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Abstract. A decision maker acquires and processes information about an uncer-

tain state of nature through an inquiry—a contingent sequence of questions culmi-

nating in a decision. Inquiries are costly, with costs proportional to their length.

We characterize optimal inquiries and uncover two behavioral implications of costly

inquiry: attention span reduction (favoring shorter inquiries by deprioritizing some

decisions or excluding them from consideration) and confirmation bias (seeking ev-

idence to confirm prior guesses of optimal decisions). Our framework provides a

rational foundation to prominent cognitive biases, such as framing and search sat-

isficing in healthcare, and tunnel vision in criminal investigations.
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1. Introduction

Inquiry is one of the most frequent and important modes of information process-

ing in our daily life. Examples are abundant. A doctor visit usually consists of a

series of questions from reception to actual consultation of the patient’s conditions.

A crime investigation typically consists of a series of queries and processing the re-

sponses. Inquiry about characteristics of products or services is an important aspect

of the procurement process in organisations. In all these examples, information to

be gathered can be potentially overwhelming, whereas resources available to process

it are limited and precious. In this paper, we propose a theory of optimal inquiry

that incorporates a dynamic procedure of costly information processing, with novel

behavioral implications on attention span and confirmation bias.

We formalize an inquiry as a decision maker’s strategy of asking questions about a

relevant state of nature. It starts with an initial question and a contingent plan that

specifies which question to ask depending on the answers to the previous ones. As

in the standard Bayesian paradigm, answers to the inquiry determine the posterior

information that guides the decision maker’s final choice.

Our framework provides an explicit and intuitive procedure for information process-

ing. It has the same backbone motivation as what gave rise to the rational inattention

literature (surveyed in Maćkowiak et al., 2023). The main departure of our approach

from this literature is that we focus on the dynamic process of inquiry with an endoge-

nous choice of the optimal procedure. This allows us to obtain behavioral implications

that are of dynamic nature, such as an endogenous preference for a shorter attention

span and a prioritization of certain salient decisions before considering others.

Moreover, our cost of inquiry is directly associated with the acts of asking questions

and processing their answers, and hence the cost is independent of the decision maker’s

beliefs. This cost reflects the burden of the decision maker’s cognitive activity or the

value of physical resources (such as gathering evidence) needed for the inquiry. For

example, the cost of performing a blood glucose test and processing its result (in terms

of physical or cognitive resources) is independent of the patient’s medical history. In

contrast, in the standard rational inattention model, the cost is an entropy-based

function of the decision maker’s prior beliefs. This dependence on the prior can be
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unrealistic in certain applications and has a conceptual problem if applied to game

situations (Denti et al., 2022).1

Our main result is a characterization of optimal inquiry in terms of its dynamic out-

comes: the likelihood of different actions to be chosen and the sequence of questions

that are asked to arrive at different actions. We utilize two well-known results from

the information theory—the Kraft inequality (Kraft, 1949) and the Huffman coding

(Huffman, 1952)—to characterize the set of payoff-relevant outcomes implementable

by an optimal inquiry. Any such outcome consists of two components—form and

content. The form includes a consideration set, which is a subset of feasible actions

that are used with a positive probability in that outcome, and a length profile, which

specifies how many questions are asked to reach each action in the consideration set.

The content is an information partition, which describes the posterior information

about the state upon reaching each action in the consideration set.

Our characterization of optimal inquiry relies on two interconnected principles of

optimality. First, we show that the form determines the content: given an optimal

consideration set and an associated length profile, the optimal information partition is

determined by simple indifference conditions. Second, we show that the content is also

informative about the form: given an information partition, the optimal length profile

is determined by the Huffman coding. This implies a negative correlation between

the ex ante likelihood of choosing an action and the inquiry length that leads to

that action. That is, more likely actions are prioritized and considered before other

actions.

The above two principles provide a formal insight into the key trade-off that an

optimal inquiry balances—the accuracy of information processed against the number

of questions needed to achieve it—and lead us to two behavioral implications from

this trade-off.

First we consider implications related to the form of optimal inquiry, and define

attention span as the expected number of questions the decision maker asks before

taking an action. We show that the decision maker optimally reduces her attention

span as the cost of each question rises. This is achieved either by dropping some

1Caplin et al. (2022) also point out that the entropy-based cost function has implications that are
empirically counterfactual. Several recent papers, such as Bloedel and Zhong (2024), also consider
more general cost structures. We defer the discussion of those papers to the Related Literature.
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actions out of the consideration set, or by prioritising some actions over others, or

both. At the extreme, when the cost is very low, all feasible options are considered,

and it takes as many questions as needed to distinguish them all. At the other

extreme, when the cost is very high, no information is processed, and the action is

chosen according to the prior belief.

Second, we consider implications to the content of the optimal inquiry. We show

that optimal inquiry always exhibits confirmation bias : the decision maker optimally

seeks information to confirm her prevalent hypothesis of which actions are optimal.

This formalizes the informal definition of confirmation bias in psychology such as

Nickerson (1998): “It refers usually to unwitting selectivity in the acquisition and use

of evidence.” We uncover an economic mechanism for the confirmation bias to occur

optimally. Because asking questions is costly, the decision maker is willing to make

suboptimal choices that are reached after fewer questions. At the same time, ex ante

more likely choices are optimally prioritized with fewer questions to confirm them.

These two forces together lead to an endogenous confirmation bias.

We apply our model to provide a rational explanation to some documented be-

havioural biases. Our leading example considers the phenomena of framing and search

satisficing that lead to misdiagnosis in primary healthcare (Croskerry et al., 2013).

Through the lens of our model, we show that the pressure to end inquiry early can

lead to a biased process. The features such as “premature diagnosis” and “search

satisficing” can be explained by our confirmation bias, whereas “framing” can be

understood as how a doctor’s prior beliefs can magnify this bias or determine its

direction. Two further case studies are given at the end of the paper. In the case of

criminal justice, the literature has argued that cognitive biases such as “tunnel vision”

can lead to wrongful convictions (e.g., Gould and Leo, 2010). We show that in our

model a higher rate of wrongful conviction can be linked to higher cost associated

with a stronger pressure to solve the case fast, and provide a potential explanation

of the “tunnel vision”. Finally, in a procurement setting, we show that the optimal

inquiry process can lead a biased selection, according to which the procurer prioritises

some suppliers and shows a favorable bias toward them, even when all suppliers are

ex ante symmetric.
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Related Literature. This paper makes a conceptual and methodological contribution

to three strands of literature.

The first strand includes papers that formulate and study decision making with

cognitive limitations. A popular approach in this literature is rational inattention

initiated by Sims (2003). It treats limited cognition as costly information acquisi-

tion. The cost of acquiring information is postulated as an ex-ante cost function,

typically modelled as entropy reduction relative to the prior belief, as in Matějka

and McKay (2015) and Jung et al. (2019). More recent papers consider other cost

functions. Morris and Strack (2019) introduce an alternative ex-ante cost function

motivated by the classic sequential sampling problem of Wald (1945). Hébert and

Woodford (2021) propose neighborhood-based cost functions that capture notions of

perceptual distance. Pomatto et al. (2023) characterize ex-ante cost functions that

satisfy several economically interpretable axioms. Bloedel and Zhong (2024) provide

general conditions for ex-ante cost functions to arise from dynamic models of informa-

tion acquisition. Unlike this literature, we focus on a concrete but intuitive dynamic

model where the cost of information is directly associated with asking questions. The

dynamic nature of the process and the sequencing of questions matters and has be-

havioral implications. This approach allows us to capture certain behavioral concepts

in a meaningful way with novel insights. In Section 6 we provide a detailed discussion

of which of our conclusions are different from those of rational inattention.

Cognitive limitations of a decision maker have also been modeled without reducing

them to an ex-ante cost function. Wilson (2014), following the approach of Cover and

Thomas (2006), formulates the decision-making process as a finite automaton. The

main result in Wilson (2014) is a dynamic-consistency type of result called multi-self

consistency. The cognitive constraint is modelled via an exogenously given number

of memory states that capture the decision maker’s memory capacity. In contrast,

our model is dynamically consistent in the conventional sense, and the size of the

optimal inquiry is endogenous. Cremer et al. (2007) propose a model of organizational

language using codes, with the main trade-off between the use of broader codes,

which are easier to process, and the precision of such codes. Dilmé (2024) studies the

relationship between precision and complexity of the optimal codes in the context of

efficient communication. While our model shares a similar trade-off, it is dynamic in

nature with implications on the timing of information processing.
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Similar to our paper, Mandler (2024) proposes a model in which the decision maker

acquires information by asking questions modelled as a partition of states. The re-

search question addressed in Mandler (2024) is complementary to our paper. The

focus of Mandler (2024) is on the implementation of an exogenously given decision

rule at minimum cost, with implications on how the inquiries should be structured.

In contrast, our model features an endogenous decision rule that is jointly deter-

mined with the inquiry tree and information structure, which allows us to show the

connection between cognitive costs and behavioral biases.

The second strand of literature includes papers that study behavioral biases with

cognitive frictions. These papers range from axiomatic to constrained optimization

approaches, the former including Masatlioglu et al. (2012) and Manzini and Mariotti

(2014) and the latter including Caplin et al. (2019). While our approach is closer

to the latter, we connect the two approaches by showing that our optimal inquiry

satisfies certain desirable axioms, such as dynamic consistency and the attention-

filter property of Masatlioglu et al. (2012).

The third strand rationalizes confirmation bias. The wisdom from the literature

is that frictions in information processing tend to cause a decision maker to favor

signals that confirm the prior belief. Wilson’s (2014) model generates this form of

confirmation bias based on limited memory. However, in her model the decision maker

does not seek evidence but passively processes it. In contrast, our decision maker

actively seeks evidence to confirm her more likely options. Steiner et al. (2017) obtain

a “status quo bias” in a dynamic rational inattention model where the decision maker

tends to stick to actions that are optimal ex-ante. Nimark and Sundaresan (2019)

also obtain a “confirmation effect,” meaning that the decision maker adopts signal

structures in favor of the prior belief. All these papers argue that certain implications

from the proposed models can be interpreted as confirmation bias and emphasize the

importance of the prior belief. Jehiel and Steiner (2020) obtain confirmation bias

in a model where the decision maker chooses whether or not to continue to receive

more signals, but can only remember the last one received. Confirmation bias here

means that the agent is more likely to stop when seeing a signal in favor of the prior.

In contrast, our confirmation bias features an endogenous signal structure with the

emphasis on the dynamic nature of information processing. Moreover, we provide a
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broad formal definition of confirmation bias that is not specific to our model and can

be applied to other frameworks.

The paper is organized as follows. Section 2 provides a motivational example. Sec-

tion 3 introduces the model. Section 4 establishes the key principles of optimality,

characterizes optimal inquiries, and introduces two main behavioral implications: at-

tention span and confirmation bias. Section 5 presents two more case studies that

illustrate potential applications of our model. Section 6 shows the key distinctions

between our results and those from the rational inattention literature. The proofs are

relegated to the Appendix.

2. The leading example

In this section, we illustrate our main findings by an example in the context of

misdiagnosis in primary health care. As Singh et al. (2017) argue:

“Diagnosis in primary care [...] represents a high-risk area for errors.

PCPs [primary care physicians] typically face high patient volumes and

make decisions amid uncertainty. [...] PCPs need to carefully balance

the risk of missing serious illness with the wise use of often scarce and

costly referral and testing resources.”

The problem of misdiagnosis is significant. Singh et al. (2014) estimate “a rate of

outpatient diagnostic errors of 5.08%, or approximately 12 million US adults every

year.” Croskerry et al. (2013) attest:

“...One of the principal factors underlying diagnostic error is bias. Post

hoc analyses of diagnostic errors have in fact suggested that flaws in

clinical reasoning rather than lack of knowledge underlie cognitive di-

agnostic errors, and there is some experimental evidence that, at least

when problems are complex, errors were associated with intuitive judg-

ments and could be repaired by analytical reasoning. Moreover, a few

experimental studies have supported the claim that bias may misdirect

diagnostic reasoning, thus leading to errors.”

Our example is motivated by a case study in Croskerry et al. (2013), in which a

patient complained about constipation but was actually suffering from Cauda Equina
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Is x2 > 1/2?

a2

true

a0

false

Is max{x1, x2} < 1/2?

a0

true

Is x1 > x2?

a1

true

a2

false

false

Is x1 + x2 > 1/2?

Is x1 > max{x2, 1/2}?

a1

true

Is x2 < 1/2?

a0

true

a2

false

false

true

a0

false

Inquiry A Inquiry B Inquiry C

Figure 1. Examples of inquiries

Syndrome that requires a specialist or emergency care. Instead, the doctor prescribed

a laxative and sent the patient home.

We describe this situation using the following stylized model. The patient’s con-

dition is summarized by a state x = (x1, x2) ∈ [0, 1]× [0, 1], where x1 represents the

diagnostic difficulty of the case and x2 represents its seriousness. The doctor has

three possible actions: to treat the symptom and send the patient home (labelled

as action a0), to refer the patient to a specialist (labeled as action a1), or to send

the patient to emergency (labeled as action a2). Action a0 is ideal for conditions

that are not too difficult and not too serious, action a1 is ideal for difficult cases,

and action a2 is ideal for serious cases. Accordingly, the doctor’s gross payoffs from

these actions are given by the quadratic loss relative to the respective ideal states

(0, 0), (1, 0), and (0, 1): U(a0, x) = −(x1)2 − (x2)2, U(a1, x) = −(x1 − 1)2 − (x2)2,

and U(a2, x) = −(x1)2 − (x2 − 1)2. For convenience, fix a default action, say, a0,

and consider the utility u(a, x) from each action a ∈ {a0, a1, a2} as compared to a0,

u(a, x) = U(a, x)− U(a0, x). Thus,

u(a0, x) = 0, u(a1, x) = 2x1 − 1, u(a2, x) = 2x2 − 1. (1)

The doctor is initially uninformed about x. Note that the doctor does not need

to discover x precisely, and she only needs to find out enough to choose a treatment.

To learn about x, the doctor follows an inquiry. An inquiry is a strategy of how to

ask questions, which starts with an initial question, specifies follow-up questions de-

pending on earlier answers, and eventually prescribes an action. Each question asks



OPTIMAL INQUIRY 9

whether a proposition about x is true or false; these can be propositions about differ-

ent dimensions of x or propositions about the relationship across different dimensions.

Examples of inquiries are shown in Figure 1.

A cost of λ is deducted from the doctor’s utility whenever she asks a question. This

is interpreted as the opportunity cost of time and cognitive effort spent on a patient

that could have been spent to diagnose and treat other patients. In Croskerry et al.

(2013) and Singh et al. (2017), this cost is regarded as an important factor that affects

the doctor’s investigation and the resulting decision. If the doctor reaches an action

a after asking ` questions, the resulting payoff is u(a, x)− λ`. The doctor chooses an

inquiry to maximize her expected utility net of the cost, given her prior knowledge.

The prior knowledge is modeled as a prior distribution over x, assumed to have full

support and density on [0, 1]2.

As a benchmark, suppose that there is no cost of asking questions, λ = 0. Observe

that, by (1), for each a ∈ {a0, a1, a2}, it is optimal to choose a if and only if x ∈ I0
a ,

where

I0
a0

= {x : max{x1, x2} < 1/2}, I0
a1

= {x : max{x1, x2} ≥ 1/2 and x1 > x2},

I0
a2

= {x : max{x1, x2} ≥ 1/2 and x1 ≤ x2},

as illustrated by Inquiry B in Figure 1. We refer to I0 = {I0
a0
, I0
a1
, I0
a2
} as an infor-

mation partition. Inquiries B and C (Figure 1) both achieve this outcome. However,

when questions are costly, λ > 0, the two inquiries differ significantly in terms of the

cost: when action a0 is taken, it takes only one question in inquiry B but it may take

three questions in inquiry C; when action a2 is taken, it takes two questions in B

but three questions in C. Moreover, the doctor may find it optimal to trade off some

accuracy of information about x to reduce the cost of inquiry; in other words, the

optimal information partition is endogenously determined by the cost.

Our main results show that the doctor will design the inquiry to induce the optimal

information partition to balance the cost against the accuracy. For this example,

suppose that action a0 is the doctor’s choice that is most likely to be the correct

under the prior distribution (that is, I0
a0

has a higher probability than both I0
a1

and

I0
a2

). Then, for a range of λ’s that are not too high, the optimal inquiry is shown

in Figure 2a. It poses one question to reach a0 and two questions to reach a1 or a2.

Taking the cost of questions into account, optimal choices are now determined by
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Is max{x1, x2} < 1+λ
2

?

a0

true

Is x1 > x2?

a1

true

a2

false

false

x1

x2

1
2

1
2

1

1

I0
a0

I0
a1

I0
a1

x1

x2

1+λ
2

1+λ
2

1

1

Iλa0

Iλa2

Iλa1

a. Optimal inquiry b. Optimal partition, λ = 0 c. Optimal partition, λ > 0

Figure 2. Optimal inquiry and optimal information partition

comparing the utilities of the actions net of the costs: u(a0, x) − λ, u(a1, x) − 2λ,

and u(a2, x)− 2λ. The optimal information partition Iλ = {Iλa0 , I
λ
a1
, Iλa2} is shown in

Figure 2c.

As seen from the comparison of Figures 2b and 2c, as λ increases, the doctor

optimally expands the area Iλa0 which leads to a quicker action, namely, a0, and

shrinks the areas where slower actions, a1 and a2, are made. Moreover, if λ were to

increase further, eventually the doctor would ask only a single question leading to a0

or one of the other actions, and drop the third action from consideration entirely. This

means that, as costs rise, the doctor optimally asks fewer questions (in expectation).

We refer to this effect as a reduction of the attention span. This also means that

the doctor optimally chooses the ex-ante most likely correct action a0 with an even

greater probability, thus actively seeking confirmation of her ex-ante most plausible

hypothesis. We refer to this effect as the confirmation bias. Misdiagnosis occurs when

the state is in Iλa0 − I
0
a0

(Figure 2c, the area between the dotted and solid lines), as in

this case the doctor sends the patient home when she should have referred them to a

specialist or to emergency.

The result that the optimal inquiry under λ > 0 starts with the question about the

ex-ante most likely correct action a0 and leads to an expansion of Iλa0 , hence inducing

a0 with an even higher probability, derives from the well-known Huffman coding

(Huffman, 1952). It is a lossless compression algorithm for discrete data which, when

adapted to our context, determines the most efficient question tree and implies that

more likely actions should be reached after fewer questions. We extend this logic to

our setting with a continuum of states and show that it also leads to an endogenous

information partition.
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Our framework allow us to unify and provide a “rational” explanation to cognitive

and behavioral biases discussed in Croskerry et al. (2013): “The principle biases for

the physician who saw [the patient] in the clinic were framing, search satisficing and

premature diagnostic closure.” That is, the doctor identifies the most likely solution

to the problem (in this example, a0) based on her prior knowledge (framing) and

then searches for evidence to confirm that, by prioritizing the confirmation of a0

over other options and expanding the set of states where a0 is chosen. When x ∈
Iλa0 − I

0
a0

, the doctor prematurely closes the diagnostic inquiry and sends the patient

home, whereas ideally she should have continued the inquiry and decide whether an

emergency treatment or a specialist referral are needed. Thus, in our framework,

misdiagnosis emerges not because of the doctor’s intrinsic biases but as an optimal

response to costly information processing.

In what follows, we lay out our framework and present the general results of the

effect of the cost of processing information on attention span and confirmation bias.

3. Model

3.1. Primitives. A decision maker (DM) needs to process information about an

uncertain state of nature before taking an action. The DM’s utility u(a, x) depends

on her action, a ∈ A, and the state, x ∈ X.2 The set of actions A is finite and contains

at least two actions. The set of states X is a convex subset of RL, L ∈ N. State x

is distributed according to a probability distribution G that is absolutely continuous

and has full support on X. We will use notation P[·] and E[·] to denote the probability

and expectation under G, respectively. Throughout the paper, we assume:

(A1) For all a ∈ A, u(a, x) is continuous in x, and E[u(a, x)] is finite.

(A2) For all a′, a′′ ∈ A and all c ∈ R, the set {x ∈ X :u(a′, x) − u(a′′, x) = c} has

empty interior.

Assumption (A1) is needed for the DM’s optimization problem to be well defined.

Assumption (A2) means that the utility curves of any two actions are almost never

2Variable x can be interpreted as a profile of observables or signals with quantitative information
about the true underlying state of nature (which may be ultimately unobservable) that the DM can
ask questions about.
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parallel to each other. Most utility functions that naturally emerge in applications

satisfy (A1) and (A2).3

3.2. Inquiries. When confronted with a state x, the DM does not observe x directly.

Instead, to obtain information about x, she relies on an inquiry: a series of true/false

questions formulated as propositions. A proposition is a statement about x in the

form “x ∈ Y ” that can be either true or false. We denote the collections of Borel

subsets of X by B(X), and identify a proposition with a set Y ∈ B(X). We say that

proposition Y is true at x if x ∈ Y and it is false if x 6∈ Y .

An inquiry Q = 〈N, T, σ, χ, d〉 is a finite binary tree. Non-terminal nodes of the

tree are associated with propositions, and terminal nodes are associated with actions.

Specifically:

• a finite set N of nodes contains a root no and a nonempty set T of terminal

nodes (note that the tree may consist of a single terminal node, i.e., N = T =

{no});
• each non-terminal node n ∈ N − T is followed by exactly two edges labelled

true and false;

• successor function σ assigns to each non-terminal node n ∈ N − T and each

edge e = {true, false} a child σ(n, e) ∈ N of node n following edge e;

• proposition mapping χ assigns to each non-terminal node n ∈ N −T a propo-

sition χ(n) ∈ B(X);

• decision rule d assigns to each terminal node t ∈ T an action dt ∈ A.

We denote by QX the set of all possible inquiries given a set of states X.

Given a state of nature x ∈ X, an inquiry Q = 〈N, T, σ, χ, d〉 begins with the

proposition χ(no) at the root. At each non-terminal node n ∈ N − T , the inquiry

asks whether it is true that x ∈ χ(n). If true, then the inquiry proceeds to the node

σ(n, true); otherwise, it proceeds to the node σ(n, false). When a terminal node

t ∈ T is reached, the DM takes action dt.

The inquiry transforms a quantitative assessment, say, “x ≥ r”, into a qualitative

one, say, “yes” or “no”, eventually leading to a qualitative recommendation of which

action to choose. In our example in Section 2, the doctor’s main concern is whether

3In fact, we impose (A2) for notational convenience. It guarantees that the optimal inquiry is
essentially unique as indifferences can only occur with probability zero. This assumption can be
substantially relaxed at the expense of more cumbersome notation.
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a given action is appropriate for the state of the patient; this ultimately is a qualita-

tive assessment. In a world with limited cognitive and other resources for the exact

assessment of the patient’s condition in quantitative terms, our model captures the

endogenous coarsening of the information partition through asking questions.

Formally, the inquiry categorizes states of nature into subsets through a series of

questions. When arriving at any (terminal or non-terminal) node n ∈ N , the DM’s

information about the state is summarized by a subset of states, denoted by In(Q).

That is, given the answers to the questions in the previous nodes, the DM can infer

that the true state belongs to In(Q), recursively defined as follows. At the root, all

states are possible, and hence Ino(Q) = X. Given a non-terminal node n ∈ N − T ,

define

Intrue(Q) = In(Q) ∩ χ(n) and Infalse(Q) = In(Q) ∩
(
X − χ(n)

)
, (2)

where ntrue and nfalse are the successors of n after “true” and “false” answers to the

proposition χ(n), respectively. For a terminal node t, It(Q) consists of all states under

which t is reached, and we call it a category of states induced by Q. Note that the

collection of categories {It(Q) : t ∈ T} forms a partition of X. It is the information

partition at the end of the inquiry.

As zero probability events do not matter for payoffs, we adopt and use throughout

the paper a measure-based notion of partition that disregards sets of measure zero

under G. Specifically:

Definition 3.1. A collection of disjoined sets {X1, X2, ..., XK} is a partition of X if

P(Xk) > 0 for each k, and
∑

k P(Xk) = P(X) = 1.

3.3. Payoffs. We assume that asking questions is costly. Let the DM’s cost of any

single question be λ > 0. Given an inquiry Q, let `t(Q) be the length of the path from

no to t in the tree, that is, `t(Q) is the number of questions asked to reach terminal

node t. Then, the cost of inquiry at terminal node t is equal to λ`t(Q).

We can now formulate the DM’s optimization problem. Given an inquiry Q and a

state x, if the inquiry reaches the terminal node t for the given x, the DM’s ex-post

payoff net of the cost is

u(dt, x)− λ`t(Q).



14 HU AND ZAPECHELNYUK

Because each terminal node t ∈ T is reached whenever the state x is in It(Q), the

DM’s ex ante expected utility is given by

W (Q;λ) =
∑
t∈T

∫
x∈It(Q)

(
u(dt, x)− λ`t(Q)

)
G(dx). (3)

An inquiry Q is optimal if it solves

max
Q∈QX

W (Q;λ). (4)

3.4. Outcomes. Here we show that it suffices to describe an optimal inquiry by its

payoff-relevant outcome based on two observations. First, if an inquiry is optimal,

then every node must be reached with positive probability. Indeed, if a node is never

reached, then the question leading to this node is redundant. Second, an optimal

inquiry cannot induce the same action in two terminal nodes. For example, in Inquiry

C (Figure 1), action a0 is chosen after a single question if x1 + x2 ≤ 1/2 and after

three questions if x1 + x2 > 1/2 and max{x1, x2} < 1/2. For such an inquiry, we can

always construct another inquiry that leads to the same final information partition

with fewer questions. In this example, Inquiry B (Figure 1), in fact, does the job.

As a result, each terminal node corresponds to a unique action in A, and from

now on we identify terminal nodes with actions they induce. Let D(Q) be the set

actions induced under Q. We refer to D(Q) as the consideration set.4 For each action

d ∈ D(Q), let `d(Q) denote the length of inquiry leading to the terminal node where

d is chosen, and let Id(Q) denote the information set or the category induced by Q

in that terminal node. Let `(Q) = (`d(Q))d∈D(Q) and I(Q) = (Id(Q))d∈D(Q). We

will refer to the triple (D(Q), `(Q), I(Q)) as the outcome induced by Q. The pair

(D(Q), `(Q)) captures the shape of the inquiry tree, and hence referred as the form

of Q. The partition I(Q) captures the informational content in terminal nodes of the

inquiry tree, and hence referred as the content of Q.

An outcome (D, `, I) captures all we need to know to evaluate the DM’s expected

payoff of an inquiry that leads to that outcome. Indeed, for any two different inquiries

Q and Q′ that implement the same outcome (D, `, I), the expected utility in (4)

4We adopt this terminology from Masatlioglu et al. (2012). Our optimal inquiry satisfies a minimal
rationality property for consideration set required by Masatlioglu et al. (2012): independence of
irrelevant alternatives, or the “attention filter”. It is defined as follows. Suppose that D is a strict
subset of A. The attention filter property holds if, for any smaller action set A′ ⊂ A that contains
D, the optimal consideration set is still D.
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implies that they deliver the same ex ante payoff to the DM. Conversely, we can

ask whether a given profile (D, `, I) with D ⊂ A, ` = (`d)d∈D ∈ N|D| and I being a

partition of X to |D| categories is attainable as outcome of an inquiry. If the answer

is yes, then we say that the outcome (D, `, I) is implementable. The following lemma

characterizes implementable outcomes.

Lemma 3.1. An outcome (D, `, I) is implementable if and only if∑
d∈D

2−`d = 1. (5)

Equality (5) follows from the Kraft inequality (Kraft, 1949) in the information

theory that characterizes the path lengths of binary trees.5 For any given form (D, `)

that satisfies (5) and any given content I with |D| categories, the proof of Lemma

3.1 constructs an inquiry with the corresponding outcome. This lemma also fully

characterizes possible length configurations for a given consideration set. For example,

with |D| = 3, only three length profiles satisfy equality (5), namely, ` = (1, 2, 2),

` = (2, 1, 2), and ` = (2, 2, 1). With |D| = 4, there are 13 length profiles that satisfy

(5), namely, the uniform profile, (2, 2, 2, 2), and 12 distinct permutations of the profile

(1, 2, 3, 3).

4. Optimal Inquiries and behavioural implications

4.1. Optimal Inquiries. We have shown that an inquiry can be summarized by its

outcome (D, `, I). Moreover, Lemma 3.1 shows that the information partition I does

not affect whether or not an outcome profile if implementable. This characterization

allows us to solve the optimal inquiry problem in two stages. We first fix an arbitrary

form (D, `) that satisfies (5), and solve for the optimal content I = I∗(D, `). Then,

we maximize over all possible forms (D, `).

In the first stage, taking (D, `) as given, we find an information partition I∗(D, `)

that maximizes the DM’s expected utility. Specifically, let I∗(D, `) = {I∗d(D, `)}d∈D,

where

I∗d(D, `) =
{
x ∈ X : u(d, x)− λ`d > max

a∈D−{d}
u(a, x)− λ`a

}
. (6)

5Here we have equality instead of inequality because in our inquiry trees each non-terminal node
has precisely two outgoing branches.
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That is, for each action d ∈ D, I∗d(D, `) is the set of states where d is the unique

best-response action among all actions in D when the DM takes into account the cost

of inquiry associated with each action.6 Thus, the DM weakly prefers I∗(D, `) to any

content I. Formally, using the notation W (D, `, I;λ) for the DM’s expected utlity

from an outcome (D, `, I), we have

W (D, `, I∗(D, `);λ) =

∫
x∈X

(
max
d∈D

(u(d, x)− λ`d)
)
G(dx)

≥
∑
d∈D

∫
x∈Id

(
u(d, x)− λ`d

)
G(dx) = W (D, `, I;λ). (7)

This observation is a key to solving the optimal inquiry problem. As mentioned

earlier, the outcomes of an inquiry include both a continuous element I and discrete

element (D, `). The optimal content I is determined by the form (D, `) through

I∗(D, `), and problem (4) can now be reduced to the choice of the form, (D, `).7

Let F∗ be the set of all forms (D, `) with nonempty D ⊆ A and ` satisfying (5).

We have the following theorem.

Theorem 4.1. An inquiry Q is optimal if and only if (D(Q), `(Q)) solves

max
(D,`)∈F∗

∫
x∈X

(
max
d∈D

(u(d, x)− λ`d)
)
G(dx), (8)

and I(Q) is identical to I∗(D(Q), `(Q)) up to a measure zero set.

Since F∗ is a finite set, Theorem 4.1 implies that an optimal inquiry exists. We

also remark here that optimal inquiry satisfies dynamic consistency in that the DM

could not benefit from altering any sub-inquiry in the middle of the process if she was

given the opportunity. As a result, it makes no difference whether the DM commits

to an optimal inquiry ex ante or she is free to update her strategy at any interim

stage.

6Note that I∗(D, `) is a partition of X according to Definition 3.1, because, by assumption (A2),
the set

(
X −

⋃
d∈D I

∗
d (D, `)

)
has measure zero.

7Following the methodology of Bloedel and Zhong (2024), it is possible to solve (4) by first calcu-
lating the cost of an induced information partition (by determining the optimal tree leading to this
partition using Huffman coding and then calculating the expected cost for this inquiry tree), and
then optimizing over all information partitions. However, this approach would be impractical since,
unlike Bloedel and Zhong (2024), we have a continuum of states and thus a continuum of informa-
tion partitions with discontinuous cost structures resulted from Huffman coding. In contrast, our
approach allows us to reduce (4) to a finite optimization problem.
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The set F∗ of possible forms can be large for large consideration sets. Here we

give an auxiliary optimality condition that can substantially reduce the number of

candidate solutions. For a given content {Id}d∈D, this optimality condition states

that ` must minimize the average length with respect to the probability distribution

(P(Id))d∈D subject to the constraint (5). This is a well-known problem in information

theory, and the solution is described by the algorithm called Huffman coding.

To illustrate this, consider the example in Section 2. Given the consideration set

D = {a0, a1, a2}, let a corresponding partition {Ia0 , Ia1 , Ia2} be given. If P(Ia0) >

max{P(Ia1),P(Ia2)}, then the algorithm requires `a0 = 1 and `a1 = `a2 = 2, that is,

the shortest length is associated with the highest probability to minimize the overall

expected length. The generalization to arbitrary D follows the same principle. We

refer to Cover and Thomas (2006, Section 5.6) for formal details of the Huffman

coding algorithm. We have the following theorem.

Theorem 4.2. If (D, `, I) is an optimal outcome, then:

(a) ` is obtained from the Huffman coding w.r.t. the distribution (P(Id))d∈D;

(b) for all d, d′ ∈ D, if P(Id) > P(Id′), then `d ≤ `d′.

We claimed in Section 2 that, as long as P(I0
a0

) > max{P(I0
a1

),P(I0
a2

)}, the optimal

length profile is to have `a0 = 1, that is, to inquire about a0 first for a range of

relatively small λ’s. This result immediately follows from Theorem 4.2 and the fact

that the boundaries of the optimal categories determined by (6) are continuous in

λ. As a result, P(Iλa0) > max{P(Iλa1),P(Iλa2)} holds for small λ’s (see Figure 2c for

illustration), and Huffman coding demands a0 to be inquired about first.

4.2. Attention Span. Our model of inquiry can be interpreted as an attention strat-

egy, whereby the DM focuses on various decisions during her inquiry process. With

this interpretation, a natural question is then how the cost λ affects the DM’s at-

tention span, defined as how long she would concentrate on the task of gathering

information before taking an action. Formally, we measure attention span in our

framework as the expected inquiry length given by

¯̀(D, `, I) =
∑
d∈D

`dP(Id). (9)
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Importantly for our purpose, it captures whether there is a lot of probability weight

on a few actions with short inquiry length, or whether this weight is more spread

out among many actions. A smaller ¯̀(D, `, I) means a shorter attention span. In

the extreme, the DM has no attention span at all when she chooses a single action

without asking any questions, in which case we have ¯̀(D, `, I) = 0. The opposite

extreme occurs when the lengths are mostly equal and the probabilities are spread

out. A special case of this is when each action in D is reached after exactly the same

number of questions, referred to as the uniform length profile. Note that this can

only happen if |D| = 2k for some k ∈ N. Formally:

Definition 4.1. Given an outcome (D, `, I), we say that length profile ` is uniform

if it assigns the same length to all actions in D, so `d = `d′ for all d, d′ ∈ D.

The next theorem shows that higher cost always shortens the attention span, and

strictly so as long as the optimal inquiry length is not uniform.

Theorem 4.3. Let λ1 < λ2 and let (Dλj , `λj , Iλj) be an optimal outcome under λj,

j = 1, 2. Then, ¯̀(Dλ1 , `λ1 , Iλ1) ≥ ¯̀(Dλ2 , `λ2 , Iλ2). Moreover, this inequality is strict,

unless |Dλ1| = |Dλ2| and both `λ1 and `λ2 are uniform.

The intuition for Theorem 4.3 is based on the following trade-off that the optimal

inquiry resolves. On the one hand, to achieve a high (expected) utility from actions, it

needs to minimize the mismatch between the sets of states where this action is chosen

and where it is ex post optimal. On the other hand, it needs to minimize the expected

length of inquiry. As the cost increases, the latter motive becomes more important,

and optimal inquiry shifts probabilities toward actions with shorter inquiries at the

expense of more mismatches.

This preference for shorter inquiries generates a “bias” if we compare the infor-

mation partition thus generated to the one that would be optimally used under zero

cost. This bias is generated by the motive to decrease the expected inquiry length,

and this can be achieved by adjusting the inquiry either through the form or through

the content. The form affects the extensive margin, and the DM can simply drop

certain actions from the consideration set and in this way the overall inquiry length

may be reduced. We have the following result regarding the form.
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Proposition 4.1. Let

A∗ = {a ∈ A : u(a, x) > max
a′∈A−{a}

u(a′, x) for some x ∈ X}.

There exist two thresholds λ2 > λ1 > 0 such that for all λ < λ1, the optimal consider-

ation set is D = A∗; and for all λ > λ2, the optimal consideration set is a singleton,

|D| = 1. Moreover, if actions a and a′ are such that supx∈X |u(a′, x)− u(a′′, x)| < λ,

then at most one of them will be in the optimal consideration set.

4.3. Confirmation Bias. Taking the form of the inquiry as given, we now consider

how the content is affected by the cost of inquiry. We will show that the DM optimally

expands the categories associated with the more likely actions, relative to the zero-

cost benchmark. This can be interpreted as the DM searching for evidence to confirm

the desirability of the actions in D that are most likely to be optimal. We call this

effect confirmation bias.

To define confirmation bias, let us consider the zero-cost case as a benchmark, and

compare the probability that the most likely actions are taken under the optimal

inquiry with and without the cost, conditional on each state. To do so, we first rank

the actions according to their likelihood under the optimal inquiry. Let Q be an

inquiry, let (D, `, I) be the outcome induced by Q, and let K = |D|. We order the

actions in D according to how likely they are chosen under inquiry Q, so D = {dk}Kk=1,

such that

P(Id1) ≥ P(Id2) ≥ ... ≥ P(IdK ),

with a tie-breaking rule P(Idk) = P(Idk+1
) =⇒ `dk ≤ `dk+1

.
(10)

For each k = 1, ..., K − 1 and each x ∈ X, let pQ(d1, ..., dk|x) be the probability that

an action in {d1, ..., dk} (i.e., one of k most likely actions) is selected under an inquiry

Q conditional on state x.8 Also, let p0(d1, ..., dk|x) be the probability that an action

in {d1, ..., dk} is optimally selected under the zero-cost benchmark conditional on x.

Definition 4.2. An inquiry Q with outcome (D, `, I) has confirmation bias if for

each order (dk)
K
k=1 that satisfies (10), for all k = 1, 2, ..., K − 1 and almost all x ∈ X,

pQ(d1, ..., dk|x) ≥ p0(d1, ..., dk|x). (11)

8For each state, the inquiry prescribes a path through the tree to a terminal node associated with
an action, so pQ(d1, ..., dk|x) is well defined.
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It has strict confirmation bias if, in addition, there exist k ∈ {1, ..., K − 1} and a

nonempty open set X ′ ⊂ X such that (11) holds strictly for all x ∈ X ′.

In words, the DM has confirmation bias if, for each k = 1, ..., K−1, she confirms to

k most likely actions: no matter what states realize, she chooses one of these actions

with a greater probability, as compared to what she would have done without the

cost. The difference pQ(d1, ..., dk|x) − p0(d1, ..., dk|x) is the probability of making an

erroneous decision in state x by choosing one of k most likely actions when the zero-

cost benchmark prescribes otherwise. In any subset of states X ′ where this difference

is positive, the DM is biased towards the initially most likely actions and may choose

an action that is suboptimal from the perspective of the DM who has no cost of

information processing.

This definition formalizes the notion of confirmation bias usually adopted in psy-

chology. According to Nickerson (1998), “it refers usually to unwitting selectivity

in the acquisition and use of evidence,” which he believes is also the definition used

by general psychologists. Our definition has the advantage of formally defining both

confirming sets and biases: the actions the DM confirms to are the most likely ones

in her optimal strategy, and the errors are defined against the zero-cost benchmark.

Theorem 4.4. For every λ > 0, every optimal inquiry has confirmation bias. More-

over, an optimal inquiry has strict confirmation bias if and only if its length profile

is not uniform.

Confirmation bias of the optimal inquiry emerges for the following reason. From

Theorem 4.2(b) we know that the most likely actions are associated with shorter

inquiry lengths. At the same time, given the optimal length profile, the optimal in-

formation partition given by (6) has the feature that actions associated with shorter

inquiry lengths will be chosen on a larger set of states relative to the zero-cost bench-

mark. These two factors reinforce each other and give rise to confirmation bias.

Note that, because every inquiry Q induces an information partition I, it is easy to

see that pQ(d1, ..., dk|x) is always either 0 or 1. Moreover, the unconditional probabil-

ity of choosing an action in {d1, ..., dk} is the same as the probability that the state

belongs to Id1 ∪ ... ∪ Idk , so∫
X

pQ(d1, ..., dk|x)G(dx) =
∑

d∈{d1,...,dk}

P(Id).
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Denoting by I0 = (I0
d)d∈A the optimal information partition under the zero-cost

benchmark (i.e., I0
d is given by (6) with λ = 0 for each d ∈ A), Theorem 4.4 im-

plies that the DM optimally expands the categories associated with the more likely

actions, relative to the zero-cost benchmark. This can be interpreted as the DM

searching for evidence to confirm the desirability of the actions in D that are most

likely to be optimal. A related implication of Theorem 4.4 is that the probability

distribution over (dk)
K
k=1 induced by the optimal inquiry first order stochastically

dominates that induced by the zero-cost benchmark:∑
d∈{d1,...,dk}

P(Id) ≥
∑

d∈{d1,...,dk}

P(I0
d), for each k = 1, ..., K − 1, (12)

and the inequality is strict for some k if the confirmation bias is strict.

We have defined confirmation bias as a comparison against the benchmark case

with zero cost. Now we show that this bias is increasing in the cost, in the sense that

the probability of choosing one of k ex ante most likely actions increases state by

state as λ increases. As before, in doing so we keep an optimal form (D, `) constant.

Definition 4.3. Suppose that the form (D, `) associated with an optimal inquiry Qλ

remains constant for some interval of costs, λ ∈ [λ1, λ2]. We say that confirmation

bias is increasing over [λ1, λ2] if for each order (dk)
K
k=1 that satisfies (10), for all

k = 1, ..., K − 1 and almost all x ∈ X,

pQλ(d1, ..., dk|x) ≥ pQλ′ (d1, ..., dk|x)) for all λ, λ′ with λ1 ≤ λ < λ′ ≤ λ2. (13)

Moreover, confirmation bias is strictly increasing over [λ1, λ2] if there exist k ∈
{1, ..., K − 1} and a nonempty open set X ′ ⊂ X such that (13) holds strictly for

all x ∈ X ′.

Denoting by Iλ the content induced by Qλ, we obtain that increasing confirmation

bias implies that, for each k = 1, ..., K−1, the set Iλ1 ∪ ...∪ Iλk expands as λ increases.

Hence, the likelihood of choosing one of k most likely actions increases with λ, and

this increase becomes strict under strict increase of confirmation bias. We have the

following result.
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Proposition 4.2. Let λ > 0.

(a) There exists an optimal inquiry Qλ whose form (D, `) is constant over an

interval [λ1, λ2] that contains λ.

(b) For every optimal inquiry Qλ whose form (D, `) is constant over some interval

[λ1, λ2] that contains λ, the confirmation bias of Qλ is increasing over [λ1, λ2].

Moreover, it is strictly increasing if and only if ` is not uniform.

Proposition 4.2 shows that as the cost rises, the DM would optimally make more

“errors” and is biased more toward the most likely actions. This result is related

to Theorem 4.3, which states that as the cost rises, the DM optimally shortens the

average inquiry length. Proposition 4.2 shows that the way to optimally achieve that

is by decreasing the accuracy of her choices in favor of most likely actions, which are

also actions associated with the shortest inquiry lengths.

Recall our example in Section 2. As mentioned, under the assumption that P(I0
a0

) >

max{P(I0
a1

),P(I0
a2

)}, the optimal inquiry prioritises action a0 for a range of λ’s that are

not too large, and the doctor first inquire about the optimality of prescription to treat

the symptom before investigating the optimality of referrals or emergency treatment.

Theorem 4.4 and Proposition 4.2 then imply that the doctor would optimally expand

the category of states under which a0 is optimal, as shown in Figure 2c. Moreover,

since we show that confirmation bias holds in general in our model, the details of the

example, such as the underlying distribution of states and the detailed specification

of the utility functions, do not matter for the main conclusion.

This confirmation bias toward the most likely option provides a potential economic

mechanism for the behavioral biases highlighted by Croskerry et al. (2013), as the

doctor designs the optimal inquiry that prioritises the most likely action (framing)

with an expands the category for that action to be appropriate (search satisficing).

Our model also has another novel prediction: the action that the DM has confirmation

bias toward is also investigated first. Thus, we can then define “premature closure” of

the diagnosis, which is listed as one of the biases in Croskerry et al. (2013). Indeed,

when states in Iλa0 − I0
a0

occur, it would be optimal to inquire further instead of

closing the inquiry, and this may be regarded as a bias from the outside observer’s

perspective. However, our theory also shows that there is nothing irrational per se

but what is important is to take the cost of inquiry into account.
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5. Case studies

To illustrate potential applications of our model, we offer two further case studies.

In the first case we consider the phenomenon of “tunnel vision” in criminal investi-

gations, where the authorities adopt inquiries with a focus on specific suspects that

lead to wrongful convictions. In the second case we consider endogenous salience in

a procurement setting in which a procurer may prioritise some suppliers over others

in a group of ex ante symmetric suppliers.

5.1. Wrongful Conviction. Gould and Leo (2010) review the literature on the ex-

tent and factors leading into wrongful convictions and believe that it is the process

and factors affecting the process that are important. In their words, “...it is bet-

ter to understand the sources of wrongful convictions not so much as dichotomous

causes—a witness correctly or incorrectly identified the defendant and the identifica-

tion directly led the jury to convict—but as contributing factors in a path analysis

that might have been broken at some point before conviction.” Among the leading

factors the article identifies, we are interested in “tunnel vision”, which is described in

Gould and Leo (2010) as “the more law enforcement practitioners become convinced

of a conclusion—in this case, a suspect’s guilt—the less likely they are to consider

alternative scenarios that conflict with this conclusion.”

We illustrate this tunnel vision with the following example. Suppose that there

are two suspects, A and B, and one of them is surely guilty. Given all the possible

observables that the police can investigate, suppose that state x ∈ [0, 1] represents

the posterior belief that A is guilty. There are three actions: charge A, B, or neither,

denoted by aA, aB, and a∅, respectively. Suppose that the police obtains utility θA

if they charge A when A is guilty, θB if charge B when B is guilty, −1 if a wrong

suspect (either A or B) is charged, and 0 if neither. Thus,

u(aA, x) = θAx+ (−1)(1− x), u(aB, x) = θB(1− x) + (−1)x, u(a∅, x) = 0.

Assume that x is uniformly distributed on [0, 1] and that 1 > θA > θB ≥ 0.52, so

that ex ante the most likely suspect is A, and no action is dominated. We depict the

optimal categories in Figure 3, where x̄1 and x̄2 are thresholds between the categories

under optimal inquiry, and x̄0
1 and x̄0

2 are thresholds under zero-cost benchmark. As

indicated in the figure, a positive λ leads to an expansion of the category for charging
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“charge B” “charge A”“no charge”

0 1
x̄0

1 = θB
1+θB

= x̄1 x̄0
2 = 1

1+θA
x̄2 = 1−λ

1+θA

Figure 3. Optimal categories for the police inquiry

A, who is the prime suspect. In other words, the confirmation bias leads the police to

lower the threshold of evidence needed to charge suspect A relative to the benchmark

case without cost. Specifically, on the interval of states (x̄2, x̄
0
2), the police makes

an error by charging A when they should have let them go. Moreover, this interval

expands with λ.

Furthermore, if the cost were to rise even higher, the police would have found it

optimal to drop the no-charge option out of the consideration set altogether. Thus,

if we define “type-I” error as the situation where the police does not charge anyone,

and “type-II” error as the situation where police charges the wrong suspect, then

the optimal inquiry is always biased toward the type-II error. That is, it always has

higher type-II error than the no-cost benchmark.

The above effects may provide an explanation of the tunnel vision. The police

under pressure to end the investigation optimally focuses on the prime suspect and is

willing to charge the prime suspect even with relatively weak evidence. Moreover, if

the pressure is high enough, the police optimally focuses on fewer options that what

they would have considered under less pressure.

5.2. Biased Procurement. Here we consider an application of our model to a pro-

curement setting. Consider an organisation (procurer) that decides on a procurement

order from one of several potential suppliers, say, a government agency requires a

large order of supply for a specific drug.9 The values of the products/services pro-

vided by the suppliers are uncertain and are independently distributed across the

suppliers. The procurer does not directly observe the values and has to rely on costly

expertise to evaluate and compare them. In the example of drug procurement, while

the results of clinical trials of drug quality or efficacy are readily available, they are

9E.g., the U.S. Department of Veterans Affairs purchased over $9 billion in medical sup-
plies in 2023 (see the 2023 U.S. Federal Market Procurement Report, p. 72, available at
https://thecgp.org/images/2024/06/23-Market-Report-2.pdf.
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conducted on different sample sizes using different methodologies, and require costly

expertise for lengthy clinical trials reports to be read and interpreted.

Formally, suppose that there are L suppliers. Let xl ≥ 0 denote the value of

supplier l’s product to the procurer. Each xl is independently distributed according

to a distribution function Gl. Using the notations of our model, let X = RL
+. The

procurer chooses one of L suppliers to contract with, so A = {a1, ..., aL}. Let

u(al, x) = xl for all l = 1, ..., L and all x ∈ X.

We use this setting to show that the cost of expertise, modelled as cost of inquiry,

may lead to“biased” selection in procurement, giving priority to some suppliers and

deprioritizing or completely excluding others. This bias is most apparent when all

the suppliers are ex ante symmetric (i.e., their values are identically distributed),

and there is no a priori reason to treat them asymmetrically. Nevertheless, it follows

from Theorem 4.3 that, as the cost increases, the attention span of the inquiry must

shorten. This can be achieved in two ways. First, when it is too costly to compare

all suppliers, the procurer may have a reduced consideration set where only a subset

of suppliers are considered and their values are potentially compared. Second, within

the consideration set, some suppliers can be endogenously prioritized so that they are

selected after fewer questions in the inquiry process as compared to others. It then

follows from Theorem 4.4 that this leads to confirmation bias: a prioritized supplier

is selected in a larger set of states than any of those with a lower priority, despite

being ex ante symmetric. This is not due to any conflict of interest but solely coming

from the motive to save inquiry cost.

To illustrate the last point, suppose that there are three ex ante symmetric suppli-

ers, say, Alice, Bakir, and Chen. The optimal inquiry needs to minimize the number

of questions and this leads to an endogenous asymmetric treatment of the suppliers.

Specifically, the affirmative answer to the initial question must lead to the selection

of one of the suppliers, say, Alice. The distinction between Bakir and Chen is made

only if the answer to the initial question is negative. As selecting Alice requires one

question, while selecting Bakir or Chen requires two questions, the optimal inquiry

leads the procurer to choose the supplier with the highest value net of the cost (as

stated in Theorem 4.1): x1 − λ, x2 − 2λ, and x3 − 2λ for Alice, Bakir, and Chen,

respectively. Thus, the procurer has an optimal “bias” towards Alice by setting a
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lower bar with the margin of λ for her to be selected. Of course, since the three

suppliers are all symmetric, the choice to prioritise Alice is completely arbitrary and

it is equally optimal to prioritise any other supplier. The point, however, is that any

optimal inquiry will prioritise some supplier, and we refer to this effect as endogenous

salience, which is demanded by the optimal inquiry.

Endogenous salience can occur even if the number of suppliers is 2k for some k ∈ N;

thus, although it is possible to treat them symmetrically using the uniform length

profile of inquiry, it may not be optimal to do so. For illustration, suppose that we

now have a fourth supplier, Diana, in the pool, and that λ is not too high so that all

four suppliers are considered. In this case, Lemma 3.1 allows for two types of length

profiles: the uniform profile ` = (2, 2, 2, 2), and the asymmetric profile ` = (1, 2, 3, 3)

and all its permutations.

Under the drug procurement example, the prior distribution of each xl would re-

flect recovery/survival times.10 Typical distributions to model survival times include

exponential and log-logistics (e.g., Jackson et al., 2010; Ishak et al., 2013). For the

exponential distribution we normalize the mean to unity, and for log-logistic distribu-

tion we normalize the mode to unity and consider the mean of π/2 and 4π/3
√

3. In all

these cases, for small λ’s, the optimal inquiry treats all four suppliers symmetrically:

it requires exactly two questions to select the supplier with the highest value, yielding

the net payoff of max{x1, x2, x3, x4}− 2λ. However, for a range of intermediate λ’s,11

the optimal inquiry prioritises one of the four suppliers, say, Alice again, and the

affirmative answer to the first question would lead to her selection, but it requires

two questions for, say, Bakir, and three for Chen and Diana. Accordingly, the bar for

Alice’s selection is lowered, by the margin of λ against Bakir and 2λ against Chen

and Diana, yielding the net payoff of max{x1 − λ, x2 − 2λ, x3 − 3λ, x4 − 3λ}.
The last example highlights that two procurers in completely identical procurement

situations who only differ in their cost of processing information may adopt very

different optimal inquiries. The procurer with a slightly higher cost would prioritise

10According to Ishak et al. (2013), “For chronic conditions and progressive diseases, health-economic
models must provide insights over the lifetimes of individuals, which often exceed the span of available
data from clinical trials.”
11Specifically, for the exponential distribution, the range is [0.52, 0.54]; for the log-logistic with mean

π/2 and 4π/3
√

3, the range is [0.56, 1.01] and [0.83, 2.48], respectively.
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one of the suppliers at the expense of all others, while the procurer with a slightly

lower cost would treat them symmetrically.

Some observers claim that the decision-making processes in government procure-

ments are potentially subject to biases related to cognitive factors, such as mental

shortcuts and confirmation biases (see, for example, the BIS report on procurements

of transportation projects in the UK12) due to the pervasiveness of their presence

in human decision-making. However, different from these observers, our approach

emphasizes that apparent biases can be an outcome of the optimal responses to the

underlying friction in the decision-making process, and hence, to address the biases,

it is important the recognize the endogenous mechanisms behind the behaviour.

6. Comparison with Rational Inattention Models

Our model shares a similar motivation to that for the rational inattention (RI)

model (the standard formulation can be found in, e.g., Matějka and McKay, 2015,

and Caplin et al., 2019), and aims at studying the implications of costly information

processing. When the two models share the same primitives—a state space X, a

finite set of actions A, and a utility function u(a, x)—their results can be compared

according to the probabilities of induced choices. A standard RI model is a static

model of information processing where the cost depends on the entropy reduction

w.r.t. the DM’s prior. In contrast, we consider a simple dynamic model of information

processing where the cost is directly associated with the acts of asking questions and

processing their answers, and thus it is independent of the DM’s prior. This difference

in the modeling approach leads to differences in the implications.

The first key difference is that we can use our model to formally define and explicitly

study the attention span. Theorem 4.3 shows that a rise in the cost of inquiry leads to

a reduction in the attention span. Since the attention span is an intrinsically dynamic

concept, there is no direct counterpart of it in RI models. However, this result does

have implications to choice probabilities. For illustration, recall our procurement

example with several ex ante symmetric suppliers (Section 5.2). The RI model leads

12This report is conducted by the Behavioural Insight Team for the UK
government, titled “An Exploration of Potential Behavioural Biases in
Project Delivery in the Department for Transport,” and can be found in
https://assets.publishing.service.gov.uk/media/5a8203f640f0b62305b92065/exploration-of-
behavioural-biases.pdf
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to the symmetric choice probabilities, that is, each supplier is contracted equally likely.

In contrast, our model can generate endogenous asymmetric choice probabilities, as

the procurer endogenously prioritizes some suppliers over others to save the cost

of distinguishing them. Theorem 4.3 implies that this asymmetric treatment can

be optimal even when the uniform treatment is available, as in our example with

four suppliers. Indeed, at λ = 0, the value from either the asymmetric profile ` =

(1, 2, 3, 3) or the uniform one ` = (2, 2, 2, 2) is the same. By the Envelope Theorem,

the derivative of the value with respect to λ is the optimal average length, which

strictly increases under the asymmetric profile by Theorem 4.3 but it stays constant

for the uniform one, so for some positive λ the asymmetric profile becomes better

than the uniform one.

The second key difference is that outcomes according to the RI model do not

necessarily exhibit confirmation bias.13 To show this, consider the following example

in the setting of options trade. Suppose that the future price ρ of an asset depends

on the today’s economic fundamentals, summarized by x, and a noise, summarized

by ε, where ρ = x + ε. The DM initially observes neither x nor ε. She can inquire

about x, but no information about ε available, besides its prior distribution.

Two financial instruments are available to the DM: (i) a put option on the asset

with a strike price ρ1, which can be purchased at a premium α1, and (ii) a call option

on the asset with a strike price ρ2, which can be purchased at a premium α2. The DM

chooses one of three actions: not invest (action a0), buy the put option (action a1),

or buy the call option (action a2). The DM is risk neutral and evaluates her choices

according to their expected net financial gains, with no discounting (for simplicity).

For this illustration, let τ and θ be parameters satisfying 0 < 2τ < θ < 1/2, and

assume that ρ1 = θ and ρ2 = 1− θ, and that x is uniformly distributed on [τ, 1− τ ]

and hence X = [τ, 1− τ ] and G(x) = (x− τ)/(1− 2τ), and ε is uniformly distributed

on [−τ, τ ]. Then, the expected net financial gain from each action, conditional on

each x ∈ X, is given by

13Note that our Definition 4.2 is applicable to the RI model as well.
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a. The utility functions b. Optimal choice probability for a0

Figure 4. The RI solution in the setting of option choices

u(a0, x) = 0 for all x ∈ X,

u(a1, x) =


θ − x− α2, if x < θ − τ
(θ+τ−x)2

4τ
− α2, if x ∈ [θ − τ, θ + τ ]

−α2, if x > θ + τ.

,

u(a2, x) =


−α1, if x < 1− θ − τ
(x−(1−θ−τ))2

4τ
− α1, if x ∈ [1− θ − τ, 1− θ + τ ]

x− (1− θ)− α1, if x > 1− θ + τ.

.

See Figure 4a for a graphic depiction of the utilities.14 Consider the following values

of the parameters: τ = 0.04, θ = 0.25, α1 = 0.025 and α2 = 0.03. Both options

generate a negative expected payoff under the prior. Hence, the DM would invest

only if she is sufficiently convinced that x is far from the middle. If there is no cost

of information, in both the RI model and ours, the DM would buy the put option for

x < x̄0
1 = 0.227 and buy the call option for x > x̄0

2 = 0.78. Accordingly, under the

zero-cost benchmark, the ex ante probability of not investing, denoted by p0
0, is given

by p0
0 = 0.6.

Following Matějka and McKay (2015), in the RI model with cost parameter λ > 0,

the DM chooses an information structure, modelled a joint distribution, Φ(s, x), where

14Note that u(a, x) does not satisfy our assumption (A2). However, our argument is still valid, as
u(a, x) can be slightly perturbed, to make sure that (A2) holds, without any qualitative consequences
to the results.
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s ∈ [0, 1] is the signal to be received by the DM, and an action plan, a(s), to maximize∫
x∈X

∫
s

u(a(s), x)Φ(ds|x)G(dx)− λ
(
H(G)− Es[H(Φ(·|s))]

)
subject to

∫
s

Φ(ds, x) = G(x) for all x ∈ X,

where H denotes the entropy of the distribution, and Φ(·|x) and Φ(·|s) denote the

conditional distributions on x and s, respectively. The constraint means that the

marginal distribution over x is equal to the prior distribution G(x). In terms of

choice outcomes, Lemma 2 in Matějka and McKay (2015) implies that the ex ante

choice probabilities, with pλk denoting the probability of choosing action ak from the

optimal solution, solve

max
(pλ0 ,p

λ
1 ,p

λ
2 )∈∆3

∫ 1

x=0

log

[
2∑

k=0

pλke
u(ak,x)

λ

]
G(dx).

We depict the optimal probability of not investing, pλ0 , in Figure 4b, as λ changes

(for the range under which all three actions are considered in the RI model). Observe

that there is an interval of costs where pλ0 decreases as λ goes up.15 Thus, for a

range of relatively small costs, the RI model predicts that the DM (who would not

invest absent any information) may be more likely to invest as the cost of information

increases. It also means that the optimal solution in the RI does not have the property

of confirmation bias, according to our definition. This is because confirmation bias

implies that the probability of choosing the most likely action must increase with λ.

This does not hold in the RI model, as for λ ∈ (0.01, 0.05) action a0 is the most likely

choice but its probability pλ0 is decreasing, as shown in Figure 4b.

In contrast, under our model, as λ increases, the DM expands the category for the

action of not investing, a0, and shrinks the categories for the two investment actions,

as depicted in Figure 5. For higher λ’s, it is optimal for the DM to consider {a0} only

and hence stay away from the option market altogether. In other words, according

to our model, agents with higher cost of processing financial information will expand

the region of states where they would deem either type of investment not worthwhile.

15The range for this to happen is λ ∈ (0.01, 0.1); moreover, for λ < 0.05, a0 has the highest choice
probability.
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“put” “call”“not invest”

τ 1− τ
x̄0

1x̄λ1 x̄0
2 x̄λ2

Figure 5. Optimal categories for option choices

Only those with the expertise, modelled as very small λ’s, would invest when it is in

fact profitable to do so.16

Appendix A. Proofs

A.1. Proof of Lemma 3.1. The necessity follows from Theorem 5.2.1 in Cover and

Thomas (2006). We have an equality instead of inequality, because in our inquiry

tree every non-terminal node has exactly two branches.

To prove the sufficiency, let K ∈ {2, ..., |A|}, let D = {d1, ..., dK} ⊂ A, let I =

{Ik}Kk=1 be a partition of X, and let ` = (`1, ..., `K) ∈ NK be a length profile such

that (5) holds. We construct an inquiry Q = 〈N, T, σ, χ, d〉 with T = D that satisfies

Idk(Q) = Ik and `dk(Q) = `k for all k = 1, ..., K. (14)

By Theorem 5.2.1 in Cover and Thomas (2006) and equation (5), there exists a

finite binary tree with a set of nodes N and a successor relation over N , with K

terminal nodes labeled t1, ..., tK , such that, for each k = 1, ..., K, the length of the

path from the root to each terminal node tk is exactly `k. For each nonterminal node

n ∈ N − T , let us associate two edges leading out of n with true and false, and

define the map σ so that σ(n, true) = ntrue if n ntrue along the edge labelled true

and σ(n, false) = nfalse if n nfalse along the edge labelled false. Let decision rule

d be the identity mapping that associates each terminal node tk with action dk for

each k = 1, ..., K.

It remains to construct a proposition mapping χ that yields the partition I in the

terminal nodes. First, we associate each node in N with a set, In(Q), as follows. For

each k = 1, ..., K, let Itk(Q) = Ik. Then, by backward induction, for each nonterminal

node n ∈ N − T , let In(Q) = Iσ(n,true)(Q)∪ Iσ(n,false)(Q). This implies that Ino(Q) at

the root no is equal to X up to a measure-zero set, since {Ik}Kk=1 is a partition, and

16Note that the cost parameter λ has different meanings in the RI model and in ours, and hence we
emphasize the qualitative difference.
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we can place the measure-zero set anywhere in the propositions used along the tree

anywhere without affecting the payoffs.

Finally, define a proposition map χ as follows. For each nonterminal node n ∈ N −
T , let χ(n) = Iσ(n,true)(Q). By induction from the root of the tree, it is straightforward

to verify that χ satisfies (2), so, for each n ∈ N , In(Q) is indeed the information set

induced by Q at node n. �

A.2. Proof of Theorem 4.1. The result that an inquiry is optimal if and only if

its form solves (8) is immediate by equations (3) and (6), inequality (7), and the

definition of F∗ together with Lemma 3.1.

It remains to show that if (D, `, I) is an optimal outcome, then I is identical to

I∗(D, `) up to a measure zero set. Let (D, `) be given, and let I∗ = I∗(D, `). For any

partition I = {Id : d ∈ D}, let

W (D, `, I) =
∑
d∈D

∫
Id

[u(d, x)− λ`d]G(dx).

By (6), for any I and any d ∈ D, if x ∈ I∗d ∩ Id′ with d 6= d′ then

u(d, x)− λ`d > u(d′, x)− λ`d′ .

Thus, since P(X − ∪d∈DI∗d) = 0 by (A2) and the fact that G has full support,

W (D, `, I∗)−W (D, `, I)

=
∑
d,d′∈D

∫
I∗d∩Id′

[(u(d, x)− λ`d)− (u(d′, x)− λ`d′)]G(dx)

−
∑
d∈D

∫
Id∩(X−∪d∈DI∗d )

[u(d, x)− λ`d]G(dx)

=
∑

d6=d′∈D

∫
I∗d∩Id′

[(u(d, x)− λ`d)− (u(d′, x)− λ`d′)]G(dx) ≥ 0,

and the inequality is strict if P(I∗d ∩ Id′) > 0 for some d 6= d′. �

A.3. Proof of Theorem 4.2. Let Z = (D, `, I) optimal.

(a) Given I, the length profile ` must deliver the lowest average length among

those satisfying (5), for otherwise by Lemma 3.1 we can find another inquiry that

implements the same expected utility from actions but with lower expected cost.
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The length profile must be given by the Huffman coding (Cover and Thomas, 2006,

Theorem 5.8.1).

(b) Suppose, by contradiction, that P(Id) > P(Id′) and `d > `d′ . Let Z ′ = (D, `′, I)

be another outcome which is the same as Z, except `′d = `d′ and `′d′ = `d. Note that

Z ′ satisfies (5) and hence, by Lemma 3.1, can be induced by an inquiry. As Z and

Z ′ share the same (D, I), they implement the same actions in the same states, and

thus have the same gross utility. However, Z ′ is strictly less costly, as it has a shorter

expected length than Z:∑
d∈D

`′dP(Id)−
∑
d∈D

`dP(Id) = [P(Id)`
′
d + P(Id′)`

′
d′ ]− [P(Id)`d + P(Id′)`d′ ]

= [P(Id)`d′ + P(Id′)`d]− [P(Id)`d + P(Id′)`d′ ] = −(P(Id)− P(Id′))(`d − `d′) < 0.

This is a contradiction to the optimality of Z. �

A.4. Auxiliary Lemma. We introduce notation and provide an auxiliary lemma

that will be used in the proofs of Theorems 4.3 and 4.4 and Proposition 4.2 below.

Let (D, `) ∈ F∗, let K = |D|, and let I = I∗(D, `) be given by (6). We order

the actions in D according to how likely they are chosen, so D = {dk}Kk=1, such that

(d1, ..., dk) satisfies (10). Let Eλ
k be the event that an action in {d1, ..., dk} (i.e., one

of k most likely actions) is preferred to all other actions when the cost λ is taken into

account:

Eλ
k =

{
x ∈ X : max

k′=1,...,k
u(dk′ , x)− λ`dk′ > max

m=k+1,...,K
u(dm, x)− λ`dm

}
, (15)

Similarly, let E0
k be the event of optimally choosing an action in {d1, ..., dk} in the

zero-cost benchmark, λ = 0.

It can be easily seen that when (D, `) is optimal, Eλ
k coincides with

⋃
d∈Dk I

∗
d(D, `)

except, possibly, on a measure zero set. In words, conditional on event Eλ
k , the inquiry

almost surely leads to an action in {d1, ..., dk}.

Lemma A.1. Let (D, `, I) be an optimal outcome, let K = |D|, and let actions in D

be ordered according to (18). For each λ1, λ2 ∈ R+ with λ1 < λ2,

Eλ1
k ⊆ Eλ2

k for all k = 1, 2, ..., K − 1. (16)
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Moreover, if ` is not uniform, then there exists k∗ ∈ {1, ..., K − 1} such that

`k∗ < `k∗+1 and the set Eλ2
k∗ − E

λ1
k∗ has a non-empty interior. (17)

Proof. First, we prove (16). By (10) and Theorem 4.2(b), we have

`d1 ≤ `d2 ≤ ... ≤ `dK . (18)

Let k ∈ {1, ..., K − 1}. Suppose by contradiction that there exists x ∈ Eλ1
k such that

x 6∈ Eλ2
k . By (15), x ∈ Eλ1

k and x 6∈ Eλ2
k imply that there exist k∗ and m∗, with

k∗ ≤ k < m∗, such that

u(dk∗ , x)− λ1`dk∗ = max
k′=1,...,k

u(dk′ , x)− λ1`dk′ > u(dm∗ , x)− λ1`dm∗ , (19)

u(dk∗ , x)− λ2`dk∗ ≤ max
k′=k+1,...,K

u(dk′ , x)− λ2`dk′ = u(dm∗ , x)− λ2`dm∗ . (20)

Combining (19) and (20), we obtain

λ2(`dm∗ − `dk∗ ) ≤ u(dm∗ , x)− u(dk∗ , x) < λ1(`dm∗ − `dk∗ ).

This is a contradiction to λ2 > λ1 and `dm∗ ≥ `dk∗ , where the last inequality is by

(18) and m∗ > k∗. This proves (16).

Next, suppose ` is not uniform. Then, by definition of the uniform profile and (18),

there exists k∗ ∈ {1, ..., K − 1} such that

`d1 = ... = `dk∗ < `dk∗+1
≤ ... ≤ `dK . (21)

We now prove that the set Eλ2
k∗ − E

λ1
k∗ has a non-empty interior. Define

ū(x) = max
k=1,...,k∗

u(dk, x) and wλ(x) =

(
max

m=k∗+1,...,K
u(dm, x)− λ`dm

)
− (ū(x)−λ`dk∗ ).

For each x ∈ X there exists m∗(x) ∈ {k∗ + 1, ..., K} such that

wλ2(x) = u(dm∗(x), x)− λ2`dm∗(x) + λ2`dk∗ − ū(x)

< u(dm∗(x), x)− λ1`dm∗(x) + λ1`dk∗ − ū(x) ≤ wλ1(x),

where the strict inequality follows from λ1 < λ2 and `dk∗ < `dm∗(x) . We thus obtain

wλ2(x) < wλ1(x) for all x ∈ X and all λ1 < λ2. (22)
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Next, by (15) and (21), we have

x ∈ Eλ
k∗ ⇐⇒ wλ(x) < 0. (23)

Fix λ1 < λ2. To show (17), we construct an open set in which wλ1(x) ≥ 0 > wλ2(x).

By assumption (A2), the sets Eλ1
k∗ and X − Eλ2

k∗ have nonempty interiors. Let

y ∈ Int(Eλ1
k∗ ) and z ∈ Int(X − Eλ2

k∗ ).

Since X is convex and points y and z are in Int(X), we have αy+ (1−α)z ∈ Int(X)

for all α ∈ (0, 1). Thus, since wλ1(x) and wλ2(x) are continuous in x by (A1), there

exist α1, α2 ∈ (0, 1) such that

wλ1(α1y + (1− α1)z) = 0 and wλ2(α2y + (1− α2)z) = 0.

Moreover, by (22), and (23), we have α2 < α1. Consider α∗ ∈ (α2, α1), and let

x∗ = α∗y + (1 − α∗)z, so wλ1(x
∗) > 0 > wλ2(x

∗). Since wλ1(x) and wλ2(x) are

continuous in x by (A1), there exists an open neighborhood Ox∗ of x∗ such that

wλ1(x) > 0 > wλ2(x) for all x ∈ Ox∗ . By (23), this proves (17). �

A.5. Proof of Theorem 4.3. Let λ1 < λ2. For j = 1, 2, let Qλj be an optimal

inquiry for λj, and let Zλj = (Dλj , `λj , Iλj) be the associated outcome. Denote

ū(Zλj) ≡
∑
d∈Dλj

∫
x∈I

λj
d

u(d, x)G(dx), j = 1, 2.

By (3) and (9), we have W (Qλj ;λj) = ū(Zλj) − λj ¯̀(Zλj). By the optimality of Zλj

given λj, for each j = 1, 2, we have

ū(Zλ1)− λ1
¯̀(Zλ1) ≥ ū(Zλ2)− λ1

¯̀(Zλ2) and ū(Zλ2)− λ2
¯̀(Zλ2) ≥ ū(Zλ1)− λ2

¯̀(Zλ1).

Combining these inequalities yields

λ1

(
¯̀(Zλ1)− ¯̀(Zλ2)

)
≤ ū(Zλ1)− ū(Zλ2) ≤ λ2

(
¯̀(Zλ1)− ¯̀(Zλ2)

)
.

Thus, ¯̀(Zλ1) ≥ ¯̀(Zλ2) whenever λ1 < λ2.

Next, we show that ¯̀(Zλ1) 6= ¯̀(Zλ2) unless |Dλ1| = |Dλ2 | and both `λ1 and `λ2 are

uniform. Suppose that both `λ1 and `λ2 are uniform, but |Dλ1| 6= |Dλ2|. Then, by

definition of uniform profiles, we have ¯̀(Zλ1) = log2 |Dλ1 | and ¯̀(Zλ2) = log2 |Dλ2|.
Consequently, |Dλ1 | 6= |Dλ2| implies ¯̀(Zλ1) 6= ¯̀(Zλ2).



36 HU AND ZAPECHELNYUK

It remains to consider the case where `λ1 or `λ2 are non-uniform. Suppose that `λ1

is non-uniform; the other case is symmetric. For any given form (D, `), denote by

Iλ(D, `) the optimal content given by (6) under λ. We have two cases.

First, suppose that there exists λ̃ ∈ (λ1, λ2) such that (Dλ1 , `λ1) is optimal over

[λ1, λ̃]. To simplify notation, let (D, `) = (Dλ1 , `λ1). Let K = |D|, and let the actions

d1, ..., dK in D be ordered according to (10) under λ1. Then, by (10), the optimality

of (D, `), and Theorem 4.2(b), we have

`d1 ≤ `d2 ≤ ... ≤ `dK . (24)

Let Z λ̃ = (D, `, I λ̃), and let Eλ̃
k be given by (15) under cost λ̃. By the optimality of

(D, `) and Theorem 4.1, for each λ = {λ1, λ̃} we have

P(Eλ
k ) = P

(
k⋃

k′=1

Iλdk′ (D, `)

)
=

k∑
k′=1

P
(
Iλdk′ (D, `)

)
.

By the optimality of (D, `) under both λ1 and λ̃, λ1 < λ̃, and Lemma A.1, we have

P
(
Eλ̃
k

)
≥ P

(
Eλ1
k

)
, for each k = 1, ..., K − 1, (25)

and there exists k∗ ∈ {1, ..., K − 1} such that

`dk∗ < `dk∗+1
and P

(
Eλ̃
k∗

)
> P

(
Eλ1
k∗

)
. (26)

Thus, we obtain

¯̀(Z λ̃)− ¯̀(Zλ1) =
K∑
k=1

[
`dkP

(
I λ̃dk(D, `)

)
− `dkP

(
Iλ1dk (D, `)

)]

=
K−1∑
k=1

(`dk − `dk+1
)

[
k∑

k′=1

P
(
I λ̃dk′ (D, `)

)
−

k∑
k′=1

P
(
Iλ1dk′ (D, `)

)]

=
K−1∑
k=1

(`dk − `dk+1
)
[
P
(
Eλ̃
k

)
− P

(
Eλ1
k

)]
< 0, (27)

where the first equality is by (9), the second equality is by rearrangement, and the

inequality is by (24), (25), and (26). We already established that λ2 ≥ λ̃ implies

¯̀(Zλ2) ≤ ¯̀(Z λ̃). Thus, by (27), we obtain ¯̀(Zλ2) ≤ ¯̀(Z λ̃) < ¯̀(Zλ1).

Second, suppose that (Dλ1 , `λ1) is not optimal for λ in [λ1, λ̃] for all λ̃ > λ1.

Because F∗ is finite, there exists a different form (D, `) ∈ F∗, (D, `) 6= (Dλ1 , `λ1),
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and an interval (λ1, λ̃], with λ̃ ∈ (λ1, λ2), such that (D, `) is an optimal form for all

λ ∈ (λ1, λ̃]. Thus, for all λ ∈ (λ1, λ̃] we have V (D, `;λ) > V (Dλ1 , `λ1 ;λ), where

V (D, `;λ) =

∫
X

max
d∈D

(u(d, x)− λ`d)G(dx) (28)

denotes the optimal value under (D, `). Clearly, V is continuous and convex in λ.

Hence, the right derivatives of V w.r.t. λ always exist, denoted by V ′+. It then follows

from V (D, `;λ) > V (Dλ1 , `λ1 ;λ) over (λ1, λ̃] that V ′+(D, `;λ1) > V ′+(Dλ1 , `λ1 ;λ1).

Moreover, by the Envelope Theorem, we have

−¯̀(Zλ1) ≤ V ′+(Dλ1 , `λ1 ;λ1) < V ′+(D, `;λ1).

Moreover, since V (D, `;λ) is differentiable almost everywhere, there exists λ′ ∈ [λ1, λ̃)

such that

−¯̀(D, `, Iλ
′
(D, `)) = V ′(D, `;λ′) > V ′+(D, `;λ1) > −¯̀(Zλ1).

This then implies that ¯̀(Zλ2) ≤ ¯̀(D, `, Iλ
′
(D, `)) < ¯̀(Zλ1). �

A.6. Proof of Proposition 4.1. Let λ2 = supx∈X(maxa∈A u(a, x)−mina∈A u(a, x)).

Then, for all λ ≥ λ2, the utility gain from distinguishing any actions is smaller than

the cost, so the optimal consideration set D is a singleton.

Next we show that the optimal consideration set must be A∗ for λ sufficiently small.

By the assumption of the proposition, each action a ∈ A∗ is optimal for a positive

measure of states. As a result, for any (A∗, `) and (D′, `′) in F∗ with D′ ( A∗,

max
(A∗,`)∈F∗

V (λ;A∗, `) > max
(D′,`′)∈F∗ with D′(A∗

V (λ;D, `′)

at λ = 0, and by continuity, there exists λ1 > 0 such that the same inequality holds

for all λ ≤ λ1. Thus, for any λ ≤ λ1, any optimal inquiry has D = A∗.

Next, let (D, `, I) be the outcome of an optimal inquiry Q. Denote

δ(a′, a′′) = sup
x∈X
|u(a′, x)− u(a′′, x)|.

Suppose by contradiction that δ(a′, a′′) < λ for some a′, a′′ ∈ D. There are two cases.

Case 1. Suppose that `a′ 6= `a′′ . W.l.o.g., let `a′ > `a′′ . By Theorem 4.1, equation

(6), and assumption (A2), a′ ∈ D implies that the set

Ia′ = {x ∈ X : u(a′, x) > u(a, x) + λ(`a′ − `a) for all a ∈ D − {a′}} (29)
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has nonempty interior. Therefore, because a′′ ∈ D, we must have

u(a′, x) > u(a′′, x) + λ(`a′ − `a′′) ≥ u(a′′, x) + λ for each x ∈ Ia′ ,

where the first inequality is by (29), and the second inequality is because `a′ > `a′′

and both `a′ and `a′′ are integers. This contradicts the assumption that δ(a′, a′′) < λ.

Case 2. Suppose that `a′ = `a′′ . Consider an alternative outcome (D̂, ˆ̀, Î) given

by D̂ = D − {a′′}, ˆ̀
a′ = `a′ − 1, ˆ̀

a = `a for all a ∈ D − {a′}, Îa′ = Ia′ ∪ Ia′′ , and

Îa = Ia for all a ∈ D − {a′}. In words, this outcome is the same as (D, `, I) except

that this outcome merges actions a′ and a′′ and the two categories that distinguishes

these actions into one. Because

`a′ = `a′′ = ˆ̀
a′ + 1, (30)

we obtain 2−`a′ + 2−`a′′ = 2−
ˆ̀
a′ . Since

∑
d∈D 2−`d = 1, we obtain that

∑
d∈D̂

2−
ˆ̀
d =

 ∑
d∈D̂−{a′}

2−
ˆ̀
d

+ 2−
ˆ̀
a′ =

 ∑
d∈D−{a′,a′′}

2−`d

+ 2−`a′ + 2−`a′′ = 1.

Thus, by Lemma 3.1, there exists an inquiry Q̂ with outcome (D̂, ˆ̀, Î). As Q and Q̂

differ only for x ∈ Ia′ ∪ Ia′′ , we obtain

W (Q̂;λ)−W (Q;λ) =

∫
Ia′

(
(u(a′, x)− λˆ̀

a′)− (u(a′, x)− λ`a′)
)
G(dx)

+

∫
Ia′′

(
(u(a′, x)− λˆ̀

a′)− (u(a′′, x)− λ`a′′)
)
G(dx)

=

∫
Ia′

λG(dx) +

∫
x∈Ia′′

(
u(a′, x)− u(a′′, x) + λ

)
G(dx) > 0,

where the first equality is by (3), the second equality is by (30), and the inequality

is because δ(a′, a′′) < λ and Ia′ ∪ Ia′′ has nonempty interior. We thus obtain a

contradiction to the optimality of Q. �

A.7. Proof of Theorem 4.4. Let Q be an optimal inquiry. Because Q induces an

information partition, so pQ(d1, ..., dk|x) is always either 0 or 1, for the purpose of the

proof it is convenient to use the notation introduced in Section A.4. Let (D, `, I) be

an outcome of Q and let Eλ
k be given by (15). Then, the definition of confirmation
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bias can be equivalently expressed as follows. An inquiry Q with outcome (D, `, I)

has confirmation bias if for every order (dk)
K
k=1 that satisfies (10),

E0
k ⊆ Eλ

k for all k = 1, 2, ..., K − 1. (31)

It has strict confirmation bias if (31) holds, and there exists k ∈ {1, ..., K − 1} such

that

Eλ
k − E0

k has a non-empty interior. (32)

Then, Theorem 4.4 is immediate by Lemma A.1 with λ1 = 0 and λ2 = λ > 0. �

A.8. Proof of Proposition 4.2. Because F∗ is finite, for every cost λ > 0 there

exists a form (D, `) ∈ F∗ and an interval [λ′, λ′′], with λ′ < λ′′ and λ ∈ [λ′, λ′′], such

that (D, `) is an optimal form for any cost in [λ′, λ′′]. Now, consider arbitrary λ1, λ2 ∈
[λ′, λ′′] with λ1 < λ2. By Lemma A.1, it is immediate that, for each k = 1, ..., K − 1,

Eλ1
k ⊆ Eλ2

k . (33)

Moreover, if ` is not uniform, the inclusion (33) is strict for some k with the difference

having a non-empty interior. We thus obtain that confirmation bias is increasing, and

strictly so whenever ` is not uniform. �
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