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Chess. Though our novel framework transcends standard notions of risk
or uncertainty, for finite decision trees that may be truncated because of
bounded rationality, an extended form of Bayesian rationality is still possible,
with real-valued subjective evaluations instead of consequences attached to
some terminal nodes. Moreover, these subjective evaluations underlie, for
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Prologue

Grau, teurer Freund, ist alle Theorie;
Und grün des Lebens gold’ner Baum.2

— Mephistopheles in Goethe’s Faust, Part I.3

. . . he said that to finish [the] poem he could not get along without
the house because down in the cellar there was an Aleph. He
explained that an Aleph is one of the points in space that contains
all other points.

The Aleph’s diameter was probably little more than an inch, but
all space was there, actual and undiminished. Each thing (a mir-
ror’s face, let us say) was infinite things, since I distinctly saw
it from every angle of the universe. I saw the Aleph from every
point and angle, and in the Aleph I saw the earth and in the earth
the Aleph and in the Aleph the earth; I saw my own face and my
own bowels; I saw your face; and I felt dizzy and wept, for my
eyes had seen that secret and conjectured object whose name is
common to all men but which no man has looked upon — the
unimaginable universe. I felt infinite wonder, infinite pity. . . .
for Cantor’s Mengenlehre,4 [Aleph, or ℵ] is the symbol of transfi-
nite numbers, of which any part is as great as the whole.

Out on the street, going down the stairways inside Constitution
Station, riding the subway, every one of the faces seemed familiar
to me. I was afraid that not a single thing on earth would ever
again surprise me; I was afraid I would never again be free of all I
had seen. Happily, after a few sleepless nights, I was visited once
more by oblivion.

— Excerpts from Jorge Luis Borges El Aleph (1945), translated
by Norman Thomas Di Giovanni in collaboration with the author.

2One possible translation is: “Grey, dear friend, is all theory; and green the golden tree
of life.”

3The subject of this paper provided the content for my last seminar at Stanford before
retiring in early 2007. A day or two beforehand, Kenneth Arrow left me a phone message
asking if I had been inspired by this quotation from Goethe. While my answer had to be
negative, I was left feeling that this should have been the source of my inspiration.

4“Mengenlehre” is “set theory” in German.
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1 Background and Outline

1.1 Justifying Bayesian Rationality

In decision theory, Bayesian rationality is the hypothesis that a decision-
making agent makes choices whose consequences, which are generally lotter-
ies with both risky and uncertain outcomes, maximize the expected value of
a Bernoulli utility function Y 3 y 7→ u(y) ∈ R defined on a specified non-
empty consequence domain Y . For risky consequences which emerge from
what Anscombe and Aumann (1963) describe as a “roulette lottery”, there is
by definition an “objective” or hypothetical probability π(ω) ∈ [0, 1] of each
lottery outcome ω in a non-empty finite sample space Ω. For uncertain conse-
quences which emerge from what Anscombe and Aumann (1963) describe as
a “horse lottery”, Bayesian rationality requires there to be a “subjective” or
personal probability p(s) ∈ [0, 1] of each lottery outcome or state s in a non-
empty finite state space S. A general “Anscombe–Aumann” lottery specifies,
for each possible outcome s ∈ S of a horse lottery with subjective probabil-
ities, a suitable roulette lottery with objective probabilities λs(y) over con-
sequences y in the non-empty consequence domain Y . Then the appropriate
expected utility maximand is the double sum

∑
s∈S p(s)

∑
y∈Y λs(y)u(y) in-

volving products of both objective and subjective probabilities.
Past work has offered normative justifications for Bayesian rational be-

haviour in decision trees based upon:

1. either the “consequentialist” hypothesis set out in Hammond (1988a, b;
1998a, b; 1999) requiring that the range of possible Anscombe–Aumann
consequence lotteries which result from prescribed behaviour in any
finite decision tree, including any continuation decision tree, should be
explicable as the value of a suitably defined choice function defined on
the relevant domain of non-empty finite feasible sets of consequence
lotteries;

2. or, more recently, the associated concept of prerationality (Hammond,
2022) applied to weak base preference relations % defined on lottery
consequence domains.

When either consequentialism or prerationality is assumed, justifying Bayes-
ian rationality does require one additional well-known continuity axiom. This
axiom applies to preferences over each “Marschak (1950) triangle” which,
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given a triple {λ, µ, ν} of roulette lotteries of which no two are indifferent, is
defined as the set ∆({λ, µ, ν}) of all probability mixtures qλλ+ qµµ+ qνµ of
the three lotteries, where the three probability weights qλ, qµ, qν are all non-
negative with qλ+qµ+qν = 1. After suitable relabelling, one can assume that
the strict preference relation � satisfies λ � µ, λ � ν, and µ � ν. Then,
given the corresponding weak preference relation %, the continuity axiom
requires that the two sets

{α ∈ [0, 1] | αλ+ (1− α)ν % µ} and {α ∈ [0, 1] | µ % αλ+ (1− α)ν}

should both be closed subsets of the unit interval [0, 1] ⊂ R. Dropping
continuity would allow some kind of lexicographic preference relation over
lotteries which is not Bayesian rational.

Some of these earlier papers justifiying Bayesian rationality also invoked
the assumption of dynamic consistency. This assumption requires intended
or planned behaviour at the later decision nodes of a tree T to match actual
behaviour. Yet in reality actual behaviour is determined only at a decision
node of T that happens to be the initial node n0 of T . At any decision
node n of tree T that is not the initial node n0 of T , behaviour is specified by
treating n as the initial node of the continuation subtree T≥n that results from
eliminating all the nodes of tree T which do not weakly succeed n. Then, at
decision nodes n which come strictly later than the initial node n0 of T , by
specifying actual behaviour without reference to previous intentions or plans,
dynamic inconsistency between actions and plans or intentions is entirely
ruled out. In this way, dynamic consistency is satisfied by construction.

1.2 Bounded Rationality? Or Bounded Modelling?

“All models are wrong, but some are useful.”
— George Box (1919–2013)

Human ingenuity has led at least some of us to create puzzles and other
decision problems in order to amuse or instruct each other. Many children,
and some adults, derive satisfaction from solving jigsaw puzzles, or from
learning how not to lose at noughts and crosses, otherwise known as tic-
tac-toe. Other people try crossword puzzles, or sudoku, or Rubik’s cube.
Generations of students take courses in mathematics during which they are
expected to learn by solving, or understanding the solutions to, progressively
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more demanding exercises. In each of these examples the challenge is to find
a perfect solution to a well defined decision problem.

Typical decision problems, however, are not like puzzles or mathematical
exercises. Indeed, they are very often far too challenging for full Bayesian
rationality to be possible. This recognition, of course, was a key motivation
for Simon (1955, 1957) to introduce his concepts of bounded rationality and
satisficing. Yet satisficing seems hard to motivate except as the result of some
compromise which emerges when the benefits of a more intensive search for
a Bayesian optimal decision have been traded off against the additional cost
of that search. Thus, satisficing seems to apply better to the choice of what
decision model to analyse rather than to the choice of what decision to make
within a given model that is being analysed. For this reason, it seems that
a more satisfactory fundamental concept may be that of a bounded model.5

And in the case of decision trees, an obvious form of bounded model is a
truncated tree that results from pruning off one or more entire continuation
subtrees.

1.3 Enlivened but Truncated Decision Trees

So, motivated by several examples set out in later sections, including the
game of Chess, this paper argues that past work on Bayesian rationality in
decision trees is seriously limited in its relevance. This is because of the
failure to recognize any possibility that a decision maker’s decision tree may
be subject to “enlivenment” in the sense of enriching revisions that are needed
in order to recognize possibilities which, though in principle they should have
formed part of the original tree, had to be excluded because of computational
or other practical modelling limitations.

In order to allow the decision tree to change, even unpredictably, a frame-
work with “enlivened” decision trees is proposed. An entirely myopic agent
who follows the old adage “Don’t cross your bridges before you come to
them” — which Savage (1963, p. 16) in particular has discussed — will act
as though this enlivening is totally irrelevant. This leads to the agent lurching
from one model to the next, displaying hubris throughout.

Of course many future decisions and their uncertain consequences cannot
be modelled in any detail. Nevertheless, an agent with even a little sophisti-

5I should not claim any originality for this thought. See, for example, the discussion of
Simon, Shackle, and Chess in Section 8.2 of Earl and Littleboy (2014).
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cation should recognize that what matters for any one decision is the current
expectation of what, when viewed in retrospect, its ultimate ex post value
will be. Following ideas that Koopmans (1964) and Kreps (1990, 1992) devel-
oped in order to discuss the preference for flexibility, an agent should seek to
determine these expected valuations as reliably as possible, using whatever
limited evidence is deemed to be relevant, as well as what can be handled
within whatever bounded resources the agent can afford to allocate to de-
cision analysis. See also Dekel et al. (2001, 2005) and many successors for
related ideas in the context of decision making with unforeseen contingencies
whose possibility is, nevertheless, foreseen by an apparently omniscient and
hubristic decision analyst. See also the work on unawareness in decisions and
games by, inter alia, Schipper (2014a, b), Halpern and Rêgo (2014), Grant
et al. (2015a, b), and especially the related work on growing awareness and
reverse Bayesianism by Vierø (2009, 2021) and by Karni and Vierø (2013,
2015, 2017).6

We emphasize that the present paper differs from this earlier work on
unforeseen contingencies or unawareness by not relying on the existence of
any “augmented conceivable state space” of the kind defined in Karni and
Vierø (2017, p. 304). Instead, initially we allow the relevant state space
to grow entirely unpredictably as a result of the dynamic process that we
call “enlivenment”. Specifically, though a decision-making agent may be
aware of the possibility of their own unawareness, they are unable even to
formulate a practical model which is based, as usual, on a comprehensive
space of all conceivably possible states. This enrichment of the previous
concepts of unforeseen contingencies or unawareness, which was introduced
informally in Hammond (2007), is inspired in part by Schumpeter’s (1911,
1934) concept of entrepreneurship, as well as by Shackle’s (1953) concept of
potential surprise.7 The concept of an enlivened decision tree was motivated
in part by the classical example of Odysseus and the Sirens discussed in
Section 3.

That said, a completely specified enlivened decision tree, which is never
subject to any further enlivenment, could be regarded as falling within a
universal augmented conceivable state space. As discussed above, the exis-
tence of such a universal state space raises conceptual problems. To avoid

6Other relevant work on unawareness includes the papers published in the special issue
of Mathematical Social Sciences edited by Schipper (2014a), as well as those cited in Vierø
(2021).

7See Metcalfe et al. (2021) for a recent discussion of links between these two concepts.
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these, we recognize the relevance of recursively enlivened decision trees whose
growth can never be fully described in a single universal model. Neverthe-
less, even a fully enlivened tree can still be reduced to a minimally enlivened
tree with random outcomes that, instead of consequence lotteries, are subjec-
tive evaluations attached to the terminal nodes of a truncated decision tree.
As discussed in Section 7.5, this approach to valuing a continuation subtree
which can never be completely modelled was the basis of the successful Deep
Fritz and then Stockfish open source engines for computer chess. Eventually,
however, Stockfish has been supplanted by AlphaZero which results from a
special kind of artificial intelligence.

1.4 Outline

Section 2 briefly reviews some distinctions between unbounded and bounded
rationality, including as prominent examples of the latter both Simon’s con-
cept of procedural rationality, as well as Manzini and Mariotti’s (2007) “ra-
tional shortlist” method.

Next, Section 3 revisits the well known Homeric example of Odysseus
and the Sirens. Previous work such as Strotz (1956), Pollak (1968), Ham-
mond (1976) and Elster (1979) has typically regarded this as a prominent
example of changing tastes, illustrating the distinction between näıve and
sophisticated choice, as well as the potential value of commitment devices.
Here, by contrast, this Homeric example is viewed as a mythical decision tree
which the sorceress Kirke (or Circe) enlivened as the sage advice that she
was offering Odysseus progressed through several stages.8

The next two Sections 4 and 5 focus on two more particular examples.
The first is of a consumer who, as an investor, chooses a portfolio of financial
assets in order to maximize a two-period quadratic utility function subject
to a linear budget constraint. Enlivening this consumer’s decision problem
could merely affect parameter values, but it could also allow the possibility
that new commodities, which may even not yet have been invented, could
become relevant.

In Section 5, the second of these two examples concerns the game of Chess,
whether played by computers or by humans. It offers a cursory explanation of
how Monte Carlo tree simulation can allow a computer algorithm to evaluate
positions that arise after possible future moves have been analysed in detail as

8In Homeric Greek, the spelling of her name is Kίρκη.
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far as possible. It also presents a brief case study of a particularly unfortunate
human move, described at the time as “the blunder of the century”. This
is seen as one particularly prominent player’s failure to revise his bounded
model of how the game was likely to proceed.

The main idea of the paper is set out and developed in Sections 6–9.
First, Section 6 provides a summary of the key concepts we need to describe
Bayesian rational behaviour in classical “unenlivened” finite decision trees.
A key tool used in later analysis is the evaluation v(T ) of any decision tree T .
This is defined as the normalized expected utility generated by any conse-
quence lottery that can result from deciding optimally at each decision node
of T . Following the principle of optimality in dynamic programming, this
evaluation can be calculated by backward recursion, starting at the terminal
nodes of T , each of which has a specified consequence that generally takes
the form of a lottery.

Any chess player who was unboundedly rational, and could always make
the calculations needed to evaluate any decision tree perfectly, would always
play a perfect game. Evidently human players, and even the strongest chess
playing computer algorithms, can analyse only bounded decision models.
Recognizing this fact, Section 7 introduces the notion of a bounded model in
the form of a “truncated” decision tree. With consequences specified only for
terminal nodes of a tree that has not been truncated, the backward recursion
method of evaluation fails for nodes of a truncated decision tree that may
eventually be succeeded by “truncation” nodes rather than by terminal nodes
of the original complete tree. Section 7 proposes filling this gap by assigning
to each truncation node a real-valued estimate of what the evaluation of the
missing continuation subtree starting there would have been if a complete
analysis of that subtree were possible.

Section 8 turns at last to a more formal analysis of enlivened decision
trees. Initially the focus of is on a special kind of “minimal” enlivenment
that is like grafting a new continuation subtree onto the middle of just one
edge of the original tree. The initial node of this new enlivening continuation
subtree is then an extra node on this edge. This initial extra node is an
event node where a horse lottery determines whether or not the decision
maker gets taken outside the original tree. There is also discussion of: (i)
“simply” enlivened decision trees which result from adding a finite set of
minimal enlivenments to the edges of the original tree, at most one to each
edge; (ii) “recursively” enlivened decision trees which result when a simply
enlivened decision tree is further enlivened.
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An agent whose decisions in an enlivened decision tree are fully Bayesian
rational is effectively acting as an unboundedly rational agent would if the en-
livened decision tree really were the true and complete model of their decision
problem. This complete model plays the role of the “augmented conceivable
state space” considered by Karni and Vierø (2017, p. 304), amongst others,
whose use was criticised in Section 1.3. Such a space seems close in spirit to
the fictional device that Borges calls the “Aleph”. Instead, Section 9 weak-
ens Bayesian rationality when facing an enlivened decision tree to the much
less demanding requirement of Bayesian rationality in a truncation of the
enlivened decision tree, as discussed in Section 7.

In particular, Section 9.3 then states the main result of the paper claiming
that the previous characterizations of Bayesian rationality in finite decision
trees which were described in Section 1.1 can be adapted to our new setting
of enlivened but truncated decision trees. The subsequent Section 9.4 com-
pares the arbitrariness of utilities and subjective probabilities in our model of
Bayesian rationality with enlivened evaluations to the arbitrariness of those
concepts in the Anscombe and Aumann (1963) model of subjective proba-
bility.

The concluding Section 10 starts, in Section 10.1, by a brief discussion of
how to extend the results of this paper to the framework in Hammond and
Troccoli Moretti (2025) where decision trees may have non-terminal timed
consequence nodes. These include consequence nodes with “menu conse-
quences” which depend on the continuation subtree whose initial node is the
consequence node. Section 10.2 then analyses briefly the concept of “reverse
Bayesianism” as was mentioned in Section 1.3. Next, Section 10.3 offers
a brief discussion of recent work by Ullmann-Margalit (2006), Paul (2014,
2015a, b, c) and other philosophers who have introduced the concept of a
“transformative experience”. Finally, Section 10.4 offers a brief concluding
summary.

2 Beyond Unbounded Rationality

To see a World in a Grain of Sand
And a Heaven in a Wild Flower,
Hold Infinity in the palm of your hand
And Eternity in an hour.
— From William Blake’s “Auguries of Innocence”
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2.1 Unbounded versus Procedural Rationality

Simon’s (1955, 1957) famous concept of “bounded rationality” may perhaps
best be defined by its negation. Decision agents who are unboundedly rational
make perfect decisions based on perfect models of all the possible acts they
could choose, along with all their potential consequences. The result could be
the rather disturbing kind of complete model so artfully described in Jorges
Luis Borges’ short story “El Aleph”, from which extracts are quoted in the
prologue.

The definition of unbounded rationality in perfect models remains the
same no matter whether the consequences are certain (determinate), or else,
using the terminology due to Anscombe and Aumann (1963): (i) risky, with
hypothetical “objective” probabilities as in a roulette lottery; (ii) uncertain,
with personal or “subjective” probabilities as in a horse lottery. Such un-
bounded rationality would threaten to make games as complicated and en-
thralling as chess or Go no more interesting than the children’s game of
noughts and crosses, also known as “tic-tac-toe”.9 And there would be no
such thing as the “law of unintended consequences”; every possible conse-
quence should be calculated, making it in some sense intentional, even as the
perhaps unfortunate outcome of a risky decision.

In addition to bounded rationality, Simon advanced the important re-
lated idea of “procedural rationality”. This recognizes that decision proce-
dures could be rational, even if they lead to decisions that are irrational in
the sense of violating unbounded rationality. He emphasized concepts like
aspiration level, along with satisficing. The latter appears to mean finding a
decision that reaches the aspiration level, and making a decision that seems
good enough rather than optimal. But optimal (or even just flexible) search
suggests that if the aspiration level is reached quickly and easily, it is too
undemanding and so should be raised.

9Note that in Chess, the “Lomonosov tablebases” that are distributed online at
http://tb7.chessok.com/ currently specify perfect play starting from any legally pos-
sible position provided that there is a total of no more than seven pieces of either colour
left on the board, including both kings. The usual game of Chess starts, of course, with
each of the two players having 16 pieces on the board.
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2.2 Rational Shortlists

The normative framework we propose, by contrast, suggests that satisficing
behaviour should occur, not within a given decision model, but in choosing
how much detail to include in the model and how much to exclude from it.
Then ultimately behaviour should be optimal relative to whatever bounded
model has been selected for analysis.

One way to use a bounded model involves the “rational shortlist” method
that Manzini and Mariotti (2007) introduced to discuss their concept of “se-
quential rationalizability” for the case of decision problems whose acts have
only determinate consequences. Their idea is that, given an incoveniently
large feasible set of options, at an initial stage the agent could shortlist a
relatively small subset for later serious consideration. Moreover, this short-
list should be small enough to make finding a fully optimal decision amongst
those that are shortlisted a manageable decision problem. Thus, any short-
list can be thought of as a bounded model of the feasible set. Also, when
it is recognized that observation and/or computation can be costly, work
on “rational inattention” inspired by Sims (2003, 2011) and by Hansen and
Sargent (2007) considers what bounded decision model may be optimal.

The choice of shortlist can be supposed to emerge rather arbitrarily, even
randomly, from some kind of boundedly rational search procedure. Of course,
some options may be much more likely to be shortlisted than others. Also, if
the composition of the shortlist is regarded as random, the different random
variables indicating whether each option belongs to the shortlist may well be
correlated.

Once the shortlist has been determined at the first stage, however, it is
entirely reasonable to assume that, at a subsequent second stage, the agent
indeed selects an optimal element among those that have been shortlisted.
That is, choice from within the shortlist satisfies what Simon (1955, 1957)
would call “substantitive rationality”.

2.3 Other Bounded Decision Models

Shortlisting can be viewed as a particular form of procedural rationality,
involving a two-stage procedure. The main point to be made here, however,
is that whatever the shortlist may be, it represents a bounded model of the
full decision problem. Indeed, limitations like the inability of computers to
play chess perfectly apply to all difficult decision problems, including most
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of those that arise in life rather than in the oversimplified models that are
typically analysed and applied by economists and other decision scientists.
For this reason, any model we use to inform our decision-making should be
flexible enough to allow graceful adaptation to potential changes that any
practical model must otherwise ignore.

Suppose an effort really is made to take Simon’s “procedural rationality”
idea as seriously as possible. Specifically, it is presumably interesting to
explore the implications of assuming that:

1. agents’ time, attention, and computational resources are far too limited
for all but simplified models;

2. and in fact they confine themselves to bounded models which are suf-
ficiently simple that they really can find the decision that is optimal
within the confines of their bounded model.

Once one recognizes, however, that the model which an agent uses for
making decisions is bounded, then one must also recognize that events may
eventually force consideration of an expanded or “enlivened” model that
includes unmodelled changes.

3 Odysseus and the Sirens Revisited

3.1 A Näıve Sailor’s Model

As our first “classical” example of an enlivened decision tree, we reconsider
the Homeric myth of Odysseus and the Sirens. According to this epic myth,
näıve sailors whose shortest sea route passed near the Sirens’ island had
perhaps in the past used a bounded model of their decision tree like the one
illustrated in Figure 1.10 Specifically, these näıve sailors acted as though they
thought that their choice was between:

• either going near the Sirens’ island and reaching their destination early
by a direct route;

10Note that in Figures 1–4, each square box indicates a terminal node with a consequence
described by the word in the box. Apart from these terminal nodes, all other nodes of the
tree are decision nodes. Apart from the initial decision node labelled “start”, each other
decision node is labelled with a word or phrase describing what is the last action that
would lead to that node.
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• or avoiding the Sirens’ island and arriving late after a detour.

start

avoid

late

go near

early

Figure 1: Näıve Sailor

start

avoid

late

go near

go on

early

tarry

die

Figure 2: Sophisticated Sailor

3.2 A Sophisticated Sailor’s Model

According to Homer, however, Odysseus has the sorceress Kirke as a su-
pernaturally well-informed adviser. She warned Odysseus that the Sirens’
singing had the power to lure unwary sailors to their deaths, and that the
meadows on the Sirens’ island were littered with sailors’ bones. So if any
näıve sailor came within earshot of the Sirens by choosing go near in the
decision tree shown in Figure 1, they would find themselves facing instead
the decision node marked go near in the enlivened and so expanded decision
tree shown in Figure 2. At this node in the enlivened tree, their apparent
choice would be:

• either go on home after hearing the Sirens,

• or tarry, enchanted by their singing, and die on their island, before ever
reaching their intended destination.

Of course, the added feature was that, after hearing the Sirens, no sailor
had ever exercised enough will-power to escape the island. This is the es-
sential characteristic of what, in Hammond (1976), was called “potential
addict” example of changing tastes. Faced with the decision tree of Figure 2,
a sophisticated sailor who understands the persuasive power of the Sirens’
singing would avoid their island and stay out of earshot, even at the cost of
only reaching their intended destination after a significant delay.
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3.3 Kirke’s First Enlivened Model for Odysseus

start

avoid

late

go near

wax

early

no wax

go on

early

tarry

die

Figure 3: Kirke’s First Model

start

avoid
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go near

wax

bind

hear

free

early

no wax

go on

early

tarry

die

Figure 4: Kirke’s Final Model

Kirke’s advice was not confined to a warning, however. Rather routine
and unheroic stories about avoiding the Sirens’ island and getting back to
Ithaca somewhat late by a roundabout route do not constitute memorable
epics. Instead Kirke drew attention to the possibility of sailing safely past
the Sirens’ island, provided the precaution was taken of stopping up all the
sailors’ ears with wax. Thus, after deciding to approach the Sirens’ island,
but before getting within earshot, the choice at the node go near in Figure 3
would be:

• either wax all the crew’s ears (including those of Odysseus himself), so
none of them hears the Sirens;

• or use no wax, like earlier näıve sailors whose bones now litter the
Sirens’ meadow.

3.4 Kirke’s Final Enlivened Model for Odysseus

A much more interesting epic, however, is the one that Homer has given us.
Homer had Kirke advise Odysseus on an even better course of action which
allowed Odysseus, at least, to hear the Sirens and yet escape with his life.
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Indeed, Odysseus was advised that, in addition to arranging for the ears of
all his crew to be waxed, he should have himself bound tightly to the mast.
Also, his crew should be given strict instructions that, in response to any
pleas for release that they see Odysseus making, not only should these pleas
be ignored, but also the tightness of his bounds should be increased even
more. Thus, Kirke’s final model for Odysseus includes an extra choice node
marked wax in Figure 4, where the choice is:

• either bind Odysseus to the mast, with ears unwaxed so he can hear
the Sirens,

• or leave Odysseus free but with ears waxed like the rest of the crew.

3.5 Toward Enlivened Decision Trees

The earlier näıve sailors whose bones littered the Sirens’ meadow had a model
like that in Figure 1. Once they had heard the Sirens’ singing and so learned
of their existence, they may have realized too late that a more appropriate
model would have been like that in Figure 2. Odysseus (and his crew) were
fortunate enough to be provided with a much more useful model, going even
beyond Figure 2 to Figure 3 in the first instance, then ultimately to Figure 4.

Each decision tree in Figures 1–4 is lifeless when considered in isolation.
The four trees together, however, tell an epic tale of learning. But it is
not the usual statistical model of learning more and more about the state
of the world within a fixed sample space. Rather, the set of possibilities
is expanding, as more and more possibilities are included in the enriched
model. By introducing the term “enlivened tree”, I have not resisted the
temptation to draw an analogy with a live growing tree. Nor of suggesting a
strong analogy to the works of Schumpeter (1911, 1934) on innovation, and
of Shackle (1953) on “potential surprise” — see Hammond (2007) for further
discussion.
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4 A Linear–Quadratic Portfolio Problem

4.1 A Two-Period Portfolio Problem

Our first example concerns a consumer with a two-period Bernoulli utility
function that takes the quadratic form

u(x1,x2) = −1
2
(x1 − a1)>Q1(x1 − a1)− 1

2
(x2 − a2)>Q2(x2 − a2) (1)

Here x1 and x2 denote finite-dimensional consumption vectors in the two
periods, which may possibly have different dimensions, whereas a1 and a2

are corresponding parameter vectors. Furthermore, assume that Q1, Q2 are
symmetric and positive definite square matrices of appropriate dimension.

Suppose that the consumer faces two budget constraints, one each period,
which can be written as

p>1 x1 + q>b = m1 and p>2 x2 = m2 + r>b (2)

where b denotes a finite-dimensional portfolio vector of net asset holdings at
the end of period 1, with q as the asset price vector in period 1, and then r as
the gross return vector. Of course p1 and p2 denote commodity price vectors
each period, both assumed to be strictly positive, whereas m1,m2 ∈ R are
outside wealth transfers. We allow a2, r and m2 all to be uncertain, but
treat p2 as certain, just as Hicks (1946) did when he used point expectations
of future prices in his theory of temporary equilibrium.11 For simplicity we
also assume that the symmetric matrix Q2 is known in period 1. Finally, we
assume that the random gross return vector r is stochastically independent
of both random variables a2 and m2.

4.2 The Second-Period Optimum

By the start of period 2, we assume that the parameter vector a2, the gross
return vector r, and unearned income m2 have all become known, along
with the portfolio vector b which is pre-determined by the consumer’s own
choice in period 1, Accordingly, the consumer’s second-period optimization
problem, which is independent of whatever x1 is chosen in period 1, reduces
to

max
x2

{
−1

2
(x2 − a2)>Q2(x2 − a2)

}
subject to p>2 x2 = m2 + r>b (3)

11For a somewhat similar idea, see Myerson (1983).
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To solve this constrained maximization problem, introduce the Lagrangian

Lλ2(x2) = −1
2
(x2 − a2)>Q2(x2 − a2)− λ2(p>2 x2 −m2 − r>b) (4)

Then Lλ2(x2) is concave as a function of x2. So it is maximized at any point
x2 that satisfies the first-order condition

0 = L′λ2(x2) = −(x2 − a2)>Q2 − λ2p
>
2 (5)

Because Q2 is assumed to be positive definite and so invertible, this first-
order condition is evidently equivalent to

(x2 − a2)> = −λ2p
>
2 Q−1

2 (6)

or, after transposing and rearranging, to

x2 = a2 − λ2Q
−1
2 p2 (7)

Substituting this into the budget equation in (3) gives

p>2 x2 = p>2 (a2 − λ2Q
−1
2 p2) = m2 + r>b (8)

implying that

λ2 =
p>2 a2 −m2 − r>b

p>2 Q−1
2 p2

(9)

Note that the solution λ2 exists because p2 6= 0 and Q2 is positive definite.
Finally, we can combine (9) with (7) to determine the optimal demand vector,
which is

x∗2 = a2 −
p>2 a2 −m2 − r>b

p>2 Q−1
2 p2

Q−1
2 p2 (10)

Of course, for this solution to be economically sensible, we should require
that λ2 ≥ 0, or equivalently, that p>2 a2 ≥ m2 + r>b. Because this inequality
involves the asset vector b chosen in the first period, we will return to this
issue later after deriving the consumer’s optimal decisions in the first period.

Note that this solution implies that ex post, after a2, r and m2 have all
become known and x∗2 has been chosen optimally, equations (7) and (9) imply
that the consumer’s maximized second period utility is

−1
2
(x∗2 − a2)>Q2(x∗2 − a2) = −1

2
λ2

2p
>
2 Q−1

2 Q2Q
−1
2 p2

= −(p>2 a2 −m2 − r>b)2

2p>2 Q−1
2 p2

(11)
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4.3 First-Period Expected Utility

Coming back to the first period, we have assumed that p2 and Q2 are both
known in advance. So after using (11), the ex ante expected value of the
intertemporal Bernoulli utility function (1) can be expressed as the function

v(x1,b) = −1
2
(x1 − a1)>Q1(x1 − a1)− E(p>2 a2 −m2 − r>b)2

2p>2 Q−1
2 p2

(12)

of the first-period choice variables x1 and b. The numerator of the fraction
in the second term of the right-hand side of (12) can be expanded as

E(p>2 a2 −m2 − r>b)2

= E(p>2 a2 −m2)2 − 2E[(p>2 a2 −m2)(r>b)] + E(r>b)2 (13)

Let ā2 := Ea2, m̄2 := Em2 and r̄ := Er denote the respective means, all of
which are assumed to exist. Our assumption that r is stochastically inde-
pendent of a2 and m2 implies that the middle term on the right-hand side of
(13) reduces to

E[(p>2 a2 −m2)(r>b)] = (p>2 ā2 − m̄2)(r̄>b) (14)

As for the last term on the right-hand side of (13), note that

(r>b)2 = (b>r) (r>b) = b>(r r>)b and so E(r>b)2 = b>Rb (15)

where R denotes the symmetric square matrix E[rr>] of second moments
of returns, which we also assume exists. The matrix R is positive definite
under the assumption that the second moment E(r>b)2 of the return to any
portfolio b 6= 0 is always positive.

Substituting from (14) and (15) in (13) gives

E(p>2 a2 −m2 − r>b)2 = E(p>2 a2 −m2)2 − 2(p>2 ā2 − m̄2)r̄>b + b>Rb

= c+ (b∗ − b)>R(b∗ − b) (16)

where b∗>R = (p>2 ā2 − m̄2)r̄>, implying that b∗ = R−1r̄(p>2 ā2 − m̄2), and
also

c = E(p>2 a2−m2)2−b∗>Rb∗ = E(p>2 a2−m2)2−(p>2 ā2−m̄2)2r̄>R−1r̄ (17)

Finally, therefore, after ignoring an irrelevant additive constant, the con-
sumer’s first-period maximand can be written as the quadratic form

v(x1,b) = −1
2
(x1 − a1)>Q1(x1 − a1)− 1

2
(b∗ − b)>S(b∗ − b) (18)

where S := R/p>2 Q−1
2 p2.
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4.4 The First-Period Optimization Problem

The consumer’s first-period optimization is therefore to maximise the func-
tion (18) w.r.t. x1 and b, subject to the budget constraint p>1 x1 +q>b = m1.
We solve this constrained maximization problem by introducing the La-
grangian

Lλ1(x1,b) = −1
2
(x1 − a1)>Q1(x1 − a1)− 1

2
(b∗ − b)>S(b∗ − b)

− λ1(p>1 x1 + q>b−m1) (19)

which is concave as a function of (x1,b), so is maximized w.r.t. (x1,b) when
the two first-order conditions

0 = L′λ1,x1
= −(x1 − a1)>Q1 − λ1p

>
1

and 0 = L′λ1,b = (b∗ − b)>S− λ1q
> (20)

are both satisfied. Because both Q1 and S are positive definite and so in-
vertible, these first-order conditions are equivalent to

(x1 − a1)> = −λ1p
>
1 Q−1

1 and (b∗ − b)> = λ1q
>S−1 (21)

or, after transposing and rearranging, to

x1 = a1 − λ1Q
−1
1 p1 and b = b∗ − λ1S

−1q (22)

Substituting these into the budget equation gives

p>1 x1 + q>b = p>1 (a1 − λ1Q
−1
1 p1) + q>(b∗ − λ1S

−1q) = m1 (23)

implying that

λ1 =
p>1 a1 + q>b∗ −m1

p>1 Q−1
1 p1 + q>S−1q

(24)

Note that this is well defined because p1 6= 0 and q 6= 0, whereas both
symmetric matrices Q1 and S are positive definite, and so invertible with
inverses that are positive definite.12 Finally, we can use (22) and (24) in

12A standard result in matrix theory is that any symmetric n × n matrix A can be
diagonalized, in the sense that there exists an orthogonal matrix E (meaning that E−1 =
E>) and a diagonal matrix D such that EAE> = D and so A = E>DE. Then it is easy to
see that the following four conditions are all logically equivalent: (i) A is positive definite;
(ii) all diagonal elements of D are positive; (iii) D−1 exists and all its diagonal elements
are positive; (iv) A−1 = E>D−1E exists and is positive definite.
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order to determine the optimal commodity and asset demand vectors, which
are

x∗1 = a1 −
p>1 a1 + q>b∗ −m1

p>1 Q−1
1 p1 + q>S−1q

Q−1
1 p1 (25)

and b = b∗ − p>1 a1 + q>b∗ −m1

p>1 Q−1
1 p1 + q>S−1q

S−1q (26)

Of course, for this solution to be economically sensible, we should require
that λ1 ≥ 0, or equivalently, that

p>1 a1 + q>b∗ = p>1 a1 + q>R−1r̄ (p>2 ā2 − m̄2) ≥ m1 (27)

Furthermore, for the second-period solution we found previously to be eco-
nomically sensible, we should require also that p>2 a2 ≥ m2 + r>b. Because
the two random variables p>2 a2 −m2 and r>b are independent, this require-
ment implies that there must be a real number α for which, given the optimal
choice of b, one has

p>2 a2 −m2 ≥ α ≥ r>b (28)

for almost all possible values of the random pair (p>2 a2 −m2, r
>b) ∈ R2.

4.5 An Enlivened Decision Problem

To enliven this linear–quadratic decision model, we consider the possibil-
ity that unforeseeable changes occur after the pair (x1,b) has already been
chosen in period 1. In general, there could be a new second period objective

−1
2
(x+

2 − a+
2 )>Q+

2 (x+
2 − a+

2 ) (29)

in which the dimension of the vectors x+
2 , a+

2 and the corresponding dimen-
sion of the positive definite square matrix Q+

2 may have increased, perhaps
because of new commodities. Of course, the second-period budget constraint
must also change; we write it as

p+
2
> x+

2 ≤ r> b +m2 (30)

with the same asset vector b as before, since that is already determined by
the consumer’s decisions in period 1. The joint distribution of the triple
(a+

2 ,m2, r) may also change, as indeed it must if the dimension of a+
2 exceeds

that of a2.
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If these changes could be known in advance, then in period 1 the consumer
would face the problem of maximizing, instead of the quadratic evaluation
function v(x1,b) defined by (18), a revised quadratic objective function

v+(x1,b) = −1
2
(x1 − a1)>Q1(x1 − a1)− 1

2
(b+∗ − b)>S+(b+∗ − b) (31)

of the same choice variables x1 and b, subject to the same first-period budget
constraint p>1 x1 + q>b = m1 as in (2). What has changed, however, are the
vector parameter b+∗ and matrix parameter S+ which appear in the last term
of (31), whose changes are now entirely unpredictable. Enlivenment requires
recognizing that these parameters must be treated as themselves uncertain.
A Bayesian rational consumer who remains convinced that some quadratic
model is still appropriate will, by definition, hold some subjective proba-
bility beliefs concerning the unpredictable pair (b̃∗, S̃) of parameters that
characterize each member of the parametric family of quadratic evaluation
functions

ṽ(x1,b; b̃∗, S̃) ≡ −1
2
(x1 − a1)>Q1(x1 − a1)− 1

2
(b̃∗ − b)>S̃(b̃∗ − b) (32)

Rationality, in the sense of subjective expected utility maximization, requires
optimal policy in period 1 to maximize the expected value Ê[ṽ(x1,b; b̃∗, S̃)]
of the function (32) w.r.t. probabilistic beliefs concerning the parameter pair

(b̃∗, S̃). Such an expectation, however, after ignoring an irrelevant additive
constant, can be expressed in the convenient form

Ê[ṽ(x1,b; b̃∗, S̃)] ≡ −1
2
(x1 − a1)>Q1(x1 − a1)− 1

2
(b̂∗ − b)>Ŝ(b̂∗ − b) (33)

This involves the appropriate subjective expected value Ŝ := Ê[S̃] of the

random matrix S̃. Note that the matrix Ŝ is positive definite, and so invert-
ible, as the expected value of the random positive definite matrix S̃.13 This
allows the vector b̂∗ to be chosen uniquely so that it satisfies the first-order
condition Ŝ b̂∗ = Ê[S̃ b̃∗], implying that

b̂∗ = Ŝ−1 Ê[S̃ b̃∗] = (Ê[S̃])−1 Ê[S̃ b̃∗] (34)

13To show this, note that if the random symmetric matrix S̃ is almost surely positive
definite, then for all u ∈ Rn \ {0} one has u>(ÊS̃)u = Ê(u>S̃u) > 0.
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5 Computer Chess

5.1 Simplified Chess

Consider the decision problem faced by a chess player who has to choose a
move when confronted by a known position denoted by n0. To specify this
position requires saying whose turn it is to move, and what piece, if any,
occupies each of the 64 squares on the board.14 Then let N1 := N+1(n0)
denote the set consisting of all those positions that can be reached by a move
which is legal in position n0.

Recall that, in the game of Chess, a player’s King is in check just in case
it is attacked by an opponent’s piece, in the sense that, in the absence of
an intervening move, that piece could capture the King. A player’s move is
legal only if it does not leave that player’s King in check. If the player whose
turn it is to move has no legal move, then: (i) either that player’s King in
check, in which case that player has been checkmated and loses the game;
(ii) or that player’s King is not in check, in which case there is a stalemate
and the game is a draw.

Following the famous result of Zermelo (1913), as well as von Neumann’s
(1928) pioneering analysis of maximin or minimax strategies in two-person
“zero-sum” games of perfect information, given best play by both the White
and Black players, there is an objective result function

N1 3 n1 7→ r+(n1) ∈ {W,D,L} (35)

This function maps each possible position n1 ∈ N1 to a determinate result
r+(n1) ∈ {W,D,L} of the game that, for the player who is about to move, is
either a win (W ), or a draw (D), or a loss (L). This result can be converted
into a payoff using a scoring rule such as 1 for a win for White, or −1 for
a win for Black, but 0 for a draw. Then, given a continuation subgame of
Chess that starts from the position n, the result of best play by both players

14Actually, even in a simplified version of chess — without either clocks that are used
to enforce limits on each player’s total thinking time, or drawing rules that go beyond
stalemate, threefold repetition, or perpetual check — the rules of chess specify that: (i)
castling is disallowed if either the king or relevant rook has ever been moved previously; (ii)
a pawn can capture an opposition pawn en passant, but only immediately after the pawn
that is about to be captured has advanced two squares from its initial position. So there
are many chess positions whose full description requires significantly more information.
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in that subgame will be given by an objective evaluation function

N1 3 n1 7→ v(n1) ∈ {1, 0,−1} (36)

For the player whose turn it is to move at n0, a move from n0 to n1 is
optimal if and only if:

1. n1 maximizes the evaluation function v(n1) in case it is White’s turn
to move at n0;

2. n1 minimizes the evaluation function v(n1) in case it is Black’s turn to
move at n0.

The objective normalized valuation function in (36) can only be com-
puted, however, for a few relatively simple positions where:

• either it can be proved that, in a small number of moves, one side can
force a win due to checkmate, or else, should they wish, a draw due
to either (i) stalemate; (ii) a threefold repetition of the position; (iii)
perpetual check;

• or alternatively, there are no more than 7 pieces on the board, including
both Kings, in which case the Lomonosov “endgame tablebase” soft-
ware cited in footnote 7 of Section 2.1 will specify what is the result of
the game if both players follow maximin strategies.

Thus, in choosing what move to make at n0, and so what should be the next
position n1 ∈ N1 on the board, a player is typically forced to come up with
subjective beliefs regarding the payoff function. These beliefs can be guided
by looking ahead a few moves. But unless one can calculate with certainty
a way to force a simple position whose evaluation is definitely known, ulti-
mately one has to assign such evaluations to many such positions a few moves
ahead. In this way, one constructs a subjective evaluation function mapping
chess positions into subjectively expected payoffs. Computer chess programs
for doing this involve algorithms that are good, even superhuman, but are
still necessarily imperfect. Currently some of the most effective software uses
an algorithm based on Monte Carlo tree search (MCTS), which is further
discussed in Section 7.5 — see Browne et al. (2012) for a general survey that
has been widely cited in the computer science literature. Applied to Chess,
in order to evaluate a given position n, MCTS considers many simulated con-
tinuation subgames that all start in position n, but then introduces a little
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carefully controlled randomness into the routine for choosing each ensuing
move. Then the final evaluation of any position n is the average score over
all the simulated games that start in position n.

5.2 Real Chess

Real chess is considerably more complicated. For one thing, a player about to
move can claim a draw by demonstrating that the next move can be chosen
either to repeat the same position a third time, or so that both players will
have made at least 50 moves without either a piece being captured or a pawn
being moved. Also, the game usually ends with either: (i) one player who is
losing choosing to resign; or (ii) with both players agreeing to a draw when
both judge that they have an insufficient chance of winning.

Finally, there are time limits monitored by a chess clock, or actually a
coupled pair of clocks, one for each player, which displays how much re-
maining total time that player has available before the next time control.
Whenever either player has just made a move, they can press a lever that
simultaneously stops their own clock and starts the opponent’s. These ad-
ditional considerations make the description of any chess position n rather
more complicated, since it must include, for instance, how much more time
each player can use before they would lose on time.

5.3 Human Failure in a Bounded Model

Human chess experts exercise their skill by focusing attention on only a small
number of plausible moves in each position. Given any legal chess position
n0, consider the set N1 := N+1(n0) of all possible positions n1 that can result
after a legal move to n1 is made from the position n0. Chess experts discern
that many members n1 of N1, though allowable, are too inferior to deserve
much, if any, consideration. Of course, human chess experts are also very
good at judging the value of any position n1 that they might think of moving
to. In this sense, they have good bounded models.

But, being merely human, even the very best players’ models and eval-
uations of different positions may sometimes be grossly deficient. Witness
how in 2006 Vladimir Kramnik, then the world champion, committed the
“blunder of the century” by overlooking a checkmate in one move, which led

23



to an immediate loss. This blunder was during the second game of a match
of six games played against the computer program Deep Fritz.15

Figure 5: Deep Fritz v. Kramnik, Game 2

In this game, Deep Fritz was playing with the White pieces. Its last move
before the position shown in Figure 5 was its 34th. The move was 34. Ne6×f8.
This notation signifies that White’s knight, which had been on square e6, was
used to take the Black piece, actually a rook, which had been on square f8.
In response, Kramnik (as Black) blundered horribly by playing the queen
move 34 . . . Qa7–e3, as indicated by the arrow in Figure 5, thereby reaching
the position shown in that Figure. Whereupon the computer program Deep
Fritz promptly indicated that its next move, the queen move 35. Qe4–h7,
would win at once by giving checkmate for White.

There must be thousands if not millions of chess players not nearly as
strong as Kramnik who, if they were to be shown the position immediately
before the move 34 . . . Qa7–e3, would certainly notice that White was threat-
ening to make the move 35. Qe4–h7 checkmate. So how did Kramnik overlook
it?

A good clue lies in the following observation that Kramnik himself offered
during the press conference that was held minutes after the game ended:

“It was actually not only about the last move. . . . I calculated the
line many, many times, rechecking myself. I already calculated
this line when I played 29 . . . Qa7, and after each move I was

15See https://en.chessbase.com/post/how-could-kramnik-overlook-the-mate-
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recalculating, again, and again, and finally I blundered mate in
one. Actually it was the first time that it happened to me, and
I cannot really find any explanation. I was not feeling tired, I
think I was calculating well during the whole game . . . It’s just
very strange, I cannot explain it.”

One way to interpret this is that Kramnik as Black, already when choosing
his 29th move, had been planning to make what turned out subsequently to
be the disastrous move 34 . . . Qa7–e3 which is shown in Figure 5. After all, if
in Figure 5 the Black king had been on square g8 rather than h8, then Black
could have responded to 35. Qe4–h7 check with the move 35. . . . K×f8. In
the actual game, however, even at the last moment when he was about to
make the move 34 . . . Qa7–e3, he failed to modify his mental model of the
game, as he should have, by recognizing that this move allowed a mate in one
move by his opponent. In the end it was as if Kramnik had become so fixated
on the earlier plan to choose 34 . . . Qa7–e3 that he failed to recognize the
possibility of being checkmated immediately after making that fatal move.

6 Bayesian Rationality in Decision Trees

6.1 Roulette Lotteries

Following the terminology of Anscombe and Aumann (1963), given any non-
empty set Z, let ∆(Z) denote the set of all roulette lotteries or simple proba-
bility measures. These take the form of functions Z 3 z 7→ λ(z) ∈ [0, 1] with
a finite support suppλ ⊆ Z such that

λ(z) > 0⇐⇒ z ∈ suppλ and
∑

z∈Z
λ(z) =

∑
z∈suppλ

λ(z) = 1 (37)

Then, given any z ∈ Z, let Z 3 z′ 7→ δz(z
′) ∈ ∆(Z) denote the unique

degenerate lottery that satisfies δz(z) = 1. Also, whenever Z is a finite set,
let ∆0(Z) denote the set of fully supported lotteries λ ∈ ∆(Z) that satisfy
suppλ = Z, or equivalently, λ(z) > 0 for all z ∈ Z. Finally, given any
λ, µ ∈ ∆(Z) and any scalar α ∈ [0, 1], let ν := αλ+ (1−α)µ ∈ ∆(Z) denote
the lottery mixture Z 3 z 7→ ν(z) ∈ [0, 1] which, for all z ∈ Z, satisfies

ν(z) = [αλ+ (1− α)µ](z) = αλ(z) + (1− α)µ(z) (38)
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6.2 Anscombe–Aumann Consequence Lotteries

The hypothesis of Bayesian rationality, or subjective expected utility maxi-
mization, applies when there is a non-empty state space S of possible states of
the world s on which the subjective probability mapping S 3 s 7→ p(s) ∈ [0, 1]
is defined, where

∑
s∈S p(s) = 1. Following Anscombe and Aumann (1963)

once again, we assume that S is finite. Also, following their terminology
which was described in Section 1.1, any random process for determining an
uncertain state of the world will be described as a “horse lottery”.

Bayesian rationality concerns preferences over Anscombe–Aumann con-
sequence lotteries. By definition, these may involve both risk, due to roulette
lotteries, and uncertainty, due to horse lotteries. Let Y denote a non-empty
consequence domain, and then let ∆(Y ) denote the domain of roulette lot-
teries over Y .

Next, given the finite set S of states s and the consequence domain Y ,
for each state s ∈ S, let Ys be a copy of Y .16 Then let

LS(Y ) :=
∏
s∈S

∆(Ys) = {〈λs〉s∈S | ∀s ∈ S : λs ∈ ∆(Ys)} (39)

denote the space of Anscombe–Aumann lotteries, or AA lotteries, in the form
of lists 〈λs〉s∈S or mappings S 3 s 7→ λs ∈ ∆(Y ). Each such mapping
specifies a combination of, first, a horse lottery that determines a state s ∈ S,
followed second by a state-dependent roulette lottery λs that determines a
consequence y ∈ Y .

16This is the case of a state-independent consequence domain, which we assume in order
to simplify notation. The more general case of a state-dependent consequence domain
occurs when Ys depends on s. In this case, let Y ∪ := ∪s∈SYs denote the union domain of all
consequences y that are feasible in some state s ∈ S. Then there may be a state-dependent
utility function D 3 (s, y) 7→ u(s, y) → R defined on the domain D := {(s, y) ∈ S × Y ∪ |
y ∈ Ys} of feasible state–consequence pairs. Such state-dependent utility functions have
been studied in Drèze (1962), Karni (1985), Schervish et al. (1990), Drèze and Rustichini
(2004), and Seidenfeld et al. (2010). See Hammond (1998b, 1999, 2022) for a unified
treatment which derives a state-independent utility function even in the general case when
the consequence domain is state-dependent.
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6.3 Choice from Pair Sets and Base Preferences

Let F\∅(LS(Y )) denote the family of non-empty finite subsets of the AA-
lottery domain LS(Y ). A choice function on this lottery domain is a mapping

F\∅(LS(Y )) 3 F 7→ C(F ) ∈ F\∅(LS(Y )) (40)

that, for each non-empty feasible set F ∈ F\∅(LS(Y )), determines a non-
empty choice set C(F ) ∈ F\∅(LS(Y )) satisfying C(F ) ⊆ F .

Corresponding to any choice function F 7→ C(F ) on F\∅(LS(Y )), its
values when F is a pair set with #F = 2 determine a strict preference relation
�C , a strict dispreference relation ≺C , and an indifference relation ∼C . These
three binary relations are defined so that for each pair λS, µS ∈ LS(Y ), one
has

λS


�C
∼C
≺C

µS according as C({λS, µS}) =


{λS}
{λS, µS}
{µS}

 (41)

Underlying the choice function F 7→ C(F ) specified by (40), there is a single
corresponding binary weak preference relation %C on LS(Y ), called the base
relation. For each pair λS, µS ∈ LS(Y ), this base relation satisfies

λS %C µ
S ⇐⇒ λS ∈ C({λS, µS})⇐⇒ λS �C µS or λS ∼C µS (42)

Finally, we mention the corresponding weak dispreference relation -C defined
on LS(Y ) so that

λS -C µ
S ⇐⇒ µS ∈ C({λS, µS})⇐⇒ λS ≺C µS or λS ∼C µS (43)

Evidently both the weak preference relation %C and the weak dispreference
relation -C are complete in the sense that, for each pair λS, µS ∈ LS(Y ), one
has:

1. either λS %C µ
S or µS %C λ

S or both;

2. either λS -C µ
S or µS -C λ

S or both.
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6.4 Bayesian Rationality and Expected Utility

Let F 7→ C(F ) be any choice function satisfying (40) and C(F ) ⊆ F for
all F ∈ F\∅(LS(Y )) that corresponds to the base preference relation %C de-
fined on the space LS(Y ) of AA lotteries λS by (41). Then the mapping
LS(Y ) 3 λS 7→ US(λS) ∈ R is a utility function which represents the prefer-
ence relation %C on LS(Y ) just in case, for all λS, µS ∈ LS(Y ), one has

λS %C µ
S ⇐⇒ US(λS) ≥ US(µS) (44)

Given the specified non-empty finite set S of uncertain states of the world,
an interior subjective probability mass function is a mapping S 3 s 7→ P(s) ∈
(0, 1] that satisfies

∑
s∈S P(s) = 1. As discussed in Section 5.4 of Hammond

(1998b) and in Hammond (2022), the restriction to positive probabilities is
to avoid the difficulties that arise in continuation subtrees of a decision tree
when zero probabilities are allowed.

Then the choice function F 7→ C(F ) on the domain F\∅(LS(Y )), together
with the associated base preference relation %C on the space LS(Y ), are
both Bayesian rational just in case there exist a probability mass function
S 3 s 7→ P(s) ∈ (0, 1], as well as a Bernoulli utility function Y 3 y 7→
u(y) → R, such that %C is represented, in the sense that (44) is satisfied,
by the von Neumann subjective expected utility function defined for all AA
lotteries λS = 〈λs〉s∈S ∈ LS(Y ) by the double sum

US(λS) =
∑

s∈S
P(s)

∑
y∈Y

λs(y)u(y) (45)

6.5 Normalized Utility

Recall that, as explained in Section 6.1, for each y ∈ Y , we use δy to denote
the unique degenerate probability measure in ∆(Y ) that satisfies δy({y}) = 1.
To avoid trivialities, we assume that there exist at least three consequences
y, y0, y in the domain Y such that, for the three corresponding degenerate
lotteries δy, δy0 , δy, the base strict preference relation � satisfies the strict
preference property δy � δy0 � δy.

Consider any Bernoulli utility function Y 3 y 7→ u(y) → R and the
associated preference relation % on ∆(Y ) that satisfies

λ % µ⇐⇒ U(λS) ≥ U(µS) (46)
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for the von Neumann objective expected utility function on ∆(Y ) defined by

U(λ) =
∑

y∈Y
λ(y)u(y) (47)

As explained in Hammond (1998a, Section 2.3), assuming Bayesian rational-

ity, the ratio
u(y0)− u(y)

u(y)− u(y)
of utility differences equals, in economists’ ter-

minology, the constant marginal rate of substitution along an indifference
curve between shifts in probability: (i) from consequence y to y0; (ii) from
consequence y to y. This leads us to say that two Bernoulli utility functions
y 7→ u(y) and y 7→ ũ(y) are equivalent just in case, for every triple y, y0, y of
consequences in Y satisfying δy � δy0 � δy and so u(y) > u(y0) > u(y), the
corresponding ratios of utility differences satisfy

u(y0)− u(y)

u(y)− u(y)
=
ũ(y0)− ũ(y)

ũ(y)− ũ(y)
(48)

But (48) holds for every triple y, y0, y satisfying u(y) > u(y0) > u(y) if and
only if there exist an additive constant α ∈ R and a positive multiplicative
constant ρ ∈ R such that, for all y ∈ Y , one has

ũ(y) = α + ρu(y) (49)

Now, given any pair u, ū of real numbers with ū > u and any Bernoulli
utility function Y 3 y 7→ u(y) → R, there exist two unique constants α
and ρ > 0 such that the transformed utility function defined by (49) is a
normalized utility function that satisfies ũ(y) = u and ũ(y) = u. Indeed the
two constants we need are given by

ρ =
u− u

u(y)− u(y)
and then α = u− ρu(y) = u− ρu(y) (50)

From now on let u denote the unique Bernoulli utility function Y 3 y 7→
u(y)→ R whose expected values defined by (47) satisfy (46), and which has
been normalized to satisfy

u(y) = u and u(y) = u (51)
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6.6 Finite Decision Trees and Their Continuations

In mathematical terminology a graph (N,E) is a non-empty set N of vertices
or nodes n, together with a specified set E ∈ N × N of edges e = (n, n′)
which connect a subset of disjoint pairs (n, n′) ∈ N ×N of nodes. The graph
(N,E) is finite just in case the set N of nodes is finite, which implies that
the set E of edges is also finite.

The graph (N,E) is directed just in case there is an antisymmetric and
complete binary relation >+1 on N with the property that for each edge
(n, n′) ∈ E, either n >+1 n′, or n′ >+1 n, but not both. In the case of
a directed tree, we can write each edge (n, n′) of E in the form n → n′,
where n′ >+1 n. The sequence (n1, n2, . . . , n`) of ` nodes in N is a path
of length ` ∈ N in the directed graph (N,E) just in case nk+1 >+1 nk for
k = 1, 2, . . . , `− 1.

The graph (N,E) is a rooted directed tree just in case there is a unique
initial node n0 ∈ N (or root, or seed, or entry point) such that, for every
other node n ∈ N\{n0} of the graph, there is a unique path (n0, n1, n2, . . . , n)
which starts at node n0 and ends at node n.

Definition 1. Let T = (N,E) denote any finite rooted directed tree.

1. Given any pair of nodes n, n′ ∈ N , say that n′ ∈ N (ultimately) suc-
ceeds n just in case there is a path (n1, n2, . . . , n`) of nodes in N of
length ` which joins n1 = n to n` = n′. Let N>n denote the set of all
nodes n′ ∈ N that succeed n.

2. For each n ∈ N , define the continuation subtree T≥n = (N≥n, E≥n)
whose initial node is n as the unique tree in which:

• N≥n = {n} ∪N>n;

• E≥n is the restriction to E ∩ (N≥n ×N≥n) of edges in E.

3. Say that any other node n′ ∈ N immediately succeeds n just in case
the ordered pair (n, n′) or n→ n′ is a directed edge of T .

4. Denote the set of all the immediate successors of n by

N+1
≥n := {n′ ∈ N | (n, n′) ∈ E} = {n′ ∈ N | n′ >+1 n} (52)

Recall from Section 1.1 the distinction between roulette and horse lotter-
ies due to Anscombe and Aumann (1963). The following definition builds on
those in Hammond (1988b; 1998a, b; 2022).
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Definition 2. Given the non-empty consequence domain Y and non-empty
finite set S of possible states of the world, define T S(Y ) as the collection of
all finite decision trees which combine a rooted directed tree T = (N,E) with
an event correspondence N 3 n 7→ S≥n ∈ 2S \ {∅} specifying what set S≥n of
states are possible in each continuation subtree T≥n. Moreover, the set N of
nodes in the decision tree is partitioned into four pairwise disjoint subsets:

1. the set Nd of decision nodes n at which: (i) at n the agent must choose,
for some node n′ in the set N+1

≥n of immediate successors defined in (52),

the directed edge n→ n′; (ii) S≥n′ = S≥n for all n′ ∈ N+1
≥n;

2. the set N c of chance nodes n where: (i) a directed edge n → n′ em-
anating from n is determined randomly by a specified roulette lottery
N+1
≥n 3 n′ 7→ π(n′|n) ∈ (0, 1];17 (ii) S≥n′ = S≥n for all n′ ∈ N+1

≥n;

3. the set N e of event nodes n where a directed edge n → n′ emanating
from n is determined by a horse lottery whose outcome partitions the
event S≥n into the collection {S≥n′ | n′ ∈ N+1

≥n} of non-empty pairwise

disjoint sub-events S≥n′ which, for each n′ ∈ N+1
≥n, consist of states

s ∈ S that can occur in the subtree T≥n′;

4. the non-empty set N t of terminal nodes n at which N+1
≥n = ∅, so no

edge emanates, and which are each mapped to an Anscombe–Aumann
consequence lottery γ(n) = 〈γs〉s∈S≥n

∈ LS≥n(Y ) whose outcomes y
belong to the specified consequence domain Y .

Say that a decision tree T ∈ T S(Y ) is:

• deterministic just in case N c = N e = ∅;

• risky just in case N c 6= ∅ but N e = ∅;18

• a Savage tree just in case N e 6= ∅ but N c = ∅;

• an Anscombe–Aumann tree just in case N c 6= ∅ and N e 6= ∅.
17See Hammond (1988b) for an explanation of why, if there is a chance node n ∈ N c and

a node n′ ∈ N+1
≥n at which π(n′|n) = 0, then all consequence lotteries must be indifferent.

18Raiffa (1968) focused on risky decision trees with pecuniary consequences in the form
of payoffs measured in dollars.
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6.7 Evaluations of Continuation Subtrees

Consider the orthodox “unenlivened” decision model which is represented by
any finite decision tree T in the domain T S(Y ) of trees with non-empty finite
state space S and AA lottery consequences in the domain ∪S′∈2S\{∅}L

S′(Y ).
Working backwards within each decision tree, as usual in dynamic program-
ming, it is possible in principle to use a recursive procedure in order to cal-
culate the evaluation v(T≥n) as the subjectively expected continuation value
of reaching any node n ∈ N , which is the initial node of the continuation
subtree T≥n. The details of this backward recursive procedure are described
in the remainder of this section.

In any finite decision tree T , the backward recursion starts at any terminal
node n ∈ N t. As discussed in Section 6.6, the specified consequence of
reaching any terminal node n ∈ N t of tree T is the AA consequence lottery
γ(n) = 〈γs〉s∈S≥n

∈ LS≥n(Y ). Then the evaluation v(T≥n) of the subtree T≥n,
whose only node is the terminal node n, is the expected utility of the AA
consequence lottery γ(n), which is specified by (45) as the double sum

v(T≥n) = US≥n(γ(n)) =
∑

s∈S≥n

P(s)
∑

y∈Y
γs(y)u(y) (53)

At any non-terminal node n ∈ N \ N t, the evaluation v(T≥n) of the
continuation subtree T≥n starting at the initial node n depends upon the set
{v(T≥n′) | n′ ∈ N+1

≥n} of evaluations of all the continuation subtrees starting

at a node n′ ∈ N+1
≥n which immediately succeeds n. Specifying the correct

formula for v(T≥n) requires considering separately three cases, depending
upon whether n is a chance, event, or decision node.

In the first case when n is a chance node whose immediate successors
n′ ∈ N+1

≥n occur with respective specified positive probabilities π(n′|n), the
relevant recursion takes the obvious form

v(T≥n) =
∑

n′∈N+1
≥n

π(n′|n) v(T≥n′) (54)

The second case occurs when n is an event node, each of whose immediate
successors n′ ∈ N+1

≥n determines which is the relevant cell of the partition

{S≥n′ | n′ ∈ N+1
≥n} of the event S≥n into pairwise disjoint sets. In this case

the objectively specified probabilities π(n′|n) that appear in (54) need to
be replaced by subjective conditional probabilities p(n′|n) derived from the
relevant subjective probabilities P(s) for different states s ∈ S≥n. Because of
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our requirement that P(s) > 0 for all s ∈ S, these conditional probabilities
p(n′|n) are all well defined, and can be calculated as

p(n′|n) =
∑

s∈S≥n′
P(s) /

∑
s∈S≥n

P(s) (55)

So, when n is an event node with subjective probabilities p(n′|n) given by
(55) rather than a chance node with hypothetical or objective probabilities
π(n′|n), the previous formula (54) is changed to

v(T≥n) =
∑

n′∈N+1
≥n

p(n′|n) v(T≥n′) (56)

In the third and final case when n is a decision node, we apply the stan-
dard optimality principle of stochastic dynamic programming. This requires
any current optimal decision n∗ ∈ N+1

≥n to be the first step toward achieving
the highest possible expected value resulting from an appropriate plan for
all subsequent decisions. Consider the induction hypothesis that, for each
node n′ ∈ N+1

≥n, the value v(T≥n′) is the maximum possible evaluation the
agent can achieve by choosing an optimal decision at each decision node of
T≥n′ . This is trivally true when n′ is a terminal node, so there is no decision
to make at node n′. If this hypothesis is true at each node n′ ∈ N+1

≥n, then
any optimal decision at node n must be to move along an edge n → n∗ to
an immediately succeeding node n∗ which maximizes the evaluation v(T≥n′)
with respect to n′ subject to n′ ∈ N+1

≥n, where the set N+1
≥n is finite. In other

words, one must satisfy

n∗ ∈ arg maxn′∈N+1
≥n
v(T≥n′) (57)

So the appropriate recursion when n is a decision node is

v(T≥n) = v(T≥n∗) = maxn′∈N+1
≥n
v(T≥n′) (58)

Together, therefore, the four equations (53), (54), (56), and (58) do indeed
determine v(T≥n) by backward recurrence in the four different cases.

7 Truncated Decision Trees

7.1 Bounded Rationality as Bounded Modelling

The conditionally expected enlivened evaluation associated with entering any
continuation subtree T≥n of a decision tree T ∈ T S(Y ) is v(T≥n). In princi-
ple, this can be calculated by following the procedure of backward recursion
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that was set out in Section 6.7. Carrying out all the required steps of the
computation by backward recursion, however, obviously becomes much more
challenging, if not practically impossible, as at least some of the continuation
subtrees T≥n become more complicated.

As discussed in Section 1.2, these practical limitations on being able to
calculate an optimal decision may force the decision maker to resort to some
kind of bounded model. In this section, we consider bounded models that
result when the original decision tree gets truncated by having some entire
entire continuation subtrees removed. In the game of Chess, for example,
which was considered in Section 5, this is the kind of tree that results when
a player looks at most k moves ahead, for some small integer k ∈ N.

7.2 Cuts and Truncation Nodes

The following definition captures the idea that any truncation of a decision
tree will occur at a truncation node or cut. This cut node has the prop-
erty that all strictly succeeding nodes are removed, so the truncation node
becomes a terminal node.

Definition 3. Let T be any decision tree in the domain T S(Y ). The tree
T̂ = (N̂ , Ê) is a truncation of T just in case there is a set X of one or more
cuts or non-terminal truncation nodes x ∈ N \N t such that:

1. there is a pairwise disjoint collection {N>x | x ∈ X} of removed sets
N>x of non-initial nodes n ∈ N \ {n0}, each associated with a contin-
uation subtree T≥x whose initial node is at a cut x ∈ X;

2. the truncated set N̂ of remaining nodes is N \ ∪x∈XN>x;

3. the truncated set Ê of remaining directed edges is the restriction (N̂ ×
N̂) ∩ E to N̂ × N̂ of the original set E ⊂ N × N of directed edges
n→ n′ in T ;

4. each cut x ∈ X is a terminal node x ∈ N̂ t of the truncated tree T̂ .

7.3 Subjective Evaluations in Truncated Trees

Given a finite decision tree T = (N,E), in order to make the truncation
T̂ = (N̂ , Ê) of T a decision tree, each terminal node n ∈ N̂ t must be assigned
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a consequence γ̂(n). In case n ∈ N̂ t∩N t, which is when the terminal node n
of T̂ happens also to be a terminal node of T , the consequence γ̂(n) of n in T̂
should be the same as its consequence in T , implying that γ̂(n) = γ(n).

In case n ∈ N̂ t \N t, however, no consequence γ̂(n) has yet been specified
at node n, which has become a terminal node of T̂ but not of T . In this case
we assign to the cut node n a new subjective evaluation γ̂(n). This is not a
consequence, or even a consequence lottery. Instead it is assumed to be a real
number in the convex hull of the range u(Y ) of the normalized utility function
Y 3 y 7→ u(y) ∈ R that was constructed in Section 6.5. This construction
implies that each possible subjective evaluation γ̂(n) is the expected utility
of some lottery in the domain ∆(Y ) of finitely supported lotteries over the
consequence domain Y .

In the full tree T , with unbounded rationality, an appropriate evaluation
v(T≥n) of the node n ∈ N̂ t \ N t should be an expected utility level that is

calculated by backward recursion, as in Section 6.7. In the truncated tree T̂ ,
however, the best we can do is to use an estimate γ̂(n) ∈ R of what expected
utlity v(T≥n) would have resulted had the agent been able to calculate this
in the full continuation subtree T≥n, without any truncation.

In the rest of the paper, to allow for truncated trees, we distinguish
between:

1. “consequence” terminal nodes n, which each have a specified AA lottery
consequence γ(n) ∈ LS≥n(Y ) attached;

2. “evaluation” terminal nodes n, which each have a subjective evaluation
γ̂(n) ∈ R attached.

7.4 Cardinally Equivalent Evaluations

Suppose that the strictly increasing affine transformation given by ũ(y) =
α + ρ u(y) for all y ∈ Y , with ρ > 0, is applied to the utility function Y 3
y 7→ u(y) → R that appears in (53), resulting in the cardinally equivalent
function y 7→ ũ(y). This transformation can be achieved by replacing the
lower constant u and upper constant u in the normalization condition (51)
by their respective transformed values α + ρ u and α + ρ u.

In decision trees that are not truncated, it is obvious and easy to show
that if the backward recursion procedure described in Section 6.7 is applied
to the transformed utility function, then all the subtree evaluation functions
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N 3 n 7→ v(T≥n) ∈ R undergo the equivalent strictly increasing affine trans-
formation given by ṽ(T≥n) = α + ρ v(T≥n) for all n ∈ N , so that subtree
evaluations are also cardinally equivalent. It is also obvious that this com-
mon affine transformation of the utility and subtree evaluation functions has
no effect on the optimal decision at each decision node which is given by (57).

In order to preserve these properties in a truncated decision tree, it is
clear that the subjective evaluation γ̂(n) at any node n ∈ N̂ t \ N t where
a truncation occurs should also undergo the same strictly increasing affine
transformation. That is, we should replace each subjective evaluation γ̂(n)
by the transformed subjective evaluation γ̃(n) = α + ρ γ̂(n).

Recall from Section 7.3 that γ̂(n) should be an estimate of the expected
utility from following an optimal policy in the continuation decision tree T≥n
which, apart from its initial node n, is removed by truncation. So when the
utility function undergoes a strictly increasing affine transformation, these
transformed subjective evaluations γ̃(n) = α+ρ γ̂(n) are the obvious revisions
of these estimated expected utilities.

7.5 Monte Carlo Tree Search

Long before computer games became popular recreations, math-
ematicians viewed games as models of decision making. The
general understanding of decisions, however, has been impeded
by the ambiguity of some of the basic components of game-tree
search. In particular, the static evaluation function, or deter-
mination of a node’s merit based on directly detectable features,
has never been adequately defined. The expected-outcome model
proposes that the appropriate value to assign a node is the ex-
pected value of a game’s outcome given random play from that
node on.
— from the abstract to Bruce Abramson’s (1987) Ph.D. disser-
tation, eventually published as Abramson (1991).

We turn next to a powerful kind of computer algorithm that has proved
extremely fruitful in estimating continuation values for at least some par-
ticular kinds of truncated game. Indeed, exploiting Abramson’s key idea of
Monte Carlo tree search (MCTS) described in the quotation above helped to
inspire a generation of computer programs that:
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1. in the case of Chess, led to the Stockfish software engine that would
easily beat any human player over any sufficiently long run of games;

2. but in the case of Go, was unable to defeat the best human players.

Eventually, this generation of algorithms became superseded by Alpha-
Zero, based on the kind of artificial neural network that has become a key
part of what has come to be known as “artificial intelligence”. Such algo-
rithms have proved far better at playing Chess than programs of the Stockfish
generation, while finally becoming able to beat the best human players at Go.
The key paper by Silver et al. (2018), however, reports that MCTS remains
part of AlphaZero.

In decision trees, MCTS evidently requires evaluating any continuation
decision tree by calculating the normalized expected utility from a “Monte
Carlo” sample of simulations in which the agent makes a suitably randomized
choice at each decision node in that continuation.

8 Enlivened Decision Trees

8.1 Simple Enlivenment as Enrichment

It is time to return to the main task of the paper. This is to explain how a
relevant version of the Bayesian rationality hypothesis can be applied even
to enlivened decision trees. We do this not only for entire decision trees T ,
but also for any continuation decision tree T≥n, as defined in Section 6.6.
Since each node n of a tree T is the initial node of T≥n, this helps us to
focus, without loss of generality, on the initial node of any decision tree we
consider.

Given any decision tree T ∈ T S(Y ), we begin by defining a “simple
enlivenment” as a suitable modification of any particular “unenlivened” con-
tinuation subtree T≥n whose initial node is n. This minimal enlivenment will
then result from appending to T≥n an appropriate finite set of extra nodes
which are initial nodes of corresponding continuation subtrees. This, after
all, is what happened when we described the enlivened decision trees in the
three examples of Sections 3, 4, and 5.

Indeed, in the model of Odysseus and the Sirens set out in Section 3,
there were three stages of enlivenment. These came from adding new nodes
one step at a time through the succession of four trees illustrated in Figures
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1–4. Second, in Section 4, the enlivened two-period linear-quadratic port-
folio problem which is described in Section 4.5 is the result of adding extra
dimensions to the original problem that was set out in Section 4.1. Third,
the Chess “blunder of the century” described in Section 5.3 seems to have
resulted from Kramnik as Black calculating the likely consequences of his
planned moves using a bounded model which excludes the move 35. Qe4–h7
that Deep Fritz, playing White, eventually used to deliver checkmate. In this
sense, Deep Fritz was using an enlivened version of the bounded model which
Kramnik had been using, with 35. Qe4–h7 checkmate as an extra possible
move which is included in the enriched model, but not in Kramnik’s bounded
model.

8.2 Limits to Enlivenment

Suppose that the agent’s original unenlivened continuation subtree T≥n is
minimally enlivened to a new enlivened subtree T+

≥n which extends T≥n by
recognizing previously excluded possibilities. Consider any new information
which, when the agent is at a decision node n ∈ Nd, arrives in time to change
the modelled feasible set Mn := N+1

≥n of possible immediate successors of n.
These are the nodes nm which, for some m ∈Mn, can be reached by moving
along the edge n → nm that emanates from the initial node n of T≥n. As
a result, the set Mn is replaced by a new expanded feasible set M+

n which
is incorporated in a new tree T+. We argue that this expansion is really a
trivial enlivenment of T because, before making a decision at node n, the
agent has time to recognize that the feasible set of moves n→ nm at node n
is M+

n rather than only the proper subset Mn. And this, of course, is exactly
what the agent should do.

Thus, a necessary condition for the agent to be able to decide to move to
a node nm with m ∈ M+

n in the expanded continuation subtree T+
≥n is that

node nm must be included in the agent’s original continuation subtree T≥n.
This is also sufficient; if the node nm and edge n → nm are in the tree T+

≥n,
then the agent, while still at node n in the tree, could in principle choose
the move n→ nm to the node nm. Accordingly, we assume that Mn remains
unaffected by any enlivenment of the continuation subtree T≥n. Only after a
chosen decision node nm ∈ Mn has already been reached can any enlivening
of the initial continuation subtree T≥n occur.

Similarly, even if the initial node n of the original continuation subtree
T≥n is not a decision node, we still assume that simple enlivenment can never
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occur at node n. Instead, it must occur at a new node which belongs to T+
≥n

but not to T≥n.19

8.3 Influence Diagrams as Compressed Decision Trees

We have assumed that any decision tree T ∈ T S(Y ) is finite, as of course is
the continuation subtree T≥n for any n ∈ N . Nevertheless, each continuation
subtree can be arbitrarily large, as can the set Mn of moves n→ n′ in E that
are possible at each node n, whether node n is a decision, chance, or event
node. So generally it is impossible to represent all the nodes in a continuation
subtree T≥n in a single diagram of that subtree.

Accordingly, instead of trying to represent graphically any full continua-
tion subtree T≥n, we adapt the standard method described by Howard and
Matheson (2005). This uses “influence diagrams” in order to compress what
would otherwise be the often extraordinarily convoluted full graphical repre-
sentation of a decision tree. In the simple cases economists usually consider,
they often describe influence diagrams as showing “time lines”, each of which
represents the typical member of what may be a large set of several paths
through the tree. Instead of ending in one specific consequence, such influ-
ence diagrams will usually end, for each terminal node n ∈ N t, in a variable
consequence γ(n) ∈ LS≥n(Y ).

Subtree T≥n:

n
-

m

Mn

wnm- T≥nm

Figure 6: Reduced Influence Diagram for the Move m

The adaptation we consider reduces the decision tree even further to
that illustrated in Figure 6. Whereas an influence diagram typically shows
an entire typical path in a tree, right through to a terminal node with its
consequence, Figure 6 shows only one typical edge n→ nm. This corresponds
to a typical move to nm where m belongs to the set Mn of moves which are
possible at the initial node n of the continuation subtree T≥n. Figure 6 also
shows the node nm with a label indicating the new continuation subtree T≥nm

whose initial node nm is reached after the move m.

19A referee has suggested allowing enlivenment to occur at existing nodes in a decision
tree. This, however, would require specifying the effect of enlivenment for the three sep-
arate cases of decision, chance, and event nodes. It seems simpler to introduce an extra
enlivenment node immediately prior to any existing node at which enlivenment is thought
to occur.
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8.4 Tree Stems as Enlivenment Edges

For simplicity, the initial focus is on a minimal but prominent kind of simple
enlivenment. Given a decision tree T = (N,E) and a particular node n, con-
sider the correesponding continuation subtree T≥n of the tree T , with initial
node n and finite graph (N≥n, E≥n). As in Section 8.1, let Mn denote the
set of all possible moves m along a directed edge n→ nm in E≥n, starting at
the initial node of T≥n. Then the minimal enlivenment we consider starts by
affecting only one particular directed edge n→ nm of E≥n. The enlivenment
starts at a bud or pre-enlivenment node e−m which, as shown in Figure 7, is
inserted into the middle of the corresponding directed edge n → nm of the
original subtree T≥n. The first edge of the enlivenment is the stem or en-
livenment edge (e−m, e

+
m) that joins the bud e−m to the later post-enlivenment

node e+
m, which is the initial node of the enlivening subtree T+

≥e+m
.

Subtree T+
≥n:

n
-m

Mn

ge−m -unique
move

wnm-- original subtree T≥nm

?
e+
m

w-- enlivening subtree T+

≥e+m

Figure 7: A Bud and Stem with an Enlivened Continuation

To complete the specification of the minimally enlivened tree T+, we make
the bud e−m an event node where the outcome of a horse lottery determines
whether an uncertain deviation from the path n → e−m → nm back to the
original tree T does or does not occur. Specifically:

1. First, if no deviation occurs, then the relevant immediate successor
of e−m in the minimal enlivenment T+

≥n of T≥n is the initial node nm
of a copy of the original unenlivened continuation subtree T≥nm that
emanates from nm in the original unenlivened tree T .

2. Second, if a deviation does occur, then the relevant immediate successor
of e−m is the post-enlivenment node e+

m. This is the initial node of a finite
unenlivened continuation subtree T≥e+m that gets appended to T≥n at
e+
m in the process of enlivening T≥n to the new tree T+

≥n.

Now we move on to consider simply rather than minimally enlivened deci-
sion trees. By definition, the new tree T+ = (N+, E+) is a simple enlivenment
of the original decision tree T = (N,E) just in case it is the result of a finite
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sequence of minimal enlivenments of T . For each node n ∈ N , recall the
notation Mn = N+1

≥n for the set of nodes that immediately succeed n. Then
T+ = (N+, E+) is a simple enlivenment of T = (N,E) just in case, for each
n ∈ N , there is a non-empty subset M+

n of Mn with the property that, for
each m ∈M+

n , there is a bud e−m inserted into the edge n→ nm along with a
stem in the form of an extra enlivenment edge e−m → e+

m ending in the initial
node of the new continuation subtree T+

≥e+m
.

8.5 Enlivened Consequences and States

Eventually we will explore the implications of Bayesian rational behaviour
for the entire family of simply enlivened decision trees T+. Before doing so,
however, we need to recognize that, even in the relatively simple examples of
Sections 3 and 4, enlivenment may expand: (i) the consequence domain Y of
the Bernoulli utility function Y 3 y 7→ u(y)→ R, which has been normalized
to satisfy (51); (ii) the finite space S of uncertain states of the world.

Indeed, for each move m ∈M+
n at which the possibility of enlivenment is

modelled, and so for each corresponding continuation subtree T+

≥e+m
, there is

a finite enriched domain Y +
m of consequences y and an enriched domain S+

m

of possible states s that could feasibly result from following an appropriate
path from e+

m to a terminal node. Then the enlivened consequence domain
and enlivened state space are defined as the unions

Y + = ∪m∈M+
n
Y +
m and S+ = ∪m∈M+

n
S+
m (59)

over the finite collection of, respectively, all possible enriched consequence
domains Y +

m and all possible enriched state spaces S+
m. Let T S+

(Y +) denote
the relevant domain of possible enlivened decision trees with the enlived
consequence domain and state space. Let LS

+
(Y +) denote the relevant space

of possible enlivened AA consequence lotteries.
Recall that the two consequences y, ȳ ∈ Y were used in Section 6.5 in

order to construct the unique normalized utility function that satisfies (51).
Notice that the new domain T S+

(Y +) of decision trees must include, for
each consequence y ∈ Y +, the set T (∆({y, ȳ, y})) of risky finite decision
trees, without any event nodes, horse lotteries, or uncertain states, whose
roulette consequence lotteries are restricted to probability mixtures of the
three degenerate lotteries δy, δȳ, and δy. Then the construction set out in
Section 6.5 can be repeated to determine the utility u(y+) of each extra
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consequence y+ ∈ Y + \ Y . The result is a normalized enlivened Bernoulli
utility function

Y + 3 y+ 7→ u+(y+)→ R (60)

that satisfies (51) not only for consequences y in the original domain Y ,
but also for any extra consequences y+ in the entire extended domain Y +.
Moreover, the expectation of u+ defined by (60) will represent the agent’s
extended preference relation %+ on the whole lottery domain ∆(Y +). Also,
because the two particular consequences y, y used in the earlier normalization
(51) are in Y + as well as in Y , we can the impose the obvious counterpart

u+(y) = u and u+(y) = u (61)

of that earlier normalization. The resulting function (60) will then extend
Y 3 y 7→ u(y)→ R to the expanded domain Y +.

Similarly, by considering the domain T S+
(Y +) instead of T S(Y +), the

construction of the subjective probabilities P(s) of each state s ∈ S can be
extended to a construction of the enlivened subjective probabilities P+(s) of
each state s ∈ S+.

8.6 Bayesian Rationality in Minimally Enlivened Trees

Let T = (N,E) denote any decision tree in the domain T S(Y ). Consider once
again a minimal enlivenment, as set out in Section 8.4, with the property
that there exists a unique edge n → nm in E into which a unique bud
e−m is inserted. This insertion was illustrated in Figure 7. Note that the
continuation subtrees T+

≥e−m
and T+

≥e+m
both belong to the enlivened domain

T S+
(Y +) of finite decision trees.

Consider next the subtree evaluations that were constructed in Section
6.7 by backward recurrence, using whichever of the four equations (53), (54),
(56), and (58) applies to each successive node. Bayesian rationality implies
that exactly the same construction can be applied in order to calculate the
subjective evaluation v+(T+

≥e+m
) of the enlivened continuation subtree T+

≥e+m
.

To continue the backward recursion, we also need to go back one more
step in order to construct an appropriate evaluation v+(T+

≥e−m
) at the bud e−m

of the enlivened continuation decision tree T+

≥e−m
. In order to do so, we apply

the refined form of Bayesian rationality specified in Hammond (2022). It
implies that there exists a unique positive subjective probability ηm ∈ (0, 1)
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that enlivenment occurs at the event node e−m, and so a positive probability
1 − ηm ∈ (0, 1) that enlivenment does not occur at e−m. The argument for
insisting that 0 < ηm < 1 is that if ηm = 0, then the move m should not
be included in the set Mn of moves after which enlivenment is possible. On
the other hand, if ηm = 1, then the post-enlivenment node e+

m and ensuing
subtree T+

≥e+m
should entirely replace the node nm and ensuing subtree T≥nm

in the subtree T+
≥n.

In any case, when enlivenment can occur only along the particular edge
n → nm emanating from the initial node n in the subtree T≥n, then the
original continuation subtree T≥nm remains unenlivened. It follows that its
enlivened evaluation v+(T≥nm) equals its unenlivened evaluation v(T≥nm).
So, applying the obvious counterpart of rule (56) for the particular event
node e−m of T+

≥n tells us that, in case ηm ∈ (0, 1), one has

v+(T+

≥e−m
) = (1− ηm) v(T≥nm) + ηm v

+(T+

≥e+m
) (62)

Finally, in order to find the enlivened evaluation v+(T+
≥n) of the entire

enlivened continuation subtree T+
≥n, we apply the obvious modification for

this tree of whichever of the three rules (54), (56), and (58) is relevant at
each node n′ of N+

≥n, according as n′ is a chance, event, or decision node.

8.7 Bayesian Rationality in Simply Enlivened Trees

Given any node n ∈ N , consider once again any simple enlivenment T+
≥n

of its continuation decision subtree T≥n that starts at n with, for any move
m ∈M+

n ⊆Mn = N+1
≥n, the stem e−m → e+

m shown in Figure 7, as well as the
continuation subtrees T+

≥e−m
and T+

≥e+m
. Note that both these subtrees belong

to the enlivened domain T S+
(Y +) of finite decision trees.

In effect, therefore, a simple enlivenment T+ = (N+, E+) of a decision
tree T = (N,E) is one in which multiple minimal enlivenments occur at all
the buds e−m, where m is a potential move in a finite set ∪n∈N\NtMn. Each
of these buds e−m gets inserted into an edge of T that belongs to the set

E = ∪n∈N\Nt{n→ nm | m ∈Mn}

So in principle an unboundedly rational agent, using what could be an un-
bounded model, could use backward recursion in order to complete the cal-
culation of: (i) first, all the evaluations v̂+(T+

≥e+m
) of unenlivened continuation
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subtrees in the simple enlivenment, in each of which the initial node is the
unique post-enlivenment node e+

m that immediately follows a bud e−m with
m ∈ Mn; (ii) second, all the enlivened evaluations v̂+(T+

≥n) of the contin-
uation subtrees T+

≥n which start at any node n of the original unenlivened
tree T .

8.8 Recursive Enlivenments

So far our discussion has been limited to simply enlivened decision trees.
These are trees where any enlivenment edge e−m → e+

m of the kind which
was discussed in Section 8.4 must be inserted directly into an edge n → nm
of the original decision tree T , or of any its continuation subtrees T≥n, as
illustrated in Figure 7. This requirement implies that, for any m ∈ Mn, the
continuation subtree T+

≥e+m
starting after the enlivening event at e−m is always

a decision tree in which no further enlivenment could occur.
Yet in the account of the Homeric example in Section 3, the decision

tree that Kirke described to Odysseus was enlivened in several successive
stages. Indeed, there were subsequent enlivenings of decision trees that had
emerged only after previous enlivenings. This makes evident the possibility
of recursive enlivenment. And of course anybody who has ever played Chess
at any level beyond the most basic also knows that recursive enlivenment
affects a player’s evolving understanding of the game being played, and so of
how to evaluate any position in that game.

It should be evident by now, if it was not already, that my attempts to
analyse enlivened decision trees in general have gone as far as they should
in this paper. It remains to consider next the unavoidable truncations of
enlivened trees.

9 Enlivened but Truncated Decision Trees

“The second factor which imposes a horizon upon the imaginative
creation of the future is that uncertainty becomes more and more
unbounded by considerations of what is possible, the more remote
the date considered.” — Shackle (1969, page 224)
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9.1 Extreme Truncation

Section 7 introduced the notion of a truncated decision tree as a natural
form of bounded model for a decision tree that is too complicated for a full
analysis to be practical. Applied to the reduction of a minimally enlivened
continuation decision tree T+

≥n, whose influence diagram was shown in Sec-
tion 8.1 as Figure 7, an extreme truncation removes the continuation subtree
T+

≥e+m
. This makes its initial node, which is the post-enlivenment node e+

m,

into a truncation node which has become the terminal node of the agent’s
truncated tree T̂+

≥n, whose influence diagram corresponding to one path is
shown in Figure 8. In particular, the terminal node e+

m has become a ter-
minal consequence node. The resulting consequence γ̂(e+

m) is the real-valued
subjective evaluation which should be based on some estimate of what the
decision maker’s expected utility at e+

m would have been the continuation
subtree T+

≥e+m
had remained.

Truncation T̂+
≥n:

n
-m

Mn

ge−m -unique
move

wnm-- original subtree T≥nm

?
e+
m

w-- subjective evaluation γ̂(e+
m)

Figure 8: A Bud and Stem with a Subjective Evaluation

This form of extreme truncation obviously reduces the minimally en-
livened decision tree T+ to a truncated tree T̂+ in which any enlivenment
stem e−m → e+

m inserted into an edge n→ nm joins:

1. a bud e−m in the form of an event node at which there is a subjective
probability ηm ∈ (0, 1) of enlivenment occurring and taking the agent
to node e+

m which ends the stem e−m → e+
m, instead of to the node nm

which ends the edge n→ nm in the original tree;

2. the node e+
m which becomes a truncation node that has an evaluation

γ̂(e+
m) ∈ R attached.

But the same kind of reduction still works even in a recursively enlivened
tree which is not simply enlivened because there exists a non-empty set of
enlivened edges n→ nm in the original tree T at each of which the continua-
tion subtree T+

≥e+m
after the enlivenment stem e−m → e+

m of Figure 7 is subject

to further enlivenment.
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Now, given any enlivened continuation subtree T+
≥n that results from such

recursive enlivenment, provided that the set N+
≥n of nodes is still finite, in

principle one could still employ standard backward recursion in order to
calculate the appropriate valuation attached to each continuation subtree
T+

≥e+m
of T+

≥n.

9.2 Enlivened but Truncated Decision Trees

In many cases, however, it will be practically impossible to complete in full
the computation by backward recursion of the evaluation v(T≥n) of every
relevant continuation subtree T≥n of the original tree T , let alone all the
relevant evaluations of continuation subtrees in what may be the far more
complicated corresponding computations for the whole of the enlivened tree
T+. These computational difficulties make it practically imperative to trun-
cate the agent’s enlivened decision tree. Following the analysis in Section 7,
this creates the need to attach subjective evaluations to at least some of the
terminal nodes of a truncated decision tree. Indeed, for games as complicated
as Chess or Go, the typical case requires the agent to attach to all but a very
few terminal nodes a subjective evaluation rather than a consequence in the
form of a definite result. This helps explain why some form of Monte Carlo
tree search algorithm discussed in Section 7.5 has played such a key role in
improving algorithms for playing Chess or Go.

Accordingly, following Section 7, consider any truncation that reduces
some continuation decision trees to trivial trees consisting of a single trun-
cation node with a real-valued evaluation as a consequence. Ideally, even
if there is recursive enlivenment, those evaluations should be what would
emerge from a complete backward recursive construction applied to the whole
enlivened decision tree, without any truncation. Using the subjective eval-
uations γ̂(e+

m) in the extremely truncated tree, however, obviates entirely
any need for any recursive calculation. Of course, though not strictly neces-
sary, some recursive calculations could help to produce normatively superior
beliefs about what subjective evaluations should be attached to the continu-
ation subtrees T+

≥e+m
emanating from the relevant post-enlivenment nodes e+

m

of the enlivened decision tree T+.
The required extension to truncated decision trees with subjective evalu-

ations replaces the relevant domain LS
+

(Y +) of possible enlivened AA con-
sequence lotteries that was defined in Section 8.5 with the new enlivened
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AA consequence lottery domain LS
+

(Y + ∪ R). We also extend the ear-
lier domain T S+

(Y +) of untruncated enlivened decision trees in order to
accommodate the range of all possible subjective evaluations v̂(n) of AA
consequence lotteries LS

+
(Y + ∪ R) that could be attached to a truncation

node of a decision tree. This range of possible evaluations consists of the
expected value for any lottery in LS

+
(Y + ∪R) of any Bernoulli utility func-

tion Y + 3 y 7→ u+(y) ∈ R that has been normalized to satisfy the two
restrictions u+(y) = u and u+(y) = u of (51), as described in Section 6.5.
Because of these normalization restrictions, the relevant extension of the do-
main T S+

(Y +) of enlivened decision trees depends on the four parameters
y, u, y, u that together belong to the Cartesian product space Y ×R×Y ×R.

Accordingly, in order to recognize this dependence, we let T̂ S+
(Y +, y, u, y, u)

denote the domain of enlivened but truncated finite decision trees, including
the evaluations of their truncation nodes.

Having extended the consequence domain in this way, the next step is to
extend the construction in Section 6.7 of the evaluation v(T≥n) of each contin-

uation subtree T≥n of each decision tree T ∈ T S(Y S). Let v̂+(T̂+
≥n) denote the

result of the extended construction, which is an evaluation defined for each
continuation subtree T̂+

≥n of each tree T̂+ in the domain T̂ S+
(Y +, y, u, y, u)

of enlivened but truncated decision trees. These evaluations should still sat-
isfy at all nodes whichever of the four recurrence relations (53), (54), (56),
and (58) is relevant, though with each v(T≥n) and each v(T≥n′) replaced by

v̂+(T̂+
≥n) and v̂+(T̂+

≥n′) respectively. The only new feature is that, at any
terminal evaluation node n with normalized subjective evaluation γ̂(n), the
equation (53) should be replaced by the obvious

v̂+(T̂+
≥n) = γ̂(n) (63)

9.3 Characterizing Bayesian Rationality

Section 1.1 offered a summary of the results in Hammond (1988a, b; 1998a, b;
1999, 2022) that characterize Bayesian rational decision-making. The main
conclusion of this paper is that these results survive, though with normalized
subjective evaluations at truncation nodes, for the domain T̂ S+

(Y +, y, u, y, u)
of finite enlivened but truncated decision trees. These results all follow from
adapting in an obvious way the earlier results for the old domain of unen-
livened and untruncated finite decision trees to the new domain of enlivened
but truncated finite decision trees. This is because there is an obvious em-
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bedding of the new domain in the old domain, for which previous work had
characterized Bayesian rationality.

9.4 Limitations of Bayesian Rationality

A concept of rationality that is more philosophically refined than mere Bayes-
ian rationality would presumably require a rational agent to use some kind
of some kind of “normatively justified” Bernoulli utility function defined on
the consequence domain, together with some kind of “normatively justified”
subjective probabilities over uncertain states of the world. Thus, this richer
concept of rationality would go beyond mere Bayesian rationality.

Bayesian rationality in enlivened trees is no less limited. Indeed, full ra-
tionality should require the agent’s subjective evaluations at terminal evalu-
ation nodes to be normatively justified, in addition to the agent’s normalized
Bernoulli utility function and subjective probabilities. Of course, the agent’s
estimates of the relevant subjective probabilities and subjective evaluations
may well be improved by procedures such as Monte Carlo tree search, as
considered in Section 7.5.

An alternative procedure that has proved useful in some business applica-
tions involves “scenario planning”. This is somewhat similar to the rational
shortlist method considered in Section 2.2. It involves detailed consideration
of a range of scenarios that are chosen in an attempt to cover eventualities
that are likely to have a significant bearing on the choice of policy. This is
in contrast to what may be a standard view that the focus should be on the
most likely eventualities.20

10 Extensions and Conclusions

10.1 Decision Trees with Timed Consequence Nodes

In Hammond and Troccoli Moretti (2025) we consider finite decision trees
which, in addition to decision, chance, event, and terminal nodes, also have
timed consequence nodes. Given the consequence domain Y , for each m ∈ N

20See, for example, Jefferson (2014) for the point of view of Shell’s former Chief
Economist, and his experience with scenario planning. See also Derbyshire (2017) for
discussion of the possible links between scenario planning and Shackle’s concept of poten-
tial surprise.
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let Y m denote the Cartesian product of m copies of Y . Then let Y(Y ) denote
the domain of all possible timed consequence streams which, for some m ∈ N,
take the form y = (tj, yj)

m
j=1 ∈ Rm × Y m, where t1 < t2 < . . . < tm. With

this construction, any deterministic decision tree T with timed consequence
nodes can be reduced to an equivalent decision tree T ∗ ∈ T (Y(Y )) in which:

1. at each terminal node n ∈ N t, which is a consequence node, the as-
signed terminal consequence γ(n) ∈ Y is replaced by the unique timed
consequence stream y(n) ∈ Y(Y ) that ends at node n;

2. each timed consequence node is then eliminated.

In addition to deterministic decision trees, a similar reduction is possible for
all decision trees that have chance and/or event nodes.

In a decision tree with timed consequence nodes, the eventual consequence
of reaching a terminal node n is, not a lottery over single consequences at
node n, but rather a lottery over the stream of consequences and consequence
lotteries that accumulate along the unique path through the decision tree that
ends at node n. The implications of allowing timed consequence nodes are
then routine unless the consequence of reaching any consequence node n in-
cludes a “menu consequence” which depends on what consequence lotteries
are feasible in the continuation decision tree emanating from node n. Even
then, however, the results summarized in Section 1.1 that justify Bayesian
rationality remain valid; all that changes is that the domain of relevant con-
sequence streams becomes much richer. These changes can be significant,
however. For example, they allow scope for preferences for flexibility, as in
Koopmans (1950, 1964) and Kreps (1979). They also allow preferences for
the timing of resolution of uncertainty, as in Kreps and Porteus (1978). Also
possible are menu consequences that reflect preferences over lotteries such as
those considered by Machina (1989) and by Gilboa and Schmeidler (1989)
which cannot be represented by an expected utility function, as well as re-
cursive preferences for intertemporal consumption streams of the kind that
Epstein and Zin (1989) first considered.

Indeed, for trees with timed consequence nodes as well as decision, chance
and event nodes, there is an obvious extension of the rules set out in the four
equations (53), (54), (56), and (58) of Section 6.7. This extension treats
the case when node n is a consequence node, in which case the timed conse-
quence attached to node n is prepended at the beginning of each consequence
stream y that arises in the continuation subtree T≥n. With this extension,
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the characterization in Section 9.3 of Bayesian rationality for enlivened but
untruncated decision trees still applies.

A minor complication does arise, however, in characterizing Bayesian
rationality with subjective evaluations in enlivened but truncated decision
trees. The issue is how to truncate a non-trivial stream of consequences and
consequence lotteries that accumulates along a path through the decision
tree. The obvious remedy is simply to append as a consequence attached to
the truncation node a real-valued subjective evaluation of the kind considered
in Sections 7.3, 9.2, and 9.3 to the consequence stream that has accumulated
before the truncation.

10.2 Reverse Bayesianism

“Reverse Bayesianism” was described in the series of joint papers by Karni
and Vierø, as well as those by Vierø on her own, that were cited in Section
1.3. For the general finite decision trees considered here, reverse Bayesian-
ism is the result saying that, if you condition the probabilities of different
consequences in any enlivened decision tree T+ on the event that enlivening
does not occur, the result should be the corresponding probabilities in the
original unenlivened decision tree T .

10.3 Transformative Experiences

The concept of transformative experiences arose in philosophy thanks to Paul
(2014, 2015a, b, c), though similar ideas were discussed earlier in Ullmann-
Margalit’s (2006) paper on “big decisions” whose first characteristic (p. 158)
is that they must be “transformative, or ‘core affecting’ ”. As Paul (2015b,
p. 761) writes:

a transformative experience is . . . both radically new to the agent
and changes her in a deep and fundamental way; there are ex-
periences such as becoming a parent, discovering a new faith,
emigrating to a new country, or fighting in a war. . . .

An epistemically transformative experience is an experience that
teaches you something you could not have learned without hav-
ing that kind of experience. Having that experience gives you
new abilities to imagine, recognize, and cognitively model possi-
ble future experiences of that kind. A personally transformative
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experience changes you in some deep and personally fundamental
way, for example, by changing your core personal preferences or
by changing the way you understand your desires and the kind
of person you take yourself to be. A transformative experience,
then, is an experience that is both epistemically and personally
transformative.

The main problem with transformative decisions is that our stan-
dard decision models break down when we lack epistemic access
to the subjective values for our possible outcomes.

As two philosophically prominent examples of transformative experiences,
she considers the decisions of whether to become a vampire (!) or to have
a child.21 See also the discussion by Pettigrew (2015), Barnes (2015), and
Campbell (2015), as well as later by writers such as Bykvist and Stefánsson
(2017) and Randell (2023). The claim we make here is that any transfor-
mative experience involves a decision tree that becomes enlivened in case it
includes any decision by the agent which determines whether to undergo the
novel experience being considered.

10.4 A Possible Conclusion

The widely quoted aphorism due to the statistician George Box that was
quoted at the head of Section 1.2 should remind us of the inevitable limita-
tions that will occur in any formal model of all but the most trivial decision
problems. Indeed, examples that extend in time from Homer’s Odyssey to
modern algorithms for playing chess demonstrate that, for an agent who has
one or more decisions to make, the usefulness of any model is all too likely
to be temporary. This paper has begun an investigation of what decisions
are rational for an agent who recognizes this fundamental difficulty. Specif-
ically, it is argued that the best which such an agent can do, in effect, is to
construct a subjective truncated probabilistic model of what the ultimate ex
post evaluation of each possible decision could be, and then to maximize the
expectation of this evaluation.

21Perhaps it would make a bit more sense to ask if it would be better to start practising
vampirism, or occasionally adopting the feeding habits of a vampire bat.
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sequences” Revue Économique 73: 943–976.

Hammond, P.J. and A. Troccoli Moretti (2025) University of Warwick, CRETA
working paper (in preparation).

Hansen, L.P. and T. Sargent (2007) Robustness (Princeton: Princeton University
Press).

54



Hicks, J.R. (1946) Value and Capital: An Inquiry into Some Fundamental Prin-
ciples of Economic Theory (Oxford: Clarendon Press).

Howard, R.A. and J.E. Matheson (2005) “Influence Diagram Retrospective” ACM
Decision Analysis Vol. 2, No. 3. https://doi.org/10.1287/deca.1050.

0050

Jefferson, M. (2014) “The Passage of Time: Shackle, Shell and Scenarios” in
Earl, P., and B. Littleboy (eds.) G.L.S. Shackle (Basingstoke: Palgrave
Macmillan) pp. 198–214.

Karni, E. (1985) Decision Making Under Uncertainty: The Case of State-Dependent
Preference (Cambridge, MA: Harvard University Press).

Karni, E. and M.L. Vierø (2013) “‘Reverse Bayesianism’: A Choice-Based Theory
of Growing Awareness” American Economic Review 103, 2790–2810.

Karni, E. and M.L. Vierø (2015) “Probabilistic Sophistication and Reverse Bayes-
ianism” Journal of Risk and Uncertainty 50: 189–208.

Karni, E. and M.L. Vierø (2017) “Awareness of Unawareness: A Theory of De-
cision Making in the Face of Ignorance” Journal of Economic Theory 168:
301–328.

Koopmans, T.C. (1950) “Utility Analysis of Decisions Affecting Future Well-
Being” (abstract) Econometrica 18: 174–5.

Koopmans, T.C. (1964) “On Flexibility of Future Preference” in M.W. Shelly
and G.L. Bryan (eds.) Human Judgments and Optimality (New York: John
Wiley), ch. 13, pp. 243–254.

Kreps, D.M. (1990) Game Theory and Economic Modelling (Oxford: Clarendon
Press).

Kreps, D.M. (1992) “Static Choice in the Presence of Unforeseen Contingencies”
in P. Dasgupta, D. Gale, O. Hart, and E. Maskin (eds.) Economic Analysis
of Markets and Games: Essays in Honor of Frank Hahn (Cambridge, Mass.:
M.I.T. Press), pp. 258–281.

Kreps, D.M., and E.L. Porteus (1978) “Temporal Resolution of Uncertainty and
Dynamic Choice Theory” Econometrica 46 (1): 185–200.

Machina, M. (1989) “Dynamic Consistency and Non-Expected Utility Models of
Choice under Uncertainty” Journal of Economic Literature 27: 1622–1668.

55



Manzini, P. and M. Mariotti (2007) “Sequentially Rationalizable Choice” Amer-
ican Economic Review 97: 1824–1839.

Marschak, J. (1950) “Rational Behavior, Uncertain Prospects, and Measurable
Utility” Econometrica 18 (2): 111–141.

Metcalfe, S., S. Salles-Filho, L.T. Duarte, A. Bin, A.T. Azevedo, and P.H.A.
Feitosa (2021) “Shackle’s Approach Towards Priority Setting and Decision-
Making in Science, Technology, and Innovation” Futures 134: 102838.

Myerson, R.B. (1979) “An Axiomatic Derivation of Subjective Probability, Util-
ity, and Evaluation Functions” Theory and Decision 11: 339–352.

Myerson, R.B. (1983) “A Dynamic Microeconomic Model with Durable Goods
and Adaptive Expectation” Journal of Economic Behaviour and Organiza-
tion 4: 309–351.

Paul, L.A. (2014) Transformative Experience (Oxford U. Press).

Paul, L.A. (2015a) “What You Can’t Expect When You’re Expecting” Res Philo-
sophica [online] 92 (2): 1–22.

Paul, L.A. (2015b) “Précis of Transformative Experience” Philosophy and Phe-
nomenological Research 91 (3): 760–764.

Paul, L.A. (2015c) “Transformative Experience: Replies to Pettigrew, Barnes and
Campbell” Philosophy and Phenomenological Research 91 (3): 794–813.

Pettigrew, R. (2015) “Transformative Experience and Decision Theory” Philos-
ophy and Phenomenological Research 91 (3): 766–774.

Pollak, R.A. (1968) “Consistent Planning” Review of Economic Studies 35: 201–
208.

Raiffa, H. (1968) Decision Analysis: Introductory Lectures on Choices under Un-
certainty (Addison-Wesley).

Randell, P. (2023) “Familiar Transformative Experiences” Synthese 202: 45.

Savage, L.J. (1954, 1972) Foundations of Statistics (New York: John Wiley; and
New York: Dover Publications).

Schipper, B.C. (2014a) “Unawareness—A Gentle Introduction to Both the Liter-
ature and the Special Issue” Mathematical Social Sciences 70: 1–9.

56



Schipper, B.C. (2014b) “Preference-Based Unawareness” Mathematical Social
Sciences 70: 34–41.

Schumpeter J.A. (1911) [2nd edn. 1926] Theorie der wirtschaftlichen Entwicklung;
Eine Untersuchung über Unternehmergewinn, Kapital, Kredit, Zins und den
Konjunkturzyklus (Leipzig, Duncker & Humblot).

Schumpeter J.A. (1934) [1961] The Theory of Economic Development: An Inquiry
into Profits, Capital, Credit, Interest, and the Business Cycle translated
from Schumpeter (1911) by R. Opie, with a new introduction by J.E. Elliott.

Schervish, M.J., T. Seidenfeld, and J.B. Kadane (1990) “State-Dependent Utili-
ties” Journal of the American Statistical Association 85 (411): 840–847.

Seidenfeld, T., M.J. Schervish, and J.B. Kadane (2010) “Coherent Choice Func-
tions under Uncertainty” Synthese 172: 157–176.

Shackle, G.L.S. (1953) “The Logic of Surprise” Economica, New Series 20: 112–
117.

Shackle, G.L.S. (1969) Decision, order, and time in human affairs (Cambridge:
Cambridge University Press).

Silver, D. et al. (2018) “A General Reinforcement Learning Algorithm that Mas-
ters Chess, Shogi, and Go Through Self-Play” Science 362 (issue 6419):
1140–1144.

Simon, H.A. (1955) “A Behavioral Model of Rational Choice” Quarterly Journal
of Economics 69: 99–118.

Simon, H.A. (1957) Models of Man (New York: John Wiley).

Sims, C.A. (2003) “Implications of Rational Inattention” Journal of Monetary
Economics 50 (3): 665–690.

Sims, C.A. (2011) “Rational Inattention and Monetary Economics” Handbook of
Monetary Economics, vol. 3 (North-Holland) pp. 155–181.

Strotz, R.H. (1956) “Myopia and Inconsistency in Dynamic Utility Maximiza-
tion” Review of Economic Studies 23: 165–180.

Ullmann-Margalit, E. (2006) “Big Decisions: Opting, Converting, Drifting” Royal
Institute of Philosophy Supplement 58: 157–172.

57



Vierø, M.-L. (2009) “Exactly What Happens After the Anscombe–Aumann Race?
— Representing Preferences in Vague Environments” Economic Theory 41,
175–212.

Vierø, M.-L. (2021) “An Intertemporal Model of Growing Awareness” Journal of
Economic Theory 197: 105351.

Von Neumann, J. (1928) “Zur Theorie der Gesellschaftsspiele” Mathematische
Annalen 100: 295–320.
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