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Abstract

If agents are not given sufficient information when making decisions, they will
attempt to obtain more accurate information through information acquisition. The
literature of rational inattention hypothesizes that a rational agent optimally chooses
an experiment or information structure to obtain an additional piece of information.
In reality, however, it is difficult to conduct accurate experiments due to lack of
knowledge about the experiment itself and/or ambiguity about the payoff-relevant
state space. This paper studies the choice behavior of decision makers who are aware
that their information acquisition is not always accurate and that they can only
choose coarse experiments. By adopting the choice theoretic model of information
acquisition, provided in de Oliveira, Denti, Mihm, and Ozbek [12], we argue that
one of their axioms, which is interpreted as preference for early resolution of risk
and takes a form of quasi-convexity of preference, excludes the possibility of coarse
experiments. By relaxing their quasi-convexity axiom, we axiomatically characterize
models of information acquisition with coarse experiments.

Keywords: information acquisition, rational inattention, ambiguity, experiments,
Bayes plausibility.

JEL classification: D81

∗We would like to thank Yi-Hsuan Lin, Jawwad Noor, Gerelt Tserenjigmid, Chih-Chun Yang, the audi-
ences at AMES 2022 (Keio University), Hitotsubashi Summer Institute 2021, and the seminar participants
at Academia Sinica, Boston University, University of California Santa Cruz for their helpful comments.
Part of this research was conducted while Norio Takeoka was visiting LEMMA, University of Paris 2,
whose hospitality is gratefully acknowledged. This study is supported by JSPS KAKENHI Grant Number
JP21K01386(N.T.).

†Higashi is at the Faculty of Economics, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama
700-8530, Japan, higash-y@okayama-u.ac.jp; Hyogo is at the Faculty of Economics, Ryukoku University, 67
Fukakusa Tsukamoto-cho, Fushimi-ku, Kyoto 612-8577, Japan, hyogo@econ.ryukoku.ac.jp; Qu is at CNRS,
Centre d’Economie de la Sorbonne, France; Takeoka is at the Department of Economics, Hitotsubashi
University, 2-1 Naka, Kunitachi, Tokyo 186-8601, Japan, norio.takeoka@r.hit-u.ac.jp.

1



1 Introduction

1.1 Objective

If individuals are not given sufficient information when making decisions that directly affect
their payoffs, they will attempt to obtain more accurate information through information
acquisition. The literature of rational inattention (for example, Sims [24]) hypothesizes
that a rational economic agent optimally chooses an additional piece of information while
considering trade-offs between the benefits obtained from learning and the associated costs
and constraints.

More formally, information acquisition is the choice of a function (called experiment)
from the state space into a set of distributions on the signal space. By combining a prior on
the state space and the Bayes’ formula, a posterior can be obtained from the signal. Such
information acquisition updates the prior to the posterior, allowing for more accurately
informed decision making. Also, as is well known, choosing one experiment is equivalent to
choosing one distribution (called an information structure) on the posterior probabilities
that is consistent with the prior (Kamenica and Gentzkow [21]).

In reality, it is difficult to conduct accurate experiments for a variety of reasons. For
example, consider a situation in which a decision maker seeks advice from an expert. In this
case, choosing an expert corresponds to choosing an experiment. If the decision maker does
not know precisely what information-gathering technology the expert has or what his/her
interests and biases are, then choosing an expert is merely choosing a ‘coarse’ experiment,
i.e., choosing multiple possibilities of experiments rather than single experiment. Also,
if the decision maker does not have sufficient information about the state space, it may
be difficult to have a probabilistic prior (Ellsberg [14]). If such ambiguity exists, even
if the precise experiment is chosen, there may be more than one candidate for the prior
distribution, and thus more than one corresponding information structure. In other words,
prior ambiguity can be a source of coarse experiments.

This paper studies the choice behavior of decision makers who are aware that informa-
tion acquisition is not always accurate and that they can only choose coarse experiments.
By doing so, we establish a model of information acquisition that takes into account the
practical aspect of being able to choose only coarse experiments, may due to ambiguity
about information technology or payoff-relevant states, and examine how the perception
of coarse experiments makes a difference compared to the standard model of information
acquisition. In order to rigorously compare differences in choice behavior, this paper adopts
an axiomatic approach. Using the existing literature on axiomatization of information ac-
quisition (de Oliveira, Denti, Mihm, and Ozbek [12]) as a starting point, we first identify
their axioms that rule out perception of coarse experiments. Then, we investigate what
decision rules or utility representations can be obtained by weakening those axioms.
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1.2 Background

To introduce the model, let Ω be a finite set of states and X be the set of lotteries over
some prizes. A function f : Ω → X is called an act. The set of all acts is denoted by F .
A non-empty finite subset F ⊂ F is interpreted as an opportunity set or menu. Imagine a
situation where the agent chooses a menu and chooses an act from the menu subsequently.
A primitive of the model is a preference ≿ over menus.

Prior to the choice of an act from a menu, the agent may subjectively conduct infor-
mation acquisition, which is interpreted as a subjective optimization among information
structures over Ω. Formally, an information structure is π ∈ ∆(∆(Ω)), regarded as a prob-
abilistic distribution over posteriors. In addition, on the subjectively feasible information
structures, the Bayesian plausibility condition is required as pπ = p, where pπ is the prior
reduced from an information structure π and p is the agent’s original prior over states.
Given an expected utility function u : X → R and a menu F , the value of information of
π is computed as

buF (π) =

∫
∆(Ω)

(
max
f∈F

∑
ω∈Ω

u(f(ω))p(ω)
)
dπ(p).

de Oliveira, Denti, Mihm, and Ozbek [12] axiomatically characterize the following repre-
sentation of ≿, called the rationally inattentive representation: There exist an expected
utility u : X → R, a prior p over Ω, a cost function c : Π(p) → R+∪{∞}, where Π(p) is the
set of information structures satisfying the Bayesian plausibility, such that ≿ is represented
by

U(F ) = max
π∈Π(p)

{buF (π)− c(π)}. (1)

An advantage of the axiomatic approach is that the set of axioms characterizing a
particular representation clearly tells us what type of behavior is accommodated to or
excluded from the representation model. One of the axioms characterizing (1), called
Aversion to Contingent Planning, indeed excludes coarse experiments. We say that ≿
satisfies Aversion to Contingent Planning (ACP) if for all F,G and α ∈ [0, 1],

F ∼ G =⇒ F ≿ αF + (1− α)G,

where αF+(1−α)G is defined as the menu {αf+(1−α)g | f ∈ F, g ∈ G}. Mathematically,
this axiom requires quasi-convexity on ≿. Since αF + (1− α)G is the menu of contingent
plans of the form αf + (1− α)g, where f ∈ F and g ∈ G, if the agent has αF + (1− α)G,
the randomization α is realized after the agent makes a choice from αF + (1−α)G. Thus,
information acquisition cannot be completely tailored for F and G. The axiom states that
the agent avoids contingent planning.

As de Oliveira, Denti, Mihm, and Ozbek [12, p.628, footnote 5] correctly point out,
ACP rules out a preference for hedging, which is reasonable when the agent is uncertain
about the information acquisition technology available in the future. In particular, if ≿ is
restricted on the singleton sets, ACP implies that for all acts f, g and α ∈ [0, 1],

{f} ∼ {g} =⇒ {f} ≿ α{f}+ (1− α){g},
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which reveals that the agent does not have preference for hedging uncertainty among states:
a conflicting feature to ambiguity aversion of Gilboa and Schmeidler [19]. As stated above,
ambiguity in the prior distribution can be a source of coarse experiment, so it can be seen
that the ACP axiom, by eliminating the possibility of coarse experiments, also eliminates
ambiguity in the prior belief.

1.3 Characterization Results

A choice object in experiments has been modeled by an information structure π ∈ ∆(∆(Ω))
satisfying the Bayes plausibility. For each menu F and each experiment π ∈ Π, the agent
obtains a benefit of information, buF (π). In our model, a coarse experiment is captured by
a set of information structures Π ∈ K(∆(∆(Ω))), where K(Y ) is the set of all non-empty
compact subsets of a compact metric space Y . The agent faces subjective feasibility of
coarse experiments. Formally, such a feasible set can be modeled as a set of multiple Π’s,
that is, any compact subset Π ⊂ K(∆(∆(Ω))).

For any coarse experiment Π ∈ Π, PΠ = {pπ | π ∈ Π} ⊂ ∆(Ω) is the set of priors induced
from each information structure π ∈ Π. We say that Π satisfies the prior consistency if

PΠ = PΠ′

for all Π,Π′ ∈ Π. This common multiple priors across coarse experiments, denoted by P ,
can be regarded as the agent’s ambiguous prior belief over states.

If P is a singleton, that is, the agent has a single prior p, the prior consistency is reduced
to

pπ = p

for all π ∈ Π and Π ∈ Π. This is the standard consistency condition for (precise) ex-
periments, called the martingale property or the Bayesian plausibility (see Kamenica and
Gentzkow [21]).

After choosing some Π ∈ Π, the agent is completely ignorant of which experiments in
Π will actually be conducted. Hence, given Π, the benefit of information is computed as

min
π∈Π

buF (π).

The key assumption behind this formulation is that the set of signals obtained from exper-
iments is sufficiently large that the experiment can be identified from the observed signals.
Therefore, at the stage where the agent chooses an act from the menu, a probabilistic
posterior can be obtained from the precise experiment that was identified.

The following representation, called the Coarse Information Choice (CIC) representa-
tion, captures the agent who optimally chooses a coarse experiment given the constraint:
there exists a tuple (u, P ,Π) such that u : X → R is an expected utility function, P is a
set of multiple priors, Π ⊂ K(∆(∆(Ω))) is compact and satisfies the prior consistency, and
≿ is represented by

U(F ) = max
Π∈Π

min
π∈Π

buF (π). (2)
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Since Π satisfies the prior consistency, (2) is simply written as a maxmin EU representaion
of Gilboa and Schmeidler [19] on the set of singleton menus,

U({f}) = min
p∈P

∑
ω

u(f(ω))p(ω).

As a special case, we characterize the case where P is a singleton, in which case the
agent is a subjective utility maximizer on singleton menus. In general, ambiguity about
states can be a source of coarse experiments, but, this special case highlights a coarseness
of experiments that is not attributed to ambiguity. Even though he/she does not face any
ambiguity about prior, the agent is still concerned about coarseness of experiments due to
uncertain information technology.

As the representation (2) suggests, preference over menus reflects two effects, the in-
centive for optimal information choice and the hedging motive against coarseness of ex-
periments, which may conflict to each other. Depending on which effect outweighs the
other, attitudes toward contingent planning will change. The CIC representation provides
an appropriate foundation for considering various attitudes toward contingent planning.
Agents who expect to always be able to choose a precise experiment will exhibit aversion
to contingent planning, as in the ACP axiom, because they only care about the incen-
tive for optimal information choice. Conversely, agents who do not anticipate information
choices will exhibit preference for contingent planning because they are only concerned
about coarseness of experiments. For each case, we obtain an axiomatic characterization
as a special form of the CIC representation.

To axiomatize the CIC representation, we first characterize a general representation,
called the General CIC representation as an intermediate result. This class of representation
has the same form of (2) but Π does not satisfy the prior consistency. To axiomatize the
General CIC representation, we borrow techniques from the literature of choice under
ambiguity. It is well-known that the representation (1) has a parallel relationship with the
variational representation of Maccheroni, Marinacci, and Rustichini [22]. Their functional
form is obtained by the conjugate theory, which relies on the concavity of the functional.
Since the behavioral meaning of concavity of the functional is the ambiguity aversion,
Chandrasekher, Frick, Iijima, and Le Yaouanq [6] and Xia [27] consider a generalization
of the functional, called dual-self representations or Boolean representations, by dropping
the quasi-concavity to accommodate various attitudes toward ambiguity. Our General CIC
representation is a counterpart of their representations. In our models, quasi-concavity or
convexity captures attitudes toward contingent planning. The quasi-convexity of preference
follows from the optimal choice of information, while the quasi-concavity reflects aversion to
coarse experiments. Since agents care about both aspects, their menu preferences generally
satisfy neither quasi-convexity nor quasi-concavity.

1.4 Related Literature

Our model treats a set of information structures as coarse experiments. This is not an origi-
nal idea of our model. In the existing literature, sets of experiments has been interpreted as
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ambiguous experiments. Çelen [4], Gensbittel, Renou, and Tomala [16], and Wang [26] gen-
eralize comparisons of informativeness in experiments, such as the Blackwell order, to admit
ambiguous experiments. Çelen [4] considers ambiguity only in priors. Gensbittel, Renou,
and Tomala [16] accommodate ambiguity both in priors and experiments by considering a
set of joint distributions over states and signals. Wang [26] considers a set of experiments,
functions from states into distributions over signals, and obtains a generalization of the
Blackwell order regardless of the ambiguity of priors.

A set of experiments are also considered as an ambiguous communication device in
the context of mechanism design and persuasion. Bose and Renou [3] consider a situation
where a mechanism designer can choose a set of experiments in the communication stage
of a mechanism. Ambiguous communication devices can induce ambiguous posteriors even
when players have a single prior ex ante. Beauchene, Li, and Li [2] introduce a set of
experiments in the model of Bayesian persuasion and show that the sender is strictly better
off by choosing an ambiguous communication device.

In the literature on preference over menus, Dillenberger, Lleras, Sadowski, and Takeoka [13]
extend the framework of Dekel, Lipman, and Rustichini [11] to preference of menus of acts
and derive a subjective information structure from preference. Here, the agent uses a fixed
experiment for all menus. To accommodate information acquisition, de Oliveira, Denti,
Mihm, and Ozbek [12] generalize Dillenberger, Lleras, Sadowski, and Takeoka [13] and
characterize a representation consistent with the rational inattention, where the agent be-
haves as if he/she optimally chooses an information structure by considering its benefits
and costs. Epstein, Marinacci, and Seo [15] relax the Independence axiom and the Indif-
ference to Randomization axiom in Dekel, Lipman, and Rustichini [11] and characterize
representations with ambiguity over subjective states and/or coarse subjective states.

2 The Model

2.1 Primitives

We consider the following as primitives of the model. These primitives are exactly the same
as in de Oliveira, Denti, Mihm, and Ozbek [12] and Higashi, Hyogo, and Takeoka [20].

• Ω = {ω1, ..., ωn}: the (finite) objective state space

• X: outcomes, consisting of simple lotteries on a set of deterministic prizes

• f : Ω → X: an (Anscombe-Aumann) act

• F : the set of all acts

• F ⊂ F : a non-empty finite set of acts, called a menu

• F: the set of all menus
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• Preference ≿ over F

For any compact metric space Y , let K(Y ) denote the set of all non-empty compact
subsets of Y , which is endowed with the Hausdorff metric.

We assume that the agent has in mind the following timing of decisions:

(i) A menu F is chosen.

(ii) An experiment is conducted.

(iii) A signal arrives and the corresponding posterior over Ω is obtained.

(iv) An act f ∈ F is chosen.

(v) A state ω is resolved and the lottery f(ω) is realized accordingly.

After choosing a menu, the agent conducts an experiment to acquire an additional
piece of information about states. As a consequence of the experiment, the agent obtains
a posterior. Afterward, the agent chooses an act from the menu.

Our primitive is a preference in the stage (i). If the agent anticipates the above timeline,
the agent’s preference over menus will reflect an experiment choice, including the associated
feasible set of experiments and the associated costs, relevant in the stage (ii).

2.2 Functional Forms

Assume that the agent has an expected utility u : X → R and an ambiguous belief about
states, captured by a set of multiple priors P ⊂ ∆(Ω). Prior to the choice from a menu,
the agent may have the opportunity to acquire information. A probability distribution
π ∈ ∆(∆(Ω)) is interpreted as an experiment (information structure) about Ω. Given
u : X → R and a menu F , the benefit of information from an experiment π ∈ ∆(∆(Ω)) is
defined by

buF (π) =

∫
∆(Ω)

(
max
f∈F

∑
ω∈Ω

u(f(ω))p(ω)
)
dπ(p).

The agent is not necessarily able to conduct a precise experiment. A coarse experiment
is modeled as a subset of precise experiments, that is, Π ∈ K(∆(∆(Ω))). We impose a
consistency between the set of multiple priors P and a coarse experiment Π. For any π,
pπ ∈ ∆(Ω) denotes the initial prior associated with π, defined as

pπ(ω) =

∫
∆(Ω)

p(ω) dπ(p)

for each ω. We say that Π satisfies the prior consistency with P if

PΠ := {pπ ∈ ∆(Ω) |π ∈ Π} = P .
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If P is a singleton, that is, the decision maker has a single prior p, the prior consistency is
reduced to

pπ = p

for all π ∈ Π. This condition is known as the martingale property or the Bayesian plausi-
bility (Kamenica and Gentzkow [21]).

The agent has in mind a subjectively feasible set of coarse experiments, Π ⊂ K(∆(∆(Ω))),
which is modeled as a set of multiple Π’s satisfying the prior consistency with multiple pri-
ors, that is, PΠ = P for all Π ∈ Π. As described in stage (ii) of the time line, the agent
conducts a coarse experiment after choosing a menu F , but the agent is completely igno-
rant of what experiment is actually conducted within Π. Thus, when facing a menu F , the
(gross) benefit of coarse experiment Π is computed according its worst case scenario such
as

min
π∈Π

buF (π).

On the other hand, conducting an experiment is costly. To compute the net benefit of
Π, the cost associated with the experiment should be subtracted from the gross benefit.
We introduce a cost function c : Π → R+ ∪ {∞} satisfying (i) minΠ∈Π c(Π) = 0 and (ii)
Blackwell-monotonicity: if, for any π ∈ Π, there exists π′ ∈ Π′ such that π′ dominates
π in the Blackwell order, then c(Π′) ≥ c(Π). Condition (i) is a normalization of the cost
function. Condition (ii) is a monotonic property of the cost function with respect to a
generalization of the Blackwell order, consistent with Gensbittel, Renou, and Tomala [16]
and Wang [26].

Now we are ready to introduce a counterpart of the rational inattentive representation.

Definition 1 ≿ admits a Costly Coarse Information Choice (Costly CIC) representation
if there exists a tuple (u, P ,Π, c) such that u : X → R is an expected utility function,
Π ⊂ K(∆(∆(Ω))) is compact and prior consistent with P , c : Π → R+ ∪ {∞} is a cost
function satisfying conditions (i) and (ii), and ≿ is represented by

U(F ) = max
Π∈Π

{min
π∈Π

buF (π)− c(Π)}. (3)

On the singleton menus, by the prior consistency, together with condition (i) of c,

U({f}) = max
Π∈Π

{min
π∈Π

bu{f}(π)− c(Π)}

= max
Π∈Π

{min
π∈Π

∑
u(f(ω))pπ(ω)− c(Π)}

= max
Π∈Π

{min
p∈P

∑
u(f(ω))p(ω)− c(Π)}

= min
p∈P

∑
u(f(ω))p(ω).

Thus, the agent follows a maxmin EU representation of Gilboa and Schmeidler [19] at the
ex ante stage.

The following representation is a special case of the Costly CIC representation when
c(Π) = 0 for all Π ∈ Π.
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Definition 2 ≿ admits a Coarse Information Choice (CIC) Representation if there exists
a tuple (u, P ,Π) such that u : X → R is an expected utility function, P is a compact set
of multiple priors, Π ⊂ K(∆(∆(Ω))) is a subjectively possible set of coarse experiments
satisfying the prior consistency with P , and ≿ is represented by

U(F ) = max
Π∈Π

min
π∈Π

buF (π). (4)

Again, the consistency condition between P and Π implies that on the singleton sets,
the representation is reduced to the maxmin EU representation:

U({f}) = max
Π∈Π

min
p∈PΠ

∑
ω∈Ω

u(f(ω))p(ω) = min
p∈P

∑
ω∈Ω

u(f(ω))p(ω).

2.3 Illustration

In this section, we will use a practical example to describe a possible application of the
Costly CIC model. Suppose a policy maker needs to develop an environmental policy.
Consider the simplest scenario in which the state Ω of the environment is binary, good (ω1)
or bad (ω2). The policy maker is faced with two possible policy choices. (1) Maintain the
existing policy, act f . Then if the good state is eventually realized, the payoff is 1. If
the bad state is realized, the payoff is −1. (2) Adopt an active environmental policy, act
g. Then, no matter what state is realized, the payoff is always 0. (Refer to the following
table.)

Ω ω1 ω2

f 1 -1
g 0 0

Due to the complexity of environmental issues, experts use different climate models based
on their expertise. Therefore, the probabilities estimated by experts not only differ signifi-
cantly, but also cannot manage to converge. Therefore, the policy maker’s belief over the
state is not a probability, but a set of probabilities.

For a ∈ [0, 1], let pa ∈ ∆(Ω) be such that pa(ω1) = a. Since the state space is binary,
we know that {pa : a ∈ [0, 1]} = ∆(Ω). Therefore, assume that the multiple priors of policy
maker is

P =
{
pa | a ∈ [0.4, 0.6]

}
.

Assume further that policy maker is risk neutral, i.e. u(x) = x. Without considering the
experiment, the policy maker who obeys the maxmin expected utility will definitely choose
policy g over f , since U({f}}) = −0.2 < 0 = U({g}).

However, the Costly CIC model suggests that the policy maker can actually conduct
further experiments on these two options in order to obtain more accurate information and
thus make more effective policy choices. It is worth emphasizing that these experiments
are coarse. Estimate of the likelihood that various signals might be realized is not a point,
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but an interval. As Manski, Sanstad, and DeCanio [23] argue, the coarseness frequently
stems from partial identification in environmental issues. Therefore, coarse experiments are
not singular, but are composed of many possibilities. Let δpa ∈ ∆(∆(Ω)) denote a second
order belief that with probability 1 the first order belief is pa. First, consider two possible
experiments.

Π0 =
{
αδp0.4 + (1− α)δp0.6 |α ∈ [0, 1]

}
,

Π1 =
{
βδp0 + (1− β)δp1 | β ∈ [0.4, 0.6]

}
.

Notice that Π1 is more Blackwell-informative than Π0. Moreover, it is clear that PΠ0 =
PΠ1 = P .

Take γ ∈ [0, 1], we define

Πγ = (1− γ)Π0 + γΠ1

=
{
βγδp0 + α(1− γ)δp0.4 + (1− α)(1− γ)δp0.6 + (1− β)γδp1

∣∣∣α ∈ [0, 1], β ∈ [0.4, 0.6]
}
.

Since Π0 and Π1 satisfy prior consistency, so is Πγ for each γ ∈ [0, 1]. Therefore,

Π =
{
Πγ | γ ∈ [0, 1]

}
is a possible set of coarse experiments satisfying the prior consistency with P . Since Π0 is
more informative than Π0, consider a cost function c(Πγ) = γ2 for convenience.

Now, fix a Πγ. For α ∈ [0, 1] and β ∈ [0.4, 0.6], let

πγ(α, β) = βγδp0 + α(1− γ)δp0.4 + (1− α)(1− γ)δp0.6 + (1− β)γδp1 .

Clearly, each π(α, β) ∈ Πγ. Therefore,

bu{f,g}(πγ(α, β))

= βγmax{−1, 0}+ α(1− γ)max{−0.2, 0}+ (1− α)(1− γ)max{0.2, 0}+ (1− β)γmax{1, 0}
= (1− α)(1− γ)× 0.2 + (1− β)γ.

Given this observation, it is evident to see

min
π∈Πγ

bu{f,g}(π) = min
α,β

bu{f,g}(πγ(α, β)) = min
α,β

(1− α)(1− γ)× 0.2 + (1− β)γ

= 0.4γ.

Hence, we have

U({f, g}) = max
Π∈Π

{min
π∈Π

bu{f,g}(π)− c(Π)}

= max
γ

0.4γ − γ2

= 0.04,

10



where an optimum is achieved at γ = 0.2. Given Π, the policy maker prefers set of
policy {f, g} to single policyf or g according to Costly CIC calculation. The insight
from this example is that policy makers do not necessarily have to choose between two
policies immediately when the possibility of information access exists. Rather, they can
run experiment, even if the experiment itself is coarse, and wait for new information to
emerge that will help make the choice.

3 Foundation of the CIC Model

3.1 Axioms

We provide a behavioral foundation of the CIC representation. We start with the basic
axioms on ≿ that are consistent with any type of information acquisition.

Axiom 1 (Order) ≿ satisfies completeness and transitivity.

For all F,G and α ∈ [0, 1], define a mixture of F and G by

αF + (1− α)G = {αf + (1− α)g | f ∈ F, g ∈ G} ∈ F,

where αf + (1− α)g ∈ F is defined by the state-wise mixture between f and g.

Axiom 2 (Mixture Continuity) For all menus F,G, and H, the following sets are
closed:

{α ∈ [0, 1] |αF + (1− α)G ≿ H} and {α ∈ [0, 1] |H ≿ αF + (1− α)G}.

Axiom 3 (Preference for Flexibility) For all menus F and G, if G ⊂ F , then F ≿ G.

This axiom states that a bigger menu is always weakly preferred.

Axiom 4 (Dominance) For all menus F and acts g, if there exists f ∈ F with {f(ω)} ≿
{g(ω)} for all ω ∈ Ω, then F ∼ F ∪ {g}.

Since F ⊂ F ∪ {g}, the latter menu is weakly preferred by preference for flexibility. If
{f(ω)} ≿ {g(ω)} for all ω ∈ Ω, however, for all states, f gives a preferred lottery than g
does. In this sense, g is dominated by f . No matter what belief the agent has on states, g
should not be chosen over f . Thus, adding g to F does not provide a strictly higher value
of flexibility than F .

We assume the same unboundedness axiom as in Higashi, Hyogo, and Takeoka [20].

Axiom 5 (Two-Sided Unboundedness) There are outcomes x, y ∈ X with {x} � {y}
such that for all α ∈ (0, 1), there are z, z′ ∈ X satisfying

{αz′ + (1− α)y} � {x} � {y} � {αz + (1− α)x}.
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Next, we discuss more substantial axioms that are specific to coarse experiment choice.
Consider the agent who is aware of coarseness of information acquisition. In general, the
evaluation of mixed menu αF+(1−α)G reflects two conflicting effects, optimal information
choice and preference for hedging from coarseness of information technology. As explained
as an intuition behind the ACP axiom, if two menus are indifferent, the mixing of the two
menus is not preferred in terms of optimal information choice, while the same mixing is
preferred in terms of hedging because it may smooth out coarseness of information tech-
nology or ambiguity across states. Therefore, preference over menus does not necessarily
satisfy the independence axiom because the mixing of two menus may alter the incentive
for optimal information choice and the hedging motive.

On the other hand, if one of the two conflicting effects is shutdown, only the other
effect prevails and the agent exhibits either preference for or avoidance of mixed menus.
Furthermore, if both of the two effects are shutdown, then the agent will exhibit neutral
attitude toward mixed menus, and hence, the independence axiom holds. We identify such
instances below.

When a menu F is mixed with a menu of lotteries C, information acquisition at αF +
(1−α)C can be exclusively tailored for F because there is no role of information acquisition
at C. Furthermore, the mixture with lotteries does not affect hedging motives from coarse
experiments either because the benefit of information at the menu of lotteries C is constant
among all experiments. This intuition suggests that the independence axiom should hold
when menus are mixed with lotteries.1

Axiom 6 (Independence with Lotteries) For all menus F , G, lottery x, and α ∈
(0, 1)

F ≿ G ⇐⇒ αF + (1− α){x} ≿ αG+ (1− α){x}.

Next, consider a mixture between a menu F and a singleton menu {f}. Note that there
is no role of information acquisition at the singleton. Hence, the incentive for information
choice is not altered at the mixed menu αF + (1−α){f}. On the other hand, the mixture
with the act f may affect hedging motives. For instance, the mixture may smooth out
ambiguity across states. Thus, the agent only cares about the hedging motives at αF +
(1− α){f}. The above argument leads to the following axiom.

Axiom 7 (Weak Concavity) For any menu F , act f , and α ∈ (0, 1),

F ∼ {f} =⇒ αF + (1− α){f} ≿ {f}.

If F is a singleton menu such as {g}, Weak Concavity is identical with the ambiguity
aversion axiom of Gilboa and Schmeidler [19].

1It is easy to see that a stronger axiom, where a singleton lottery {x} is replaced with a finite set of
lotteries C, is a necessary axiom for the CIC representation. Our Theorem 1, given below, shows that
Axiom 6 is sufficient for the representation.
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Finally, we consider mixing the same menu together. For any menu F and any α ∈ [0, 1],
consider the mixed menu αF + (1 − α)F . In terms of optimal information choice, this
mixture does not alter incentives for information acquisition compared with those at the
menu F because this mixture is a contingent plan between the same menu. Moreover, this
mixture does not affect the hedging motives against coarse experiments either because, for
any experiment, its benefit of information is identical between the same menu and there is
no additional benefit from their mixture. Hence, we assume

F ∼ αF + (1− α)F. (5)

Note also that (5) is a weak form of the ACP axiom. By definition of the mixture,
F ⊂ αF + (1− α)F . By Preference for Flexibility, αF + (1− α)F ≿ F . Moreover, under
ACP, F ≿ αF + (1− α)F . Thus, we have the ranking (5).

On the other hand, (5) has a strong implication on the choice from menus. For an
illustration, consider three acts f = (100, 0), g = (0, 100), and their 1

2
-mixture 1

2
f + 1

2
g.

Since this mixed act is a constant act giving 100 with probability 1/2 and 0 otherwise, an
ambiguity averse agent seems to prefer this mixed act to both f and g. It is reasonable to
assume that {

1

2
f +

1

2
g

}
� {f}, {g}. (6)

Note that rankings over singletons reflect the agent’s prior belief. On the other hand, when
F = {f, g} and α = 1

2
, (5) implies

{f, g} ∼
{
f, g,

1

2
f +

1

2
g

}
. (7)

The ranking (7) suggests that in the ex post stage, 1
2
f + 1

2
g is never chosen over f and g,

which further suggests that after information acquisition, the agent does not have hedging
motives for ambiguity across states presumably because the agent receives a precise sig-
nal, whereby an experiment is identified ex post and, consequently the agent can form a
probabilistic belief.

The next axiom is a generalization of (5).

Axiom 8 (Indifference to Ex Post Randomization (IEPR)) For all menus F , n ∈
N \ {0}, and β1, ..., βn ∈ R+ such that

∑n
i=1 βi = 1,

F ∼
n∑
i=1

βiF.

IEPR is reminiscent of the Indifferent to Randomization axiom of Dekel, Lipman, and
Rustichini [11]. In their model, preference is defined over menus of lotteries, and Indifference
to Randomization requires that any menu is indifferent to its convex hull. This axiom
can be justified when the ex post choice from a menu is made by maximizing a linear
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or expected utility. Since we consider menus of finite elements as choice objects, convex
hulls cannot be formally taken as choice objects. However,

∑
i βiF can be viewed as an

analogue of the convex hull of F . Since F ⊂
∑n

i=1 βiF , the agent does not value flexibility
provided by (

∑n
i=1 βiF )\F . As illustrated prior to the axiom, similar to the justification of

Indifference to Randomization, IEPR is justified if the ex post choice from a menu is made
by maximizing a linear utility function over acts, which means that the agent receives an
accurate signal and forms a probabilistic belief ex post.

The main result of this section is as follows:2

Theorem 1 ≿ satisfies basic axioms, Independence with Lotteries, Weak Concavity, and
IEPR if and only if it is represented by a CIC representation (u, P ,Π).

3.2 Proof Outline

To prove the sufficiency of the theorem, note first that on the singleton menus, Independence
with Lotteries and Weak Concavity imply the certainty independence and the ambiguity
aversion axiom of Gilboa and Schmeidler [19]. Thus, ≿ admits a maxmin expected utility
representation over F with an expected utility u : X → R and multiple priors P ⊂ ∆(Ω).
Two-Sided Unboundedness implies the property of unbounded range u(X) = R. This
representation U : F → R is extended to the whole domain F because each menu F has its
lottery equivalent {xF} with F ∼ {xF}.

We follow the construction of the support functions by de Oliveira, Denti, Mihm, and
Ozbek [12]. For any F ∈ F, a support function for F is defined as, for any posterior
p ∈ ∆(Ω),

φF (p) = max
f∈F

∑
Ω

u(f(ω))p(ω). (8)

By IEPR, the support function identifies the menu up to indifference: φF = φG =⇒ F ∼
G. Let ΦF = {φF |F ∈ F} ⊂ C(∆(Ω)) be the set of all support functions. Given the above
identification, we can induce the functional V : ΦF → R by V (φF ) = U(F ).

As an intermediate step, we first characterize a more general representation, which does
not satisfy the prior consistency. We say that ≿ admits a General CIC Representation
if there exists a pair (u,Π) such that u : X → R is an expected utility function and
Π ⊂ K(∆(∆(Ω))) is compact, and ≿ is represented by

U(F ) = max
Π∈Π

min
π∈Π

buF (π). (9)

For each Π ∈ K(∆(∆(Ω))), recall PΠ denotes the set of priors induced from Π. On the
singletons, (9) is reduced to

U({f}) = max
Π∈Π

min
p∈PΠ

∑
ω

u(f(ω))p(ω), (10)

2Instead of Two-Sided Unboundedness, we can assume One-Sided Unboundedness axiom as in de
Oliveira, Denti, Mihm, and Ozbek [12]: There are outcomes x, y ∈ X with {x} � {y} such that for
all α ∈ (0, 1), there is z ∈ X satisfying either {αz + (1− α)y} � {x} or {y} � {αz + (1− α)x}.
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which is called the dual-self representation or Boolean representation, studied in Chan-
drasekher, Frick, Iijima, and Le Yaouanq [6] and Xia [27]. Note that the above representa-
tion (10) involves an aspect of belief manipulation or a choice of optimistic beliefs unless
the prior consistency with P is imposed.

To impose the desired consistency, the Weak Concavity axiom plays a central role.

3.3 Uniqueness

We describe the uniqueness properties of a CIC representation with (u, P ,Π). We use the
idea of half-space closure, introduced by Chandrasekher, Frick, Iijima, and Le Yaouanq [6]
to establish the uniqueness of the dual-self representation. On top of their idea, we impose
an addtional requirement of the prior consistency on the CIC representation.

For a CIC representation (u, P ,Π), consider the set of experiments whose prior belongs
to the set of multiple priors P , denoted by Π(P ) = {π ∈ ∆(∆(Ω)) | pπ ∈ P}. Given Π,
define its half-space closure by

Π ≡ cl{H ∩ Π(P ) |H is a closed half-space in ∆(∆((Ω)) and H ⊃ Π for some Π ∈ Π},

where we call H a closed half-space in ∆(∆((Ω)) if H = Hφ,λ ≡ {π ∈ ∆(∆(Ω)) | 〈φ, π〉 ≥ λ}
for some λ ∈ R and some continuous function φ : ∆(Ω) → R. Chandrasekher, Frick, Iijima,
and Le Yaouanq [6] uses these half-spaces H in ∆(∆(Ω)) to define the half-space closure.
To take into account the consistency with priors, we additionally consider the intersection
betweenH and Π(P ). Since Π satisfies the prior consistency with P , we have Π ⊂ H∩Π(P ).
Thus, each Π ∈ Π is expanded in this manner to obtain its half-space closure.

Theorem 2 Suppose (u, P ,Π) is a CIC representation of ≿. Then, following properties
hold:

(1) (u, P ,Π) is also a CIC representation of ≿;

(2) For any expected utility function u′, multiple priors P
′
, and collection Π′ of coarse

experiments consistent with P
′
, (u′, P

′
,Π′) is a CIC representation of ≿ if and only if

u′ is a positive affine transformation of u, P
′
= P , and Π = Π′.

Theorem 2 ensures that the set of coarse experiments are pinned down up to the half-
space closure.

3.4 Interpersonal Comparison

Given the uniqueness property of the CIC representation, we provide a comparative notion
of attitude toward flexibility in terms of behavior and characterize its implication on the
CIC representation. Consider two agents i = 1, 2 having preferences ≿i on F. The following
condition is a behavioral comparison in terms of attitude toward flexibility. The same
condition is considered by Dillenberger, Lleras, Sadowski, Takeoka [13], de Oliveira, Denti,
Mihm, and Ozbek [12], and Higashi, Hyogo, and Takeoka [20].
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Definition 3 ≿1 is more averse to commitment than ≿2 if for all F ∈ F and f ∈ F ,

F ≿2 {f} =⇒ F ≿1 {f}.

Theorem 3 Suppose that for i = 1, 2, ≿i is represented by a CIC representation with

(ui, P
i
,Πi). The following statements are equivalent:

(a) ≿1 is more averse to commitment than ≿2;

(b) u2 is a positive affine transformation of u1, P
1
= P

2
, and Π

1 ⊃ Π
2

Under the CIC representation, the condition Π
1 ⊃ Π

2
means that agent 1 has a larger

constraint set of coarse experiments than agent 2. Hence, agent 1 values the flexibility
provided by menu F more than agent 2.

4 Special Cases

4.1 Coarse Information Choice with a Single Prior

As a special case, suppose P = {p}. If Π is prior-consistent with {p}, the consistency
condition boils down to

pπ = p

for all Π ∈ Π and all π ∈ Π.

Definition 4 ≿ admits a Coarse Experiment Choice (CEC) Representation if ≿ admits a
CIC representation (u, {p},Π).

Note that on the singletons, U is reduced to an SEU representation,

U({f}) =
∑
ω∈Ω

u(f(ω))p(ω).

The axiomatic foundation of this special case is obtained by strengthening both Indepen-
dence with Lotteries and Weak Concavity. Recall the discussion prior to Weak Concavity
and consider a mixture between a menu F and a singleton menu {f}. Since there is no
role of information acquisition at the singleton, the incentive for information choice is not
altered at αF + (1 − α){f}. Moreover, if the agent has a single prior over states, the
mixture with the act f does not affect hedging motives either. Thus, the independence
axiom should hold when menus are mixed with singleton acts.

Axiom 9 (Independence with Singleton Acts (ISA)) For all menus F , G, act f ,
and α ∈ (0, 1)

F ≿ G ⇐⇒ αF + (1− α){f} ≿ αG+ (1− α){f}.
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This axiom implies Independence with Lotteries and Weak Concavity. Moreover, it also
implies the independence axiom on singletons, referred to as Singleton Independence: for
all acts f , g, h, and α ∈ (0, 1),

{f} ≿ {g} ⇐⇒ {αf + (1− α)h} ≿ {αg + (1− α)h}.

By Singleton Independence, the commitment ranking is represented by a subjective ex-
pected utility. This special case highlights the coarseness of experiments that is not at-
tributable to prior ambiguity. Even though the agent is sure of prior over states, he/she
still faces coarseness of experiments.

Theorem 4 ≿ satisfies basic axioms, ISA, and IEPR if and only if it is represented by a
CEC representation (u, p,Π).

For the uniqueness of the CEC representation, the same argument works if Π(P ) = {π ∈
∆(∆((Ω)) | pπ ∈ P} defined in Section 3.3 is replaced with Π(p) = {π ∈ ∆(∆(Ω)) | pπ = p}.
As shown in Theorem 2, u is unique up to positive affine transformation, p is unique, and
the set of coarse experiments is identified up to the half-space closure.

4.2 Attitudes toward Contingent Planning

As discussed in Section 2, the evaluation of the mixed menus reflects two conflicting effect;
the incentives for optimal information choice and the hedging motives against coarseness
of experiments. The CIC representation accommodates both effects and sets a stage for
studying various attitudes toward mixing menus or equivalently contingent planning. By
assuming a particular attitude for contingent plannings, we characterize the corresponding
special cases of the CIC representation.

In this subsection, we assume that ≿ admits a CIC representation or equivalently sat-
isfies all the axioms for the CIC representation. Take two indifferent menus F and G and
any α ∈ (0, 1). If the agent anticipates information acquisition after menu choice, a con-
tingent planning αF + (1 − α)G is less preferred to F or G, while it is more preferred in
terms of hedging coarse experiments. In general, the ranking between αF + (1− α)G and
F depends on which one of the two effects dominates the other and varies across different
pairs of menus and the coefficient α. The following definition classifies attitudes toward
contingent planning coherent across all pairs of menus and coefficients.

Definition 5 (1) ≿ exhibits aversion to contingent planning (ACP) if for all menus F
and G and all α ∈ [0, 1],

F ∼ G =⇒ αF + (1− α)G ≾ F.

(2) ≿ exhibits preference for contingent planning (PCP) if for all menus F and G and all
α ∈ [0, 1],

F ∼ G =⇒ αF + (1− α)G ≿ F.
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(3) ≿ exhibits indifference to contingent planning (ICP) if for all menus F and G and all
α ∈ [0, 1],

F ∼ G =⇒ αF + (1− α)G ∼ F.

Part (1) states that the agent always avoids contingent planning, which is introduced
as an axoim by de Oliveira, Denti, Mihm, and Ozbek [12]. As discussed in Section 1.2,
ACP excludes the possibility of coarse experiments. Thus, the agent only cares about the
incentives for optimal information choice.

Part (2) is the opposite behavior to part (1) and states that the agent always prefers
contingent planning. This condition suggests that the hedging motive always dominates
the incentive for optimal information acquisition presumably because the agent does not
care about the latter aspect.

Finally, part (3) is obtained by assuming parts (1) and (2) simultaneously and states
that the agent is always indifferent between a contingent planning and the original menu.
The agent exhibits this neutral attitude toward contingent planning because the agent
ignores both of the two effects.

We have the following characterizations.

Corollary 1 Assume that ≿ satisfies all the axioms of Theorem 1.

(1) ≿ exhibits ACP if and only if it is represented by a CIC model with (u, p, {{π}|π ∈ Π}),
that is,

U(F ) = max
π∈Π

buF (π). (11)

(2) ≿ exhibits PCP if and only if it is represented by a CIC model with (u, P , {Π}), that
is,

U(F ) = min
π∈Π

buF (π). (12)

(3) ≿ exhibits ICP if and only if it is represented by a CIC model with (u, p, {{π}}), that
is,

U(F ) = buF (π). (13)

From part (1), an implication of ACP is that the agent only anticipates precise experi-
ments {π} as alternatives at the stage of information acquisition. Hence, we can interpret
that the agent simply chooses a precise information structure π within a constraint. The
CIC representation boils down to the formulation (11). This is a special case of the stan-
dard costly information acquisition, studied in de Oliveira, Denti, Mihm, and Ozbek [12],
called the constrained information model. For the characterization, IEPR is redundant
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because it is implied from ACP. Note also that ACP and Weak Concavity jointly imply the
neutrality to mixing two acts, and hence, the agent has a single prior p in this class.

Conversely, an implication of PCP is that the agent anticipates only one coarse exper-
iment Π as a feasible option at the stage of information acquisition. Since information
choice is always degenerate at Π, he/she does not respond to the incentive for optimal
information choice. On the other hand, the agent faces coarseness of experiment Π and is
completely ignorant about what experiment in Π is conducted. Hence, in this case, the CIC
representation boils down to the formulation (12), regarded as the fixed coarse information
model. Regarding the characterization, Weak Concavity is redundant because it is implied
from PCP. Since PCP involves ambiguity aversion over states, the model accommodates
multiple priors P .3

Finally, part (3) is a joint implication of parts (1) and (2). If the agent exhibits ICP,
he/she cares about neither the incentive for optimal information acquisition nor the hedging
motives for coarse experiments. Consequently, the agent anticipates neither information
choice nor coarse experiments. Thus, the CIC representation boils down to (13), where
a single precise experiment π is adopted commonly across all menus. This class of repre-
sentation is characterized by Dillenberger, Lleras, Sadowski, and Takeoka [13], called the
subjective learning representation or the fixed information model.

5 Application: Optimal Sampling

The state space Ω = Ω1 × Ω2 is taken to be R2. The prior over Ωi is given by a normal
distribution ωi ∼ N(µi, 1/τi), where µi is the mean, and τi > 0 is the precision.

The agent’s payoff function is state-dependent and given by

u(y1, y2, ω1, ω2) = a(ω1 + ω2)− b|ω1 − y1| − b|ω2 − y2|, a > 0, b > 0.

A choice variable is yi, which is interpreted as an investment decision depending on Ωi.
This payoff function takes its maximum at yi = ωi, i = 1, 2, and the closer the investment
decision is to the true state, the higher the payoff. Moreover, for all fixed yi, higher states
ωi imply higher payoffs. As the payoffs change according to realization of ωi, a choice of yi
is interpreted as a choice of act.

The agent can observe signals, whereby, the prior is updated to a posterior according
to Bayes’ rule. The signal si is correlated with ωi according to a normal distribution
si ∼ N(ωi, 1/σ), where σ > 0 is the precision of the signal. However, because of resource
constraints, the agent can only acquire information about either one of Ω1 and Ω2. If signals
about Ωi are observed for n times, the value of information is given by

bu(i, n; τ1, τ2) =

∫
max
y1,y2

∫
u(y1, y2, ω1, ω2) dp(ω|s1, · · · , sn) dπni (s1, · · · , sn), (14)

3If Singleton Independence is imposed in addition, P is forced to be a single prior {p}. Even in this
case, Π is not necessarily degenerate to a singleton; the agent still faces coarseness of experiments.
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where p(ω|s1, · · · , sn) is a posterior over Ω conditional upon the realization of signals
s1, · · · , sn, and πni (s1, · · · , sn) is an ex ante probability of the signal realization up to n
when the agent acquires information about Ωi.

In this setting, an information structure is identified with a number of times for sig-
nal observations regarding Ωi, denoted by (i, n). A more informative signal structure is
obtained by greater sample size.

Following Cukierman [10], (21) is written as

bu(i, n; τ1, τ2) = a(µ1 + µ2)− b

(
2

π

) 1
2

{(
1

τi + nσ

) 1
2

+

(
1

τ−i

) 1
2

}
,

where π is the circular constant. Furthermore, to ensure that bu(i, n; τ1, τ2) > 0 for all n,
throughout this section, we assume

a(µ1 + µ2)

b
(

2
π
) 1

2

>

(
1

τ1

) 1
2

+

(
1

τ2

) 1
2

, (15)

which requires that the sum of standard deviations of priors over Ω1 and Ω2 is smaller than
some threshold.

Now assume that a prior over Ω is given by (τ1, τ2) = (τ , τ) for some τ > 0 satisfying
(15).

5.1 Single Prior

Consider the situation where a prior over one of Ω1 and Ω2 becomes less precise and changes
from τ to τ < τ . That is, a prior over Ω is now given as either (τ, τ) or (τ , τ). We still
assume (15) for τ and τ . Since the argument is symmetric, we take (τ1, τ2) = (τ, τ).

Below, we characterize an optimal sample size. The agent solves

max
(i,n)

{bu(i, n; τ, τ)− cn} ,

where c > 0 is a constant marginal cost of sampling.

Lemma 1 If (τ1, τ2) = (τ, τ) with τ < τ , for all n, bu(1, n; τ, τ) > bu(2, n; τ, τ).

Proof. By definition of bu(i, n; τ, τ), it suffices to show that(
1

τ + nσ

) 1
2

+

(
1

τ

) 1
2

>

(
1

τ + nσ

) 1
2

+

(
1

τ

) 1
2

. (16)

Since the function f(z) =
(
1
z

) 1
2 is strictly decreasing and strictly convex, we have(

1

τ

) 1
2

>

(
1

τ

) 1
2

and

(
1

τ + nσ

) 1
2

<

(
1

τ + nσ

) 1
2

,
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but the former dominates the latter. Hence we have (16).

Lemma 1 implies that the agent can obtain a higher benefit of information by acquiring
information from states with a less precise prior. Thus, the information acquisition problem
is reduced to

max
n

{bu(1, n; τ, τ)− cn}

⇐⇒ max
n

a(µ1 + µ2)− b

(
2

π

) 1
2

{(
1

τ + nσ

) 1
2

+

(
1

τ

) 1
2

}
− cn.

For simplicity, let us treat n as a continuous variable. Then, the FOC is given by

dbu

dn
(1, n; τ, τ) =

bσ

2

(
2

π

) 1
2
(

1

τ + nσ

) 3
2

= c.

Clearly, if τ decreases, dbu

dn
(n) shifts up, and hence, the optimal sample size increases. Hence,

as the precision of a prior decreases, the agent acquires more information.

Proposition 1 When an initial prior becomes less precise in the sense of mean-preserving
spread, the agent acquires more information about less precise states.

5.2 Multiple Priors

Next, consider the situation where a prior becomes more ambiguous and changes from the
single prior (τ , τ) to multiple priors P = {(τ , τ), (τ, τ), (τ , τ)} with τ < τ .

The agent decides from which state space and how many samples to observe. Choosing
(i, n) corresponds to choosing a coarse experiment

Π(i, n) = {πni (·|p) | p ∈ P}.

Let Π = {Π(i, n) | i = 1, 2, n ≥ 0}.
Below, we characterize an optimal sample size. The agent solves

max
Π(i,n)∈Π

{
min

πni (·|p)∈Π(i,n)
bu(πni (·|p))− c(Π(i, n))

}
,

or equivalently,

max
(i,n)

{
min
p∈P

bu(i, n; p)− cn

}
,

where c > 0 is a constant marginal cost of sampling.
By Lemma 1, for all n,

bu(1, n; τ , τ) = bu(2, n; τ , τ) > bu(1, n; τ, τ)

= bu(2, n; τ , τ) > bu(2, n; τ, τ) = bu(1, n; τ , τ),

21



which implies

min
p∈P

bu(1, n; p) = bu(1, n, ; τ , τ) = bu(2, n, ; τ, τ) = min
p∈P

bu(2, n; p).

Therefore, the information acquisition problem is reduced to

max
n

a(µ1 + µ2)− b

(
2

π

) 1
2

{(
1

τ + nσ

) 1
2

+

(
1

τ

) 1
2

}
− cn.

Then, the FOC is given by

bσ

2

(
2

π

) 1
2
(

1

τ + nσ

) 3
2

= c.

Since τ < τ , an optimal sample size under ambiguous priors is reduced compared to when
the prior becomes less precise in the sense of risk.

Proposition 2 When an initial prior becomes less precise in the sense of multiple priors,
the agent does not acquire additional pieces of information compared to when the prior is
not ambiguous.

6 Discussion

As assumed in the rational inattention model, information acquisition is often costly. In
this section, we discuss some necessary axioms for the Costly CIC representation.

The next axiom is provided by de Oliveira, Denti, Mihm, and Ozbek [12] for character-
izing their rationally inattentive representation.

Axiom 10 (Independence of Degenerate Decisions (IDD)) For all menus F , G, acts
f , g, and α ∈ (0, 1),

αF + (1− α){f} ≿ αG+ (1− α){f} =⇒ αF + (1− α){g} ≿ αG+ (1− α){g}.

To understand an intuition of the axiom, note that when facing the mixed menu αF +
(1 − α){f}, the agent only focuses on the menu αF in terms of information acquisition
because there is no role of information acquisition at a commitment menu {f}. To rank
the two mixed menus in the presumption of the axiom, the agent effectively compares αF
and αG, and hence, the raking should be preserved when f is replaced with another act g.

In the functional form (3), IDD is not a necessary axiom. As explained above, when
facing the mixed menu αF +(1−α){f}, the agent only focuses on the menu αF in terms of
information acquisition, while he/she also cares about the mixture between acts because of
the hedging motives. Indeed, it may happen that if F is preferred to G when both menus
are mixed with a constant act (or lottery), while the ranking is reversed when those are
mixed with a non-constant act. However, the hedging motive disappears in the contingent
planning between menus and lotteries because the prior does not matter for the evaluation
of the latter. Indeed, (3) satisfies the following weakening of IDD.
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Axiom 11 (Weak Independence with Lotteries) For all menus F , G, lotteries x, y,
and α ∈ (0, 1),

αF + (1− α){x} ≿ αG+ (1− α){x} =⇒ αF + (1− α){y} ≿ αG+ (1− α){y}.

Axiom 12 (Star-Shaped) For all menus F and lotteries x, and α ∈ (0, 1),

{αxF + (1− α)x} ≿ αF + (1− α){x}.

Note that if ≿ satisfies Independence with Lotteries,

{αxF + (1− α)x} ∼ αF + (1− α){x}.

Axiom 13 (Strong Star-Shaped) For all menus F and acts f , and α ∈ (0, 1),

{αxF + (1− α)f} ≿ αF + (1− α){f}.

This axiom implies Weak Convexity: F ∼ {f} implies αF + (1− α){f} ≾ {f}. Note also
that if ≿ satisfies Independence with Acts,

{αxF + (1− α)f} ∼ αF + (1− α){f}.

The following proposition gives some necessary axioms for Costly CIC representations.

Proposition 3 (1) If ≿ admits a Costly CIC representation (u, P,Π, c), then ≿ satisfies
the basic axioms, Weak Independence with Lotteries, IEPR, and Star-Shaped.

(2) If ≿ admits a Costly CIC representation (u, {p},Π, c), then ≿ additionally satisfies
IDD and Strong Star-Shaped.

Appendix

A Preliminaries

A.1 Properties of Functionals

Following de Oliveira, Denti, Mihm, and Ozbek [12], we introduce some notions and math-
ematical preliminaries needed for the subsequent analysis. The proofs are omitted.

• C(∆(Ω)): the set of all real-valued continuous functions over ∆(Ω) with the supnorm

• ca(∆(Ω)): the set of all signed measures over ∆(Ω) with the weak∗ topology

• ca+(∆(Ω)): the set of all positive measures over ∆(Ω)
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• For φ ∈ C(∆(Ω)) and π ∈ ca(∆(Ω)), define

〈φ, π〉 =
∫
∆(Ω)

φ(p)dπ(p).

For a subset Ψ of C(∆(Ω)), we say that a function V : Ψ → R is normalized if V (α) = α
for each constant function α ∈ Ψ; monotone if V (φ) ≥ V (ψ) for all φ, ψ ∈ Ψ with φ ≥ ψ;
convex if αV (φ) + (1 − α)V (ψ) ≥ V (αφ + (1 − α)ψ) for all φ, ψ ∈ Ψ and α ∈ (0, 1);
quasi-convex if V (φ) ≥ V (αφ + (1 − α)ψ) for all φ, ψ ∈ Ψ with V (φ) ≥ V (ψ) and α ∈
(0, 1); translation invariant if V (φ + k1) = V (φ) + k for all φ ∈ Ψ and k ∈ R such that
φ+ k1 ∈ Ψ; positively homogeneous if V (αφ) = αV (φ) for all φ ∈ Ψ and α ≥ 0; niveloid if
V (φ)− V (ψ) ≤ sup{φ(p)− ψ(p) | p ∈ ∆(Ω)}.

Cerreia-Vioglio, Maccheroni, Marinacci, Rustichini [5] analyzed the properties of niveloids
including the following results. If V is a niveloid, it is monotone and translation invariant.
The converse holds when Ψ is a tube, that is, Ψ = Ψ+R. If V is a niveloid, V is Lipschitz
continuous. If V is a niveloid, there is a niveloid that extends V to C(∆(Ω)).

• Φ: the set of convex functions in C(∆(Ω))

• Φ∗: the dual cone of Φ, that is,

{π ∈ ca(∆(Ω)) | 〈φ, π〉 ≥ 0 for all φ ∈ Φ}.

The set Φ∗ is also a closed convex cone such that 0 ∈ Φ∗.

• For any expected utility function u and any menu F ∈ F, let

φF (p) = max
f∈F

∑
Ω

u(f(ω))p(ω)

• ΦF(ΦF ,ΦX): the set of functions φF (φ{f}, φ{x})

Note that u(X) = ΦX ⊂ ΦF ⊂ ΦF ⊂ Φ. Moreover, ΦF is convex because αφF + (1 −
α)φG = φαF+(1−α)G.

Assume that u(X) = R. Then we have the following properties of ΦF:

1. ΦF + R = ΦF

2. αφF ∈ ΦF for every α ≥ 0

3. The set ΦF is dense in Φ.
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A.2 Clarke Derivative and Differential

Consider a locally Lipschitz functional V : C(∆(Ω)) → R. For every φ, ξ ∈ C(∆(Ω)),
Clarke upper directional derivative of V at φ in the direction of ξ is defined by

V ◦(φ; ξ) ≡ lim sup
ψ→φ
t↘0

V (ψ + tξ)− V (ψ)

t
.

The Clarke differential of V at φ in the direction of ξ is defined by

∂V (φ) = {χ ∈ ca(∆(Ω)) | 〈ξ, χ〉 ≤ V ◦(φ; ξ),∀ξ ∈ C(∆(Ω))}.

Following the literature, we use Clarke upper directional derivative to define Clarke
differential, but an alternative notion is also useful. Consider a locally Lipschitz functional
V : C(∆(Ω)) → R. For every φ, ξ ∈ C(∆(Ω)), Clarke lower directional derivative of V at
φ in the direction of ξ is defined by

V◦(φ; ξ) ≡ lim inf
ψ→φ
t↘0

V (ψ + tξ)− V (ψ)

t
.

Since V ◦(φ; ξ) = −V◦(φ;−ξ) for any φ, ξ ∈ C(∆(Ω)), the Clarke differential of V at φ in
the direction of ξ is rewritten as

∂V (φ) = {χ ∈ ca(∆(Ω)) | 〈ξ, χ〉 ≥ V◦(φ; ξ),∀ξ ∈ C(∆(Ω))}.

Proposition A.3 in Ghirardato, Maccheroni, and Marinacci [17] shows the following
results:4

Lemma 2 If V : C(∆(Ω)) → R is locally Lipschitz and positively homogeneous, ∂V (φ) ⊂
∂V (0) for any φ ∈ C(∆(Ω)).

Lemma 3 If V : C(∆(Ω)) → R is locally Lipschitz, monotone, and translation invariant,
∂V (φ) ⊂ ∆(∆(Ω)) for any φ ∈ C(∆(Ω)).

Lemma 4 If V : C(∆(Ω)) → R is locally Lipschitz and positively homogeneous, V ◦(0; ξ) =
supφ∈C(∆(Ω)){V (φ + ξ) − V (φ)} and V◦(0; ξ) = infφ∈C(∆(Ω)){V (φ + ξ) − V (φ)} for any
ξ ∈ C(∆(Ω)).

By Proposition 2.1.2 in Clarke [9] and V ◦(φ; ξ) = −V◦(φ;−ξ) for any φ, ξ ∈ C(∆(Ω)),
we have the following:

Lemma 5 If V : C(∆(Ω)) → R is locally Lipschitz, V ◦(η; ξ) = maxπ∈∂V (η)〈ξ, π〉 and
V◦(η; ξ) = minπ∈∂V (η)〈ξ, π〉 for any η, ξ ∈ C(∆(Ω)).

4See Proposition 47 and Lemma 48 in Ghirardato, Maccheroni, and Marinacci [18] for proofs.
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We describe a characterization of Clarke differential. A functional V is Gatèaux differ-
entiable at φ ∈ C(∆(Ω)) if

1. V ′(φ; ξ) = limt→0
V (φ+tξ)−V (φ)

t
exists for any ξ ∈ C(∆(Ω));

2. the mapping ξ 7→ V ′(φ; ξ) is a continuous linear functional from C(∆(Ω)) to R.

If V is Gatèaux differentiable at φ, its Gatèaux derivative at φ is denoted by ▽V (φ) and
V ′(φ; ξ) = 〈ξ,▽V (φ)〉 for any ξ ∈ C(∆(Ω)).

A Borel subset N of C(∆(Ω)) is Haar-null set if there exits a (not necessarily unique)
probability measure µ on the Borel σ-algebra of C(∆(Ω)) such that µ(φ + N) = 0 for
any φ ∈ C(∆(Ω)); see Christensen [7] and Appendix A.3. in Ghirardato, Maccheroni, and
Marinacci [17]. Haar-null sets are closed under translation and countable unions. In finite
dimensions, Haar-null sets coincides with the sets of Lebesgue measure 0. If N is Haar-
null in C(∆(Ω)), C(∆(Ω)) \ N is dense in C(∆(Ω)); see Thibault ([25]). An extension of
Rademacher’s theorem by Christensen [8] implies that if V is locally Lipschitz, there exists
D ⊂ C(∆(Ω)) such that C(∆(Ω)) \D is Haar-null and V is Gatèaux differentiable on D.
Given this result, Proposition 2.2 in Thibault [25] yields the following result on Clarke
differentials.5

Lemma 6 (Thibault [25], Proposition 2.2) Let V be a locally Lipschitz functional de-
fined on C(∆(Ω)). Then, there exists D ⊂ C(∆(Ω)) such that C(∆(Ω)) \D is Haar-null,
V is Gatèaux differentiable on D, and for any φ ∈ C(∆(Ω)), we have that

∂V (φ) = co{ lim
n→∞

▽V (φn) |φn ∈ D,φn → φ}, (17)

where co denotes weak* closure of convex hull and lim denotes weak* limit.

A.3 Boolean Representation

Chandrasekher, Frick, Iijima, and Le Yaouanq [6] provides a “Boolean”representation of
a locally Lipschitz function defined on finite dimensional spaces. Based on their result,
we derive a Boolean representation of a locally Lipschitz functional V : C(∆(Ω)) → R.
Let D be a subset of C(∆(Ω)) in Lemma 6 and ▽V (φ) be Gatèaux derivative of V at
φ ∈ C(∆(Ω)).

Slightly modifying the proof of Lemma A.5 in Chandrasekher, Frick, Iijima, and Yaouanq
[6], we obtain the following lemma.

Lemma 7 For any φ, ψ ∈ D and ε > 0, there exists ξ ∈ D such that

V (ξ)− V (ψ) + 〈ψ − ξ,▽V (ξ)〉 ≥ 0, V (ξ)− V (φ) + 〈φ− ξ,▽V (ξ)〉 ≤ ε.

5Christensen and Thibault obtain their results for separable Banach spaces. Since ∆(Ω) is compact,
Lemma 3.99 in Aliprantis and Border [1] implies that C(∆(Ω)) is separable.

26



Proof. Pick any φ, ψ ∈ D and ε > 0. Let m ≡ V (ψ)− V (φ). If 〈ψ − φ,▽V (φ)〉 ≥ m, we
can take ξ = φ. If 〈ψ − φ,▽V (ψ)〉 ≥ m, we can take ξ = ψ. Consider the case

〈ψ − φ,▽V (φ)〉, 〈ψ − φ,▽V (ψ)〉 < m. (18)

We define a function H : R → R by

H(λ) ≡ V (φ+ λ(ψ − φ))− λm− V (φ).

for any λ ∈ R with φ+ λ(ψ−φ) ∈ C(∆(Ω)). We show that H is differentiable at λ = 0, 1.
Note that for any λ ∈ R,

H ′(λ) = lim
t→0

V (φ+ (λ+ t)(ψ − φ))− V (φ+ λ(ψ − φ)

t
−m

= lim
t→0

V (φ+ λ(ψ − φ) + t(ψ − φ))− V (φ+ λ(ψ − φ))

t
−m.

Since φ, ψ ∈ D, H is differentiable at λ = 0, 1. By (18), we have that H(0) = H(1) = 0,
H ′(0) = 〈ψ−φ,▽V (φ)〉−m < 0, andH ′(1) = 〈ψ−φ,▽V (ψ)〉−m < 0. Hence, H is negative
for small enough λ > 0 and positive for λ < 1 close enough to 1. Since H is locally Lipschitz
continuous, the intermediate value theorem implies that the set {λ ∈ (0, 1) |H(λ) = 0} is
nonempty and closed. Let λ∗ be its supremum.

Since H is locally Lipschitz continuous, we obtain H(λ) =
∫ λ
λ∗
H ′(λ′)dλ′ for all λ > λ∗.

Since H(λ) > 0 for all λ ∈ (λ∗, 1), we can choose λ∗∗ ∈ (λ∗, 1) close enough to λ∗ such that
H is differentiable at λ∗∗ (by Rademacher’s theorem) with H ′(λ∗∗) > 0 and H(λ∗∗) ∈ (0, ε).
Note that

V ◦(φ+ λ∗∗(ψ − φ);ψ − φ)−m = lim sup
φ→φ+λ∗∗(ψ−φ)

t↘0

V (φ+ t(ψ − φ))− V (φ)

t
−m ≥ H ′(λ∗∗) > 0.

By Lemma 5, V ◦(η; ξ) = maxπ∈∂V (η)〈ξ, π〉 for any η, ξ ∈ C(∆(Ω)). Hence, there exists
π ∈ ∂V (φ+ λ∗∗(ψ − φ)) such that

〈ψ − φ, π〉 −m ≥ H ′(λ∗∗) > 0. (19)

By (17), there exists a sequence ξn → φ + λ∗∗(ψ − φ) such that ξn ∈ D for any n and
limn→∞〈ϕ,▽V (ξn)〉 ∈ (〈ϕ, π〉 − ε′, 〈ϕ, π〉 + ε′) for any ϕ ∈ C(∆(Ω)) and ε′ > 0. By taking
ε′ > 0 small enough, we have that

lim
n→∞

(V (ξn)− V (ψ) + 〈ψ − ξn,▽V (ξn)〉) >V (φ+ λ∗∗(ψ − φ))− V (ψ) + (1− λ∗∗)〈ψ − φ, π〉 − ε′

=H(λ∗∗) + (1− λ∗∗)(V (φ)− V (ψ)) + (1− λ∗∗)〈ψ − φ, π〉 − ε′

=H(λ∗∗)− (1− λ∗∗)m+ (1− λ∗∗)〈ψ − φ, π〉 − ε′ > 0,
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where the last inequality follows from H(λ∗∗) > 0 and 〈ψ−φ, π〉−m > 0 by (19). Similarly,
by taking ε′ > 0 small enough, we have that

lim
n→∞

(V (ξn)− V (φ) + 〈φ− ξn,▽V (ξn)〉) <V (φ+ λ∗∗(ψ − φ))− V (φ)− λ∗∗〈ψ − φ, π〉+ ε′

=H(λ∗∗) + λ∗∗m+ V (φ)− V (φ)− λ∗∗〈ψ − φ, π〉+ ε′ < ε,

where the last inequality follows from H(λ∗∗) < ε and 〈φ− ψ, π〉 +m < 0 by (19). Thus,
we can take ξ = ξn ∈ D for large enough n.

By using Lemma 7, we can show that V has a Boolean representation in the same way
as Lemma A.6 in Chandrasekher, Frick, Iijima, and Le Yaouanq [6]:

Lemma 8 For any φ ∈ D, we have

V (φ) = max
ψ∈D

inf
ξ∈Kψ

V (ξ) + 〈φ− ξ,▽V (ξ)〉,

where Kψ ≡ {ξ ∈ D |V (ξ) + 〈ψ − ξ,▽V (ξ)〉 ≥ V (ψ)} for all ψ ∈ D.

B General CIC Representations

We prove the following theorem as an intermediate step for the CIC representation and
special cases.

Theorem 5 ≿ satisfies basic axioms, Independence with Lotteries, and IEPR if and only
if it is represented by a General CIC representation (u,Π).

B.1 Sufficiency

First, we derive a utility representation U : F → R and define the functional V : ΦF → R.
Under Order, Preference for Flexibility, and Dominance, de Oliveira, Denti, Mihm, and
Ozbek [12] proves the following:

Claim 1 (Claim 1 in de Oliveira, Denti, Mihm, and Ozbek [12]) Consider menus
F and G. Suppose that for each g ∈ G, there exists f ∈ F such that f(ω) ≿ g(ω) for all
ω ∈ Ω. Then, F ≿ G.

By using Claim 1, Order, and Mixture Continuity, de Oliveira, Denti, Mihm, and Ozbek
[12] proves the following property:

Claim 2 (Claim 2 in de Oliveira, Denti, Mihm, and Ozbek [12]) Every menu F has
a certainty equivalent xF ∈ X such that {xF} ∼ F .

A preference ≿ over F has a dual-self expected utility representation by Chandrasekher,
Frick, Iijima, and Le Yaouanq [6].
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Claim 3 There exists an expected utility function u : X → R with unbounded range and a
nonempty compact collection P ⊂ K(∆(Ω)) such that preference ≿ over F is represented
by function U : F → R defined by

U({f}) = max
P∈P

min
p∈P

∑
ω∈Ω

u(f(ω))p(ω).

Proof. We show Monotonicity in Chandrasekher, Frick, Iijima, and Le Yaouanq [6], that
is, {f(ω)} ≿ {g(ω)} for any ω ∈ Ω =⇒ {f} ≿ {g}. Take two acts f and g such that
{f(ω)} ≿ {g(ω)} for any ω ∈ Ω. Dominance and Preference for Flexibility imply that
{f} ∼ {f, g} ≿ {g}. Moreover, Independence with lotteries implies Certainty Independence
in Chandrasekher, Frick, Iijima, and Le Yaouanq [6]: for all f, g ∈ F , x ∈ X, and α ∈ (0, 1),
{f} ≿ {g} ⇐⇒ α{f}+ (1− α){x} ≿ α{g}+ (1− α){x}.

Under Order, Mixture Continuity, Two-Sided Unboundedness, Preference for Flexi-
bility, Dominance, and Independence with lotteries, all the axioms except Archimedean in
Chandrasekher, Frick, Iijima, and Le Yaouanq [6] are satisfied. By Claim 2, for each f ∈ F ,
there exists x{f} such that {f} ∼ {x{f}}. Hence, we are able to replace Archimedean in
Chandrasekher, Frick, Iijima, and Le Yaouanq [6] with Mixture Continuity. This implies
that ≿ on F has a dual-self expected utility representation by Theorem 1 in Chandrasekher,
Frick, Iijima, and Le Yaouanq [6].

We extend U : F → R to F by U(F ) = U({xF}). By Claim 2, U : F → R represents ≿.
By Two-Sided Unboundedness, U(F) = R.

Define the functional V : ΦF → R by V (φF ) = U(F ) as in de Oliveira, Denti, Mihm,
and Ozbek [12]. To guarantee that V is well-defined, we prove that φF = φG implies that
F ∼ G for all menus F and G.

Let coF denote the convex hull of menu F .

Claim 4 (Claim 4 in de Oliveira, Denti, Mihm, and Ozbek [12]) Consider menus
F and G. If φF ≥ φG, for each g ∈ G, there exists f ∈ coF such that {f(ω)} ≿ {g(ω)}.

The following lemma is the same as Claim 5 in de Oliveira, Denti, Mihm, and Ozbek
[12], but we use IEPR to prove it.

Lemma 9 Consider menus F and G. If G ⊂ coF , F ≿ G.

Proof. Let G = {g1, ..., gn} ⊂ coF . For all i = 1, ..., n, we can write each gi =
∑mi

j=1 α
i
jf

i
j

for αi1, ...α
i
mi

≥ 0 summing up to 1, and f i1, ..., f
i
mi

∈ F . Hence,

G ⊂
m1∑
j=1

· · ·
mn∑
j=1

α1
j · · ·αnj F =

m∑
k=1

βkF.

By Preference for Flexibility and IEPR, we obtain that F ∼
∑m

k=1 βkF ≿ G.
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By Claim 4, if φF ≥ φG, there exists H ⊂ coF such that for each g ∈ G, there exists
h ∈ H such that {h(ω)} ≿ {g(ω)} for all ω ∈ Ω. By Lemma 9, we have that F ≿ H.
Claim 1 implies that H ≿ G. Hence, if φF ≥ φG, F ≿ G. This means that V is monotone
and implies that V is well-defined.

Lemma 10 V : ΦF → R is normalized, monotone, translation invariant, and positively
homogeneous.

Proof. We have already shown that V is monotone. Claim 6 in de Oliveira, Denti, Mihm,
and Ozbek [12] proves that V is normalized.

First, we show that V is translation invariant. Independence with lotteries implies that
for any menus F,G, lotteries x, x′, and α ∈ (0, 1),

αF + (1− α){x} ≿ αG+ (1− α){x} ⇐⇒ F ≿ G⇐⇒ αF + (1− α){x′} ≿ αG+ (1− α){x′}.

Hence, Independence of Degenerated Decisions in de Oliveira, Denti, Mihm, and Ozbek [12]
holds with lotteries x, x′ instead of acts. Since a constant utility vector is identified with
φ{x} for some x ∈ X, under Two-Sided Unboundedness, we can show that V is translation
invariant in a similar way to Claim 6 in de Oliveira, Denti, Mihm, and Ozbek [12].

Next, we show that V is positively homogeneous. The proof is the same as in Corollary
1 in de Oliveira, Denti, Mihm, and Ozbek [12] except we use a lottery x instead of an act.
Fix menu F arbitrary. First, we assume that α ∈ [0, 1] and take x ∈ X such that {x} ∼ F .
Since Independence with lotteries implies that F ∼ {x} ⇐⇒ F ∼ αF + (1− α){x} for all
menus F , lotteries x, and α ∈ (0, 1), we have that F ∼ αF + (1− α){x} for all α ∈ [0, 1].
By translation invariance of V , we have that

V (φF ) = V (αφF + (1− α)φ{x}) = V (αφF ) + (1− α)V (φ{x}).

Since V (φF ) = V (φ{x}), We obtain V (αφF ) = αV (φF ).
Second, we assume that α > 1. Since V is positively homogeneous under α ∈ [0, 1], we

have that

V (α−1(αφF )) = α−1V (αφF ).

This implies that V (αφF ) = αV (φF ). Hence, V is positively homogeneous.

Lemma 11 V : C(∆(Ω)) → R is normalized, monotone, translation invariant, and posi-
tively homogeneous. Moreover, V is a niveloid, which implies that V is Lipschitz continu-
ous.

Proof. We extend V to C(∆(Ω)). Since V is monotone and translation invariant on a tube
ΦF, it is a niveloid. This implies that there is an extension V on C(∆(Ω)) that is a niveloid
(hence, monotone and translation invariant), as mentioned in Appendix A.1. Moreover, V
is normalized. Since there are several ways to extend V on ΦF to C(∆(Ω)), we use the
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maximal one proved in Theorem 1 in Cerreia-Vioglio, Maccheroni, Marinacci, Rustichini
[5]:

V (φ) = inf{V (φ′) + k |φ′ ∈ ΦR, k ∈ R, φ′ + k1 ≥ φ}.

We show that V on C(∆(Ω)) defined above is positively homogeneous. First of all,
assume that α = 0. Since V is normalized, we have that V (αφ) = V (0) = 0 = αV (φ), as
desired. For every φ ∈ C(∆(Ω)) and α > 0, note that

{(φ′, k) ∈ ΦF × R |φ′ + k1 ≥ φ}
= {(αφ′, αk) ∈ ΦF × R |αφ′ + αk1 ≥ φ for some (φ′, k) ∈ ΦF × R}.

Take any (φ′, k) from the left-hand side. Since ΦF is a cone, φ′

α
∈ ΦF. Thus, α(φ

′

α
) +

α( k
α
)1 = φ′+ k1 ≥ φ. By definition, (φ′, k) = (α(φ

′

α
), α( k

α
)) belongs to the right-hand side.

Conversely, take any (αφ′, αk) from the right-hand side. Since (αφ′, αk) ∈ ΦF × R and
αφ′ + αk1 ≥ φ, by definition, (αφ′, αk) belongs to the left-hand side.

For all φ ∈ C(∆(Ω)) and α > 0, the above observation implies that

V (αφ) = inf{V (φ′) + k |φ′ ∈ ΦR, k ∈ R, φ′ + k1 ≥ αφ}
= inf{V (αφ′) + αk |φ′ ∈ ΦR, k ∈ R, αφ′ + αk1 ≥ αφ}
= inf{αV (φ′) + αk |φ′ ∈ ΦR, k ∈ R, φ′ + k1 ≥ φ} = αV (φ),

as desired.

Following Theorem 1 in Chandrasekher, Frick, Iijima, and Le Yaouanq [6], we derive
a Boolean representation of ≿. Since V is a niveloid (equivalently, monotone and trans-
lation invariant), it is Lipschitz. Hence, Lemma 3 implies that ∂V (0) ⊂ ∆(∆(Ω)). Let
K(∆(∆(Ω))) be the set of nonempty, closed, and convex subsets of ∆(∆(Ω)). Consider the
collection Π by

Π ≡ cl{Πφ |φ ∈ C(∆(Ω))}, (20)

where
Πφ ≡ {π ∈ ∂V (0) | 〈φ, π〉 ≥ V (φ)}, (21)

and cl denotes the topological closure in K(∆(∆(Ω))) under Hausdorff topology. Note that
each Πφ is a closed convex set of beliefs over beliefs. Since Π is a closed subset of the
compact space K(∆(∆(Ω))), Π is compact.

As an intermediate step, we show that for all φ ∈ C(∆(Ω)),

V (φ) = max
Π∈Π

min
π∈Π

〈φ, π〉. (22)

By Lemma 6, there exists D ⊂ C(∆(Ω)) such that C(∆(Ω)) \ D is Haar-null and V
is Gatèaux differentiable on D. Since V is positively homogeneous, Lemma 2 implies that
∂V (φ) ⊂ ∂V (0) for any φ ∈ C(∆(Ω)). Hence, for any φ ∈ D, we have that πφ ≡ ∂V (φ) ∈
∂V (0).
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Lemma 12 For any φ ∈ D, V (φ) = 〈φ, πφ〉.

Proof. Except notations and minor details, the proof is the same as that of Lemma B.2
in Chandrasekher, Frick, Iijima, and Le Yaouanq [6].

Fix any φ ∈ D. Since V is positively homogeneous, we have that αφ ∈ D and ∂V (φ) =
∂V (αφ) for any α ∈ (0, 1). Hence, the function h : [0, 1] → R defined by h(α) = V (αφ)
is differentiable at any α ∈ (0, 1) and is Lipschitz continuous. This implies that V (φ) =

h(1)− h(0) =
∫ 1

0
h′(α′)dα′ =

∫ 1

0
〈φ, ∂V (α′φ)〉dα′ =

∫ 1

0
〈φ, ∂V (φ)〉dα′ = 〈φ, πφ〉.

To show (22), first we pick any φ, ψ ∈ D and as in Lemma 8, let Kψ ≡ {ξ ∈ D |V (ξ) +
〈ψ − ξ, πξ〉 ≥ V (ψ)}. By Lemma 8 and 12, we have that

V (φ) = max
ψ∈D

inf
ξ∈Kψ

V (ξ) + 〈φ− ξ, πξ〉 = max
ψ∈D

inf
ξ∈Kψ

〈φ, πξ〉. (23)

Lemma 12 implies that ξ ∈ Kψ if and only if πξ ∈ Π∗
ψ ≡ {πξ | ξ ∈ D, 〈ψ, πξ〉 ≥ V (ψ)}.

By (17), we obtain that coΠ∗
ψ = Πψ, where co denotes weak* closure of convex hull. Hence,

(23) implies that

V (φ) = max
ψ∈D

inf
π∈Π∗

ψ

〈φ, π〉 = max
ψ∈D

min
π∈coΠ∗

ψ

〈φ, π〉 = max
ψ∈D

min
π∈Πψ

〈φ, π〉. (24)

Next, fix any φ, ψ ∈ C(∆(Ω)). There exists sequences φn → φ, ψn → ψ such that
φn, ψn ∈ D. For any n, take πn ∈ Πψn such that minπ∈Πψn 〈φn, π〉 = 〈φn, πn〉 and consider
a convergent subsequence πnk with limk→∞ πnk = π∗. Note that π∗ ∈ Πψ. For any k, we
have that 〈ψnk, πnk〉 ≥ V (ψnk). By continuity of V , we obtain 〈ψ, π∗〉 ≥ V (ψ).

By (24), for any k, we have that 〈φnk, πnk〉 = minπ∈Πψnk 〈φnk, π〉 ≤ V (φnk). Hence,
continuity of V implies that 〈φ, π∗〉 ≤ V (φ). This implies that

V (φ) ≥ 〈φ, π∗〉 ≥ min
π∈Πψ

〈φ, π〉. (25)

By applying (25) with ψ = φ, we have that minπ∈Πφ〈φ, π〉 ≥ V (φ) ≥ minπ∈Πφ〈φ, π〉,
where the first inequality follows from the definition of Πφ. Hence, we have that for any
φ ∈ C(∆(Ω)),

V (φ) = min
π∈Πφ

〈φ, π〉.

Now, we derive a representation (22). Since (25) holds for any ψ ∈ C(∆(Ω)), the
definition of Π implies that for any Π ∈ Π,

V (φ) ≥ min
π∈Π

〈φ, π〉

Take any ψ ∈ C(∆(Ω)) such that ψ 6= φ. Fix any π′ ∈ Πψ. If 〈φ, π′〉 ≥ V (φ), we have that
π′ ∈ Πφ. Thus, if π

′ /∈ Πφ, 〈φ, π′〉 < V (φ). Hence,

V (φ) = min
π∈Πφ

〈φ, π〉 = max
Πφ′∈Π

min
π∈Πφ′

〈φ, π〉. (26)
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This implies that for any menu F ,

U(F ) = V (φF ) = max
Π∈Π

min
π∈Π

〈φ, π〉 = max
Π∈Π

min
π∈Π

buF (π).

We have that for any act f ,

U({f}) = max
Π∈Π

min
π∈Π

∑
Ω

u(f(ω))pπ(ω) = max
P∈P

min
p∈P

∑
Ω

u(f(ω))p(ω).

Hence, we can take P = cl{PΠ |Π ∈ Π} with PΠ = {pπ ∈ ∆(Ω) | π ∈ Π}.

B.2 Necessity

Assume that the preference is represented by the General CIC representation (u,Π). We
show that preference satisfies Independence with Lotteries. Take any menu F and any
lottery x. For any α ∈ [0, 1], it is enough to show that the representation U is mixture
linear for αF + (1− α){x}. Since buF (π) is mixture linear in F ,

U(αF + (1− α){x}) = max
Π∈Π

min
π∈Π

buαF+(1−α){x}(π)

= max
Π∈Π

min
π∈Π

(αbuF (π) + (1− α)bu{x}(π))

= max
Π∈Π

min
π∈Π

(αbuF (π) + (1− α)u(x))

= αmax
Π∈Π

min
π∈Π

buF (π) + (1− α)u(x)

= αU(F ) + (1− α)u(p),

as desired.
Next, we show that preference satisfies IEPR. Take any menu F and βi ≥ 0 with∑
i βi = 1. Since by linearity

bu∑
i βiF

(π) =
∑
i

βib
u
F (π) = buF (π)

for any π,

U(F ) = max
Π∈Π

min
π∈Π

buF (π) = max
Π∈Π

min
π∈Π

bu∑
i βiF

(π) = U(
∑
i

βiF ),

as desired.

C Proof of Theorem 1

First we show sufficiency. By Theorem 5, ≿ is represented by the General CIC represen-
tation (u,Π). Since ≿ satisfies Weak Concavity, it satisfies Singleton Concavity. Hence, ≿
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define on F is represented by a maxmin expected utility model by Gilboa and Schmeidler
[19]:

V (φ{f}) = U({f}) = min
p∈P

∑
ω∈Ω

u(f(ω))p(ω), (27)

where P ⊂ ∆(Ω) is closed and convex and u(X) = R by Two-Sided Unboundedness. For
all f ∈ F , we have

max
Π∈Π

min
p∈PΠ

u(f) · p = U({f}) = min
p∈P

u(f) · p.

We show that Π is prior-consistent with P under Weak Concavity. The next implication
is obtained solely by Singleton Concavity.

Lemma 13 For all Π ∈ Π, P ⊂ PΠ.

Proof. Seeking a contradiction, suppose that there exists some Π ∈ Π with P 6⊂ PΠ. There
exists p ∈ P and p /∈ PΠ. By the separation hyperplane theorem, there exists v ∈ RΩ \ {0}
such that v ·p < 0 ≤ v ·p for all p ∈ PΠ. Let f ∈ F satisfy v = u(f). The above inequalities
imply

min
p∈P

u(f) · p ≤ u(f) · p < 0 ≤ min
p∈PΠ

u(f) · p,

which in turn implies
min
p∈P

u(f) · p < 0 ≤ max
Π∈Π

min
p∈PΠ

u(f) · p.

This contradicts to the fact that the restriction of U on the singletons coincides with the
maxmin EU representation.

Next, we show the converse direction.

Lemma 14 For any φ ∈ C(∆(Ω)) and φ{g} ∈ ΦF

V (φ+ φ{g}) ≥ V (φ) + V (φ{g}).

Proof. For any φF ∈ ΦF and φ{g} ∈ ΦF such that V (φF ) = V (φ{g}), Weak Concavity
implies that

V (
1

2
φF +

1

2
φ{g}) = V (φ 1

2
F+ 1

2
{g}) ≥ V (φF ) =

1

2
V (φF ) +

1

2
V (φ{g}).

Since V is positively homogeneous, we have that

V (φF + φ{g}) = 2V (
1

2
φF +

1

2
φ{g}) ≥ V (φF ) + V (φ{g}).
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Next, consider the case V (φF ) 6= V (φ{g}). We may assume that V (φF ) > V (φ{g}). Let
k ≡ V (φF )− V (φ{g}) > 0. since φ{g} + k1 ∈ ΦF.

V (φ{g} + k1) = V (φ{g}) + k = V (φF ),

where the first equality follows from translation invariance. Hence, we have that

V (φF ) ≤ V (
1

2
φF +

1

2
(φ{g} + k1) = V (

1

2
φF +

1

2
φ{g}) +

1

2
k

= V (
1

2
φF +

1

2
φ{g}) +

1

2
(V (φF )− V (φ{g})).

Hence, we have that V (1
2
φF + 1

2
φ{g}) ≥ 1

2
V (φF ) +

1
2
V (φ{g}). This implies that V (φF +

φ{g}) ≥ V (φF ) + V (φ{g}) for any φF ∈ ΦF and φ{g} ∈ ΦF .
Consider an extension of V on ΦF to ΦF + R in Lemma 11. Since u(X) = R, we have

that ΦF + R = ΦF. Hence, a functional V : C(∆(Ω)) → R defined in Lemma 11 can be
written as V (φ) = infφF∈D(φ) V (φF ), where D(φ) ≡ {φF ∈ ΦF |φF ≥ φ}. We show that

inf
φF∈D(φ+φ{g})

V (φF ) ≥ inf
φG∈D(φ)

V (φG + φ{g}). (28)

We show that for any φF ≥ φ + φ{g}, there exists φG ∈ ΦF such that φG ∈ D(φ) and
φF ≥ φG + φ{g}. Since u(X) = R, for any φ{g} ∈ ΦF, there exists φ{h} ∈ ΦR such that
φ{h} = −φ{g}. Since ΦF is convex and φF ∈ ΦF implies that αφF ∈ ΦF for α ∈ R, this
implies that φF − φ{g} ∈ ΦF. By taking φG = φF + φ{h} = φF − φ{g}, we obtain φG with
the desired properties.

Take any ε > 0. By the definition of infimum, there exists φεF ∈ D(φ + φ{g}) such
that V (φεF ) < infφF∈D(φ+φ{g}) V (φF ) + ε. For such φεF , there exists φG ∈ D(φ) such
that φεF ≥ φG + φ{g}. By monotonicity of V , we have that V (φG + φ{g}) ≤ V (φεF ) <
infφF∈D(φ+φ{g}) V (φF ) + ε. By the definition of infimum,

inf
φG∈D(φ)

V (φG + φ{g}) < inf
φF∈D(φ+φ{g})

V (φF ) + ε.

Therefore, we have that infφF∈D(φ+φ{g}) V (φF ) ≥ infφG∈D(φ) V (φG+φ{g}) as ε→ 0. Hence,
(28) holds.

Finally, we show that V (φ+φ{g}) ≥ V (φ)+V (φ{g}) for any φ ∈ C(∆(Ω)) and φ{g} ∈ ΦF .
By (28),

V (φ+ φ{g}) = inf
φF∈D(φ+φ{g})

V (φF ) ≥ inf
φG∈D(φ)

V (φG + φ{g})

≥ inf
φG∈D(φ)

V (φG) + V (φ{g}) = V (φ) + V (φ{g}).

Lemma 15 For any π ∈ ∂V (0), pπ ∈ P .
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Proof. By Lemma 5, we have that for any π ∈ ∂V (0) and φ{f} ∈ ΦF ,

V◦(0;φ{f}) = min
π∈∂V (0)

〈φ{f}, π〉 ≤ 〈φ{f}, π〉 = 〈φ{f}, p
π〉.

By Lemma 4 and 14, we have that for any φ{f} ∈ ΦF ,

V◦(0;φ{f}) = inf
φ∈C(∆(Ω))

{V (φ+ φ{f})− V (φ)} ≥ inf
φ∈C(∆(Ω))

{V (φ) + V (φ{f} − V (φ))}

= V (φ{f}) = min
p∈P

〈φ{f}, p〉,

where the last equality follows from (27). Hence, for any π ∈ ∂V (0) and φ{f} ∈ ΦF ,

min
p∈P

〈φ{f}, p〉 ≤ 〈φ{f}, π〉 ⇐⇒ min
p∈P

∑
ω∈Ω

u(f(ω))p(ω) ≤
∑
ω∈Ω

u(f(ω))pπ(ω).

Hence, pπ ∈ P for any π ∈ ∂V (0). Otherwise, a separating hyperplane theorem yields a
contradiction.

Given Lemma 2 and equations (20) and (21), Lemma 15 implies PΠ ⊂ P for all Π ∈ Π.
Together with Lemma 13, we conclude that Π is prior consistent with P .

The necessity of the axiom is proved as follows: First of all, by the prior consistency
with P , PΠ = P for all Π ∈ Π. Thus,

U({f}) = max
Π∈Π

min
p∈PΠ

u(f) · p = min
p∈P

u(f) · p.

Take any F and f with F ∼ {f}. By the prior consistency with P ,

U(αF + (1− α){f}) = max
Π∈Π

min
π∈Π

buαF+(1−α){f}(π)

= max
Π∈Π

min
π∈Π

(αbuF (π) + (1− α)u(f) · pπ)

≥ max
Π∈Π

(αmin
π∈Π

buF (π) + (1− α)min
π∈Π

u(f) · pπ)

= max
Π∈Π

(αmin
π∈Π

buF (π) + (1− α) min
p∈PΠ

u(f) · p)

= max
Π∈Π

(αmin
π∈Π

buF (π) + (1− α)min
p∈P

u(f) · p)

= αmax
Π∈Π

min
π∈Π

buF (π) + (1− α)min
p∈P

u(f) · p

= αU(F ) + (1− α)U({f}).

Now take any F and f with F ∼ {f}. Since U({F}) = U({f}), the above claim implies

U(αF + (1− α){f}) ≥ αU(F ) + (1− α)U({f}) = U(F ),

which ensures Weak Concavity, as desired.
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D Proof of Theorem 2

We adapt the proof of uniqueness of the dual-self model in Chandrasekher, Frick, Iijima, and
Le Yaouanq [6, Proposition 5] with appropriately taking into account the prior consistency.
Let (u, P ,Π) be a CIC representation for ≿. We fix the unique functional V : C(∆(Ω)) → R
representing ≿ given in Lemma 11. By the construction of the representation in Theorem
1, V (φ) = maxΠ∈Π minπ∈Π〈φ, π〉.

Lemma 16 The half-space closure Π satisfies the prior consistency with P .

Proof. Take any (φ, λ) such that Π ⊂ Hφ,λ for some Π ∈ Π. Since Π satisfies the prior

consistency with P , Π ⊂ Π(P ). Hence, Π ⊂ Hφ,λ ∩ Π(P ). We have P = PΠ ⊂ PHφ,λ∩Π(P ).

Conversely, since Hφ,λ ∩ Π(P ) ⊂ Π(P ), PHφ,λ∩Π(P ) ⊂ PΠ(P ) = P . Therefore, PHφ,λ∩Π(P ) =
P . Since any element of Π is an accumulation point of the set of elements Hφ,λ ∩Π(P ), Π
satisfies the prior consistency.

Slight modification of the proof of Lemma D.1 in Chandrasekher, Frick, Iijima, and Le
Yaouanq [6] yields the following:

Lemma 17 Suppose that (u, P ,Π) is a CIC representation of ≿. Then, Π = cl{Hφ,λ ∩
Π(P ) |φ ∈ C(∆(Ω)), λ ≤ V (φ)}, where Hφ,λ = {π ∈ ∆(∆(Ω)) | 〈φ, π〉 ≥ λ} for some
λ ∈ R and φ ∈ C(∆(Ω)).

Proof. First, take any φ ∈ C(∆(Ω)) and λ ∈ R such that λ ≤ V (φ). Since (u, P ,Π)
represents ≿, there exists Π ∈ Π such that minπ∈Π〈φ, π〉 = V (φ). This implies Π ⊂
Hφ,V (φ) ⊂ Hφ,λ. Moreover, Π ⊂ Π(P ) by prior consistency of the representation. Thus,

Hφ,λ ∩ Π(P ) ∈ Π. Hence, we have that Π ⊃ cl{Hφ,λ ∩ Π(P ) |φ ∈ C(∆(Ω)), λ ≤ V (φ)}.
Next, consider any φ ∈ C(∆(Ω)) and λ ∈ R such that there exists Π′ ∈ Π with

Π′ ⊂ Hφ,λ. Since (u, P ,Π) represents ≿, V (φ) ≥ minπ∈Π′〈φ, π〉 ≥ minπ∈Hφ,λ〈φ, π〉. This

implies that λ ≤ V (φ). Hence, we have that Π ⊂ cl{Hφ,λ∩Π(P ) |φ ∈ C(∆(Ω)), λ ≤ V (φ)}.

Suppose that (u′, P
′
,Π′) is another CIC representation of≿. Since≿ on F is represented

by a maxmin expected utility model, we have that u′ is a positive affine transformation of
u and P = P

′
. Since Π(P ) = Π(P

′
), by Lemma 17 and the uniqueness of V , we have that

Π = Π′.
Conversely, suppose that u′ is a positive affine transformation of u, P

′
= P , and Π = Π′.

We show that (u′, P ,Π′) represents≿. It suffices to show that V (φ) = maxΠ∈Π′ minπ∈Π〈φ, π〉
for any φ ∈ C(∆(Ω)). Lemma 17 implies that Hφ,V (φ) ∩ Π(P ) ∈ Π = Π′. Hence, there
exists sequences of Π′

n ∈ Π′ and half-spaces Hn ⊃ Π′
n such that Hn → Hφ,V (φ). We

have that for any φ ∈ C(∆(Ω)), minπ∈Hφ,V (φ)
〈φ, π〉 = V (φ) = limnminπ∈Hn〈φ, π〉 and

minπ∈Hn〈φ, π〉 ≤ minπ∈Π′
n
〈φ, π〉 for all n. Hence,

V (φ) ≤ max
Π′∈Π′

min
π∈Π′

〈φ, π〉.
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To show the above equation holds with equality, suppose that there exists Π′′ ∈ Π′ such
that minπ∈Π′′〈φ, π〉 − V (φ) ≡ ε > 0. This implies that Hφ,V (φ)+ε ⊃ Π′′. Hence, Hφ,V (φ)+ε ∩
Π(P ) ∈ Π′ holds. Since Π′ = Π, this is a contradiction to Lemma 17.

Note that the half-space closure of Π is Π. The argument in the previous paragraph
shows that (u, P ,Π) represents ≿. Moreover, by Lemma 16, Π is prior-consistent. Thus,
(u, P ,Π) is a CIC representation of ≿.

E Proof of Theorem 3

For each preference ≿i, take utility ui, P
i
, and V i as in Lemma 11 and Theorem 1. Since

≿1 and ≿2 coincide with each other on F , u2 is an affine transformation of u1 and P
1
=

P
2
= P . Note that ≿1 is more averse to commitment than ≿2 if and only if u2 is an affine

transformation of u1, P
1
= P

2
= P , and V 1(φ) ≥ V 2(φ) for any φ ∈ C(∆(Ω)). We only

show that V 1(φ) ≥ V 2(φ) for any φ ∈ C(∆(Ω)) if and only if Π
1 ⊃ Π

2
.

Suppose that V 1(φ) ≥ V 2(φ) for any φ ∈ C(∆(Ω)). This implies that {Hφ,λ∩Π(P ) |φ ∈
C(∆(Ω)), λ ≤ V 1(φ)} ⊃ {Hφ,λ ∩Π(P ) |φ ∈ C(∆(Ω)), λ ≤ V 2(φ)}. By Lemma 17, we have

that Π
1 ⊃ Π

2
.

Conversely, if Π
1 ⊃ Π

2
, we have that max

Π∈Π1 minπ∈Π〈φ, π〉 ≥ max
Π∈Π2 minπ∈Π〈φ, π〉.

Since (ui, P
i
,Π

i
) with P

2
= P

1
is a CIC representation of ≿i for i = 1, 2, the inequality

above means that V 1(φ) ≥ V 2(φ) for all φ ∈ C(∆(Ω)).

F Proof of Theorem 4

First we show sufficiency. By Theorem 5, ≿ is represented by the General CIC representa-
tion (u,Π). Since ≿ satisfies Two-Sided Unboundedness, we have that u(X) = R. Since ≿
satisfies ISA, it satisfies Singleton Independence. Hence, an agent evaluate act f ∈ F by a
subjective expected utility representation:

V (φ{f}) = U({f}) =
∑
ω∈Ω

u(f(ω))p(ω) = 〈φ{f}, δp〉. (29)

We want to show that Π is prior consistent with p.

Lemma 18 For any φ ∈ C(∆(Ω)) and φ{f} ∈ ΦF ,

V (φ+ φ{f}) = V (φ) + V (φ{f}). (30)

Proof. First, we show that (30) holds for any φF ∈ ΦF and φ{f} ∈ ΦF . For any menu
F , we can take xF ∈ X such that F ∼ {xF}. ISA implies that αF + (1 − α){f} ∼
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α{xF} + (1 − α){f} for any act f and α ∈ (0, 1). Since ≿ on F is represented by a
subjective expected utility model, we have that for any α ∈ (0, 1),

V (αφF + (1− α)φ{f}) = V (φαF+(1−α){f}) = V (φα{xF }+(1−α){f}) = V (αφ{xF } + (1− α)φ{f})

= αV (φ{xF }) + (1− α)V (φ{f}) = αV (φF ) + (1− α)V (φ{f}).

By taking α = 1
2
, we have that V (1

2
φF +

1
2
φ{f}) =

1
2
V (φF )+

1
2
V (φ{f}). Since V is positively

homogeneous, we have that V (φF + φ{f}) = V (φF ) + V (φ{f}), where 1
2
φF + 1

2
φ{f} =

φ 1
2
F+ 1

2
{f} ∈ ΦF implies that φF + φ{f} ∈ ΦF. This implies that (30) holds for any φF ∈ ΦF

and φ{f} ∈ ΦF .
Second, we show that (30) holds for any φ ∈ C(∆(Ω)) and φ{f} ∈ ΦF . Since u(X) = R,

we have that ΦF + R = ΦF. Hence, a functional V : C(∆(Ω)) → R defined in Lemma 11
can be written as V (φ) = infφF∈D(φ) V (φF ), where D(φ) ≡ {φF ∈ ΦF |φF ≥ φ}. We show
that

inf
φF∈D(φ+φ{f})

V (φF ) = inf
φG∈D(φ)

V (φG + φ{f}). (31)

Since we can take φF = φG+φ{f}, infφF∈D(φ+φ{f}) V (φF ) ≤ infφG∈D(φ) V (φG+φ{f}) holds.
As (28) in Lemma 14, we can show that infφF∈D(φ+φ{f}) V (φF ) ≥ infφG∈D(φ) V (φG + φ{f}).

By (31), we have that for any φ ∈ C(∆(Ω)) and φ{f} ∈ ΦF ,

V (φ+ φ{f}) = inf
φF∈D(φ+φ{f})

V (φF ) = inf
φG∈D(φ)

V (φG + φ{f}) = inf
φG∈D(φ)

{V (φG) + V (φ{f})}

= inf
φG∈D(φ)

V (φG) + V (φ{f}) = V (φ) + V (φ{f}),

where the third equality follows from (30) for φF ∈ ΦF and φ{f} ∈ ΦF .

Lemma 19 For any π ∈ ∂V (0), pπ = p.

Proof. Lemma 4 and 18 imply that for any φ{f} ∈ ΦF ,

V ◦(0;φ{f}) = sup
φ∈C(∆(Ω))

{V (φ+ φ{f})− V (φ)} = sup
φ∈C(∆(Ω))

{V (φ) + V (φ{f})− V (φ)}

= V (φ{f}) =
〈
φ{f}, δ{p}

〉
,

where the last equality follows from (29). Similarly, Lemma 4 and 18 imply that for any
φ{f} ∈ ΦF ,

V◦(0;φ{f}) = inf
φ∈C(∆(Ω))

{V (φ+ φ{f})− V (φ)} = inf
φ∈C(∆(Ω))

{V (φ) + V (φ{f})− V (φ)}

= V (φ{f}) =
〈
φ{f}, δ{p}

〉
.

Fix π ∈ ∂V (0). By Lemma 5, we have that for any φ{f} ∈ ΦF ,〈
φ{f}, δ{p}

〉
= V◦(0;φ{f}) = min

π∈∂V (0)
〈φ{f}, π〉 ≤

〈
φ{f}, π

〉
≤ max

π∈∂V (0)
〈φ{f}, π〉 = V ◦(0; ξ) =

〈
φ{f}, δ{p}

〉
.
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Hence, we have that for any f ∈ F ,〈
φ{f}, δ{pπ}

〉
=

〈
φ{f}, δ{p}

〉
⇐⇒

∑
ω∈Ω

u(f(ω))pπ(ω) =
∑
ω∈Ω

u(f(ω))p(ω).

This implies that pπ = p for any π ∈ ∂V (0).

By Lemma 19, we have Π ⊂ K(∆(∆(Ω))) that is prior-consistent with p.

Turn to the necessity. We show that preference satisfies ISA. Take any menu F and
any act f . For any α ∈ [0, 1], it is enough to show that the representation U is mixture
linear for αF + (1− α){f}. Since buF (π) is mixture linear in F ,

U(αF + (1− α){f}) = max
Π∈Π

min
π∈Π

buαF+(1−α){f}(π)

= max
Π∈Π

min
π∈Π

(αbuF (π) + (1− α)bu{f}(π))

= max
Π∈Π

min
π∈Π

(αbuF (π) + (1− α)u(f) · p)

= αmax
Π∈Π

min
π∈Π

buF (π) + (1− α)u(f) · p

= αU(F ) + (1− α)U({f}),

as desired.

G Proof of Corollary 1

(1) If ≿ satisfies ACP and Preference for Flexibility, by the proof of Claim 5 in de Oliveira,
Denti, Mihm, and Ozbek [12], it satisfies IEPR. ≿ is represented by a CIC representation
(u, P ,Π) by Theorem 5.

Under basic axioms and Independence with Lotteries, V is translation invariant. This
implies that under ACP, V defined on ΦF is convex as shown in Claim 6 in de Oliveira,
Denti, Mihm, and Ozbek [12]. As mentioned in Claim 6 and 7 in de Oliveira, Denti,
Mihm, and Ozbek [12], an extension of V to C(∆(Ω)) in Lemma 11 preserves convexity.
If V defined on C(∆(Ω)) is convex, Proposition 2.2.7 in Clarke [9] implies that ∂V (0)
coincides with the subdifferential of V at 0. Hence, we have that for any φ ∈ C(∆(Ω)) and
π ∈ ∂V (0),

V (φ) ≥ V (0) + 〈φ− 0, π〉.

Since V (0) = 0, 〈φ, π〉 ≤ V (φ) for any φ ∈ C(∆(Ω)) and π ∈ ∂V (0). This implies that
Πφ = ∂V (0) for any φ ∈ C(∆(Ω)). Let Π = ∂V (0). Then, for any F ∈ F,

U(F ) = max
π∈Π

〈φF , π〉. (32)
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Take any acts f and g with {f} ∼ {g}. ACP and Weak Concavity jointly imply
{αf + (1 − α)g} ∼ {f} for all α ∈ (0, 1). By Maccheroni, Marinacci, and Rustichini [22,
Corollary 20 and Lemma 29], this condition ensures that ≿ on F is represented by a
subjective expected utility model with prior p. As in Claim 7 in de Oliveira, Denti, Mihm,
and Ozbek [12], we will claim that Π ⊂ {π ∈ ∆(∆(Ω)) | pπ = p}. Choose lotteries x and y
such that u(x) = 1 and u(y) = 0. Fix ω ∈ Ω and consider an act f yielding x on ω and y
otherwise. By (32), we have that for any π ∈ Π,

〈φ{f}, π〉 = 〈φ{f}, δpπ〉 = pπ(ω) ≤ V (φ{f}) = p(ω).

Hence, pπ(ω) ≤ p(ω) for any ω ∈ Ω. Since pπ ∈ ∆(Ω), pπ(ω) = p(ω) for any ω ∈ Ω. Thus,
we have that Π ⊂ {π ∈ ∆(∆(Ω)) | pπ = p}. Hence, (32) can be written as for any F ∈ F,

U(F ) = V (φF ) = max
π∈Π

〈φF , π〉 = max
π∈Π

buF (π).

(2) Since PCP implies Weak Concavity, the utility representation over singletons is
taken to be a maxmin expected utility with multiple priors P . As shown in part (1), V is
translation invariant. Since ≿ satisfies PCP, V defined on ΦF is concave. As mentioned in
Claim 6 and 7 in de Oliveira, Denti, Mihm, and Ozbek [12], an extension of V to C(∆(Ω)) in
Lemma 11 preserves concavity. Proposition 2.2.7 in Clarke [9] implies that ∂V (0) coincides
with the superdifferential of V at 0. Hence, we have that for any φ ∈ C(∆(Ω)) and
π ∈ ∂V (0),

V (φ) ≤ V (0) + 〈φ− 0, π〉.

Since V (0) = 0, 〈φ, π〉 ≥ V (φ) for any φ ∈ C(∆(Ω)) and π ∈ ∂V (0). This implies that
Πφ = ∂V (0) for any φ ∈ C(∆(Ω)). Let Π = ∂V (0). Then, for any F ∈ F,

U(F ) = min
π∈Π

〈φF , π〉. (33)

We show the prior consistency, that is, P (Π) = P . Since ≿ satisfies Weak Concavity
and the utility function over singletons is represented by a maxmin expected utility, by the
same argument as in Lemmas 13 and 15, the prior consistency holds.

(3) Since ICP implies both ACP and PCP, V on ΦF satisfies linearity. It can be extended
to C(∆(Ω)) with preserving linearity. By combining the arguments as in parts (1) and (2),
V (φ) = 〈φ, π〉 for any π ∈ ∂V (0). Fix an arbitrary π ∈ ∂V (0). As shown in part (1), the
preference over singletons is represented by a subjective utility representation with a single
prior p. By the same argument as in part (1), pπ = p, as desired.

H Proof of Proposition 3

(1) Assume that the preference is represented by the Costly CIC representation (u, P ,Π, c).
We show that preference satisfies Weak Independence with Lotteries. Take any menu F ,
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any lottery x, and any α ∈ [0, 1]. Since buF (π) is mixture linear in F ,

U(αF + (1− α){x}) = max
Π∈Π

{min
π∈Π

buαF+(1−α){x}(π)− c(Π)}

= max
Π∈Π

{min
π∈Π

(αbuF (π) + (1− α)bu{x}(π))− c(Π)}

= max
Π∈Π

{min
π∈Π

αbuF (π)− c(Π) + (1− α)u(x)}

= max
Π∈Π

{min
π∈Π

αbuF (π)− c(Π)}+ (1− α)u(x).

Therefore, for any other lottery y,

U(αF + (1− α){x}) ≥ U(αG+ (1− α){x})
⇐⇒ max

Π∈Π
{min
π∈Π

αbuF (π)− c(Π)} ≥ max
Π∈Π

{min
π∈Π

αbuG(π)− c(Π)}

⇐⇒ U(αF + (1− α){y}) ≥ U(αG+ (1− α){y}),

as desired.
Next, we show that preference satisfies IEPR. Take any menu F and βi ≥ 0 with∑
i βi = 1. Since by linearity

bu∑
i βiF

(π) =
∑
i

βib
u
F (π) = buF (π)

for any π,

U(F ) = max
Π∈Π

{min
π∈Π

buF (π)− c(Π)} = max
Π∈Π

{min
π∈Π

bu∑
i βiF

(π)− c(Π)} = U(
∑
i

βiF ),

as desired.
Next, we verify Star-Shaped. For all menus F and lotteries l,

U(αF + (1− α){l}) = max
Π∈Π

{min
π∈Π

αbuF (π)− c(Π)}+ (1− α)u(l)

= αmax
Π∈Π

{
min
π∈Π

buF (π)−
c(Π)

α

}
+ (1− α)u(l). (34)

Since c(Π) ≤ c(Π)
α

for all α ∈ (0, 1),

max
Π∈Π

{
min
π∈Π

buF (π)−
c(Π)

α

}
≤ max

Π∈Π

{
min
π∈Π

buF (π)− c(Π)

}
= U(F ).

Thus, from(34),

U(αF + (1− α){l}) ≤ αU(F ) + (1− α)U({l})
= αu(xF ) + (1− α)u(l)

= u(αxF + (1− α)l).
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(2) Assume that the preference is represented by the Costly CEC representation (u, {p},Π, c).
Take any menu F , any act {f}, and any α ∈ [0, 1]. Since buF (π) is mixture linear in F ,

U(αF + (1− α){f}) = max
Π∈Π

{min
π∈Π

buαF+(1−α){f}(π)− c(Π)}

= max
Π∈Π

{min
π∈Π

(αbuF (π) + (1− α)bu{f}(π))− c(Π)}

= max
Π∈Π

{min
π∈Π

αbuF (π)− c(Π) + (1− α)u(f) · p}

= max
Π∈Π

{min
π∈Π

αbuF (π)− c(Π)}+ (1− α)u(f) · p.

Therefore, for any other act g,

U(αF + (1− α){f}) ≥ U(αG+ (1− α){f})
⇐⇒ max

Π∈Π
{min
π∈Π

αbuF (π)− c(Π)} ≥ max
Π∈Π

{min
π∈Π

αbuG(π)− c(Π)}

⇐⇒ U(αF + (1− α){g}) ≥ U(αG+ (1− α){g}),

as desired.
Next, we verify Strong Star-Shaped. For all menus F and acts f , as shown above,

U(αF + (1− α){f}) = max
Π∈Π

{min
π∈Π

αbuF (π)− c(Π)}+ (1− α)u(f) · p

= αmax
Π∈Π

{
min
π∈Π

buF (π)−
c(Π)

α

}
+ (1− α)u(f) · p. (35)

Since c(Π) ≤ c(Π)
α

for all α ∈ (0, 1),

max
Π∈Π

{
min
π∈Π

buF (π)−
c(Π)

α

}
≤ max

Π∈Π

{
min
π∈Π

buF (π)− c(Π)

}
= U(F ).

Thus, from(35),
U(αF + (1− α){f}) ≤ αU(F ) + (1− α)U({f}).

Thus,

U(αF + (1− α){f}) ≤ αU(F ) + (1− α)U({f})
= αU({xF}) + (1− α)U({f})
= U({αxF + (1− α)f}).
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