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Abstract

I study platform design in a dynamic setting with inattentive followers. An influ-
encer faces a stream of followers who randomly arrive on a platform and whose value
from paying attention changes stochastically. The influencer chooses the quality of
information to disclose each instant and followers choose whether to process that in-
formation. In the unique equilibrium, the influencer provides low quality information
at all times. The optimal platform design which implements high quality deprioritizes
the influencer’s content periodically. The least-cost monetization scheme which im-
plements high quality awards advertising revenue only to influencers with sufficiently
many followers.

JEL Classification: D82
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attention

1 Introduction

Deceptive content is a prevalent issue on social media platforms.1 To rein in deceptive
content, the European Union is set to pass Digital Services Act,2 which requires platforms
to remove such content and to demonetize its creators. In the US, various platforms have
adopted voluntary measures. For example, Facebook, Twitter, and Youtube maintain strike
systems, under which accounts are punished by prohibiting them from posting content in a
certain window of time.3 Facebook and Twitter also deprioritize and demonetize accounts
which are deemed to post deceptive content. That is, they make it less likely that future
content is shown to followers, or they reduce or eliminate the amount of advertising revenue
that is shared with a content creator. However, effectively policing deceptive content is a

∗University of Minnesota. Email: szydl002@umn.edu.
1See e.g. https://www.nytimes.com/2022/08/14/business/media/on-tiktok-election-misinform

ation.html.
2See https://digital-strategy.ec.europa.eu/en/library/2022-strengthened-code-practice-d

isinformation.
3See https://transparency.fb.com/enforcement/taking-action/restricting-accounts/,

https://support.google.com/youtube/answer/2802032, and https://help.twitter.com/en/rules-a

nd-policies/enforcement-options.
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difficult task, because what is and is not deceptive is highly subjective. As Facebook notes
“Misinformation is different from other types of speech [...] because there is no way to
articulate a comprehensive list of what is prohibited. [...] The world is changing constantly,
and what is true one minute may not be true the next minute.”4

In this paper, I characterize a model of misinformation based on limited attention. I
then characterize content-agnostic mechanisms which ensure that platforms are free from
misinformation. That is, to curb misinformation, the platform does not need to take a stand
on what constitutes deception. I identify two specific mechanisms - time-based prioritization
rules, which penalize posting repeat content, and monetization rules in which only accounts
with sufficiently many followers receive advertising revenue.

In the model, a sender (e.g. an influencer or a content creator) faces a stream of followers
who randomly arrive on a platform. At each moment in time, the sender decides whether to
post high quality information, low quality information, or both. Followers on the platform
use the sender’s information to make a binary decision. For example, they may look to the
sender’s advice on whether to buy a certain product, whether to try a medical treatment,
or whether to vote for a political candidate. To access the sender’s information, followers
must pay an attention cost, which is higher for high quality information. Intuitively, high
quality information may be inherently more complex and therefore more difficult to process.
Low quality information is easier to process, but is less likely to lead followers to make the
correct decision. In this sense, low quality information representsmisinformation or deceptive
content in the model. Followers’ value from acquiring information is either high or low, and
changes over time according to a time-homogeneous Markov chain. Intuitively, followers
may be subject to random distractions, which reduce their value of acquiring information,
or their inherent value from making a decision may change over time. When acquiring
high quality information is sufficiently costly, low value followers do not acquire this type
of information. Instead, they wait until their value of information increases. As a result, a
“latent” mass of followers builds up over time, waiting for their value to change. However, this
mass of followers creates a temptation for the sender. By revealing low quality information,
the sender can induce all these followers to instantly pay attention, which earns her an
instantaneous gain. For this reason, an equilibrium where the sender only provides high
quality information is not sustainable. Instead, the sender provides low quality at all times,
which low value followers acquire instantly. Thus, the model provides a rationale for why
low quality content is prevalent.

To eliminate low quality content, the platform can use prioritization or monetization
rules. A prioritization rule specifies the likelihood that the sender’s information is shown
to followers at each time. Deprioritizing content means lowering this likelihood, which re-
duces the low value follower’s option value of waiting. That is, followers who wait may not
receive information in the future, which encourages them to acquire information immedi-
ately instead. This eliminates the sender’s incentive to provide low quality content. The
sender-optimal prioritization rule involves showing the sender’s content to followers period-
ically. Specifically, once the sender’s content is shown to followers, future content is hidden
for a fixed amount of time, which is designed to render the low types indifferent between
acquiring information and waiting. Then, the sender’s content is shown again and the cycle

4See https://transparency.fb.com/policies/community-standards/misinformation/.
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continues. Thus, in the optimal scheme, followers can only sporadically acquire information.
In applied terms, followers’ ability to always see content leads to content quality being low.
By restricting that ability, content quality improves.

Alternatively, the platform may use monetization to incentivize high quality content. The
sender’s content generates revenue from external advertisers, and the platform can adjust the
share of revenue that the sender receives. I characterize the least-cost monetization scheme,
i.e. the scheme which awards the sender the lowest possible share of revenue, subject to
implementing high quality information. This scheme features two tiers: senders with few
followers receive less advertising revenue, while senders with more followers receive more.
The intuition is as follows. When the sender provides high quality, the mass of low types
accumulates over time. By choosing low quality, the sender can capture these low types’
attention, but in doing so, she resets the mass of active low types to zero. Under the optimal
scheme, this reduces her future advertising revenue. To receive payments, the sender needs
to wait again until sufficiently many followers accumulate. The optimal scheme then only
provides ad revenue when the sender has sufficiently many followers, to discourage such
deviations. Indeed, many platforms use “tiers,” where content creators’ ad revenue increases
in their number of followers or the number of views.

Both the prioritization rules and the monetization schemes in this paper do not depend
on the actual content quality. That is, to implement these schemes, a platform does not
need to measure content quality, which is an inherently difficult task. Instead, the optimal
prioritization scheme is simply a function of time, whereas the optimal monetization scheme
depends on the number of current followers.

2 Literature

The model features randomly arriving followers with stochastically changing values. The
most related papers are Garrett (2016), Dilme and Li (2019), and Dilmé and Garrett (2022),
which study dynamic pricing by a seller who commits to a price path. In these papers, any
price which makes it attractive for existing low types to purchase leaves high types with rents,
and the latter have an incentive to wait for prices to become low. The optimal price path is
periodic, with times of high prices and (possibly random) discounts. Kapon (2022) studies a
related model of amnesty programs, in which the optimal policy has similar features. In this
paper, by contrast, the high type does not prefer the low type’s information, and the sender
is not concerned with separating the types. Instead, the main friction is the low types’ ability
to wait until their value becomes high. Then, the sender’s lack of commitment leads her to
provide low quality information, to prevent the low type from waiting. The accumulation of
followers affects the sender’s incentive to provide low quality, whereas in the above papers,
the accumulation affects the cost of pooling low and high types.

A substantial literature studies internet platforms. Mitchell (2021) considers a dynamic
model between a single influencer and a follower. The influencer decides how much to distort
advice, and the equilibrium cycles between biased and unbiased advice. In this paper, the
sender faces multiple followers with different values from acquiring information, and the
quality of advice is not subject to cycles in equilibrium. Mitchell (2021) characterizes a tax
scheme on advertising content, which is broadly similar to the monetization scheme in this
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paper. However, in his model, monetization fails to provide incentives, whereas it is effective
in my model. Mitchell (2021) also considers conflict of interest disclosure rules, which play
no role in my model, since the sender’s preferences are commonly known.

Other related work includes Galeotti and Goyal (2009) who characterize optimal influence
strategies in a social network, Hinnosaar and Hinnosaar (2021) who study collusion between
cartels of inluencers to increase views, Cong and Li (2021) who study assortative matching
between heterogeneous influencers and sellers of products, and Pei and Mayzlin (2022) who
consider influencers’ decisions to become affiliated with firms, which may lower the credibility
of their recommendations. Fainmesser and Galeotti (2021) consider a static model where
influencers decide on product endorsements, which affects follower participation and prices
paid by advertisers. Compared to these papers, my model focuses on followers’ dynamic
choice of attention and the resulting distortions.

Finally, this paper is related to the literature on dynamic disclosure, most notably papers
with limited commitment (Orlov et al. (2020), Bizzotto et al. (2021), Kaya (2022)), multiple
receivers (Basak and Zhou (2020a), Basak and Zhou (2020b)), and limited attention (Che
et al. (2020)). Relative to that literature, the key difference is the arrival of heterogeneous
receivers, whose types change stochastically.

3 Model

Arrival. Time is continuous and infinite. Infinitesimal followers (he) arrive on a platform
at rate λ. After arrival, each follower receives an exogenous shock at rate ρ which leads him
to leave the platform.5 Upon arrival, each follower has a high information value πh with
probability γ and a low value πl with probability 1 − γ, where 0 < πl < πh and γ ∈ (0, 1).
I refer to followers with value πl as low types, and followers with value πh as high types.
Followers’ value follows a time-invariant continuous-time Markov chain. Low types become
high types at rate γl > 0 whereas high types remain high types. At t = 0, the initial mass
of followers is zero. I denote with i (t) ∈ {l, h} the type of a generic follower at time t and I
index followers with i where no confusion can arise.

Strategies. Followers seek information about a state of the world x ∈ R, where x ∼ F .
An sender (she) can reveal high quality information qh, low quality information ql, or both
at each time. Formally, she chooses a disclosure strategy {qt}t≥0, where qt = {qnt}n=1,2,
qnt ∈ {ql, qh}, and qh > ql.

6 With slight abuse of notation, I write qt = q if q1t = q2t = q
for q ∈ {ql, qh}. Information disclosure is costless for simplicity. Given the sender’s choice
of information, each follower chooses whether to pay attention. Given quality q, followers
who pay attention learn x truthfully if x ≥ 1/q and receive no information if x < 1/q.

5I take the intuitive approach to aggregating random variables over infinitesimal followers, which is
standard in this literature. See e.g. Garrett (2016).

6Thus, the sender posts a menu of high quality and low quality content at each time. Allowing the sender
to post a menu is necessary for an equilibrium to exist. If the sender is restricted to strategies qt ∈ {ql, qh}
instead, no equilibrium exists. Intuitively, in any equilibrium, the mass of active high types or low types
accumulates over time, and whenever this mass of types is positive, the sender strictly profits from deviating
by offering each type his preferred information quality.
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Paying attention is costly, with cost cq, where ch > cl. Intuitively, processing high quality
information is more difficult than processing low quality information. Followers who pay
attention then choose action at ∈ {0, 1}.7 For example, followers may seek the sender’s
information on whether to buy a product, visit an external website, or vote for a particular
candidate. Followers who have chosen an action exit the platform, as they have no further
need for information. Thus, each follower’s attention decisions can be summarized by a
stopping time τi ≥ 0. A follower is active at time t if he has entered before time t and not
exited yet. Figure 1 contains a heuristic timeline.

Payoffs. There are no transfers between sender and followers. Given the sender’s informa-
tion, followers choose at to maximize the expectation of xa−κ for some κ ∈ (0, 1). I assume
that E (x) < κ, i.e. the followers choose a = 0 if the sender does not provide information,
and that 1/qh > κ.8 The expected value from paying attention for type i ∈ {l, h} is given by

vi (q) = max
a(x),aND∈{0,1}

πi

∫ ∞

1
q

(x− κ) a (x) dF (x) + F

(
1

q

)(
E

(
x|x <

1

q

)
− κ

)
aND.

The assumptions above yield aND = 0, since E (x|x < 1/q) < E (x) < κ, and a (x) = 1 for
x ≥ 1/q, so that

vi (q) = πi

∫ ∞

1
q

(x− κ) dF (x) .

The sender prefers followers to choose a = 1, e.g. she prefers them to buy an advertised
product or vote for a particular candidate. The sender’s expected payoff from a follower
paying attention is given by

u (q) =

∫ ∞

1
q

a (x) dF (x) +

∫ 1
q

−∞
aNDdF (x) .

The assumptions above yield

u (q) = 1− F

(
1

q

)
.

We have

u(qh) > u(ql), vi (qh) > vi (ql) for i ∈ {l, h}, and vh (q) > vl (q) for q ∈ {ql, qh} . (1)

Thus, the main friction which limits information quality is whether followers pay attention,
and not the fact that the sender prefers a = 1.

Finally, I assume that

vl (ql)− cl > vl (qh)− ch > 0 and vh (qh)− ch > vh (ql)− cl. (2)

The first inequality ensures that low types prefer low quality to high quality information,
while the last inequality ensures that high types prefer high quality information. The second
inequality ensures that both types’ value from acquiring information is positive.9

7Given the assumptions on v (q) and cq below, making a choice without acquiring information is dominated
by acquiring information for both types.

8This also ensures that the followers always prefer to wait if they receive no information for some time,
as in Section 4.2.

9Note that vh (ql)− cl > vl (ql)− cl.
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Figure 1: Heuristic Timeline.

Equilibrium. The equilibrium concept is a dynamic Stackelberg equilibrium, in which
the sender does not have commitment across time. Intuitively, at any time t, the sender
chooses a continuation strategy, given the best responses of all current and future followers.
Followers take the sender’s strategy as given and choose optimally when to acquire infor-
mation. Formally, an equilibrium consists of a strategy for the sender {qt}t≥0, so that for
any time t ≥ 0, the continuation strategy qs ≡ {qs}s≥t is optimal given the best responses
{τi(qs, t′)}i∈{l,h},t′≥t. Here, τi(q

s, t′) is the optimal stopping strategy of a type i ∈ {l, h} who
is active at time t′ ≥ t given the sender’s continuation strategy qs.

The sender’s value is given by

U (t) = sup
{qs}s≥t

E

[∫ ∞

t

e−r(s−t)u (qs) dns

]
,

where ns is the mass of followers who have paid attention up to time s, which implicitly
depends on the stopping strategies τi(q

0, t)}i∈{l,h},t≤s. The followers’ values are given by

Vl (t) = sup
τl≥0

E
[
e−(r+ρ)(τl−t)

(
vi(τl) (qτl)− cqτl

)∣∣ i (t) = l
]
,

where i (t) ∈ {l, h} is the follower’s type at time t, and

Vh (t) = sup
τh≥0

E
[
e−(r+ρ)(τh−t)

(
vh (qτh)− cqτh

)]
.

4 Analysis

4.1 Equilibrium

Suppose that the sender chooses qt = q for all t. Then, the high type immediately acquires
information, since there is no value of delaying. The low type either acquires information
immediately or waits until he becomes the high type. His value from waiting is

Vl = (vh (q)− cq)

∫ ∞

0

γle
−(r+ρ+γl)tdt =

γl
r + ρ+ γl

(vh (q)− cq) ,

and the low type prefers to wait whenever

vl (q)− cq ≤
γl

r + ρ+ γl
(vh (q)− cq) .
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Suppose that
vl (ql)− cl
vh (ql)− cl

≥ γl
r + ρ+ γl

≥ vl (qh)− ch
vh (qh)− ch

. (3)

Then, the low type prefers to wait if qt = qh for all t but prefers to acquire information
immediately if qt = ql for all t. This represents the key friction in the model, and I maintain
this assumption throughout.10

The sender prefers to choose qt = qh at all times. However, given Condition (3), this
leads the low type to wait, so that the mass of active low types accumulates. Since the
sender lacks commitment, whenever the mass of low types is positive, she prefers to deviate
and choose ql for an instant. Then, the accumulated low types pay attention and the sender
receives a discrete gain. Because of this logic, there cannot be an equilibrium in which the
sender exclusively provides high quality information. As I show in the proposition below,
the unique equilibrium instead has the sender post high quality and low quality content.

Proposition 1. Suppose that

u (ql) >
γl

r + ρ+ γl
u (qh) . (4)

Then, the unique equilibrium features qt = {ql, qh} for all t ≥ 0.

The proof proceeds via a sequence of lemmas.

Lemma 1. There exists no equilibrium in which qs = qh for s ∈ (t, t′) and qt′ ̸= qh. Similarly,
there exists no equilibrium in which qs = ql for s ∈ (t, t′) and qt′ ̸= ql.

Proof. Suppose by way of contradiction that qs = qh for s ∈ (t, t′) and that qt′ = ql.
11 Then,

the low type prefers to wait whenever s ∈ (t′′, t′) ⊂ (t, t′) since

vl (qh)− ch ≤ e−(r+ρ)(t′−s) ((vl (ql)− cl) (1− h (t′ − t)) + (vh (ql)− cl)h (t
′ − t))

for any such s. Here, the RHS is the low type’s value from waiting until t’, and

h(t′ − t) = Pr(i(t′) = h|i(s) = l) = e−γl(t
′−s) (5)

is the probability that the low type has switched to high by time t′. The high type instantly
acquires information for any such s, so that the mass of active low types ml

s accumulates
according to

dml
s =

(
λ (1− γ)− (ρ+ γl)m

l
s

)
ds (6)

and

ml
s =

(
ml

t′′ −
λ (1− γ)

ρ+ γl

)
e−(ρ+γl)(s−t′′) +

λ (1− γ)

ρ+ γl
.

Also, we have
dns =

(
λγ + γlm

l
s

)
ds,

10Without Condition (3), the equilibrium features qt = qh for all t. If (vl(qh)− ch)/(vh(qh)− ch) > γl/(r+
ρ+γl), both types immediately acquire information if qt = qh, and if γl/(r+ρ+γl) > (vl(ql)−ch)/(vh(ql)−ch),
the low type waits given qt = ql. In both cases, the sender optimally chooses qt = qh.

11In the case qt′ = {ql, qh}, the analysis is identical.
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since at any time s, newly arriving high types and low types who switch to become high
types pay attention. The sender’s payoff at t′ − ε is

U (t′ − ε) = u (qh)

∫ ε

0

e−rs
(
λγ + γlm

l
t′−ε+s

)
ds+ e−rε

(
u (ql)m

l
t′ + U (t′)

)
.

Take ε sufficiently small and consider the continuation policy {q̂s}s≥t′−ε so that q̂t′−ε = ql
and q̂s = qs for s > t′ − ε. This yields a payoff

Û (t′ − ε) = ml
t′−εu (ql) + u (qh)

∫ ε

0

e−rs
(
λγ + γlm̂

l
s

)
ds+ e−rε

(
u (ql) m̂

l
ε + U (t′)

)
,

where

m̂l
s =

λ (1− γ)

ρ+ γl

(
1− e−(ρ+γl)s

)
(7)

is the mass of active low types under {q̂s}s≥t′−ε. We have

Û (t′ − ε)− U (t′ − ε) = ml
t′−εu (ql) + γlu (qh)

∫ ε

0

e−rs
(
m̂l

s −ml
t′−ε+u

)
ds+ e−rεu (ql)

(
m̂l

ε −ml
t′

)
=

(
u (ql)−

γl
r + ρ+ γl

u (qh)

)
·
(
λ (1− γ)

ρ+ γl
+

(
ml

t′′ −
λ (1− γ)

ρ+ γl

)
e−(ρ+γl)(t

′−ε−t′′)

)(
1− e−(r+ρ+γl)ε

)
which is positive given Condition (4). Thus, a strictly profitable deviation exists.

Suppose instead that qs = ql for s ∈ (t, t′) and qt′ = qh or qt′ ∈ {ql, qh}. A similar
argument as above implies that there is a profitable deviation, by choosing q̂t′−ε = qh. See
Internet Appendix A.

Lemma 2. There exists no equilibrium in which qs = q for all s ≥ t and any t ≥ 0.

Proof. If qs = qh for all s ≥ t, then low types wait and therefore ml
s > 0 for all s > t.

But then the same argument as above implies that the sender can deviate by momentarily
switching to ql. Thus, no such equilibrium exists. If qt = ql, all types pay attention and thus
mh

s = ml
s = 0. Then,

dnt = λdt

and the sender’s payoff at time t is given by

U (t) = u (ql)

∫ ∞

t

e−r(s−t)λds =
λ

r
u (ql) .

The strategy q̂ (s) = qh for s ∈ (t, t+ h) and q̂ (s) = ql for s ≥ t+ h implies that high types
instantly acquire information and low types wait, so that

Û (t) = u (qh)

∫ h

0

e−rs
(
λγ + γlm

l
s

)
ds+ml

he
−rhu (ql) + e−rhU (t+ h)
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where ml
s is given by Equation (7). Thus,

Û (t)− U (t) ≥ u (qh)λγ

∫ h

0

e−rsds+ml
he

−rhu (ql)− λu (ql)

∫ h

0

e−rsds

so that

r
Û (t)− U (t)

1− e−rh
≥ λγu (qh) + r

λ (1− γ)

ρ+ γl

(
1− e−(ρ+γl)h

)
(1− e−rh)

e−rhu (ql)− λu (ql)

→ λγ (u (qh)− u (ql)) > 0

as h → 0. Thus, the deviation is profitable for h sufficiently small.

Finally, consider a candidate equilibrium with qt = {ql, qh} for all t. Then, high type
acquires high information and low type acquires low information, so that the sender’s value
is simply given by

U (t) =
λ

r
(γu (qh) + (1− γ)u (ql)) ,

and ml
t = mh

t = 0 for all t. By the dynamic programming principle, it is sufficient to consider
deviations for some finite interval (t, t+ h). Deviating to q̂ (s) = qh for s ∈ (t, t+ h) yields

Û (t) = u (qh)

∫ h

0

e−rs
(
λγ + γlm

l
s

)
ds+ e−rhml

hu (ql) + e−rhU (t)

and

dÛ (t)

dh
= (u (qh) γl − (r + ρ+ γl)u (ql))

λ (1− γ)

ρ+ γl
e−rh

(
1− e−(ρ+γl)h

)
,

which is negative given Condition (2). Thus, no such deviation is profitable. Similarly,
deviating to qt = ql for some time yields a strictly lower value, since u(ql) < u(qh). Thus,
the unique equilibrium features qt = {ql, qh} for all t.

4.2 Deprioritizing Content

I now consider prioritization rules which implement high quality information, i.e. where
the sender chooses qt = qh for all t. A prioritization rule determines the likelihood that
the sender’s information is shown to followers at each time. Formally, a prioritization rule
consists of a sequence of (possibly random) arrival times {τn}n≥1, so that the inter-arrival
times are distributed according to the cdf Gn, i.e. τn+1 − τn ∼ Gn (t) conditional on a
realization τn. Thus, Gn(t + h) − Gn(t) is the probability that the sender’s information
reaches followers on any interval of time (t, t+h). Unlike in the baseline model, the sender’s
information may be deprioritized, i.e. it is hidden from followers with a certain probability.
A prioritization rule is optimal if it maximizes the sender’s value subject to implementing
qt = qh for all t.12 Figure (2) provides a heuristic timeline.

12Alternatively, I could define an optimal prioritization rule to maximize the high type’s or the low type’s
value, subject to implementing high quality. The optimum is identical in those cases.

9

Electronic copy available at: https://ssrn.com/abstract=4398140



t λh
followers
arrive

Sender
chooses

qt

Information
disclosed
w. Pr.
G(t + h)
−G(t)

Followers
choose

attention

Types
change

t + h

Figure 2: Timeline given G.

The optimal prioritization rule is remarkably simple. Once information arrives, the sender
is deprioritized for a fixed amount of time t∗, during which none of her information reaches
any followers. After that time, her information reaches followers with probability one, and
after that she is again deprioritized. Thus, the sender gets to provide information at times
t ∈ {0, t∗, 2t∗, ...}.

Proposition 2. The optimal prioritization rule features Gn = G for all n such that dG (t) =
0 for t < t∗ and dG(t∗) = 1.

In the benchmark model, the main friction is that low types choose to wait, which then
creates an incentive for the sender to provide low quality information. By deprioritizing
future information, the platform discourages low types from waiting, and they instead acquire
information whenever it is available. But then, the sender is no longer tempted to provide
low quality information.

Proof. Consider an equilibrium in which qt = qh and in which the low type acquires infor-
mation instantly. Given disclosure time τn, the low type’s value of waiting until the next
disclosure time is given by

Vl (τn) = E
[
e−(r+ρ)(τn+1−τn) (h (τn+1 − τn) (vh (qh)− ch) + (1− h (τn+1 − τn)) (vl (qh)− ch))

]
,

where the expectation is taken with respect to G, which is stationary without loss of gener-
ality. The low type prefers to acquire information at τn if

Vl (τn) ≤ vl (qh)− ch, (8)

and sender’s value is given by

U (τn) = E
[
e−r(τn+1−τn)

(
mτn+1−τnu (qh) + U (τn+1)

)]
,

where

mt =
λ

ρ

(
1− e−ρt

)
is the mass of all active followers if all followers wait between time 0 and t. Since G is
stationary, we have U(τn+1) = U(τn) = U so that the optimal G is characterized by the fixed
point equation

U∗ = sup
G

∫ ∞

0

e−rt (mtu (qh) + U∗) dG (t) (9)
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subject to Condition (8) and the feasibility condition
∫∞
0

dG (t) = 1.
Treating the optimal value U∗ > 0 as a constant in the objective function (9), this

problem admits the Lagrangian13

L = sup
G

inf
η,µ

∫ ∞

0

utdG (t) + µ

(
vl (qh)− ch −

∫ ∞

0

vtdG (t)

)
+ η

(
1−

∫ ∞

0

dG (t)

)
,

where

ut = e−rt (mtu (qh) + U∗) and vt = e−(r+ρ)t
(
vh (qh)− ch − e−γlt∆v (qh)

)
.

Rewriting the objective function yields

L = sup
G

inf
η,µ

∫ ∞

0

(ut − µvt − η) dG (t) + η + µ (vl (qh)− ch) .

A necessary condition for the objective to be finite is

ut − µvt − η ≤ 0 ∀t ≥ 0,

and the dual problem is given by

inf
µ≥0,η

µ (vl (qh)− ch) + η

s.t. ut − µvt − η ≤ 0 ∀t ≥ 0.

For any given µ, the optimal η in the dual problem satisfies η = maxt ut − µvt. Note that
we have maxt ut − µvt ∈ (0,∞). Otherwise, if ut − µvt < 0 for all t and then the primal
problem would feature dG (t) = 0 for all t, which cannot be optimal. Moreover, we have
limt→∞ ut = limt→∞ vt = 0, and thus limt→∞ ut−µvt = 0, so that the maximum is finite and
attained at a finite time.

We have

u′′
t − µv′′t = −r (u′

t − µv′t)− (r + ρ)2 e−(r+ρ)tλ

ρ
u (qh)− µ (r + ρ+ γl) e

−(r+ρ+γl)t∆v (qh) + µρv′t,

where
v′t = − (r + ρ) vt + (r + ρ+ γl) e

−(r+ρ+γl)t∆v (qh) .

Thus, there is a unique global maximum, because u′
t − µv′t = 0 implies that u′′

t − µv′′t ̸= 0.
Letting t∗ = argmaxt ut − µvt, we have dG (t) = 0 for all t ̸= t∗ and dG(t∗) = 1. That

is, under the optimal policy, the platform delays disclosure until t∗. Since the IC constraint
(8) must bind, we have t∗ = tl, where

vl (qh)− ch = vtl . (10)

The function vt is either monotonically decreasing or hump-shaped, since

v′′t = − (r + ρ) v′t − (r + ρ+ γl) e
−(r+ρ+γl)t∆v (qh) ,

13See e.g. Anderson and Nash (1987), Th. 2.1.
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so that v′′t < v′t. In particular, v′′t < 0 whenever v′t ≤ 0. We have v0 = vh (qh)−ch > vl (qh)−ch.
Thus, there exists a unique tl such that the indifference condition (10) holds. Finally, the
multiplier µ is determined implicitly, so we indeed have t∗ = tl.

It remains to characterize the fixed point in Equation (9). Since t∗ = tl, and since tl is
independent of U∗, we simply have

U∗ = utl + e−rtlU∗

or equivalently

U∗ =
utl

1− e−rtl
.

Finally, since given t∗ both types pay attention at any disclosure time, the sender op-
timally chooses q(τn) = qh, since any other choice leads to a strictly lower value at the
disclosure times. Since no information reaches followers for t ̸= τn, the sender is indifferent
over any choice at those time, and we can set qt = qh without loss of generality.

The following comparative statics immediately follow from Equation (10).

Corollary 1. Time t∗ is strictly increasing in ch, γl, and vh, and strictly decreasing in r, ρ,
and vl.

Intuitively, the information acquisition cost increases the low type’s value of waiting rela-
tive to acquiring information now, so that t∗ has to increase to keep the low type indifferent.
Similarly, if the low type is more likely to become high, i.e. γl is higher, the value of waiting
increases. Conversely, the value of waiting decreases in the discount factor r and the rate of
exit ρ, and the value of acquiring information immediately increases in vl.

4.3 Monetizing Content

The analysis so far abstracted from monetary payments. In reality, content on platforms
generates advertising revenue, which is shared between content creators and the platform.
I now characterize the least-cost advertising split which implements qt = qh for all t. That
is, the platform aims to ensure that content is high quality, while minimizing the share of
advertising revenue the sender receives.

Formally, the platform generates advertising revenue A per view. Recall that nt is the
cumulative mass of followers who have paid attention up to time t. Then, the sender generates
advertising revenue Adnt per unit of time. The advertising split {αt}t≥0, where αt ∈ [0, A],
determines the share of revenue the sender receives. I consider advertising splits that are
functions of current views only, i.e. αt = α(dnt) with some abuse of notation. Intuitively, on
a small window of time (t, t + h), nt − nt−h followers view the sender’s content. Then, the
sender receives advertising revenue α(nt − nt−h) per view, so that her total revenue equals
α(nt − nt−h) · (nt − nt−h).

14 I denote the set of all such policies with A. Figure 3 provides a
heuristic timeline.

14In equilibrium, dnt is of order dt, so total revenue is simply αt ·
(
λγ + γlm

l
t

)
dt. See Equation (11) below.
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Figure 3: Timeline with advertising revenue.

Given {αt}t≥0, the sender’s payoff is

U (t) = sup
{qs}s≥t

E

[∫ ∞

t

e−r(s−t) (u (qs) + αs) dns

]
.

In an equilibrium where qt = qh for all t, high types pay attention immediately and low types
wait until they become high types. Therefore,

dnt =
(
λγ + γlm

l
t

)
dt, (11)

where ml
t is given in Equation (6). Then, the sender’s payoff becomes

U (t) =

∫ ∞

t

e−r(s−t)
(
λγ + γlm

l
s

)
(u (qh) + αs) ds.

Since low types wait to become high types, we have ml
t > 0 for any t > 0. Just as in the

baseline model, the sender now has an incentive to deviate and to set qt = ql to get all low
types to instantly pay attention. Then, nt−nt− = ml

t− > 0 and the sender receives a discrete
gain of (u(ql) + αt)m

l
t−. To discourage such a deviation, the optimal ad split sets αt = 0

whenever nt−nt− > 0. Thus, by deviating, the sender gains u(ql)m
l
t−, but then since all low

types pay attention, we have ml
t = 0. Effectively, the sender “resets” the mass of active low

types to zero, which affects her future advertising revenue. Her continuation value is then
given by U(0). Overall, deviating is suboptimal whenever

u (ql)m
l
t + U (0) ≤ U (t) ∀t ≥ 0. (12)

The least-cost advertising split which implements qt = qh is hence given by

min
{αt}t≥0∈A

∫ ∞

0

e−rt
(
λγ + γlm

l
t

)
αtdt (13)

s.t. u (ql)m
l
t + U (0) ≤ U (t) ∀t ≥ 0

0 ≤ αt ≤ A ∀t ≥ 0

Proposition 3. If

A ≥ λ (1− γ)

λγ + γl
λ(1−γ)
r+ρ+γl

(
u (ql)− u (qh)

γl
r + ρ+ γl

)
, (14)

then the optimal policy features αt = 0 for t < t∗∗ and αt = A for t ≥ t∗∗, where t∗∗ ∈ [0,∞).
Otherwise, implementing qt = qh for all t is not feasible.
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Intuitively, since
dnt =

(
λγ + γlm

l
t

)
dt,

the number of “views” whenever the sender provides information is a deterministic function
of ml

t. When the sender deviates, the mass of active low types resets to zero, and she must
wait until the mass becomes sufficiently large (i.e. it reaches ml

t∗∗ at time t∗∗, so that dnt is
sufficiently large) before she receives ad revenue again. If she instead continues, she either
receives ad revenue sooner (if t < t∗∗) or continues receiving ad revenue (if t ≥ t∗∗). Thus,
by providing payments only when the number of views is sufficient large, the platform can
discourage deviations. The time t∗∗ is the maximum delay which ensures that the sender’s
IC condition holds at t = 0.

To see this formally, decompose Constraint (12) as

gt + ft ≤ 0,

where

gt = u (ql)m
l
t +

∫ ∞

0

e−rtu (qh)
(
λγ + γlm

l
t

)
dt (15)

−
∫ ∞

t

e−r(s−t)u (qh)
(
λγ + γlm

l
s

)
ds

and

ft =

∫ ∞

0

e−rtαt

(
λγ + γlm

l
t

)
dt−

∫ ∞

t

e−r(s−t)αs

(
λγ + γlm

l
s

)
ds.

Intuitively, gt captures the sender’s willingness to deviate if she never receives any ad revenue,
and ft captures how ad revenue affects her incentive to deviate.

Lemma 3. If αt > 0, then αt′ = A for all t′ > t.

Proof. Suppose not. Then, for some t′ > t, we have αt′ < A. Consider the alternative policy
{α̂t}t≥0 so that α̂s = αs for s /∈ {t, t′}, α̂t′ = αt′ + ε, and α̂t = αt + ε̂ where(

λγ + γlm
l
t

)
ε̂ = −e−r(t′−t)

(
λγ + γlm

l
t′

)
ε. (16)

This does not change the objective in Equation (13), weakly decreases fs for s ∈ (t, t′), and
otherwise leaves fs unchanged. If the set of times at which αt ∈ (0, A) has positive Lebesgue
measure, then we can strictly relax Condition (12) by setting α̂t according to Equation
(16).

Thus, without loss of generality, the optimal policy features αt = 0 for t ≤ t∗∗ and αt = A
for t > t∗∗, where t∗∗ ∈ [0,∞). It only remains to determine the optimal t∗∗. We have g0 = 0,
g′t > 0 and g′′t < 0 for all t > 0, which follows from differentiating Equation (15). Similarly,
we have f0 = 0, f ′

t < 0 and f ′′
t < 0 for all t > 0. See Internet Appendix B for derivations.

Thus, gt + ft is strictly concave. Since g0 + f0 = 0, we have gt + ft ≤ 0 for all t if and only if

g′0 + f ′
0 ≤ 0
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or equivalently

(1− γ)

(
u (ql)− u (qh)

γl
r + ρ+ γl

)
− rAe−rt∗∗

∫ ∞

t∗∗
e−r(s−t∗∗)

(
λγ + γlm

l
s

)
ds ≤ 0. (17)

There exists a t∗∗ such that this inequality holds whenever

max
T

A

∫ ∞

T

e−rs
(
λγ + γlm

l
s

)
ds ≥ λ (1− γ)

r

(
u (ql)− u (qh)

γl
r + ρ+ γl

)
.

In this problem, the LHS is maximized at T = 0. Thus, a necessary and sufficient condition
is that

A

∫ ∞

0

e−rs
(
λγ + γlm

l
s

)
ds ≥ λ (1− γ)

r

(
u (ql)− u (qh)

γl
r + ρ+ γl

)
,

which is equivalent to Equation (14). Then, the optimal t∗∗ is pinned down by letting
Inequality (17) bind.

5 Concluding Discussion

Modeling of Information. This setting resembles Dye (1985) and is chosen for sim-
plicity. It captures the idea that worse quality information leads to worse decisions in a
parsimonious way and allows the followers to realize rents, which generates an option value
of waiting for low type followers. Beyond these features, the particular modeling of informa-
tion disclosure is irrelevant. Any setup that leads to values u (q), vl (q), and vh (q) with the
same properties as those in Equations (1) and (2) generates the same qualitative results.

Changing Types. Shocks to the followers’ value of attention are necessary to generate
a value of waiting for the low type. In the baseline model, I have assumed that low type
followers may become high types, but that high types never become low types. This is
mainly to simplify the algebra. Otherwise, when low and high types are forced to wait, as in
Proposition 2, one has to solve a system of ODEs to determine both types’ values. However,
the results extend to that setting as long as the high type prefers to instantly acquire both
high and low quality information. Thus, an alternative setup, where the high type becomes
low at rate γh and where the mass of followers is initialized at the steady state (as in Garrett
(2016)) yields qualitatively similar predictions.

Content-Specific Mechanisms. In the analysis, I have focused on mechanisms which do
not depend on the quality chosen by the sender. Allowing for content-specific mechanisms
renders the setting trivial. The platform can simply deprioritize the sender forever (i.e. ban
her from the platform) after the sender posts low quality content. Such bans are indeed used
in reality, in cases where content is clearly illegal. However, they are infeasible whenever
content quality is difficult to measure.
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