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Abstract: In this paper, we show that in a stochastic overlapping generations (SOLG) model with
Keynesian search, agents’ beliefs must align with the endogenously generated wealth distribution.
This requirement stems from the pecuniary wealth externality introduced by portfolio rebalancing
decisions. Using a three-period SOLG model, we examine issues such as age-based disparities
in hours worked and the impact of employment uncertainty across business cycles. Our model
incorporates dual labor market structures and calibrates the hours worked by young agents to
drive stochastic fluctuations. We also explore the role of matching efficiency shocks, providing
an alternative to traditional TFP shocks. We show preliminary results for the model with three
overlapping generations and propose a Neural Network approach to find the equilibrium in our
full-fledged model.

1. Introduction

General equilibrium macroeconomic models in which search replaces classical assumptions
about the operations of labor markets go back at least to the seminal work on search theory
by Diamond, Mortenson and Pissarides in the late 1990’s. One of the perceived drawbacks
of these early models (and their subsequent refinement as New Keynesian macro models) was
the assumption that wages were determined by bilateral bargaining between firm and potential
employee. This assumption has been criticized on the grounds that it leads to far smoother
employment and output time-series in models that incorporate it than is observed in actual data.
It also implicitly preserves the general equilibrium linkage between worker supply and firm
demand for labor, albeit now channeled through the search mechanism, particularly in models
where workers’ bargaining power is assumed to depend on the state of the labor market (i.e., on
current or lagged aggregate shocks).

The basic assumption that employment matches are determined by search reflects the fact that
labor markets are inherently incomplete, generally due to information asymmetries about the
overall value of a match. Empirical evidence for labor market incompleteness goes back at least to
Jovanovic (1979) [1] and Jovanovic and Mincer (1981) [2]. Both of these papers show that once
one controls for regression bias due to spurious correlations between separation rates and job
tenure, there is a negative structural relationship between these variables. Jovanovic (1979) [1]
interprets this as evidence that employment matches, at least at entry levels or for unskilled
workers, are experience goods, as opposed to pure search goods. Under this interpretation,
employers and workers can only learn the value of an employment match by making it and
seeing if it works. Under the pure search goods interpretation, the value of potential matches
can be determined once a search meeting has occurred, with good matches accepted and bad
ones rejected. This is similar to how matching models are used in search-based models of
money. Under this interpretation, however, wages do serve to induce greater search effort
by workers when firms need more labor, and hence the fundamental mechanism of market
clearing is preserved in these models. In experience good models, wages serve a different



purpose. As Jovanovic notes, in these models “employers can contract with workers on an
individual basis. The employer is then able to reward a worker with whom he matches well by
paying the worker relatively more.” (Ibid p. 974) This function of wages is independent of any
market-clearing role. There is additional evidence for the labor as experience good hypothesis in
Kotlikoff (1979) [3]. In this paper, Kotlikoff examines data on the New Orleans slave market
between 1804 and 1862. One striking observation in this data is that the sale of individual slaves
generally came with a guarantee as to the slave’s ability to work. As Kotlikoff notes, “In the
case of slaves who were not fully guaranteed, the exclusions from the full guarantee are often
stated.” (Ibid,p. 497) Kotlikoff also notes that this data is generally considered reliable because it
was required by law in order to establish each owner’s right to the particular slave being purchased.

Based on this kind of empirical evidence, together with a trove of evidence in the finance litera-
ture on the causal role that financial markets play in predicting business cycles, Farmer (2008) [4]
introduced an alternative search mechanism which explicitly broke the link between wages and
market clearing, which he dubbed (Old) Keynesian Search theory. In this search mechanism,
firms produce to meet demand, paying a wage determined by their own labor demand schedule,
but hiring only enough workers to meet their expected demand in each period. This effectively
removes the labor market equilibration from Farmer’s otherwise conventional RBC-based model,
and renders the steady state of the model indeterminate. Farmer closes the model by introducing
a belief function by which agents forecast future wealth, which then determines demand. The
indeterminacy in the model means that any belief function equilibrium will constitute a rational
expectations equlibrium (REE). The arbitrariness of the belief function then allows Farmer (and
others working in similar frameworks) to generate equilibrium time-series that match the data
much more closely than convention RBC or NK models.

In this paper, we show that in a general stochastic overlapping generations (SOLG) model with
Keynesian search, beliefs cannot be arbitrary. The reason for this is staightforward. General
SOLG models require carrying along the wealth distribution as a state variable (in what is known
as a recursive equilibrium) because of the pecuniary wealth externality introduced by agents’
portfolio rebalancing decisions1. Since this is a fundamental difference between the SOLG and
RBC-based DSGE models, it is worth unpacking further.

In the SOLG framework, portfolio rebalancing in the face of shock realizations makes the
competitive equilibrium history dependent. Woodford (1986) showed how to solve these models
using the infinite history of shocks as the state variable. Later work by Spear and Srivastava
(1986), Duffie et. al. (1994), and Rios-Rull (1996) showed how to use lagged endogenous
variables as sufficient statistics for the shock history. Rios-Rull’s assumption that the wealth
distribution would be the natural statistic was subsequently shown to be true generically by
Citanna and Siconolfi (2010). It is, of course, true that standard DSGE models include lagged
endogenous state variables – the capital stock is the most obvious – but these are not serving as
sufficient statistics for shock histories in these models. Indeed, in the RBC setting, the capital
stock is determined by the law of motion for capital together with the optimal choice of saving by
households. It is also true that in the standard DSGE setting, portfolio rebalancing decisions
generate income effects, but these effects are internalized by the infinte lived households in the
model via adjustments to bequests in a way that keeps the intertemporal allocations ex ante
optimal. This is the feature that is missing in the SOLG setting.

We will show that while the SOLG setting admits the same kind of steady state indeterminacy as
in Farmer’s RBC-based model, agents’ expectations (or beliefs) about the equilibrium stochastic

1See Spear and Young (2023) for an examination of the historical development of these results



process must conform with the endogenously generated distribution of asset holdings in the
model. This requires that the REE be a non-trivial fixed point in the mapping from expectations
to temporary equilibria of the model. Finally, in order to avoid the confusion that can arise when
trying to distinguish Keynesian models from New Keynesian models or old Keynesian models,
we will refer to models in which some labor markets are incomplete as Incomplete Search-base
Labor Market (ISLM) models.

We use the model to examine a number of issues. The first concern the disparity in hours
worked by age. Rios-Rull (1996) [5] used a multi-period SOLG model to examine how life-cycle
differences affected a number of macroeconomic variables, among them the hours worked by
agents of different ages. He found that the model (which includes both aggregate and idiosyncratic
shocks) matched the observed hours worked of older agents, but could not replicate the hours
of younger workers. This discrepancy suggests that while conventional labor market models
(whether classical or New Keynesian) do an adequate job of explaining employment of older
workers, a new approach is needed to understand what is going on at the entry level. This
observation then suggests that lifecycle considerations may be important for the emergence
of dual labor markets consisting of a primary sector employing skilled, experienced workers
and a secondary sector consisting of entry-level workers with "low skill levels, low earnings,
easy entry, job impermanence, and low returns to education or experience" (Beer and Barringer
[1970]). We model the dual labor market structure by working with a three-period lived SOLG
model in which middle-aged agents act as managers who, among other activities, participate
in the recruiting of new young agents via the Keynesian search process from Farmer’s work 2.
This lifecycle interpretation is well-grounded in empirical work showing that young workers
optimally sample different jobs/occupations, which generates a signicant degree of employment
churn, before settling into long duration spells of employment with specific firms, or within
specific industries. (See, e.g., Miller [1984] [7] for early work on this, or Sullivan [2010] [8]
and references therein for a more recent survey of this work.) The model developed here then
allows us to use hours worked by the young as a calibrated parameter that drives the stochastic
fluctuations of the model. We then show how to use standard results from pure exchange SOLG
models to determine the REE of the dual labor markets model, which, following Farmer, we then
interpret as the belief function of firms that gives rise to the observed variation in hours worked
by the young in equilibrium.

A second, more general set of issues that we can address in the model concern the relationship
between employment uncertainty and employment across the business cycle. For this analysis, we
assume that the aggregate shocks affecting production act not on TFP, but rather on the efficiency
of the matching process. While this is a somewhat unusual approach, we find it more plausible
than the alternative of accepting the fiction of large aggregate TFP shocks or assuming that
belief-based shocks to aggregate demand account for all buisness cycle movements. There is a
substantial literature on the empirical importance of uncertainty in the labor markets that suggests
putting the shocks on the matching process as an alternative to standard TFP shocks – see, for
example Ravn and Sterk (2017) [9] or Barnichon and Figuera (2010) [10]. As Barnichon and
Figuera note, the existence of shocks to the matching function provides a mechanism to explain
the apparent shifts in the Beveridge curve over time, and their estimates of these shocks provide a
benchmark for calibrating our model. Given this calibration, we can then determine the stochastic
process of equilibrium in the model, conditional on the state of the business cycle and ask whether
the simulations match up with the data. In a richer version of the model where we calibrate
production using the results from regime-switching econometric models of the business cycle,

2Firms’ decisions on how much seasoned labor to allocate to search generates search intensity effects similar to those
originally analyzed by Howitt and McAfee (1987) [6].



we can examine the extent to which time homogeneous shocks to matching are consistent with
the non-linearity of the regime-switching process. Conversely, given data about the movement of
the Beveridge curve over the business cycle, we can calibrate time-varying shocks to matching
and then examine whether the resulting stochastic process of employment is consistent with the
data. Finally, we note that it is entirely possible to interpret the shocks to matching as extrinsic
uncertainty, i.e. sunspots. Examples of this include the apparent discrimination against the
long-termed unemployed during the recovery from the recession induced by the 2008 financial
crisis (see Kroft, Notowidigdo, and Katz [2014] [11]). A second example is the so-called “Big
Quit” following the covid-19 pandemic lockdowns, in which large numbers of laid off workers
either exited the work force, or spent above average amounts of time searching for new jobs.
The most recent data on work force participation strongly suggests that this was a transient
phenomenon. We view modeling these actions as random shocks as a way of cutting through the
need to formally model the psychological or policy-driven motives behind these examples.

A third set of issues we can address involve the product and financial market side of the
model. Once we specify how wages and profits are determined on the production side, the REE
of the associated exchange economy will then generate expectations (possibly over sunspots or
sentiment variables) such that demand is compatible with production. (In Farmer’s interpretation
of the model, these expectations would be the cause of the production variations over the business
cycle.) The resulting REE will generate time-series data in simulations for the equilibrium
stochastic process on asset prices as well as consumption, which lets us examine how well the
asset markets in the model match up with empirical data on asset markets over the course of the
business cycle.

We interpret the results we obtain as indicating that while Farmer’s contention that beliefs
are important in determining macroeconomic equilibrium is valid, in realistic settings – SOLG
models or NKDSGE models with heterogeneity and incomplete markets – where the wealth
distribution evolves endogenously, beliefs cannot be arbitrary. Rather, they are constrained by the
rational expectations equilibrium assumption used to close the mapping from expectations to
temporary equilibria. The fact that even in these more realistic settings Keynesian search leads to
indeterminate steady state equilibria highlights the importance of Farmer’s observation about
the incompleteness of labor markets. Our take on this incompleteness, however, is based on the
lifecycle considerations that have been shown to generate the excess volatility in hours worked
by young people. In this view, established workers with occupation-specific human capital
and established track records don’t generate the moral hazard and adverse selection problems
associated with entry level labor markets, and hence these agents transact over complete markets
for their services.

The fact that the REE must be determined as a non-trivial fixed point of the temporary equilib-
rium mapping also suggests that there is an important role for learning in environments where the
steady state equilibrium is indeterminate. Because of the hysteresis induced by the steady state
indeterminacy, plausible learning mechanisms may lead to variations in effective demand when
unanticipated shocks – wars, pandemics, new technological or scientific discovers – impinge on
the operation of the economy and disrupt an established long-run rational expectations equilibrium.

2. Model.

2.1. Three-period Framework

To illustrate the basic workings of the model, we first examine a three-period version of it. The
model is a stochastic version of the Diamond model, but, following Farmer (2011, 2013) [4, 12],



we assume that the labor market for new entrants (i.e. young agents) is incomplete. In the
absence of an organized market for entry level inputs, firms in the model must engage in costly
search to determine the suitability, numbers hired, and wages paid to young workers. We model
this via the ISLM search process outlined in Farmer (2011, 2013) [4, 12]. As outlined in the
introduction, young workers who pass the search screen face a take-it-or-leave it decision on
whether to accept employment at the wage offered by the firm. This wage can be determined
in a number of different ways. Farmer (2011, 2013) [4, 12] assumes that firms pay competitive
wages once the screened pool of appicants has been determined. Kim et. al. (2022) use a
Shapley-Shubik market game with oligopolistic firms to determine the post-screening wage offer.
We will follow Farmer in this paper and assume that wages are determined competitively. To
simplify the exposition, we also assume that workers supply their labor inelastically (with respect
to wages). Other than this assumption on wage determination, the search process in the model is
standard. The costs of search in the model take the form of diverting seasoned (i.e. middle-aged)
workers from production to search.

The market for seasoned labor (i.e. middle aged agents) is complete and functions normally.
The empirical justification for this is based on the observed differences between the volatility of
hours worked by middle-aged agents relative to young agents, together with Miller (1984)’s [7]
findings on the relationship between age and job stability. As noted above, firms must allocate
seasoned workers to either production acitivites or search activities, which requires that firms
forecast the demand they expect to face, and then allocate search resources to hire entry-level
workers who engage in production with seasoned workers allocated to production.

Let 𝑁𝑦 and 𝑁𝑚 denote the number of young and middle-aged workers employed in production,
with K the amount of capital employed. The representative firm’s production function is the
given by

𝑌 = 𝐹
(
𝑁𝑦 , 𝑁𝑚, 𝐾

)
(1)

where 𝐹 is 𝐶2 and concave. For specificity, we work with a Cobb-Douglas formulation of
production for our examples and simulations, so that

𝑌 = 𝐴𝑁𝑎
𝑦 𝑁

𝑏
𝑚𝐾

𝑐 (2)

Following standard practice, we will work in per capita terms, though it will simplify our
exposition to be able to work with the two types of labor as being relative to the total amount of
each type employed. So, we write

𝑌 = 𝐴

(
𝐿𝑦

𝐿𝑦

𝑁𝑦

)𝑎 (
𝐿𝑚

𝐿𝑚
𝑁𝑚

)𝑏 (
𝐿𝑦 + 𝐿𝑚
𝐿𝑦 + 𝐿𝑚

𝐾

)𝑐
= 𝐴𝐿𝑎

𝑦𝐿
𝑏
𝑚

(
𝐿𝑦 + 𝐿𝑚

)𝑐
𝑛𝑎𝑦𝑛

𝑏
𝑚𝑘

𝑐 (3)

where 𝐿𝑖 is the population of type = 𝑦, 𝑚,and

𝑛𝑦 =
𝑁𝑦

𝐿𝑦

(4)

𝑛𝑚 =
𝑁𝑚

𝐿𝑚
(5)

𝑘 =
𝐾

𝐿𝑦 + 𝐿𝑚
(6)

Dividing through by 𝐿𝑦 + 𝐿𝑚 and defining



𝑦 =
𝑌

𝐿𝑦 + 𝐿𝑚
(7)

equation (4) yields

𝑦 = 𝐵𝑛𝑎𝑦𝑛
𝑏
𝑚𝑘

𝑐 (8)

where 𝐵 = 𝐴
𝐿𝑎
𝑦 𝐿

𝑏
𝑚

(𝐿𝑦+𝐿𝑚)1−𝑐 . For the general production function, we write 𝑦 = 𝑓
(
𝑛𝑦 , 𝑛𝑛, 𝑘

)
to denote output in per capita terms. As long as population doesn’t change and the relative
populations of the two types of labor remains the same, B will be constant. For our analysis of
competitive markets, we will assume that the production technology exhibits constant returns to
scale, so that 𝑎 + 𝑏 + 𝑐 = 1. As noted above, we follow Farmer in assuming that firms are myopic
and act to maximize profit in the current period. More complicated versions of the model would
relax this assumption. For an interesting model of more general forward-looking behavior in a
model of optimal contracting with moral hazard, see Li and Wang (2022) [13].

We assume that there are a continuum of households of each age (with the measure of each
normalized to 1). Consumption is the numeraire good, and agents in the model can save by
either purchasing capital assets issued by the firm, or by trading investment bonds with zero
net supply. Firms can convert each unit of assets sold into a unit of capital. We denote bond
quantities sold at time t by 𝑏𝑡 and assume they sell at time t at a price 𝜙𝑡 < 1 and are paid off
the following period at par. Firms assets, 𝑘𝑡 , are in terms of the final good, i.e. they are sold
at a price of 1, the firms pay 𝑟𝑡 and capital depreciates at a rate 𝛿. As we noted above, we
assume that agents’ wages are determined competitively, and will show the calculation of this
below. Agents are endowed with 1 unit of possible labor input, and don’t value this directly. For
young agents just entering the labor market, they must first spend time searching for work, and, if
hired, they supply their single unit of labor time. To keep the model relatively tractable and not
have to worry about a government sector paying unemployment insurance, we will simplify the
model by assuming that every household ends up supplying some fraction 0 ≤ 𝑛𝑦 ≤ 1 of their
available labor depending on the employment level determined by the search process. For middle-
aged agents, their labor supply (hours) can be denoted similarly as 𝑛𝑚, though in equilibrium,
because the market for middle-aged labor is complete, this will be equal to 1 (i.e. full employment).

A typical young agent then faces budget constraints (omitting time subscripts for simplicity)
of the form

𝑐𝑦 = 𝑤𝑦𝑛𝑦 − 𝜙𝑏𝑦 − 𝑘𝑦 (9)
𝑐𝑚 = 𝑤𝑚𝑛𝑚 + 𝑏𝑦 − 𝜙𝑏𝑚 + 𝑘𝑦 (1 − 𝛿 + 𝑟) − 𝑘𝑚 (10)
𝑐𝑟 = 𝑏𝑚 + 𝑘𝑚 (1 − 𝛿 + 𝑟) (11)

Old agents don’t work and must finance their retirement consumption from the returns on their
asset holding.

Asset and bond market clearing conditions in this economy are

𝑏𝑦 + 𝑏𝑚 = 0 (12)
𝑘𝑦 + 𝑘𝑚 = 𝑘𝑡 (13)



2.2. Search

The timing of production and consumption activities in the model is as follows. First, firms hire
seasoned labor in the middle-aged market at the competitive market-clearing wage. Given the
market completeness assumption, this will generate full employment of seasoned labor. Firms
then forecast how much they believe they will need to produce, and allocate some measure𝑛𝑚1 to
direct production activites, with the remainder 𝑛𝑚2 = 1 − 𝑛𝑚1 allocated to searching for entry
level workers.

The Keynesian search mechanism is taken from Farmer’s work. Formally, we assume that the
labor input of the middle-aged agents is divided between management activities 𝑛𝑚1 (which con-
tributed directly to the production of output), and recruiting activities 𝑛𝑚2which don’t contribute
directly to production but are necessary for firms to recruit young workers. As noted above, we
require 𝑛𝑚1 + 𝑛𝑚2 = 1.

The search technology for recruiting young workers combines the number of young workers
searching for jobs – in this case since we assume no disutility incurred from either searching or
working this number will be the full population of young agents. The assumption that young
agents all search is consistent with Farmer’s assumption that workers are all hired anew in every
period. It is also consistent with our notion of entry-level labor in the three-period OLG setting,
though this would need to be adjusted in a mutli-period setting to be more realistic. – with the
number of management workers allocated to search, to produce job matches according to

𝑛𝑦 = 𝑀 (Γ𝑛𝑚2, 1) (14)

The matching function 𝑀 has the usual properties, and, following Farmer, Γ denotes the
recruiting productivity of middle-aged agents assigned to recruiting.

The representative firm’s profit static maximization problem (taking output as the numeraire)
is

𝑚𝑎𝑥
𝑛𝑚1𝑡 ,𝑛𝑚2𝑡 ,𝑘𝑡

𝑓 (𝑞𝑡𝑛𝑚2𝑡 , 𝑛𝑚1𝑡 , 𝑘𝑡 ) − 𝑤𝑚𝑡 [𝑛𝑚1𝑡 + 𝑛𝑚2𝑡 ] − 𝑟𝑡 𝑘𝑡 (15)

where 𝑞𝑡 is a measure of the the productivity of recruiting that the individual firm takes as
given, but which will be determined in equilibrium from the search process. Specifically, given
the matching function and the recruiting productivity parameter Γ, allocating 𝑛𝑚2𝑡 of middle-aged
labor to search (the firm’s search intensity) yields 𝑞𝑡𝑛𝑚2𝑡 in young labor input for the firm, and
the firm takes 𝑞𝑡 as given. As in Farmer, we can interpret this parameter as reflecting search costs
due to congestion in the labor market for young workers. As previously noted, we assume that
the labor market for middle-aged workers functions normally. Given the three-period time-frame
of the model, we assume that all capital is used up in production Does this mean depreciation
is 100%?. Under the assumption that markets are competitive, if the production function is
Cobb-Douglas,

𝑦 = 𝐵 (𝑞𝑛𝑚2)𝑎 𝑛𝑏𝑚1𝑘
𝑐 (16)

then maximizing with respect to the allocation to recruiting (under the assumption that
middle-aged agents are paid the same wage), the firm’s first-order conditions are (ignoring time
subscripts)

𝐵𝑞 𝑓1 (•) − 𝑞𝑤𝑦 − 𝑤𝑚 = 0 (17)



𝐵 𝑓2 (•) − 𝑤𝑚 = 0 (18)

𝐵 𝑓3 (•) − 𝑟𝑡 = 0 (19)

or

𝑎

𝑛𝑚2
𝑦 = 𝑞𝑤𝑦 + 𝑤𝑚 (20)

𝑏

𝑛𝑚1
𝑦 = 𝑤𝑚 (21)

𝑐

𝑘
𝑦 = 𝑟𝑡 (22)

where𝑎, 𝑏, 𝑐 are the Cobb-Douglas exponents on the labor input of young and middle-aged
agents respectively. In the Farmer framework, firms meet demand and labor markets are
competitive, so y and the wage variables in these equations are taken as given. This gives
us three equations to determine the allocation of middle-aged workers between recruiting and
management, plus capital. Focusing on the labor markets, for the Cobb-Douglas production
function, the first two FOCs give

𝑎𝑦

𝑛𝑚2
− 𝑏𝑦

1 − 𝑛𝑚2
− 𝑞𝑤𝑦 = 0

If we let 𝑥 = 1
𝑛𝑚2

this reduces to a quadratic of the form

𝑎𝑦𝑥2 −
[
(𝑏 + 𝑎) 𝑦 + 𝑞𝑤𝑦

]
𝑥 + 𝑞𝑤𝑦 = 0

or

𝑥2 −
[
1 + 𝑏

𝑎
+
𝑞𝑤𝑦

𝑎𝑦

]
𝑥 +

𝑞𝑤𝑦

𝑎𝑦
= 0

Note that wages, total employment of the middle-aged, and total output are fixed. In the
search equilibrium, we determine 𝑞 via 𝑞𝑛2𝑚 = 𝑀 (Γ𝑛2𝑚, 1)or 𝑞 = 𝑀

(
Γ, 1

𝑛2𝑚

)
via the degree

one homogeneity assumption that is standard for matching functions. Since the second-order
conditions take the form

𝐷 (𝐹𝑂𝐶𝑙𝑎𝑏𝑜𝑟 ) =

𝑞2 𝑓11 𝑞 𝑓12

𝑓21 𝑓22


the SOC matrix is negative definite, since the restriction of 𝑓 to the labor markets is strictly

concave and 𝑞 is non-negative. So the positive solutions to the quadratic above will be local
maxima for the profit maximization problem. In a standard model with all market complete, we
would have the firm take the wages and outputs as given to determine employment demand con-
tingent on overall demand for goods. The general equilibrium in the model would then determine
market-clearing wages and output. With the incomplete entry-level labor market assumption,
however, employment of young agents will be determined once firms know the demand for output,
with wages then determined once employment levels are known. The determination of overall
demand in the model will then depend, as in Farmer’s work, on household expectations of future
income and wealth. Indeed, in Farmer’s DSGE framework, we would choose an expectations
function for asset values, which, together with the wages generated on the production side, would
completely determine agents wealth, and hence via standard utility maximization, their demands



for output and investment bonds. Given the expectations, firms’ employment and production
decisions would then be consistent with expectations, so that the resulting equilibrium was a
rational expectations equilibrium.

As we noted in the introduction, this will not be the case in general in the stochastic OLG
framework. Because the SOLG model requires including lagged endogenous variables in the state
description – we will work with the recursive equilibrium concept in which the state variables are
the lagged wealth distribution – expectations of future economic conditions require that agents
forecast the wealth distribution along with asset values and incomes. The temporary equilibrium
based on these forecasts will endogenously generate a distribution of wealth which may or may not
coincide with the forecasted distribution. If it does, we are at a rational expectations equilibrium.
If it does not, forecasts will need to adjust until the economy is at a fixed point for the operator
mapping forecasts into temporary equilibria. So, unlike the conventional DSGE framework, the
SOLG equlibrium disciplines firm activity through the REE consistency requirement, which is
imposed through the equilibration process on the product and financial markets.

In general, working with Farmer’s algorithm of first specifying expectations and then deter-
mining household consumption and firm production activities will be intractable in the SOLG
setting. But, the model will still support Farmer’s contention that expectations cause movements
in real economic variables in the rational expectations equilibrium by reversing the causality and
first determining firm activities, given the demand for output and capital. If we fix capital for
the moment (and assume that households save by purchasing equity shares in the firms which
entitle them to shares in firms’ profits), then determining firm activities boils down specifying an
allocation for𝑛𝑚2,which then determines wages and employment. This determines household
incomes, so that solving the model completely now involves finding the competitive equilibrium
for a simple pure exchange economy.

In the general stochastic setting, we can drive the model by assuming that 𝑛𝑦 = �̃�𝑦 is given and
stochastic – the simplest way to do this is to assume that 𝑛𝑦 fluctuates at business cycle frequencies.
This then determines at each time 𝑡, 𝑛2𝑚 = 1

𝑞
�̃�𝑦 determined as above, and 𝑛1𝑚 = 1 − 𝑛2𝑚, and

output determined from the production function. The wages are then given from the marginal
productivity conditions, or, equivalently, we can then find the REE for this model by looking
at the related pure exchange model in which young agent have endowments equal to 𝑤𝑦𝑛𝑦
while middle-aged agents have endowments 𝑤𝑚. In our actual simulations, we assume that
the productivity parameter q is random, with 𝑛𝑚1and 𝑛𝑚2fixed (at calibrated values), so that
variations in recruiting productivity drive variations in income. Channeling this variation through
production and wages generates the income process for the SOLG product market, which in turn
determines the rational expectations equilibrium expectations that will lead firms to optimally
allocate recruiting resources in the way we have posited. We will also show below that when
capital is variable, the Keynesian search process leads to a reduced form model in which household
saving is done via the purchase or sale of firms’ investment bonds. This model looks like a
standard SOLG model with capital.

2.3. Calibration in the Three-period Model

We do a rudimentary calibration for the three period model.

1. We assume that production exhibits constant returns to scale in the two types of labor and
capital. Based on this, we use the standard factor shares approach to calibrate the exponents
in the Cobb-Douglas production function. For low-skilled workers, estimates of their shares
are around 22% (see the Economic Policy Institute [2024] online share calculator), so we take



𝑎 = 0.22. With overall labor share at 66%, this implies that 𝑏 = 0.44 with the capital share at the
standard 33% value.

2. Given the search procedure for determining employment of the young/low-skilled workers,
we need to calculate how much firm recuriting intensity must fluctuate to generate the standard
business cycle fluctuations of 3%. The simplest way to model this is to assume that firm recruiting
productivity is subject to shocks, i.e. to fluctuations in the q parameter. We note, however, that in
actual firms, HR hiring productivity is likely endogenous, depending on the firm’s expectations
of its labor needs and output demand. Absent a detailed theory of how these expectations are
formed, we follow the widely-applied approach of simply assuming these are stochastic. For this
calibration, then, we start with

ln 𝑦 = 𝑎 ln 𝑞 + 𝑎 ln 𝑛𝑚2 + 𝑏 ln 𝑛𝑚2 + 𝑐 ln 𝑘 (23)

Then

𝑑𝑦

𝑦
= 𝑎

𝑑𝑞

𝑞
+ 𝑐 𝑑𝑘

𝑘
(24)

With 𝑐𝑦

𝑘
= 𝑟 from the first-order condition for capital, we get

𝑑𝑘 =
𝑐

𝑟
𝑑𝑦 − 𝑐𝑦

𝑟2 𝑑𝑟

so that
𝑑𝑘

𝑘
=

𝑐
𝑟
𝑑𝑦
𝑐𝑦

𝑟

−
𝑐𝑦

𝑟2 𝑑𝑟

𝑐𝑦

𝑟

=
𝑑𝑦

𝑦
− 𝑑𝑟

𝑟

Putting this together with Equation 31, we have

𝑑𝑞

𝑞
=

1
𝑎

[
(1 − 𝑐) 𝑑𝑦

𝑦
+ 𝑐 𝑑𝑟

𝑟

]
(25)

Since 𝑟 is determined endogenously in the model, we can handle calibration by picking a
“ballpark” value (based on variability of real long-run interest rates) and then use the simulation
based on this calibration to determine a new number for the bond price variance and iterate on this.

3. To calibrate 𝑞,we use HR/employee ratios from https://www.sesamehr.com/
blog/hr-to-employee-ratio/(figures are per 100 employees)

• Fewer than 100 employees: 2.70

• 100 to 249 employees: 1.26

• 250 to 499 employees: 1.07

• 500 to 999 employees: 0.82

• 1,000 to 2,499 employees: 0.79

• 2,500 to 7,499 employees: 0.53

• 7,500 or more employees: 0.42

https://www.sesamehr.com/blog/hr-to-employee-ratio/
https://www.sesamehr.com/blog/hr-to-employee-ratio/


Since we are treating the firm as representative of the full economy, we should use 0.042-0.07 as
the HR/employee ratio, so we take average 𝑛𝑚2 = 0.05. To parametrize Γ for the matching func-
tion𝑀 =

√
Γ𝑛2𝑚, we take 𝑛𝑦 = 0.5 from U.S. employment data for low-skill labor (seehttps://

www.oecd.org/employment/ministerial/employment-in-figures.htm), this
yields an estimate of Γ = 5, so that 𝑞 = 10.

4. From this, for output fluctations totaling 3%, and taking the volatility of asset prices to
be 1% (based on recent data from DataTrek, https://datatrekresearch.com/long-term-look-at-
us-equity-volatility/?v=7516fd43adaa), using fluctuations in search intensity to calibrate, we
need

𝑑𝑞

𝑞
=

1
0.22

(±0.5) [(0.66) (0.03) + (0.33) (0.01)] = 0.0525

This calibration will then yield employment levels for unseasoned workers with average 𝑛+𝑦 =

0.52625 and 𝑛−𝑦 = 0.47375. Using the Chauvet-Guo estimates as of conditional standard
deviations between booms and recessions of 2% and 5% respectively, we then get conditional
employment levels of

𝑛−𝑦 ∈ {0.44875, 0.49875}

𝑛+𝑦 ∈ {0.51125, 0.54125}

5. If capital were fixed (as in Farmer’s model) we could use these calibrations directly to
determine the endowments of middle-aged and young agents, with profits distributed as dividends
and simulate the resulting pure exchange economy. With capital variable, we need firms to
determine an optimal capital stock given the shock to q. For this, we start with a reduced form
production function

𝑔 (𝑞, 𝑘) = (0.05𝑞)𝑎 (0.95)𝑏 (𝜙𝑘)𝑐

From the first-order conditions for the labor markets

𝜋 = 𝑔 −
[
𝑎 − 𝑏 𝑛𝑚2

𝑛𝑚1

]
𝑔 − 𝑏

𝑛𝑚1
𝑔 − 𝑘

Factoring out 𝑔 and simplifying yields𝜋 = [1 − 𝑎 − 𝑏] 𝑔 − 𝑘 .With 𝑔 as specified above, we can
then write

𝜋 = Ω𝑞𝑎 (𝜙𝑘)𝑐 − 𝑘

where Ω = (0.05)𝑎 (0.95)𝑏 (1 − 𝑎 − 𝑏). Taking a first-order condition with respect to capital
here and simplifying yields

�̂� =
(𝑐𝜙Ω𝑞𝑎)1−𝑐

𝜙

Simulations for this version of the model then require simultaneous determination of wages
(given the employment levels based on realizations of the q shock), asset prices and then capital
and output. Simulations also indicate how to calibrate q in order to generate the correct variation
in aggregate output, since

𝑦 = (0.05𝑞)𝑎 (0.95)𝑏
(
(𝑐𝜙Ω𝑞𝑎)1−𝑐

)𝑐
Taking logs with respect to y and q,we get

ln 𝑦 = 𝑎
(
1 + 𝑐 − 𝑐2

)
ln 𝑞

https://www.oecd.org/employment/ministerial/employment-in-figures.htm
https://www.oecd.org/employment/ministerial/employment-in-figures.htm


so that
𝑑 ln 𝑦
𝑑 ln 𝑞

= 𝑎

(
1 + 𝑐 − 𝑐2

)
= 0.1

Hence, it takes a 10% change in q to generate a 1% change in y, so we would calibrate Δ𝑞 = ±15%
to generate a total variation in 𝑦 of 3% over the business cycle.

6. For the model with capital fixed at 𝑘 = 1, using these parameterizations, we get wage bills
for each type of labor of

𝑤𝑦𝑛𝑦 =

[
𝑎 − 𝑏𝑛𝑚2

𝑛𝑚1

]
𝑦

and
𝑤𝑚 (𝑛𝑚1 + 𝑛𝑚2) = 𝑤𝑚 =

𝑏𝑦

𝑛𝑚1

from the first-order conditions derived above. Hence, for our calibrations, we would assign
endowments to young and old and profits as

𝑆𝑡𝑎𝑡𝑒 𝑛𝑦 𝑦 𝑤𝑦 𝑤𝑚 𝜋

1 0.456 0.823 0.162 0.381 0.280

2 0.504 0.841 0.165 0.390 0.286

3 0.510 0.843 0.166 0.391 0.287

4 0.530 0.850 0.167 0.394 0.290

where states 1and 2 are recession states, and the 3 and 4 are boom states and 𝑒𝑖 , 𝑖 = 𝑦, 𝑚 are the
implied endowments generated by each agent’s labor income.
The transition probabilities for states is given as

𝑆′1 𝑆′2 𝑆′3 𝑆′4

𝑆 0.1764705882 0.1764705882 0.3235294118 0.3235294118

so that the economy is in a state of recession around a third of the time.

2.4. Simulation Results in the Three-Period Model

Following Henriksen (2012) [14] and Mott’s doctoral thesis, we utilize Chebyshev polynomials
and Neural Networks as functional approximations for the equilibrium decisions of agents in
the three-period model with fixed capital, K=1 (see the Appendix for computation details). We
present preliminary numerical results of the equilibrium for this model. Although these results
are initial, they provide a first characterization of the equilibrium behavior and offer insights into
what might be expected in the equilibrium of the full model. We estimate the equilibria with a
time-preference parameter 𝛽 = (0.97)20 = 0.5. We assume that utility functions are CRRs, of
the form

𝑢(𝑐𝑖) =
𝑐1−𝑎
𝑖

1 − 𝑎 for 𝑖 = 𝑦, 𝑚, 𝑟 (26)

and set the risk aversion coefficient 𝑎 = 2.

The mean and standard deviation of the relevant variables in our model’s simulated equilibrium,
using fourth-degree Chebyshev Polynomials over 100 time periods, are reported in Table 1. The



simulation achieves an error magnitude of 10−22 in the Euler equation for young agents (Euler 1),
indicating optimal behavior, and 10−1 in the equilibrium equation for middle-aged agents. The
average consumption of the young is approximately 0.12, supported by borrowing an average of
0.09 units of assets, with a consumption price of around 0.64 units. The middle-aged agents save
for retirement by lending assets to the young generation and consume, on average, 0.14 units.

Table 1. Averages and Standard Deviations (in parenthesis) using Chebyshev Polynomi-
als.

Chev. Polynomials

Consumption of the young 0.2990

(0.0026)

Consumption of the middle aged 0.1653

(0.0032)

Consumption of the retired 0.0913

(0.0014)

Asset prices 1.46298

(0.0326)

Asset holdings of the young -0.0912

(0.0010)

Asset holdings of the middle aged 0.0912

(0.0010)

Mean sq. error in Euler 1 (Chev. Nodes) (0.0004)

(0.0001)

Mean sq. error in Euler 2 (Chev. Nodes) 0.0003

(0.0002)

Mean sq. error in Euler 1 (Simulations) 0.0009

(0.0027)

Mean sq. error in Euler 2 (Simulations) 0.0089

(0.0022)

Time Periods 1000

(a) Consumption profiles for the three generation equilib-
rium using fourth degree Chevyshev polynomials.

(b) Average, minimum, and maximum consumption by
age group.

Fig. 1. Simulations of the Equilibirum profile using Chevyshev polynomials.



Figure 1a shows the consumption path of the three generations of agents over the 100 periods
of the simulated economy using Chebyshev Polynomials. The Figure, together with Table 2,
shows that the agents consume the most when they are middle-aged: in boom states of the
economy, they consume around 0.155, while during recessions, they consume, on average, 0.12,
a decrease of 13% from their consumption during booms. The young agents consume, on average,
0.13 during booms, but their consumption drops to 0.12 during recessions, a decrease of 8%
compared to the periods when the economy performs well. Finally, the old agents consume the
least in this economy but also experience the least volatility of consumption. They go from 0.09
during booms to 0.08 on average during recessions. Overall, the numerical results capture the
observed volatilities of consumption, but they also show old agents consuming the least, a result
that contrasts with former models in the literature. This result could be driven by the fact that
the young agents do not face any borrowing constraints, so they can increase their consumption,
presenting a hump-shaped consumption profile over the generations. Overall, the results from
the Chevyshev polynomials in Table 2 show that the economy is more volatile during recessions
and more stable during the boom periods. During recessions, the young agents borrow around
4% more asset than during the better states of the economy, and the asset prices rise from 0.58 to
0.7, an increase of 20%.

Table 2. Consumption, asset holdings and prices across all states. Based on 100
simulated equilibrium periods using Chevyshev Polynomials.

State 𝐶𝑦 𝐶𝑚 𝐶𝑟 𝐴𝑦 𝐴𝑚 Asset Price

1 0.2953 0.1586 0.0890 -0.0894 0.0894 1.4901

(9.37e-5) (0.0002) (0.0002) (5.29e-5) (5.29e-5) (0.0001)

2 0.3003 0.1636 0.0900 -0.0902 0.0902 1.4991

(0.0001) (0.0003) (0.0005) (0.0001) (0.0001) (2.01e-5)

3 0.2970 0.1670 0.0929 -0.0924 0.0924 1.4177

(5.15e-5) (0.0004) (0.0005) (0.0001) (0.0002) (0.0019)

4 0.3019 0.1675 0.0914 -0.0914 0.0914 1.4760

(8.74e-5) (0.0001) (0.0002) (3.23e-5) (3.23e-5) (0.0004)

We believe that employing Neural Networks to simulate data is essential for accurately
obtaining the equilibrium of the full model. Our primary objective was to compute the equilib-
rium recursively using a deep neural network. This approach involves approximating several
critical functions, including a price function and two policies governing savings for young and
middle-aged agents.

In our model, the state of the economy is represented by (Z𝑡 ) and the asset holdings of
young and middle-aged from the previous period, denoted as 𝑏𝑡−1 = {𝑏1

𝑡−1, 𝑏
2
𝑡−1}. The input

to the neural network is thus 𝑥𝑡 = [𝑍𝑡 , 𝑏1
𝑡−1, 𝑏

2
𝑡−1]. The output of the neural network includes

the price function 𝜙𝑡 and the policy functions for the bond holdings in the current period, 𝑏1
𝑡 and 𝑏2

𝑡 .

To ensure the accuracy of the approximation, the policy functions produced by the network
must be consistent with the Euler equations for young and middle-aged agents and satisfy the
bond market clearing condition (See Appendix). Our neural network loss function is designed



to minimize the sum of squared errors of the Euler equations, coupled with a penalty function
to handle cases of negative consumption. Following the methodology outlined by Azinovic
(2023) [15], we have integrated the market clearing conditions directly into the architecture of the
neural network. This design choice ensures that these conditions are always met, up to numerical
precision, thereby enhancing the reliability of our equilibrium computations.

Our preliminary results using Neural Networks closely align with those obtained using
Chebyshev Polynomials for the three-generation model, as illustrated in Figure 2. This consistency
reinforces the reliability of our findings and suggests that Neural Networks are capable of effectively
handling the complexities of the full model.

Figure 2a shows the loss, represented by the sum of squared errors of the young and middle-aged
Euler Equations during training epochs, which has reached 10−5. The consumption profiles
for the young (age group 0), middle-aged (age group 1), and retired (age group 2) are depicted
in Figure 2b. As shown, the young consume the most, followed by the middle-aged, and then
the retired. Figure 2c presents the bond holdings of the young and middle-aged. In this figure,
the x-axis of the blue points represents 𝑏0

𝑡−1, which is zero, while the y-axis represents 𝑏1
𝑡 .

The orange and green points correspond to the bond holdings of the middle-aged and retired,
respectively. Finally, Figure 2d depicts the price counts in the simulations. As our next steps,
we will incorporate capital as a state variable into the Neural Network model and introduce a
borrowing constraint to enhance the model’s accuracy.

Fig. 2. Consumption Profiles for the three generation equilibrium using Neural
Networtk.

3. The General Model

In this section, we extend the results to more realistic models by allowing an arbitrary lifetime,
heterogeneity within cohorts, and a general shock process. In this general model, time is still
discrete. Agents live 𝐿-period lives from the youngest age 1 to the oldest age 𝐿, with 𝑀 ≥ 1
different types of agents born each period who differ in terms of preferences. We maintain the
basic structure of the production side of the economy as in the three-period model, but allow



for a more general shock structure for the representative firm’s search process. So, we assume
there is a continuum of each type of agent, and thus they take prices as given. There are 𝑆 > 1
states of exogenous shocks, 𝑠 ∈ {𝑧1, . . . , 𝑧𝑆}. The shock is generated by an IID process with the
probability of state 𝑠 occurring equal to 𝜋𝑠 where 0 < 𝜋𝑠 < 1 for ∀𝑠 and

∑
𝑠∈{𝑧1 ,...,𝑧𝑆 }

𝜋𝑠 = 1. We

denote the history of shocks affecting the economy at time 𝑡 by 𝑆𝑡 = {𝑠1, 𝑠2, ..., 𝑠𝑡 } .
Type- 𝑗 agents born in time 𝑡 and history 𝑆𝑡 are considered entry-level workers for the first

𝑇𝐸 periods of life, and are seasoned workers for the remaining 𝐿 − 𝑇𝐸 periods. All entry level
workers earn the (stochastic) entry level wage and, in keeping with the assumption that the market
for these workers is incomplete, face the possibility of unemployment. All seasoned workers are
fully employed and earn the same seasoned level wage. For this competitive setting, we maintain
the assumption that the wage is determined by the marginal product in each period of the two
types of labor. The employment levels and wages in each period thus determine the income
available to each agent.

The consumption stream of a type- 𝑗 agent born in time 𝑡 and history 𝑆𝑡 is denoted by 𝑐 𝑗 (𝑆𝑡 ) ={(
𝑐𝑖, 𝑗

(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

))
𝑆𝑡+𝑖−1
𝑡+1

}𝐿
𝑖=1

where 𝑐𝑖, 𝑗
(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

)
is the consumption of a type- 𝑗 agent in age 𝑖

given a path of shocks for (𝑖 − 1) periods after the history 𝑆𝑡 , 𝑆𝑡+𝑖−1
𝑡+1 = (𝑠𝑡+1, . . . , 𝑠𝑡+𝑖−1) for 𝑖 > 1.

When 𝑖 = 1, we define 𝑐1, 𝑗

(
𝑆𝑡 , 𝑆𝑡

𝑡+1

)
= 𝑐1, 𝑗 (𝑆𝑡 ). Similarly, the lifetime portfolio of a type- 𝑗

household is denoted by 𝑎 𝑗 (𝑆𝑡 ) =
{(
𝑎 𝑗

(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

))
𝑆𝑡+𝑖−1
𝑡+1

}𝐿−1

𝑖=1
where 𝑎𝑖, 𝑗

(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

)
is the asset

holding of a type- 𝑗 agent in age 𝑖 in node 𝑆𝑡+𝑖−1. As above, we define 𝑎1, 𝑗

(
𝑆𝑡 , 𝑆𝑡

𝑡+1

)
= 𝑎1, 𝑗 (𝑆𝑡 ).

Note that households do not save in period 𝐿, their last period of life. Given our assumptions on
the production side of the economy, asset holdings will consist of either zero net supply bonds or
capital.

The lifetime expected utility for a type- 𝑗 individual is given by an additively time-separable
von Neumann-Morgenstern utility function 𝑉 𝑗 : R(𝑆

𝐿−1)/(𝑆−1)
+ → R:

𝑉 𝑗

(
𝑐 𝑗

(
𝑆𝑡
) )

= E𝑡

[
𝐿∑︁
𝑖=1

𝛽𝑖−1
𝑗 𝑢 𝑗

(
𝑐𝑖, 𝑗

(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

))]
where 𝛽 𝑗 ∈ (0, 1] is the discount factor of type 𝑗 and the felicity functions of type 𝑗 , 𝑢 𝑗 , satisfy
the regularity conditions 𝑢′

𝑗
(𝑐) > 0, 𝑢′′

𝑗
(𝑐) < 0, and 𝑢′

𝑗
(0) = +∞.

Type- 𝑗 agents maximize their lifetime expected utility subject to the following sequence of
budget constraints in current-value prices:

𝑐1, 𝑗
(
𝑆𝑡
)

= 𝑤 𝑗

(
𝑆𝑡
)
𝑛 𝑗

(
𝑆𝑡
)
− 𝜙

(
𝑆𝑡
)
𝑏1 𝑗

(
𝑆𝑡
)
− 𝑘1 𝑗

(
𝑆𝑡
)

𝑐𝑖, 𝑗

(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

)
= 𝑤 𝑗

(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

)
𝑛 𝑗

(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

)
+ 𝑏 (𝑖−1) 𝑗

(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

)
+ 𝑅

(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

)
𝑘 (𝑖−1) 𝑗

(
𝑆𝑡 , 𝑆𝑡+𝑖−2

𝑡+1

)
−𝜙

(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

)
𝑏𝑖 𝑗

(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

)
− 𝑘𝑖 𝑗

(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

)
for ∀𝑆𝑡+𝑖−1

𝑡+1 and 𝑖 ∈ {2, . . . , 𝐿}

where 𝑅
(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

)
= 𝑅

(
𝑆𝑡+𝑖−1) is the gross return to capital (including depreciation, if any) in

terms of the single good in node 𝑆𝑡+𝑖−1,and 𝜙
(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

)
= 𝜙

(
𝑆𝑡+𝑖−1) is the bond price. Note

that we all for agents to have retirement income sources beyond the returns on their assets. This
income will be a calibration input to the simulations.

Solving the optimization problem for type- 𝑗 agents yields asset demand functions:

𝑎𝑖, 𝑗

(
𝑆𝑡 , 𝑆𝑡+𝑖−1

𝑡+1

)
= 𝑎𝑖, 𝑗

(
𝑷𝑡+𝐿−1
𝑡

(
𝑆𝑡
)
; 𝑆𝑡+𝑖−1

𝑡+1

)
(27)



for∀𝑆𝑡+𝑖−1
𝑡+1 and 𝑖 ∈ {1, . . . , 𝐿 − 1}where 𝑷𝑡+𝐿−1

𝑡 (𝑆𝑡 ) =
{
𝜙 (𝑆𝑡 ) , 𝑅 (𝑆𝑡 ) . . . ,

(
𝜙

(
𝑆𝑡 , 𝑆𝑡+𝐿−1

𝑡+1

)
, 𝑅

(
𝑆𝑡 , 𝑆𝑡+𝐿−1

𝑡+1

))
𝑆𝑡+𝐿−1
𝑡+1

}
.

The equity demand functions are indexed by the history of shocks realized after the first period of
life, 𝑆𝑡+𝑖−1

𝑡+1 for 𝑖 > 1. When 𝑖 = 1, we define 𝑎1, 𝑗 (𝑆𝑡 ) = 𝑎1, 𝑗
(
𝑷𝑡+𝐿−1
𝑡 (𝑆𝑡 )

)
.

For the extended model, the asset market-clearing condition in time 𝑡 and node 𝑆𝑡 requires that:

𝐿−1∑︁
𝑖=1

𝑀∑︁
𝑗=1
𝑎𝑖 𝑗

(
𝑷𝑡+𝐿−𝑖
𝑡+1−𝑖

(
𝑆𝑡+1−𝑖

)
; 𝑆𝑡𝑡+2−𝑖

)
=𝜿 =


0

𝑘𝑡


for 𝑠𝑡 ∈ {𝑧1, . . . , 𝑧𝑆}. Here, the zero element of 𝜿is the clearing condition for the bond market,
while 𝑘𝑡 is the demand for capital from the representative firm determined from its optimization.3
Given out maintained assumptions about the production side of the economy, the representative
firm’s optimization problem remains the same as it was in the three-period setting.

With these notations, we define two equilibrium concepts as in the previous models. The
competitive equilibrium in the generalized model is a sequence of firm outputs (and the wages
and employment levels this determines), asset holdings and consumption for all types and asset
prices in all nodes starting in time 0,

{{
𝑎 𝑗 (𝑆𝑡 ) , 𝑐 𝑗 (𝑆𝑡 )

}
𝑗
, 𝒑 (𝑆𝑡 ) = [𝜙 (𝑆𝑡 ) , 𝑅 (𝑆𝑡 )]

}
for ∀𝑆𝑡

and 𝑡 ≥ 0, satisfying:

• Individuals maximize their expected utility under budget constraints given the sequence of
asset prices;

• Firms maximize profits given production outputs which meet demand; and

• The asset markets clear and the aggregate resource constraint holds.

We can also show the existence of a competitive equilibrium for this generalized model using a
standard truncation method.

For the Markov equilibrium that we will define below, we take all but one of the asset holding
quantities as the lagged endogenous state variables (via the asset market clearing condition).
Specifically, we exclude the asset holding of the type-𝑀 agent in the second oldest cohort with
age 𝐿 − 1 and let the set of the lagged endogenous state variables in time 𝑡 be denoted as:

𝜉𝑡−1 =

{{
𝑎𝑖, 𝑗 ,𝑡−1

}
𝑗=1,...,𝑀

}
𝑖=1,...,𝐿−1

\
{
𝑎 (𝐿−1) ,𝑀,𝑡−1

}
. (28)

With abuse of notation, we also use 𝜉𝑡−1 to denote a ((𝐿 − 1) 𝑀 − 1) vector for the lagged
endogenous state variables in time 𝑡. The Markov equilibrium is defined by time-homogeneous
policy functions for firm outputs, for asset holdings and consumptions for all types and asset
prices,

{{
𝑎𝑖, 𝑗 (𝜒) , 𝑐𝑖, 𝑗 (𝜒)

}
𝑖, 𝑗
, 𝒑 (𝜒)

}
which solve the household problem and clear both the

asset and consumption markets, assuming as before that firms maximize profits given their
desired production outputs. Here, 𝜒 = [𝜉−1, 𝑠] ∈ 𝛴 ⊂ R(𝐿−1)𝑀 represents the state variables –
the lagged asset holdings distribution and the realization of the current search shock, and 𝛴 is the
state space of both endogenous and exogenous state variables. We can write the equilibrium
conditions for the Markov equilibrium as follows:

𝑬
(
𝑆𝑡
)
= 𝜉 (𝜉𝑡−1, 𝑠𝑡 ) (29)

𝜿 = 𝜄𝑇𝜉 (𝜉𝑡−1, 𝑠𝑡 ) + 𝑎 (𝐿−1) ,𝑀
(
𝑷𝑡+1
𝑡−𝐿+2

(
𝑆𝑡−𝐿+2

)
; 𝑆𝑡𝑡−𝐿+3

)
3 By Walras’ law, the market clearing condition for the consumption good will also hold.



where the first equation represents the optimality condition of the household problem and the
second one is the asset market clearing condition. Here,

𝑨
(
𝑆𝑡
)
=



{
𝑎

(
𝑷𝑡+1
𝑡−𝐿+2

(
𝑆𝑡−𝐿+2) ; 𝑆𝑡

𝑡−𝐿+3

)}
𝑗=1,...,𝑀−1{

𝑎 (𝐿−2) , 𝑗
(
𝑷𝑡+2
𝑡−𝐿+3

(
𝑆𝑡−𝐿+3) ; 𝑆𝑡

𝑡−𝐿+4

)}
𝑗=1,...,𝑀

...{
𝑎
(
𝑷𝑡+𝐿−1
𝑡 (𝑆𝑡 )

)}
𝑗=1,...,𝑀


(30)

is the ((𝐿 − 1) 𝑀 − 1) vector of asset demand functions for all but the type-𝑀 and age-(𝐿 − 1)
agents in node 𝑆𝑡 ,

𝜉 (𝜉𝑡−1, 𝑠𝑡 ) =



{𝑎 (𝜉𝑡−1, 𝑠𝑡 )} 𝑗=1,...,𝑀−1{
𝑎 (𝐿−2) , 𝑗 (𝜉𝑡−1, 𝑠𝑡 )

}
𝑗=1,...,𝑀

...{
𝑎1, 𝑗 (𝜉𝑡−1, 𝑠𝑡 )

}
𝑗=1,...,𝑀


(31)

is the asset demand vector replaced with the policy functions in a ME and 𝜄 is an ((𝐿 − 1) 𝑀 − 1)
sum vector adding up the asset holdings distribution except for the demand by the type-𝑀 and
age-(𝐿 − 1) agent.

For this generalized model, we can directly invoke the results in citanna2010recursive
and citanna2012recursive to show the existence of a ME since this model exhibits sufficient
heterogeneity within each cohort to satisfy their condition for the generic existence of a Markov
equilibrium.

4. Conclusion

Our analysis demonstrates that in a stochastic overlapping generations model with Keynesian
search, agents’ beliefs must align with the endogenous wealth distribution, constrained by the
rational expectations equilibrium. Preliminary results show the significance of beliefs in macroe-
conomic equilibrium and the role of lifecycle considerations in labor market dynamics. The
inclusion of matching efficiency shocks offers a plausible alternative to traditional TFP shocks, fur-
ther highlighting the complexities of labor markets and the need for realistic modeling approaches.

Additionally, we employed Neural Networks to approximate the equilibrium decisions of agents
in the model. This approach provided results consistent with those obtained using Chebyshev
polynomials, reinforcing the reliability of our findings. The use of Neural Networks demonstrates
their potential to handle the complexities of the full-fledged model, suggesting they are a viable
tool for future research in capturing the dynamic behavior of economic agents.
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5. Appendix

5.1. Euler Equations

For the numerical work, we assume that utility funcitons are CRR, of the form

𝑢(𝑐𝑖) =
𝑐1−𝑎
𝑖

1 − 𝑎 for 𝑖 = 𝑦, 𝑚, 𝑟 (32)

The time-preference parameter 𝛽 = (0.97)20 = 0.5, and the risk aversion coefficient 𝑎 = 2.

max
𝑐𝑠𝑦 ,𝑐

𝑠,𝑠′
𝑚 ,𝑐

𝑠′ ,𝑠”
𝑟 ,𝑎𝑠

𝑦 ,𝑎
𝑠′
𝑚

𝑢(𝑐𝑠𝑦) + 𝛽𝐸 [𝑢(𝑐𝑠,𝑠
′

𝑚 )] + 𝛽2𝐸 [𝑢(𝑐𝑠′ ,𝑠”
𝑟 )]

s.t.
𝑐𝑠𝑦 = 𝑤𝑠

𝑦𝑛
𝑠
𝑦 − 𝜙(𝑧𝑡−1, 𝑠)𝑎𝑠𝑦

𝑐𝑠,𝑠
′

𝑚 = 𝑤𝑠′
𝑚𝑛

𝑠′
𝑚 + 𝑎𝑠𝑦 − 𝜙′ (𝑧𝑡 , 𝑠′)𝑎𝑠

′
𝑚

𝑐𝑠
′ ,𝑠”

𝑟 = 𝑎𝑠
′
𝑚

(33)

𝑐𝑠𝑦 + 𝑐𝑠
′ ,𝑠
𝑚 + 𝑐𝑠”,𝑠

𝑟 = 𝑤𝑦 + 𝑤𝑚

𝑤𝑠
𝑦𝑛

𝑠
𝑦 − 𝜙(𝑧𝑡−1, 𝑠)𝑎𝑠𝑦 + 𝑤𝑠′

𝑚𝑛
𝑠′
𝑚 + 𝑎𝑠𝑦 − 𝜙(𝑧𝑡 , 𝑠′)𝑎𝑠

′
𝑚 + 𝑎𝑠′𝑚 = 𝑤𝑠

𝑦𝑛
𝑠
𝑦 + 𝑤𝑠

𝑦𝑛
𝑠
𝑦

Using the budget constraint to turn this into an unconstrained optimization:

max
𝑎𝑠
𝑦 ,𝑎

𝑠′
𝑚

𝑢(𝑤𝑠
𝑦𝑛

𝑠
𝑦 − 𝜙(𝑧𝑡−1, 𝑠)𝑎𝑠𝑦) +

∑︁
𝑠′
𝛽𝜋𝑠

′
𝑢(𝑤𝑠′

𝑚𝑛
𝑠′
𝑚 + 𝑎𝑠𝑦 − 𝜙′ (𝑧𝑡 , 𝑠′)𝑎𝑠

′
𝑚) +

∑︁
𝑠′

∑︁
𝑠”
𝛽2𝜋𝑠

′
𝜋𝑠”𝑢(𝑎𝑠′𝑚)

(34)
Taking FOC with respect to young bond holding we get:

[𝑎𝑠𝑦] : −𝜙(𝑧𝑡−1, 𝑠) (𝑐𝑠𝑦)−𝑎 +
∑︁
𝑠′
𝛽𝜋𝑠

′ (𝑐𝑠,𝑠′𝑚 )−𝑎 = 0

[𝑎𝑠𝑦] : −𝜙(𝑧𝑡−1, 𝑠) (𝑤𝑠
𝑦𝑛

𝑠
𝑦 − 𝜙(𝑧𝑡−1, 𝑠)𝑎𝑠𝑦)−𝑎 +

∑︁
𝑠′
𝛽𝜋𝑠

′ (𝑤𝑠′
𝑚𝑛

𝑠′
𝑚 + 𝑎𝑠𝑦 − 𝜙′ (𝑧𝑡 , 𝑠′)𝑎𝑠

′
𝑚)−𝑎 = 0

(35)
Taking FOC with respect to middle-aged bond holdings we get:

[𝑎𝑠′𝑚] : −𝜙′ (𝑧𝑡 , 𝑠′) (𝑐𝑠,𝑠
′

𝑚 )−𝑎 +
∑︁
𝑠”
𝛽𝜋𝑠” (𝑐𝑠′ ,𝑠”

𝑟 )−𝑎 = 0

[𝑎𝑠′𝑚] : −𝜙′ (𝑧𝑡 , 𝑠′) (𝑤𝑠′
𝑚𝑛

𝑠′
𝑚 + 𝑎𝑠𝑦 − 𝜙′ (𝑧𝑡 , 𝑠′)𝑎𝑠

′
𝑚)−𝑎 +

∑︁
𝑠”
𝛽𝜋𝑠” (𝑎𝑠′𝑚)−𝑎 = 0

(36)

Market clearing requires that:
𝑎𝑠𝑦 + 𝑎𝑠𝑚 = 0 (37)

6. Notes of Model with Capital.

Simulations for this version of the model would then require simultaneous determination of
wages (given the employment levels based on realizations of the q shock), asset prices and then
capital and output.

The equation for capital is:



�̂� =
(𝑐𝜙Ω𝑞𝑎)1−𝑐

𝜙

Where Ω = (0.05)𝑎 (0.95)𝑏 (1 − 𝑎 − 𝑏), (Note: a, b are known parameters).
What we don’t know is 𝑞 (probably state variable? 𝑞 = 10 and Δ𝑞 = + − 15%). Also 𝜙 is the

asset price (output of the NN). Once we have this we get 𝑘 and output as:

𝑦 = (0.05𝑞)𝑎 (0.95)𝑏
(
(𝑐𝜙Ω𝑞𝑎)1−𝑐

)𝑐
𝑞𝑛2𝑚 = 𝑀 (Γ𝑛2𝑚, 1)or 𝑞 = 𝑀

(
Γ, 1

𝑛2𝑚

)
, 𝑛2𝑚 = (1/𝑞)𝑛𝑦 , 𝑛2𝑚 = 1−𝑛1𝑚. 𝑛𝑦 = 0.5, 𝑛𝑚2 = 0.05,

Γ = 5.
Pseudo-algorithm to solve the model with capital: States are 𝑞𝑡 , 𝑎𝑡𝑚 outputs are price (𝜙(𝑞𝑡 , 𝑎𝑡𝑚))

and asset holdings (𝑎𝑡+1
𝑚 (𝑞𝑡 , 𝑎𝑡𝑚)).

1. Fix 𝑛𝑚2 = 0.05 and Γ = 5. Then 𝑛𝑦 = 𝑞 ∗ 𝑛2𝑚 with 𝑞 given as state.

2. Take NN output 𝜙(𝑞, 𝑎𝑚) and 𝑞 and calculate

�̂� =
(𝑐𝜙Ω𝑞𝑎)1−𝑐

𝜙

Then
𝑦 = (0.05𝑞)𝑎 (0.95)𝑏

(
(𝑐𝜙Ω𝑞𝑎)1−𝑐

)𝑐
3. Then wages solve

𝑎

𝑛𝑚2
𝑦 = 𝑞𝑤𝑦 + 𝑤𝑚 (38)

𝑏

𝑛𝑚1
𝑦 = 𝑤𝑚 (39)

4. Solve the consumption part of the model using the wages and fraction of employment
given in states 1-4 to calculate the endowments of the agents.

5. Here, the model seems to indicate that the budget constraints and the market clearing
constraints should be

𝑐𝑦 = 𝑤𝑦𝑛𝑦 − 𝜙𝑎𝑦
𝑐𝑚 = 𝑤𝑚𝑛𝑚 + 𝑎𝑦 − 𝜙′𝑎𝑚
𝑐𝑟 = 𝑎𝑚

𝑘 = 𝑎𝑦 + 𝑎𝑚

Idea for the distribution of 𝑞 is to make it so that we match the old values of 𝑛𝑦, i.e 𝑞 = 𝑛𝑦/𝑛2𝑚 =

𝑛𝑦/0.05. Eg. If 𝑛𝑦 = 0.51 ⇒ 𝑞 = 10.2.

𝑞− = {9.12, 10.08} (40)
𝑞+ = {10.2, 10.6} (41)

Same distribution as before.



6.1. Model with Capital

Household solves the following problem:

max
𝑐𝑦 ,𝑐𝑚 ,𝑐𝑟 ,𝑏

𝑠
𝑦 ,𝑏

𝑠′
𝑚

𝑢(𝑐𝑠𝑦) + 𝛽𝐸 [𝑢(𝑐𝑠,𝑠
′

𝑚 )] + 𝛽2𝐸 [𝑢(𝑐𝑠′ ,𝑠”
𝑟 )]

s.t.
𝑐𝑠𝑦 = 𝑤𝑠

𝑦𝑛
𝑠
𝑦 − 𝜙𝑠𝑏𝑠𝑦 − 𝑘𝑠𝑦

𝑐𝑠,𝑠
′

𝑚 = 𝑤𝑠′
𝑚𝑛

𝑠′
𝑚 + 𝑏𝑠𝑦 − 𝜙𝑠

′
𝑏𝑠

′
𝑚 + 𝑘𝑠𝑦 (1 − 𝛿 + 𝑟𝑠′ ) − 𝑘𝑠′𝑚

𝑐𝑠
′ ,𝑠”

𝑟 = 𝑏𝑠
′
𝑚 + 𝑘𝑠′𝑚 (1 − 𝛿 + 𝑟𝑠”)

(42)

And firms solve the following problem:

𝑚𝑎𝑥
𝑛𝑚1𝑡 ,𝑛𝑚2𝑡 ,𝑘𝑡

𝐵(𝑞𝑛𝑚2)𝑎𝑛𝑏𝑚1𝑘
𝑐
𝑡 − 𝑤𝑦𝑡𝑞𝑡𝑛𝑚2𝑡 − 𝑤𝑚𝑡 [𝑛𝑚1𝑡 + 𝑛𝑚2𝑡 ] − 𝑟𝑡 𝑘𝑡 (43)

HH Euler equations:

[𝑏𝑠𝑦] : −𝜙𝑠 (𝑐𝑠𝑦)−𝑎 + 𝛽
∑︁
𝑠′
𝜋𝑠

′ (𝑐𝑠,𝑠′𝑚 )−𝑎 = 0

[𝑏𝑠′𝑚] : −𝜙𝑠′ (𝑐𝑠,𝑠′𝑚 )−𝑎 + 𝛽
∑︁
𝑠”
𝜋𝑠” (𝑐𝑠′ ,𝑠”

𝑟 )−𝑎 = 0

[𝑘𝑠𝑦] : −(𝑐𝑠𝑦)−𝑎 + 𝛽
∑︁
𝑠′
𝜋𝑠

′ (1 − 𝛿 + 𝑟𝑠′ ) (𝑐𝑠,𝑠′𝑚 )−𝑎 = 0

[𝑘𝑠′𝑚] : −(𝑐𝑠,𝑠′𝑚 )−𝑎 + 𝛽
∑︁
𝑠”
𝜋𝑠” (1 − 𝛿 + 𝑟𝑠”) (𝑐𝑠′ ,𝑠”

𝑟 )−𝑎 = 0

(44)

Firm problem FOCs:

[𝑛𝑚2] :
𝑎𝐹

𝑛𝑚2
− 𝑤𝑦𝑞𝑡 − 𝑤𝑚 = 0 → 𝑎𝐵𝑞𝑎 (𝑛𝑚2)𝑎−1𝑛𝑏𝑚1𝑘

𝑐 − 𝑤𝑦𝑡𝑞𝑡 − 𝑤𝑚𝑡 = 0

[𝑛𝑚1] :
𝑏𝐹

𝑛𝑚1
− 𝑤𝑚𝑡 = 0 → 𝑏𝐵(𝑞𝑛𝑚2)𝑎𝑛𝑏−1

𝑚1 𝑘
𝑐 − 𝑤𝑚𝑡 = 0

[𝑘] :
𝑐𝐹

𝑘
= 𝑟𝑡 → 𝑐𝐵(𝑞𝑛𝑚2)𝑎𝑛𝑏𝑚1𝑘

𝑐−1 = 𝑟𝑡

(45)

So, for each 𝑡 we have:

𝑐
𝑦
𝑡 = 𝑛

𝑦
𝑡 𝑤

𝑦
𝑡 + 𝑏0

𝑡−1 − 𝜙𝑡𝑏
𝑦
𝑡 + 𝑘0

𝑡−1 (1 − 𝛿 + 𝑟𝑡 ) − 𝑘 𝑦𝑡
𝑐𝑚𝑡 = 𝑛𝑚𝑡 𝑤

𝑚
𝑡 + 𝑏𝑦

𝑡−1 − 𝜙𝑡𝑏
𝑚
𝑡 + 𝑘 𝑦

𝑡−1 (1 − 𝛿 + 𝑟𝑡 ) − 𝑘𝑚𝑡
𝑐𝑟𝑡 = 𝑛

𝑟
𝑡 𝑤

𝑟
𝑡 + 𝑏𝑚𝑡−1 − 𝜙𝑡𝑏

𝑟
𝑡 + 𝑘𝑚𝑡−1 (1 − 𝛿 + 𝑟𝑡 ) − 𝑘𝑟𝑡

(46)

where 𝑏0
𝑡−1, 𝑘0

𝑡−1, 𝑏𝑟𝑡 , 𝑘𝑟𝑡 , 𝑛𝑟𝑡 are zero but have been written for consistency.

Market clearing conditions:
𝑏
𝑦
𝑡 + 𝑏𝑚𝑡 = 0
𝐾𝑡 = 𝑘

𝑦
𝑡 + 𝑘𝑚𝑡

(47)

If we rewrite the budget constraint in a more general form as below:

𝑐ℎ𝑡 = 𝑛ℎ𝑡 𝑤
ℎ
𝑡 + 𝑏ℎ−1

𝑡−1 − 𝜙𝑡𝑏ℎ𝑡 + 𝑘ℎ−1
𝑡−1 (1 − 𝛿 + 𝑟𝑡 ) − 𝑘ℎ𝑡

𝑐1
𝑡 = 𝑛

1
𝑡𝑤

1
𝑡 + 𝑏0

𝑡−1 − 𝜙𝑡𝑏
1
𝑡 + 𝑘0

𝑡−1 (1 − 𝛿 + 𝑟𝑡 ) − 𝑘1
𝑡

𝑐2
𝑡 = 𝑛

2
𝑡𝑤

2
𝑡 + 𝑏1

𝑡−1 − 𝜙𝑡𝑏
2
𝑡 + 𝑘1

𝑡−1 (1 − 𝛿 + 𝑟𝑡 ) − 𝑘2
𝑡

𝑐3
𝑡 = 𝑛

3
𝑡𝑤

3
𝑡 + 𝑏2

𝑡−1 − 𝜙𝑡𝑏
3
𝑡 + 𝑘2

𝑡−1 (1 − 𝛿 + 𝑟𝑡 ) − 𝑘3
𝑡

(48)



Where ℎ = 1 refers to the young generation, ℎ = 2 refers to the middle-aged generation, and
ℎ = 3 refers to the old generation. The inputs to the neural network are as follows:

[𝑧𝑡 , 𝑏0
𝑡−1, 𝑏

1
𝑡−1, 𝑏

2
𝑡−1, 𝑘

0
𝑡−1, 𝑘

1
𝑡−1, 𝑘

2
𝑡−1]

and Output would be:
[𝜙𝑏𝑡 , 𝑏1

𝑡 , 𝑏
2
𝑡 , 𝑏

3
𝑡 , 𝑘

1
𝑡 , 𝑘

2
𝑡 , 𝑘

3
𝑡 ]

Therefore, for each period 𝑡, using the aggregated capital values and the calibrated parameters
for 𝑞 and labor supply for each state, we can calculate the output 𝑦 as shown in Eq. 16 , along
with the young and middle-aged wages and the interest rate as specified in Eq. 45. Subsequently,
we will be able to determine the consumption for each generation.


