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Abstract

Pollution is one of the world�s primary causes of premature death, but macroeconomic analy-

sis largely neglects the existence of such negative externality. We build a tractable multi-sector

growth model where innovations raise productivity, a polluting primary sector exploits natural

resources, emissions increase mortality, and fertility is endogenous. The response of the mor-

tality rate to changes in population size is generally ambiguous and often non-monotonic, and

re�ects a precise equilibrium relationship that combines emission intensity, dilution e¤ects and

labor reallocation e¤ects caused by technology. Deadly spillovers a¤ect welfare through multiple

channels � including market-size e¤ects �and create additional steady states, including mor-

tality traps that undermine development in less populated resource-rich countries even for low

emission elasticities. Emission taxes yield double dividends in terms of income and population

capacity, whereas subsidies to primary production reduce potential population and may trigger

population implosion especially if combined with new discoveries of polluting primary resources.
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1 Introduction

Pollution kills. According to the Lancet Commission on pollution and health,

�Diseases caused by pollution were responsible for an estimated 9 million premature

deaths in 2015 � 16% of all deaths worldwide � three times more deaths than from

AIDS, tuberculosis, and malaria combined and 15 times more than from all wars and

other forms of violence.�(The Lancet, 2017: p.5).

These �gures revise upwards previous estimates by the Global Burden of Disease Study (IHME,

2016), that had prompted the World Health Organization to consider pollution as one of the world�s

most signi�cant causes of premature death (WHO, 2016). In fact, among all the risk factors held

to explain world deaths in 2017, air pollution alone ranks fourth.1

The economics literature on the subject is mostly empirical and con�rms the scale and per-

vasiveness of the problem.2 Despite this evidence, however, macroeconomic analysis generally

neglects the role of the deadly spillovers: there are no macroeconomic models that account for the

simultaneous endogeneity of economic growth, environmental degradation, mortality and fertility.

This type of models are however necessary to address fundamental questions, �rst and foremost,

how does pollution-induced mortality a¤ect macroeconomic performance through the demographic

channel? Unlike the conventional pollution externalities studied in environmental economics �i.e.,

emissions that reduce the utility of individuals and/or the e¢ ciency of �rms �deadly spillovers

a¤ect consumption and production possibilities through multiple channels. Increased total deaths

reduce total labor supply and aggregate expenditures, activate reallocation e¤ects between sectors

�including the polluting primary sector and R&D activities that drive productivity growth �and

prompt households to revise their saving and fertility decisions. From this perspective, the interplay

between mortality rates, fertility rates and income dynamics becomes a key determinant of welfare.

Understanding how these interactions a¤ect macroeconomic performance is a necessary �rst step

to tackle a number of questions of direct interest to empirical research and policymaking: what

are the consequence of pollution-induced mortality in less populated resource-rich countries that

typically display high emissions per capita as a result of large, polluting primary sectors? What

are the overall macroeconomic e¤ects of pollution taxes and subsidies to primary sectors once we
1Ritchie and Roser (2020a; 2020b) show that the four main causes of death �heart disease, cancer, respiratory

diseases and infections �all exhibit a strong relationship with air pollution. In our analysis, we will not distinguish

between air pollution and other forms of pollution caused by industrial activity. Thus, the evidence provides a sort of

lower bound on the importance on pollution for mortality. The empirical relationship between the four main causes

of death and air pollution is well established: see Schlenker and Walker (2016) and the literature cited therein.
2See, e.g., Ebenstein et al. (2015), Arceo et al. (2016), Bombardini and Li (2016).
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account for demographic change? If deadly spillovers generate mortality traps, is population im-

plosion a possibility only for underdeveloped countries � like poverty traps �or is it a threat for

rich economies too?

All the answers to the above questions crucially hinge on how the mortality rate responds to

changes in population size. Clearly, the mortality response is an equilibrium concept: changes in

population modify resource scarcity, expenditures, fertility, employment in polluting sectors, the

resulting emissions and thereby deaths per capita. We tackle this issue in amodel where a polluting

primary sector exploits a natural resource, horizontal and vertical innovations raise the productivity

of intermediate producers, emissions increase mortality, and private household choices determine

fertility. The fact that economic growth, pollution, mortality and fertility are all endogenous allows

us to de�ne the path of the equilibrium mortality rate and thereby the consequences of deadly

spillovers for macroeconomic performance and welfare.

A distinctive property of our framework is that, even in the absence of deadly spillovers, it

can produce equilibrium paths where population converges to a �nite endogenous level in the long

run while per capita incomes keep on growing via endogenous productivity growth. This property

extends the results derived in Peretto and Valente (2015), which builds a theory of the population

level where demographic and market forces can stabilize population. In contrast to traditional

balanced-growth models predicting exponential population growth, this framework can replicate

the fertility decline experienced in most industrialized countries while remaining consistent with

the demographers�view that in the long run population must converge to a �nite size.3 In the

analysis of Peretto and Valente (2015), there is no pollution, mortality is exogenous, and population

is stabilized by the fertility response to income per capita. We extend this framework to introduce

pollution externalities and endogenous mortality, obtaining a model where the mortality response

to emissions becomes an independent source of equilibrium paths and creates additional steady

states that would not exist in the absence of deadly spillovers.

Our main results may be summarized as follows. First, the response of the equilibrium mortality

rate to changes in population is generally ambiguous and often non-monotonic, and re�ects a precise

relationship among emission intensity, dilution e¤ects, and labor reallocation e¤ects to or from the

primary sector. In particular, the mortality rate may well be declining (locally, if not globally) in

the population-resource ratio, so that resource-rich countries with low population may exhibit very

high mortality rates. Second, deadly spillovers have both quantitative and qualitative e¤ects: they

3Demographers forecast a levelling o¤ of world population within the next century, century and a half, and o¤er

arguments based on �rst principles for why this must happen due to the feedback mechanisms that operate in a

closed system, e.g., on a ��nite planet�.
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always modify the �regular�growth path �that is, the dynamics of income and demography that we

would observe in a pollution-free world �and they can create new steady states that fundamentally

a¤ect long-run outcomes. Under all parametrizations, endogenous mortality matters for welfare �

with direct e¤ects on family size and per capita incomes �and for productivity �via changes in

market size, which directly a¤ects �rms�pro�tability and incentives to innovate. In a large subset

of cases, deadly spillovers can create additional steady states, including regular steady states that

would not exist otherwise �i.e., endogenous mortality stabilizes population even in the absence of

alternative mechanisms �and mortality traps �i.e., threshold levels of the population below which

population implodes due to increasing net mortality despite growing gross fertility. Third, we show

that demography matters for environmental policy. Taxing polluting primary sectors yields double

dividends: besides decreasing emissions, reduced mortality increases the carrying capacity of people

in the economy, which means a higher long-run population level in the regular steady state as well

as a smaller regions of potential mortality traps. Subsidies to the primary sector yield opposite

consequences �i.e., reduce population capacity and increase the threat of population implosion �

and may be a recipe for disaster if they are implemented after new discoveries of natural resource

endowments.

With respect to the existing literature, our analysis delivers many novel insights. In general,

the view that demography drives macroeconomic performance is well accepted in the profession,

but it is rarely rationalized into empirically consistent models (see Brunnschweiler et al. 2020).

The few growth models that successfully incorporate a constant endogenous population level in

the long run typically focus on Malthusian structures (Eckstein et al. 1988; Galor and Weil, 2000;

Brander and Taylor, 1998) or similar market-based mechanisms where resource scarcity triggers

price reactions that eventually bring population growth to a halt in the long run (Strulik and

Weisdorf, 2008; Peretto and Valente, 2015).4 These works do not study deadly spillovers nor more

general interactions among pollution, mortality and fertility in combination with fully endogenous

productivity growth.

The few existing theories linking emissions to mortality assume that pollution reduces life ex-

pectancy and analyze equilibrium paths in one-sector models where income growth is driven by

capital accumulation. In these frameworks, the average mortality rate grows with emissions as

the economy develops, but the process can be alleviated by the counter-acting e¤ects of defensive

expenditures that ultimately create multiple steady states at di¤erent income levels.5 These con-

clusions recalls Nelson�s (1956) notion of under-development traps: non-linearities in the returns

4An exception is Brunnschweiler et al. (2020), where population is stabilized by the dilution of intangible assets

representing �nancial wealth in an economy populated by disconnected generations of �nitely-lived agents.
5See Mariani et al. (2010), Varvarigos (2014), and Goenka et al. (2020).
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to investment generate, besides the regular high-income steady state, low-income steady states

that may act as poverty traps. The same concept has indeed re-emerged in two related strands of

literature. In models of pollution control, managing the trade-o¤ between economic growth and

environmental quality requires the existence of a highly e¢ cient pollution-abatement technology

(Brock and Taylor, 2005), and if abatement e¢ ciency is positively related to output, the economy

may exhibit two steady states, a high-income stable equilibrium and a low-income trap induced by

environmental degradation (Xepapadeas, 2005).6 In models with endogenous lifetime (Blackburn

and Cipriani, 2002; Chakraborty, 2004), households optimize over �nite horizons and longevity rises

with income, e.g., via better nutrition and health care. The interaction produces a stable steady

state for high income levels but also a poverty trap in which low income and short lifetime become

persistent. Our analysis di¤ers starkly from these contributions in both aims and means. We study

the impact of deadly spillovers in a multi-sector economy where demography and productivity dy-

namics decouple: with or without pollution, the regular steady state features a �nite endogenous

population level while per capita incomes grow due to R&D investment. In particular, we rule out

defensive expenditures and similar accumulation-pollution trade-o¤s that generate non-linearities

in one-sector models. Our key results hinge, instead, on the generally ambiguous impact that

population growth has on emissions per capita. Even though total emissions always increase with

primary production, the behavior of the mortality rate crucially depends on how primary output

per worker changes in response to changes in overall net labor supply �the primary-employment

e¤ect �and on the rate at which emissions per capita fall as total population grows �the dilution

e¤ect. The primary-employment and dilution e¤ects a¤ect deaths per adult in opposite directions

as population grows. This makes the response of the mortality rate to population generally am-

biguous, and opens the door to a number of empirically relevant conclusions �e.g., countries with

low population and/or abundant primary resources may actually exhibit very high mortality rates

relative to highly populated, resource-poor economies. This outcome is more likely to arise when

labor and natural resources are substitutes in primary production: as population grows, primary

sector�s employment increases less than proportionally, so that total emissions increase but per

capita damages and deaths per adult decline. Symmetrically, the fact that labor is increasingly

substituted with resource use when population falls implies that the per capita emission damage

increases with smaller population and this can give rise to mortality traps in resource-rich, labor-

6 In models with �xed saving and investment rates, a high rate of pollution-reducing technical change is a general

pre-condition for sustainable long-term growth. Models of optimal pollution control study whether the sustainability

condition is satis�ed ex-post once savings and investment in clean technologies are endogenous. The rise of poverty

traps induced by pollution with state-dependent abatement e¢ ciency is formally demonstrated in Smulders and

Gradus (1996) and Xepapadeas (1997).
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poor economies. In this sense, the rise of mortality traps in our model is disconnected from the

poverty traps that are typically discussed in the literature on growth and development.7

Our results on emission taxes appear to be novel with respect to the literature on environmental

macroeconomics and policy, where the role played by demographic change is typically neglected.

The possibility that emissions taxes could generate double dividends, or more generally, positive

side e¤ects on economic performance, has traditionally been linked to the fact that emission taxes

may reduce aggregate e¢ ciency losses by shifting distorsions away from other production factors

(Bovenberg and Goulder, 2002) or may encourage productivity-enhancing innovations (Porter and

van der Linde, 1995). The positive side e¤ects that we obtain in our model �reduced mortality,

higher long-run population along regular paths, and increased distance from mortality traps �work

through the demographic response to reduced emissions, which is typically ignored in these debates.

The specular result on the negative e¤ects of subsidies to the primary sector is relevant from a

policymaking perspective because such subsidies are often observed in resource-rich developing

countries (Gupta et al., 2002; Metschies, 2005) and are typically justi�ed by invoking the need to

boost income via resource rents (Bretschger and Valente, 2018). In our analysis, these subsidies

tend to reduce expenditure per capita as well as population capacity in the economy along �regular

paths�, and push the economy closer to mortality traps. Similarly, our results on the consequences of

new discoveries of primary resources add to the literature on the Resource Curse hypothesis, which

explored several possible mechanisms through which natural abundance may undermine economic

performance (e.g., Mehlum et al. 2006) but typically neglects demography-economy interactions.

2 The model

We study a decentralized economy where the primary sector produces a commodity using labor

and a raw natural resource (henceforth, resource). The intermediate sector uses the commodity to

produce di¤erentiated goods that the �nal sector uses to produce a homogeneous consumption good.

Endogenous economic growth results from horizontal and vertical innovations in the intermediate

sector. Commodity production generates harmful pollution that increases mortality. The decisions

of households facing child-rearing costs drive endogenous fertility. We begin our analysis with an

7The nature of our mortality traps di¤ers from poverty traps á la Nelson (1956), which are triggered by low capital

per worker. In our model, what triggers ever-declining population is the abundance of the natural resource used

in primary production relative to the labor force: there exists a critical level of the population-resource ratio below

which even the highest fertility rate that households can choose �which is �nite and bounded above by their budget

constraint �does not compensate for the high mortality rate caused by pollution. An economy that falls into the

mortality trap thus experiences population implosion even though the gross fertility rate increases over time.
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overview of the interactions among production, pollution and demography.

2.1 Demography, pollution damage and primary production

Time is continuous and indexed by t 2 [0;1). The dynamics of population, L, are

_L (t) = B (t)�M (t) = [b (t)�m (t)] � L (t) ; (1)

where B is births and M is deaths. Strictly speaking, L is adult population while total population

is L+ B. However, we follow the convention in the literature and refer to L as population and to

variables divided by L as per capita. For future use, we also specify the dynamics in terms of rates:

birth rate, b = B=L, and the death rate, m = M=L, the fraction of adult population that passes

away at any point in time.8

In general, total deaths depend on poulation size and pollution externalities according to the

emission-damage function of the type M = f (L;E), where E represents total emissions and the

partial derivative @f=@E is strictly positive to capture the positive impact of pollution on mortality.

Empirical evidence from the medical literature suggests that f (L;E) is highly non-linear, but its

exact shape and degree of homogeneity in E and L are subject to extensive debate. In our analysis,

we posit

M (t) = �mL (t) + �E (t)� L (t)' ; �m;�; � > 0; 0 6 ' 6 1; (2)

where �m;�; �; ' are constant, exogenous parameters: �m is the baseline death rate that prevails in

the absence of pollution, � and � govern the existence and marginal impact of deadly spillovers,

and ' is a convenient parameter that allows us to obtain di¤erent speci�cations of the damage

function. A �rst polar case is ' = 0, which yields a level-damage function whereby total emissions

E increase total deaths M . A second polar case is ' = 1, which yields a rate-damage function

postulating that total emissions E increase the mortality rate m = M=L in the economy. We will

focus on the general speci�cation 0 < ' < 1, which is most empirically plausible case.9 A possible

interpretation is that di¤erent values of ' capture the e¤ects of di¤erent types of pollutants whereby

8Strictly speaking, the fertility rate is B= (L+B). The literature, however, typically refers to b = B=L as the

fertility rate and we follow the convention unless necessary to avoid confusion. The empirical referent of b is the crude

birth rate, or births per adult.
9Empirically, the relationship between mortality and pollution is highly non-linear in both aggregate and per

capita terms (Cakmak et al., 1999; Izzotti et al., 2000). In our model, setting ' = 1 would mean that total emissions

raises the probability of death regardless of the scale of the economy: the extent to which E increases the mortality

rate M=L does not depend on population size L, which is questionable. At the other extreme, assuming ' = 0

would imply that total emissions raise total deaths regardless of population density, which is an equally questionable

hypothesis.
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environmental damages can be rival or non-rival: the average mortality rate may thus be a¤ected

more heavily by total emissions or by emissions per capita depending on which pollutant is the

prominent source of deadly spillovers.

We do not make restrictive hypotheses about the marginal impact of total emissions: given to-

tal population, the damage function may be concave, linear or convex in E depending on whether

� is assumed to be less, equal or above unity. On the one hand, this is motivated by evidence:

estimated mortality functions are consistent with linear or even strictly concave damage functions

at high emission levels (e.g., Cakmak et al., 1999; Izzotti et al., 2000). On the other hand, the unre-

stricted damage elasticity will allow us to draw novel insights with respect to conventional models

of pollution externalities where emissions cause utility or productivity losses. These conventional

models predict that environmental externalities limit economic growth if the emission-damage func-

tion is strictly convex. We will show that deadly spillovers, instead, can have serious consequences

for economic performance and welfare under all parametrizations, including �and in some cases,

especially �when � is strictly less than unity.

Emissions are the harmful by-product of the exploitation of the resource in commodity pro-

duction. Our primary sector can thus be interpreted as the resource-processing unit of a mining

industry or as an energy sector producing electricity from fossil fuels. For simplicity we abstract

from characteristics of natural resources such as renewability and model the resource as a �xed

endowment, 
, providing a constant �ow of productive services. The production function of the

primary sector is

Q (t) = F (
; LQ (t)) ; (3)

where Q is output, LQ is employment in resource processing and F is a linearly homogeneous

function. Resource processing generates a �ow of pollution

E (t) = � �Q (t) ; � > 0 (4)

where � is the exogenous and constant marginal emission intensity. This linear speci�cation is not

restrictive because the actual damage caused by pollution follows from combining (4) with (2),

which encompasses all the relevant cases � i.e., level damage, rate damage, convex or concave �

depending on the values assumed by the elasticity parameters � and '.

To make the paper�s analysis directly policy-relevant with minimal addition of structure, we

assume that the government taxes commodity sales at rate � to discourage commodity production.

Given the relation between resource processing and pollution discussed above, we can interpret �

as an environmental (i.e., emission) tax. For simplicity, we assume that � is constant over time and

that the government balances the budget in each instant, rebating to the household the revenues
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from the commodity tax via a lump-sum transfer. Formally, the government satis�es the budget

constraint S (t) = �pq (t)Q (t), where S is the transfer and pq is the price of the commodity.

2.2 Consumption and reproduction choices

We use the Peretto-Valente (2015) extension of the textbook formulation of fertility theory (see,

e.g., Barro and Sala-i-Martin, 2004, Ch. 9). The extension gives full control over expenditure per

child to the household and allows for a �quantity-quality�trade-o¤ with no additional complexity.

Speci�cally, a representative household maximizes the dynastic utility function

U0 =

Z 1

0
e��t lnu (cL (t) ; cB (t) ; L (t) ; B (t)) dt; � > 0 (5)

where � is the individual discount rate, cL is consumption of each adult, cB is consumption of each

child, L is the mass of adults and B is the mass of children. Instantaneous utility is

u (cL; cB; L;B) = c�Lc
1��
B

�
L�B1��

� 
; 0 < � < 1; 0 <  < 1: (6)

In this structure, agents obtain utility from the consumption and presence of adults and from the

consumption and presence of children with weights, respectively, � and 1 � �. The parameter  

regulates the trade-o¤ between the individual consumption of the members of each group (adults

and children) and the size of each group. Instantaneous utility can be written u (cL; cB; b; L) =

c�Lc
1��
B b (1��)L , in which case the birth rate, b, is the relevant choice variable and  is the gross

elasticity of dynastic utility with respect to the mass of adults.10

Household expenditure is pcC = pc (cLL+ cBB), where pc is the price of the �nal good. The

fertility choice is thus characterized by a trade-o¤ between the utility bene�t from reproduction

and the expenditure on the children�s consumption. The household supplies labor to all �rms and

earns royalties for resource use from the commodity producers. The household�s budget is

_A (t) = r (t)A (t) + w (t)L (t) + p! (t) 
 + S (t)� pc (t)C (t) ; (7)

where r is the rate of return on �nancial assets, A is asset holdings, w is the wage, and p! is the

per-unit resource royalty. The household chooses the time paths of cL, cB and B to maximize

(5) subject to (7) and (1). The household takes the path of the mortality rate as given because

private agents are unable to internalize the e¤ects of emissions on mortality. Nonetheless, the

household internalizes the intertemporal trade-o¤ caused by population growth: a larger mass of

10The restriction 0 <  < 1 implies that for each group the elasticity of utility with respect to individual consump-

tion exceeds the elasticity of utility with respect to the size of the group. Moreover, as we show in the Appendix, the

maximization probem of the household is well de�ned only if the condition  (1� �) < 1� � holds.
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adults expands the dynasty�s consumption possibilities via additional labor income but, at the same

time, reduces individual consumption possibilities via dilution e¤ects.

The solution to the household problem is described in the Appendix. The conditions for utility

maximization are the familiar Euler equation for consumption growth

_pc (t)

pc (t)
+
_C (t)

C (t)
= r (t)� � (8)

and the associated equation for the birth rate

_b (t)

b (t)
=

b (t)

(1� �) (1�  )

�
 +

w (t)L (t)� pc (t)C (t)
pc (t)C (t)

�
� �: (9)

Equation (8) determines the growth rate of household consumption expenditure according to the

traditional trade-o¤: the marginal bene�t of asset accumulation versus the marginal cost of sac-

ri�cing current consumption. Equation (9) says that the birth rate increases over time when the

anticipated rate of return from generating future adults exceeds the utility discount rate, �. The

term in square brackets shows the components of this rate of return: the gross elasticity of utility

to the mass of adults,  , plus their contribution to asset accumulation, given by the di¤erence

between labor income and consumption expenditure.

2.3 Producers: Final and Intermediate Sectors

Final sector. The �nal sector is competitive and produces with the technology

C (t) =

 Z N(t)

0
xi (t)

��1
� di

! �
��1

; � > 1 (10)

where C is output, N is the mass of intermediate goods, xi is the quantity of good i and � is the

elasticity of substitution between pairs of intermediate goods. Final producers maximize pro�ts

taking as given the mass of intermediate goods and the price, pxi , of each intermediate good. The

solution to this problem yields the demand schedule

pxi (t) =
pc (t)C (t)R N(t)

0 xi (t)
��1
� di

� xi (t)�
1
� (11)

for each intermediate good.

Intermediate sector: incumbents. Each intermediate good is supplied by a monopolist that

operates the production technology

xi (t) = zi (t)
� �Qi (t)
 (Lxi (t)� �)

1�
 ; 0 < � < 1; 0 < 
 < 1; (12)

where xi is output, Qi is the commodity input, Lxi is production labor and � > 0 is overhead

labor. The productivity term z�i is Hicks-neutral with respect to the rival inputs, labor and the
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commodity, and depends on the stock of �rm-speci�c knowledge zi. The �rm accumulates �rm-

speci�c knowledge according to the technology

_zi (t) = � �
"Z N(t)

0

1

N (t)
zj (t) dj

#
� Lzi (t) ; � > 0 (13)

where Lzi is R&D labor, � is an exogenous parameter and the term in bracket is the stock of public

knowledge that accumulates as a result of spillovers across �rms: when one �rm develops a new

idea, it also generates non-excludable knowledge that bene�ts the R&D of other �rms. The �rm�s

instantaneous pro�ts is

�i (t) = pxi (t)xi (t)� pq (t)Qi (t)� w (t)Lxi (t)� w (t)Lzi (t) ; (14)

where pq is the commodity price. The value of the �rm is

Vi (t) =

Z 1

t
�i (v) exp

�
�
Z v

t
(r (s) + �) ds

�
dv; � > 0 (15)

where � is the instantaneous probability of realization of an exit shock. (To avoid confusion with

the death rate of people, m, we refer to � as the obsolescence rate.) At time t the �rm chooses

the paths of fpxi; xi; Qi; Lxi; Lzig that maximize (15) subject to the demand schedule (11), the
production technology (12) and the R&D technology (13). The solution to this problem (see the

Appendix) yields the maximized value of the �rm given the time path of the mass of �rms, N (t).

Intermediate sector: entrants. Entrepreneurs hire labor to develop new intermediate goods

and set up �rms to serve the market. Denoting the typical entrant i without loss of generality and

denoting LNi the amount of labor required to start the new �rm, the cost of entry is wLNi = �pxixi,

where � > 0 is a parameter representing technological opportunity. This assumption captures the

notion that entry requires more e¤ort the larger the anticipated volume of production. The entrant

anticipates that once in the market the new �rm solves an intertemporal problem identical to that

of the generic incumbent and therefore that the value of the new �rm is the maximized value Vi (t)

de�ned in (15). Free entry then requires

Vi (t) = �pxi (t)xi (t) = w (t)LNi (t) (16)

for each entrant.

2.4 Primary sector

A representative competitive �rm combines the resource with labor under constant returns to scale.

The �rm maximizes pro�t

�q = pq (t)Q (t) (1� �)� p! (t) 
� w (t)LQ (t) (17)
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subject to the technology (3) taking all prices and the tax rate as given. To simplify the exposition,

we work with the CES speci�cation of (3)

Q (t) = F (
; LQ (t)) =
h
� � 


��1
� + (1� �) � LQ (t)

��1
�

i �
��1

; � � 0; � 2 (0; 1) ; (18)

where � is the elasticity of input substitution and � governs the input shares. The resource and

labor are complements if � < 1 and substitutes if � > 1. Letting � ! 1 we obtain the Cobb-Douglas

case Q = 
�L1��Q . Let �(w; p!) � ��p1��! +(1� �)� w1�� denote the unit cost function associated
to the technology (18). The pro�t-maximizing decisions of the commodity producer yield

pq =
�(w; p!)

1� � (19)

and the resource cost-share function (see the Appendix)

�(t) � d ln� (w (t) ; p! (t))
d ln p! (t)

=
p! (t) 


p! (t) 
 + w (t)LQ (t)
=

��p! (t)
1��

��p! (t)
1�� + (1� �)� w (t)1��

: (20)

The resource cost share � is the ratio between royalties paid by �rms to resource owners and the

�rm�s total expenditures on inputs. In the Cobb-Douglas case, � ! 1, the cost-share is constant,

�! �. In the other cases, a higher resource price reduces (increases) the resource cost-share when

primary inputs are substitutes (complements) because strict substitutability (complementarity)

makes the primary sector�s demand for the resource elastic (inelastic). These cost-share e¤ects

determine the equilibrium response of household income and consumption expenditure to changes

in the relative scarcity of the resource, as we show below.

3 Equilibrium and mortality rates

This section summarizes the key interactions taking place in equilibrium between demographic and

economic variables. Expenditures per capita re�ect the response of income to changes in resource

scarcity, while mortality responds to changes in the population-resource ratio according to precise

relationship between the equilibrium mortality rate, emission damages in per capit terms, and labor

reallocation e¤ects caused by the primary sector�s technology.

3.1 Output and input markets

The equilibrium of the intermediate sector is symmetric: as shown in the Appendix, at each

instant t each monopolist charges the same price pxi = px and produces the same quantity xi = x.

Combining this result with the �nal producer�s behavior, we obtain:

px (t)x (t) = pc (t)C (t)
1

N (t)
; (21)

C (t) = N (t)
�

��1 x (t) : (22)
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Equation (21) says that intermediate sales, pxx, equal consumption expenditure, pcC, and that

each monopolist captures a share, 1=N , of the market. Equation (22) says that �nal output, C, is

equal to the quantity used of each intermediate good, x, times the love-of-variety e¤ect, N
�

��1 .

Next, we have several market-clearing conditions. For clarity, we use the subscript i to denote

�rm-level variables even though the equilibrium is symmetric. The commodity market clears when

supply equals demand by intermediate �rms, Q = NQi. The labor market clears when L =

LX + LZ + LN + LQ, where L is labor supply, LX + LZ = N (Lxi + Lzi) is labor demand by

intermediate producers (for production and in-house R&D), LN is labor demand by entrants and

LQ is labor demand by the primary sector. Finally, the �nancial market clears when the value of

the household�s portfolio equals the value of the securities issued by �rms, A = NVi. The free-entry

condition (16) then yields

A (t) = �pc (t)C (t) : (23)

Two further conditions linking expenditure on inputs across sectors are especially relevant for our

analysis. Combining the pro�t-maximizing conditions of commodity and intermediate producers,

respectively, we obtain (see the Appendix):

pq (t)Q (t) = 

�� 1
�

� pc (t)C (t) ; (24)

p! (t) 
 = � (t) � pq (t)Q (t) (1� �) : (25)

Equation (24) says that expenditure on the commodity is a constant fraction 
 (�� 1) =� of ex-
penditure on �nal output. Equation (25) says that commodity producers spend on the resource a

fraction � of the after-tax value of their sales, where � is the cost-share function de�ned in (20).

In the remainder of the analysis we normalize the wage w (t) � 1. This choice of numeraire

implies that expenditure on �nal output, pcC, is an index of the value added of labor services.11

Also, we let y � pcC=L denote consumption expenditure per capita and ` � L=
 denote the ratio

of labor supply (population) to resource supply, henceforth input ratio for short. High ` represents

relative abundance of labor or, equivalently, relative scarcity of the resource.

3.2 Expenditure and resource use

Two fundamental relationships between consumption expenditure and resource income characterize

the intratemporal equilibrium of the economy. The �rst follows from combining the household�s

11With the wage set at w = 1, pc is the price of the �nal good in units of labor. Therefore, the real wage, w=pc,

grows when _pc=pc < 0 and a long-run equilibrium featuring constant expenditure pcC and growth of the physical

variable C is characterized by _C=C = � _pc=pc, that is, real growth comes from the rate of decline of the relative price

of the �nal good.
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budget constraint (7) and Euler equation for consumption growth (8) with the equilibrium condition

of the assets market (23). It reads

y (t) =
1 + p!(t)

`(t)

1� ��� �
 ��1�
(26)

and says that consumption expenditure per capita, y, is a constant fraction of income per capita, the

sum of the wage and resource income per capita, p!=` = p!
=L. The presence of the commodity

tax at the denominator is due to the balanced-budget assumption and captures the positive e¤ect

of public transfers on household expenditure. The second relationship follows from (24) and (25).

It reads
p! (t)

` (t)
=

�
(1� �) ��(p! (t)) � 


�� 1
�

�
� y (t) (27)

and says that resource income per capita is a fraction of consumption expenditure per capita. We

call this fraction, the term in square brackets, the royalty share.

The royalty share depends on the technological parameters of all production sectors and on the

commodity tax. The tax reduces the royalty share despite the lump-sum rebate because it distorts

the use of the commodity in primary production and thus generates a traditional deadweight

loss. Note that with w = 1 the resource cost-share de�ned in (20), � � �(p!), is a function

of the resource price only. Therefore, equations (26) and (27) form a system of two equations in

three variables (y; p!; `). To characterize the interaction of the resource market equilibrium with

household consumption-saving decisions, we solve for the resource price p! and expenditure per

capita y as functions of the input ratio `.

Proposition 1 Given the input ratio ` (t) > 0, at each instant t 2 [0;1) the solution of equations
(26)-(27) yields a unique equilibrium pair

fp�! (` (t)) ; y� (` (t))g

with the following properties. The resource price is monotonically increasing in the input ratio, i.e.,

dp�! (`) =d` > 0 for all ` > 0. The e¤ect of the input ratio on expenditure per capita, instead, depends

on the elasticity of substitution between inputs in commodity production. In terms of elasticity:

d ln y� (`)
d ln `

= (1� �) 
 �� 1
�

`y� (`) � d�(p! (`))
d`

;

where

d�(p! (`))
d`

=

8>><>>:
< 0 if � > 1

= 0 if � = 1

> 0 if � < 1

:
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Using equation (19) the equilibrium commodity price is

p�q (`) �
1

1� ��(1; p
�
! (`)) with

dp�q (`)

d`
=

8>><>>:
< 0 if � > 1

= 0 if � = 1

> 0 if � < 1

:

Proof: see Appendix.

The e¤ects of the input ratio, `, on expenditure per capita, y, are a direct consequence of the

cost-share e¤ects discussed earlier. When ` rises, the resource becomes relatively more scarce and

its price, p!, rises. When labor and the resource are substitutes (complements), an increase in

the resource price reduces (increases) the resource cost share in primary production and thereby

reduces (increases) resource royalties per capita.12 The important insight of Proposition 1 is thus

that the cost-share e¤ects originating in the primary sector push expenditure per capita in the same

direction as resource income per capita. Under substitutability, � > 1, we have @y� (`) =@` < 0

because more abundant labor results in lower p!=` via the dominant quantity channel (` at the

denominator). With � < 1, instead, we have @y� (`) =@` > 0 because the price channel at the

numerator of p!=` dominates as the resource price falls more than one-for-one with `. In the

Cobb-Douglas case, changes in the input ratio leave resource income per capita and expenditure

per capita unchanged. We will exploit these results in section 4 to characterize the interactions

between demography and resource scarcity.

3.3 The equilibrium mortality rate

Substituting the emission function (4) in the mortality function (2) and dividing by population we

obtain

m (t) = �m+ �E (t)� L (t)'�1 = �m+ ���
Q (t)�

L (t)1�'
; (28)

which shows that the mortality rate, m � M=L, responds to changes in L depending on the

combined e¤ects of demography on the production possibilities of the primary sector �via changes

in labor supply and resource scarcity � and on how population size a¤ects damage per adult.

We label the �rst channel as the primary-employment e¤ect : an increase in population increases

total labor supply and thereby primary employment, LQ, which raises commodity output Q and

the associated emissions. The second channel is the damage-dilution e¤ect represented by the

denominator in the last term of (28): given primary production, Q, an increase in population,

L, reduces the emission damage in per capita terms, � (�Q)� =L1�'. Dilution e¤ects are maximal

when ' = 0 and vanish when ' = 1.
12Expression (20) yields @�(p!) =@p! < 0 if � > 1, @�(p!) =@p! = 0 if � = 1, and @�(p!) =@p! > 0 if � < 1.
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The relative strength of primary-employment and dilution e¤ects depends on the primary sec-

tor�s technology and on the parameters of the emission function. Given a one-percent increase in

population, the primary-employment e¤ect raises total emissions by

"E �
d�Q
dL

� L
�Q

=

�
@F
@LQ

� LQF

�
�
�
dLQ
dL

� L
LQ

�
| {z }

primary-employment e¤ect

(29)

percentage points, where "E is the static elasticity of primary production to variations in total labor

supply. At the same time, a one-percent increase in population reduces the per capita emission

damage by 1� ' percentage points. Hence, totally di¤erentiating (28) with respect to population

yields
d (m� �m)

dL
� L

(m� �m)
= � � "E � (1� ') : (30)

Expression (30) summarizes the e¤ects of increased population on the excess deaths per adult

caused by deadly spillovers. The term � � "E measures the impact of the primary-employment

e¤ect on the mortality rate, while (1� ') represents the impact of damage dilution. Whether the
equilibrium mortality rate increases or decreases with population thus depends on which of the two

e¤ects dominates.

Result (30) implies a clear-cut relationship between mortality and the labor-resource ratio.

Since ` = L=
 grows at the same rate as population, the same gap of critical elasticities determines

the response of the mortality rate to a rise in the labor-resource ratio. Time-di¤erentiation of (28)

yields
_m (t)

m (t)� �m
= [�"E � (1� ')] �

_L (t)

L (t)
= [�"E � (1� ')] �

_̀ (t)

` (t)
: (31)

The next Proposition provides a full characterization of the response of the equilibrium mortality

rate to population growth and emphasizes the crucial role played by the primary sector�s technol-

ogy.13

Proposition 2 The equilibrium mortality rate is a function of the input ratio, i.e., m = m� (`).

In the Cobb-Douglas case � ! 1 we have

m = m� (`) � �m+ ~� � `�(1��)�(1�'); (32)

where

~� � �

24� (1� �) (1� �) 
 ��1�
1� ��� [�
 + (1� �) �
] ��1�

!1��35�
��(1�') > 0
13Proposition 2 characterizes the equilibrium relations among endogenous variables: to avoid confusion, we drop

the time argument unless necessary.
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is constant over time. Under substitutability or complementarity, � 7 1, we have

m = m� (`) � �m+ �� ��(`)
�

1��� � `�(1�'); (33)

where �� � �����
�

��1
��(1�') > 0 is constant over time and �(`) � �(p�! (`)) is the equilibrium

cost share of resource use with the property:

� > 1 ! d�(`)
d` < 0; lim`!0+ �(`) = 1; lim`!1�(`) = 0;

� < 1 ! d�(`)
d` > 0; lim`!0+ �(`) = 0; lim`!1�(`) = 1:

(34)

Proof: see Appendix.

The equilibrium mortality rates de�ned in Proposition 2 are graphically illustrated in Figure 1,

which includes all the subcases generated by the technological characteristics of the primary sector.

In general, the mortality response to population size is ambiguos and often non-monotonic. In the

Cobb-Douglas case, the equilibrium mortality rate responds to ` monotonically, but in di¤erent

directions depending on the underlying parameters. Under substitutability and complementarity,

m� (`) can be non-monotonous because it depends on the resource cost-share, �(`) � �(p�! (`)),

which a¤ects the relative strength of primary-employment and dilution e¤ects. We prove in Appen-

dix all the subcases appearing in Figure 1. In this subsection, we emphasize the intuition behind

the results for the cases of Cobb-Douglas and strict substitutability, which are particularly relevant

for our results.

Cobb-Douglas. Letting � ! 1, the employment share of the primary sector becomes time-

invariant, and the critical elasticity (29) reduces to the constant "E = 1 � �. Therefore, from

(31), the response of the mortality rate to population obeys a simple knife-edge condition. When

� (1� �) < 1�', the damage-diluting e¤ect dominates: population growth raises the mass of deaths
via higher emissions, but the mortality rate declines because the mass of adults grows faster than

the mass of deaths. When � (1� �) > 1 � ', instead, the primary-employment e¤ect dominates:

population growth raises the mortality rate because higher emissions cause a death toll that more

than o¤sets per-adult dilution.
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Substitutability. When � > 1, the primary-employment e¤ect is particularly weak at low popu-

lation levels, and particularly strong at high population levels (see Appendix):

� > 1 ! lim
`!0+

"E = 0 and lim
`!1

"E = 1. (35)

To grasp the intuition behind (35), assume a persistent decline in population, which reduces total

labor supply as well as employment in the primary sector. Given � > 1, the primary sector

substitutes labor with the primary resource at an increasing rate, so that the magnitude of the

primary-employment e¤ect on primary output per worker and on the associated emission damage
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becomes smaller and smaller: letting ` ! 0, the elasticity of commodity output to employment

"E approaches zero. The same mechanism in reverse explains why the primary-employment e¤ect

becomes stronger when the population-resource ratio increases. Since the intensity of the primary-

employment e¤ect depends on `, the mortality response to population growth is generally ambiguous

and possibly non-monotonic. In particular, as Figure 1 shows, the equilibrium mortality rate

explodes at low population levels for any 0 6 ' < 1, as we establish in the following

Lemma 3 Assume strict substitutability, � > 1, with 0 6 ' < 1. For any value of the damage

elasticity, �, the mortality rate approaches in�nity as the input ratio approaches zero:

� > 1 ! lim
`!0+

m� (`) = �m+ �� � `�(1�') = +1: (36)

Proof: see Appendix.

The intuition for result (36) follows from the fact that the elasticity of commodity output

to employment, "E , approaches zero as ` ! 0. When population declines, primary producers

substitute labor with resource use at increasing rates. This implies that while primary production

declines, emissions per worker increase, and the resulting per capita damage �the excess deaths

per adult caused by deadly spillovers � eventually explodes at very low levels of population. In

other words, under substitutability, population decline weakens the primary-employment e¤ect so

much that, below some critical level of population, the dilution e¤ect necessarily dominates.

Lemma 3 implies that, under the assumed conditions, countries with low population and/or

abundant primary resources may exhibit very high mortality rates. What happens at high levels

of population, instead, depends on parameter values. Since "E approaches unity as ` ! 1, we
can observe all the di¤erent cases illustrated in Figure 1. If � 6 1 � ', the mortality rate is L-

shaped �that is, m� (`) is strictly declining for any level of ` �because the primary-employment

e¤ects remains waker than dilution at all population levels. If � > 1 � ', the mortality rate

is U-shaped � that is, m� (`) reaches a minimum and then increases with ` �because relatively

high levels of population, combined with a high elasticity of emission damage, make the �weigthed�

primary-employment e¤ect, �"E , strong enough to dominate dilution.14

The generally ambiguous, possibly non-monotonic response of the mortality rate to population

deserves attention. The results reported in Figure 1 � especially, those arising under weak and

14Figure 1 shows that for any value of � R 1, there are subcases in which m� (`) is a declining function, at least

locally. Decreasing mortality rates become less likely under complementarity, � < 1, because the substitution e¤ects

underlying result (35) are reversed: with � < 1, the primary-employment e¤ect tends to be stronger at low levels of

population, so that dilution e¤ects are dominated in a wider range of subcases.
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strong substitutability, � > 1 �play a fundamental role in determining the joint dynamics of net
fertility, total population and per capita expenditures, as we show below.

4 Population dynamics

The centerpiece of the model is the endogenous mortality rate. This section characterizes the

equilibrium dynamics of fertility, mortality and population in a system that implicitly determines

the path of per capita expenditures in the short as well as in the long run.

4.1 Demography-scarcity interactions

Since the resource endowment 
 is �xed, the input ratio, ` = L=
, grows over time at the same

rate as population, i.e.,
_̀ (t)

` (t)
= b (t)�m� (` (t)) ; (37)

where m� (`) is the equilibrium mortality rate characterized as a function of the input ratio in

Proposition 2. The Euler equation for the birth rate (9) yields

_b (t)

b (t)
=

b (t)

(1� �) (1�  )

�
1� (1�  ) � y� (` (t))

y� (` (t))

�
� �; (38)

where y� (`) is expenditure per capita characterized as a function of the input ratio in Proposition 1.

Equations (37) and (38) form a two-by-two dynamic system that fully determines the interactions

between fertility, resource scarcity and mortality along the equilibrium path. Since the system is

capable of generating multiple steady states, we will distinguish among stable and unstable cases

by exploiting the following de�nition.

De�nition 4 A regular steady state is a point (`ss; bss) in (`; b) space such that the values (`ss; bss)

are positive and �nite and satisfy _b = _̀ = 0. Moreover, the point exhibits (at least local) stability,

i.e., there is a thick set of initial conditions ` (0) > 0 starting from which the equilibrium trajectory

(` (t) ; b (t)) converges to (`ss; bss) and population converges to the �nite value Lss = `ss
 > 0.

Our notion of regular steady state is conventional in the sense that, being a dynamically stable

end-point, it represents the long-run equilibrium of the economy (which will be achieved provided

that certain initial conditions are met). The distinctive property is that (`ss; bss) implies a constant

endogenous population level in the lonf run, Lss, but per capita incomes may still grow forever via

innovations: if a regular steady state exists and the economy converges to it, population does not

grow exponentially in the long run as it would, instead, in traditional models of balanced growth.
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The existence of a regular steady state is not guaranteed under all parametrizations. In this

respect, our key �nding is that pollution-induced mortality bears not only quantitative but also

qualitative consequences. On the one hand, if a regular steady state exists independently of pollu-

tion, deadly spillovers modify its position and thereby the long-run population level (quantitative

e¤ects). On the other hand, deadly spillovers can create steady states that would not oterhwise ex-

ist, and such additional steady states may be regular or not (qualitative e¤ects). To highlight these

�ndings, we �rst summarize the model predictions in the special case without pollution externalities

(subsection 4.2) and then analyze the complete model by extension (subsection 4.3).

4.2 Special case with exogenous mortality

Setting � = 0 in (2), we obtain the benchmark model with exogenous mortality and no pollution

spillovers (Peretto and Valente, 2015). In this case, the steady-state loci of (37)-(38) read

_̀ = 0! b = �m;

_b = 0! b =
(1� �) (1�  ) �
y� (`)�1 � (1�  )

;

and the model delivers the following results (see Appendix for details and proofs). First, when the

primary sector�s technology is Cobb-Douglas, � = 1, population grows (or declines) at a constant

rate forever since there is no regular steady state. More precisely, there is no steady state at

all because the steady-state loci are horizontal straight lines that, in general, do not coincide: in

Figure 2, phase diagram (a) shows the case in which the equilibrium birth rate exceeds �m, implying

a constant and positive net fertility rate.

Second, under strict substitutability, � > 1, there exists a regular steady state (`ss; bss). Phase

diagram (e) in Figure 2 shows that the steady state is a saddle point. If the economy starts with

` (0) < `ss, the equilibrium path features positive population growth with a declining fertility rate

until b reaches �m, which stabilizes the population level. The reason for these dynamics is that, with

� > 1, expenditure per capita declines with population because the rising resource scarcity yields

lower resource income per capita. This mechanism produces the negative slope of the _b = 0 locus,

which is the key to the stability of the process. In fact, in the opposite case of strict complementarity,

the income response to population is reversed and the steady state (`ss; bss) becomes unstable: with

� < 1, the economy would follow diverging paths leading to either population explosion or human

extinction, depending on the initial level of the population-resource ratio (see Appendix for details).

The main takeaway of this subsection is that the cases with � > 1 deserve special emphasis.

The Cobb-Douglas case is interesting because the prediction of exponential population growth

rests on a knife-edge hypothesis about technology: with � = 1, steady states do not seem to exist,
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but introducing deadly spillovers can create them. The case of strict substitutability, � > 1, is

even more relevant since it generates a plausible path of economic development without deadly

spillovers: assuming ` (0) < `ss, population converges to a �nite level in the long run because

resources per worker and births per adult shrink over time. This is consistent with the well-known

fertility decline observed throughout the industrialized world, and with the widely shared idea that

population growth outstrips the natural resource base. Introducing deadly spillovers in this context

is thus highly signi�cant. We will thus focus on the parametrizations � > 1 in the remainder of the
analysis.15

4.3 Dynamics with endogenous mortality

The analysis of the previous subsection allows us to study the dynamic system (37)-(38) with

endogenous mortality in a straightforward manner. The _b = 0 locus is the same, the _̀ = 0 locus,

instead, reads

_̀ = 0 ! b = m� (`) �

8<: �m+ ~� � `�(1��)�(1�') if � = 1;

�m+ �� ��(`)
�

1��� � `�(1�') if � ? 1:
(39)

Expression (39) shows that the shape of the _̀ = 0 locus matches the shape of the equilibrium

mortality rate de�ned in Proposition 2. Figure 2 depicts the resulting phase diagrams for the

Cobb-Douglas case and for strict substitutability, and allows for an immediate comparison with the

baseline model without deadly spillovers. Both cases deliver novel results.

Cobb-Douglas. With � = 1, the gross fertility rate is constant, b (t) = bss in each t, but deadly

spillovers a¤ect net fertility via the mortality rate and create a steady state that would not exist

otherwise. The steady state (`ss; bss) can be stable or unstable depending on the relative strength

of emission intensity, labor share in primary production, and damage dilution:

Proposition 5 (Cobb-Douglas case: stability or mortality traps) For � = 1 pollution spillovers

create an interior steady state (`ss; bss), which may be stable or unstable. Assuming bss > �m (i.e.,

population would grow forever in the absence of deadly spillovers) and 0 6 ' < 1, the steady state:

creates a mortality trap for � (1� �) < 1�'; is a regular steady state for � (1� �) > 1�'. Proof:
see Appendix.

Figure 2, graph (b), shows the case in which deadly spillovers create mortality traps. Since

� (1� �) < 1�', the _̀ = 0 locus is decreasing in the phase plane, and the steady state denoted by
15The analysis of the dynamic system with deadly spillovers and strict complementarity, � < 1, is reported in the

Appendix for completeness but omitted from the main text to save space.
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(`00ss; bss) is unstable. The input ratio `
00
ss thus represents an extinction threshold. If labor is initially

abundant relative to the resource, `0 > `00ss, the economy experiences sustained population growth

whereas in the opposite situation, `0 < `00ss, the economy falls into a mortality trap characterized by

ever-growing mortality rates. The intuition follows our previous discussion on primary-employment

and dilution e¤ects (subsection 3.3): a low damage elasticity and/or a low labor share in primary

production imply that the mortality rate declines with population size because damage dilution

e¤ects dominate. If population is initially large enough to induce positive net fertility at time

zero, population will keep on growing everafter because enhanced damage dilution will drive the

mortality rate further down. If, instead, population is initially low (or equivalently, the resource is

extremely abundant relative to labor supply), net fertility is initially negative and the society falls

in a mortality trap with ever-declining population and ever-increasing mortality rates. Figure 2,

graphs (c) and (d) consider other parametrizations where � (1� �) > 1�': high emission intensity
and/or a high labor share in primary production make the mortality rate an increasing function of

`. In these cases, deadly spillovers create a stable steady state (`0ss; bss) representing the long-run

equilibrium of the economy. Starting from `0 > `0ss, population increases but its growth rate declines

because, as ` grows, the primary-employment e¤ect of pollution emissions raise the mortality rate

until net fertility becomes zero. Hence, under Cobb-Douglas technology, deadly spillovers either

create mortality traps or stabilize the population level in the long run.

Substitutability. The case � > 1 delivers even more interesting results. Recalling Lemma

3, substitutability makes mortality rates explode at low population levels in most cases. Phase

diagrams (f) and (g) in Figure 2 capture this mechanism: deadly spillovers shift the _̀ = 0 locus up

and bend it upwards as ` approaches zero. If spillovers are extremely strong, the mortality e¤ect

of pollution may even eliminate the regular steady state.16 But in the more general case where the

regular steady state exists, the mortality e¤ect of pollution at low levels of ` creates an additional,

unstable steady state that yields a mortality trap.

Proposition 6 (Substitutability: stability and mortality traps) Assume � > 1 and 0 6 ' < 1.

Provided there exists a regular steady state (`0ss; b
0
ss), pollution spillovers create a second, unstable

steady state (`00ss; b
00
ss) with b

00
ss > b0ss and `

00
ss < `0ss. The interval (0; `

00
ss) is a mortality trap induced

by deadly pollution spillovers. If ` (0) > `00ss, the economy converges to the regular steady state.

If ` (0) < `00ss, the equilibrium path exhibits limt!1 ` (t) = 0 due to limt!1 L (t) = 0. Proof: see

Appendix.

16The case with no steady states looks like Figure 2, graphs (f)-(g), but with the _̀ = 0 locus so high that there is

no intersection with the _b = 0 locus.
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Proposition 6 establishes that strict substitutability typically produces two steady states because

deadly spillovers create a mortality trap, a portion (0; `00ss) of state space where the implosive
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dynamics of the population prevail. The unstable steady state (`00ss; b
00
ss) acts as an extinction

threshold: if population is initially too low relative to the resource endowment, ` (0) < `00ss, the

economy does not converge to the regular steady state (`0ss; b
0
ss) and follows, instead, an equilibrium

path leading to zero population in the long run. Notably, such asymptotic population implosion

does not result from falling fertility. Rather, starting from ` (0) < `00ss, the transition exhibits

increasing fertility as well as increasing mortality, and the mortality e¤ect prevails. The reason

is that the gross fertility rate is constrained by households private wealth, whereas the mortality

rate produced by emissions is unbounded: as population shrinks, growing emission damages per

capita lead to exploding mortality rates and households may only raise the reproduction rate up

to bmax, the highest birth rate consistent with their budget constraint. The economy escapes the

mortality trap and converges to the regular steady state only if the initial population-resource ratio

is su¢ ciently high, ` (0) > `00ss.

Besides their qualitative consequences, we should not overlook the quantitative e¤ects of deadly

spillovers. Even when pollution-induced mortality does not prevent the economy from reaching the

regular steady state, deadly spillovers reduce the population capacity of the society by modifying

the position of the regular steady state (`0ss; b
0
ss). This conclusion is self-evident in Figure 2: with

respect to the case with no spillovers, diagram (e), deadly spillovers reduce `0ss and therefore restrict

potential population in the long run, in all subcases, even when no mortality traps arise like

in diagram (h). The impact of endogenous mortality on population capacity a¤ects the whole

equilibrium path of the economy and bears substantial welfare consequences through multiple

channels, including �rms�incentives to innovate.

Our analysis in this section suggests two further remarks. First, deadly spillovers create mor-

tality traps for any damage elasticity: even with � < 1, the mortality rate can explode at low

levels of the population-resource ratio. The existence of the mortality trap thus depends on the

technological properties of the primary sector, not from pessimistic hypotheses about the curvature

of the damage function. This result has relevant consequences for applied analysis, in particular

the empirical assessment of the harmful e¤ects of pollution externalities, which we discuss in the

concluding section of the paper.

Second, Proposition 6 delivers speci�c insights for less populated, resource-rich economies. Di-

agrams (f)-(g) in Figure 2 show that economies that are closer to the mortality trap feature a low

input ratio and a high birth rate. Given resource abundance, economies with a small population

tend to be ceteris paribus closer to the mortality trap even though they may exhibit higher birth

rates. By the same token, exogenous shocks that reduce population push the economy towards the

trap via reductions in the input ratio. A similar, though not identical mechanism applies to resource
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abundance and exogenous shocks expanding the endowment (e.g., discoveries of new stocks of nat-

ural resources): given population, a larger resource base can push the economy towards the trap

not only by reducing the current population-resource ratio, but also by expanding the mortality

trap region (0; `00ss). We discuss these and related points in the next section.

5 Growth, emission taxes and resource booms

In this section we derive the equilibrium paths of consumption, welfare, output growth and inno-

vation rates. We then study the e¤ects of emission taxes, subsidies to the primary sector, resource

booms, and discuss the framework�s implications for empirical analysis and policymaking.

5.1 Consumption, growth and welfare

The model�s measure of gross domestic product is real consumption, C. Evaluating equations (22)

and (12) at the symmetric equilibrium yields

C (t) =
L (t) y (t)

pc (t)
= L (t) y (t) � z (t)�N (t)

1
��1

(1� 
)�(1�
) 
�
 �
��1pq (t)



: (40)

This expression says that real consumption equals consumption expenditure divided by the price

index of intermediate goods. The price index, in turn, depends on the endogenous components of

technology, product variety and �rm-speci�c knowledge, and on the relative price of the commodity.

For clarity, we separate the role of endogenous technology from that of the vertical production

structure. In the last term of (40), the numerator is a reduced-form representation of total factor

productivity (TFP), which we henceforth denote as T � z�N
1
��1 . The denominator is an index of

how markup-pricing and the cost of inputs drives the price of intermediates.

Di¤erentiating (40) with respect to time, we obtain

g (t) �
_C (t)

C (t)
=
_T (t)

T (t)
+

"
_L (t)

L (t)
+
_y (t)

y (t)

#
� 
 _pq (t)

pq (t)
: (41)

The �rst term is the growth rate of TFP, which in turn equals a weighted sum of the rates of vertical

innovation, _z=z, and horizontal innovation, _N=N . The second term is expenditure growth. The

third term uses the dynamics of the commodity price as a summary statistic for the reallocation of

inputs across activities in the vertical chain of production that drives the changes in the economy�s

structure of relative prices. Recalling Proposition 1, the equilibrium commodity price is p�q (`) =
1
1���(1; p

�
! (`)) and its growth rate over time thus reads

_pq (t)

pq (t)
=
d ln� (w; p�! (` (t)))
d ln p�! (` (t))

_̀ (t)

` (t)
= � (t)

_̀ (t)

` (t)
; (42)

25



where � is the resource-cost share de�ned in (20). Therefore, using (42) and the results in Propo-

sition 1, we can write the growth rate of real consumption in compact form as

g (t) =
_T (t)

T (t)
+

�
1 +

d ln y� (` (t))
d ln ` (t)

� 
�(t)
� _̀ (t)
` (t)

: (43)

The term in square brackets represents transitional e¤ects that operate only when ` changes over

time: when the input ratio becomes stationary, _̀ = 0, the only source of economic growth is

innovation. More precisely, if the economy converges to a regular steady state (`ss; bss), the only

source of economic growth is vertical innovation: �rm-speci�c knowledge grows at a constant rate

while the mass of �rms is constant, N (t) = Nss, and proportional to the constant population,

L (t) = Lss = `ss
. The mechanism is that vertical and horizontal innovation exhibit a negative

co-movement during the transition: entry of new �rms reduces the pro�tability of �rm-speci�c

knowledge investment through market fragmentation while investment in �rm-speci�c knowledge

slows down entry by diverting labor away from horizontal R&D. As we show in the Appendix, these

co-movements eventually bring the economy to a steady state where the mass of �rms is constant

and the engine of growth is �rm-speci�c knowledge accumulation.

Proposition 7 Assume
� (�� 1) (��� �� �)

1� � (�� 1)� �� (�+ �) > �+ �

and let the economy converge to the steady state (`ss; bss). Then, the mass of �rms is

Nss =
1� � (�� 1)� �� (�+ �)

��� �� � � �
�
� y� (`ss) � Lss > 0; (44)

�rm-speci�c knowledge grows at rate�
_z

z

�
ss

=
� (�� 1) (��� �� �)

1� � (�� 1)� �� (�+ �) � �� � > 0; (45)

and �nal output grows at rate

gss = �

�
_z

z

�
ss

:

Proof: see Appendix.

It is worth noting that the long-run rate of knowledge accumulation, and thus long-run economic

growth, is independent of the steady-state values of population, Lss, and expenditure per capita,

y� (`ss). The reason is that in this class of models the coexistence of vertical and horizontal

innovations sterilizes the strong scale e¤ect (Peretto, 1998). An important implication of this

mechanism is that the commodity tax as well does not a¤ect long-run growth: changes in � have

transitional e¤ects because they induce net entry or net exit of intermediate �rms but leave gss
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una¤ected. This does not mean that the tax has negligible e¤ects. To the contrary, a change in �

initiates a transition with �rst-order welfare e¤ects that we discuss in the next subsection.

The model�s key measure of living standards is individual utility in equation (6). Using the

utility-maximizing conditions for the allocation of consumption across family members and the

equilibrium level of consumption (40), instantaneous utility reads (see the Appendix)

lnu = ��+ lnT + ln y� (`)� 
 ln p�q (`)| {z }
Economic channel = lnC

+ lnL b�(1� )(1��)| {z }
Demographic channel

; (46)

where �� � ln��

 (1� �)1�� (1� 
)1�
 ��1
� . Equation (46) allows us to distinguish the di¤erent

components of instantaneous utility. The term labelled as �economic channel�equals the logarithm

of real consumption and shows how the level of economic activity, and its underlying components,

a¤ects welfare at each point in time. The �demographic channel�summarizes the overall impact of

population levels and birth rates on utility: it originates in preferences and combines direct e¤ects,

i.e., the household�s taste for the mass of adults and children, and the indirect e¤ects of family

composition on the allocation of consumption among adults and children. Di¤erentiating (46) with

respect to time yields
_u (t)

u (t)
= g (t) +  

_L (t)

L (t)
� (1�  ) (1� �)

_b (t)

b (t)
; (47)

where g is the consumption growth rate computed in (43). Equation (47) shows the distinct contri-

bution of economic and demographic channels to the dynamics of utility. Notably, and intuitively,

it says that family consumption, C, is a su¢ cient statistic for the economic channels. The model�s

dynamics, worked out in detail in the Appendix and brie�y discussed above, show that in response

to a permanent expansion of the market for intermediate goods �due to, e.g., growing population

and/or consumption expenditure per capita �both �rm-speci�c knowledge growth and net entry

accelerate until they mean-revert to ( _z=z)ss and Nss. Changes in fundamentals will therefore mod-

ify the dynamics of (`; b) and a¤ect welfare through the underlying components of utility, namely,

the consumption expenditure channel, ln y� (`), the commodity price channel, �
 ln
�
p�q (`)

�
, and

the two demographic channels, lnL b�(1� )(1��). We provide a concrete example in the next sub-

section by showing the impact of the commodity tax on the economic and demographic channels

a¤ecting utility.

5.2 Commodity tax

The most interesting scenarios to study the e¤ects of tax changes are the parametrizations in

which strict substitutability and deadly spillovers create a regular steady state a mortality trap
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(Proposition 6). The following Proposition provides the comparative statics e¤ects of increasing �

on both the regular steady state, `0ss, and the size of the mortality trap, (0; `
00
ss).

Proposition 8 (Commodity Tax) Assume � > 1 and 0 6 ' < 1. Holding constant the input ratio,

�̀, an increase in the commodity tax rate, � , increases expenditure per capita, reduces the resource

price and reduces the mortality rate:

dy�
�
�̀
�

d�
> 0,

dp�!
�
�̀
�

d�
< 0,

dp�q
�
�̀
�

d�
> 0,

dm� ��̀�
d�

< 0. (48)

Hence, the increase in � shifts the _̀ = 0 locus down and the _b = 0 locus up, yielding a higher regular-

steady-state input ratio, d`0ss=d� > 0, as well as a lower mortality-trap threshold, d`00ss=d� < 0.

Therefore, the higher commodity tax rate expands the economy�s carrying capacity of people, L0ss,

and shrinks the mortality trap, (0; `00ss). Proof: see Appendix.

The commodity tax a¤ects the equilibrium path via two channels. First, an increase in �

reduces the demand for the resource, triggering a reduction in the resource price, dp�! (`) =d� < 0,

and an increase in expenditure per capita, dy� (`) =d� > 0. Second, given substitutability, the

lower resource price raises the resource cost-share and thus drives down the mortality rate via the

primary-employment e¤ect, dm� (`) =d� > 0. Figure 3, diagram (a), illustrates the steady-state

e¤ects assuming an L-shaped mortality rate for simplicity and without loss of generality. The

increase in the expenditure schedule y� (`) yields an upward shift of the _b = 0 locus while the

lower mortality rate schedule, m� (`), shifts the _̀ = 0 locus down. These shifts yield a widening

gap between the two steady states, with a higher regular-steady-state input ratio, `0ss, and a lower

mortality-trap threshold, `00ss.

Considering the welfare e¤ects of tax changes, suppose that the economy is initially in the

regular steady state so that the unexpected increase in � shifts the long-run equilibrium to a higher

input-ratio level `0ss. The resulting dynamics are: (i) population L and the input ratio ` increase

over time, converging to higher steady-state levels from below; (ii) expenditure per capita and the

commodity price, y� (`) and p�q (`), jump up at the time of the shock and then converge from above

to the new steady-state levels as ` grows;17 (iii) there is a temporary acceleration in TFP growth

with net entry of �rms; (iv) the birth rate b jumps on the new saddle path and declines during

the transition, converging from above to the new steady state. Therefore, an increase in � yields:

short-run welfare gains through the economic channels, via e¤ects (ii)-(iii), unless the adverse e¤ect

of the commodity price is extreme; long-run welfare gains through the demographic channels via

17The fact that the increase in � makes y� (`) and p�q (`) jump up for given ` follows from Proposition 8. The fact

that both y� (`) and p�q (`) decline over time as ` grows follows from Proposition 1.
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e¤ects (i) and (iv); and ambiguous long-run e¤ects on real consumption in view of the contrasting

e¤ects of higher tax and higher steady-state population.

Concerning long-run development prospects, the impact of the commodity tax on the two steady

states is a double dividend: it expands the economy�s carrying capacity of people and reduces the

threat of the mortality trap. For example, consider an initial input ratio `0 such that `00ss < `0 < `0ss

before the change in tax rate, as in Figure 3, diagram (a). The higher tax increases income per

capita and reduces the mortality rate, resulting in a larger population in the long run, while pushing

the mortality threshold, `00ss, to the left.

The same mechanism in reverse, i.e., reducing the commodity tax, yields a double loss, namely,

a lower carrying capacity of people and a higher mortality-trap threshold. A large enough cut of the

commodity tax can actually put the economy in the mortality trap, as shown in Figure 3, diagram

(b). Given initial input ratio `2, the economy converges to the regular steady state with the initial

tax rate but is in the mortality trap after the tax cut and thus experiences an explosive path of

the mortality rate leading to extinction. Equations (46) and (47) then translate these dynamics

in lower welfare. This scenario o¤ers a sobering lesson for less populated resource-rich countries

that implement low commodity and/or emission taxes and/or subsidize their primary sectors. In

an economy with input ratio close to the mortality trap, subsidizing the primary sector amounts

to introducing a negative emission tax and can put the country in the mortality trap. Empirical

evidence suggests that many real-world economies face such a situation, in particular oil-exporting

countries where subsidies to the extractive industry are pervasive (Gupta et al., 2002; Metschies,

2005). Below, we pursue this argument further by showing that the combination of subsidies to

the primary sector and new discoveries of the resource can be a recipe for disaster.

5.3 Resource booms

By de�nition, a resource boom �an exogenous increase at time t of the resource endowment, 
 �

reduces the input ratio, ` (t) = L (t) =
, immediately. All else equal, this direct e¤ect brings the

economy closer to the mortality trap. But the shock may further increase the threat of population

implosion by expanding the mortality trap �like subsidies to the primary sector �depending on

the value of the emission-damage elasticity.

Proposition 9 (Resource boom) Assume � > 1 and 0 6 ' < 1. An increase in the resource
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endowment, 
, a¤ects the equilibrium mortality function m� (`) as follows

dm� (`)

d


8>><>>:
> 0 if � > 1� '
= 0 if � = 1� '
< 0 if � < 1� '

9>>=>>; for any ` > 0: (49)

When � > 1� ', a resource boom enlarges the mortality trap, (0; `00ss). Proof: see Appendix.

The mechanism driving this result is that the emission damage incorporated in the mortality

function (33) depends on the resource stock with elasticity � � (1� '). Therefore, if the damage
elasticity exceeds 1 � ', the increase in 
 shifts the equilibrium mortality rate upwards. This

phenomenon may be considered a novel type of resource curse that has seldom been recognized

in the dedicated literature. Diagram (c) in Figure 3 describes the e¤ect of the resource boom

assuming � > 1�'. As the endowment increases from 
0 to 
1 the _̀ = 0 locus shifts up and yields
a lower input ratio in the regular steady state, `0ss, and a higher mortality-trap threshold, `

00
ss. At

the same time, the input ratio at time zero moves from the pre-shock level `0 = L0=
0 to the lower

after-shock level `1 = L0=
1. The welfare e¤ects of these shocks are generally ambiguous. If the

economy converges to the new regular steady state `0ss after the shock, utility is likely to be higher

via the economic channel since expenditure per adult, population and the mass of �rms would

be higher in the long run.18 However, the shock itself may drive the economy into the mortality

trap, yielding drastically opposite results: if `1 < `00ss , the population decline deletes and eventually

overturns the consumption gains, while both the demographic components of welfare �population

and gross fertility rates �yield net welfare losses both in the transition and in the long run as the

mortality rate grows.

In the cases � 6 1 � ', the resource boom does not expand the size of the mortality trap but

this does not mean that the trap less threatening: even when the state space of the mortality trap

(0; `00ss) shrinks or does not change, the increase in 
 reduces the population-resource ratio. With

� < 1� ', the _̀ = 0 locus would shift down but the current input ratio ` may still fall more than

the mortality threshold `00ss. With � = 1 � ', the resource boom surely makes the economy closer

to population implosion since the steady states do not move. Moreover, the claim that the position

of the steady states remains the same only refers to the input ratio, not to population size, since

the resource boom a¤ects the mortality-trap threshold in absolute terms, L00ss. Below we further

explore this point in a numerical assessment of the e¤ects of resource booms and emission taxes.
18The reduction in `0ss is accompanied by a rise in total steady-state population L

0
ss which falls short of the increase

in 
. Therefore, expenditure per adult y� (`0ss), population L
0
ss and the associated long-run mass of �rms N

0
ss are

higher in the post-shock regular steady state. Unless the associated increase in the commodity price (cf. Proposition

1) is extreme, the consumption term in (46) is higher in the new, post-shock regular steady state.
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5.4 Traps, resource booms and subsidies

Consider the polar case of a linear damage function, � = 1, with ' = 0 and strict substitutability,

� > 1. Under these parameters, a resource boom has a straightforward graphical representation,

namely, a displacement to the left of the input ratio, with no change in the stationary loci and

the associated steady states, (`0ss; b
0
ss) and (`

00
ss; b

00
ss). We then construct the following scenario: the

economy experiences a resource boom and the government decides to subsidize the primary sector

by reducing the commodity tax rate, � , below zero. This kind of policies are frequently observed

in resource-rich countries, with various justi�cations. In our model the combination of the two

changes moves the economy closer to the mortality trap for two independent reasons: the resource

boom shifts the input ratio to the left, from `0ss to ` (0) < `0ss, and the lower tax rate shifts the

mortality-trap threshold, `00ss, to the right. Figure 3, graph (b), illustrates this mechanism assuming

that the pre-shock input ratio is L0=
0 = `0 and `00ss < `0 < `0ss. The reduction in � shifts the

stationary loci as shown in the phase diagram while the magnitude of the resource boom determines

whether the economy falls in the mortality trap. If the increase in 
 is su¢ ciently small, the initial

input ratio is `1 > `00ss and the economy experiences an instantaneous jump up in fertility followed

by a gradual decline until convergence to the new regular steady state, which is lower than the

pre-shock steady state. If instead the increase in 
 is su¢ ciently large, the initial input ratio is

`2 < `00ss and the economy falls in the trap: the fertility rate jumps up and keeps growing but never

reaches the exploding mortality rate. Consequently, the shock triggers population implosion.

A simple numerical example yields further insights on the conditions under which the economy

falls in the mortality trap. Table 1 summarizes the outcomes of a numerical simulation in which

the key parameters are set so as to generate an empirically plausible regular steady state.19 The

baseline scenario (i) assumes a zero commodity tax and delivers a long-run birth rate b0ss = 1:84%

in the regular steady state. The regular steady state input ratio and the mortality-trap threshold

are `0ss = 2:12 and `00ss = 0:11, respectively. The resource stock is 
 = 10mln, which yields

a regular steady state population of 21:2mln and a mortality-trap threshold of 1:15mln people.

Given the same parameters, scenarios (ii) and (iii) respectively assume a positive tax, � = 5%,

and a positive subsidy, � = �5%, without any change in the resource stock. The e¤ect of such
policy shocks exceeds 4mln people in either direction: given the pre-shock steady-state population

L0ss = 21:2mln, the 5% tax rate generates steady-state population L0ss = 25:9mln whereas the

5% subsidy generates steady-state population L0ss = 17:4mln. The e¤ects on the mortality-trap

threshold is around 40; 000 people in either direction: given the pre-shock threshold L00ss = 1:15mln,

19The parameter values assumed in calculating the numbers reported in Table 1 are: � = 1, � = 1:587, � = 0:015,

� = 4:3, 
 = 0:3, � = 0:5, � = 2, � = 0:8,  = 0:3, �m = 0:016, � = 0:2, � = 0:05.
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the 5% tax rate generates L00ss = 1:11mln whereas the 5% subsidy generates L00ss = 1:19mln.

Scenarios (iv) and (v) consider a resource boom whereby the endowment 
 increases by 5

percentage points. In scenario (iv), the resource boom occurs in isolation from policy changes: with

respect to the baseline scenario, the steady-state input ratios remain the same but the associated

population levels change. In particular, the population-trap threshold increases by nearly 57; 000

people, from the pre-shock L00ss = 1:15mln to the after-shock L00ss = 1:21mln. In scenario (v), we

address the aforementioned policy exercise, i.e., a combined shock in which the endowment, 
, rises

by 5 percentage points accompanied by the introduction of a �ve percent subsidy to commodity

production, � = �5%. The resulting increase in the population-trap threshold is nearly 105; 000
units, from L00ss = 1:15mln to L00ss = 1:25mln. Comparing scenarios (iv) and (iv), shows that the

rise of the population-trap threshold L00ss caused by the resource boom is almost doubled by the

concurrent decision of the government to introduce a 5% subsidy to the primary sector.20

We stress that this exercise assumes parameter values yielding no e¤ects of the resource boom

on the steady state loci (� = 1 � '). With a stronger elasticity, � > 1 � ', we would obtain an

even larger increase in the mortality-trap threshold for scenarios (iv)-(v) because, as established in

Proposition 9, the increase in 
 would further reduce the gap between the two steady states.21 This

and the previous considerations make our general conclusion evident. Labor-poor countries with

abundant polluting resources face larger mortality traps in view of their natural endowments. If

the governments of these countries respond to new resource discoveries with higher subsidies to the

20More precisely, the rise in the population threshold caused by the resource boom is 57; 526 people with no subsidy

and is 104; 899 people with a 5% subsidy. The marginal e¤ect of the subsidy is thus a 82% larger increase of the

threshold.
21 In graphical terms, scenario (v) with � > 1 � ' would feature one downward shift of the _b = 0 locus and two

upward shifts of the _̀ = 0 locus, one due to the subsidy and one due to the resource boom.
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primary sector �a policy that is sometimes justi�ed by the need to overcome under-development

traps �the possibility of falling into a di¤erent trap characterized by ever-growing mortality should

be taken seriously.

6 Conclusion

In stark contrast to the magnitude of pollution-induced mortality reported in the empirical litera-

ture, there is little to no recognition of such an important phenomenon in macroeconomic models

of growth and development. Filling this gap requires tractable models in which economic growth,

fertility and mortality are simultaneously endogenous and interconnected via equilibrium relation-

ships. We have shown that unlike conventional pollution externalities, deadly spillovers a¤ect

welfare through multiple channels �labor-supply e¤ects, consumption-saving decisions, reproduc-

tion choices, changes in market size that a¤ect incentives to innovate and thereby productivity

growth � so that the response of the equilibrium mortality rate to population size is generally

ambiguous and often non-monotonic. This relationship between mortality and population re�ects

not only the emission intensity of primary production but also dilution e¤ects and labor realloca-

tion e¤ects caused by technology. Under parametrizations that yield empirically plausible paths

� prominently, a transitional fertility decline leading to a �nite endogenous population level �

deadly spillovers modify potential population in the long run, and may even create mortality traps

that, unlike the typical poverty traps studied in development economics, threaten less populated

economies with abundant natural resources.

Our framework delivers novel insights for both applied research and policy making. The con-

ventional view in environmental economics is that pollution externalities �in the form of negative

spillovers a¤ecting private utility or �rms e¢ ciency � limit growth when emission damages are

strictly convex (see, e.g., Xepapadeas, 2005). In our paper, instead, pollution threatens the econ-

omy�s development and survival through endogenous mortality rates that may reach very high levels

even with linear or strictly concave damage functions, like those suggested by empirical evidence

(e.g., Cakmak et al., 1999; Izzotti et al., 2000). Our analysis thus suggests that low estimated

damage intensities can be deceptively reassuring because they only provide a partial assessment of

the actual threat faced by the society. The actual impact of deadly spillovers on economic perfor-

mance and long-term population capacity stems from the interactions between demography and

the technological and market conditions of production sectors. Therefore, empirical research should

go beyond estimating damage elasticities to investigate how mortality interacts with labor supply

and sectoral output of highly-polluting and less-polluting industries.
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With respect to public policy, our model suggests that emission taxes may yield double div-

idends in terms of both income and population capacity. To the contrary, subsidies to primary

production reduce long-run population capacity by increasing the death toll. New discoveries of

natural endowments reduce the labor-resource ratio and may increase the risk of population implo-

sion. Consequently, subsidizing commodity production during a resource boom can have disastrous

consequences if the primary sector�s technology and the mortality function do not change. These

considerations suggest that some novel thinking is called for in the debate on the prospects of many

developing countries where discoveries of natural resources are accompanied by (implicit or explicit)

subsidies designed to foster their exploitation.
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A Appendix: The model

A.1 Consumption and Reproduction Choices

Utility maximization and derivation of equations (8)-(9). The maximization problem can

be speci�ed as (omitting time arguments when no ambiguity arises)

max
fcL(t);cB(t);B(t)g

Z 1

0
ln

��
cLL

 
�� �

cBB
 
�1���

� exp [��t] dt

subject to

_A = rA+ wL+ p!
+ S � pc (cLL+ cBB) ; (A.1)

_L = B �mL; (A.2)

where (A.1) is the asset accumulation law (7) incorporating the constraint C = cLL + cBB, and

(A.2) is the demographic law (1) where the paths of the mortality rate m is taken as given. The

current value Hamiltonian for this problem reads

L � ln

��
cLL

 
�� �

cBB
 
�1���

+

+#A [rA+ wL+ p!
+ S � pc (cLL+ cBB)] +

+#L (B �mL) ; (A.3)

where #A and #L are the dynamic multipliers associated with asset accumulation and with popu-

lation growth, respectively. The necessary conditions for utility maximization read

LCL = 0 ! �
cL
= #ApcL (i)

LCB = 0 ! 1��
cB

= #ApcB (ii)

LB = 0 !  (1��)
B + #L = #ApccB (iii)

LA = �#A � _#A ! #Ar = �#A � _#A (iv)

LL = �#L � _#L !  �
L + #A [w � pccL]� #Lm = �#L � _#L (v)

TVC assets ! limt!1#A (t)A (t) exp [��t] = 0 (vi)

TVC population ! limt!1#L (t)L (t) exp [��t] = 0 (vii)

(A.4)
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Conditions (A.4.i)-(A.4.ii) yield constant consumption shares for adults and children,

cLL

cLB
=

�

1� �: (A.5)

From (A.5), total households consumption expenditure equals

pcC = pc (cLL+ cBB) =
1

#A
; (A.6)

so that the co-state equation for assets (A.4.iv) yields the familiar Euler condition for expenditure

growth
_pc (t)

pc (t)
+
_C (t)

C (t)
= �

_#A (t)

#A (t)
= r (t)� �; (A.7)

which is equation (8) in the main text. Now consider fertility and population iteractions. From the

fertility condition (A.4.iii) we have

 (1� �) + #L (t)B (t) = #Apc (t) cB (t)B (t) (A.8)

where we can substitute #ApccBB = 1� � from (A.4.ii), to obtain

#L (t)B (t) = (1� �) (1�  ) : (A.9)

Expression (A.9) shows that positive fertility B > 0 is consistent with a positive marginal shadow

value of the population #L > 0 if and only if  < 1. Also, equation (A.9) implies a constant shadow

value of children, #L (t)B (t). Time-di¤erentiating (A.9) yields

_#L (t)

#L (t)
= �

_B (t)

B (t)
: (A.10)

From (A.6) and (A.9), the ratio between multipliers #A=#L equals

#A (t)

#L (t)
=

1

(1� �) (1�  ) �
B (t)

pc (t)C (t)
: (A.11)

Next consider the co-state equation for population (v), which may be written as

�
_#L
#L

=
 �

#LL
+
#A
#L
[w � pccL]�m� � (A.12)

Substituting (A.9), (A.11), and (A.10) in (A.12), we have

_B

B
=

b

(1� �) (1�  )

�
 �pcC + wL� �pcC

pcC

�
�m� �: (A.13)

Recalling that the left hand side of (A.13) equals
_B
B =

_b
b +

_L
L , the demographic law (1) implies

_b

b
=

b

(1� �) (1�  )

�
 �pcC + wL� �pcC

pcC

�
� b� �

and therefore
_b (t)

b (t)
=

b (t)

(1� �) (1�  )

�
 +

w (t)L (t)� pc (t)C (t)
pc (t)C (t)

�
� �; (A.14)

which is equation (A.14) in the main text.
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A.2 Producers: Final and Intermediate sectors

Final producers. The �nal sector behaves like a single competitive �rm maximizing aggregate

pro�ts from �nal output sales, pcC �
R N
0 pxixidi, subject to technology (10) taking all prices as

given. The �rst order condition for the quantity xi of each intermediate variety i yields the demand

schedule

pxi (t) =
pc (t)C (t)R N(t)

0 xi (t)
��1
� di

� xi (t)�
1
� ; (A.15)

which is taken as given by the producer of the intermediate-good variety i.

Incumbents: pro�t maximization. The maximization problem is

max
fQi;Lxi ;Lzig

Vi (t) =

Z 1

t
�i (t) exp

�
�
Z v

t
(r (s) + �) ds

�
dv

subject to

�i = pxixi � pqQi � wLxi � wLzi (A.16)

xi = z�i �Q


i (Lxi � �)

1�
 (A.17)

_zi = � � �z � Lzi (A.18)

pxi = 	 � x�
1
�

i (A.19)

where (A.19) is the �nal producers� demand for the intermediate (11) after de�ning the term

	 = pcC=
R N
0 x

��1
�

i di, which is taken as given by the monopolist. Firm-speci�c knowledge zi acts

as the co-state variable optimized by the �rm whereas the path of public knowledge �z is taken as

given by the monopolist. Substituting the constraints (A.16), (A.17) and (A.19) in the objective

function, the Hamiltonian for this problem can be written as

�L = 	
h
z�iQ



i (Lxi � �)

1�

i ��1

� � pqQi � wLxi � wLzi + #z � � � �z � Lzi ; (A.20)

where #z is the dynamic multiplier associated to zi. The necessary conditions for maximization

read
�LQi = 0 ! 
 ��1� pxixi = pqQi (i)

�LLxi = 0 ! (1� 
) ��1� pxixi = w (Lxi � �) (ii)

�LLzi = 0 ! #z��z = w (iii)

�Lzi = (r + �)#z � _#z ! ��1
� � � pxixizi

= (r + �)#z � _#z (iv)

(A.21)

For future reference, note that focs (i)-(ii) in (A.21) imply

pqQi + wLxi =
�� 1
�

pxixi + w� (A.22)

where (iii)-(iv) yield

_#z
#z
= r + � � �� 1

�
� �pxixi
#zzi

= r + � � �� 1
�

� �pxixi �
��z

wzi
; (A.23)
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where the last term follows from using (iii) to substitute #z.

A.3 Primary sector

Derivation of the cost share of resource use (20). The pro�t maximizing conditions with

respect to resource use and labor respectively yield

pq (1� �) �
�
� � 


��1
� + (1� �) � L

��1
�

Q

� �
��1�1

� � 

��1
� = p!
; (A.24)

pq (1� �) �
�
� � 


��1
� + (1� �) � L

��1
�

Q

� �
��1�1

(1� �) � L
��1
�

Q = wLQ: (A.25)

From (A.24) and (A.25), the cost share of resource use is

� � p!


p!
+ wLQ
=

� � 
��1
�

� � 
��1
� + (1� �) � L

��1
�

Q

: (A.26)

In order to rewrite (A.26) in terms of factor prices, note that (A.24) and (A.25) imply

� � 
��1
�

(1� �) � L
��1
�

Q

=
��p1��!

(1� �)� w1�� : (A.27)

Substituting (A.27) in the right hand side of (A.26) yields

� � p!


p!
+ wLQ
=

��p1��!

��p1��! + (1� �)� w1��
; (A.28)

which is expression (20) in the main text.

B Appendix: Equilibrium and Mortality Rates

B.1 Output and Input Markets

Derivation of (21)-(22). Since each intermediate �rm has access to the same stock of public

knowledge, every monopolist solves the maximization problem given the same level of �rm-speci�c

knowledge, which implies a symmetric equilibrium in the intermediate sector. Given xi = x for each

i 2 [0; N ], integrating across intermediate input quantities inside the �nal-producers technology (10)
yields (21). Similarly, integrating across intermediate input quantities inside the demand schedule

for intermediates (A.15) yields (22).

Derivation of (24). From the intermediate producers� problem, the pro�t maximization

condition (A.21.i) can be aggregated as



�� 1
�

N (t) pxi (t)xi (t) = pq (t)Q (t) : (B.1)
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Substituting the equilibrium condition (21) in (B.1) we obtain



�� 1
�

pc (t)C (t) = pq (t)Q (t) ; (B.2)

which is equation (24) in the main text.

Derivation of (25). The zero-pro�t condition in the primary sector implies

pq (t)Q (t) (1� �) = p! (t) 
 + w (t)LQ (t) : (B.3)

Combining (B.3) with (20) yields (25) in the main text.

B.2 Expenditure and Resource Use

Derivation of (26). Using the government budget constraint (7) to substitute S = �pqQ, rewrite

the wealth constraint (7) as

_A (t)

A (t)
= r (t) +

w (t)L (t)

A (t)
+
p! (t) 
 + �pq (t)Q (t)

A (t)
� pc (t)C (t)

A (t)
: (B.4)

Substituting A = �pcC from (23) we have

_pc (t)

pc (t)
+
_C (t)

C (t)
= r (t) +

w (t)L (t)

�pc (t)C (t)
+
p! (t) 
 + �pq (t)Q (t)

�pc (t)C (t)
� 1

�
: (B.5)

The Euler condition for consumption (8) can be rewritten in terms of aggregate consumption as

_pc (t)

pc (t)
+
_C (t)

C (t)
= r (t)� � (B.6)

and substituted into (B.5) to obtain

(1� ��) pc (t)C (t) = w (t)L (t) + p! (t) 
 + �pq (t)Q (t) : (B.7)

Substituting pq (t)Q (t) by (24), we obtain

(1� ��) pc (t)C (t) = w (t)L (t) + p! (t) 
 + �

�� 1
�

pc (t)C (t) : (B.8)

Dividing both sides of (B.8) by L (t) and substituting the de�nitions y = pcC=L and ` = L=
, and

rearranging terms, we obtain equation (26) in the main text.

Proof of Proposition 1. From (20), the cost share of resource use with normalized wage

w = 1 reads

�(p!) �
p!


p!
+ LQ
=

��p1��!

��p1��! + (1� �)�
=

1

1 + (1��)�

��p1��!

(B.9)
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and thus exhibits the following properties:8>><>>:
(� < 1) ! limp!!0�(p!) = 0; limp!!1�(p!) = 1;

(� > 1) ! limp!!0�(p!) = 1; limp!!1�(p!) = 0;

(� = 1) ! �(p!) = �:

9>>=>>; (B.10)

Recalling the de�nition ` = L=
, rewrite (26) and (27) as

y1 (p!; `) =
1 + (p!=`)

1� ��� �
 ��1�
(B.11)

y2 (p!) =
1

1� ��� 
 ��1� [� + (1� �) ��(p!)]
(B.12)

where (B.12) is obtained by plugging (27) in (26) to eliminate p=` and solving for y. In (B.11) and

(B.12), we have de�ned y1 (p!; `) and y2 (p!) as functions that treat p! as the explicit argument

and ` as a parameter. The �xed point

(y� (`) ; p�! (`)) = arg solve fy1 (p!; `) = y2 (p!)g (B.13)

characterizes the intratemporal equilibrium of the economy. The proof of Proposition 1 involves

two steps. First, we prove existence and uniqueness of the equilibrium. Second, we assess the

marginal e¤ects of variations in `.

Step #1. System (B.11)-(B.12) can be represented graphically in the (p!; y) plane: given `,

function y1 (p!; `) is a linear increasing function of p!, whereas the behavior of y2 (p!) depends on

the value of �. From (B.9), y2 (p!) is decreasing and convex for � > 1; a �at horizontal line for

� = 1; increasing and concave for � < 1. The three cases are described in Figure A1. The vertical

intercepts and horizontal asymptotes of y2 (p!) are de�ned in (B.10) and (B.12). In all cases, the

intersection y1 (p!; `) = y2 (p!) is unique and determines the conditional values y� (`) and p�! (`).

In particular, y� (`) exhibits the property

ymin �
1

1� ��� �
 ��1�
< y� (`) <

1

1� ��� 
 ��1�
� ymax: (B.14)

Step #2. The marginal e¤ects of ` can be studied by means of Figure A1. In all cases, an increase

in ` reduces the slope of y1 (p!; `) leaving y2 (p!) unchanged, so that the results

dp�! (`)
d`

> 0; lim
`!0+

p�! (`) = 0; lim
`!1

p�! (`) =1; (B.15)

hold independently of the elasticity of substitution. With respect to y� (`), we have

(� < 1) ! dy� (`)
d`

> 0; lim
`!0+

y� (`) = ymin; lim
`!1

y� (`) = ymax; (B.16)

(� > 1) ! dy� (`)
d`

< 0; lim
`!0+

y� (`) = ymax; lim
`!1

y� (`) = ymin; (B.17)

(� = 1) ! dy� (`)
d`

= 0; y =
1

1� ��� 
 ��1� [� + (1� �) �]
: (B.18)
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Finally, the equilibrium commodity price is a function of ` via the zero-pro�t condition in the

primary sector: from �(w; p!) � ��p1��! + (1� �)� w1�� and pq = 1
1���(w; p!) with w = 1, we

have

p�q (`) �
1

1� � �
�

��

p�! (`)
��1 + (1� �)

�

�
: (B.19)

Since p�! (`) =d` > 0, substitutability � > 1 implies p�q (`) =d` < 0; complementarity � < 1 implies

p�q (`) =d` > 0; the Cobb-Douglas case � = 1 implies p
�
q (`) =d` = 0. �

Figure A1. Determination of the equilibrium couple (y� (`) ; p�! (`)) in the proof of Proposition 1.

B.3 The Equilibrium Mortality Rate

Proof of Proposition 2. First, consider the general case � ? 1. Denoting commodity output per
adult by q � Q=L, we can rewrite (28) as

m (t) = �m+ ��� � L (t)��(1�') q (t)� = �m+ ��� � L (t)��(1�') � ` (t)�� (q (t) ` (t))� : (B.20)

Considering the primary sector, the equilibrium zero-pro�t condition (A.24) and the resource de-

mand schedule of commodity producers (25) can be respectively rewritten as

p! (t)

pq (t)
= � (t) � q (t) ` (t) (1� �) ; (B.21)

p! (t)

pq (t)
= � (1� �) � (q (t) ` (t))

1
� : (B.22)

Combining the above equations to eliminate p!=pq and solving for q`, we obtain

q (t) ` (t) =

�
�

�(t)

� �
��1

: (B.23)

Substituting (B.23) into (B.20), the mortality rate becomes

m (t) = �m+ �����
�

��1 � L (t)��(1�') � ` (t)�� ��(` (t))
�

1��� ; (B.24)
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where the we have substituted �(`) with the cost share of resource use evaluated in equilibrium,

obtained from substituting the equilibrium resource price p! = p�! (`) de�ned in Proposition 1 inside

the expression for the cost share �(p!) de�ned by the last term in equation (20) with normalized

wage w = 1. Substituting L (t) = ` (t) 
 to eliminate population in (B.24), we get

m (t) = �m+ �����
�

��1
��(1�') � ` (t)�(1�') ��(` (t))
�

1��� ; (B.25)

which, after de�ning the convenient constant �� � �����
�

��1
��(1�') > 0, reduces to equation (33).

Considering the asymptotic behavior of �(`), we combine results (B.10) with results (B.15) to

obtain 8<: � > 1 ! d�(`)
d` < 0; lim`!1�(`) = 0; lim`!0+ �(`) = 1;

� < 1 ! d�(`)
d` > 0; lim`!1�(`) = 1; lim`!0+ �(`) = 0;

(B.26)

which proves expression (34). Next, consider the Cobb-Douglas case. Pro�t maximization in

the primary sector implies the factor income shares p!
 = � � pq (1� �)Q and wLQ = (1� �) �
pq (1� �)Q. Normalizing the wage rate w = 1, we can combine these conditions to write

p! (t) =` (t) =
�

1� � �
LQ (t)

L (t)
: (B.27)

From Proposition 1, rents per adult p!=` are independent of ` in the Cobb-Douglas case. Therefore,

the employment share of the primary sector LQ(t)
L(t) is independent of ` and, given the constant tax

rate � , we can de�ne the convenient constant�
LQ (t)

L (t)

�1��
=

�
1� �
�

p!=`

�1��
� #: (B.28)

From the primary sector�s technology Q = 
�L1��Q , we can use (B.28) to rewrite equilibrium

commodity output per adult as

q (t) = ` (t)�� �#: (B.29)

Substituting this result into (28), the equilibrium mortality rate can be written as

m (t) = �m+ ����#
�

��(1�') � ` (t)�(1��)�(1�') ; (B.30)

which, after de�ning the convenient constant ~� � ����#
�

��(1�') > 0, reduces to equation (32).

�
Proof of Lemma 3. Under substitutability, result lim`!0+ �(`) = 1 in (34) implies that the

equilibrium mortality rate (33) exhibits

� > 1 ! lim
`!0+

m� (`) = �m+ �� � lim
`!0+

�(`)
�

1��� � `�(1�') = �m+ �� � lim
`!0+

1

`1�'
; (B.31)

so that, for any 0 < ' 6 1, substitutability implies lim`!0+m (`) = +1. �

8



Derivation of result (35) and extension to the case of complementarity. For future

reference, rewrite equation (29) as

"E �
�
@F
@LQ

� LQF

�
�
�
dLQ
dL

� L
LQ

�
= "Q;LQ � "LQ;L (B.32)

where both the sub-elasticities "Q;LQ and "LQ;L are evaluated in equilibrium. Note that, from

(A.27), the ratio between primary inputs can be written as�



LQ

���1
�

=
1� �
�

� ��p1��!

(1� �)� w1�� ;

which can be solved for LQ with w = 1 as

LQ = 
 �
�
1� �
�

��
� p�!: (B.33)

From the technology (18), the elasticity of commodity output to primary employment reads

"Q;LQ �
@F
@LQ

� LQF =
(1� �)L

��1
�

Q

�

��1
� + (1� �)L

��1
�

Q

;

where we can substitute LQ by (B.33) and the equilibrium price p! = p�! (`), obtaining

"Q;LQ =
(1� �)� �1�� � p��1!

� + (1� �)� �1�� � p��1!
=

1
�

(1��)��1�� �(p�!)��1
+ 1

: (B.34)

From (B.34), and recalling the asymptotic properties of p�! (`) established in (B.15), the equilibrium

elasticity "Q;LQ exhibits

� > 1 !
d"Q;LQ
d` > 0; lim`!0+ "Q;LQ = 0; lim`!1 "Q;LQ = 1;

� < 1 !
d"Q;LQ
d` < 0; lim`!0+ "Q;LQ = 1; lim`!1 "Q;LQ = 0:

(B.35)

Next, consider the following de�nitions

"�;p�! �
@�(p�!)

@p�!
� p

�
!

�
; "p�! ;` �

@p�! (`)

@`
� `
p�!
; (B.36)

where p�! (`) is the equilibrium resource price de�ned in Proposition 1 and �(p�!) is the resource

cost share (20) evaluated in the equilibrium with w = 1. Focusing on �(p�!), from (20) we can

calculate

"�;p�! =
(1� �) (1� �)�

�� (p�!)
1�� + (1� �)�

: (B.37)

Next, log-di¤erentiating the static equilibrium conditions (26) and (27) evaluated in equilibrium,

we have

"y�;` =
�
"p�! ;` � 1

� p�!=`

1 + p�!=`
and "p�! ;` � 1 = "�;p�! � "p�! ;` + "y�;`; (B.38)
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where "y�;` � @y�(`)
@` � `

y� . Combining the two conditions in (B.38) to eliminate "y�;` and solving for

"p�! ;`, we obtain

"p�! ;` =
1

1� "�;p�! (1 + p�!=`)
: (B.39)

Using (B.37) to substitute "�;p�! in (B.39), we have

"p�! ;` =
1

1� (1��)(1��)�(1+p�!=`)
��(p�!)

1��+(1��)�
> 0: (B.40)

We now have all the elements to characterize the response of primary employment to variations in

total labor supply. Time-di¤erentiation of (B.33) yields

_LQ (t)

LQ (t)
= � � _p! (t)

p! (t)
= � � "p�! ;` �

_̀ (t)

` (t)
; (B.41)

where the last term follows from substituting the equilibrium price p! = p�! (`). Since ` = L=
, we

can rewrite (B.41) as
_LQ (t)

LQ (t)
= �"p�! ;`| {z }

"LQ;L

�
_L (t)

L (t)
= "LQ;L �

_L (t)

L (t)
(B.42)

where "LQ;L is the elasticity of primary employment to total labor supply in equilibrium. Using

result (B.40) to substitute "p�! ;`, we obtain

"LQ;L =
�

1� (1��)(1��)�(1+p�!=`)
��(p�!)

1��+(1��)�
> 0: (B.43)

The asymptotic behavior of "LQ;L when ` ranges from 0 to +1 is determined by the asymptotic

behavior of the resource price p�! and rents per adult p
�
!=`. The behavior of p

�
! is already described

in expression (B.15). The behavior of p�!=` can be tracked as follows. Evaluating condition (27) in

equilibrium, rents per adult equal

p�! (`) =` = (1� �) 

�� 1
�

��(`) � y� (`) : (B.44)

The asymptotic properties of equilibrium expenditure y� (`) are already described in (B.16)-(B.17),

and the asymptotic properties of the equilibrium resource cost share �(`) are already described in

(B.26). Therefore, (B.44) implies

� > 1 ! dp�!=`
d` < 0; lim`!0+ p

�
!=` = (1� �) 
 ��1� � ymax; lim`!1 p�!=` = 0:

� < 1 ! dp�!=`
d` > 0; lim`!0+ p

�
!=` = 0; lim`!1 p�!=` = (1� �) 
 ��1� � ymax:

(B.45)

Using (B.45), we can establish the following results about the elasticity "LQ;L derived in (B.43).

� > 1 ! lim`!0+ "LQ;L = �; lim`!1 "LQ;L = 1;

� < 1 ! lim`!0+ "LQ;L = 1 lim`!1 "LQ;L = �;
(B.46)
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Going back to de�nition of "E in (B.32), we can thus substitute results (B.34) and (B.43) to obtain

"E = "Q;LQ � "LQ;L =
(1� �)� �1�� � p��1!

� + (1� �)� �1�� � p��1!
� �

1� (1��)(1��)�(1+p�!=`)
��(p�!)

1��+(1��)�
; (B.47)

which, from (B.35) and (B.46), exhibits the properties

� > 1 ! lim`!0+ "E = 0; lim`!1 "E = 1;

� < 1 ! lim`!0+ "E = 1; lim`!1 "E = 0:
(B.48)

Expression (B.48) proves result (35) in the main text for the case of substitutability.

Behavior of the equilibrium mortality rate (comprehensive proof of the diagrams

in Figure 1). From (30), we can de�ne the elasticity of the excess mortality rate to population

size as

"m;L �
d (m� �m)

dL
� L

(m� �m)
= �"E � (1� ') ; (B.49)

Combining results (B.48) with expression (B.49), we have

� > 1 ! lim`!0+ "m;L = � (1� ') ; lim`!1 "m;L = �� (1� ') ;
� < 1 ! lim`!0+ "m;L = �� (1� ') ; lim`!1 "m;L = � (1� ') :

(B.50)

Result (B.50) provide a comprehensive proof of the behavior of the equilibrium mortality rate in

all the subcases depicted in Figure 1 for � 6= 1 (the Cobb-Douglas case is already discussed in

the main text). First, consider all the sub-cases with � > 1. Under substitutability, the limit for

` ! 0+ is strictly negative for any 0 < ' 6 1, so that m� (`) is surely decreasing in ` for low

values of `. The limit for ` ! 1 shows that m� (`) remains declining for � 6 (1� ') �that is, a
monotonically declining �L-shaped�function �and bends upward, instead, for � > (1� ') �that
is, a non-monotonic �U-shaped�function. In the special case ' = 1, we have an increasing convex

function since lim`!0+ "m;L = 0 and lim`!1 "m;L = � > 0. Second, consider all the sub-cases

with � < 1. Under complementarity, the limit for ` ! 1 is strictly negative for any 0 < ' 6 1,

so that m� (`) is surely decreasing in ` for high values of `. The limit for ` ! 0+ shows that

m� (`) is declining for � 6 (1� ') �that is, a monotonically declining �L-shaped�function �and
becomes increasing, instead, for � > (1� ') �that is, a non-monotonic �hump-shaped�function.
In the special case ' = 1, we have an increasing concave function since lim`!0+ "m;L = � > 0 and

lim`!1 "m;L = 0.
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C Appendix: Population Dynamics

C.1 Special Case with Exogenous Mortality

Dynamics with exogenous mortality (including strict complementarity). Setting m (t) =

�m in each t 2 [0;1), the dynamic system (37)-(38) becomes

_̀ (t)

` (t)
= b (t)� �m (C.1)

_b (t)

b (t)
=

b (t)

(1� �) (1�  )

�
1� (1�  ) y� (` (t))

y� (` (t))

�
� � (C.2)

and the stationary loci read

_̀ = 0! �` � b = �m (C.3)

_b = 0! �b (`) � b =
� (1� �) (1�  ) y� (`)
1� (1�  ) y� (`) : (C.4)

From the de�nition of �b (`) in (C.4) we can rewrite (C.2) as _b = � b2

�b(`)
� �b. Therefore, system

(C.1)-(C.2) exhibits the coe¢ cient matrix

� �

0BBB@
@ _̀

@` = b� �m @ _̀

@b = `

@ _b
@` = �

�b2

�b(`)2
@�b(`)
@`

@ _b
@b = 2�

b
�b(`)

� �

1CCCA (C.5)

which can be evaluated in any generic simultaneous steady state _̀ = _b = 0 as

�ss �

0BB@
@ _̀

@` = 0
@ _̀

@b = `ss

@ _b
@` = ��

@�b(`)
@`

@ _b
@b = �

1CCA (C.6)

The determinant of (C.6) is given by

j�ssj = �`ss
@�b (`)

@`
(C.7)

and the eigenvalues ({1;{2) of (C.6) are determined by the second-order equation

{2 � �{ + �`ss
@�b (`)

@`
= 0 (C.8)

The three possible cases (Cobb-Douglas, substitutability, complementarity) are discussed below.

Cobb-Douglas case. From (B.18), setting � = 1 implies a constant expenditure level

y (t) =
1

1� ��� 
 ��1� [� + (1� �) �]
� �y: (C.9)
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From (C.9), the stationary locus _b = 0 in (C.4) becomes

_b = 0! �b (`) � b =
� (1� �) (1�  ) �y
1� (1�  ) �y (C.10)

which is independent of the population-resource ratio `. Therefore, as shown in phase diagram (a)

of Figure 2, the two loci are horizontal straight lines. In order to satisfy all the utility-maximizing

conditions, the fertility rate must jump onto the _b = 0 at time zero, which implies a constant gross

fertility rate forever. When the parameters satisfy

� (1� �) (1�  ) �y
1� (1�  ) �y > �m (C.11)

the gross fertility rate exceeds the mortality rate, �b (`) � b > �m, in which case the economy

displays positive population growth. This is the case depicted in Figure 2, graph (a). In the long

run, the economy converges asymptotically to zero resources per capita and an in�nite population.

Substitutability. By Proposition 1, setting � > 1 implies that y� (`) is strictly decreasing in `.

Therefore, the stationary locus _b = 0 in (C.4) is also decreasing in `. In particular, combining (C.4)

with results (B.17), we have

@�b (`)

@`
< 0; lim

`!0
�b (`) =

� (1� �) (1�  ) ymax
1� (1�  ) ymax

; lim
`!1

�b (`) =
� (1� �) (1�  ) ymin
1� (1�  ) ymin

; (C.12)

where ymin � 1=
�
1� ��� �
 ��1�

�
and ymax � 1=

�
1� ��� 
 ��1�

�
from (B.14). Since the _̀ = 0

locus is a horizontal straight line, �` � b = �m, result (C.12) allows us to de�ne suitable parameter

restrictions such that there exists a simultaneous steady state (bss; `ss) in which b = �m and `ss >

0. The fact that such steady state (bss; `ss) is saddle-point stable is proved as follows. From

@�b (`) =@` < 0 in (C.12), we have �2 � 4�`ss @�
b(`)
@` > 0 and this implies that both the eigenvalues

({1;{2) solving (C.8) are real. Moreover, the fact that
q
�2 � 4�`ss @�

b(`)
@` > � guarantees that

({1;{2) have opposite sign. The direction of the arrows shown in phase diagram (e) of Figure 2 is

determined by the signs of the coe¢ cients in matrix (C.6). Therefore, under substitutability, the

steady state (bss; `ss) is a global attractor of the dynamics. If the economy has initial endowments

such that ` (0) > `ss, the economy jumps on the branch of the stable arm featuring negative

population growth. Instead, if the economy has initial endowments such that ` (0) < `ss, the

economy jumps on the opposite branch of the stable arm featuring positive population growth.

In either case, the economy approaches asymptotically a �nite endogenous level of population

Lss = `ss
 and constant resources per capita in the long run.

Complementarity, � < 1. By Proposition 1, setting � < 1 implies that y� (`) is strictly increasing

in `. Therefore, the stationary locus _b = 0 in (C.4) is also increasing in `. In particular, combining

(C.4) with results (B.16), we have

@�b (`)

@`
> 0; lim

`!0
�b (`) =

� (1� �) (1�  ) ymin
1� (1�  ) ymin

; lim
`!1

�b (`) =
� (1� �) (1�  ) ymax
1� (1�  ) ymax

; (C.13)

13



where ymin � 1=
�
1� ��� �
 ��1�

�
and ymax � 1=

�
1� ��� 
 ��1�

�
from (B.14). Since the _̀ = 0

locus is a horizontal straight line, �` � b = �m, result (C.13) allows us to de�ne suitable parameter

restrictions such that there exists a unique simultaneous steady state (bss; `ss) in which b = �m and

`ss > 0. The fact that such steady state (bss; `ss) is globally unstable is proved as follows. From

@�b (`) =@` > 0 in (C.13), the determinant (C.7) is strictly positive, and j�ssj > 0 implies that the
eigenvalues ({1;{2) are both real and have the same sign. From (C.8), the polynomial exhibits the

signs (+;�;+), which implies by Descartes rule that no root can be negative. Hence, both ({1;{2)
must be strictly positive. Therefore the simultaneous steady state (bss; `ss) under complementarity

is globally unstable. Since this case is not discussed in the main text, we report the associated

phase diagram in Figure A2, graph (a). The direction of the arrows is determined by the signs

of the coe¢ cients in matrix (C.6). If the economy has initial endowments such that ` (0) > `ss,

the economy jumps on the diverging path featuring positive population growth and increasing

population-resource ratio, and approaches asymptotically an in�nite population and zero resources

per capita. Instead, if the economy has initial endowments such that ` (0) < `ss, the economy jumps

on the diverging path featuring declining population, and ultimately implosion in the long run. The

cause of the instability is that expenditure per capita increases with population because the rising

resource scarcity yields higher resource income per capita. When labor is initially relatively scarce,

the rising resource abundance drives down resource income per capita inducing further reductions

in fertility and, eventually, population implosion. When labor is initially abundant relative to the

resource base, a positive initial net fertility rate triggers a self-reinforcing circle of rising incomes

and rising population via sustained fertility rates.

Figure A2. Demographic dynamics with and without deadly spillovers under complementarity.
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C.2 Dynamics with Endogenous Mortality

Dynamics with endogenous mortality (including strict complementarity). The dynamic

system (37)-(38) with endogenous mortality reads

_̀ (t)

` (t)
= b (t)�m� (` (t))

_b (t)

b (t)
=

b (t)

(1� �) (1�  )

�
1� (1�  ) y� (` (t))

y� (` (t))

�
� �

and the stationary loci read

_̀ = 0! �` (`) � b = m� (`) (C.14)

_b = 0! �b (`) � b =
� (1� �) (1�  ) y� (`)
1� (1�  ) y� (`) : (C.15)

For future reference, note that the elasticity of the stationary locus (C.4) with respect to ` is

@�b (`)

@`

`

�b (`)
=

1

1� (1�  ) y� (`) �
@y� (`)

@`

`

y� (`)
(C.16)

From the de�nition of �b (`) in (C.15) we can rewrite (38) as _b = � b2

�b(`)
� �b. Therefore, system

(37)-(38) exhibits the coe¢ cient matrix

� �

0BBB@
@ _̀

@` = b�m� (`)� ` � @m
�(`)
@`

@ _̀

@b = `

@ _b
@` = �

�b2

�b(`)2
@�b(`)
@`

@ _b
@b = 2�

b
�b(`)

� �

1CCCA (C.17)

which can be evaluated in any generic simultaneous steady state _̀ = _b = 0 as

�ss �

0BB@
@ _̀

@` = �`ss �
@m�(`)
@`

@ _̀

@b = `ss

@ _b
@` = ��

@�b(`)
@`

@ _b
@b = �

1CCA (C.18)

The determinant of (C.6) is given by

j�ssj = �`ss

�
@�b (`)

@`
� @m� (`)

@`

�
(C.19)

and the eigenvalues ({1;{2) of (C.6) are determined by the second-order equation

{2 � {
�
�� `ss �

@m� (`)

@`

�
+ �`ss

�
@�b (`)

@`
� @m� (`)

@`

�
= 0 (C.20)

Note that expression (C.14) implies that in the (`; b) plane, the _̀ = 0 locus exhibits the same shape

as that of the equilbrium mortality rate m� (`) characterized in Proposition 2. Expression (C.15)
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is the same as that for the case of exogenous mortality (see (C.4) above) so that it satis�es all the

properties previously derived. The cases with strict substitutability � > 1 and Cobb-Douglas � = 1

are discussed in the proofs of Propositions 6 and 5 below. The cases with strict substitutability

� < 1 are discussed further below.

Substitutability: dynamics with � > 1 and proof of Proposition 6. Throughout this

proof we assume 0 < ' 6 1. By Proposition 1, setting � > 1 implies that y� (`) is strictly decreasing
in `. Therefore, the stationary locus _b = 0 in (C.15) is also decreasing in `. In particular, combining

(C.15) with results (B.17), we have

@�b (`)

@`
< 0; lim

`!0
�b (`) =

� (1� �) (1�  ) ymax
1� (1�  ) ymax

; lim
`!1

�b (`) =
� (1� �) (1�  ) ymin
1� (1�  ) ymin

; (C.21)

where ymin � 1=
�
1� ��� �
 ��1�

�
and ymax � 1=

�
1� ��� 
 ��1�

�
from (B.14). Consider now the

stationary locus _̀ = 0 in (C.14). Recalling Proposition 2 and results (36) and (35), substitutability

implies

lim
`!0+

�` (`) = �m+
��

`1�'
= +1 with lim

`!0+
"m;L = � (1� ') and lim

`!1
~" = "m;L = �� (1� ')

(C.22)

and the exact shape of the _̀ = 0 locus for high values of ` depends on the sign of �� (1� '). For
� 6 1� ', the _̀ = 0 locus is monotonously decreasing and asymptotically horizontal,

� 6 1! d�` (`)
d`

< 0 with lim
`!+1

�` (`) = �m (C.23)

whereas for � > 1� ', the _̀ = 0 locus is U-shaped,

� > 1! 9 ^̀> 0 : d�
` (`)

d`

8<: < 0 for 0 < ` < ^̀

> 0 for ^̀< ` <1
< 0 and lim

`!+1
�` (`) =1 (C.24)

Recalling the properties of the _b = 0 locus derived in (C.21), it follows that the existence of

simultaneous steady states satisfying _b = _̀ = 0 falls into the following cases and subcases:

� 6 1� ' In this case, the combination of (C.21) and (C.23) implies that, provided the general

existence condition bmax < �m < bmin is satis�ed, there certainly exist two simultaneous

steady states _b = _̀ = 0 respectively charcterized by the labor-resource ratios `0ss and `
00
ss with

`0ss > `00ss, as shown in Figure 2, phase diagram (f).

� > 1� ' In this case, the combination of (C.21) and (C.24) implies that, provided the general

existence condition bmax < �m < bmin is satis�ed, we can either have no steady state (that is,

the _̀ = 0 locus is always strictly above the _b = 0 locus) or two simultaneous steady states

16



charcterized by the labor-resource ratios `0ss and `
00
ss with `

0
ss > `00ss, as shown in Figure 2,

phase diagram (g).22 The case with no steady state arises when the spillover is extremely

strong: in graphical terms, the _̀ = 0 locus shifts upwards so much that no intersection with

the _b = 0 locus exists. But when spillovers are not that strong, the intersections between the

two loci are two, as shown in Figure 2, diagram (g).

Assuming that two steady states (b0ss; `
0
ss) and (b

00
ss; `

00
ss) exist, their stability properties can be

derived as follows. First, consider the steady state (b00ss; `
00
ss) characterized by low labor-resource

ratio. As shown in Figure 2, this is an intersection in which the _̀ = 0 locus cuts the _b = 0 locus

from above while both loci are strictly declinling, that is,�
@�b (`)

@`
� @m� (`)

@`

�����
`=`00ss

> 0: (C.25)

Result (C.25) implies that the determinant (C.19) evaluated in the steady state (b00ss; `
00
ss) is strictly

positive, j�00ssj > 0, and this implies that the eigenvalues ({1;{2) are both real and have the same
sign. Since @m�(`)

@`

���
`=`00ss

< 0, the polynomial in (C.20) exhibits the signs (+;�;+), which implies
by Descartes rule that no root can be negative. Hence, both ({1;{2) must be strictly positive.

Therefore the steady state (b00ss; `
00
ss) is an unstable node and acts as a �mortality trap�: if the initial

labor-resource ratio ` (0) is strictly below `00ss, the equilibrium path diverges to limt!1 ` (t) = 0 and

thereby population implosion, limt!1 L (t) = 0.

Next, consider the steady state (b0ss; `
0
ss) characterized by low-fertility and high labor-resource

ratio. As shown in Figure 2, this is an intersection in which the _̀ = 0 locus cuts the _b = 0 locus

from below, that is, �
@�b (`)

@`
� @m� (`)

@`

�����
`=`0ss

< 0: (C.26)

Result (C.26) implies real roots because the solution to (C.20) includes the positive term�
�� `ss �

@m� (`)

@`

�2
� 4�`ss

�
@�b (`)

@`
� @m� (`)

@`

�
> 0:

Also, result (C.26) implies that the determinant (C.19) evaluated in the steady state (b0ss; `
0
ss) is

strictly negative, j�0ssj > 0, so that the real roots have opposite sign. Therefore the steady state

(b0ss; `
0
ss) is saddle-point stable and acts as an attractor: if the initial labor-resource ratio ` (0) is

strictly above `00ss, the equilibrium path converges to limt!1 ` (t) = `0ss along the stable arm of the

saddle.
22The only potential exception would be the rather implausible case in which the _̀ = 0 locus is tangent to the

_b = 0 locus from above, which we do not discuss for simplicity.
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Cobb-Douglas: dynamics with � = 1 and proof of Proposition 6. The properties of the

stationary locus (C.14) under � = 1 directly follow from result (32) in Proposition 2. On the one

hand, From (C.10), the stationary locus _b = 0 is the horizontal straight line

_b = 0! �b � b =
� (1� �) (1�  ) �y
1� (1�  ) �y :

On the other hand, from (C.14) and (32), the stationary locus _̀ = 0 becomes

_̀ = 0! �` (`) � b = m� (`) = �m+ ~� � ` (t)�(1��)�(1�') :

Assuming that the general existence condition �b > �m is satis�ed, we obtain the general cases

described in diagrams (b)-(c)-(d) of Figure 2. If � (1� �) < 1 � ', the _̀ = 0 locus is decreasing:

since
@�b

@`
� @m� (`)

@`
= �@m

� (`)

@`
> 0; (C.27)

the eigenvalues are both real and positive, the steady state is an unstable node and thus acts as

a mortality trap generated by deadly spillovers. Instead, if � (1� �) > 1 � ', the _̀ = 0 locus is

increasing: since
@�b

@`
� @m� (`)

@`
= �@m

� (`)

@`
< 0 (C.28)

the eigenvalues are both real and have opposite signs, the steady state is saddle-point stable

and thus acts as a regular steady state generated by deadly spillovers. The knife-edge case

� (1� �) = 1� ' predicts exponential population growth or decline (including the possibility that
population implodes exponentially with deadly spillovers though it would explode exponentially

without spillovers).

Complementarity: dynamics with � < 1. Under complementarity, deadly spillovers bear

quantitative e¤ects by modifying the position of the unstable steady state but do not yield quali-

tative e¤ects: contrary to the case with substitutability, pollution externalities do not create addi-

tional steady states. The intuition for this result can be easily veri�ed in Figure A2, where phase

diagram (a) refers to the model without deadly spillovers (see the Appendix section on �Dynamics

with exogenous mortality�above) and phase diagrams (b) and (c) refer to the model with deadly

spillovers under di¤erent parametrizations. Phase diagrams (b) and (c) can be straightforwardly

obtained by superimposing the equilibrium mortality rates derived in Figure 1 in the phase diagram

without spillovers 2A.(a). Without deadly spillovers, there only exists one steady state, which is

unstable. With deadly spillovers, the unstable steady state still exists and is pushed north-east,

but there no additional steady states created by endogenous mortality.
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D Appendix: Growth, Emission Taxes and Resource Booms

D.1 Consumption, growth and welfare

Derivation of (40). Using (24) to substitute pcC in (21), and rearranging terms, we have the

static equilibrium condition

px (t)x (t) =
1


 ��1�
� pq (t)Q (t)

N (t)
=

1


 ��1�
� pq (t) �Qi (t) ; (D.1)

where Qi = Q=N is commodity use by each intermediate producer. From the �rst-order con-

dition (ii) in expression (A.21), net employment in intermediate production equals Lxi � � =

(1� 
) ��1� pxx �
1
w . Substituting this expression with w = 1 in the technology of intermediate

producers (12), we have

x (t) = zi (t)
�Qi (t)


 (Lxi (t)� �)
1�
 = zi (t)

�Qi (t)



�
(1� 
) �� 1

�
px (t)x (t)

�1�

;

where we can use (D.1) to substitute pxx in the last term, obtaining

x (t) = zi (t)
� �
�
1� 




� pq (t)
�1�


� Q (t)
N (t)

: (D.2)

Substituting x (t) = C (t)N (t)�
�

��1 from (22), we obtain

C (t) = N (t)
1
��1 zi (t)

� �
�
1� 




�1�

pq (t)

�
 � pq (t)Q (t) : (D.3)

Substituting pq (t)Q (t) = 
 ��1� pc (t)C (t) from (24) in (D.3) yields

C (t) = N (t)
1
��1 zi (t)

� �
�
1� 




�1�

pq (t)

�
 � 
 �� 1
�

� pc (t)C (t)

and therefore
1

pc (t)
= N (t)

1
��1 zi (t)

� �
�
1� 




�1�



�� 1
�

pq (t)
�
 : (D.4)

Substituting 1
pc(t)

from (D.4) in the de�nition C (t) = L(t)y(t)
pc(t)

gives equation (40) in the text.

Equilibrium utility: derivation of (46). Combining the utility-maximizing condition (A.5)

with the de�nition of total consumption C = cLL+ cBB yields

c�Lc
1��
B = cL �

�
1� �
�

� L
B

�1��
(D.5)

as well as

cL = �
C

L
(D.6)
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Substituting (D.5) in the instantaneous utility (6), and then using (D.6) to eliminate cL from the

resulting expression yields

u = c�Lc
1��
B b (1��)L = cL �

�
1� �
�

� L
B

�1��
� b (1��)L ;

u = �� (1� �)1�� � C �
�
L

B

�1��
� b (1��)L �1;

u = �� (1� �)1�� � C � b( �1)(1��)L �1: (D.7)

From (40), consumption equals

C =
�� 1
�



 (1� 
)1�
 � L � y � T � p�
q (D.8)

Substituting (D.8) in (D.7), we obtain

u = ��

 (1� �)1�� (1� 
)1�
 �� 1
�

� y � T � p�
q � b( �1)(1��)L :

and therefore

lnu = ��+ ln y + lnT � 
 ln pq � (1�  ) (1� �) ln b+  lnL

where we have de�ned �� � ln��

 (1� �)1�� (1� 
)1�
 ��1
� .

Proof of Proposition 7. As a �rst step, we derive the equilibrium growth rate of �rms

knowledge. From (A.23) with w = 1 and �z = zi by symmetry, we have

_#z
#z
= r + � � �� 1

�
� ��pxixi: (D.9)

From foc (iii) in expression (A.21), symmetry implies #z�zi = 1 where � is constant, so that

_#z=#z = � _zi=zi. Equation (D.9) thus yields

_zi
zi
=
�� 1
�

� ��pxixi � r � �: (D.10)

Exploiting the de�nitions y = pcC=L and ` = L=
, we can rewrite the equilibrium output condition

(21) and the Keynes-Ramsey rule (8), respectively, as

pxixi =
yL

N
; (D.11)

r =
_y

y
+
_̀

`
+ �: (D.12)

Substituting both (D.11) and (D.12) in (D.10), the equilibrium growth rate of �rms knowledge

reads
_zi (t)

zi (t)
=
�� 1
�

� ��y (t)L (t)
N (t)

� _y (t)

y (t)
�
_̀ (t)

` (t)
� �� �: (D.13)
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Next consider horizontal innovations. Time-di¤erentiating the free-entry condition (16) we have

_Vi
Vi
=

�
(pxixi)

pxixi
=
_y

y
+
_̀

`
�

_N

N
; (D.14)

where the last term follows from time-di¤erentiation of (D.11). From the de�nition of present-

value pro�ts (15), the growth rate of Vi must obey the dynamic no-arbitrage condition _Vi=Vi =

r+ �� (�i=Vi). Substituting this condition in (D.14) and solving the resulting expression for _N=N ,
we obtain

_N

N
=
�i
Vi
+
_y

y
+
_̀

`
� (r + �) = �i

Vi
� �� �; (D.15)

where the last term follows from substituing r with (D.12). From (14) and (A.22), the pro�t rate

with w = 1 can be written as

�i
Vi
=

1
�pxixi � �� Lzi

Vi
=

1
�pxixi � �� Lzi

�pxixi
(D.16)

where the last term follows from the free-entry condition (16). Substituting (D.16) in (D.15), and

using (D.11) to substitute pxixi, yields

_N (t)

N (t)
=
1

�

�
1

�
� (�+ Lzi (t))

N (t)

y (t)L (t)

�
� �� �: (D.17)

From the knowledge accumulation equation (13) under symmetry, we can substitute Lzi =
1
�
_zi
zi
in

(D.17) to obtain the equilibrium growth rate of the mass of �rms

_N (t)

N (t)
=
1

�

�
1

�
�
�
�+

1

�

_zi (t)

zi (t)

�
N (t)

y (t)L (t)

�
� �� �: (D.18)

Equations (D.13) and (D.18) determine the joint dynamics of vertical and horizontal innovation

rates. The growth rate of knowledge may be either strictly positive �i.e., the case in which vertical

R&D activities are operative �or zero �i.e., the case in which parameters are such that no labor is

invested in knowledge accumulation. In either case, it is already apparent from (D.18) that the mass

of �rms N (t) follows a logistic process with time-varying coe¢ cients. For the sake of generality,

we hereby focus on the case in which vertical R&D is operative. Using (D.13) to substitute the

growth rate of knowledge in (D.18), we obtain

_N (t)

N (t)
=
1

�

"
1� � (�� 1)

�
� � N (t)

y (t)L (t)
� 1

�

 
_y (t)

y (t)
+
_̀ (t)

` (t)
+ �+ �

!
N (t)

y (t)L (t)

#
� �� �: (D.19)

Clearly, if the economy converges to a regular steady state (bss; `ss), population L = Lss and

expenditure per adult y� (`ss) = yss are both constant and the growth rate of the mass of �rms

reduces to
_N (t)

N (t)
=
1

�

�
1� � (�� 1)

�
�
�
�� �+ �

�

�
N (t)

yssLss

�
� �� �; (D.20)
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which converges to zero with a constant mass of �rms given by

Nss � lim
t!1

N (t) =
1� � (�� 1)� �� (�+ �)

��� �� � � �
�
� yssLss; (D.21)

which proves expression (44) in Proposition 7. Note that, from the equilibrium condition (26)

evaluated in the steady state, the product yss � Lss equals

yss � Lss =
Lss + p!;ss


1� ��� �
 ��1�
: (D.22)

Based on result (D.21), we can calculate the long-run growth rate of �rms knowledge from (D.13)

as

lim
t!1

_zi (t)

zi (t)
=
�� 1
�

� ��yssLss
Nss

� �� � = � (�� 1) (��� �� �)
1� � (�� 1)� �� (�+ �) � �� �; (D.23)

which proves expression (45) in Proposition 7.

D.2 Commodity Tax

Proof of Proposition 8. The proof comprises �ve steps, namely, (i) proving dy�
�
�̀
�
=d� > 0, (ii)

proving dp�!
�
�̀
�
=d� < 0, (iii) proving dm� ��̀� =d� > 0, (iv) proving d`0ss=d� > 0 and d`00ss=d� < 0,

and (v) proving that dp�!
�
�̀
�
=d� > 0.

Step 1: proof of dy�
�
�̀
�
=d� > 0. This result can be easily proved graphically by means of

Figure A1. From the static equilibrium conditions (B.11)-(B.12), recalling that 0 < �(p!) < 1, it

is easily established that changes in � for given ` yield the following marginal e¤ects

@y1 (p!; `)

@�
> 0;

@y2 (p!)

@�
> 0 and

@ymin
@�

> 0: (D.24)

Since both y1 (p!; `) and y2 (p!) shift upwards following an increase in � , it follows that the equi-

librium level of expenditure per adult is also increasing in the tax rate, dy�
�
�̀
�
=d� > 0 for given

�̀.

Step 2: proof of dp�!
�
�̀
�
=d� < 0. To simplify notation, in the remainder of this proof we will

denote y�
�
�̀
�
, p�!

�
�̀
�
and �

�
p�!
�
�̀
��
by y�, p�!, and �(p

�
!), respectively. Total di¤erentiation of (26)

and (27) with respect to � in equilibrium gives, respectively,

dp�!
d�

� 1
`
=

dy�

d�
�
�
1� ��� �
 �� 1

�

�
� y� � 
 �� 1

�
; (D.25)

dp�!
d�

� 1
p�!

= � 1

1� � +
d�(p�!)
d�

� 1

� (p�!)
+
dy�

d�
� 1
y�
: (D.26)

Focusing on (D.26), note that by construction, d�(p�!) =d� = (@�=@p�!) � (dp�!=d�) so that, from
the de�nition of "�;p�! in (B.37), we have

d�(p�!)
d�

� 1

� (p�!)
=
@�(p�!)

@p�!
� p�!
�(p�!)| {z }

"�;p�!

� dp
�
!

d�
� 1
p�!
= "�;p�! �

dp�!
d�

� 1
p�!
: (D.27)
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Substituting result (D.27) into (D.26), and solving for (dp�!=d�), we obtain

dp�!
d�

� 1
p�!
�
�
1� "�;p�!

�
=
dy�

d�
� 1
y�
� 1

1� � : (D.28)

Now consider equation (D.25): rearranging terms to solve for (dy�=d�), we have

dy�

d�
� 1
y�
�
�
1� ��� �
 �� 1

�

�
=
dp�!
d�

� 1
`
� 1
y�
+ 


�� 1
�

;

where we can substitute
�
1� ��� �
 ��1�

�
= 1+p�!=`

y� from (26) as well as 
 ��1� = p�!=`
(1��)���y� from

(27), to obtain
dy�

d�
� 1
y�
=

p�!=`

1 + p�!=`
�
�
dp�!
d�

� 1
p�!
+

1

(1� �) ��(p�!)

�
: (D.29)

Using (D.29) to substitute (dy�=d�) into the right hand side of (D.28), we have

dp�!
d�

� 1
p�!
�
�
1� "�;p�! �

p�!=`

1 + p�!=`

�
| {z }

strictly positive

=
1

1� �

�
p�!=`

1 + p�!=`
� 1

� (p�!)
� 1
�
; (D.30)

where the term in round brackets in the left hand side is strictly positive because, under strict

substitutability, "�;p�! < 0 holds (see expression (B.37) above). Therefore, the sign of (dp
�
!=d�) is

determined by the last term in square brackets in the right hand side of (D.30). By de�nition (20),

the cost share of resource use can be written as � � p!=`
(p!=`)+(LQ=L)

. Therefore, we have

p�!=`

1 + p�!=`
� 1

� (p�!)
=
(LQ=L) + (p

�
!=`)

1 + (p�!=`)
< 1; (D.31)

where the strict inequality must hold because LQ=L < 1 is necessary to have positive production

in the intermediate sector. It follows from (D.31) that the last term in square brackets in the right

hand side of (D.30) is strictly negative. Hence, the equilibrium resource price is strictly decreasing

in the tax rate, dp�!=d� < 0 for given `.

Step 3: proof of dm� ��̀� =d� < 0. To simplify notation, denote m� ��̀� by m�. Since � > 1

implies @�=@p�! < 0, it follows from the previous result dp�!=d� < 0 that, for given `,

d�(p�!)
d�

=
@�(p�!)

@p�!
� dp

�
!

d�
> 0: (D.32)

From the equilibrium mortality rate (33) in Proposition 2 we thus have

dm�

d�
=
d
d�

�
�m+ �� ��

�
1��� � `�(1�')

�
= ��`�(1�') � �

1� �� �
d�(p�!)
d�

< 0; (D.33)

where the negative sign comes from � > 1 combined with (D.32) above.

Step 4: proof of d`0ss=d� > 0 and d`
00
ss=d� < 0. This result hinges on two e¤ects that correspond

to two shifts in the steady-state loci of the dynamic system (37)-(38), as graphically shown in Figure
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3, diagram (a). First, the _̀ = 0 locus reads b = m� (`) and shifts downwards in the phase plane

in view of the result dm� ��̀� =d� < 0. Second, from (C.15), the _b = 0 locus is strictly increasing

in expenditure per adult y� and therefore shifts upwards in the phase plane in view of the result

dy�
�
�̀
�
=d� > 0. Both these shifts imply that an increase in � widens the distance between the two

steady states, pushing the regular input ratio `0ss to the right and the extinction threshold `
00
ss to

the left, as shown in Figure 3, diagram (a).

Step 5: proof of dp�q
�
�̀
�
=d� > 0. From (B.19), we have

p�q
�
�̀
�
=

1

1� � �
"

��

p�!
�
�̀
���1 + (1� �)�

#

so that an increase in � for given �̀ has two e¤ects: a direct one, which is strictly positive, and

an indirect on working through p�!
�
�̀
�
. Having proved that dp�!

�
�̀
�
=d� < 0, the fact that � > 1

implies a negative relationship between p�!
�
�̀
�
on p�q

�
�̀
�
yields a strictly positive indirect e¤ect of �

on p�q
�
�̀
�
and thereby a strictly positive overall e¤ect of � on p�q

�
�̀
�
.

D.3 Resource Booms

Proof of Proposition 9. From Proposition 2, the _̀ = 0 locus with � > 1 reads

_̀ = 0! b = m� (`) � �m+ �����
�

��1
��(1�') ��(`)
�

1��� � `�(1�')

where the term 
��(1�') implies that

dm� (`)

d


8>><>>:
> 0 if � > 1� '
= 0 if � = 1� '
< 0 if � < 1� '

9>>=>>; for any ` > 0 (D.34)

From (D.34), following an increase in the resource base 
, the _̀ = 0 locus in the phase diagram

shifts upwards when � > 1� ', shifts downwards when � < 1� ', and does not shift when � = 1.
Since the position _b = 0 locus is not a¤ected by the resource base 
, the input ratio levels associated

to the mortality threshold and the regular steady state respectively react to the resource boom as

follows

d`00ss
d


=

8>><>>:
> 0 if � > 1� '
= 0 if � = 1� '
< 0 if � < 1� '

9>>=>>; and
d`0ss
d


=

8>><>>:
< 0 if � > 1� '
= 0 if � = 1� '
> 0 if � < 1� '

9>>=>>;
which completes the proof. �
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