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1 Introduction

I believe that some sort of computerized participation by large numbers of the

public in opinion formation and direct policy-making is in the cards in the next

ten to twenty years. It may be that we will be able to turn this new technology

to the improvement and defense of democratic institutions. I hope so. However,

it is by no means evident that this will be the result. (Martin Shubik, 1970,

commenting on Miller, 1969)

In Western societies, the sense of living in a crisis of traditional political institutions is

bringing calls for different, more participatory forms of democracy. Among these, Liquid

Democracy has caught the imagination of the young and the tech-savvy. It advocates a

voting system where all decisions are submitted to referendum, but voters can delegate their

votes freely. Beyond its intellectual roots in the writings of Charles Dodgson (in particular,

Dodgson, 1884), Liquid Democracy was proposed more recently by James Miller in 1969.

It has been adopted occasionally for internal decisions by European protest parties–the

Swedish and the German Pirate parties being the most famous examples–and now finds

vocal support in the tech community, where it aligns both with the emphasis on a non-

hierarchical order and with the use of cryptographic tools to maintain confidentiality and

reliability.1 Although the details vary, the common point of different implementations is

the ease and specificity of delegation. Supporters herald it as the golden medium between

representative and direct democracy: better than the former because representatives can

be chosen according to their specific competence on each decision, better than the latter

because uninformed or uninterested voters can delegate their votes.

There is a clear, immediate problem: are experts correctly identified? But there is

also a second, more subtle, but also more fundamental question: even if the experts are

correctly identified, delegation deprives the electorate of the richness of noisy but abundant

information distributed among all voters. Unless the extent of delegation is modulated

correctly, Condorcet has taught us that a smaller number of independent voters, even if

more accurate, may well lead to worse decision-making. This very basic trade-off is the

necessary point of departure of Liquid Democracy and is the focus of this paper.

We study a canonical common interest model where voters receive independent signals,

conditional on an unknown state ex ante equally likely to take one of two values. The

1See for example LiquidFeedback (https://liquidfeedback.com/en/), the Association for In-
teractive Democracy (https://interaktive-demokratie.org/association.en.html), or Democracy.Earth
(https://democracy.earth/). Google ran a 3-year experiment on its internal network, implementing Liquid
Democracy for decisions like food menu choices, tee-shirt designs, or logos for charitable events (Hardt and
Lopes, 2015). Liquid Democracy is becoming the governance choice for cryptoworld DAOs (Decentralized
Autonomous Organizations)–see for example Element Finance (https://medium.com/element-finance).
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common objective is to identify the state correctly, aggregating information via majority

voting. Signals vary across individuals in the probability of being correct—a variable we

denote as precision. Experts are publicly identified and the precision of their signals is known;

for all other voters, signals’ precisions are private information but known to be weakly lower

than the experts’. If a voter chooses to delegate, the vote is randomly assigned to one of the

experts. We begin by showing theoretically that for any size of the group and any number of

experts, there is an equilibrium with positive delegation such that the outcome is superior to

majority voting without delegation. However, in such an equilibrium delegation must not be

too frequent, given its informational cost. The finding is not surprising, but the equilibrium

frequency is counter-intuitively low. For example, consider one of the parametrizations we

study: a group of 15 voters of which 3 are experts; the experts’ information is correct with

probability 70%, while the precision of non-experts’ signals can take any value between 50

and 70%, with equal probability. Then only non-experts with signals of precision close to

random should delegate: a non-expert with information that she knows is only 55% likely to

be correct should not delegate to experts whom she knows to be correct with probability 70%.

And mistakes are costly: small errors towards over-delegation lead to expected losses that

soon become severe. In actual implementations, other factors, for example overconfidence

and overweighing of own information, could introduce countervailing forces. It is with these

concerns in mind that we test Liquid Democracy with two very different experimental designs.

Before describing the experiments in detail, note that the informational benefit from

overweighing voters with more precise signals can be achieved via abstention as well, as

long as abstention correlates with less accurate signals. Abstention differs from delegation

because the increase in voting weight concerns all individuals who choose to vote, not only

those targeted as delegates. Yet, we know from McMurray (2013) that, under common

interest and in the absence of voting costs, it too can lead to improvements over simple

majority voting, and for reasons very similar to those favoring delegation. Abstention is

a familiar option and does not require any transfer of votes, reducing the appearance of

suspicious deals. Its performance relative to delegation is thus an interesting question per

se, and our experiments compare the two alternatives.

The first experiment was designed for the lab and follows the theory very closely. We

study groups of either 5 voters (of which 1 is an expert) or 15 voters (of which 3 are experts).

We observe the frequency of delegation and the fraction of group decisions that yield the

correct outcome. We then compare these results to a second treatment, where the option

of abstention takes the place of delegation. Finally, we evaluate both treatments relative

to simple majority voting with voting by all. We find systematic over-delegation: delega-

tion rates that are between two and three times the rate in the unique strict equilibrium,
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given the realized experimental precisions. As a result, Liquid Democracy (LD) underper-

forms, relative to simple majority voting without delegation. Under Majority Voting with

Abstention (MVA), abstention rates are instead very close to the theory, and the fraction

of correct decisions is comparable to what majority voting without abstention (or delega-

tion) would deliver. Interestingly, MVA suffers from its own sub-optimal behavior: in our

symmetric environment, voting in line with one’s own signal is optimal, but experimental

subjects occasionally deviate, and deviate more when abstention is allowed. In the data,

voting according to signal correlates positively with the signal’s precision, and since more

subjects vote under abstention, at lower precisions, we also observe more votes against sig-

nal. Although the frequency of such deviations remains low, the result is a decline in correct

group decisions that prevents MVA from reaping the gains over universal voting that theory

predicts. The conclusion of our first experiment, then, is that even when experts are cor-

rectly identified and both LD and MVA have the potential to dominate universal majority

voting, both systems in fact fail to do so. LD in particular shows a more clearly detectable

negative effect.

The experimental design we implemented is canonical: it follows standard procedures

for voting experiments with common values and has been widely and successfully used in

the literature (for example, Guarnaschelli et al., 2000; Battaglini et al., 2010; Goeree and

Yariv, 2011). But could the design itself be biasing results against LD and MVA? There

are three reasons to consider the question. First, as mentioned, the theoretical thresholds

for equilibrium delegation seem counter-intuitive. But what makes them counter-intuitive,

in our view, is not their low value per se but the detailed mathematical manner in which

information is conveyed in the experiment. Each participant is told a number for her own

precision and is naturally induced to compare such number to the known precision of the

experts–in the earlier example, the fact that 55% is transparently lower than 70% makes

the difference very salient. In reality, voting decisions take place in an ambiguous world,

where individuals do not have explicit numerical knowledge of the reliability of their and

others’ information. Evaluations are fuzzier. Second, and related, a similar argument may

affect voting against signal under MVA. The detailed mathematical design gives us clean

theoretical predictions, but could in fact be confusing participants, no matter how much

we clarify the instructions. At 55% precision, thinking that one should vote against signal

about half the time is a reasonable enough thought. In an actual voting situation, however,

lacking an explicit mathematical value for the probability that one’s information is correct,

it is unlikely that individuals would vote against their best estimate of the right decision.

Finally, there is a third reason for considering a less controlled environment. Could our

detailed mathematical design be favoring universal majority voting? In a still current analy-
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sis of the Condorcet Jury theorem, suggestively titled “A Note on Incompetence,” Margolis

(1976) discussed the tension between the asymptotic efficiency promised by the theorem

and political reality. The existence of private interests, correlated signals, and asymmetric

scenarios all may lead direct democracy to function less well, but Margolis proposed a differ-

ent explanation. What if, over some questions and for some voters, information is actually

correct with probability lower than 1/2? For any individual voter this will not be true when

averaging over many decisions, but may well be true over some. And it will affect the prob-

ability that the majority decision is correct. By opening some space for improvement over

universal majority voting, note also that the possibility of worse than random information

allows testing LD in larger electorates, where it is meant to be applied, while maintaining

pure common interest and independent signals. We see this as an additional argument for a

less mathematically precise environment.2

Our second experiment then is meant to capture a voting environment where voters have

“some sense” of how well-informed they are and how likely they are to be correct, and

similarly of how likely experts are to be correct, but such sense is vague and instinctive.

There is of course a cost: we lose the precise control granted by Experiment 1. However,

even though our aims are different, we can exploit a very rich literature that studies problems

with exactly these features: the large literature in psychology and neuroscience that studies

perceptual tasks. Our focus is not on measuring accuracy of perception, but on designing

the task as a group decision problem.3

The Random Dot Kinematogram (RDK) is a classic perceptual task amply used in vision

and cognitive research.4 A number of moving dots are displayed for a very short interval;

some move in a coherent direction, either Left or Right in our binary implementation, others

move at random; subjects report in which direction they think coherent dots are moving.

We can label experts ex post as the individuals with performance in the highest quintile, and

generate a collective decision by aggregating individual responses, with the additional option

of delegation to the experts (in the LD treatments) or abstention (in the MVA treatments).

2Note that with binary choices, conveying information with less than random accuracy requires adding
a second level of noise – noise in information about the accuracy of one’s noisy signal. (In the absence of
noise, if it is known that a signal is more likely to be wrong than right, it is also known that its negative is
more likely to be right than wrong). An extra layer of noise could be introduced in precise mathematical
form. We choose instead to investigate the realistic ambiguity of collective decision-making.

3After having completed this study, we discovered an intriguing parallelism to Margolis’ own thinking
after the 1976 article. Margolis went on to advocate understanding judgement, including judgement in voting
and political reasoning, through the lens of pattern recognition, starting with perception biases (Margolis,
1987).

4It was originally developed to study the perception of motion under noisy conditions in humans and
non-human primates (e.g. van de Grind et al., 1983). In neuroscience, it has been used to study the neuronal
correlates of motion perception (Newsome et al., 1989; Britten et al., 1992; Roitman and Shadlen, 2002).
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We ran the experiment on Amazon Mechanical Turk with three electorate sizes: N = 5 and

N = 15, as in Experiment 1, and a larger electorate of N = 125.

We reach three results. First, in our experiment it is not rare for individuals’ accuracies

to be worse than random. And this even over a large number of decisions: aggregating at

the subject level over all 120 tasks, around 10% of subjects have ex post accuracy strictly

below randomness; about 15% do no better than randomness. If we want to study voting

and information aggregation when information may be faulty, perceptual tasks can provide

a very useful tool.

Second, comparing delegation to abstention we find the same patterns we saw in Exper-

iment 1. The distributions of voters’ accuracies we observe in the two samples—LD and

MVA—are effectively identical, but delegation is twice as frequent than abstention when

N = 5, and more than 50% more frequent when N = 15,5 if anything accentuating the

disparity observed in the first experiment. Between one fourth and one third of subjects

choose to abstain, but about half, in all treatments, choose to delegate.

Third, the high frequency of delegation exacts its expected informational costs. Even

with a relatively high fraction of random, or below random subjects, universal majority

voting remains the best information aggregator, delivering the highest frequency of correct

group decisions in all treatments; MVA is only slightly less efficient, while LD is dominated

by both in all treatments.

The main contribution of this study is the robustness of the conclusions across two very

different experimental designs. The second design sacrifices experimental control in exchange

for a less mathematical formulation; it conveys less information to the subjects and leaves

more space for idiosyncratic responses; it is run on MTurkers rather than students, it is much

shorter, and it includes one treatment with a much larger group. And yet, and contrary

to our expectations, treatment effects in the second design closely replicate the effects we

observe in the first. In a pure common interest setting where experts are correctly identified,

individuals over-delegate. The resulting increase in the voting weight of the experts does

not lead to an increase in efficiency because the extent of delegation is too high, and thus

the net informational effect is negative. Experimental subjects are less prone to abstaining,

and thus the simpler routine option of allowing abstention leads to better outcomes than

allowing delegation.

The second contribution of this study is methodological. While the controlled design

of our first experiment in the end delivers robust conclusions, we think that it is impor-

tant to add to our experimental tool-kit designs that recognize the ambiguity present in

group decision-making. Experiments on ambiguity at the individual level are common; to

5It is 75% more frequency when N = 125.
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our knowledge they are much less so for collective decision-making.6 In voting problems,

in particular, the complexity of many questions and the imbalance between the cost of ac-

quiring information and the small marginal impact of a single vote make the lack of precise

information very likely. Perceptual tasks, with the large and sophisticated literature that

accompanies them, can be a particularly usable tool. In this study, it is the combination of a

strictly controlled design in the lab with the freer design of the perceptual task that teaches

us the most.

Our work is related to three separate literatures. First, to the study of voting as infor-

mation aggregation. The informational costs and benefits of delegating to better informed

individuals in pure common interest voting problems were the subject of early studies on

the Condorcet Jury theorem (Margolis, 1976; Grofman et al., 1983; Shapley and Grofman,

1984), highlighting, as we do, the trade-off between the loss in aggregate information and

the more precise information of the experts. These studies asked important statistical ques-

tions but did not focus on rational equilibrium behavior. More recent work (Austen-Smith

and Banks, 1996; Feddersen and Pesendorfer, 1997; McLennan, 1998; Wit, 1998) put the

analysis of the Condorcet Jury theorem on solid equilibrium grounds, but abstracted from

the focus on delegation. We did not find in the literature our starting theoretical result—in

a finite sample, the efficient equilibrium must allow for delegation—but the result builds on

the work of McLennan. As we discussed, the trade-off identified in the case of delegation

exists also in the case of abstention. Here the best-known work includes partisan voters

(Feddersen and Pesendorfer, 1996), but the analysis can also be profitable and rich in a pure

common interest setting, as shown by Morton and Tyran (2011) in the case of three voters,

and more generally by McMurray (2013). Battaglini et al. (2010) and Morton and Tyran

(2011) test the theoretical predictions in the lab.7 Morton and Tyran’s model is close to

ours, and, contrary to Battaglini et al., allows for a range of information types and does

not rely on the existence of perfectly informed voters. Interestingly, Morton and Tyran

find that experimental subjects appear predisposed towards abstaining, doing so even when

abstention is dominated. In their words, subjects “follow a norm of “letting the experts

decide.”” According to our experimental results, this tendency is strengthened further when

the choice is explicitly phrased as delegation. We are not aware of experimental works that

study delegation in voting as tool for information aggregation.8

6There is an increasing focus on strategic uncertainty. But the question is different from the lack of
basic information about the distributions of relevant parameters in the population, and even about own
parameters (precisions, for us).

7See also Rivas and Mengel (2017), which extends to asymmetric priors McMurray’s model of abstention
and Morton and Tyran’s experiment.

8Kawamura and Vlaseros (2017) report the results of a voting experiment where a public statement by
an “expert” conveys additional information. The public statement moves every participant’s prior, and thus
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The second strand of related works are studies of Liquid Democracy. Most belong either

in normative political theory or in computer science. Green-Armytage (2015) and Blum and

Zuber (2016) discuss what they see as normative advantages of Liquid Democracy, on both

epistemic and equalitarian reasons: decisions are taken by better informed voters, and at

the same time LD avoids the creation of a detached class of semi-permanent professional

representatives. Because the focus is normative, these studies do not analyze strategic in-

centives. The computer science literature is instead largely concerned with understanding

how LD would work in practice. It models behavior via a priori algorithms and studies rich

interactions where delegation takes place on networks (Christoff and Grossi, 2017; Kahng,

Mackenzie and Procaccia, 2018; Bloembergen, Grossi and Lackner, 2019; Caragiannis and

Michas, 2019). These authors connect LD to the social choice tradition, but here too strate-

gic considerations are absent. An exception is Armstrong and Larson (2021) which discusses

the informational trade-off involved in delegation and focuses on a Nash equilibrium. The

paper retains the algorithmic flavor of this literature by modeling the delegation choice as

sequential; the common interest nature of the problem, together with the added assump-

tions of complete information and costly voting, then results in the equilibrium superiority

of delegation over universal majority voting. The theoretical conclusion is thus similar to

ours, but the model and the assumptions driving the result differ. Strategic concerns are

at the heart of two recent paper in economics, Ravindran (2021) and Dhillon et al. (2021).

In Ravindran’s model, voters’ types are binary and known, with either high or low infor-

mation accuracy, and the goal is the characterization of the efficient equilibrium. With a

single expert, optimal delegation is defined precisely; with multiple experts, complications

can arise although, as in Armstrong and Larson, they can be solved if delegation decisions

are sequential. Dhillon et al. study delegation in a model à la Feddersen and Pesendorfer

(1996), with partisan voters and perfectly informed experts. As in the papers just discussed,

they show that under complete information delegation has desirable properties: the game

is dominance-solvable and delegation allows voters to coordinate on the best equilibrium.

With incomplete information, multiple equilibria are more difficult to avoid and results are

weaker. None of these works is experimental.9

affects voting, but there is no actual delegation of votes. Delegation is studied instead in experiments that
focus on representative democracy and the aggregation of heterogeneous preferences in the electorate (see
for example, Hamman et al., 2011).

9The starting assumption of all the LD literature is imperfect information: voters are unsure about their
ideal policy option. Some works (Green-Armytage, 2015, Christoff and Grossi, 2017, Bloembergen, Grossi
and Lackner, 2019) allow for possibly heterogenous preferences; others (Kahng, Mackenzie and Procaccia,
2018; Caragiannis and Michas, 2019, Armstrong and Larson, 2021, Ravindran, 2021, Dhillon et al., 2021)
find stronger conclusions by simplifying the problem to common value models and information aggregation
alone, as we do here.
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Finally, a literature in social psychology studies a question that is closely related to

our second experiment: if a group of individuals face, individually, a perceptual task but

can then aggregate their reactions into a group decision, which decision rule for the group

will reach the correct answer most frequently? How does simple majority rule compare

to supermajority thresholds? In Sorkin et al. (1998), a small group of subjects are faced

with a signal detection task and asked whether the display reflects noise only or signal plus

noise. Although the group falls short of normative predictions, simple majority rule leads

to the highest accuracy. Individual behavior is modeled as reflecting two main parameters,

detection sensitivity and confidence, and the emphasis on confidence shapes the direction this

research has since taken. In small groups, decision typically follows discussion, and during

discussion individual confidence translates into influence. Communication thus threatens

group accuracy, unless confidence correlates positively with individual sensitivity (Sorkin et

al., 2001; Bahrami et al., 2012; Silver et al., 2021).10 Although it seems a natural next step,

we are not aware of similar studies that include the possibility of delegation.

In what follows, we begin by describing the theoretical model (Section 2) and its equi-

librium properties (Section 3). We then discuss our first experiment: its parametrization

and treatments (Section 4); its implementation (Section 5), and its results (Section 6). Sec-

tion 7 describes the motivation and the design of our second experiment; Section 8 reports

its results. Section 9 concludes. The Appendix collects longer proofs and some additional

experimental findings.

2 The Model

We study the canonical problem of information aggregation through voting in a pure common

interest problem. N (odd) voters face an uncertain state of the world ω and must take a

decision d. There are two possible states of the world, ω ∈ {ω1, ω2}, and two alternative

decisions d ∈ {d1, d2}. Every voter i’s payoff equals 1 if the decision matches the state of

the world (d = ds when ω = ωs, s = 1, 2), and 0 otherwise. Voters share a common prior

π = Pr(ω1) and receive conditionally independent signals σi ∈ {σ1, σ2} that recommend

one of the two decisions. We call qi the precision of individual i’s signal, or the probability

that i’s signal is correct. Precision varies across individuals but is symmetric over the two

possible states of the world: qi = Pr(σi = σ1|ω1) = Pr(σi = σ2|ω2).

The group of N voters is composed of K (odd) experts and M (even) non-experts.

Whether any given voter is an expert or a non-expert is commonly known. Every expert e

10The earlier experiments in this tradition studied a very large number of tasks, in the hundreds for each
subject, but a very small group of subject, as small as 8 or 12.

8



receives signals of known precision qe = p. The precision of a non-expert i’s signal is instead

private information: qi is an independent draw from a commonly known distribution F (q)

everywhere continuous over support [q, q] , with q = 1/2 and q = p. The signals themselves

are also private information, for both experts and non-experts. Each voter, whether expert or

non-expert, holds a single non-divisible vote. We denote by EU individual ex ante expected

payoff, before the realizations of precisions and signals. EU equals the ex ante probability

that the group reaches the correct decision.

Before the election, each voter receives a signal and is informed of the signal’s precision.

The voter then chooses whether indeed to vote, for one or the other of the two options, or

whether to delegate the vote, and in this case, whether to delegate it to an expert or to

a non-expert. If delegated, the vote is assigned randomly, with equal probability, to any

individual in the indicated category.11 When counting votes, each voter who has chosen not

to delegate receives a weight equal to the number of votes delegated to her, plus 1. The

decision receiving more votes is chosen.

With an eye to the experimental implementation, we will select equilibria that require

little coordination, and in particular such that experts never delegate, and non-experts only

delegate to experts. Hence, multi-step delegation (i delegates to j who delegates to z ) will

not be observed in equilibrium, and thus neither will circular delegation flows (i delegates

to j who delegates to z who delegates to i). The model nevertheless needs to specify what

would happen in such cases. We allow for multi-step delegation: if delegation targets a

voter who has herself chosen delegation, the full packet of votes is delegated according to her

instructions. However, if a set of delegation decisions results in a circular delegation flow,

we specify that one link in the cycle is chosen randomly and that delegation is redirected

randomly to another voter in the selected category.12

3 Equilibrium

We study an environment that matches the experimental set-up, and where, specifically,

π = Pr(ω1) = 1/2. In this symmetric environment, conditional on voting, voting according

11Random assignment of delegated votes is the natural assumption in the absence of distinguishing char-
acteristics across experts (and non-experts). It also leads to some desirable spreading of delegated votes, as
advocated for example by Gőlz et al. (2018). We note in passing that in our model mixing uniformly across
all voters of a given type when delegating is also an equilibrium strategy if voters can delegate to any specific
other voter.

12For example, suppose i and j (non-experts) delegate to z (an expert), and z delegates to i. Then one
of i, j, and z is chosen randomly; if either i or j are chosen, all three votes are delegated to another random
expert; if z is chosen, all three votes are delegated to another random non-expert. If all voters in the target
category are delegating to someone in the cycle, then a different link in the cycle is chosen. If all N voters
are in the cycle, no voting occurs and the decision is taken with a coin toss.
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to signal is an undominated strategy—a result that holds whether delegation is allowed, as

in our model, or is not, as in traditional majority voting. Keeping in mind the experimental

goal of the study, we focus on equilibria that require minimal coordination and in particular

where the delegation decision depends on the signal’s precision, but not on its message.

Thus, we select semi-symmetric Perfect Bayesian equilibria in undominated strategies where,

when voting, voters follow their signal, and voters of a given type (non-experts or experts)

follow the same strategy, symmetric across signals. In what follows, “equilibrium” refers to

such a notion.13 We are interested in the welfare properties of delegation, and say that an

equilibrium “strictly improves over majority voting” if in equilibrium the ex ante probability

of reaching the decision that matches the state of the world is strictly higher than under

(sincere) majority voting (MV), or EULD > EUMV . Our most general theoretical result is

summarized in the following theorem:14

Theorem. Suppose π = Pr(ω1) = 1/2. Then for any F and for any N and K odd and finite

there exists an equilibrium with delegation that strictly improves over MV.

The result is interesting because the environment we are studying is particularly favorable

to MV. Given the symmetric prior and information structure, the Condorcet Jury theorem

applies to rational voting, and thus we know that with voters voting sincerely MV converges

to the correct decision with probability 1 asymptotically, as the size of the electorate becomes

unbounded. In addition, we are restricting our attention to semi-symmetric equilibria under

LD, and thus excluding asymmetric profiles of strategies that we know are efficient but that

require demanding coordination.15 And yet, the theorem states that with a finite electorate

there always exists an equilibrium where the possibility of delegation strictly improves over

MV.

We prove the theorem in the Appendix, but the intuition is both straightforward and

interesting. The essence of the proof is that, when delegation is possible and some voters’

information may be barely better than random, there cannot be an equilibrium where dele-

gation is excluded with probability 1: every voter casting their vote with probability 1 (and

thus replicating MV) is not an equilibrium. But in this common interest problem, we know

13To be clear: the symmetry restrictions we impose are equilibrium selection criteria, not assumptions.
14Although we study the default canonical model of information aggregation under common interest, we

have not found the result in the literature. Results with similar flavor do exist (see for example Grofman,
Owen and Feld (1982) and (1983)).

15Building on Nitzan and Parouch (1982), and Shapley and Grofman (1984), Ravindran (2021) character-
izes the highest welfare equilibrium in the case of a single expert. It is an asymmetric equilibrium where the
total number of votes delegated to the expert mirrors the expert’s precision (more precisely, is proportional
to ln(p/(1− p)). In principle, other equilibria may also exist where delegation is used to convey the content
of the signal. The extent of coordination they would require makes them implausible in the lab, and we
ignore them here.
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from McLennan (1998) that if a set of strategies that maximizes expected utility exists, then

it must be an equilibrium. We show in the Appendix that such a set does exist in our game,

and thus an equilibrium must exist that strictly improves over MV. Finally, because the

environment is fully symmetric for all voters of a given type, the conclusion continues to

apply when we restrict attention to semi-symmetric strategies, and because semi-symmetric

strategies that do not include delegation are inferior to MV with votes cast according to

signal, the superior equilibrium must involve delegation.

The theorem does not characterize the equilibria with delegation. We do so in Section

4, when we specialize the model to the parameter values we use in the experiment. Here, to

make sure the mechanisms that drive the model are intuitively clear, we describe in detail a

semi-symmetric interior equilibrium for the case of a single expert.

3.1 A Single Expert (K = 1)

Proposition 1. Suppose π = Pr(ω1) = 1/2 and K = 1. Then for any N odd and finite,

there exists an equilibrium such that: (i) the expert never delegates her vote and always votes

according to signal; (ii) there exists a threshold q̃(N) ∈(q, q) such that non-expert i delegates

her vote to the expert if qi < q̃ and votes according to signal otherwise. Such an equilibrium

strictly improves over MV and is ex ante maximal among sincere semi-symmetric equilibria

where the expert never delegates and non-experts delegate to the expert only.

The proposition is proved in the Appendix. The structure of the equilibrium, however,

is intuitive. Note that in all interior equilibria (in fact, for any number of experts), non-

experts must adopt monotone threshold strategies–there must exist a precision threshold q̃

such that voters with lower precision delegate, and voters with higher precision do not. The

reason is immediate: if the voter delegates, expected utility does not depend on the voter’s

precision. But if the voter does not delegate, there is a non-zero probability that the voter

is pivotal, in which case expected utility increases with the voter’s precision. The conclusion

then follows. Given monotone threshold strategies, the Appendix shows that the delegation

directions in the proposition – the expert never delegating and non-experts delegating to the

expert only – are indeed best responses when all others adopt them too. And since we know,

from the earlier theorem, that an equilibrium with partial delegation must exist, it follows

that an equilibrium with the strategies characterized in the proposition must exist. Finally,

we also find that the condition identifying the equilibrium threshold corresponds to the first

order condition from the maximization of ex ante expected utility, over all profiles of semi-

symmetric monotone threshold strategies with sincere voting and the specified directions of

delegation. Hence, again invoking the theorem, the equilibrium is maximal over such profiles
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and improves strictly over majority voting.

It is important to note that the equilibrium threshold q̃ that supports the improvement

over MV is strictly interior to the range (q, q). Because q = p, that means that in equilibrium

there are voters who know that their precision is strictly lower than the expert’s precision,

and yet cast their vote, rather than delegating. Since delegation decreases the aggregate

information in the system, and yet the equilibrium with delegation is superior to MV, we

expect the threshold q̃ to be low–only voters with very imprecise information delegate in

equilibrium. Indeed, this is what the numerical examples will show. Studying in detail a

particularly simple example makes clear why

Suppose N = 3 and K = 1, and consider non-expert i’s choice of whether or not to

delegate to the expert. Note that i’s choice matters only if (a) i ’s signal disagrees with the

expert’s; (b) the other non-expert, j, does not delegate, and (c) j’s signal disagrees with

the expert’s. Thus i conditions on j voting and receiving a signal that agrees with i’s own

signal. Non-expert i is indifferent between delegating and voting when q(i) = q̃. Denoting by

µv(q̃) = E(q|q > q̃) the expected precision of j’s signal, conditional on j voting, equilibrium

q̃ thus solves:

p(1− q̃)(1− µv(q̃)) = (1− p)q̃µv(q̃)

The equilibrium condition equalizes the probability that the expert is correct and both non-

experts are not, with the probability that the expert is incorrect and both non-experts are

correct. The non-expert signal with precision q̃ receives implicit validation from a second

independent and more accurate signal. It is this implicit validation that pushes equilibrium

behavior away from delegation, and the equilibrium q̃ towards low values. For example, with

N = 3 and K = 1, if p = 0.7 and F (q) is Uniform over [0.5, 0.7], q̃ = 0.572, below the mean

non-expert precision of 0.6. A non-expert voter’s precision is always lower than the expert’s,

but the ex ante individual probability of delegation is only 36 percent.

The good properties of the equilibrium with q̃ ∈ (q, q) depend strongly on the optimal,

spare use of delegation. But internalizing such reasoning is difficult. Our first experiment

tests participants’ behavior in an environment that mirrors the model closely.

4 Experiment 1: Treatments and Parametrizations

The game we study in Experiment 1 follows very closely the theoretical model, with one

simplification. We constrain the direction of delegation: experts cannot delegate, and non-

experts can only delegate to the experts. We are interested in three main questions: (1)

We consider first the simplest setting, when decisions are taken by a small group and a
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single expert. How well does LD perform, relative to MV? (2) According to the theorem,

LD’s potential to improve over MV persists with larger group sizes and multiple experts.

In the lab, do results change qualitatively when the size of the group and the number of

experts increase? (3) LD makes it possible to shift voting weight away from less informed

voters and towards more informed ones. But reducing the weight of less informed voters can

also be achieved, more simply, by allowing abstention. How does LD compare to MV with

abstention? We denote such a rule by MVA, and as in the case of LD, study it both in a

small group with a single expert, and in a larger group with multiple experts.

In all experiments, we set p = 0.7, and F (q) Uniform over [0.5, 0.7]. We study four

treatments. Two treatments concern LD. In LD1, groups consist of 5 voters with a single

expert: N = 5, K = 1. In LD3, each group has 15 voters in all, of which 3 are experts: N =

15, K = 3. Hence in both treatments one fifth of the group are experts: K/N = 1/5. The

two treatments with abstention, MVA1 and MVA3, substitute abstention for the possibility

of delegation, again either with N = 5, K = 1 (MVA1), or with N = 15, K = 3 (MVA3).

4.1 Liquid Democracy

Table 1 reports the theoretical predictions when delegation is possible.16

Table 1: p = 0.7, F (q) Uniform over [0.5, 0.7]

LD1 : N = 5; K = 1 LD3 : N = 15; K = 3

q̃ F (q̃) EULD EUMV q̃3 F (q̃3) EU3
LD EU3

MV

0.7 1 0.7
0.717

0.532 0.162 0.843 0.832
0.543 0.215 0.731

In treatment LD1, we find two semi-symmetric equilibria. For any realization of non-

expert precisions, there always exists an equilibrium where every voter delegates to the

expert with probability 1: no individual non-expert is ever pivotal, and delegating one’s

vote is a (weak) best response. The expert then alone controls the outcome. With semi-

symmetric strategies, such an equilibrium corresponds to q̃ = q and yields ex ante utility

EULD(q̃ = q) = p = 0.7. Note that such an equilibrium is not strict. In addition, there is

a unique strict equilibrium where q̃ is strictly interior. As argued earlier, the q̃ threshold

is low, and the ex ante probability of delegation is only just above 20 percent. The ex

ante probability of reaching the correct decision, equivalent to the expected utility measures,

is lowest when the expert decides alone (q̃ = q), intermediate under MV , and highest in

16The details of the derivations are in the Appendix.
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the equilibrium with delegation and interior q̃. However, the proportional increase in the

probability that the group selects the correct option is small, about 2 percent at each step.17

In LD3, full delegation is not an equilibrium any longer. Intuitively, when there are

multiple experts and all other non-experts delegate, voter i can be pivotal only if the experts

disagree among themselves. The disagreement reduces the attraction of delegation and

for sufficiently high q (still smaller than q) casting a vote is preferable. As we know, the

equilibrium with interior q̃ continues to exist. Equilibrium delegation, however, is rare:

the expected frequency of individual delegation falls to 16 percent. As theory teaches, the

interior equilibrium yields a higher probability of a correct decision than MV. However,

with the increase in the size of the group, the Condorcet Jury Theorem effect becomes very

pronounced: majority voting works very well and the scope for improvement is small. The

percentage gain is only 1.3 percent.18

The table conveys two main messages. First, we see concretely what the interior equilib-

rium entails for the experimental parametrizations. In particular, as expected, equilibrium

delegation is not frequent and concerns only voters with precisions not far from 0.5. Second,

the improvement in the probability of making the correct decision is small, too small to be

detectable in the lab. Setting a higher p, and/or setting q < p would increase the scope and

expected gain from delegation; increasing q or N would have the opposite effect. We have

chosen a parametrization that delivers similar efficiencies for LD and for MV, and leave the

data free to favor either. The realistic challenge for the experiment will be to see whether

indeed in this environment the two systems are comparable.

4.2 Abstention

Like delegation, abstention can lower the voting weights of less informed voters, with the

major advantage of being a simpler and familiar option. However, the two mechanisms

are not equivalent: under abstention, voting weight is redistributed towards all voters who

choose to vote; under LD, delegated votes target the experts only.

We implement the MVA treatments in the identical environment we study under LD.

After non-expert voters learn, privately, the precision and the content of their personal signal,

they decide, simultaneously and independently, whether to vote or to abstain. Experts are

17With a single expert, the uniqueness of the semi-symmetric equilibrium with interior q̃ can be proven
analytically and holds for arbitrary N . Absent either communication or repetition, asymmetric equilibria
are implausible in the lab if they require coordination, but trivial asymmetric equilibria may arise where the
expert is dictator. For example, for any realization of non-expert precisions, there are asymmetric equilibria
with 3 non-experts delegating and 1 voting (and EULD = p = 0.7).

18Obtaining comparative statics for general committees is difficult. For our parametrizations, we have
verified computationally that as N increases, for any given K, equilibrium q̃ approaches 0.5. As expected,
the sequence of equilibria converges to the asymptotic efficiency of universal majority voting.
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not given the option of abstaining. Everything else remains unchanged. The model of

abstention is closely related to McMurray (2013), and its main results—the existence of an

equilibrium in monotone cutpoint strategies, and its superiority to MV—carry over to our

setting. We report the relevant equations in the Appendix.19 As in the case of delegation,

and for very similar reasons, abstention too is limited to voters with weak information.

Table 2 shows the equilibria with abstention, for the experimental parametrizations.20

We denote by α̃ the precision threshold below which in equilibrium a non-expert abstains,

and above which a non-expert votes.

Table 2: p = 0.7, F (q) Uniform over [0.5, 0.7]

MVA1 : N = 5;K = 1 MVA3 : N = 15;K = 3

α̃ F (α̃) EUMVA EUMV α̃3 F (α̃3) EU3
MVA EU3

MV

0.7 1 0.7
0.717

0.7 1 0.784
0.8320.580 0.40 0.724 0.580 0.40 0.849

0.5 0 0.717 0.5 0 0.832

For both group sizes, there are three semi-symmetric equilibria. Two are boundary equi-

libria, with either zero (α̃ = 0.5) or full (α̃ = 0.7) abstention; one is an interior equilibrium

where, for both group sizes, a non-expert abstains if precision is below 0.58, i.e. with ex ante

probability of 40 percent. The boundary equilibrium with zero abstention corresponds to

MV; the one with full abstention, where the decision is delegated to the experts, is inferior

to MV. As in McMurray’s analysis, the interior equilibrium does deliver expected gains over

MV, but these remain quantitatively small.21 The interior equilibrium threshold for ab-

stention is higher than the threshold for delegation, and remains constant in the two group

sizes. It implies a larger expected number of abstentions than delegations: for example, and

rounding up to integers, when N = 15, in equilibrium we expect 2 non-experts to delegate

19McMurray’s model and ours differ in two main aspects. First, for comparison to LD, we assume the
existence of a known group of experts with higher, known, but not perfect precision. McMurray does not
distinguish experts, but widens the support of the distribution of precisions F (q) to cover the full interval
[1/2, 1]. Second, because of our experimental aim, we assume that the size of the electorate is known and need
not be large, deviating from McMurray’s large Poisson game set-up. The logic of the two models is otherwise
identical. The central intuition is that best response strategies are monotone in individual precision and thus
abstaining in equilibrium shifts voting weight towards better informed individuals.

20As in the case of delegation, we focus on semi-symmetric Perfect Bayesian Equilibria in undominated
strategies where abstention strategies are invariant to signal realizations.

21The existence of the boundary equilibria depends on N and Kodd. Note that because MV without
abstention is an equilibrium when abstention is allowed, the simple proof used to establish the earlier theorem
cannot be extended from delegation to abstention. Our experiment does not allow for both delegation and
abstention. A general theory comparing the two options when both are possible is lacking. However, we
have verified that for our experimental parameters there can be no equilibrium where both are chosen with
positive probability.
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under LD, but 5 non-experts to abstain under MVA.

Under both LD and MVA, the expected improvements over MV are minor. It is natural

to ask how sensitive such potential improvements are to strategic mistakes.

4.3 Robustness

We consider here a particularly simple parametrization of strategic mistakes: we suppose

that behavior remains symmetric, but the precision threshold for delegation or abstention

is chosen incorrectly. In Figure 1, the horizontal axis is the common threshold, and the

vertical axis reports gains and losses in expected utilities relative to MV (fixed at 1). Thus

the plots depict the percentage changes in the probability of the group making the correct

choice, relative to MV, at different delegation (abstention) thresholds. LD is plotted in blue;

MVA in green; the first panel corresponds to N = 5, K = 1; the second to N = 15, K = 3.

The highest points on the blue and green curves coincide with the respective equilibrium

thresholds.

Figure 1: Robustness to strategic errors. The horizontal axis is q̃ (α̃), the vertical axis is the
probability of reaching the correct decision, relative to MV. blue is LD, green is MVA, and
Grey is MV.

At q̃ or α̃ = 1/2, no-one delegates their vote or abstains, and all curves equal MV

and coincide. At q̃ or α̃ = 0.7, all non-experts delegate or abstain, and only the expert/s

decide(s).22 In the first panel, with a small group, the maximum potential improvement over

MV from delegation (from LD) is higher than from abstention (MVA). However, this is not

true in the second panel, with the larger group. Both results were already shown in Tables

1 and 2. More interesting is the range of thresholds for which each voting rule dominates

MV. Here the message is consistent across the two group sizes: in both cases, the range of

thresholds that deliver improvements over MV is limited, and particularly limited for LD.

22When K = 3, the blue and green curves do not coincide at q̃ = 0.7 because under MVA3 each expert
has the same weight, while under LD3 the number of votes each of them commands is stochastic.
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When the group is larger, LD’s potential for losses is evident in the figure, as is its increased

fragility, relative to MVA: the range of thresholds that improve over MV is half as large

under LD3 than under MVA3. With both voting schemes, but with LD in particular, while

potential gains are small, there is the real danger of reaching worse decisions: under LD3,

maximal potential losses are more than six times maximal potential gains.

5 Experiment 1: Implementation

We ran the experiment online over the Summer of 2021, using the Zoom videoconferencing

software. Participants were recruited from the Columbia Experimental Laboratory for the

Social Sciences (CELSS)’ ORSEE website.23 They received instructions and communicated

with the experimenters via Zoom, and accessed the experiment interface on their personal

computer’s web browser. The experiment was programmed in oTree and, with the excep-

tion of a more visual style for the instructions, developed very similarly to an in-person

experiment. Each session lasted about 90 minutes with average earnings of $26, including a

show-up fee of $5.
Participants were asked to vote on the correct selection of a box containing a prize, out

of two possible choices, a green box and a blue box. The computer selected the winning

box putting equal probability on either; conditionally on the computer’s random choice,

participants then received a message suggesting a color, and were told the probability that

the message was accurate.24 The same screen also informed them of whether or not they

were an expert (for that round). Participants were then asked to vote for one of the two

boxes, if experts, or, if non-experts, to either choose one of the boxes or delegate their vote

to an expert (in the LD treatments), or abstain (in the MVA treatments). Across rounds,

expert/non-expert identities were re-assigned randomly, under the constraint that groups of

5 voters had a single expert, and a group of 15 had three; if the session involved multiple

groups, they were re-formed randomly. A copy of the instructions is reproduced in online

Appendix C.

We ran 10 sessions, each involving 15 subjects (150 subjects total). Participants played

20 rounds each of two treatments (40 rounds in total), according to the experimental design

reproduced in the following table. Hence in total we have data for 240 rounds for LD1 and

for MVA1, and 120 rounds for LD3 and for MVA3.

23Greiner (2015). CELSS’ ORSEE subjects are primarily undergraduate students at Columbia University
or Barnard College.

24To limit decimal digits, the precision of the signal was drawn uniformly from a discrete distribution
with bins of size 0.01. When comparing the experimental results to the theory, below, we compute equilibria
using the corresponding discrete distribution of precisions. The differences are minute.
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Table 3: Experiment 1: Experimental Design

Sessions Treatments Rounds Subjects Groups

1a LD1, LD3 20, 20 15 3, 1
1b LD3, LD1 20, 20 15 1, 3
2a MVA1, MVA3 20, 20 15 3, 1
2b MVA3, MVA1 20, 20 15 1, 3

3a, 3a’ LD3, MVA3 20, 20 15 1, 1
3b, 3b’ MVA3, LD3 20, 20 15 1, 1
4a LD1, MVA1 20, 20 15 3, 3
4b MVA1, LD1 20, 20 15 3, 3

Figure 2: Aggregate frequency of delegation and abstention. Confidence intervals are calcu-
lated from standard errors clustered at the session level.

6 Experiment 1: Results

6.1 Frequency of delegation and abstention

Figure 2 reports the aggregate frequencies of delegation (in blue) and abstention (in green)

in the data, and according to the predictions of the interior equilibrium, given realized signal

precisions in the experiment (in grey). Columns on the left refer to LD treatments; columns

on the right to MVA. The 95% confidence intervals are calculated from standard errors

clustered at the session level.

The result is unambiguous: delegation rates in the experiment are between two and three

times what theory predicts for the equilibrium that improves over MV. Abstention rates on
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the other hand are comparable to the predictions. With such high propensity to delegate,

the conclusion is robust to all plausible ways of cutting the data: disaggregating by session,

considering only the 10 final rounds, clustering standard errors at the individual level.25

Regressions on individual behavior that control for signal quality and for round and

treatment order effects lead to the same conclusion. Tables 4 and 5 report linear probability

and probit regressions, with Table 4 referring to LD1 and MVA1 (N = 5); Table 5 to LD3

and MVA3 (N = 15). In both tables, the excluded case is MVA played as first treatment

in MVA-only sessions. Standard errors are clustered at the session level. As expected, the

propensity to abstain or delegate is affected negatively by higher precision of the signal,

similarly across the two group sizes. Order effects matter but, controlling for order and

for signals precision, delegation remains higher than abstention: the coefficient of the LD

dummy is positive in both tables. Recall that the theoretical prediction is in the opposite

direction: abstention is predicted to be more frequent than delegation.26

Participants’ choices appear coherent, if not optimal. Delegation and abstention decisions

are not only negatively correlated to signals precision, as the regressions show; we find that

they are also monotonic in signal precisions (if non-expert i votes at precision q(i), then

i votes at all q′(i) > q(i)). We report histograms of monotonicity violations for all four

treatments in the Appendix. There is weak evidence of fewer violations under MVA, but the

two treatments are effectively comparable. Just below 60% of subjects have no violations at

all under LD; just above 60% under MVA, and the results are invariant to the size of the

group.27 In all cases, it is possible to generate perfect monotonicity for at least 80 percent

of participants by changing at most 2 of their non-expert choices.28

We use monotonicity to estimate individual precision thresholds for delegation and abstention–

the thresholds below which each participant delegates or abstains. Figure 3 reports, for each

participant, the mean of the range of thresholds that are consistent with minimal mono-

25Under LD1, there is a second symmetric equilibrium with universal delegation. We do not see it in the
data. As noted earlier, asymmetric equilibria also exist. Under LD1, there are equilibria where at least 3
non-experts delegate (we see 87 such instances, out of 240 total group/rounds). The specific claim we make
here is that subjects were not playing the symmetric interior equilibrium that dominates MV.

26Delegation is lower in sessions where LD is experienced after MVA, regardless of group size, but the
net effect of delegation remains positive. Abstention responds to order in MVA-only sessions, and the
effect depends on group size. Running the regressions on first treatments only allows us to check for the
importance of these effects, at the cost of fewer data and less experience. The results for LD1 and MVA1
remain unchanged; in the larger groups, the standard errors are larger and the parameters less precisely
estimated, but the coefficient of the LD dummy continues to be positive. We report these regressions in the
Appendix.

27The exact numbers are 58% (LD1), 61% (LD3), 67% (MVA1), 64% (MVA3). The fractions reach 80%
and above if we limit attention to the last 10 rounds of each treatment.

28With type randomly assigned, the expected number of rounds played as non-experts is 16. The maxi-
mum possible number of monotonicity violations over 16 rounds is 8.
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Experiment 1: Frequency of Delegation or Abstention. N=5.

(1) (2)
Linear Probability Probit

LD 0.328*** 0.938***
(0.073) (0.274)
[0.006] [0.001]

Signal Precision -0.777*** -2.624***
(0.080) (0.307)
[0.000] [0.000]

Second 0.154*** 0.534***
(0.010) (0.026)
[0.000] [0.000]

Second * Mixed -0.129*** -0.451***
(0.002) (0.025)
[0.000] [0.000]

LD * Second -0.090 -0.332**
(0.050) (0.160)
[0.134] [0.038]

LD * Second * Mixed -0.025*** -0.033
(0.006) (0.022)
[0.008] [0.140]

Constant 0.675*** 0.582***
(0.0475) (0.128)
[0.000] [0.000]

Observations 1,920 1,920
R-squared 0.309

*** p<0.01, ** p<0.05, * p<0.1

Table 4: Determinants of delegation and abstention; N=5. Standard errors in parentheses,
clustered at the session level.
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Experiment 1: Frequency of Delegation or Abstention. N=15.

(1) (2)
Linear Probability Probit

LD 0.208** 0.677***
(0.071) (0.249)
[0.022] [0.007]

Signal Precision -0.861*** -2.691***
(0.047) (0.208)
[0.000] [0.000]

Second -0.096** -0.341***
(0.035) (0.126)
[0.029] [0.007]

Second * Mixed 0.078*** 0.295***
(0.006) (0.030)
[0.000] [0.000]

LD * Second 0.037 0.125
(0.037) (0.132)
[0.349] [0.343]

LD * Second * Mixed -0.166** -0.577***
(0.055) (0.183)
[0.019] [0.002]

Constant 0.832*** 0.992***
(0.069) (0.237)
[0.000] [0.000]

Observations 2,880 2,880
R-squared 0.309

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Determinants of delegation and abstention; N=15. Standard errors in parentheses,
clustered at the session level. P-values in brackets. Delegation/abstention is measured as a
binary 0-1 subject decision. “Second” indicates that the treatment appeared second in the
session. “Mixed” indicates that both an LD treatment and an MVA treatment appeared in
the session. Controls for round, the interaction of LD and round, and the interaction of LD
and signal precision are included.
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tonicity violations; the size of the dots is proportional to the number of participants at that

threshold. The dark blue (for LD) and dark green (for MVA) diamonds correspond to the

average empirical thresholds, and the respective light ones to the theory. The figure confirms

the over-delegation that characterizes LD, while again average values for abstention are close

to the theoretical predictions. The dispersion in estimated thresholds is typical of similar

experiments (for example, Levine and Palfrey, 2007; Morton and Tyran, 2011), but is in

clear tension with the focus on symmetric equilibria.

Figure 3: Individual delegation and abstention thresholds.

The observation that thresholds tend to be higher for delegation rather than abstention is

confirmed in Figure 4, where we plot the cumulative distribution functions of the estimated

thresholds.

For both group sizes, the LD distribution, in blue, first order stochastically dominates

the MVA distribution, in green: at any precision, including at the lower boundary of the

support, the fraction of subjects estimated to delegate is above the corresponding fraction

of abstainers (the fraction of subjects whose estimated threshold is below the threshold, and

thus are voting at that precision, is lower). Two-sample Kolmogorov-Smirnov tests adjusted

for discreteness confirm the visual impression: for both group sizes, the probability that

the two samples of thresholds, for LD and for MVA, are drawn from the same distribution

is very low (p = 0.034 for N = 5, and p = 0.0047 for N = 15). On the other hand, for

given voting system, allowing delegation or abstention, the data do not show substantive
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Figure 4: Individual delegation and abstention thresholds. CDFs.

differences between the two group sizes.29

6.2 Frequency of correct choice

Beyond regularities of delegation and abstention, the real variable of interest is the frequency

with which the voting system leads to the correct choice. We begin by reporting the data.

Because we are studying variations of majority voting, a large share of outcomes under both

LD and MVA correspond to MV. Testing the relative performance of the voting systems re-

quires conditioning on reaching different outcomes, and we will move to that after describing

the data.

Figure 5 reports the experimental data and compares them to the theoretical interior

equilibrium and to MV.30

29Comparing LD1 and LD3, the KS test yields p = 0.3452; comparing MVA1 and MVA3, it yields
p = 0.5332.

30All results are calculated given the experimental realizations of the state and of signals. For subjects
who delegated or abstained, MV data allow voting against signal with probability equal to the frequency
observed in the treatment. Using the subject’s own observed frequency of voting against signal does not
affect the results. To account for the randomness in MV data and then for consistency, all 95% confidence
intervals are calculated from bootstrapping, using 100,000 simulated data sets. Each subject is drawn with
a full set of 20 choices, thus allowing for within-subject correlations.
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Figure 5: Frequency of correct outcomes. For subjects who delegated or abstained, MV data
allow voting against signal with probability equal to the frequency observed in the treatment.
Confidence intervals are calculated from bootstrapping, using 100,000 simulated data sets
and allowing for within-subject correlation.

We report results grouped by N . The vertical axis is the frequency of correct outcomes

over the full data set for the corresponding treatment. The figure holds three main lessons.

First, for both group sizes, LD and MVA yield very similar frequencies of correct decisions.

Second, for both group sizes, both systems fall short of their possible best performance.

Third, MVA outcomes are closely comparable to MV for both group sizes, but LD outcomes

fall short of MV, especially for small groups.

Two main deviations could be responsible for the systems’ underperformance relative to

the theory.31 The first is the erroneous choice of delegation/abstention thresholds. Figures

2 and 3 support this interpretation for LD, with its consistent over-delegation, but not for

MVA. The second is random voting in the form of voting against signal. As we show in

the Appendix, the frequency of voting against signal correlates negatively and significantly

with signal precision. Thus experts vote against signal more rarely than non-experts. Both

because experts cast multiple votes under LD, and because subjects choose to vote at lower

precision under MVA, the share of votes cast against signal is lower in the LD treatments (at

about 6%) than in the MVA ones (at about 10%), with little difference across group sizes.32

31A priori, a third possibility would be non-monotonicity in delegation and abstention decisions. But as
we described earlier, violations of monotonicity are rare.

32The numbers are comparable to those reported, for example, by Guarnaschelli et al. (2000) and Goeree
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MVA suffers from more random voting. Both systems thus fail to realize their potential

gains over MV, but for different reasons.

The comparison to MV shows that the penalty is higher for LD. The better performance

of MV in the LD samples reflects the random superiority of the signal draws in those samples:

although signal realizations were drawn from the same probability distribution, the frequency

of correct signals was higher in the LD treatments. Thus, although LD and MVA have similar

shares of correct decision in our data, LD treatments could have performed better, given the

superiority of the realized signals.33

6.2.1 Comparing LD and MVA to MV

Evaluating the significance of the disparities observed between LD or MVA on one side, and

MV on the other is not immediate. One difficulty is the complexity of the correlation struc-

ture,34 but the fundamental difficulty is simpler: as mentioned above, outcomes coincide in

a large majority of cases.35 Restricting the data sample to those elections in which outcomes

differ leaves us with little information. To overcome this difficulty, we use bootstrapping

methods to simulate a large number of elections in a population for which our data are

representative. By simulating many elections, conditioning on different outcomes becomes

feasible.

The procedure we implement allows for correlation across an individual’s multiple deci-

sions, and uses randomization to generate the correct balance of experts and non-experts.

For each voting system and group size, we generate outcomes by drawing subjects, with

replacement, each with their full set of 20-round decisions, and matching them randomly

into groups. We then study the outcomes corresponding to 100,000 replications of the ex-

periment for each treatment, using the population of subjects for that voting system and

group size. We describe the procedure in more detail in the online Appendix. Figure 6

shows the distributions of the differential frequency of correct decisions between the voting

systems we are studying and MV, for each group size, conditioning on the decisions being

different. Consider for example LD1. For each of the 100,000 simulations, we focus on the

subset of elections DLD1 such that LD1 and MV reach a different outcome. Call γLD1(DLD1)

and Yariv (2011) for juries voting under simple majority and pure common interest, in the absence of
communication (6-9%).

33If votes were not cast against signals, all three voting systems would be more efficient, but we have
verified that, as expected, the difference between LD and MV, and the lack of a difference between MVA
and MV, would not be affected.

34Individuals are observed over multiple rounds; the frequency with which they are assigned the role of
experts is random and variable; the imputation of missing votes under MV creates randomness in the MV
outcomes.

35More than 70% of all outcomes under LD, and more than 80% for MVA

25



(γMV (DLD1)) the frequency with which LD1 (MV) is correct over subset DLD1, a variable

that ranges from 0 to 1. We are interested in γLD1(DLD1)−γMV (DLD1), where, by construc-

tion, γMV (DLD1) = 1− γLD1(DLD1). Hence γLD1(DLD1)− γMV (DLD1) = 2γLD1(DLD1)− 1.

Our measure then ranges from 1—when, conditional on disagreement, LD1 always reaches

the correct outcome, and MV the incorrect outcome—to −1, when the opposite holds; a

value of zero indicates that the two rules are correct with equal frequency, conditioning on

disagreement. The first panel of Figure 6 plots, in blue, the distribution of such variable

over the 100,000 replications. The equivalent distribution for MVA is plotted in the same

panel in green. The second panel reports the results for groups of size 15.36

Figure 6: Differential frequency of correct decisions, relative to MV, conditional on different
outcomes. Distributions over 100,000 bootstrap replications.

For both group sizes, the blue distribution is shifted to the left, relative to the zero point

indicated by the vertical black line: when LD and MV differ, the correct decision is more

likely to be the one reached by MV. The asymmetry is more pronounced for N = 5, where

the blue mass to the left of zero – the probability that MV is superior to LD1, conditional

on disagreement—is 85%, versus 67% for LD3. MVA on the other hand, when disagreeing

with MV, is more likely to be right than wrong: only barely when N = 5 and the probability

that MV is superior to MVA1 is just below 50% (48%), but more substantially when N = 15

and the probability that MV is correct, conditional on disagreement with MVA3, falls to

26%. The distributions are also informative of the quantitative gap in the probability of

being correct, relative to MV. In the panel on the left, for example, the mode of the blue

36Averaging over all replications, the share of elections in which the outcome differs from MV is 23.4%
for LD1, 15.3% for MVA1, 20.1% for LD3, and 15% for MVA3.
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distribution at -16% tells us that over the 100,000 replications, conditional on disagreement,

the highest probability mass is around a frequency of correct decisions of about 42% for LD1,

versus 58% for MV. 37

In our first experiment then, LD falls short of the hopes if its supporters, even in a

streamlined environment where experts are correctly identified. Like delegation, abstention

allows voters with weak information not to influence the final choice, but is simpler and

performs better. In our data, its efficiency is either comparable or somewhat superior to

universal majority voting, contrary to what we see for delegation.

But do these results reflect some core feature of the systems we are studying, or are they

artifacts of the lab? We analyze this question in our second experiment.

7 Experiment 2: The Random Dot Kinematogram

As discussed in the Introduction, the goal of our second experiment is to evaluate whether the

deviations from optimal behavior we see in the lab may stem from the over-mathematization

of the environment. There are three possible concerns. First, the precise numerical de-

scription of the signals’ precisions makes the difference between one’s own precision and the

expert’s very salient. At the same type, and this is the second concern, such precision can

also induce suboptimal behavior among subjects who choose to vote: participants could plau-

sibly think that a signal precise with probability not much above 50% should be disobeyed

about half the time. Finally, our formulation could be biasing the analysis in favor of MV by

positing that all signals are correct with probability larger than 50%, an assumption likely to

be correct on average but occasionally violated. It is not clear why a detailed mathematical

frame should affect the relative performance of delegation and abstention, but it is quite pos-

sible that the frame’s high precision may distort behavior. With this in mind, we chose for

the second experiment a perceptual task—the Random Dot Kinematogram (RDK)—where

individual signals correspond to the accuracy of individual perceptions, and neither own nor

others’ accuracies are described or known in precise probabilistic terms. Because the task

may be unfamiliar, we describe it in some detail.38

We ran the experiment on Amazon Mechanical Turk (with prescreening of subjects by

CloudResearch) with three electorate sizes: N = 5 and N = 15, as in Experiment 1, but

also N = 125, i.e. with a larger size than we could run in the lab or conveniently on Zoom.

37The conclusions remain qualitatively similar if we construct the bootstrap ignoring the possibility of
correlation in individual behavior across rounds, and thus draw each individual choice from the full data set
for that treatment.

38Additional information is in online Appendix B, reproduced at the end of the current file, and experi-
mental instructions are in online Appendix C.
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In our implementation, 300 moving dots appear in each subject’s screen for 1 second; a

small fraction of them (dependent on treatment) moves in a coherent direction, either Left

or Right, with equal ex ante probability; the rest move randomly. After 1 second, the image

disappears and each participant reports whether the perceived coherent direction was Left

or Right.39 We divide the experiment into two parts, each preceded by a few practice tasks,

but with the first part effectively playing the role of extended training. Both parts are

divided into six blocs, with each bloc consisting of 20 tasks of equal coherence. We report

in the online Appendix the precise parameters we used for the task (the size and color of

the dots, the movements per frame, the random process for the dots moving randomly, etc.),

but it should be clear that our experiment does not aim at measuring perception per se—for

example, we cannot control the ambient light, screen size, or contrast of the monitors our

subjects use. Our focus remains on collective decision-making.40

In Part 1, subjects are rewarded on the basis of their individual accuracy. Coherence—

the fraction of dots that move in the same direction—ranges from 20% in bloc 1 (one fifth of

the 300 dots move synchronously) to 10% in bloc 2, 8% in bloc 3, 6% in bloc 4, and finally

the same coherence used in Part 2, smaller and dependent on N , for the final two blocs. At

the end of Part 1, each subject is informed of her fraction of correct answers in each bloc. In

part 2, each task has both an individual component (“Choose the coherent direction”), and a

subsequent group decision with the possibility of delegation (under LD), or abstention (under

MVA). (“You said Left. Do you want to Vote or to Delegate (Abstain)?”). When delegation

is chosen, the vote is assigned randomly to an “expert,” that is, one of the participants

whose accuracy is in the top 20% of the group over the last 2 blocs (40 tasks); experts are

not allowed to delegate (under LD) or to abstain (under MVA). Thus in line with Experiment

1, groups of 5 have 1 expert, and groups of 15 have 3; the group of 125 has 25 experts, and,

following our standard notation, we denote the two treatments on the larger group by LD25

and MVA25. The group decision corresponds to the majority of votes cast, and individuals

are rewarded both for their individual accuracy and for the accuracy of the group. As in

Part 1, feedback about average individual accuracy in each bloc is provided at the end of

Part 2.41 In Part 2, coherence is kept constant across all blocs. We chose its value according

to two main criteria: the task should not be so difficult that subjects are discouraged and

act randomly, and should not be so easy that MV accuracy, especially in the large group,

leaves effectively no room for possible improvement. Based on the results of two preliminary

39The keys indicating Left or Right were randomized across subjects.
40Heer and Bostock (2010) and Woods et al. (2015) report on the replication successes and challenges of

conducting research on perceptual stimuli online.
41Feedback over group accuracy cannot be provided because it depends on choices made by others and is

calculated ex post. Recall that participants are online and come to the experiment at different times.
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pilots, we fixed coherence in Part 2 at 5% for electorates of sizes 5 and 15, and at 3% for the

electorate of size 125. The task is objectively hard, as the reader can verify at the following

link: https://blogs.cuit.columbia.edu/ac186/files/2022/05/rdk-video.gif

The experiment used the RDK plugin in jsPsych (Rajananda et al., 2018) and was hosted

on cognition.run. For each of LD and MVA, we recruited 60 subjects divided into 12 groups

for the N = 5 treatment and 90 subjects divided into 6 groups for N = 15 (thus replicating

the corresponding number of subjects and groups in Experiment 1), and an additional 125

subjects for the largest group. There were then 275 subjects for each voting system, or

550 in total. The group size and the relevant number of experts were always made public.

The experiment lasted about 20 minutes. Subjects earned $1 for participation and a bonus

proportional to the number of correct responses, for a total average compensation of $4.92,
or just below $15 an hour.

8 Experiment 2: Results

8.1 Accuracy

We define an individual’s accuracy as the fraction of correct responses. Figure 7 reports

the distributions of accuracy in Part 2 calculated over each of the 6 blocs for each subject,

that is, over 20 tasks. The two panels correspond to the two levels of coherence used in the

experiment (0.05 on the left; 0.03 on the right).

Figure 7: Accuracies per bloc per subject. Distributions. A bloc consists of 20 tasks.

For given coherence, the distributions are very similar across treatments. In all cases,
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the spread in the distribution of accuracies is large, ranging from about 25% all the way

to 95%. Mean accuracy over all participants is 59% in treatments with 0.05 coherence,

and 56% in treatments with 0.03 coherence. Experts’ accuracy is higher than non-experts’:

average accuracy per bloc is 63% for experts (v/s 58% for non-experts) in treatments with

0.05 coherence, and 59% (v/s 55.5%) in treatments with 0.03 coherence.42

The frequency of blocs with accuracy below 50% is non-negligible (18% for coherence of

0.05, just above 23% for coherence of 0.03) and, surprisingly, persists when we aggregate

over a larger number of tasks. Averaging at the subject level over all 120 tasks, 9% of

subjects have accuracy below randomness with coherence 0.05, and 12% with coherence

0.03.43 If we want to study voting and information aggregation when information may be

faulty, perceptual tasks can provide a very useful tool.

8.2 Frequency of delegation and abstention

Absent information about the distributions of subjects’ beliefs, we do not have a theoretical

reference point for the extent of delegation and abstention we see in the data. We can however

compare the two, under the plausible assumption, supported by Figure 7, that accuracies

and beliefs about accuracies are comparable across the LD and MVA samples. Figure 8 plots

the frequencies of delegation and abstention for each group size, calculated over non-experts

only for possible comparison to Experiment 1.44 The 95% confidence intervals are calculated

from standard errors clustered at the individual level.

In Experiment 2, delegation remains much more common than abstention, for all group

sizes. In groups of 5, where the disparity is largest, delegation is more than twice as frequent;

in groups of 15, where we see the least disparity, delegation is still 60% more common.

The decline in coherence, from N = 5 or 15 to N = 125, has small effects on the data.

Unexpectedly, considering the rather radical change in experimental design, Figure 8 is very

similar to Figure 2, for the group sizes for which we have data from both experiments.

The higher frequency of delegation is confirmed in the regressions reported in Tables 6

and 7. The unit of analysis is the bloc at the individual subject level (hence 6 blocs per

subject), with data grouped by coherence level.45 The regressions reported below confirm

the results of the figure: in all treatments, delegation is significantly more frequent than

42Recall that experts are selected on the basis of accuracy in the previous two blocs. Average accuracy
of the top 20% of respondents in each bloc is higher, but past performance, the criterion we used to define
experts, seems a more accurate criterion for receiving delegated votes than unobservable current performance.

43Individual subjects’ accuracies show high variability across blocs, evidence of random noise in perceiving
and recording the stimulus in the brain, as formalized in psychophysics research.

44The figure is almost identical if frequencies are calculated over the full sample.
45The results are unchanged if the data are separated by group size. The keys used for the voting choice

were randomized across subjects.
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Figure 8: Aggregate frequency of delegation and abstention (non-experts). 95% confidence
intervals calculated from standard errors clustered at the individual level.

abstention. In Experiment 2, accuracy is at best a very weak predictor of participation

in voting, never significant at conventional levels and with the wrong sign in the probit

estimation, confirming the high uncertainty in subjects’ evaluation of their own accuracy.

The probit regressions detect a decline in abstention as blocs proceed, which is consistent

with increased familiarity with the task.

8.3 Frequency of correct outcomes

How well did the three voting systems do in Experiment 2? Figure 9 reports the frequency

of correct group decisions, aggregated over all groups and tasks for given treatment. As in

the case of Figure 5, a large fraction of outcomes are identical.46

As expected, for all three systems, the fraction of correct decisions increases with the size

of the group, ranging from about 65% at N = 5 to 90-95% at N = 125. In this pure common

interest environment, the aggregation of independent signals remains very powerful, even in

the presence of weak accuracies. In line with this logic, and with Condorcet, universal voting

consistently achieves the best results. Here too, for the group sizes that are common to both

experiments, the numbers are surprisingly similar to the numbers in Figure 5. Relative to

MV, MVA performs better than LD, but the result could simply reflect the lower propensity

to abstain. Because abstention is less common, the fraction of decisions in which MVA and

46Participants were randomly divided into groups, and assigned to the same group for the duration of
the experiment. The fraction of outcomes that coincide with MV outcomes ranges from a minimum of 75%
under LD1 to a maximum of 92% under MVA25.

31



Experiment 2: Frequency of Delegation or Abstention. N=5 and N=15.

(1) (2) (3) (4)
Linear

Probability
Linear

Probability
Probit Probit

Accuracy -0.122 -0.122 0.356 0.354
(0.084) (0.084) (0.309) (0.308)
[0.146] [0.146] [0.249] [0.251]

LD 0.226*** 0.226*** 0.547*** 0.548***
(0.038) (0.038) (0.139) (0.140)
[0.000] [0.000] [0.000] [0.000]

N=15 0.005 0.004 0.051 0.05
(0.038) (0.038) (0.139) (0.140)
[0.907] [0.908] [0.717] [0.719]

Keys: [E][Y] -0.009 -0.04
(0.038) (0.139)
[0.816] [0.772]

Bloc 0.001 -0.256***
(0.012) (0.065)
[0.965] [0.000]

Constant 0.339*** 0.343*** 0.163 0.313
(0.063) (0.066) (0.222) (0.234)
[0.000] [0.000] [0.463] [0.181]

Observations 1,800 1,800 1,800 1,800
R-squared 0.100 0.100

*** p<0.01, ** p<0.05, * p<0.1

Table 6: Frequency of delegation/abstention; N = 5 and N = 15. Standard errors are
clustered at the individual level.
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Experiment 2: Frequency of Delegation or Abstention. N=125.

(1) (2) (3) (4)
Linear

Probability
Linear

Probability
Probit Probit

Accuracy 0.000 0.004 0.479 0.455
(0.101) (0.102) (0.357) (0.359)
[0.998] [0.970] [0.180] [0.205]

LD 0.224*** 0.223*** 0.661*** 0.663***
(0.042) (0.042) (0.164) (0.164)
[0.000] [0.000] [0.000] [0.000]

Keys: [E][Y] 0.029 -0.043
(0.041) (0.161)
[0.484] [0.790]

Bloc 0.002 -0.0363**
(0.003) (0.015)
[0.459] [0.014]

Constant 0.316*** 0.282*** 0.313 0.694**
(0.062) (0.072) (0.225) (0.288)
[0.000] [0.000] [0.163] [0.016]

Observations 1,500 1,500 1,500 1,500
R-squared 0.095 0.097

*** p<0.01, ** p<0.05, * p<0.1

Table 7: Frequency of delegation/abstention; N = 125. Standard errors are clustered at the
individual level. P-values in brackets. Delegation/abstention is measured as the share of
rounds in a given bloc in which a subject chose to delegate/abstain (with a range from 0 to
1). Accuracy is the share of rounds in the bloc that subject answered correctly. Subjects
randomly use either keys [V] and [N] or [E] and [Y] to decide whether to vote; a dummy for
being assigned [E][Y] is included. The values for bloc have been scaled to be between 0 and
1; the coefficient for “bloc” thus indicates the effect of going from the first to last bloc.
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Figure 9: Frequency of correct outcomes. 95% confidence intervals are calculated from stan-
dard errors clustered at the group level.

MV disagree is about half the fraction under LD (between 8 and 12% across the different

treatments under MVA, v/s 12 to 24% under LD). And if MVA and MV agree more, their

performance overall is more similar. To achieve better estimates of the differences across the

three voting systems, we again bootstrap the data and replicate the group decisions a large

number of times, generating a large sample of decisions over which the voting results differ,

as we did with the data from Experiment 1.

Figure 10 reports the results of 100,000 simulations, with three panels corresponding, in

order, to N = 5, N = 15, and the single large group at N = 125. As in Figure 6, we plot the

distributions of the differential frequency of correct decisions under LD (in blue) or MVA (in

green), relative to MV. Recall that, if the distribution is skewed to the left of the vertical

line at zero, then conditional on disagreement, the correct decision is more likely to be the

one reached by MV; and vice-versa if the distribution is skewed to the right.

In all three panels, the blue mass is shifted to the left. Conditional on disagreement,

the share of simulated experiments in which MV is more likely than LD to yield the correct

outcome is 87% for LD1, 97% for LD3, and 95% for LD25. MVA (green in the figure) fares

better: the corresponding numbers are 58% for MVA1, 69% for MVA3, and 48% for MVA25,

when MVA is just barely more likely to be correct than MV, conditional on disagreement.

As in Figure 6, the shapes of the distributions tell us the frequencies with which the two

systems are correct, relative to MV. The proximity to zero indicates that even if the voting

rule performs less well than MV, the difference need not be large. When N = 5 for example,
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Figure 10: Differential frequency of correct decisions, relative to MV, conditional on different
outcomes. Distributions over 100,000 bootstrap replications.

the mode of the blue distribution at -0.08 says that over the 100,000 simulations the most

likely result is a frequency of correct decision of 46% for LD1 versus 54% for MV.

In perceptual research, the focus is the immediate, apparently unconscious reaction to

the stimulus, and the experimental design minimizes interference with such a process. With

this in mind, we chose not to ask participants for their beliefs within each task. We did,

however, add two summary questions at the end of the experiment. We asked: “On average,

what percentage of trials in the second part do you think you got right?”, and “On average,

what percentage of trials in the second part do you think the experts got right?” With

only these two questions, barely incentivized47, our information on beliefs can only be very

noisy. We report our findings in more detail in the online Appendix, but, without making

47We rewarded replies with 25cents if the answer was within 5% of the observed precentage for the group
the participant was assigned to.
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too much of them, they can be summarized briefly. In all treatments, beliefs about own

accuracy track actual accuracy surprisingly well: for treatments with 0.05 coherence, average

believed accuracy is 58% (v/s 59% for average realized accuracy); with coherence 0.03,

average believed accuracy is 55% (v/s 56% for average realized accuracy). Beliefs about

experts’ accuracy are inflated by about 15% at both coherence levels (71% v/s 63% at 0.05

coherence, and 70% v/s 59% at 0.03 coherence).48 We saw in Tables 6 and 7 that accuracy

is a very weak predictor of choosing to vote. Beliefs about own and the experts’ accuracy

are instead strong predictors of the decision to vote. Beliefs, however, cannot explain the

difference in the frequency of delegation and abstention.

9 Conclusions

Liquid Democracy is a computer-mediated voting system where all decisions are subject

to popular referendum but voters can delegate their votes. The option of delegation to

better informed experts seems intuitively valuable, and indeed, theory shows that if experts

are correctly identified, delegation improves the chances of reaching the correct decision.

However, delegation must be used sparingly because, by reducing the number of independent

voices, it also reduces the aggregate amount of information expressed by the electorate.

This paper reports the results of two very different experiments that measure participants’

propensity to delegate their vote and compare the decisions of the group when delegation

is possible, when abstention is possible, and under universal majority voting. In line with

Condorcet’s message, we find that in both experiments universal majority voting leads to the

highest frequency of correct outcomes, even in small groups; abstention is closely comparable,

but delegation is inferior to both, even in our simplified world where experts are indeed better

informed. The reason is that the option of delegation is chosen too frequently—two to three

times more frequently than optimal in the experiment where we have a precise theoretical

prediction.

The environment we study abstracts from information costs. Allowing for such costs

would make delegation more valuable because voters for whom the acquisition of information

is more difficult can defer to others. Introducing information costs explicitly may be a good

direction for future work.49 Note however that the saving on information costs is also possible

48As we told participants, experts were identified as being in the top quintile of accuracies in the two
preceding blocs. Beliefs track very well average accuracy of the top quintile, but neglect the reversion to
the mean that accompanies the stochasticity of individual accuracies. In other words, current experts did
indeed have accuracies close to 70% on average in the two preceding blocs, but not in the bloc for which
they function as experts, although they remain more accurate than non-experts (whose average accuracy is
58% at 0.05 coherence and 55.5% at 0.03 coherence).

49For example, as in Bhattacharya et al. (2017) and Elbittar et al. (2020).
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through abstention. And in our experiments at least, such alternative is used less frequently

and with better results.

On informational grounds alone, the experiments we ran do not support the arguments in

favor of Liquid Democracy. The next step is to run such experiments again under controlled

conditions, but in the field. If the results are confirmed, other arguments invoked for Liquid

Democracy should then be given weight and studied—the advantages, and weaknesses, of

direct democracy; the heightened sense of responsibility of an empowered electorate in this

more participatory form of democracy.

The second contribution of this paper is methodological. We match a canonical, fully

controlled lab experiment on voting with a perceptual experiment where information is

ambiguous: participants do not know the probabilities with which either their own or the

experts’ information is correct. We use such a design because there are plausible concerns

that the precise mathematical framing of the canonical experiment may affect the results.

In addition, the ambiguity of the information in the perceptual experiment seems closer to

realistic conditions of voting for political decisions. In fact, we find that the results of the

first experiment replicate closely in the second. The robustness of the conclusions is a central

contribution of our study. Beyond the specific results, perceptual experiments are a very

useful tool for the study of group decision-making when we want to allow information to be

ambiguous, especially in combination with the more controlled environment of traditional

lab experiments on voting. Social psychologists have been studying them for decades; it is

time economists interested in social choice added them to their tool box as well.
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A Appendix

A.1 Theoretical results

Theorem. Suppose π = Pr(ω1) = 1/2. Then for any F and for any N and K odd and

finite, there exists an equilibrium with delegation that strictly improves over MV.

The proof proceeds in four steps. We begin with Lemma 1:

Lemma 1. Consider a profile of strategies Σ = {Σne,Σe} symmetric for voters of each class,

and such that votes are cast according to signal and delegation decisions are symmetric with

respect to signals’ realization. There exists a profile Σ∗ = {Σ∗
ne,Σ

∗
e} ∈ {Σne,Σe} such that

EU(Σ∗) ≥ EU(Σ) for all Σ ̸= Σ∗.

Proof. If all votes cast are cast according to signal, strategic choices are limited to delega-

tion. Because we are focusing on delegation strategies that are symmetric with respect to

signals’ realizations, such strategies depend on signals’ precisions only. Consider first non-

expert i. Keeping in mind that all qi’s are independent draws from F (q), expected utility

conditional on delegation—EUD
(e)
i for delegation to an expert, or EUD

(ne)
i for delegation to

a non-expert—does not depend on qi (because i would not be voting). On the other hand,

i’s expected utility when not delegating, EUND, must be weakly increasing in qi (because
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the probability of reaching the correct outcome must be weakly increasing in qi), and strictly

increasing if i’s probability of being pivotal is positive. It follows that in any equilibrium

there must exist a q̃ ∈[q, q] such that individual i votes (according to signal) if qi ≥ q̃, and

delegates otherwise. If qi < q̃, non-expert i will delegate and may delegate to either an expert

(with probability δ(e)) or to a non-expert (with probability δ(ne)). These probabilities may

correspond to realizations of qi in different subintervals, but the precise characterization of

such sub-intervals is irrelevant because upon delegation qi has no effect on expected utility.

Hence symmetric non-expert i’s delegation strategies are summarized by a set of three num-

bers Σne = {δ(e), δ(ne), q̃}, with δ(e) + δ(ne) = F (q̃) ∈ [0, 1] and q̃ ∈[q, q]. In the case of expert

individuals, precision is fixed at p. Hence, denoting by ξ(e)(ξ(ne)) an expert’s probability of

delegating to another expert (non-expert), strategies are given by Σe = {ξ(e), ξ(ne)}, with
ξ(e) + ξ(ne) ∈ [0, 1]. Although the set of strategies Σ is infinite, it is compact. Because EU

is a continuous function of Σ, we can then apply Weierstrass’s Theorem, and the conclusion

follows: there exists a profile Σ∗ = {Σ∗
ne,Σ

∗
e} ∈ {Σne,Σe} such that EU(Σ∗) ≥ EU(Σ) for

all Σ ̸= Σ∗.

Lemma 2. The profile of strategies Σ∗ is an equilibrium.

Proof. The result is established in two steps, both derived from McLennan (1998). First,

restrict attention to profiles of semi-symmetric strategies with sincere voting and symmetric

delegation with respect to signals’ realization. Within such profiles, Σ∗ is maximal (i.e.

Σ∗ = argmaxΣEU(Σ)) by construction. But in this pure common interest game, it then

follows that Σ∗ must be an equilibrium (McLennan, Theorem 1). Second, the environment

is fully symmetric for each class of individuals, experts and non-experts, and at any such

type-symmetric strategy profile, with sincere voting and symmetric delegation, no voter

wants to deviate to asymmetric delegation or an insincere voting strategy. A priori the two

states are equally likely, and the precision of the signals does not depend on the state. All

voters have identical preferences and are endowed with a single vote. All experts have equal

precision and equal probability of receiving any delegated vote, and thus, for any delegation

strategy by non-experts, each expert’s vote has equal expected weight on the final decision.

Non-experts will have heterogeneous realized precisions, and the equilibrium action will

depend on individual precision, but each precision qi is an independent draw from the same

distribution F . Hence any permutation of realized precisions to different non-expert voters

is assigned equal probability, and each voter holds equal beliefs about the others’ precisions.

For each type of voter, these symmetry conditions satisfy the requirements of McLennan’s

Theorem 2: if Σ∗ is maximal with respect to semi-symmetric strategies with sincere voting

and symmetric delegation, then it is an equilibrium over all profiles of strategies. Note that

asymmetric equilibria may exist, and be superior to Σ∗.
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Lemma 3. Sincere majority voting is not an equilibrium.

Proof. Sincere majority voting is feasible within the set of strategies Σ (semi-symmetric

strategies with delegation symmetric across signals and sincere voting). It corresponds to

q̃ = q (and thus δ(e) = δ(ne) = 0), and ξ(e) = ξ(ne) = 0. Can such set of strategies be an

equilibrium? If the answer is negative, then we know, by the previous results, that there

must exist an equilibrium of the LD voting game that strictly dominates MV and involves

delegation.

Consider the perspective of non-expert voter i, with qi in the neighborhood of q. Suppose

no-one else delegates. We show in what follows that i’s best response is to delegate his vote.

Note first that if no-one delegates, all non-i voters cast a single vote and have equal weight

on the group decision. Hence if i delegates, it is optimal to delegate the vote to an expert,

with precision p ≥ qj for all j.

We need to calculate i’s interim expected utility from non-delegating (EUND(qi)) or

delegating (EUD). The expressions are somewhat cumbersome but conceptually straight-

forward. We find:

EUND(qi),=
M−1∑
cn=0

(
M − 1

cn

)
µcn(1− µ)M−1−cn×

×

[
K∑

ce=0

(
K

ce

)
pce(1− p)K−ce

(
qiIcn+ce+1>

(M+K)
2

+ (1− qi)Icn+ce>
(M+K)

2

)]

EUD =
M−1∑
cn=0

(
M − 1

cn

)
µcn(1− µ)M−1−cn×

×

[
K∑

ce=0

(
K

ce

)
pce(1− p)K−ce

(( ce
K

)
I
cn+ce+1>

(M+K)
2

+

(
K − ce

K

)
I
cn+ce>

(M+K)
2

)]
,

where M is the number of non-experts, cn(ce) indexes the number of non-experts other than

i (experts) whose signals are correct, µ is the expected precision of non-experts who choose

to vote, and thus in this conjectured scenario, µ =
∫ q

q
qdF (q), and IC is an indicator function

that takes value 1 if condition C is satisfied and 0 otherwise. For each realized cn and ce,

i’s expected utility always equals 1 if (cn + ce) > (M + K)/2, i.e. if the other voters with

correct signals constitute a majority of the electorate. For i, the choice to delegate or not

matters when (cn + ce) falls short of the majority by one vote. In such a case, EUND(qi)

equals 1 if i’s own signal is correct (with probability qi) and zero otherwise; EUD equals 1
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if i’s vote is delegated to an expert with a correct signal (with probability ce/K) and zero

otherwise.

Voter i, with qi in the neighborhood of q, strictly prefers delegation if it yields higher

expected utility, or:

limqi→q (EUND(qi)− EUD) < 0

Denote by r the number of additional correct votes required to reach a majority, given the

votes of the non-experts, excluding i, or r≡ (M +K +1)/2− cn. After some simplifications,

we can write:

limqi→q (EUND(qi)− EUD) =

=
K+1∑
r=1

(
M − 1

M+K+1
2

− r

)
µ

M+K+1
2

−r(1− µ)
M−(K+3)

2
+r

(
K

r − 1

)
pr−1(1− p)K−(r−1)

(
q − r − 1

K

)
(1)

Signing this expression is not immediate because the sign depends on the last term. However,

the problem is simplified by noticing that:(
M − 1

M+K+1
2

− r

)
=

(
M − 1

M+K+1
2

− (K + 2− r)

)
.

Equation (1) can then be written as:

limqi→q (EUND(qi)− EUD) =

(K+1)/2∑
x=1

(
M − 1

M+K+1
2

− x

)
(µ(1− µ))

M+K+1
2

−(K+2−x)

(
K

x

)
px(1−p)x×

×
{
(µ(1− p))K+2−2x

[
q − x− 1

K

]
+ ((1− µ)p)K+2−2x

[
x− 1

K
− (1− q)

]}
or, with q = 1− q = 1/2 :

limqi→q (EUND(qi)− EUD) =

(K+1)/2∑
x=1

(
M − 1

M+K+1
2

− x

)
(µ(1− µ))

M+K+1
2

−(K+2−x)

(
K

x

)
px(1−p)x×

×
[
q − x− 1

K

]{
(µ(1− p))K+2−2x − ((1− µ)p)K+2−2x

}
With q = 1/2,

[
q − (x− 1)/K

]
> 0 for all x < (K +2)/2, and thus for all relevant x values.
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It follows that:

(µ(1− p))K+2−2x < ((1− µ)p)K+2−2x ⇒ limqi→q (EUND(qi)− EUD) < 0

With all x < (K + 2)/2, the exponent on both sides is positive, and we can compare the

roots:

µ(1− p) < (1− µ)p ⇒ limqi→q (EUND(qi)− EUD) < 0,

a condition that reduces to:

µ < p

and is always satisfied. Hence limqi→q (EUND(qi)− EUD) < 0: delegation is the best

response. A profile of strategies such that all non-experts cast their vote with probability 1

cannot be an equilibrium.

Assuming q = 1/2 is necessary to establish the result in its full generality, but is also a

natural assumption: q cannot be inferior to 1/2, and thus 1/2 is the natural lower boundary

of the support of the precision distribution.50 The probability of realizations near this lower

bound needs to be positive, but can be arbitrarily small.

Having established Lemmas 1, 2 and 3, the theorem follows. There exists an equilibrium

in semi-symmetric strategies and sincere voting that dominates sincere majority voting. Such

an equilibrium must then include a strictly positive probability of delegation.

Proposition 1. Suppose π = Pr(ω1) = 1/2 and K = 1. Then for any N odd and finite,

there exists an equilibrium such that: (i) the expert never delegates her vote and always votes

according to signal; (ii) there exists a threshold q̃(N) ∈(q, q) such that non-expert i delegates

her vote to the expert if qi < q̃ and votes according to signal otherwise. Such an equilibrium

strictly improves over MV and is maximal among sincere semi-symmetric equilibria where

the expert never delegates and non-experts delegate to the expert only.

We prove the proposition in two lemmas. Recall that we focus on sincere semi-symmetric

strategies invariant to signal content. The first lemma shows that ex ante expected utility,

defined over such strategies and allowing delegation to the expert only, has a maximum at

some probability of delegation strictly between 0 and 1. By the logic of common interest

games, the lemma implies that when strategies are restricted as stated, there exists q̃ ∈(q, q)
such that delegating to the expert if qi < q̃ and voting according to signal otherwise constitute

a set of mutual best responses. The second lemma shows that the strategies described,

50As noted earlier, with binary states, a signal correct with probability inferior to 1/2 is equivalent to the
opposite signal being correct with probability higher than 1/2.
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including the directions of delegation and the threshold of precision q̃, are an equilibrium

within the set of all possible strategies. Hence the equilibrium exists and maximizes expected

utility over sincere semi-symmetric strategies with the described directions of delegation.

Lemma 4. Suppose π = Pr(ω1) = 1/2, K = 1, players are restricted to sincere semi-

symmetric strategies invariant to signal content, non-experts can only delegate to the expert,

and the expert does not delegate. Then ex ante expected utility EU is maximized at some q̃

strictly between 0 and 1.

Proof. The set of strategies over which expected utility is maximized is restricted to a thresh-

old q̃ ∈ [q, q] such that non-experts delegate to the expert if qi < q̃ and voting according to

signal otherwise. Ex ante expected utility is thus EU(q̃). Because the set is compact and

and expected utility is continuous over q̃, a maximum exists. By the argument in the proof

of the theorem, q̃ = q, or no delegation, cannot be a maximum (because q̃ = q is not an

equilibrium over the set of strategies considered here). The upper boundary of the strategy

set, q̃ = q, however is an equilibrium: at q̃ = q all non-experts delegate to the expert; the

expert is dictator, and no deviating non-expert can be pivotal. Hence there can be no strict

gain from deviation. To prove the proposition, we need to show that EU(q̃) is decreasing in

the neighborhood of q and thus the maximal q̃ is interior.

Because the game is common interest, EU(q̃) equals the ex ante expected utility of a

non-expert i when all non-experts, including i, adopt threshold q̃. Consider EU(q̃)−EU(q)

as q̃ → q. The difference is not 0 only if there exist realizations of delegation decisions

and signals at which a non-expert vote can be pivotal, hence only if the expert has been

delegated fewer than M
2
votes. Let µ(q̃) = E[qi|qi ≥ q̃] be the conditional expected precision

of a non-expert i with precision above the threshold. Consider the ratio of probabilities of

the event (i is pivotal and the expert was delegated z < M
2
− 1 votes) to the event (i is

pivotal and the expert was delegated M
2
− 1 votes):

Pr(pivi|z votes delegated)Pr(z votes delegated)

Pr(pivi|M2 − 1 votes delegated)Pr(M
2
− 1 votes delegated)

=(
M−1−z

M
2

)
[pµ(q̃)

M
2
−z−1(1− µ(q̃))

M
2 + (1− p)(1− µ(q̃))

M
2
−z−1µ(q̃)

M
2 ]
(
M−1
z

)
F (q̃)z(1− F (q̃))M−z−1(M

2
M
2

)
[p(1− µ(q̃))

M
2 + (1− p)µ(q̃)

M
2 ]
(
M−1
M
2
−1

)
F (q̃)

M
2
−1(1− F (q̃))M−(M/2−1)−1

=

(
M
2
− 1

z

)
pµ(q̃)

M
2
−z−1(1− µ(q̃))

M
2 + (1− p)(1− µ(q̃))

M
2
−z−1µ(q̃)

M
2 ]

p(1− µ(q̃))
M
2 + (1− p)µ(q̃)

M
2

F (q̃)(1− F (q̃))M−z−1

F (q̃)
M
2
−1(1− F (q̃))

M
2

As q̃ → q, µ(q̃) → q and F (q̃) → 1. Hence the limit of the first two terms above is a strictly

positive number, but the numerator and denominator of the last ratio both go to 0. Using
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L’Hôpital’s rule, we find

lim
F (q̃)→1

F (q̃)(1− F (q̃))M−z−1

F (q̃)
M
2
−1(1− F (q̃))

M
2

= 0

As q̃ → q, conditional on i being pivotal, the probability that the expert was delegated
M
2
− 1 votes, rather than any fewer, becomes arbitrarily high, while i’s ex-interim expected

utility difference between delegating and keeping her vote remains bounded away from 0

as q̃ → q. Thus i conditions the decision to delegate on such an event. But, conditional

on the expert being delegated M
2
− 1 votes and i being pivotal, it must be that σe ̸= σj

for all non-experts j ̸= i who have not delegated: the expert disagrees with M
2
non-experts

other than i who all have precisions (weakly) greater than q̃. As q̃ → q, it then follows

that not delegating is superior to delegating at q̃,51 and thus EU(q̃) > EUD = EU(q). Or

EU(q̃)−EU(q) > 0 as q̃ → q. Thus argmaxq̃EU(q̃) ∈ (q, q): EU(q̃) reaches a maximum at

a strictly interior probability of delegation.

By McLennan’s argument and the proof of the Theorem, Lemma 4 implies that, when

restricting attention to semi-symmetric strategies invariant to signals’ content and with the

specified directions of delegation, there exists equilibrium q̃ ∈ (q, q) such that every non-

expert i delegates to the expert if qi < q̃, and votes sincerely otherwise. Lemma 5 shows

that such strategies are equilibrium strategies in the space of all strategies.

Lemma 5. Suppose π = Pr(ω1) = 1/2 and K = 1. Then there exists a threshold strategy q̃

such that: (i) If all non-experts adopt strategy q̃ and only delegate to the expert, and if all

votes cast by non-experts are cast sincerely, then it is optimal for the expert never to delegate

and to vote sincerely. (ii) Consider non-expert i. If the expert never delegates and always

votes sincerely; if every other non-expert j ̸= i delegates to the expert if qj < q̃ and votes

sincerely otherwise, then it is optimal for i to delegate to the expert if and only if qi < q̃, and

vote sincerely otherwise. Hence the strategies are mutual best responses.

Proof. Given the uniform prior, the symmetry of precisions across signals, and the signals’

conditional independence, it is well-known that sincere voting and delegation strategies sym-

metric across signals’ content are mutual best responses. The contribution of the lemma is in

proving that, given such strategies and optimal symmetric non-experts’ threshold strategies,

the directions of delegation—the expert never delegating and non-experts delegating to the

expert only—are mutual best responses. We begin by proving claim (i): delegation from the

51The claim holds if limq̃→q

(
EUND(qi)

∣∣∣∣
z=M/2−1

−EUD

∣∣∣∣
z=M/2−1

)
> 0. It is not difficult to verify that

the condition corresponds to (1 − p)qip
M/2−1 > p(1 − qi)(1 − p)M/2−1, which is satisfied for all p and qi in

(0.5, 1).
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expert to a non-expert cannot be optimal. First consider expert e delegating to some non-

expert j when j does not delegate to e (and thus there is no cycle). Expected utility when all

M non-experts use threshold q̃ is higher than expected utility when M − 1 non-experts use

cutoff q̃ and one non-expert i delegates to the expert for all qi (because i delegating when

qi > q̃ strictly decreases expected utility). In turn, expected utility in this latter case is

higher than expected utility from the same actions if the expert’s precision were drawn from

[q̃, q] according to distribution F , rather than being p. But the expected utility from this

last scenario is identical to the expected utility from e delegating to j: M − 1 non-experts

delegate using cutoff q̃, but all their delegated votes are turned over to non-expert j, with

precision randomly drawn from [q̃, q], and e, who always delegates regardless of precision, is

the analogue of voter i in the constructed scenario. Now suppose that when e delegates to j,

j also delegates to e. This creates a cycle, and by the rules of the game, e’s vote is reassigned

randomly to a different non-expert j′. If j′ does not delegate, the argument above applies.

If j′ delegates to e as well, another non-expert j′′ is randomly chosen to receive e’s vote, and

so forth until a non-expert who does not delegate is chosen, and the argument above applies.

If all non-experts delegate to e, then, again by the rules of the game, the decision is taken

by a coin toss. But this leads to EU = 1/2, inferior to expected utility when e does not

delegate. Hence claim (i) applies.

Consider now claim (ii). Given threshold q̃, consider the difference in expected utility

for a non-expert i between delegating to expert e or instead delegating to some non-expert

j who has not herself delegated her vote to e (the choice would otherwise be irrelevant).

Expert e has precision p; non-expert j has expected precision µ(q̃) ≡ EF [qj|qj > q̃] < p.

Voter i’s expected utility from the two forms of delegation can differ only if e and j’s signals

differ (σe ̸= σj), and i’s vote is pivotal: for any number of delegated votes z ≤ (M
2
− 1),

the expert agrees with M
2
− (z + 1) non-experts and disagrees with M

2
(j included, i not

included). The delegation choice is not trivial because, although µ(q̃) < p, when i is pivotal

and σe ̸= σj, there must be fewer independent signals agreeing with e than with j. Let

pivi(z) be the event corresponding to the set of signal realizations at which i’s vote is pivotal,

conditional on the expert being delegated z votes, and pivji(z) be the same event additionally

conditioning on σe ̸= σj. Note that in both events the expert agrees with M
2
− (z + 1)

non-experts and disagrees with M
2
: the events contain the same information content and

Pr(σe = ω|pivi(z)) = Pr(σe = ω|pivji(z)) for all z. Then, noting that the summation below
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is to M − 2 to exclude i and j:

EUD(i delegate to e)− EUD(i delegate to j) =

=
M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1−F (q̃))M−2−zPr(pivji(z)|z)[Pr(σe = ω|pivji(z))−Pr(σj = ω|pivji(z))]

Define r(z) ≡ Pr(σe = ω|pivji(z)) = Pr(σe = ω|pivi(z)). Then, for z ≤ (M
2
− 1):52

r(z) =
Pr(pivji(z)|σe = ω)Pr(σe = ω)

Pr(pivji(z))
=

=
p(µ(q̃))

M
2
−(z+1)(1− µ(q̃))

M
2

p(µ(q̃))
M
2
−(z+1)(1− µ(q̃))

M
2 + (1− p)(1− µ(q̃))

M
2
−(z+1)(µ(q̃))

M
2

As Pr(σj = ω|pivji(z)) = 1− Pr(σe = ω|pivji(z)), we can rewrite:

EUD(i delegate to e)− EUD(i delegate to j) =

=
M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1− F (q̃))M−2−zPr(pivji(z)|z)[2r(z)− 1]

We can sign this expression by exploiting the equilibrium condition for q̃. Consider the

difference in expected utility between i delegating to e and i voting when her precision is

qi = q̃:

EUD(i delegate to e)− EUND(qi = q̃) =

M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1− F (q̃))M−2−zPr(pivi(z)|z)[Pr(σe = ω|pivi(z))− q̃] =

=
M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1− F (q̃))M−2−zPr(pivi(z)|z)[r(z)− q̃]

Note that Pr(pivji(z)|z) =
M
2

M−1
Pr(pivi(z)|z) (i.e. j must be part of the M/2 non-experts

who disagree with e, out ofM−1 non-experts, ignoring i). For equilibrium q̃, EUD(i delegate to e)−
EUND(qi = q̃) = 0 which implies:

52Note that r(z) is strictly decreasing in z for all z ≤ (M2 − 1).
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M − 1
M
2

M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1− F (q̃)M−2−zPr(pivji(z)|z)r(z) =

=
M − 1

M
2

M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1− F (q̃))M−2−zPr(pivji(z)|z)q̃

or:

r(z) = q̃.

Hence:

EUD(i delegate to e)− EUD(i delegate to j) =

=
M−2∑
z=0

(
M − 2

z

)
F (q̃)z(1− F (q̃))M−2−zPr(pivji(z)|z)[2q̃ − 1]

But (2q̃− 1) > 0 for all q̃ ∈ (q, q), and thus EUD(i delegate to e)−EUD(i delegate to j) >

0.

A.1.1 LD: K (odd) experts; M (even) non-experts.

We report here, for generic parameter values, the formulas we used to derive the equilibria

for the experimental parametrizations. As always, EUND(qi) is interim expected utility

for a voter with realized precision qi; the equilibrium threshold is denoted q̃ and solves

EUND(qi = q̃) = EUD, and µv(q̃) ≡ EF [qj|qj > q̃]. We find:

EUND(qi, q̃) =
M−1∑
z=0

(
M − 1

z

)
(1− F (q̃))z F (q̃)M−1−z

z∑
cn=0

(
z

cn

)
(µv(q̃))

cn(1− µv(q̃))
z−cn×

×


 K∑

ce=0

(
K

ce

)
pce(1− p)K−ce

M−z−1∑
x1=0

M−z−1−x1∑
x2=0

...

M−z−1−
∑K−2

k=1 xk∑
xK−1=0

(M − z − 1)!∏K
k=1 xk!

×

×
(
qi

(
(1/K)M−z−1Icn+1+ce+

∑ce
k=1 xk>(M+K)/2

)
+

(1− qi)
(
(1/K)M−z−1Icn+ce+

∑ce
k=1 xk>(M+K)/2

))}
,
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where xK ≡ M − z− 1−
∑K−1

k=1 xk, and IC is an indicator function that equals 1 if condition

C is realized and 0 otherwise. Similarly:

EUD(q̃) =
M−1∑
z=0

(
M − 1

z

)
(1− F (q̃))z F (q̃)M−1−z

z∑
cn=0

(
z

cn

)
(µv(q̃))

cn(1− µv(q̃))
z−cn×

×


 K∑

ce=0

(
K

ce

)
pce(1− p)K−ce

M−z∑
y1=0

M−z−y1∑
y2=0

...

M−z−
∑K−2

k=1 yk∑
yK−1=0

(M − z)!∏K
k=1 yk!

×

×
(
(1/K)M−zIcn+ce+

∑ce
k=1 yk>(M+K)/2

)}
where yK ≡ M − z −

∑K−1
k=1 yk.

We use as welfare criterion ex ante expected utility, i.e. expected utility before the

realization of qi (but under the correct expectation of q̃). Hence:

EU(q̃) =

∫ q̃

q

EUDf(q)dq +

∫ p

q̃

EUND(qi)f(q)dq

Under MV, ex ante expected utility is given by:

EUMV =
M∑

cn=0

(
M

cn

)
µcn(1− µ)z−cn

K∑
ce=0

(
K

ce

)
pce(1− p)K−ceI

cn+ce>
(M+K)

2

where, as in earlier use, µ ≡ EF (qi).

A.1.2 MVA: K (odd) experts; M (even) non-experts.

Under the possibility of abstention as well, all equilibria are in monotone threshold strategies.

We denote by α̃ the equilibrium threshold such that all i with qi < α̃ choose to abstain, and

all i with qi > α̃ choose to vote. With a known and finite electorate size, the equilibria are

sensitive to whether K and M are odd or even. In particular, an equilibrium with α̃ = q (all

voters cast their vote) exists if and only if N is odd. An equilibrium with α̃ = p (all experts

vote, and none of the other voters do) exists if and only if K is odd. Thus both equilibria

exist in our experimental parametrizations. In addition, there are interior equilibria where

α̃ ∈ (q, p). Denoting by EUV (qi, α̃) interim expected utility from voting, given qi, and by

EUA(α̃) interim expected utility from abstaining (which does not depend on qi), α̃ must

solve EUV (qi, α̃) = EUA(α̃), where:
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EUV (qi, α̃) =
M−1∑
v=0

(
M − 1

v

)
(1− F (α̃))v F (α̃)M−1−v

v∑
cn=0

(
v

cn

)
(µv(α̃))

cn(1− µv(α̃))
v−cn×

×

{(
K∑

ce=0

(
K

ce

)
pce(1− p)K−ce

)
×

×
(
qi
(
Icn+1+ce>(v+1+K)/2 + (1/2)Icn+1+ce=(v+1+K)/2

)
+

(1− qi)
(
Icn+ce>(v+1+K)/2 + (1/2)Icn+ce=(v+1+K)/2

))}
,

and:

EUA(α̃) =
M−1∑
v=0

(
M − 1

v

)
(1− F (α̃))v F (α̃)M−1−v

v∑
cn=0

(
v

cn

)
(µv(α̃))

cn(1− µv(α̃))
v−cn×

×

(
K∑

ce=0

(
K

ce

)
pce(1− p)K−ce

)(
Icn+ce>(v+K)/2 + (1/2)Icn+ce=(v+K)/2

)
.

Ex ante expected utility, before the realization of qi but under the correct expectation of

α̃, is given by:

EUMVA(α̃) =

∫ α̃

q

EUA(α̃)f(q)dq +

∫ p

q̃

EUV (qi, α̃)f(q)dq

A.2 Additional empirical results

A.2.1 Frequency of delegation and abstention. First treatments only

We report here (Tables A.1 and A.2) linear probability and probit regressions of the indi-

vidual decision to delegate or abstain, selecting data from the first treatment played in each

session only. That is, corresponding to an in-between subjects design with 20 rounds only.

Standard errors are clustered at the session level. As discussed in the text, while the

results are effectively unchanged for the small groups (N = 5), there is a clear loss of

precision in the N = 15 regressions. The most striking result is the null effect of signal

quality on the decision to abstain under MVA3 (while signal precision continues to affect

negatively delegation under LD3).
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Experiment 1: Frequency of Delegation or Abstention, First Treatments. N=5.

(1) (2)
Linear Probability Probit

LD 0.459** 1.450***
(0.081) (0.288)
[0.011] [0.000]

Round -0.005 -0.022
(0.020) (0.079)
[0.816] [0.778]

Signal Precision -0.668*** -2.295***
(0.107) (0.423)
[0.008] [0.000]

LD * Round -0.127** -0.459***
(0.024) (0.117)
[0.013] [0.000]

LD * Signal Precision -0.322* -0.890*
(0.111) (0.456)
[0.062] [0.051]

Constant 0.639*** 0.506***
(0.056) (0.172)
[0.001] [0.003]

Observations 960 960
R-squared 0.330

*** p<0.01, ** p<0.05, * p<0.1

Table A.1: Determinants of delegation and abstention; N=5. First treatments only. Standard
errors are clustered at the session level.
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Experiment 1: Frequency of Delegation or Abstention, First Treatments. N=15.

(1) (2)
Linear Probability Probit

LD 0.174 0.610
(0.105) (0.375)
[0.160] [0.104]

Round -0.048 -0.162
(0.077) (0.270)
[0.557] [0.548]

Signal Precision 0.077 0.202
(0.074) (0.336)
[0.351] [0.547]

LD * Round 0.078 0.263
(0.075) (0.261)
[0.348] [0.314]

LD * Signal Precision -0.868*** -2.648***
(0.045) (0.129)
[0.000] [0.000]

Constant 0.835*** 0.977***
(0.094) (0.297)
[0.000] [0.001]

Observations 1,440 1,440
R-squared 0.301

*** p<0.01, ** p<0.05, * p<0.1

Table A.2: Determinants of delegation and abstention; N=15. First treatments only. Stan-
dard errors are clustered at the session level.
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A.2.2 Monotonicity violations

Figure A.1: Monotonicity violations. Histograms. For each subject, we calculate the fre-
quency of violations given the number of rounds played as non-expert. The maximum
possible frequency is 50%.

A.2.3 Voting against signal and signal quality

Note that the only significant effect is from signal quality (precision). Neither the voting

system nor the size of the group matter, but a decrease in signal quality is strongly correlated

with an increase in voting against signal. Although voting against signal is an inferior action,

the loss from doing so is indeed increasing in signal quality. There could be a small learning

effect (voting against signal is less frequent in the treatments run second), but it is quite

noisy and counterbalanced by a similarly sized, if statistically insignificant, increase in voting

against signal as rounds proceed, possibly from fatigue.
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Experiment 1: Frequency of Voting Against Signal.

(1) (2)
Linear Probability Probit

Signal Precision -0.407*** -2.058***
(0.038) (0.159)
[0.000] [0.000]

Round 0.005 0.031
(0.006) (0.050)
[0.457] [0.535]

LD -0.006 -0.057
(0.009) (0.066)
[0.504] [0.390]

N = 15 -0.01 -0.101
(0.022) (0.160)
[0.648] [0.528]

Second -0.012 -0.098*
(0.009) (0.051)
[0.216] [0.056]

Second * Mixed -0.034 -0.230
(0.021) (0.177)
[0.136] [0.193]

N = 15 * Second 0.037 0.282
(0.023) (0.181)
[0.132] [0.120]

N = 15 * Mixed -0.010 -0.066
(0.031) (0.248)
[0.744] [0.789]

Constant 0.424*** 0.174
(0.036) (0.116)
[0.000] [0.134]

Observations 2,552 2,552
R-squared 0.154

*** p<0.01, ** p<0.05, * p<0.1

Table A.3: Frequency of voting against signal. Standard errors are clustered at the session
level.
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B Online Appendix

B.1 The bootstrapping procedure: allowing for individual corre-

lation across rounds

Replicating what happens in an individual session, we draw with replacement 15 subjects

from the relevant treatment, each with all choices made over the 20 rounds. Among these

15 subjects, we draw, with replacement, 3 subjects, assigning to each of them one choice

they made as expert,53 and 12 subjects, assigning to each one choice made as non-expert.

In N = 15, that constitutes the group and yields one group decision; in N = 5 treatments,

we divide the 12 subjects randomly into three groups of 4 and assign to each group one

of the experts drawn earlier, generating three group decisions. We repeat new draws of 3

experts and 12 experts as above 20 times, generating 20 decisions from the same sample of 15

subjects if the treatment has N = 15, and 60 if the treatment has N = 5, thus simulating one

experimental session. We then draw, always with replacement, a new group of 15 subjects,

and repeat the procedure, each time generating 20 (60) decisions from the same group of

15 subjects, depending on the size of the group in the treatment. We repeat the whole

procedure 4 times (N = 5), or 6 times (N = 15) generating 240 (120) decisions, as in our

data from each of the N = 5 (N = 15) treatments. We then calculate the frequency of

correct decisions, and consider that one data point for that treatment. We repeat the whole

process 100,000 times and generate a distribution of the frequency with which the correct

decision was reached.

B.2 A short note on beliefs

As reported in the text, at the end of the RDK experiment, we asked: “On average what

percentage of trials in the second part do you think you got right?”, and “On average what

percentage of trials in the second part do you think the experts got right?” Participants

earned 25 cents for replies the fell within 5% of the observed percentage in the group to

which the participant was assigned. Figure B.1 plots distributions of the difference between

actual own accuracy and the corresponding reported belief, in the left panel, and between

actual average experts’ accuracy and the corresponding reported belief, in the panel on the

right, for the two different coherence levels. Both panels rely on a single measure of beliefs

per subject, and thus the unit of analysis is the subject.

As the figure shows, accuracy of beliefs varies little with coherence. On average, beliefs

about own accuracy are remarkably correct, with barely detectable underestimation. The

53If the subject was never an expert, the subject is dropped and another one is drawn.
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Figure B.1: Difference between actual and reported accuracies. The left panel refers to
own accuracy; the right panel to the average of the experts’ accuracy. The vertical lines
correspond to the means.

distribution is instead shifted to the right in the case of experts, with about 15% average

overestimation, imputable, as we say in the text, to stochasticity in accuracies and reversion

to the mean, neglected in the formation of beliefs. Overestimation is somewhat larger at

smaller coherence, when the task is more difficult.

Table B.1 reports variants of the regressions in Tables 6 and 7 in the text, now including

measures of beliefs. The dependent variable is the frequency of delegation or abstention at

the subject level (120 tasks per subject), with data aggregated by coherence level.

As described in the text, beliefs are strongly significant and have the expected signs but

cannot explain the higher tendency towards delegation rather than abstention.

B.3 The Random Dot Kinematogram

In a Random Dot Kinematogram (RDK), the perceptual stimulus consists of a number of

dots being displayed on a screen. A proportion of these dots are determined to be signal

dots, while the remaining are noise dots. Signal dots all move in a determined direction,

while noise dots move at random according to an algorithm. The tasks consists in reporting

the direction in which the signal dots are moving. This direction is called the coherent

direction and the proportion of signal dots, the coherence, is the main factor in determining
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Experiment 2: Frequency of Delegation or Abstention.

(1) (2)
Coherence = 0.05 Coherence = 0.03

Own Accuracy -0.250 -0.0136
(0.288) (0.334)
[0.387] [0.968]

Experts’ Accuracy -0.282
(0.389)
[0.469]

Belief About Own Accuracy -0.714*** -0.607***
(0.144) (0.161)
[0.000] [0.000]

Belief About Experts’ Accuracy 0.337** 0.615***
(0.160) (0.181)
[0.037] [0.001]

LD 0.249*** 0.230***
(0.0369) (0.0407)
[0.000] [0.000]

Constant 0.757*** 0.223
(0.269) (0.194)
[0.005] [0.252]

Observations 300 250
R-squared 0.184 0.163

*** p<0.01, ** p<0.05, * p<0.1

Table B.1: Beliefs and the decision to delegate/abstain. Expert accuracy is excluded from
coherence 0.03 because, with a single group per treatment, it is collinear with LD.
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the difficulty of the task.

The task can be programmed in various ways, using a variety of parameters (e.g. color,

duration, algorithm, number of dots). Research has been done to study the various effects

of using different combinations of these parameters (Pilly and Seitz, 2009; Schütz et al.,

2010). We take advantage of the recent development of a customizable version of the RDK

(Rajananda et al., 2018) which can be implemented as a plugin in jsPsych. This version

allows for the configuration of various parameters in order to adjust the task as desired by

the researchers. We report in the table below the parameters that we used in our experiment.

The reader can find details about how they affect the task in Rajananda et al., 2018 and

in the following link: https://www.jspsych.org/6.3/plugins/jspsych-rdk/. It is important to

emphasize again that our objective in using the RDK was not to study perception in itself,

but rather to create a common task that is reasonably well controlled and calibrated and

where, nevertheless, the information about the accuracy of the signals remains ambiguous.

Duration: 1 second
Directions: Left/Right
Number of dots: 300
Background color: Black
Color of dots: White
Dot radius: 2 pixels
Dot movement per frame: 1 pixel
Aperture width: 600 pixels
Aperture height: 400 pixels
Signal selection: Same
Minimal screen resolutions 1000x600 pixels
Noise type: Random direction
Aperture shape: Ellipse
Reinsertion: Dots reappear randomly when hitting edge
Fixation cross: No
Aperture border: No
Coherence: 20% to 3% (according to treatment)

Table B.2: Experiment 2: RDK parameters
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