2. Then, dz ∈ Z, and only three Euler equations, at dates t, t + 1 and
t + 2, are affected by dz. If we neglect the Euler equation at t, then (dct+1,dkt+2) ∈ R2 determines
(dct+2,dkt+3) ∈ R2 via the Euler equations at dates t +1 and t +2 with (dct+3,dkt+4) = 0:[

β (1−σt+2(1+κt+3)) β

σt+2κt+3 −1

][
dct+2

dkt+3

]
=

[
mt+2(−σt+1κt+2dct+1+dkt+2)

0

]
. (*)

for mt = uct−1/uct . The remaining elements dĉt ′ are determined via the feasibility equations at dates
t +1, t +2 and t +3. Thus, DF∗

2,t+1 ·dz = 0 and DF∗
2,t+2 ·dz = 0, and DF∗

2,t ′ ·dz = 0 for all t ′ < t and
all t ′ > t +2, while DF∗

1,t ·dz = 0 at all t ≥ 0.
Since the determinant of the matrix on the l.h.s. is −β (1−σt+2), for σt+2 ̸= 1 the matrix is

invertible and[
dct+2

dkt+3

]
=

1
β (1−σt+2)

[
mt+2(−σt+1κt+2dct+1+dkt+2)

mt+2σt+2κt+3(−σt+1κt+2dct+1+dkt+2)

]
.

Let △t+1 ⊂ R4 be the set of changes in (ct+1,kt+2) ∈ R2 and (ct+2,kt+3) ∈ R2, where the change in
(ct+1,kt+2) is arbitrary and the change in (ct+2,kt+3) satisfies (*). Straightforward calculations show
that ĉ changes only at dates t +1, t+2 and t+3. As we assume that a limit of a solution z∗t exists for
t → ∞, at this limit κ∗ = β/(1−β ), and for t large enough these changes in ĉ are approximately equal
to (dropping superscript ∗)

dĉt+1 = −dct+1 −dkt+2

dĉt+2 =
1

β (1−σ)
[R̂β (1−σ)dkt+2 − (1+σκ)(−σκdct+1+dkt+2)]

dĉt+3 =
1

β (1−σ)
R̂σκ(−σκdct+1+dkt+2).

We now prove the following intermediate step. Let

Dv = (0, ...,0,vĉt+1,βvĉt+2,β
2vĉt+3,0...).

Auxiliary Claim: Suppose that σ > 1 and κ∗ = β/(1− β ) and R̂∗ ≥ ε/β for some ε ∈ ((1+
β )/2,1]. Then, there exist a date t > 0 and a change in △t+1 such that Dv ·dĉ ̸= 0.
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Proof: Drop superscript ∗. For t > 0 large enough and a change in △t+1, the derivatives of ĉ with
respect to ct+1 and kt+2 are


−1 −1

a1 b1

a2 b2

 ≡


−1 −1

1
β (1−σ)

(1+σκ)σκ
1

β (1−σ)
[R̂β (1−σ)− (1+σκ)]

− 1
β (1−σ)

R̂(σκ)2 1
β (1−σ)

R̂σκ

 .

The vector (vĉt+1,βvĉt+2,β
2vĉt+3) is orthogonal to the two columns in the matrix of derivatives if and

only if [
−1 a1

−1 b1

][
vĉt+1

βvĉt+2

]
=−

[
a2

b2

]
β

2vĉt+3.

Since σ > 1 implies a1 < 0 and b1 > 0, the determinant of the l.h.s. matrix is not zero, so the matrix
is invertible and [

vĉt+1

βvĉt+2

]
=


a1b2−a2b1

a1−b1

−a2−b2

a1−b1

β 2vĉt+3.

Since σ > 1 implies a2 > 0 and b2 < 0, the ratios vĉt+1/βvĉt+2 and βvĉt+2/β 2vĉt+3 are well defined,
vĉt+1

βvĉt+2
= −a1b2−a2b1

a2−b2
=

σκ

1+σκ

vĉt+2

βvĉt+3
= −a2−b2

a1−b1
=

R̂(1+σκ)σκ

(1+σκ)2 − R̂β (1−σ)
.

If the vector (vĉt+1,βvĉt+2,β
2vĉt+3) is orthogonal to the columns in the matrix at every date t, then

the two ratios have to be identical,

vĉt+1

βvĉt+2
=

σκ

1+σκ
=

R̂(1+σκ)σκ

(1+σκ)2 − R̂β (1−σ)
=

vĉt+2

βvĉt+3

or equivalently

R̂ =
(1+σκ)2

(1+σκ)2+β (1−σ)
.

Observe that (1+σκ)2+β (1−σ) > 0: (1+σκ)2 > β (σ−1) if and only if 1+ β < 4. Now R̂ ≥
ε/β is equivalent to (ε−β )(1+σκ)2+εβ (1−σ) ≤ 0. Clearly, for σ = 1 the inequality is violated.
The derivative with respect to σ is 2(ε−β )κ(1+σκ)−εβ . As ε ≤ 1, it is κ ≥ εβ/(1−β ), and the
derivative is positive for all σ > 1. Therefore, the inequality is violated for all σ > 1. Consequently,
if 1 ≥ ε > (1+β )/2 and R̂β ≥ ε/β for some ε > (1+β )/2 and all σ > 1, then there is t > 0 such that
(vĉt+1,βvĉt+2,β

2vĉt+3) is not orthogonal to the columns in the matrix.□
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It is now an immediate consequence of the Auxiliary Claim that if τk∗ > 0, i.e., R̂∗β > 1, then
there is a date t > 0 and a change in △t+1 such that Dv ·dĉ ̸= 0. Thus, at θ = 0 there exists dz ∈ Z such
that DU ·dz = Dv ·dĉ > 0, and dz ∈ ∆U ∩T F∗

\2,t . By optimality of z∗, it cannot be that DF∗
2,t ·dz ≥ 0.

When θ is close enough to zero, continuity concludes the proof. ■

Proof of Proposition 9: Again, throughout we write σ for σu. Let dz2 be the (symmetric) change
which occurs with probability 1−µ . Since 1

2dz2 ·D2U∗ ·dz2 > (2µ −1)DU∗ ·dz2 and DU∗ ·dz2 > 0
while dz2 ·D2U∗ ·dz2 < 0, then µ < 1/2. Now we are going to show that, under the stated conditions,
dz = dz2 can be chosen so that dτt+1 > 0 and dτt+3 < 0, proving the claim.

Let dct+1 < 0. From β
uct+1
uct

Rt+1 = 1 since ct and kt+1 do not change, uct+1 increases and Rt+1

must decrease, so that dτt+1 > 0. From DF2,t ·dz < 0, it must be dkt+2 = (σ −1+σκ)dct+1 − ε for
some ε > 0, and then dkt+2 < 0.

Next, from β
uct+3
uct+2

Rt+3 = 1 and since ct+3 does not change, there will be a decrease dτt+3 < 0 if
and only if the total differential dγ of

γ(ct+1,kt+2)≡
R̂(kt+3(ct+1,kt+2))

uc(ct+2(ct+1,kt+2))

is negative. Computations show that, at a steady state (κ = β/(1−β )),

Dγ · (dct+1,dkt+2) =
σ

uc

1
β (σ −1)

( f̂ ′′κ +
f̂ ′

c
)(2σκ +σ −1)dct+1 − ε̃,

and this is negative if and only if
f̂ ′′(kg)kg + f̂ ′(kg)> 0 (*)

where kg is the steady state where R̂β > 1. If f (k) = kα , then, f̂ ′ = α
f (k)

k + 1− δ and f̂ ′′ = α(α −
1) f (k)

k2 , thus

− f̂ ′′k = α(1−α)
f (k)

k
< α

f (k)
k

≤ f̂ ′,

and condition (*) holds, i.e., dτt+3 < 0. ■

8 Appendix C: Optimal taxspots

Proof of Proposition 2: Throughout, we use ct for consumption. Let a solution µ∗ ∈ ∆(C) to problem
E-RP be given. Let ω t = (gt ,ct−1) be a history of expenditures and consumptions up to date t > 0,
i.e., ct−1 = (c0,c1, ...,ct−1), where cτ ∈ [0,1− gτ ], all τ < t, and ω0 = g0. Let Ω be the space of
infinite such histories, and Ft be the σ -algebra generated by histories ω t .

Given µ∗, we construct a payoff-equivalent process µ∗
t , t ≥ 0 of distributions over consumption

plans ct adapted to the filtration (Ft)t∈T (that is, conditional on realizations ω t). For any t ≥ 0, let
µ t

π be the resulting probability measure over histories ω t induced by π and µ∗
τ ,τ ≤ t. Hence, in

problem E-RP the planner equivalently has chosen process µ∗
t , t ≥ 0: at each t, given gt−1 exogenous
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shock gt is realized according to transition π and, for t > 0, ct−1 has realized according to measures
µ∗

τ ,τ < t. Then, the planner tosses coin µ∗
t (ω

t) to assign consumption ct , and the resulting leisure
xt = 1−gt − ct . The representative agent’s expected utility is

∑
t

β
t
∫

Ut(ct)dµ
t
π(g0).

Lottery µ∗
t (ω

t) on ct after history ω t = (gt ,ct−1) is a probability measure over [0,1− gt ] ⊂ R+,
a closed subset of R. Thus, by Kuratowski Theorem (see Parthasarathy, 1967, Ch. 3) there exists
a Borel measurable, invertible function f : B[0,1− gt ] → B(R) with measurable inverse such that
θt(ω

t) = f∗µ∗
t (ω

t) is the corresponding probability measure on R, i.e., θt(ω
t)(B) = µ∗

t (ω
t)( f−1(B))

for every Borel B ∈ B(R).
Let S = [0,1] and Leb be the Lebesgue measure on S. Using a standard argument (see, e.g.,

Williams, 1991, Ch. 3), it can be shown that there exists a random variable c−t (ω t) : S → R such that

θt(ω
t) = f∗µ

∗
t (ω

t) = c−t (ω
t)∗Leb. (7)

where c−t (ω t)∗Leb is the (Lebesgue-Stieltjes) probability measure associated with the r.v. c−t (ω t)

when the underlying space has a uniform distribution.
Let ct(ω

t) : S → [0,1−gt ] be defined via ct(ω
t) = f−1 ◦ c−t (ω t). Now (7) implies that, for every

B ∈ B([0,1−gt ]),

ct(ω
t)∗Leb(B) = Leb((c−t (ω

t))−1 ◦ f )(B))

= θt(ω
t)( f (B)) = f∗µ

∗
t (ω

t)( f (B)) = µ
∗
t (ω

t)(B),

i.e., consumption function ct(ω
t) is a function measurable relative to taxspot space (S,B(S),Leb),

with values ct(ω
t ,st) and with values distribution equal to the lottery µ∗

t (ω
t), where c0(ω

0) = c0(g0)

is a function with values c0(ω
0,s0) measurable with respect to (S,B(S),Leb) and with distribution

given by µ∗
0 .

Histories ω t = (gt ,ct−1) with µ t
π -positive probability are then generated by the space of histories

(gt ,st−1), and we can write ĉt , t ≥ 0 as an equivalent process on Ω̂, the set of all histories ω̂ t = (gt ,st):
for t = 0, ĉ0(ω̂0) = c0(ω

0,s0), and for any t > 0 and any ω t = (gt ,ct−1) with ct−1 = ct−1(gt−1,st−1)

for some st−1 = (s0, ...,st−1) it is ĉt(ω̂
t) = ct(gt ,ct−1(gt−1,st−1),st) for ω̂ t = (gt ,st). By construction,

∑
t

β
t
∫

Ut(ct)dµ
t
π(g

t ,ct−1;g0) = ∑
t

β
t
∫

Ut(ĉt)dν
t
π(g

t ,st ;g0)

for some process of probabilities ν t
π derived from π and ν∗

t ′ = Leb, t ′ ≤ t (see f.note 12). We now
let (bounded) processes (xt ,bt+1, pt ,τt) be defined as adapted to the filtration generated by histories
ω̂ t = (gt ,st) and derived via ĉt(ω̂

t) using market clearing (for xt) and the FOC (for pt and τt), and for
each t ≥ 0 and ω̂ t , defining

bt(ω̂
t) = ∑

s≥t
Et,νs

π

ps

pt
[(ĉs − b̂0,s)− (1− τs)(1− xs)].
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Note that, for each s ≥ t, the conditional expectation operator is now dependent on probabilities ν∗
t ′ ,

t ′ ≤ s and on π , and sometimes we denote it simply as Et,ν . Then, bt+1 is a ν t+1
π -integrable function,

and it is verified from F(ĉ) = 0 –with a change of variables similar to the one applied for U also for F–
that ptbt + pt(1− τt)(1− xt) = pt ĉt +Et,νt+1

π
pt+1bt+1, while limt→∞E0,νt+1

π
pt+1bt+1 = 0. Since FOC

and transversality imply optimality, we have shown that the Ramsey lottery µ∗ induces a competitive
equilibrium with taxspots and taxes τ , where ν∗ is the process of uniform distributions ν∗

t , t ≥ 0 over
S.

Finally, take a lottery µ∗ solving problem E-RP. Let

E = {(u,r) ∈ R2 : u =U(c) and r = F(c), some c ∈ C̄}

where C̄ ⊂
o
C is (product) compact, contains the support of µ∗, and both U and F are continuous

on C̄. Thus, E itself is compact. Let (u∗,0) be the point u∗ =
∫

C̄ U(c)dµ∗ and 0 =
∫

C̄ F(c)dµ∗.
Then, as C̄ is metrizable, by Thm 15.10 in Aliprantis and Border (2005), (u∗,0) = limn(un,rn) where
un =

∫
C̄ U(c)dµn and rn =

∫
C̄ F(c)dµn, µn → µ∗ in the weak∗ topology, and µn is a finite support

probability measure for each n. Thus (un,rn) is in the convex hull CoE of E, a subset of R2. By
Carathéodory’s Convexity Theorem, any point in CoE can be expressed as the convex combination of
at most 3 points in E. Further, as E is closed, so is CoE, i.e., (u∗,0) ∈CoE, meaning that µ∗ also has
finite support with at most 3 points in E, and corresponding elements of C̄, denoted c j, j = 1,2,3.

Thus, at the optimal µ∗, this probability measure also solves, for given triplets c j ∈ C̄, j ≤ 3,

maxµ(c j), j≤3 ∑ j≤3U(c j)µ(c j) s. to

∑ j≤3 F(c j)µ(c j) = 0
1−∑ j≤3 µ(c j) = 0

µ ≥ 0

This is a finite dimensional linear programming problem. Its solution is a vertex with at most 2
nonzero points, i.e., there are at most two j, j′ ≤ 3 such that µ(c j)µ(c j′)> 0.

If for some t ≥ 0 and gt it is ct
j ̸= ct

j′ , j′ ̸= j, then

µ
∗(c j)≤ µ

t+t ′,∗(ct+t ′
j ;ω0)≤ µ

∗
t (c j,t |ω t)

implies µ∗
t+t ′(c j,t+t ′|gt+t ′,ct+t ′−1

j ) = 1 for all gt+t ′ , all t ′ > 0. This implies that there is at most one
date t ≥ 0 such that µ∗

t (ω
t) ̸= δc (the Dirac measure on c) for some c ∈ (0,1− gt ]. The conclusion

follows.■
Proof of Lemma 5: The first step is to revert to the optimal lottery µ∗ and derive FOC. Lottery

µ∗ equivalently solves

max
µ≥0

∫
Û(k)dµ s. to

∫
F̃(k)dµ ≥ 0 and 1−µ(K) = 0
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where F̃(k) ≡ F̂(k)− R̂0k0uc( f̂0(k0)− k1) and µ is a signed Borel measure on the subspace K ⊂
L(R) of capital processes adapted to {Gt}t≥0, while µ ≥ 0 stands for the subset of nonnegative such
measures. Equipped with the total variation norm, the space is Banach. By A3.a, we have assumed
that there exists µ0 ≥ 0 with 1= µ0(K), and such that

∫
F̃(k)dµ0 > 0. As the Dirac δk are nonnegative

for every k ∈ L(R), for any solution µ∗ it is (1−ε)µ∗ ≥ 0 and (1+ε)µ∗ ≥ 0 for small enough ε > 0.
Observe that here the equality constraint is an affine function of µ . Then, by a separation theorem
(see, e.g., Luenberger, Thm 1, p. 217, 1969), there exist scalars λ ≥ 0 and U∗ such that

Û(k)+λ F̃(k)≤U∗, all k ∈ K, =U∗,µ∗-a.e.

In particular, as µ∗ puts mass one on the interior of K by Lemma 4, there exist a scalar h and k ∈ L(R)
such that k∗±hk ∈ K. Apply the previous inequality to these two points where the direction of change
is the zero process except for the kt+1(gt) component. Using the differentiability of u and of ât , ât+1,
and the interiority of the point , the effect on the objective function is only at k∗t = kt(gt), as

Ut,t+1(k∗t+1 +hkt+1(gt),µ∗) = u( f̂t(k∗t )− (k∗t+1 +hkt+1(gt)))

+βEt,µ∗u( f̂t+1(k∗t+1 +hkt+1(gt))− kt+2),

and its effect on the constraint only on

at,t+1(k∗t+1 +hkt+1(gt),µ∗) = ât( f̂t(k∗t )− (k∗t+1 +hkt+1(gt)))

+βEt,µ∗ât+1( f̂t+1(k∗t+1 +hkt+1(gt))− kt+2),

where Et,µ∗ is the expectation conditional on gt ,k∗t+1 and using µ∗ to average the realizations of kt+2.
Then, taking h → 0, we obtain

βEt,µ∗uct+1R̂t+1(1+λ
âct+1

uct+1
) = uct(1+λ

âct

uct
).

Rearranging terms, assuming that 1+λ
âct
uct

> 0, as under (b), and using the definition of Mt ,

βEt,µ∗uct+1R̂t+1
1+λMt+1

1+λMt
= uct .

On the other hand, as a taxspot equilibrium, consumption must satisfy

βEt,ν∗uct+1R̂t+1(1− τt+1) = uct .

Recalling that Et,µ∗ = Et,ν∗ , equating the two expressions and again rearranging,

EΨ(ν∗)
t τt+1 =

Et,ν∗uct+1R̂t+1τt+1

Et,ν∗uct+1R̂t+1
=

λ

1+λMt

Et,ν∗uct+1R̂t+1(Mt −Mt+1)

Et,ν∗uct+1R̂t+1
≥ 0
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if and only if, when λ > 0 as under (a),

Mt ≥
Et,ν∗uct+1R̂t+1Mt+1

Et,ν∗uct+1R̂t+1

as wanted. ■

Proof of Proposition 7: Existence of an interior solution under A3 is obtained following the logic
of the proofs of Lemma 2 and 6. We now want to show that for every t > 0 there exists t ′ > t such
that µ∗

t ′ ̸= δzt′ (the Dirac on zt ′), all zt ′ ∈ Zt . If not, suppose µ∗ is such that µ∗
t ′ = δz′t some z′t ′ , all t ′ ≥ t.

Then, µ∗ solves the problem

maxĉ,x,c,k U(ĉ,x,c,θ)≡ ∑t ′≥t β t ′Ut ′(ĉ,x,c,θ) s. to
Ft ′(ĉ,x,c,k)≥ 0 all t ′ ≥ t,

limt ′→∞ β t ′uct ′kt ′+1 = 0,

with kt > 0 given. This is an M-RP-WK problem. By assumption, it is then τx
t ′ > 0, and as (R) holds,

detAt ′ > 0, µ∗
t ′-a.e., for all t ′ ≥ t.

For all t ′ ≥ t, z∗t ′ is in [0, k̄]× [0,1]× [0, k̄]× [0, k̄], a compact set Z̄. Thus, for every ε > 0 consider
the finite subcover {Ni}n

i=1 of Z̄ with ∪iNi = Z and zi ∈ Ni such that ||z∗t ′ − zi|| < ε , all t ′ ≥ t. At
zi we perturb utility v so that condition D-WK holds at zi. Then, for ε small enough and since the
functions involved are continuous and inequalities are strict, condition D-WK will hold at z∗t ′ , and
since we have not changed first and second derivatives, detAt ′ > 0 and τx∗

t ′ > 0, all t ′ ≥ t. We finally
apply Proposition 6 to get a lottery that Pareto improves over µ∗

t ′ , hence over µ∗, a contradiction. ■

Proof of Proposition 11: We follow the same reasoning as in the proof of Lemma 5. Using a
separation argument (see, e.g., Luenberger, Thm 1, p. 217, 1969), first order conditions for interior
states in the support of µ∗ at any history zt = (ĉt ,ct ,kt+1) lead to

ct : λ̃t = λ̃t−1[
σt −1
σtκt+1

+1]+
1

σtκt+1

(1−θ)vĉt −θuct

uct
,

kt+1 : βEt,µ∗mt+1R̂t+1M̂t+1 − M̂t = λ̃t − λ̃t−1,

µ∗-a.e., where λ̃t , t > 0 is the process of multipliers for the Euler constraints, and mt+1 = uct+1/uct .
Additionally, the constraint βEt−1,µ∗uct( f̂t(kt)− ĉt) = uct−1kt must also hold µ∗-a.e., all t > 0. Using
the Euler equation with explicit taxes, we can then write the second equation as

βEt,µ∗mt+1R̂t+1M̂t+1 − M̂tβEt,µ∗mt+1R̂t+1 + M̂tβEtmt+1R̂t+1τt+1 = λ̃t − λ̃t−1,

For all realizations zt with λ̃t − λ̃t−1 ≥ 0, we obtain

M̂t
Et,µ∗mt+1R̂t+1τt+1

Et,µ∗mt+1R̂t+1
≥ M̂t −

Et,µ∗mt+1R̂t+1M̂t+1

Et,µ∗mt+1R̂t+1
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or, using the definition of expected tax EΨ(ν∗)
t τt+1 and of density ψt+1,

M̂tE
Ψ(ν∗)
t τt+1 ≥ M̂t −Et,ν∗ψt+1M̂t+1.

Thus, we conclude that for all trajectories where λ̃t − λ̃t−1 ≥ 0, it is EΨ(ν∗)
t τt+1 ≥ 0 if M̂t ≥

EΨ(ν∗)
t M̂t+1.

Finally, suppose at the optimal taxspot µ∗ history zt ∈ B a Borel set with µ∗-positive probability
and it is also on the optimal path without lotteries, for some t ≥ 0, that is: zt = (cnl

t ,cnl
t ,knl

t+1) and
φ̂ nl

t − φ̂ nl
t−1 = φ̂ l

t − φ̂ l
t−1, where indexes l,nl denote the ‘lottery’ and ‘no lottery’ problem at zt . From

the first order condition for capital in either problem i = l,nl,

βEµ∗
t

vĉt+1

uct
f̂ ′t+1 −

vĉt

uct
≥ β

vnl
ĉt+1

uct
f̂ ′t+1 −

vĉt

uct
.

Thus, from concavity of vĉ,

vĉ(Eµ∗
t
ĉt+1)− vĉt+1 > Eµ∗

t
vĉt+1 − vnl

ĉt+1 ≥ 0

and from concavity of v,
Eµ∗

t
ĉt+1 < ĉnl

t+1

and finally from market clearing

(1− τ
nl
t+1)R̂t+1 =

cnl
t+1 + knl

t+2

kt+1
< Eµ∗

t

ct+1 + kt+2

kt+1
= (1−Eµ∗

t
τt+1)R̂t+1,

i.e., τnl
t+1 > Eµ∗

t
τt+1, as wanted.■

9 Appendix D: A perturbation argument (for condition D)

How likely is condition D to arise? One can regard condition D as quite pervasive in the space of
preferences, or utility functions, if vicinity is judged in the Whitney C3-topology sense: two utility
functions are close if their derivatives up to the third order are close on all compact sets. Then, for
given economy we can perturb the initial utility function to tweak the constraint set around a solution
ĉ∗, without changing it anywhere else, while staying in the vicinity of the original economy. We
can formally show this in finite economy approximations of the given infinite horizon economy, as
follows.

Lemma 10 Let T < +∞. Suppose that at an RP optimum ĉ∗ it is U∗
ĉt > 0 for some date-event gt ,

t ≥ 0. Then there is an arbitrarily close economy such that ĉ∗ is still a solution to the RP problem and
condition D is satisfied.
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Lemma 10 addresses the infinite dimensional case in providing dominance of a 2-point lottery in
at least finitely many periods and state realizations gt , as the perturbation can be done independently at
any ĉ∗t that is locally isolated in [0,1]. Constant elasticity of substitution utilities bundle risk aversion
and prudence under the same parameter, and any change in this parameter entails a change in both the
second and third derivatives. Thus, the density argument must put us outside this class of functions.

The first step to prove Lemma 10 consists in finding a perturbation of a third derivative which does
not alter first and second derivatives, or the other third derivatives. We illustrate the argument for vĉĉĉ

although it will be clear that the same argument applies to any third derivative of v.
For vicinity, we use density in the Whitney C3-topology sense: we say that two functions v, v̂

∈ C 3(X ,R) are arbitrarily close if for every ε > 0, it is

∥v− v̂∥W,K = sup{||D jv(x)−D jv̂(x)|| : x ∈ K, j = 0,1,2,3}< ε

all compact subsets K of X . We let D3
i3i2i1 denote the third partial with respect to variables i j, j = 1,2,3,

where i j ∈ {ĉ,x} is the coordinate variable at the j-th order of derivation.

Lemma 11 Let T < +∞. For any per-period utility u and any solution point ĉ∗t (g
t) of problem RP,

there is a utility function v̂ arbitrarily close to v and such that D jv̂(ĉ∗,x∗) = D jv(ĉ∗,x∗) for j = 0,1,2,
and D3

i3i2i1 v̂(ĉ∗,x∗) = D3
i3i2i1v(ĉ∗,x∗) for all {i3, i2, i1} ̸= {ĉ, ĉ, ĉ}, while

D3
ĉĉĉv̂(ĉ∗t (g

t),1−gt − ĉ∗t (g
t)) = v∗ĉĉĉt +α

for some arbitrary scalar α .

Proof: For χ = (ć,α,ε) let the function fχ : R+ → R be defined as

fχ(ĉ) =


αε(ĉ− ć+ε)2 if ĉ− ć <−ε

−1
6

α(ĉ− ć−ε)3 if −ε ≤ ĉ− ć ≤ ε

0 if ĉ− ć > ε.

It is verified that fχ is twice continuously differentiable, and for fixed (ć,α) the function fχ converges
to the zero function as ε converges to zero, in the Whitney C3 topology.

Consider χ = (ĉ∗,α,ε) and χ ′ = (ĉ∗+3ε/4,α ′,ε/4). It is

f ′χ(ĉ
∗) =−αε

2/2, f ′′χ (ĉ
∗) = αε , f ′′′χ (ĉ∗) =−α,

while, since ĉ∗− ć =−3ε/4 <−ε/4,

f ′
χ ′(ĉ∗) =−2α

′
ε

2/8, f ′′
χ ′(ĉ∗) = 2α

′
ε and f ′′′

χ ′ (ĉ∗) = 0.
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Hence, for α ′ = 2α it is f ′
χ ′(ĉ∗) = f ′χ(ĉ

∗) and f ′′
χ ′(ĉ∗) = f ′′χ (ĉ

∗). Now define a (smooth) bump function
b(ĉ) which is zero outside the interval (ĉ∗− ε, ĉ∗+ ε) and b(ĉ∗) = 1. Define

Vt(ĉ) = v̂(ĉ,1−gt − ĉ) =Ut(ĉ)+b(ĉ)[ fχ ′(ĉ)− fχ(ĉ)].

The first- and second-order derivatives of Ut and Vt at ĉ∗, and the third-order derivatives D3
i3i2i1 for

{i3, i2, i1} ̸= {ĉ, ĉ, ĉ}, are identical, while the third-order derivative Vĉĉĉ(ĉ∗,x∗) = vĉĉĉ(ĉ∗,x∗)+α , as
wanted. ■

The above argument not only shows that the perturbed function is close to the initial one, but it
also requires changing the function only in an arbitrarily small neighborhood around the initial point,
ĉ∗t (g

t).
We are now going to apply the perturbation in Lemma 11 to any economy where utility vio-

lates condition D to obtain a nearby economy with the required property D and, in addition, with
the property that the initial (locally unique) solution to the M-RP problem stays a solution after the
perturbation. This can be done while staying within an arbitrary neighborhood of the initial economy,
thus proving Lemma 10.

To this end, let a solution (ĉ∗,x∗) to the M-RP problem and gt , t ≥ 0 be given. By Lemma 1.iii
it is F(ĉ∗, b̂0,g) = 0. Let ĉ−gt be process ĉ without the element ĉt(gt). Suppose that U∗

ĉt > 0 and
a∗ĉt ̸= 0 at gt , t > 0. We also assume at no loss of generality that ĉ∗t (g

t) is locally isolated. In particular,
ĉ∗τ(g

τ) ̸= ĉ∗t (g
t), all (gτ ,τ) ̸= (gt , t). The latter conditions hold for a large (generic in endowments) set

of economies when T is finite, via repeated applications of the Parametric Transversality Theorem.
By the Implicit Function Theorem there exists h such that ĉt(gt) = h(ĉ−gt ) for any ĉ−gt within a
neighborhood of ĉ∗−gt , such that F(ĉt(gt), ĉ−gt , b̂0,g) = 0, and

Dτh(ĉ∗−gt ) =−
β̂ τa∗ĉτ

β̂ ta∗ĉt

all (gτ ,τ) ̸= (gt , t)

while

D2
τ ′τh(ĉ∗−gt ) =

 Dτh[a∗ĉĉτ

a∗ĉτ

− a∗ĉĉtDτ ′h
a∗ĉt

] if τ ′ = τ

−Dτha∗ĉĉtDτ ′h
a∗ĉt

otherwise.
.

After substitution of h in v for ĉt(gt) the M-RP problem becomes

maxξ (ĉ−gt )≡ E0 ∑
(gt′ ,t ′)̸=(gt ,t)

β
t ′Ut ′(ĉt ′)+ β̂

tUt(h(ĉ−gt )).

Let D2ξ be the Hessian of the function ξ computed at the solution ĉ∗, and |kD2ξk| be the determinant
of the k-principal submatrix of D2ξ , where k ranges from 0 to gT ,T (and histories are totally ordered).
For the initial point ĉ∗ to still be optimal after the (small) perturbation, the following first and second
order conditions must be satisfied:

β̂
τUĉτ(ĉ∗τ(g

τ))+ β̂
tUĉt(ĉ∗t (g

t))Dτh = 0, all (gτ ,τ) ̸= (gt , t) (8)

(−)k|kD2
ξk| > 0 for every k ≥ 1. (9)
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We start with a change of the third derivative of v around the point ĉ∗t (g
t),x∗t (g

t) using x∗t (g
t) =

1− gt − ĉ∗t (g
t). We apply Lemma 11 to change the appropriate derivative according to Corollary 1,

perturbing a∗ĉĉt . The FOC do not change. If the second order conditions (SOC) are strict, we stop.
Otherwise, we apply Lemma 11 again to change a∗ĉĉτ

, τ ̸= t, for τ and history gτ corresponding to the
last diagonal entry in the k-th principal, making D2

ττξ < 0 and large enough, so that (SOC) holds at
the perturbed economy. Observe that

D2
ττξ = β̂

τUĉĉτ(ĉ∗τ(g
τ))+ β̂

t [Uĉĉt(ĉ∗t (g
t))(Dτh)+Uĉt(ĉ∗t (g

t))D2
ττh]

and D2
ττh is a function of a∗ĉĉτ

(but to perturb D2
ττξ , it must be that a∗ĉτ

̸= 0. Again, as T < +∞, this
will be generically true).

By the first perturbation, we have guaranteed condition D at gt . By the second perturbations, we
have assured that ĉ∗ is still the only solution in a small enough neighborhood of ĉ∗. The conclusion
follows. ■

References

[1] Acemoglu, D., Golosov, M., Tsyvinski, A., 2011, “Political economy of Ramsey taxation,” J
Pub Econ 95, 467–475.

[2] Aiyagari, R., Marcet, A., Sargent, T., Seppala, J., 2002, “Optimal taxation without state-
contingent debt,” J Pol Econ 110, 1220–1254.

[3] Aliprantis, C., Border, K., “Infinite Dimensional Analysis,” Springer, Berlin, 2005.

[4] Angeletos, G., La’O, J., 2020, “Optimal monetary policy with informational frictions, ” J Pol
Econ 128, 1027–1064.

[5] Barro, R., 1979, “On the determination of the public debt,” J Pol Econ 87 940–971.

[6] Bizer, D., Judd, K., 1989, “Taxation and uncertainty,” Amer Econ Review 79, 331–336.

[7] Chamley, C., 1986, “Optimal taxation of capital income in general equilibrium with infinite
lives,” Econometrica 54, 607–622.

[8] Chari, V. V., Christiano, L., Kehoe, P., 1994, “Optimal fiscal policy in a business cycle model,”
J Pol Econ 102, 617–652.

[9] Cole, H., Kubler, F., 2012, “Recursive contracts, lotteries and weakly concave Pareto sets,” Rev
Econ Dynamics 15, 479–500.

52



[10] Garratt, R., Keister, T., Cheng-Zhong, Q., Shell, K., 2002, “Equilibrium prices when the sunspot
variable is continuous,” J Econ Theory 107, 11–38.

[11] Goenka, A., Prechac, C., 2006, “Stabilizing sunspots,” J Math Econ 42, 544–555.

[12] Hagedorn, M., 2010, “Ramsey tax cycles,” Rev Econ Studies 77, 1042–1071.

[13] Hasset, K., Metcalf, G., 1999, “Investment with uncertain tax policy: Does random tax policy
discourage investment? ,” Econ Journal 109, 372–393.

[14] Hassler, J., Krusell, P., Storesletten, K., Zilibotti, F., 2008, “On the optimal timing of capital
taxes,” J Mon Econ 55, 692–709.

[15] Judd, K.L., 1985, “Redistributive taxation in a simple perfect foresight model,” J Pub Econ 28,
59–83.

[16] Kehoe, T., Levine, D., Prescott, E., 2002, “Lotteries, sunspots, and incentive constraints,” J Econ
Theory 107, 39–69.

[17] Lansing, K., 1999, “Optimal redistributive capital taxation in a neoclassical growth model,” J
Pub Econ 73, 423–453.

[18] Luenberger, D., “Optimization by Vector Space Methods,” Wiley & Sons, New York, NY, 1969.

[19] Ljundqvist, L., Sargent, T., “Recursive Macroeconomic Theory,” MIT Press, Cambridge MA,
2012.

[20] Lucas, R., Stokey, N., 1983, “Optimal fiscal and monetary policy in an economy without capi-
tal,” J Mon Econ 12, 55–93.

[21] Marcet, A., Marimont, R., 2019, “Recursive Contracts,” Econometrica 87, 1589–1631.

[22] Messner, M., Pavoni, N., Sleet, C., 2018, “The dual approach to recursive optimization: Theory
and examples,” Econometrica 86, 133–172.

[23] Noussair, C., Traumann, S., van de Kuilen, G., 2014, “Higher Order Risk Attitudes, Demograph-
ics, and Financial Decisions,” Rev Econ Studies 81, 325–355.

[24] Parthasarathy, K., “Probability Measures on Metric Spaces,” Academic Press, New York and
London, 1967.

[25] Pissarides, C., “Equilibrium Unemployment Theory,” Cambridge, MIT, 2000.

[26] Rogerson, R., “Indivisible labor, lotteries, and equilibrium,” J Mon Econ 21, 3–16.

53



[27] Rustichini, A., 1998, “Lagrange multipliers in incentive-constrained problems,” J Math Econ
29, 365–380.

[28] Shell, K. Wright, R., 1993, “Indivisibilities, lotteries, and sunspot equilibria,” Econ Theory 3,
1–17.

[29] Straub, L., Werning, I., 2020, “Positive long-run capital taxation: Chamley-Judd revisited,”
Amer Econ Review 110, 86–119.

[30] Williams, D., “Probability With Martingales,” Cambridge University Press, 1991.

[31] Zhu, X., 1990, “Optimal fiscal policy in a stochastic growth model,” J Econ Theory 58, 250–289.

54


