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Abstract

We study markets where heterogeneous agents first make investment decisions
and then engage in costly search to form productive matches. The trading
process is random search and bargaining with explicit search costs. Despite
potential hold-up and matching problems, we prove a second welfare theorem: the
constrained efficient allocation is an equilibrium. The agents’ private incentives
to invest and to accept/reject potential partners as they search are perfectly
aligned with the social benefit. Furthermore, we establish a new sorting result
for two-sided markets, equilibrium existence, conditions for uniqueness, and novel
economic implications.

1 Introduction

This paper studies markets whose participants first make investment decisions and then
engage in costly search to form productive matches. These two features are central in
various settings. For example, in the marriage market, individuals make premarital
investments in their education and career before looking for a partner. In the labor
market, workers acquire human capital before searching for jobs, while firms adopt
technologies before hiring workers. Likewise, in the real estate market, developers
often build before finding prospective buyers; in venture capital markets, entrepreneurs
invest time and money developing start-ups prior to seeking funding; and in product
markets, buyers and sellers make ex-ante investments before meeting.
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In these examples, the productivity of a match depends on the prior investments,
and the outcome each agent receives in the market depends upon who matches with
whom and how long it take to find them. We aim to address fundamental questions for
such settings: When is the market efficient? In an equilibrium, how do agents invest,
who matches with whom and what is the search duration?

The main challenge to studying these markets is that efficiency depends upon the
alignment of agents’ private incentives with the social benefit regarding both the in-
vestment and search decisions. Since agents invest before meeting their partners, a
potential hold-up problem may reduce the incentive to invest. In addition, when the
prior investments vary within the population, finding a suitable partner might take
some time, and there is a potential matching problem: an agent may search too much
and reject efficient matches or search too little and accept inefficient matches or both.

Furthermore, the investment and search decisions should be studied together in
equilibrium as they are mutually dependent. For example, the incentive to acquire a
certain college degree depends on which types of firms may potentially hire the worker
and how long it will take to find a job. Likewise, a firm’s incentive to adopt a new
technology depends on the skills of workers it may potentially hire and how long it will
take to fill vacancies.

Previous work has extensively studied markets with either ex-ante investment or
search-and-matching separately. Building on the foundational Diamond-Mortensen-
Pissarides model, the prevailing view in the literature is that efficiency fails in markets
with search frictions. First, there is under-investment: the private return on invest-
ment is less than its social value (see, e.g., Acemoglu 1996). Second, models with
heterogeneous agents typically have some mismatches: the agents don’t internalize the
externalities they impose when they accept and reject partners (see, e.g., Shimer and
Smith 2001).

In order to address the questions above, in this paper we develop a new and tractable
model of investment, search, and matching. Contrary to the common view in the
literature, we prove a new second welfare theorem: the constrained efficient allocation
is obtainable in the market. In addition, we prove a new sorting result for two-sided
markets (such as the labor market), establish new existence and uniqueness results,
and demonstrate important economic applications. The model and results show that
our framework can serve as a workhorse for studying these markets.
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Description of the model

We develop a search-and-matching model with transfers between two populations of
agents, called buyers and sellers, but one can equally consider workers and firms, men
and women, or any two groups who invest and then match. What is important is that
output is produced by pairs of agents, one from each side of the market. Agents invest
in skills before entering the market and they are heterogeneous in their investment
costs. Their match output depends upon the skills that they have acquired, but there
is some sand in the wheels of the market: to form productive matches, the agents must
engage in costly search.

We consider the standard random search and bargaining process with explicit search
costs and without discounting, as in Atakan (2006). In every period, each agent in the
market incurs the same search cost and randomly meets an agent from the other side.
When two agents meet, they can either agree to match or continue searching. If both
agree, then they exit the market and divide their output according to Nash bargaining.
If at least one rejects, then they remain in the market and draw new partners in the
next period. A new cohort of agents is born in every period, acquires skills, and then
enters the market. We analyze a steady-state equilibrium where, for every skill, the
inflow of agents to the market equals the outflow.

The term ‘skill’ refers to investments that enhance productivity. For instance, in
the labor market, a worker’s skill is their education level, while a firm’s skill is their
technology. In a product market, a seller’s investment reduces their production cost,
a buyer’s investment increases their value, and the match output is the buyer’s value
minus the seller’s cost. In the marriage market, we assume that men and women are
ex-ante identical – they can acquire the same skills and have the same cost distribution.

The market is competitive in that every skill has a value and agents optimize given
these values. An important and novel feature of our model is that the values serve
double duty : creating incentives to invest and to accept/reject matches. First, each
agent compares their marginal cost of acquiring a skill to its marginal value in the
market. Second, two agents will accept (or reject) each other whenever the match
output is greater (resp. smaller) than the sum of their values. As in standard search
and matching models, these values are endogenously determined in an equilibrium and
must be self-consistent.
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Description of the main results

Despite potential inefficiencies, we prove that every constrained efficient allocation is
an equilibrium outcome (Theorem 1).1 The proof constructs market values that satisfy
the standard equilibrium conditions while perfectly aligning the agents’ incentives with
the planner. Strikingly, these values simultaneously solve the investment and matching
problems. This theorem also establishes the existence of equilibrium.

A key tension underlying this welfare result is that the decisions to invest and to
accept or reject potential partners impose externalities on other agents. Regarding
investment, if the planner increases the inflow of skill i buyers, then in the new steady
state their relative size in the market increases which has a direct effect on skill i buyers
and their partners. Just as important, there is an indirect effect on other agents’ pro-
ductivity and search costs because the relative size of their matching partners changes
as well. The planner takes such steady state search externalities into account. Re-
garding matching, when the planner decides that two skills should reject, the planner
forgoes their match output and incurs a higher search cost to form more productive
partnerships, but must also consider the subsequent chain reaction affecting the steady-
state skill composition. In contrast, in equilibrium, each agent invests and accepts or
rejects partners simply by their private incentives, as determined by the value of each
skill in the market. Remarkably, there are equilibrium values that incorporate both
the direct effects and the indirect search externalities.

Our second main point is that the equilibria have a clear and simple structure.
Theorem 2 establishes that if the production function is supermodular (or submodular),
then there is positive (resp. negative) assortative matching. Importantly, this sorting
result applies to two-population models, such as the labor market, whereas previous
sorting results apply only to one-population models (e.g., Shimer and Smith 2000 and
Atakan 2006). Furthermore, if the production function is additively separable, then the
equilibrium is unique and achieves the first-best allocation. Theorem 3 shows that our
main results regarding efficient investment, efficient matching, and sorting are robust
to modifying the bargaining weights and search cost parameters.

Finally, the model is applicable to a wide variety of economic situations and has
important implications. First, in the labor market, we establish sufficient conditions for

1The constrained efficient allocation maximizes utilitarian welfare subject to the steady state con-
straints. Since utility is transferable, the utilitarian and Pareto criteria coincide.
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sorting – when will high-tech firms match with high-skill workers – and the framework
allows us to analyze the mutual dependency between sorting and investments. Second,
in the marriage market, we show that an occupational gender gap can arise and can even
be efficient. That is, the two populations are ex-ante identical and the market outcome
is discriminatory: men and women who acquire the same skill receive different payoffs
in the market. Finally, in product markets, the production function is commonly
presumed additively separable, and we establish a unique equilibrium. Economies
with non-separable production functions can have multiple equilibria and the agents
may fail to coordinate on the efficient one. Policy interventions may be helpful for
alleviating such coordination problems.

Related Literature

Our paper is the first to provide a general and tractable model incorporating three
components: (i) random search and bargaining, (ii) matching between heterogeneous
agents, and (iii) pre-entry investments. These three components have not been studied
together and have novel implications when studied jointly.2 The table below summa-
rizes the central papers in the strands of the literature most closely related to our work,
random search or frictionless matching models with transferable utility.

Group Papers Search Matching Investment Results

1 Cole et al. (2001)
Noldeke and Samuelson (2015)

No Yes Yes Efficiency

2
Shimer and Smith (2000)

Atakan (2006)
Yes Yes No Sorting (single population)

Shimer and Smith (2001) Yes Yes No Inefficiency

3
Acemoglu (1996)
Masters (1998)

Acemoglu and Shimer (1999)
Yes No Yes Inefficiency

4 Hosios (1990) Yes No No
Efficiency (for a specific

bargaining weight)

5
Gale (1987)

Mortensen and Wright (2002)
Lauermann (2013)

Yes No No Convergence to First Best

6 This paper Yes Yes Yes
Constrained Efficiency +
Sorting + Robustness

Table 1: Literature Comparison

2For example, the efficiency of an occupational gender gap requires all three components.
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The papers in group 1 extend the classical assignment model of Shapley and Shubik
(1971) to settings with ex-ante investments. These models have perfect frictionless
matching and typically find that the first-best allocation is a competitive equilibrium
outcome, but there may exist additional inefficient equilibria (see also Mailath et al.
2013; Dizdar 2018; Chade and Lindenlaub 2022).3 We contribute to this literature by
adding search frictions and establishing that the constrained efficient allocation is an
equilibrium outcome. One novel implication of our model is that in the symmetric
marriage, the occupational gender gap can be efficient. In contrast, in frictionless
models, the efficient outcome is always symmetric.

The papers in group 2 study the random search and bargaining model with het-
erogeneous agents but without investment (see also Burdett and Coles 1999). As in
Atakan (2006), we consider a model with explicit search costs. We add pre-entry invest-
ment and prove novel efficiency, sorting, and existence results. All three are substantial
contributions. In particular, our sorting result is for two-population models, wheres
the previous sorting results of Shimer and Smith (2000) and Atakan (2006) are for one-
population models. This is a major difference because the labor and product markets
are two-sided, and the proof is novel and non-trivial (the proofs of previous results
relied heavily on the one-population assumption).4 In addition, establishing existence
in search models is a tricky problem (see, e.g., Manea 2017 and Lauermann et al. 2020)
and standard techniques don’t apply to our model with an endogenous inflow.

Our efficiency result stands in contrast to previous results in the search literature.
First, in the standard random search and bargaining model, Shimer and Smith (2001)
show that agents mismatch: low-types reject too frequently while high-types accept too
often. Second, in the same standard search model, but with homogeneous agents, the
papers in group 3 show that the hold-up problem leads to under-investment. However,
in our model, the equilibrium values simultaneously solve both the hold-up and the
matching problems. The key difference is that our model has explicit search costs
whereas those models have implicit search costs due to time discounting. Our results
suggest that the hold-up and matching problems are not due to search frictions per se,
but rather to discounting (see Section 6.3).

3In Chade and Lindenlaub (2022), utility is not perfectly transferable and therefore the first-best
is generally unattainable but there does exist a Pareto efficient equilibrium.

4The one-population model is a special case of the two-population model.
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Hosios (1990) considers a search model with homogeneous agents except that the
two sides of the market may meet partners at different rates. The meeting rates create
incentives to enter and hence affect the balance ratio in the market (the relative size of
each population). The main result is that the “right” bargaining weights can achieve the
efficient balance ratio in the market. Our paper is about a different problem: we study
the investment and matching decisions in a model with heterogeneous agents. Indeed,
the bargaining weights mechanically affect the balance ratio, but it is a secondary issue
for our problems: our main results regarding efficient investment, efficient matching,
and sorting do not depend on the bargaining weights (see Section 6.1).

The papers in group 5 study whether the random search and bargaining model
converges, as the discount factor δ → 1, to the frictionless Walrasian outcome. Our
paper shows that the constrained efficient allocation is achieved in a market with
investment, search, and matching (and explicit search costs). There is an important
literature on search with non-transferable utility and directed search, but these models
differ extensively from ours. For instance, Burdett and Coles (2001) consider a marriage
market with premarital investments, but they assume a very specific form of non-
transferable utility and homogeneous investment costs. They show that an equilibrium
exists and that it is inefficient.5 In the literature on directed search, sellers post prices
to attract buyers, and the equilibrium can achieve an efficient allocation (see, e.g.,
Acemoglu and Shimer 1999; Shi 2001; Jerez 2017) and sorting (see, e.g., Shimer 2005;
Eeckhout and Kircher 2010; Cai et al. 2021). However, the matching process and the
price-determination mechanism are substantially different than in the random search
and bargaining model.

5In the non-trivial case of high investment costs, agents overinvest to appeal to better partners,
and they search too much in that agents are too selective.
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2 The Model

The economy consists of two populations, buyers and sellers, who first invest in acquir-
ing skills and then search for a partner with whom they may form a productive match.
Formally, each buyer acquires one skill from a finite set I ⊂ N, and each seller acquires
one skill from a finite set J ⊂ N. The agents are heterogeneous in their investment
cost: each buyer has a type β ∼ F b and incurs the cost Cb(i, β) from acquiring skill
i ∈ I . Likewise, each seller has a type σ ∼ F s and incurs the cost Cs(j, σ) from
acquiring skill j ∈ J . Output is produced by buyer-seller pairs according to their skills
and is summarized by the matrix G = [gij], where the entry gij ≥ 0 denotes the output
of a pair with skills i, j. Agents have transferable utility and incur a fixed per-period
search cost c > 0.

Definition. An economy is a tuple 〈F b, F s, I, J, Cb, Cs, G, c〉 consisting of prior distri-
butions, skill sets, investment cost functions, the output function, and a search cost.
The economy is symmetric if F b = F s, I = J , Cb = Cs, and gij = gji, ∀i, j.

The type distributions F b and F s are continuous and strictly increasing over their
connected supports: B = supp(F b) ⊆ R and S = supp(F s) ⊆ R. The match output gij
is strictly increasing in skills. The cost functions are non-negative, strictly increasing
in both arguments, bounded and continuous. Furthermore, they satisfy increasing
differences: the difference Cb(i′, β)−Cb(i, β) is strictly increasing in β whenever i′ > i

and the difference Cs(j′, σ)−Cs(j, σ) is strictly increasing in σ whenever j′ > j. That
is, a higher skill enhances match output, but is more costly to acquire, and higher types
have higher costs and higher marginal costs.

Timing. The model takes place in discrete time periods over an infinite horizon. In
every period, a measure one population of buyers and a measure one population of
sellers are born. Each newborn agent chooses a skill and then enters the matching
market. Each agent in the market incurs the search cost c and randomly meets a
partner. When two agents meet, they can either accept the match or continue searching
in the hope of finding a better partner. If both agents accept the match, then they
exit the market and divide their output according to Nash bargaining. If at least one
rejects, then they both remain in the market. In the next period, a new cohort is born
and the process repeats itself. Note that only the new-born agents invest, agents in
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the market cannot change their prior investments, and mutually accepted matches are
once and for all. We refer to the agents in the market as the stock population, the
agents entering the market as the inflow population, and the agents exiting the market
as the outflow population.

Steady State. The economy is in a steady state if in the stock population the measure
of agents with each skill is constant over time. Therefore, for each skill, the inflow of
agents equals the outflow. In a steady state, we denote the measures of skill i buyers
and skill j sellers in the stock population by bi and sj. The total measures of buyers
and sellers in the market are B =

∑
i∈I bi and S =

∑
j∈J sj, and the proportions of

skill i buyers and skill j sellers are xi = bi/B and yj = sj/S (notice that B ≥ 1 and
S ≥ 1). The notation (xi) and (yj) denotes the profile of buyer and seller proportions.
We let z = 〈(xi), (yj), B, S〉 be the state variable where the set of all state variables is
Z = ∆(I)×∆(J)× [1,∞)2.

Meetings. An agent can meet at most one partner in each period and pairs meet at
random. The total number of meetings per period is µ(B, S) = min(B, S). Therefore,
if the market is balanced, B = S, then every agent randomly draws a partner in each
period; but if it is unbalanced, B 6= S, then agents on the long side of the market would
be rationed. We will show that an unbalanced market is not an equilibrium outcome
(see Lemma 1), and therefore, to simplify the notation, we assume without loss of
generality that the market is balanced, and denote the market size by N = B = S and
the state by z = 〈(xi), (yj), N〉. In Section 6.2, we extend the analysis to consider more
general meeting functions.

Strategies. An agent’s strategy specifies their choice of skill and which agents they
accept. We assume Markov strategies. The investment strategy of buyer β is Iβ : Z →
I and that of seller σ is Iσ : Z → J . The acceptance strategy of a buyer with skill i is
Abi : Z×J → [0, 1], which specifies the probability she accepts a seller with skill j upon
meeting. For a seller with skill j, it is Asj : Z × I → [0, 1]. Note that the acceptance
strategies do not depend on the agents’ identities because the match output depends
only on skills. To simplify, we will suppress the state variable in the strategies. It will
be convenient to summarize the acceptance strategies by a matching matrixM = [mij],
where the element mij = Abi(j) ·Asj(i) is the probability that buyer i and seller j both
agree to match, conditional on meeting.
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Remark 1. The search cost c captures various costs incurred explicitly from search.
These include the opportunity cost of time (think of the man-hours firms spend screen-
ing and interviewing candidates; while candidates forgo some income, say from driving
an Uber, as they go through ads, apply, and prepare to interview); flow payments and
fees (subscriptions to online search platforms, hiring talent recruiters, or advertisement
fees); cognitive effort costs (browsing and comparing products online for hours, or the
negative mental health impact of unemployment); or even singles paying per date. In
contrast, in a model with time discounting, agents incur an implicit search cost as
their payoffs are delayed. Which costs are more salient depends upon the economic
situation being modeled, but there are certainly situations where additive costs are
predominant.6

Remark 2. We assumed that all agents enter the market and actively search. In
Section 4.1, we allow agents to not enter the market and receive an exogenous outside
option. The analysis and key results are the same (except the overall inflow can be
less than one). This extension also covers the case where the agents in the market
can choose to not search, incurring zero search costs and meeting no one, which is
equivalent to an outside option of zero.

2.1 Equilibrium

Every skill has a value in the market and agents optimize given the values and the
steady state. We denote the values of a skill i buyer by vi, and of a skill j seller by wj.
The profiles of buyer and seller values are (vi) and (wj), respectively. As is standard
in the search and matching literature, we define an equilibrium using the matching
matrix and values, rather than the strategies.

Definition. A steady state equilibrium 〈z,M, (vi), (wj)〉 consists of a state variable, a
matching matrix, and market values satisfying conditions (1), (3), and (4) below.

The first condition is that acceptance decisions are individually optimal. When two
agents with skills i and j meet, the surplus is sij = gij − vi − wj, and the acceptance
decisions satisfies the Efficient Matching condition:

6For example, when search transpires over a short period of time and does not affect the consump-
tion date (think of the time spent searching online for a product that will be delivered tomorrow or
college students applying for jobs which they will take after graduation).
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mij =

1 if sij > 0

0 if sij < 0
(1)

The condition is intuitive because an agent will accept a match precisely when her
payoff from doing so is greater than her continuation value. When the surplus is
negative, i.e. vi + wj > gij, the match is always rejected because both agents cannot
receive at least their value, while when the surplus is positive, the agents will reach a
mutually beneficial agreement. If the surplus is exactly zero, then mij is unrestricted,
i.e. 0 ≤ mij ≤ 1.

When two agents accept each other, each receives their own value and half of
the match surplus. This division rule is the Nash bargaining solution and also is a
subgame perfect equilibrium of a strategic bargaining game (see, e.g., Atakan 2006).
The second condition is that the values are self-consistent, and therefore satisfy the
following recursive equation:

vi =
∑
j∈J

yj
[
mij

(
vi +

sij
2

)
+ (1−mij)vi

]
− c, ∀i (2)

wj =
∑
i∈I

xi
[
mij

(
wj +

sij
2

)
+ (1−mij)wj

]
− c,∀j

That is, in every period, buyer i pays the search cost c and meets a seller.7 The
probability of meeting seller j is yj. If a match is accepted, the buyer receives her
continuation value and half of the surplus, whereas if the match is rejected, she attains
her continuation value vi. Simplifying, we obtain the Constant Surplus equations:∑

j∈J

yjmijsij = 2c,∀i (3)

∑
i∈I

ximijsij = 2c, ∀j

The investment decisions are individually optimal: Iβ ∈ arg maxi∈I vi − C(i, β),∀β
and Iσ ∈ arg maxj∈J wj − C(j, σ),∀σ. Since the cost function satisfies strictly in-
creasing differences, the set of cost types who choose each skill is an interval (and
hence measurable). Furthermore, at most one type can be indifferent between any

7These equation presume that the market is balanced, B = S, so no one is rationed. If the market
were unbalanced, then the long side would be rationed and the value equations would also have a
meeting probability (but this does not occur in equilibrium, see Lemma 1).
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two skills,8 and thus the values (vi) and (wj) uniquely determine the inflows (up
to measure zero). Formally, we denote by F b(A) =

∫
A
dF b the measure of set A

according to F b. The measure of buyers who choose skill i is F b
({
β : Iβ = i

})
=

F b
({
β : i ∈ arg maxi′∈I vi′ − Cb(i′, β)

})
, and analogously for sellers.

The final set of conditions is that the economy is in a steady state. We refer to
Equations (4) as the Inflow=Outflow equations:

inflow︷ ︸︸ ︷
F b

({
β : i ∈ arg max

i′∈I
vi′ − Cb(i′, β)

})
=

outflow︷ ︸︸ ︷
Nxi

∑
j∈J

yjmij,∀i ∈ I (4)

F s

({
σ : j ∈ arg max

j′∈j
wj′ − Cs(j′, σ)

})
= Nyj

∑
i∈I

ximij,∀j ∈ J

The inflow is the measure of buyers who choose skill i. The outflow is the measure of
skill i buyers in the market, Nxi, times the probability of exiting (each buyer meets
a skill j with probability, yj, and they accept each other with probability, mij). The
seller Inflow=Outflow equations are analogous.

2.2 Equilibrium Properties

The next two lemmas will be useful. The first states that unbalanced states do not
occur in equilibria.

Lemma 1. (No Rationing) In any equilibrium, B = S.

Proof. WLOG, suppose that B ≥ S. Then, a buyer meets a seller with probability
ρ = S/B, and a seller meets a buyer with probability 1. Therefore, the values satisfy:

∀i : vi =ρ
∑
j∈J

yj

[
mij

(
vi +

sij
2

)
+ (1−mij)vi

]
+ (1− ρ)vi − c⇒

∑
j∈J

yjmijsij =
2c

ρ

∀j : wj =
∑
i∈I

xi

[
mij

(
wj +

sij
2

)
+ (1−mij)wj

]
− c⇒

∑
i∈I

ximijsij = 2c

Therefore, since
∑

i∈I xi =
∑

j∈J yj = 1:

2c

ρ
=
∑
i∈I

xi
∑
j∈J

yjmijsij =
∑
j∈J

yj

(∑
i∈I

ximijsij

)
= 2c⇒ B = S

8If buyer β̂ is indifferent between acquiring skills i and i′, where i′ > i, then all buyers β < β̂
strictly prefer skill i′ to skill i and all buyers β > β̂ strictly prefer skill i to skill i′.
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The next lemma states that, in equilibrium, the agents’ values are increasing and
the marginal values are bounded by the expected marginal productivity.

Lemma 2. In any equilibrium,∑
j∈J yjmi′j(gi′j − gij)∑

j∈J yjmi′j
≥ vi′ − vi ≥

∑
j∈J yjmij(gi′j − gij)∑

j∈J yjmij

> 0, ∀i′ > i

∑
i∈I ximij′(gij′ − gij)∑

i∈I ximij′
≥ wj′ − wj ≥

∑
i∈I ximij(gij′ − gij)∑

i∈I ximij

> 0, ∀j′ > j

In particular, if mij = 1, ∀i, j, then the marginal value equals the expected marginal
productivity: vi′ − vi =

∑
j∈J yj(gi′j − gij) and wj′ − wj =

∑
i∈I xi(gij′ − gij).

Proof. The Constant Surplus and Efficient Matching conditions imply that:

∑
j∈J

yjmijsij = 2c =
∑
j∈J

yjmi′jsi′j ≥
∑
j∈J

yjmijsi′j

Subtracting the RHS from the LHS, and normalizing:

vi′ − vi ≥
∑

j yjmij(gi′j − gij)∑
j yjmij

> 0

The upper bound is derived analogously by switching i and i′.

Remark 3. Lemma 2 implies the bound: maxj gi′j − gij ≥ vi′ − vi ≥ minj gi′j − gij.

Remark 4. The Constant Surplus equations have two further implications: First, they
determine the values for unchosen (measure 0) skills as what agents would receive in
equilibrium if they were to invest in such a skill. Therefore, such values cannot be set
arbitrarily (for instance, to minus infinity). Second, every agent has at least one partner
with whom the surplus is positive. Furthermore, that partner is not of measure 0, which
implies that there are no pathological equilibria where an agent searches forever.

Remark 5. If 〈z,M, (vi), (wj)〉 is an equilibrium, then so is 〈z,M, (vi+ t), (wj− t)〉 for
any transfer t ∈ R. Therefore, there is at least one degree of freedom in the equilibrium
values. We now show that there is in fact exactly one degree of freedom. This is because
the marginal values, i.e. ∆vi, are uniquely pinned down by the investment decisions and
a Constant Surplus equation imposes an additional condition on the value functions.
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3 Illustrative Examples

We now illustrate the model with two examples. We consider a symmetric economy
with two skills, I = J = {0, 1}. Each agent can either invest and become skilled,
i = j = 1, or not invest and remain unskilled, i = j = 0. The cost of becoming skilled
is the agent’s type, which is uniformly distributed β, σ ∼ U [a, d]. To simplify notation,
denote by x = x1 and y = y1 the proportion of skilled buyers and skilled sellers. We
consider the following supermodular and submodular production matrices:

Gsup =

[
g00 g01

g10 g11

]
=

[
1 2

2 4

]
and Gsub =

[
g00 g01

g10 g11

]
=

[
1 3

3 4

]

In both matrices, skilled-skilled pairs produce g11 = 4 and unskilled-unskilled pairs
produce g00 = 1. The first production matrix is supermodular because skilled-unskilled
pairs produce g10 = g01 = 2, so an agent’s marginal productivity is greater when
matched with a skilled agent than when matched with an unskilled agent, g11 − g01 =

2 > 1 = g10 − g00. Conversely, the second production matrix is submodular because
g10 = g01 = 3, and so g11 − g01 = 1 < 2 = g10 − g00.

In each case, we will demonstrate the constrained efficient allocation and the equi-
libria. The constrained efficient allocation solves the planner’s problem: choose the
investment thresholds, matching rule, and state to maximize per-period welfare:9

W (x, y,N, [mij], β1, σ1) =

Productivity︷ ︸︸ ︷
1∑
i=0

1∑
j=0

Nxiyjmijgij −

Search Cost︷︸︸︷
2Nc −

Investment Cost︷ ︸︸ ︷∫ β1

a

βdF (β)−
∫ σ1

a

σdF (σ)

subject to the steady state constraints:

Nx

1∑
j=0

yjm1j = F (β1), N(1− x)
1∑
j=0

yjm0j = 1− F (β1),

Ny
1∑
i=0

ximi1 = F (σ1), N(1− y)
1∑
i=0

ximj0 = 1− F (σ1)

9First term: Nxiyjmij is the measure of accepted matches between skills i, j and gij is their output.
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Supermodular Production

We take G = Gsup and fix the distribution parameters a = 0.8 and d = 2.8. The
planner’s optimal policy is spanned by two allocations:

1) All Skills Match: Agents accept any partner mij = 1,∀i, j, total welfare is

WAll = N [4xy + 2y(1− x) + 2x(1− y) + (1− x)(1− y)]− 2Nc−
∫ β1
a
βdF (β)−

∫ σ1
a
σdF (σ)

The steady state equations reduce to N = 1 and x = F (β1) and y = F (σ1). The
optimal skill distribution and investment thresholds for this case are: x = y = 0.2 and
β1 = σ1 = 1.2.

2) Positive Assortative Matching (PAM): Same skills accept m11 = m00 = 1 and
opposite skills reject m01 = m10 = 0, total welfare is

WPAM = N [4xy + (1− x)(1− y)]− 2Nc−
∫ β1

a

βdF (β)−
∫ σ1

a

σdF (σ)

The steady state equations are:

Nxy = F (β1), N(1− x)(1− y) = 1− F (β1)

Nyx = F (σ1), N(1− y)(1− x) = 1− F (σ1)

which imply β1 = σ1 and N = 1
xy+(1−x)(1−y) , and so the planner’s optimization problem

is three dimensional (β1, x, y). The optimal skill distribution and investment thresholds
for PAM are symmetric and depend on c, we denote them by x = y ≡ x∗PAM(c) and
β1 = σ1 ≡ β∗PAM(c).

Figure 1 depicts the welfare of these two allocations (using the optimal investment
thresholds and skill distribution for each allocation) as a function of the search cost c.

PAM

All Match

0.00 0.05 0.10 0.15 0.20
c0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Welfare Equilibrium

Figure 1: Welfare and Equilibrium
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The upper envelope of these curves is the constrained efficient allocation. The trade-off
is between higher productivity (PAM) and lower search cost (All Match). The shaded
regions are where each allocation is an equilibrium. This figure visually demonstrate a
Second Welfare Theorem: the upper envelope is always an equilibrium.10 The following
claim derives the equilibrium regions.

Claim. The All Match allocation is an equilibrium if and only if c ≥ 0.08. The PAM
allocation is an equilibrium if and only if c ≤ c1 ≈ 0.12.

Proof. First, in an equilibrium where all skills match, Lemma 2 implies that the
marginal values must equal the marginal productivities:

∆v = y(g11 − g01) + (1− y)(g10 − g00) = 1 + y

∆w = x(g11 − g10) + (1− x)(g01 − g00) = 1 + x

and the steady state equations are F (∆v) = x and F (∆w) = y. These equations
have a unique solution ∆v = ∆w = 1.2 and x = y = 0.2, and the candidate state
x = 0.2 induces values (v̄) , (w̄) that must solve: i) the corresponding Constant Surplus
equations; and ii) the Efficient Matching conditions so that all pairs indeed want to
match (i.e., v̄i + w̄j ≤ gij, ∀i, j).

“⇐” If c < 0.08, the values that solve the Constant Surplus equations are too high
for an All Skills Match equilibrium because agents with opposite skills reject each other
(i.e., v̄i + w̄j > gij for i 6= j).

“⇒” If c ≥ 0.08, the induced values are sufficiently low to satisfy the efficient
matching conditions. The state x = y = 0.2 and marginal values ∆v̄ = ∆w̄ = 1.2

constitute the unique equilibrium where all pairs match. Remarkably, this equilibrium
coincides with the planner’s optimal All Match policy.

Second, in an equilibrium with PAM, it must be that ∆v = ∆w (because the
outflow of skilled buyers = the outflow of skilled sellers); and x = y (because of the
Constant Surplus equations xs11 = 2c = ys11); together implying11

10We depict a certain economy parameterized by F = U [0.8, 2.8] and Gsup, but a similar picture
would arise for most two-skill supermodular symmetric economies. Recall that in the All Match
allocation (1), the planner’s optimal policy does not depend on c, and so this curve is linear. In
contrast, in the PAM allocation (2), the planner’s optimal stocks and flows change with c, and thus
the PAM curve is convex (though it is hard to see in this graph).

16



Inflow︷ ︸︸ ︷
F (∆v) =

Outflow︷ ︸︸ ︷
x2

x2 + (1− x)2
and ∆v =

g11
2
− c

x
−
(
g00
2
− c

1− x

)
The states x that solves these two equations are the only candidates for an equilibrium
with PAM and every candidate x induces values that must solve: i) the corresponding
Constant Surplus equations; and ii) the Efficient Matching conditions so that same
skills accept (i.e., vi + wj ≤ gij for i = j ) and opposite skills reject (i.e., vi + wj ≥ gij

for i 6= j).
“⇐” If c > c1, then the values that solve the Constant Surplus equation are too low

for a PAM equilibrium because agents with opposite skills accept each other.
“⇒” If c ≤ c1, then there is a unique candidate state x̂(c) whose induced values

(v̂) , (ŵ) satisfy these two conditions. The skill distribution y = x = x̂(c), market
size N = 1

x2+(1−x)2 , and values (v̂) , (ŵ) constitute the unique equilibrium with PAM.
Remarkably, this equilibrium coincides with the planner’s optimal PAM policy, x̂(c) =

x∗PAM(c) and ∆v̂ = ∆ŵ = β∗PAM(c).

Remark 6. In Figure 1, there can be multiple equilibria, but the overlap region is
small. The planner could implement various other policies, varying either the invest-
ment thresholds or the matching rule, but those would generate lower welfare, and they
cannot be supported by an equilibrium (generically).12

Submodular Production

We now take G = Gsub and fix the average cost type to be (a + d)/2 = 1.5. The
constrained efficient allocation is spanned by the following three simple allocations:

1) Negative Assortative Matching (NAM): Only the agents with below-average
costs invest and only opposite skills match, m10 = m01 = 1 and m00 = m11 = 0. The
steady state is x = y = 1/2 and N = 2. Per-period welfare:

WNAM = g10 − 2Nc−
∫ µ

a

βf(β)dβ −
∫ µ

a

σf(σ)dσ = 3− 4c− a+ µ

2

11LHS: Divide the two steady state equations Nx2 = F (∆v) and N(1 − x)2 = 1 − F (∆v).
RHS: Subtract the two Constant Surplus equations xs11 = 2c and (1− x)s00 = 2c and use ∆v = ∆w.

12In this example, for any c, there are at most three equilibria: the two depicted above and possibly
a mixed one where skilled-unskilled pairs match with a strictly positive probability (which has lower
welfare).
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2) All Skills Match: The same investment thresholds as the NAM allocation, but
now all pairs match, mij = 1, ∀i, j. The stock population is N = 1, and x = y = 1/2.
Per-period welfare:

WAll = 1
4

(g11 + g10 + g01 + g00)− 2Nc−
∫ µ
a
βf(β)dβ −

∫ µ
a
σf(σ)dσ = 2.75− 2c− a+µ

2

3) Social Norm (one-sided investment): Every buyer invests and becomes skilled
and every seller does not invest and remains unskilled. Agents accept any partner.
Since the market clears in every period, the stock population is N = 1. Per-period
welfare:

WSN = g10 − 2Nc−
∫ d

a

βf(β)dβ = 3− 2c− µ

Figure 2 illustrates the welfare of these allocations as a function of c. The equilibrium
regions are shaded blue. Panel (a) depicts the case where the distribution F has small
support, l = d− a < 1 and Panel (b) depicts a large support l > 1.

Social Norm

NAM

All Match

0.125
c

1.5

1.425

Welfare

(a) l < 1

Social Norm

NAM

All Match

0.125
c

1.5

1.625

Welfare Equilibrium

(b) l > 1

Figure 2: Equilibrium Regions

Notice each allocation is supported by an equilibrium whenever it is efficient13

WNAM = 3 −4c−
(
a+µ
2

)
WAll =2.75−2c−

(
a+µ
2

)
WSN = 3 −2c− µ

◦ The NAM allocation is an equilibrium if and only if the search cost c ≤ 1/8. This
allocation maximizes productivity but has a higher search cost.
13The specific parameters illustrated are l = 0.5 and l = 1.5. The arguments for the NAM and the

All Match equilibria regions are the same as in the supermodular case (see above). To see why the
Social Norm equilibrium depends on the support l = d − a: By Lemma 2, the marginal values are
bounded by the marginal productivities: 1 ≤ ∆v ≤ 2. Therefore, if l > 1, then a < 1 (because the
average cost-type is 1.5) and all types less than 1 will invest in every equilibrium. If l ≤ 1, the values
v1 = 2.5 − c, v0 = 0.5 − c, w1 = 1.5 − c, and w0 = 0.5 − c satisfy the equilibrium conditions. Notice
that since the average cost-type is 1.5 and l < 1, it follows that 1 < a < d < 2, and therefore all
buyers want to invest because ∆v = 2 ≥ d ≥ β and no seller wants to invest because ∆w = 1 ≤ a ≤ σ.
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◦ The All Match allocation is an equilibrium if and only if the search cost c ≥ 1/8.

This allocation benefits from lower search costs but has lower productivity because
agents mismatch (both unskilled-unskilled and skilled-skilled matches occur).
◦ The Social Norm allocation is an equilibrium if and only if the support l ≤ 1. This

allocation maximizes productivity and minimizes the search cost but has a higher
total investment cost: high-cost buyers invest while low-cost sellers do not. This
misallocation of talent is more severe for a wider cost distribution.

These three allocations demonstrate the trade-off between productivity, investment
cost, and search cost. Each allocation optimizes two components at the expense of the
third. The takeaways from the examples are:

1) Efficiency: The constrained efficient allocation, depicted by the upper envelope of
the lines, is an equilibrium.

2) Assortative Matching: Under the supermodular production functionGsup, agents
with the same skills matched; and under the submodular function Gsub, agents with
opposite skills matched.

3) Economic Implications: When the production function is submodular, the effi-
cient outcome can be discriminatory. Discrimination induces the two groups to invest
differently and thereby minimizes search costs and enhances productivity, but at the
expense of higher investment costs. Finally, there can be multiple equilibria but the
equilibria set is small and tractable.

4 The Second Welfare Theorem

To simplify, skills are labelled as I = {0, 1, . . . , |I| − 1} and J = {0, 1, . . . , |J | − 1}. The
constrained efficient allocation is the solution to the problem of a social planner who
chooses the investment and acceptance strategies and sets the stock in the matching
market, in order to maximize per-period total welfare, subject to the condition that
the economy is in a steady state.

Without loss of generality: i) the planner chooses a balanced state, B = S = N

(rationing would not benefit the planner); ii) the matching strategies are represented by
a matching matrix; and iii) the planner’s optimal investment strategies can be defined
by thresholds β0 ≥ β1 ≥ . . . ≥ βI and σ0 ≥ σ1 ≥ . . . ≥ σJ , so that all buyers of type
β ∈ (βi+1, βi) choose skill i and all sellers of type σ ∈ (σj+1, σj) choose skill j (types
and skills are inversely related because costs increase with type).
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Thus, the planner chooses 〈z,M, (βi), (σj)〉 to maximize:

W (〈z,M, (βi), (σj)〉) =
∑
i∈I

∑
j∈J

Nxiyjmijgij − 2Nc−
∑
i∈I

∫ βi

βi+1

Cb(i, β)f b(β)dβ (5)

−
∑
j∈J

∫ σj

σj+1

Cs(j, σ)f s(σ)dσ

subject to flowbi :=
(
F b(βi)− F b(βi+1)

)
−Nxi

∑
j∈J

yjmij = 0, ∀i (6)

flowsj := (F s(σj)− F s(σj+1))−Nyj
∑
i∈I

ximij = 0, ∀j (7)

xi ≥ 0,∀i (8)

yj ≥ 0,∀j (9)

X := 1−
∑
i∈I

xi = 0 (10)

Y := 1−
∑
j∈J

yj = 0 (11)

1 ≥ mij ≥ 0,∀i, j (12)

F b(β|I|) = F s(σ|J |) = 0 (13)

F b(β0) = F s(σ0) = 1 (14)

The first term in the objective function is per-period total output (the measure of
formed matches between buyer i and seller j is Nxiyjmij and their match output is
gij), the second term is the per-period total search cost, and the last two terms are the
per-period total investment costs. The first constraint is that inflow equals outflow.
The other conditions stipulate that xi, yj are proportions, mij are probabilities, and
that the planner must assign a skill to every agent. Note that the maximization problem
does not explicitly require that β0 ≥ β1 ≥ . . . ≥ βI and σ0 ≥ σ1 ≥ . . . ≥ σJ , nor N > 0,
because these conditions are implied by the other constraints (see proof).
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Theorem 1. (Second Welfare Theorem) For every economy 〈F b, F s, I, J, Cb, Cs, G, c〉:
i) There exists an optimal policy 〈z,M, (βi), (σj)〉.
ii) Every optimal policy 〈z,M, (βi), (σj)〉 can be decentralized. That is, there are

values (v∗i ), (w∗j ), and a matching matrix M∗ such that 〈z,M∗, (v∗i ), (w
∗
j )〉 is an equi-

librium, where m∗ij = mij for all i, j such that xi, yj > 0.

The proof shows that shadow values of the flow constraints can serve as the equi-
librium values that decentralize the optimal allocation. That is, these shadow values
satisfy the Constant Surplus equations and IC conditions: If the planner’s optimal pol-
icy specifies that buyer β chooses skill i∗ then i∗ ∈ arg maxi∈I vi−Cb(i, β), and if seller
σ chooses skill j∗, then j∗ ∈ arg maxj∈J wj − Cs(j, σ). Furthermore, if the planner’s
policy specifies that i∗ and j∗ should accept (or reject) each other, then vi∗+wj∗ ≥ gi∗j∗

(resp. vi∗ + wj∗ ≤ gi∗j∗).

Proof. First, we show that the constraints of the problem imply that N > 0, and
βi ≥ βi+1 for all i, and σj ≥ σj+1 for all j. To see this, observe that F b(β|I|) = 0 and
F b(β0) = 1, and so there exists a skill i such that F (βi) > F (βi+1). By constraint
flowbi , it must be that Nxi

∑
j∈J yjmij > 0. Since xi, yj,mij are all non-negative, it

follows that N > 0. Thus, the outflow of every skill is non-negative, and from the flow
conditions, it must be that βi ≥ βi+1 for all i, and likewise σj ≥ σj+1 for all j.

(i) Existence: To demonstrate existence, since the objective is continuous, all we need
to show is that the policy space is compact. First, there is a uniform upper bound N
so that in any optimum, N ≤ N (recall that N ≥ 0). For the upper bound, notice that
the Inflow=Outflow constraints imply

∑
i∈I
∑

j∈J Nxiyjmij = 1, and therefore the first
term in the welfare expression is a convex combination of gij and therefore is uniformly
bounded by max gij. Thus, limN→∞W = −∞ and so the optimal policy cannot involve
arbitrarily large N . The planner can choose quantiles F (βi) instead of thresholds βi,
and since the objective is also continuous in the quantiles and the quantile space is
bounded, a maximum indeed exists.
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(ii) Decentralizing optimal allocations: The dual problem is

L (〈z,M, (βi), (σj)〉) =
∑
i∈I

∑
j∈J

Nxiyjmijgij − 2Nc

−
∑
i∈I

∫
Bi

Cb(i, β)f b(β)dβ −
∑
j∈J

∫
Sj

Cs(j, σ)f s(σ)dσ

+
∑
i∈I

vi · flowbi +
∑
j∈J

wj · flowsj +
∑
i

φixi +
∑
j

ψjyj + γX + λY

+
∑
i∈I

∑
j∈J

(ηijmij + η̂ij(1−mij))

We will first show that a constraint qualification holds and then construct an equilib-
rium using the shadow values from the KKT conditions.

1) The Constraint Qualifications: Since the problem is not convex, we use the
constant rank regularity condition, which requires that for each subset of the gradients
of the active inequality constraints and the equality constraints, the rank in the vicinity
of the optimal point is constant (Janin 1984). The formal proof is given in Lemma 3
in the Appendix.

2) Deriving values from the KKT conditions: Due to the constraint qualification
above, the first order conditions (FOC) of the dual problem L are necessary at any
optimum:

FOC(N):
∑
i∈I

∑
j∈J

xiyjmijgij−2c−
∑
i∈I

vi

(
xi
∑
j∈J

yjmij

)
−
∑
j∈J

wj

(
yj
∑
i∈I

ximij

)
= 0

⇐⇒
∑
i

∑
j

xiyjmij(gij − vi − wj) = 2c

FOC(xi): N
∑
j

yjmijgij − viN
∑
j

yjmij −N
∑
j

wjmijyj − γ + φi = 0

⇐⇒ N
∑
j

yjmij (gij − vi − wj) = γ − φi

FOC(yj): N
∑
i

ximijgij −N
∑
i

viximij − wjN
∑
i

mijxi − λ+ ψj = 0

⇐⇒ N
∑
i

ximij (gij − vi − wj) = λ− ψj

Complementary slackness: φixi = 0 and yjψj = 0 and φi, ψj ≥ 0.

22



FOC(mij): Nxiyjgij − viNxiyj − wjNxiyj + ηij − η̂ij = 0

⇐⇒ Nxiyj(gij − vi − wj) = −ηij + η̂ij

Complementary slackness: ηijmij = 0 and η̂ij(1−mij) = 0 and ηij, η̂ij ≥ 0.

FOC(βi): f b(βi)(vi − vi−1) = f b(βi) (C(i, βi)− C(i− 1, βi)) , for i ∈ {1, . . . , I − 1}

FOC(σj): f s(σj)(wj − wj−1) = f s(σj) (C(j, σj)− C(j − 1, σj)) , for j ∈ {1, . . . , J − 1}

We now show that the shadow values vi, wj, together with the matching matrixM and
state z, constitute an equilibrium.

Decentralizing the constrained optimal allocation when z is interior (ii): To
verify the Constant Surplus equations, notice that:

N · 2c = N
∑
I

∑
J

xiyjmij(gij − vi − wj) =
∑
I

xiN
∑
J

yjmij(gij − vi − wj)

=
∑
I

xi(γ + φi) =
∑
I

γxi + φixi =
∑
I

γxi = γ

The first line uses FOC(N), while the second line uses FOC(xi), complementary slack-
ness (φixi = 0), and the condition

∑
I xi = 1. Therefore γ = 2cN . Since z is interior,

φi = 0, and the FOC(xi) is
∑

J yjmij (gij − vi − wj) = 2c, which is the Constant
Surplus equation for skill i. An analogous argument holds for the sellers.
To verify the Efficient Matching conditions, notice that if gij − vi − wj > 0, the FOC
for mij requires that η̂ij > 0 and therefore mij = 1. Similarly, if gij − vi − wj < 0, the
FOC for mij requires that ηij > 0 and therefore mij = 0.

To verify that the investments are incentive compatible, we show that for any type
β ∈ [βi+1, βi], their most preferred skill is i. To see this, for any lower skill, i′ ≤ i, the
FOC for the threshold βi′ is f(βi′)(vi′ − vi′−1) = f(βi′)(C(i′, βi′) − C(i′ − 1, βi′)) and
recall that βi′ ≥ β. Since f > 0 everywhere, this can be simplified to vi′ − C(i′, βi′) =

vi′−1 − C(i′ − 1, βi′). Since type βi′ is indifferent between the skills i′ and i′ − 1, by
single-crossing, type β weakly prefers skill i′ to skill i′−1. Thus, type β weakly prefers
i to any lower skill i′. An analogous argument applies for higher skills.

The case of a non-interior z can be found in the Appendix.
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The following are immediate consequences:

Corollary 1. An equilibrium exists.

Proposition 1. The welfare function W is continuous, strictly decreasing, and convex
in c. Moreover, the population size N is weakly decreasing in c.

The proof is in the Appendix. It relies on the observation that ∂W/∂c = −2N ,
which follows immediately from the envelope theorem, implying that a shock to c has
greater impact on welfare when c is small than when c is large.

Remark 7. In the Appendix, we construct the matching and values for unchosen skills.
If the planner’s solution does not use a certain skill, then a simple approach would be
to set the values of that skill to −∞ so that no agent would choose it. However, we
cannot take this approach as we require that the equilibrium conditions (the Constant
Surplus equations and Efficient Matching conditions) apply for all skills, including
unchosen ones. That is, the value of an unchosen skill is what an agent would receive
in equilibrium if he were to invest in such a skill. Theorem 1 proves that any optimum
can be decentralized except that the planner can match unchosen skills in any fashion
because they have no impact on welfare, whereas an equilibrium requires that unchosen
types still satisfy the Efficient Matching conditions.

4.1 Outside Options and Endogenous Entry

We now turn to the case where agents have outside options. Suppose that every
new-born agent can either invest and enter the market or opt out and receive the
outside payoff equal to ub for buyers and us for sellers. In equilibrium, buyer β enters
the market if and only if maxi vi − C(i, β) ≥ ub, and seller σ enters if and only if
maxwj−C(j, σ) ≥ us. We focus on the interesting case where there are gains to trade,
and so for at least two types, β and σ, maxi∈I,j∈J gij − 2c−C(i, β)−C(j, σ) > ub +us.
The only difference from the baseline model is that the planner now also chooses the
entry thresholds β0 and σ0 to maximize:

W = N
∑
i∈I

∑
j∈J

xiyjmijgij − 2Nc−
∑
i∈I

∫ βi

βi+1

C(i, β)f b(β)dβ −
∑
j∈J

∫ σj

σj+1

C(j, σ)f s(σ)dσ

+

∫ ∞
β0

ubf b(β)dβ +

∫ ∞
σ0

usf s(σ)dσ
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and the boundary conditions F b(β0) = 1 and F s(σ0) = 1 are removed.

Corollary 2. In a model with outside options, the constrained efficient outcome is an
equilibrium.

The proof shows that the shadow values still constitute an equilibrium (see Ap-
pendix). As before, v0 is the shadow value of the skill 0 flow constraint. However, there
is an additional first-order condition since β0 is now endogenous: v0 − C(0, β0) = ub

which is precisely the equilibrium entry condition for buyers. An analogous argument
holds for sellers.

Remark 8. In the baseline model, there is exactly one degree of freedom in the equilib-
rium values (see Remark 5). In the model with outside options, there is an additional
entry condition and thus the values are unique (assuming that at least one agent take
the outside option).

5 Equilibrium Sorting and Uniqueness

In this section, we show that the equilibria have a clear and simple structure: Section
5.1 shows that if the production function is super/submodular, then every equilibrium
exhibits assortative matching. Section 5.2 shows that when production is additively
separable (product market), the equilibrium is unique. While in some cases the model
may admit multiple equilibria, these results and the previous examples illustrate that
the efficient allocation is not caught in a widely cast net.

5.1 Assortative Matching

Denote the matching set of skill-i buyers by Mi = {j : mij > 0} ⊆ J , this is the set of
seller skills with whom buyer i matches. Similarly, for sellers, Mj = {i : mij > 0} ⊆ I.
The maxima and minima of these sets are denoted mi = maxMi, mi = minMi,
mj = maxMj and mj = minMj. We say that a buyer’s matching set Mi is convex if
mi < j < mi implies that mij = 1 (this is stronger than stating that the matching sets
are intervals because it requires that only boundary types can match probabilistically).
Convexity is defined analogously for sellers. A matching matrix M exhibits positive
assortative matching (PAM) if the matching sets are convex and the maxima/minima
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are weakly increasing. Likewise, M exhibits negative assortative matching (NAM) if
the matching sets are convex and the maxima/minima are weakly decreasing. Finally,
we say that All Skills Match if mij = 1 for all i, j.14

mij j1 j2 j3 j4 j5
i1
i2
i3
i4
i5

Table 2: A PAM matrix: mij = 1 (blue), 0 < mij < 1 (green), and mij = 0 (blank)

In Table 2, we depict a matching matrix that satisfies PAM. To maintain PAM,
this matrix cannot be modified so that buyer 1 matches with seller 3 (pure or mixed)
because that would violate the convexity condition for buyer 1. Likewise, it cannot be
that buyer 2 matches with seller 5 because that would violate monotonicity.

The production function G is supermodular (or submodular) if the marginal pro-
ductivity of every skill i, g(i+1)j − gij, is strictly increasing (resp. decreasing) in j,
and the marginal productivity of every skill j, gi(j+1) − gij, is strictly increasing (resp.
decreasing) in i; G is separable if the marginal productivity of every skill is constant.

Theorem 2. In equilibrium, there is PAM whenever G is supermodular, NAM when-
ever G is submodular, and All Skills Match whenever G is separable.

Outline of the proof: to establish monotonicity, we use the observation that the
surplus function sij inherits super/submodularity from G. We prove convexity from
algebraic manipulations of the Constant Surplus equations.

Proof. Throughout, we will use the following fact: if G is supermodular, then so are
the surpluses [sij].

14Note that we are using the standard definition of PAM and NAM in random search models, which
is based on matching sets. In particular, if there is PAM or NAM according to our definition, then
the matching sets Mi,Mj satisfy the lattice condition in Shimer and Smith (2000).
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Increasing Upper Bounds: Fix two buyer skills i2 > i1. Suppose that mi2 <

mi1 . Define k = mi1 . By Efficient Matching, it must be that si1k ≥ 0 ≥ si2k. By
supermodularity of s, it holds that si1j > si2j for every j < k and thus si1j > si2j for
every j ∈Mi2 . This violates the Constant Surplus equations because

2c =
∑
j∈J

yjmi2jsi2j =
∑
j∈Mi2

yjsi2j <
∑
j∈Mi2

yjsi1j ≤
∑
j∈Mi1

yjsi1j =
∑
j∈J

yjmi1jsi1j = 2c

Demonstrating increasing lower bounds is similar. Demonstrating decreasing bounds
for the submodular G case is analogous.

Convexity: Suppose not. That is, there is a buyer i and sellers j1 < j < j2 such
that mij < 1, and mij1 ,mij2 > 0. Then, it must be the case that seller j has a strictly
positive surplus with a lower buyer and that buyer is present with non-zero measure.
Otherwise

2c =
∑
i′>i

xis
+
i′j <

∑
i′>i

xis
+
i′j2
≤ 2c

with the inequality being due to the fact that si′j2 ≥ sij + si′j2 > sij2 + si′j ≥ sij2 for
every i′ > i due to the supermodularity of s. Therefore, there is some i′ < i such that
xi′ > 0 and si′j > 0.

An analogous argument demonstrates that there is:
1. A higher buyer i′ > i such that xi′ > 0 and si′j > 0.
2. A lower seller j′ < j such that yj′ > 0 and sij′ > 0.
3. A higher seller j′ > j such that yj′ > 0 and sij′ > 0.
Let j = argmaxj′≤j sij′ and likewise j = argmaxj′≥j sij′ . Similarly, let i = argmaxi′≤i si′j

and likewise i = argmaxi′≥i si′j. See below for an illustration of the matching matrix.

. . . j . . . j . . . j . . .

. . . 0

i 1

. . .

i 0 1 mij < 1 1 0

. . .

i 1

. . . 0
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Define y = yj, y =
∑

j′<j yj′ and y =
∑

j′>j yj′ . Similarly, x = xi, x =
∑

i′<i xi′ ,
and x =

∑
i′>i xi′ . Notice that x, x, y, y > 0 as shown above.

By the supermodularity of s, for any i′ > i, it is the case that si′j + sij > si′j + sij

and since sij ≤ 0, it follows that si′j > si′j + sij. Thus,

2c ≥
∑
i′≥i

xi′si′j >
∑
i′≥i

xi′(si′j + sij) =

(∑
i′≥i

xi′si′j

)
+ (x+ x)sij (15)

The strict inequality use the fact that xi′ > 0 for some i′ > i. Next, notice that
sij ≥ si′j for all i′ < i. Therefore,

xsij =
∑
i′<i

xi′sij ≥
∑
i′<i

xi′si′j (16)

Adding equations (15) and (16) gives

2c+ xsij >
∑
i′

xi′si′j + (x+ x)sij

And therefore,
xsij > (x+ x)sij (17)

Similarly, it can be observed that:

sij′ > sij′ + sij for all j > j′

sij′ > sij′ + sij for all j′ > j

si′j > si′j + sij for all j′ < j

Repeating the same arguments:
ysij > (y + y)sij (18)

ysij > (y + y)sij (19)

xsij > (x+ x)sij (20)

As shown earlier, all of the surpluses, sij, sij, sij, sij are positive. Taking the product
of Inequalities (17)–(20) and dividing by the surpluses yields:

xxyy > (x+ x)(x+ x)(y + y)(y + y)

which is a contradiction due to the strict inequality.

Separability Implies All Skills Match: By Lemma 2, it is the case that for any
two sellers, wj′ − wj = gj′ − gj. Therefore, the surplus function is constant sij′ =

gi + gj′ − vi − wj′ = gi + gj − vi − wj and by the Constant Surplus equations, it must
be that sij = 2c for all i, j. So, every pair of agents accept their match.
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Remark 9. Previous work established sufficient conditions for positive/negative assor-
tative matching for a single-population model (Shimer and Smith 2000, Atakan 2006).
However, these results do not apply to settings with two different populations, such as
labor or product markets.15 To our knowledge, our paper is the first to prove these
results in a two-population model. While it may be intuitive to expect that sorting
holds in a two-population model with super/submodular production, the extension is
not trivial as the proofs in those papers rely heavily on symmetry of the matching sets.
In contrast, we prove convexity from the Constant Surplus equations.16 Of course,
the applied literature has studied sorting in two-population models by using a weaker
definition of assortative matching (based on the frequency at which different matches
are observed).

Remark 10. The assortative matching result is useful for numerical analysis. For
example, in the 5 × 5 case depicted in Table 2, there are 225 ≈ 33.6 million pure
matching matrices, but only 2,762 of them satisfy PAM. In the 5 × 7 case, there are
235 ≈ 34 trillion pure matching matrices, of which only 21,659 satisfy PAM.17

5.2 Uniqueness: Separable Production

We now demonstrate that when the production function is separable, i.e. gij = gi + gj,
there is a unique equilibrium. To relate to previous work, we phrase this subsection
in the language of a product market, as in Rubinstein and Wolinsky (1985) and Gale
(1987). Each seller can produce exactly one unit of a homogeneous good and each
buyer desires a single unit. A buyer that invests in skill i receives the payoff αi from
consuming the good and a seller that invests in skill j can produce the good at a cost
κj. The consumption value αi is increasing in i and the cost κj is decreasing in j.
When a buyer and seller meet, their output is gij = αi − κj. This production function
is separable because marginal productivity gi′j − gij is independent of j. There is
endogenous entry, with outside options ub for buyers and us for sellers. To focus

15Notice that even if two populations are ex-ante symmetric, their investments may be asymmetric
and hence the equilibrium will not be symmetric (see Example 2).

16In the model with time discounting, to show that the matching sets are convex, Shimer and Smith
(2000) place further restriction on the production function which imply that the surplus function sij
is quasi-concave whereas our proof works without further restrictions. In fact, there are examples
where G is supermodular and sij is not convex, and yet there is PAM.

17At 1000 calculations per second, this is the difference between a program taking a millennium and
21 seconds.
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on the interesting case, we ignore the trivial equilibrium where no agent enters, and
we assume that there are gains to trade, and so for at least two types, β and σ,
maxi∈I,j∈J gij − 2c−C(i, β)−C(j, σ) > ub + us and that not all agents enter, so there
are at least two types for which the opposite inequality holds.

Proposition 2. Any economy with a separable production function (with or without
outside options) has a unique equilibrium and its allocation achieves the first best.

Theorem 2 demonstrates that with a separable production function, in any equi-
librium, All Skills Match. The rest of the proof follows: since All Skills Match, the
marginal values equal marginal productivities (Lemma 2), and by separability, ∆vi = gi

and ∆wj = gj. Thus, the flows and stocks are uniquely pinned down. Moreover, the
surpluses sij are constant, and so a law of one price prevails (all trades occur at
one price) and endogenous entry uniquely pins down the price that equates supply and
demand. Finally, the agents’ private incentives to invest are exactly aligned with the
planner, so the equilibrium achieves the first-best. The proof is in the Appendix.

6 Robustness

In this section, we extend the baseline model in several directions: Section 6.1 con-
siders asymmetric search costs and bargaining weights, Section 6.2 considers other
CRS meeting functions, and Section 6.3 adds time discounting. We will show that our
main results regarding efficient investment, efficient matching, sorting, and existence
are robust to modifying the bargaining weights, search costs, and meeting function
(satisfying CRS). However, efficiency fails when agents discount time and we provide
examples to illustrate why.

6.1 Asymmetric Search Costs and Bargaining Weights

We extend the baseline model by allowing asymmetric search costs and bargaining
weights. In every period, each buyer incurs the search cost cb > 0 and each seller
incurs the search cost cs > 0. When a buyer with skill i and a seller with skill j accept
each other, the buyer receives vi + αsij and the seller receives wj + (1− α)sij.

In the baseline model, cb = cs = c and α = 1− α = 1/2, and Lemma 1 established
that in any equilibrium, the number of buyers B equals the number of sellers S. When
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the bargaining weights or search costs are asymmetric, the equilibrium state can be
unbalanced, B 6= S. Recall that in an unbalanced market, the long side of the market is
rationed, e.g., if B < S, then in each period, every buyer meets a seller with probability
1 and every seller meets a buyer with probability B/S (and vice-versa if B > S).

Theorem 3. For every economy 〈F b, F s, I, J, Cb, Cs, G, cb, cs, α〉, let r ≡ α
1−α

cs

cb
:

1. Every equilibrium has the same balance ratio B
S

= r.
2. Given the balance ratio r, the constrained efficient investments, matching, and

steady state are an equilibrium outcome. That is, let 〈z,M, (βi), (σj)〉 maximize total
welfare under the previous constraints (6)-(14) and the additional constraint B

S
= r.

There are values (v∗i ), (w∗j ), and a matching matrix M∗ such that 〈z,M∗, (v∗i ), (w
∗
j )〉

is an equilibrium, where m∗ij = mij for all i, j such that xi, yj > 0.

Proof. Define µ = min(B, S). In equilibrium, the values satisfy:

vi = (µ/B)

(∑
j∈J

yj [mij (vi + αsij) + (1−mij)vi]

)
+ (1− µ/B) vi − cb,∀i

wj = (µ/S)

(∑
i∈I

xi [mij (wj + (1− α)sij) + (1−mij)wj]

)
+ (1− µ/S)wj − cs,∀j

Rewriting, we obtain the modified Constant Surplus equations:∑
j∈J

yjmijsij =
cb

α (µ/B)
,∀i (21)

∑
i∈I

ximijsij =
cs

(1− α) (µ/S)
,∀j

⇒ cb

α (µ/B)
=
∑
i∈I

xi
∑
j∈J

yjmijsij =
∑
j∈J

yj
∑
i∈I

ximijsij =
cs

(1− α) (µ/S)

⇒ B

S
=

α

1− α
· c

s

cb
(22)

The rest of the proof follows a similar argument as the proof of Theorem 1 and is
given in the Appendix.

Therefore, the search costs and bargaining weights uniquely pin down the balance
ratio r = cs

cb
α

1−α . The market is balanced B = S iff the bargaining weight equals
the search cost ratio α = cb

cb+cs
. Under any other bargaining weight, the market is
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imbalanced which is inefficient because one side of the market is rationed. However,
imbalance is the only inefficiency: given the balance ratio, there are values that de-
centralize the efficient investment decisions, search decisions, and steady state as an
equilibrium.

Existence and sorting hold as is.

Corollary 3. An equilibrium exists.

Theorem 4. For any economy 〈F b, F s, I, J, Cb, Cs, G, cb, cs, α〉, in equilibrium, there
is PAM whenever G is supermodular, NAM whenever G is submodular, and All Skills
Match whenever G is separable.

The proof of Theorem 4 is essentially the same as the proof of Theorem 2 using
the modified constant surplus equations. Finally, the next Proposition states that
any economy with asymmetric search costs and bargaining weights has an equivalent
economy with symmetric bargaining weights and search costs.

Proposition 3. Given the economy Easym with asymmetric search costs cb and cs and
bargaining weight α, let Esym denote the same economy only with a symmetric bargain-
ing weight and symmetric search costs c = max{ cb

2α
, cs

2(1−α)}. These two economies have
the same equilibrium allocations and welfare.

Proof. Notice that the constant surplus equations of both economies are the same.

The readers might find the results in this section surprising. For instance, starting
with symmetric costs and bargaining weights, one may expect that tilting the bargain-
ing weight to favor one side would cause multiple inefficiencies: the incentives to invest
may be too strong for one side and too weak for the other side; and mismatches may
also occur since the equilibrium values change. Theorem 3 demonstrates that the only
inefficiency is imbalance. Specifically, in the new equilibrium, the balance ratio will
adjust B/S = αcs/(1 − α)cb, and the steady state skill distributions and values also
change. However, given the new balance ratio, the new equilibrium values perfectly
align the agents’ private incentives to invest and to search with the social benefit.

Since an imbalanced market is inefficient, a natural question is whether government
subsidies can improve efficiency and if so how? First, search cost subsidies can be overall
beneficial, in contrast to the balanced market case where the cost of such subsidies
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always outweighs the social benefits. Regarding how, subsidizing the search cost of
the short side of the market can improve the welfare of all agents, while subsidizing
the long side improves neither. In particular, counter-intuitively, if buyers are less
numerous than sellers, then not only would buyers prefer to receive any search cost
subsidy, but sellers would also prefer that any search cost subsidies be directed at the
buyers. Finally, any investment cost subsidies reduce overall welfare.

6.2 Meeting Function

Finally, we consider a general meeting function where µ(B, S) is the total number of
meetings in a period. In every period, each agent can meet at most one other agent,
and so µ(B, S) ≤ min {B, S}. Meetings are still random and the probability that a
buyer meets a seller is µ(B, S)/B, while the probability that a seller meets a buyer is
µ(B, S)/S. As is standard, we take µ to be homogeneous of degree 1.

Corollary 4. For every economy 〈F b, F s, I, J, Cb, Cs, G, cb, cs, α, µ〉, let r ≡ α
1−α

cs

cb

1. Every equilibrium has the same balance ratio B
S

= r.
2. Given the balance ratio r, the constrained efficient investments, matching, and

steady state are an equilibrium outcome. That is, let 〈z,M, (βi), (σj)〉 maximize total
welfare under the previous constraints (6)-(14) and the additional constraint B

S
= r.

There are values (v∗i ), (w∗j ), and a matching matrix M∗ such that 〈z,M∗, (v∗i ), (w
∗
j )〉

is an equilibrium, where m∗ij = mij for all i, j such that xi, yj > 0.

The proof closely follows that of Theorem 3 (see Appendix). This result clarifies
the relationship between our work and Hosios’ condition. As mentioned, Hosios (1990)
considers a model with homogeneous agents and shows that the right bargaining weight
achieves the efficient balance ratio in the market. An analogous condition applies in
our model: the equilibrium balance ratio is the efficient one whenever the bargaining
weight of each side equals their share of the overall search costs (at the constrained
efficient state B, S):18

α =
Bcb

Bcb + Scs
=
∂µ(B, S)/∂B

µ(B, S)/B
(23)

Therefore, our result and Hosios’ result are different and complementary. Hosios’ result
18Assuming that µ is differentiable, the second equality holds at the optimum and is the familiar

Hosios’ condition.
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is about achieving the efficient balance ratio in the market which requires condition
(23). Our result is about decentralizing the efficient investment and matching decisions
and it does not depend on the bargaining weights or search costs.

6.3 Discounting

We extend the baseline model to an economy Eδ,c = 〈F b, F s, I, J, Cb, CS, G, c, δ〉 where
agents incur an additive search cost c and discount time at the rate δ ∈ [0, 1]. To
reduce notation, we return to the case of symmetric search costs and bargaining weights
and the standard meeting function. Since the agents’ continuation values are now
discounted, the match surplus becomes sij = gij − δvi − δwj. The efficient matching
conditions are the same:

sij > 0→ mij = 1; and sij < 0→ mij = 0

but the surplus equations are now:

vi =
∑
j∈J

yj

[
mij

(
δvi +

sij
2

)
+ (1−mij) δvi

]
− c

⇒
∑
j∈J

yjmijsij = 2 [c+ (1− δ)vi]

Notice that agents incur both an explicit search cost of c and an implicit search cost of
(1− δ)vi because their payoffs are delayed. The implicit search costs are increasing in
values and this inefficiently distorts the equilibrium investment and matching decisions.
First, acquiring a higher skill entails a higher implicit search cost, which reduces the
incentive to invest. Second, high-skill agents have high implicit search costs and may
accept too often, while low-skill agents have low implicit search costs and may reject
too often (see Shimer and Smith 2001).

To illustrate these inefficiencies, consider a symmetric economy with two skills I =

J = {0, 1} and a separable production function, gij = gi + gj.

Inefficient Matching: Since the production function is separable, for any discount
factor and search cost, the efficient matching rule is All Skills Match. However, for a
high productivity ratio g1/g0, All Skills Match is not supported by an equilibrium. To
see why, plugging mij = 1, ∀i, j into the constant surplus equations and differencing,
we get the marginal values ∆w = ∆v = g1−g0

2−δ . The equilibrium is therefore symmetric,
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x = F (∆v) = F (∆w) = y, and WLOG v0 = w0, v1 = w1.19 Solving these equations,
we get: v0 = −c+ g0 + 1−δ

2−δ (g1 − g0)x and v1 = −c+ g1 − 1−δ
2−δ (g1 − g0)(1− x). Setting

c ≈ 0, unskilled agents will reject each other whenever:

g1
g0
> 1 +

1

x

2− δ
δ
⇐⇒ δv0 > g0 ⇐⇒ 0 > s00

Therefore, when the productivity ration g1/g0 is high, all skills match is not an equi-
librium. Instead, unskilled agent match only with skilled agents while skilled agents
accept each other and unskilled agents. The matching matrix is: M = [ 0 1

1 1 ]. In-
tuitively, this mismatch happens because unskilled agents have low implicit search
costs and therefore “hunt” for skilled agents from whom they can extract more surplus
(because the skilled agents have high implicit search costs).

Non-assortative Matching: The hunting equilibrium is not only inefficient, but
it also violates assortative matching: the matching sets are not monotonic because
skilled buyers match with unskilled sellers but unskilled buyers do not. Notice that
this example is not a knife edge case. For instance, taking x ≥ 0.9, δ ≥ 0.9, and g0 = 1

and c ≈ 0, then both efficiency and sorting fail whenever g1 > 2.36.

Under-investment: The efficient investment rule is that the agents with marginal
costs below the marginal productivity g1− g0 should invest. However, in this example,
even if All Skills Match is an equilibrium, the agents will under-invest because the
marginal value is less than the marginal productivity, ∆v = ∆w = g1−g0

2−δ < g1 − g0.

However, all is not lost. As δ → 1, the equilibrium converges to the efficient
outcome. More generally, in Eδ,c, for any c > 0 and under appropriate conditions, as
δ → 1, the equilibrium converges to our model. Since the proof is involved, we omit
this result.

7 Discussion

This paper developed and analyzed a model where heterogeneous agents acquire skills
and then engage in costly search to form productive matches in the market. Despite
potential hold-up and matching problems, the main result is that the constrained

19Notice that given any symmetric All Skills match equilibrium with values (v̂0, v̂1, ŵ0, ŵ1), there is
an equivalent equilibrium where v0 = w0 = (v̂0 + ŵ0)/2 and v1 = w1 = (v̂1 + ŵ1)/2.
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efficient allocation is an equilibrium of the decentralized market. In addition, regarding
the equilibrium structure: we established assortative matching for super/submodular
production functions and uniqueness for separable production functions. Importantly,
the sorting result applies to two-population models, such as the labor market. Our
main results regarding efficient investment, efficient matching, and sorting are robust:
they do not depend on the search costs nor the bargaining weights. We mention below
several implications and takeaways from our model and results.

Search Externalities: A key tension underlying the efficiency result is that the
decisions to acquire skills and to accept or reject potential partners impose externalities
on other agents. For instance, if less buyers acquire skill i and more buyers acquire
skill i + 1, then the pool of agents in the market changes: the number of buyers with
skill i decreases, the number of buyers with skill i + 1 increases, and the number of
buyers and sellers with other skills may also change because the relative size of their
matching partners may increase or decrease. Alternatively, if buyers with skill i accept
more partners, then their number in the search pool decreases, and subsequently the
number of agents with other skills may increase or decrease since the relative size of
their matching partners may change. The planner’s solution takes such steady-state
search externalities into account. In contrast, in equilibrium, each agent invests and
accepts or rejects partners simply by their private incentives, as determined by the value
of each skill in the market. In order to achieve the efficient outcome, the equilibrium
values must incentivize the agents to internalize these externalities, which is perhaps
the most surprising and powerful aspect of the welfare theorem.

Explicit and Implicit Search Costs: The search literature departs from the fric-
tionless matching benchmark in assuming that search is costly and time consuming.
Explicit search costs reflect a wide range of costs people incur per unit of time as they
search (see Remark 1 for examples). On the other hand, when agents discount time,
they incur implicit search costs as their payoffs are delayed. These implicit search costs
depend upon each agent’s continuation value, but explicit search costs do not. This
difference has significant consequences for both efficiency and sorting. In models with
discounting, agents under-invest because acquiring a better skill also entails acquiring
a higher implicit search cost. In addition, agents may mismatch and sorting may fail
even when production is additively separable. For instance, in the “hunting” example
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in Section 6.3, low-skill agents have low implicit costs and search too much.20 An
important takeaway from our paper is that inefficiencies are not caused by search fric-
tions per se but by discounting. Both explicit and implicit search costs are important
in many applications and which is more salient depends upon the economic situation
being modeled.21

The comparison between explicit and implicit time costs is important in the bar-
gaining literature. Rubinstein’s (1982) seminal paper studied a bilateral bargaining
game with (i) discounting and (ii) explicit time costs. He found that the model with
discounting has a unique SPE that depends smoothly and intuitively on the discount
factors, whereas the model with explicit costs has a stark SPE: the player with the
smaller cost receives almost the entire pie, and if both players have the same cost, then
almost any split of the pie is an SPE. The bargaining literature naturally gravitated
towards the discounting model. However, search and bargaining models are another
story: our paper demonstrated that the explicit search cost model is simple, tractable,
and it delivers sharp results.

Labor, Product, and Marriage Markets: For the labor market, a fundamental
question is about sorting – when will high-tech firms match with high-skill workers?
Theorem 2 establishes a simple sufficient condition for sorting in two-population mod-
els: if the production function is supermodular (or submodular), then the matching set
of each skill is a “discrete interval” and higher skills match with higher (resp. lower)
intervals. The matching sets still depend on the search cost but they have a simple
structure, each set is defined by an upper and lower bound (see Remark 10).

For product markets, match output is typically taken to be the gains from trade,
gij = vi − cj, which is additively separable. In our framework, buyers may invest to
increase their valuations while sellers may invest to reduce their costs. Proposition 2
establishes that there is a unique equilibrium which achieves the first-best allocation.

20The same “hunting equilibrium” also occurs with strictly supermodular production functions, for
instance, gij = (i+ j)n when n > 1. In models with discounting, to guarantee sorting, supermodular
g is not enough, but the log of its first and second derivatives must also be supermodular (see Shimer
and Smith 2000). For instance, gij = ij satisfies these conditions and gij = (i+ j)n does not.

21When search transpires over a short time window and does not affect the consumption date,
explicit search costs are important. For instance, think of the time spent today searching online for
a product that will be delivered tomorrow or college students applying for jobs which they will take
after graduation.
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For a symmetric marriage market, Section 3 demonstrated that an occupational
gender gap can arise and can even be efficient. This highlighted a basic tradeoff be-
tween investment, search, and productivity: asymmetric investments may facilitate
search and enhance productivity at the expense of higher investment costs (due to
a misallocation of talent). This market outcome is discriminatory as the returns on
investment depends on gender. The occupational gender gap can also arise when it is
inefficient and in some cases can be corrected by a policy intervention.

Policy Intervention: In our model, inefficiencies may result from two possible sources.
First, there can be a coordination failure and a policy intervention may move the
economy away from an inefficient equilibrium. For example, an investment subsidy
can rectify the previously mentioned occupational gender gap. Second, in the case of
asymmetric bargaining weights or search costs, the market can be imbalanced, B 6= S.
In this case, a small search cost subsidy for the short side of the market is generally
net beneficial (for both sides of the market), but a search subsidy targeted at the long
side never is.

Applications and Simulations: The welfare and sorting results are useful for com-
putational analyses. In particular, solving the planner’s problem solely requires finding
an allocation whereas solving for an equilibrium also requires finding values subject to
additional constraints. Notice that for an n-skill economy, the endogenous variables
N, (xi), (yj), (βi), (σj) are of order n, but the matching matrix [mij] is of order n2. The
assortative matching result reduces the number of matching variables from n2 to 2n,
which brings the dimensionality of the whole problem from O(n2) to O(n). A further
advantage of the welfare theorem is that seeing the economy through the planner’s lens
may provide intuition that is not evident from the equilibrium conditions. Calibration
of the model to fit empirical data lies beyond the scope of the current paper, but the
theoretical results found here offer promise.
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8 Appendix

Remaining Proofs for Theorem 1:

We first prove the non-interior case and then the constant rank constraint qualification.

Proof. z is non-interior:

Given any optimal policy 〈z,M, (βi), (σj)〉, the FOCs imply that there are shadow
values (vi), (wj) such that (see proof of Theorem 1 in text):

∑
j

yjmij (gij − vi − wj) ≥ 2c with equality when xi > 0

∑
i

ximij (gij − vi − wj) ≥ 2c with equality when yj > 0

Nxiyj(gij − vi − wj) = −ηij + η̂ij

where ηijmij = 0 and η̂ij(1−mij) = 0 and ηij, η̂ij ≥ 0.

The above equations demonstrate the Constant Surplus equations for all i where
xi > 0. But, the Constant Surplus equation may not hold for skills i where xi = 0.
Therefore, for any skill i where xi = 0, we define v∗i to be the unique value which solves∑

j yjmax {gij − v∗i − wj, 0} = 2c. For any skill i where xi > 0, we define v∗i = vi.
Likewise, for sellers j where yj = 0, define w∗j to be the unique value which solves∑

j yjmax
(
gij − vi − w∗j , 0

)
= 2c yj > 0. For sellers j where yj > 0, define w∗j = wj.

Define a matching matrix by m∗ij = 1gij−v∗i−w∗j>0 whenever xi = 0 or yj = 0 and setting
m∗ij = mij otherwise.

It now remains to be seen that 〈z,M∗, (v∗i ), (w
∗
j )〉 satisfies the equilibrium con-

straints.
The Constant Surplus Equations hold: For any skill i where xi > 0, from the

above, we have that
∑

j yjm
∗
ij

(
gij − v∗i − w∗j

)
=
∑

j yjmij (gij − vi − wj) = 2c because
v∗i = vi and whenever yj > 0, then mij = m∗ij and wj = w∗j . For any skill i where
xi = 0, ∑

j

yjm
∗
ij

(
gij − v∗i − w∗j

)
=
∑
j

yj max
(
gij − v∗i − w∗j , 0

)
=
∑
j

yj max (gij − v∗i − wj, 0) = 2c
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because w∗j = wj whenever yj > 0. The same argument demonstrates the Constant
Surplus equations for the sellers.

Efficient Matching holds: For any two skills i, j where xi = 0 or yj = 0, the
efficient matching condition holds by definition. For any two skills i, j where xi > 0

and yj > 0, then v∗i = vi, w∗j = wj, and m∗ij = mij and the Efficient Matching condition
is a direct consequence of FOC(mij).
Optimal Investments: Regarding optimal investments, just as in the proof in the
main section, here the values (vi) satisfy incentive compatibility for investments. How-
ever, it is not readily evident that the values (v∗i ) satisfy incentive compatibility because
the values for unrealized skills are modified, and may be increased. We now show that
for all unrealized skills vi ≥ v∗i .

Since mijxiyj = m∗ijxiyj for any two skills i, j, the policy 〈z,M∗, (βi), (σj)〉 is ad-
missible and optimal. By the constraint qualifications, there are values (v̂i), (ŵj) which
satisfy the FOCs for 〈z,M∗, (βi), (σj)〉. From FOC(βi), we have that the marginal val-
ues are equal for all i, v̂i − v̂i−1 = C(i, βi) − C(i − 1, βi) = vi − vi−1. Likewise, for all
sellers j, ŵj−ŵj−1 = wj−wj−1. Thus, there is a constant t such that v̂i+ŵj = vi+wj+t

for all i, j. For any skill i such that xi > 0,

2c =
∑
j

yjm
∗
ij(gij − v̂i − ŵj) =

∑
j

yjm
∗
ij(gij − vi − wj − t)

=
∑
j

yjmij(gij − vi − wj − t) = 2c− t
∑
ij

yjmij

Therefore, t = 0 and so v̂i + ŵj = vi + wj for all i, j.
For any unchosen skill i,

∑
j

yjm
∗
ij (gij − v∗i − wj) = 2c ≥

∑
j

yjm
∗
ij (gij − v̂i − ŵj) =

∑
j

yjm
∗
ij (gij − vi − wj)

Therefore, we can conclude that vi ≥ v∗i . This demonstrates incentive compatibility.
For every skill i, vi ≥ v∗i with equality if xi > 0. As (vi) satisfied incentive compatibility
and (v∗i ) differs by only lowering the value of unrealized skills, the values (v∗i ) also satisfy
incentive compatibility. This establishes that for the values (v∗i ), (w

∗
j ), no agent wishes

to choose any unchosen skill and completes the proof.
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Constraint Qualification

Lemma 3. The planner’s optimization problem satisfies the Constant Rank Constraint
Qualification.

Proof. We show that for each subset of the gradients of the active inequality constraints
and the equality constraints, the rank in a vicinity of the optimal point is constant
(Janin (1984)).

There is an immediate linear dependency among the gradients:∑
i∈I

α∇flowbi −
∑
j∈J

α∇flowsj = 0

which follows from ∑
i∈I

flowbi −
∑
j∈J

flowsj = 0

We will show that this is the only linear dependency, which suffices for the constant
rank constraint qualification. Suppose that

∑
n αn∇n = 0 where the summation is over

all the active gradients. To simplify notation, we label the skills as I = {0, . . . , k} and
J = {0, . . . , l}. Notice first that (βi) and (σj) appear only in the flow constraints:

∇ β1 β2 β3 . . . βk N
σj, xi,

yj,mij

∇flowb0 −f b(β1) 0 0 0 0 −x0
∑

j∈J yjm0j . . .

∇flowb1 f b(β1) −f b(β2) 0 0 0 −x1
∑

j∈J yjm1j . . .

∇flowb2 0 f b(β2) −f b(β3) 0 0 −x2
∑

j∈J yjm2j . . .

. . . 0 0 . . . . . . . . . . . . . . .

∇flowbk−1 0 0 0 f b(βk−1) −f b(βk) −xk−1
∑

j∈J yjmk−1,j . . .

∇flowbk 0 0 0 0 f b(βk) −xk
∑

j∈J yjmk,j . . .

Since βi only shows up in up in flowbi , flowbi−1 it must be that

0 =
∑
n

αn
∂fn
∂βi′

=
∑
i∈I

αi
∂flowbi
∂βi′

= f(βi′)αi′ − f(βi′)αi′+1 for all i′

Thus, there is an α such that αi = α for all the coefficients of the constraints ∇flowbi .
Similarly, there is a χ so that αj = χ for all the coefficients of the constraints ∇flowsj .
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Furthermore, N only shows up in the flow constraints, so it must be that

−α
∑
i

xi
∑
j

yjmij − χ
∑
j

yj
∑
i

ximij = 0

which implies χ = −α (notice that
∑

i xi
∑

j yjmij = 1/N). Therefore, there is exactly
one linear dependency

∑
αi∇flowbi +

∑
j

αj∇flowsj = α

(∑
i

∇flowbi −
∑
j

∇flowsj

)
= 0

Second, the coefficients on ∇(xi ≥ 0) and ∇X are all zeros. The reason is that xi
appears in the flow constraints and the constraints xi ≥ 0 and X = 0. By the previous
step, in any linear dependence, the flow constraints cancel each other out, so only the
constraints xi ≥ 0 and X = 0 are relevant. Therefore, if

∑
i ξi∇(xi ≥ 0) + ξ∇X = 0,

then 0 = ξi
∂xi
∂xi

+ξ ∂X
∂xi

= ξi−ξ, and so ξi = ξ for all i. If ξ 6= 0, then it must be that every
inequality on x is active, so xi = 0 for every i, contradicting 0 = X = 1−

∑
i xi, which

holds in any admissible tuple. The same argument applies to the yj. So ξi = ξ = ξj = 0

for all i, j.
Third, the coefficients on the mij constraints are zeros. The reason is that the vari-

able mij appears only in the flow equations and the inequality constraints on mij. The
flow constraints cancel each other out. For the mij constraints,
∇(1 ≥ mij ≥ 0) = (0, . . . 0,±1, 0 . . .) and at most one of the mij constraints can
be active where the only non-zero element is in the mij coordinate and therefore these
gradients coefficients must be 0.
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Proof of Proposition 1:

Proof. Consider the economies Γc = 〈F b, F s, I, J, Cb, Cs, G, c〉 indexed by their search
cost c and denote its constrained efficient welfare as Wc. Denote an optimal allocation
as xc with associated populationNc (there may be multiple optimal allocations). Notice
that by an imitation argument, Wc ≥ Wc′ + 2N(c′)(c′ − c) because the planner could
implement xc′ when faced with the economy xc. This implies that welfare is decreasing
in c, as expected. Reversing c and c′ gives 2N(c)(c′−c)+Wc′ ≥ Wc. Taking c′ > c. this
implies that |Wc −Wc′| ≤ 2N(c)(c′−c). That is, whenN(c) is unique, it is the case that
∂Wc

∂c
= −2N(c) and otherwise the left-derivative is sup−2N(c) and the right-derivative

is inf −2N(c). To see convexity ofWc, it suffices to demonstrate that N is increasing in
c. Take c′ > c. SinceWc ≥ Wc′+2N(c′)(c′−c), and similarlyWc′ ≥ Wc+2N(c)(c−c′).
Adding these two equations together gives 0 > 2(N(c′) − N(c))(c′ − c) and therefore
N(c) ≥ N(c′).

Proof of Proposition 2:

Proof. The first-best allocation is unique and satisfies:

First-Best Matching: All pairs match. Since the marginal productivity of an agent
is not affected by the skills of her partner, all pairs match to minimize the search cost.

First-Best Investment: Buyer β and seller σ acquire the skills: i∗(β) = arg maxi αi−
Cb(i, β) and j∗(σ) = arg maxj −κj − Cs(j, σ). Denote by Cb∗(β) = Cb(i∗(β), β) the
investment cost buyer β pays to acquire the efficient skill, and likewise Cs∗(σ) =

Cs(j∗(σ), σ).
The social welfare of a match between buyer β and seller σ is ω(β, σ) = αi∗(β) −

Cb∗(β)− κj∗(σ) −Cs∗(σ)− 2c. The assumption before the proof implies that there are
types, β′, σ′, β̂, σ̂ such that ω(β′, σ′) > ub + us > ω(β̂, σ̂). So, in the first-best, some
agents enter and others don’t.22

First-Best Entry: Buyer β and seller σ enter iff β ≤ β0 and σ ≤ σ0. The entry
thresholds are pinned down by23 F b(β0) = F s(σ0) and ω(β0, σ0) = ub + us.

22The case where everyone enters is trivial.
23Since buyers and sellers exit in equal numbers, in a steady state they must also enter in equal

numbers.
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Since g is separable, Lemma 2 implies that in equilibrium, the marginal value
equal the marginal productivity: ∆vi = αi+1 − αi, for every i, and ∆wj = −(κj+1 −
κj), for every j. Therefore, the match surplus sij = αi − κj − vi − wj is constant. As
a result:

Equilibrium Matching: Theorem 2 demonstrates that in every equilibrium, all skills
match.

Equilibrium Investment: The individually optimal investments satisfy

arg max
i

{
vi − Cb(i, β)

}
= arg max

i

{
αi − Cb(i, β)

}
, for evey β

arg max
j
{wj − Cs(j, σ)} = arg max

j
{−κj − Cs(j, σ)} , for every σ

The maximizers are equal because αi − vi and −κj − wj are constant.

Equilibrium Entry: First, we show that there is entry. If not, then vi∗(β)−Cb∗(β) ≤
ub and wj∗(σ)−Cs∗(σ) ≤ us, for all β, σ, and so vi∗(β)−Cb∗(β)+wj∗(σ)−Cs∗(σ) ≤ ub+us.
Substituting in the Constant Surplus equations, it follows that, αi∗(β)−Cb∗(β)−κj∗(σ)−
Cs∗(σ)− 2c ≤ ub + us, which violates the assumption that there are types, β′, σ′ such
that ω(β′, σ′) > ub + us. By a similar argument, it cannot be that all agents enter.
Second, since some agents enter and others do not, denote by β, σ the threshold types
for whom the entry constraints hold with equality, notice that

ub + us = vi∗(β) − C
b∗ (β)+ wj∗(σ) − Cs∗ (σ)

= αi∗(β) − C
b∗ (β)− κj∗(σ) − Cs∗ (σ)− 2c = ω(β, σ)

The second equality follows from the Constant Surplus equation, vi+wj = αi−κj−2c.
In a steady state, the same measure of buyers and sellers enter, F b(β) = F s(σ). These
two equations are the same as the equations that characterized the first-best entry
decisions, and therefore it must be that β = β0 and σ = σ0.
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9 Online Appendix

This Section proves Theorem 3 and Corollaries 2 and 4. We extend the baseline model
to the generalized economy E = 〈F b, F s, I, J, Cb, Cs, G, cb, cs, α, µ, ub, us〉 by adding the
following additional features:
◦ Asymmetric search costs cb and cs and bargaining weight α (as in Section 6.1).
◦ A meeting function µ(B, S) specifying the total number of meetings in each period

and satisfying constant returns to scale (as in Section 6.2).
◦ Agents have outside options ub and us and so entry is endogenous (as in Section 4.1).

To avoid trivial outcomes, we maintain the assumption that there are gains to trade
for at least two types, β and σ, so that

max
i∈I,j∈J

µ(1, 1)gij − cb − cs − C(i, β)− C(j, σ) > ub + us

We will now prove a more general version of the the previous results.

Corollary. For every generalized economy, let r ≡ α
1−α

cs

cb
:

1. Every equilibrium has the same balance ratio B
S

= r.
2. Given the balance ratio r, the constrained efficient investments, matching, and

steady state are an equilibrium outcome. That is, let 〈z,M, (βi), (σj)〉 maximize total
welfare under the previous constraints (6)-(14) and the additional constraint B

S
= r.

There are values (v∗i ), (w∗j ), and a matching matrix M∗ such that 〈z,M∗, (v∗i ), (w
∗
j )〉

is an equilibrium, where m∗ij = mij for all i, j such that xi, yj > 0.

Proof. 1) Let µ = µ(B, S). As we previously showed in Section 6.1, in equilibrium, the
values satisfy:

vi = (µ/B)

(∑
j∈J

yj [mij (vi + αsij) + (1−mij)vi]

)
+ (1− µ/B) vi − cb,∀i

wj = (µ/S)

(∑
i∈I

xi [mij (wj + (1− α)sij) + (1−mij)wj]

)
+ (1− µ/S)wj − cs,∀j
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Rewriting, we obtain the modified Constant Surplus equations:

∑
j∈J

yjmijsij =
cb

α (µ/B)
,∀i (24)

∑
i∈I

ximijsij =
cs

(1− α) (µ/S)
,∀j

⇒ cb

α (µ/B)
=
∑
i∈I

xi
∑
j∈J

yjmijsij =
∑
j∈J

yj
∑
i∈I

ximijsij =
cs

(1− α) (µ/S)

⇒ B

S
=

α

1− α
· c

s

cb
(25)

2) Decentralizing the efficient allocation given r. To simplify, we focus on the case
where the state is interior and the proof repeats that argument with the appropriate
modifications. The same could be done for the boundary case as well. The original
planner’s problem 5 is modified because the agents have an outside option and there
is a general meeting function, and so the measure of buyers B need not equal the
measure of sellers S. The planner now chooses the state z = (B, S, (xi), (yj)) instead
of z = (N, (xi), (yj)), the investment thresholds, and the matching rule to maximize

W = µ(B, S)
∑
i∈I

∑
j∈J

xiyjmijgij −Bcb − Scs −
∑
i∈I

∫ βi

βi+1

Cb(i, β)f b(β)dβ

−
∑
j∈J

∫ σj

σj+1

Cs(j, σ)f s(σ)dσ +

∫ ∞
β0

ubf b(β)dβ +

∫ ∞
σ0

usf s(σ)dσ

subject to the steady state conditions,
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flowi =

∫ βi

βi+1

f b(β)dβ − xiµ(B, S)
∑
j∈J

yjmij = 0,∀i

f lowj =

∫ σj

σj+1

f s(σ)dσ − yjµ(B, S)
∑
i∈I

ximij = 0,∀j

B, S ≥ 0

xi ≥ 0, ∀i

yj ≥ 0, ∀j

X = 1−
∑
i∈I

xi = 0

Y = 1−
∑
j∈J

yj = 0

1 ≥ mij ≥ 0, ∀i, j

F b(β|I|) = F s(σ|J |) = 0

B − rS = 0

Notice that taking weighted sums of the flow conditions implies that F b(β0) = F s(σ0).
The planner’s problem is modified in four ways: i) agents can take an outside option
which is included in the objective function and the conditions F (β0) = 1 and F (σ0) = 1

are removed; ii) the measure of buyers B and sellers S may differ and since we assumed
that the are gains to trade, the conditions B, S ≥ 0 will not bind at the efficient
solution; iii) we add the balance ratio constraint B

S
= r; and iv) the Inflow=Outflow

equations are modified because the outflow of buyers and sellers is

(Bxi)

(
µ(B, S)

B

)∑
j∈J

yjmij = xiµ(B, S)
∑
j∈J

yjmij, ∀i

(Syj)

(
µ(B, S)

S

)∑
i∈I

ximij = yjµ(B, S)
∑
i∈I

ximij, ∀j

The KKT regularity conditions continue to hold, by the same arguments as in Theorem
1 (because the linear dependencies of the gradients do not change).
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Replacing B = rS in the objective:

W = µ(rS, S)
∑
i∈I

∑
j∈J

xiyjmijgij − rScb − Scs −
∑
i∈I

∫ βi

βi+1

Cb(i, β)f b(β)dβ

−
∑
j∈J

∫ σj

σj+1

Cs(j, σ)f s(σ)dσ +

∫ ∞
β0

ubf b(β)dβ +

∫ ∞
σ0

usf s(σ)dσ

= Sµ(r, 1)
∑
i∈I

∑
j∈J

xiyjmijgij − rScb − Scs −
∑
i∈I

∫ βi

βi+1

Cb(i, β)f b(β)dβ

−
∑
j∈J

∫ σj

σj+1

Cs(j, σ)f s(σ)dσ +

∫ ∞
β0

ubf b(β)dβ +

∫ ∞
σ0

usf s(σ)dσ

As in the proof of Theorem 1, we define the Lagrangian and taking the FOC we get:

FOC(S): µ(r, 1)

(∑
i∈I

∑
j∈J

xiyjmij (gij − vi − wj)

)
− rcb − cs = 0

(Recall that S > 0 and so the multiplies on this constraint is 0).
So, ∑

i∈I

∑
j∈J

xiyjmijsij =
rcb + cs

µ(r, 1)

FOC(xi): µ(rS, S)
∑
j∈J

yjmijgij − viµ(rS, S)
∑
j∈J

yjmij − µ(rS, S))
∑
j∈J

wjyjmij − γ − φi = 0

where φixi = 0. Therefore,

Sµ(r, 1)
∑
j

yjmijsij = γ + φi (26)

Multiplying by xi and summing,

γ = Sµ(r, 1)
∑
i∈I

∑
j∈J

ximijyjsij

Substituting in from FOC(S):

γ = Sµ(r, 1)
rcb + cs

µ(r, 1)
= S(rcb + cs) = Bcb + Scs
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Therefore, from equation (26) we get that∑
j

yjmijsij =
Bcb + Scs

µ(rS, S)
=
Bcb + Scs

µ(B, S)
(27)

Likewise:

FOC(yi): µ(rS, S)
∑
i∈I

ximijgij − wjµ(rS, S)
∑
i∈I

ximij − µ(rS, S)
∑
i∈I

viximij − η − ψj = 0

∑
i∈I

ximijsij =
λ+ ψj
µ(rS, S)

Using the previous two equations and multiplying by yj and then summing, we obtain:

Bcb + Scs

µ(rS, S)
=
∑
i∈I

∑
j∈J

xiyjmijsij =
λ

µ(rS, S)

Therefore, for interior allocations, ψj = 0 and:∑
i

ximijsij =
Bcb + Scs

µ(rS, S)
=
Bcb + Scs

µ(B, S)
(28)

To decentralize the optimal allocation, we show that the shadow values of the flow
constraints (vi), (wj) together with the matching matrix M and state z constitute an
equilibrium. Notice that the balance ratio B

S
= r ≡ αcs

(1−α)cb ⇐⇒ α = Bcb

Bcb+Scs

We first show that the equilibrium constant surplus equations 24 hold, that is,∑
j∈J

yjmijsij =
Bcb

αµ(B, S)
,∀i

∑
i∈I

ximijsij =
Scs

(1− α)µ(B, S)
,∀j

Notice that these equations coincide with equations 27 and 28 whenever α = Bcb

Bcb+Scs
.

The FOC(β0) condition is precisely the equilibrium entry condition for buyers,
v0−C(0, β0) = ub, that is, the shadow value v0 makes the threshold type β0 indifferent.
Likewise, the FOC(σ0) condition is precisely the equilibrium entry condition for sellers.

The rest of the proof uses the same argument as in Theorem 1: the FOC[mij] and
the complementary slackness conditions imply that the values and matching matrix
satisfy the equilibrium matching conditions sij > 0→ mij = 1 and sij < 0→ mij = 0;
and FOC[βi] and FOC[σj] imply that the constrained efficient investments are incentive
compatible.
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