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Abstract

We study information design in a model with one sender and several receivers

who participate in a general competitive bidding game. The sender chooses a

Blackwell experiment which provides the receivers with information about a payoff-

relevant state of the world. The receivers then make offers of which the sender

accepts at most one. We show that a sender with state-independent preferences

optimally provides the same information to all receivers. Moreover, we identify a

condition, competitiveness, under which the sender does not benefit from commit-

ting ex-ante to an offer-acceptance strategy. With state-dependent preferences, the

sender may benefit from providing private information.
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1 Introduction

In many economic environments, a sender provides information to competing receivers.

Governments provide information and solicit offers from several companies before as-

signing the exploitation rights for a natural resource to one of these. In labor markets,

workers apply to several potential employers but accept only one job offer. Entrepreneurs

pitch their business ideas to different potential investors but may require only a single

investor to fund their company.

We analyze optimal information design by a sender who faces competing receivers.

In our model, a sender chooses an experiment that provides receivers with information

about an unknown payoff-relevant state of the world. Upon observing the information,

receivers can each make an offer to the sender. The sender then accepts one of these

offers or rejects all of them. Our game, which places little restriction on the available

offers or preferences, generalizes the non-discriminatory single-good first-price auction in

that a single winning bid is chosen according to the sender’s preferences, the winning bid

is implemented, and the losing bidders receive their outside options.

We study two research questions. First, does the sender benefit from providing private

information to the receivers or is it optimal to provide all information publicly?1 Second,

could the sender benefit from commitment power regarding her choice of a winning offer?

Our first main result, Theorem 1, shows that the provision of public information

is optimal for the sender if her preferences are state-independent. For any experiment

that may provide the receivers with private information and any associated equilibrium

in the competitive-bidding game, we construct a public experiment and an associated

equilibrium under which the sender is at least weakly better off. This public experiment

garbles the information generated under the original experiment in a way that allows the

receivers to infer the designated winning bid. The competitive forces under the original

equilibrium ensure that the winning receiver cannot profitably deviate to a bid that the

sender finds less favorable under the public experiment. By contrast, there may exist

alternative bids which both some bidding receiver and the sender prefer. Thus, the

sender may not be able to attain the same outcome as under the original experiment but

can ensure a weakly better outcome under the public experiment.

Theorem 1 largely simplifies the sender’s information design problem – as it is public,

optimal information can be determined using standard tools from the literature (e.g.

Kamenica and Gentzkow (2011)’s concavification technique). It can also be seen as

a robustness result. If the sender provides different pieces of information to different

receivers, the receivers may benefit from communicating their information to each other.

1We do not just compare public versus private information provision, but rather allow for fully general
information design and ask when the solution induces public or private information.
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If all receivers obtain the same information in the first place, the sender obviously does

not need to worry about any further transmission of information. Finally, in settings

where public distribution of information may be required, for instance for fairness or

legal reasons, Theorem 1 says this is of no cost to the sender.

Our second main result, Theorem 2, shows that the sender does not benefit from

commitment in her choice of a winning bid if the environment satisfies a competitiveness

condition. This condition can be understood as the ability of the receivers to closely

match – in terms of the sender’s payoff – other receivers’ offers. Under this condition,

competition among receivers is sufficiently strong so that the sender does not gain from

increasing competitive pressure on the receivers by committing to some bid acceptance

decision. An implication is that the sender’s optimal information structure (which is

public) remains optimal independently of the extent of commitment power she may po-

tentially have.

The following example of offshore wind power auctions for centrally pre-investigated

sites in Germany illustrates the practical relevance of our results.2 In these auctions,

the Federal Network Agency awards the right to build and run an offshore wind park

in a specified area in the North Sea. Prior to the auction, the Federal Maritime and

Hydrographic Agency conducts several tests on the site of the planned wind park to

generate information about wind, seabed, and maritime conditions. This information is

then provided to all interested bidders. In a next step, the Federal Network Agency runs a

scoring auction in which bidders submit a multidimensional bid consisting of a payment,

as well as technological and organizational aspects of their offer. The Federal Network

Agency then selects a winning bid. Although the winning bid is determined according

to a pre-specified scoring rule, the relevant law explicitly states that the regulator has

discretion over how to evaluate qualitative aspects of the bids.3 Our analysis says that

the Federal Network Agency could not benefit from instead providing different pieces of

information to different bidders or having less discretion in the choice of a winning bid.

Finally, we consider the case of state-dependent preferences for the sender. Here, the

sender may benefit from providing the receivers with private information. In particu-

lar, the sender may wish to provide some receivers with information that enables these

receivers to adapt their offers to the sender’s preferences in order to exert higher compet-

itive pressure on other receivers. We also provide an extended notion of competitiveness

under which the provision of public information is still optimal and commitment to a

decision rule continues to have no value.

2For further details, see https://www.bundesnetzagentur.de/1007288.
3See §53 (1) WindSeeG.
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Related literature Our paper contributes to the literature on information design in

first-price auctions as our bidding game generalizes this auction format. Following the

seminal contribution of Milgrom and Weber (1982), Bergemann and Pesendorfer (2007)

study the optimal design of information and auction rules if the bidders’ values are inde-

pendent and each bidder can only receive information about their own value. They show

that it is optimal to induce asymmetric distributions over the bidders’ valuations. Thus,

as Myerson (1981) suggests, discriminating auction rules are optimal. Bergemann, Brooks

and Morris (2017) consider fully general forms of information design in the context of a

standard first-price auction. In their Theorem 2, they show that the auctioneer’s optimal

payoff can be achieved through a public information structure and an efficient outcome

of the auction. We extend the optimality of public information and non-discriminating

auction rules under fully flexible information design to more general environments. Like

Bergemann et al. (2017) our model nests the private and common-value cases, but our

generality with respect to sets of available offers and preferences allows for multidimen-

sional bids or budget constraints and a risk averse auctioneer or bidders.

Our paper belongs to the growing literature on information design which analyzes

situations in which a sender commits to communicate information to a group of receivers

through a Blackwell experiment (Bergemann and Morris, 2013, 2016; Taneva, 2019; Math-

evet, Perego and Taneva, 2020).4 The characterization of optimal information design is

challenging in general. Some contributions – such as Alonso and Camara (2016) focus on

public experiments in a voting context. Under unanimity voting, Bardhi and Guo (2018)

show that public and private persuasion coincide. For other voting rules, they focus

on experiments that generate conditionally independent signals. Arieli and Babichenko

(2019) show that private information design outperforms public information design in a

context where receivers make independent binary decisions. In their context, private and

public information design may only be equivalent if receivers are homogeneous. Kolotilin,

Mylovanov, Zapechelnyuk and Li (2017) show that public information design is optimal

if receivers make independent binary decisions and have private information about their

type. We contribute to this literature by showing that public information design performs

as well as private information design in many settings with competing receivers. We add

the analysis of the role of decision commitment which naturally arises in our setting.

The remainder of this paper is organized as follows. Section 2 introduces the model.

Section 3 shows that public experiments are optimal. Section 4 analyzes the role of

commitment in choice of winning offer. We discuss our results and extensions in Section 5

and conclude in Section 6.

4For the single receiver case, see the seminal contributions by Kamenica and Gentzkow (2011) and
Rayo and Segal (2010). Kolotilin (2018) uses a linear programming approach to the single receiver
problem, as we do.
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2 Model

2.1 Environment

There is one sender and a finite set I := {1, . . . , n} of receivers with n ≥ 2. Each receiver

i ∈ I simultaneously makes an offer ai ∈ Ai to the sender. We denote the decision not

to make an offer by a0i ∈ Ai (i.e. receiver i makes a ‘null’ offer). The sender can accept

one of the offers or reject all offers. We denote the decision to reject by a00 and use the

notation A0 ≡ {a00} for convenience.5 Thus, the sender chooses an outcome x from a

profile of offers a ∈ A ≡ ×n
i=0Ai.

6 Let X ≡ ∪n
i=0Ai denote the set of all possible outcomes

and define the function ι : X → I∪{0} as the mapping from each outcome to the receiver

who can offer this outcome, i.e., ι(x) = i ⇐⇒ x ∈ Ai.

There is a payoff-relevant state of the world ω ∈ Ω. This state is initially unknown

and all players share a common prior p ∈ int(∆Ω). The payoff functions of the sender

and any receiver i ∈ I are given by

u : X → R and vi : Ω×X → R.7

Thus, we assume that the sender’s preferences are state-independent.8 We further assume

that all players value their outside option at zero. The sender obtains her outside option

whenever she rejects all offers or accepts a null offer. Receivers obtain their outside

options whenever they make a null offer, or their offer is not accepted. Thus, we have

u(a0j) = vi(ω, a
0
j) = 0 for all j = 0, 1..., n, i ∈ I, and ω ∈ Ω and vi(ω, x) = 0 for all x ̸∈ Ai,

i ∈ I, and ω ∈ Ω. Given a belief q ∈ ∆Ω, we denote receiver i’s expected payoff from the

outcome x by Vi(q, x) ≡
∑

ω q(ω)vi(ω, x). Finally, we assume Ω and Ai to be finite sets

for all i ∈ I.

2.2 Information Structure

The sender can generate information about the state ω by selecting a Blackwell ex-

periment σ = (S, µ) where S is a set of signal realizations with the product structure

S = S0×S1×· · ·×Sn and the function µ : Ω → ∆S assigns to each state ω a conditional

distribution µ(·|ω) over S. The sender observes the signal realization s0 ∈ S0 and receiver

5Interpret this notation as a passive receiver 0 who always makes the “non-offer” a00.
6We sometimes use the notation a = (ai, a−i) and A = Ai ×A−i.
7For notational convenience we define the auxiliary function v0 : Ω×X → R with v0(·, ·) = 0.
8We discuss the extension to state-dependent sender preferences in Section 5.1.
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i observes the signal realization si ∈ Si.
9 We assume all sets S0, S1,. . . , Sn are finite.10

We denote the set of all such Blackwell experiments by Σ.

An experiment is public if it provides the same information to the sender and all

receivers, or – formally – if for any s ∈ S, each element si of s is a sufficient statistic of

the whole vector s. Note that any public experiment is equivalent to some experiment

σp = (Sp, µp) where Sp is a set of signal realizations that is observed by all players and

{µp(·|ω)}ω is a family of conditional distributions over Sp.11 We will describe public

experiments in this way throughout the paper. The set of all public experiments is Σp.

2.3 Base Game

For a given experiment σ = (S, µ), the players play the following Bayesian game:

t=0: A signal realization s ∈ S realizes.

t=1: Each receiver i observes si ∈ Si and chooses an offer ai ∈ Ai.

t=2: The sender observes s0 ∈ S0 and picks an outcome x from the profile of offers a ∈ A.

We denote a strategy and a belief of receiver i be αi : Si → ∆Ai and ρi : Si →
∆(Ω × S−i). A strategy and a belief of the sender are given by β : S0 × A → ∆A and

ρ0 : S0 × A → ∆(Ω × S−0) where the strategy β satisfies β(s0, a) ∈ ∆a for all s0 ∈ S0

and a ∈ A, that is, the sender can only accept offers that have been made. We denote by

B the set of all such strategies for the sender. We use the equilibrium concept of (weak)

perfect Bayesian equilibrium (PBE).12 We denote by E(σ) the set of all PBEs for a given

information structure σ, with a generic element ε = ((β, α1, . . . , αn), (ρ0, . . . , ρn)). In

Section 5.2, we extend our results when selecting for PBE that rule out receivers playing

‘surely-dominated’ strategies which make offers sure to yield negative payoffs.

2.4 The Sender’s Problem

The sender’s information design problem is to choose an experiment σ which maximizes

the sender’s expected payoff across all possible PBEs under σ. Denote the probability of

9The sender can design information for herself here, but as she has state-independent preferences
and will use a sequentially rational strategy to choose a winning offer, she only uses her signal as an
endogenous tie-breaking rule. We discuss what happens if the sender does not receive a signal in Section
5.3.

10While we require finiteness, we do not put a bound on the number of messages.
11Any such experiment σp is equivalent to an experiment σ with Sj = Sp for all j, µ(s0 = s1 = · · · =

sn = sp|ω) = µp(sp|ω) for all ω, and µ(s|ω) = 0 for all s with sj ̸= sk for some j and k.
12For a formal definition, see Definition 9.C.3 in Mas-Colell, Whinston and Green (1995).
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a profile of offers a ∈ A for the signal realization s ∈ S by α(a|s) ≡
∏n

i=1 αi(ai|si). We

can then formally define the sender’s optimal expected payoff as

U∗ ≡ sup
σ∈Σ

sup
ε∈E(σ)

∑
ω∈Ω

∑
s∈S

∑
a∈A

p(ω)µ(s|ω)α(a|s)
∑
x∈X

β(x|s0, a)u(x). (1)

Thus, we assume that for a given experiment σ, the players coordinate on a sender-

optimal equilibrium in the set E(σ). We thereby follow the standard approach in the

literature on information design (Bergemann and Morris, 2013, 2016; Taneva, 2019).13

We say that an experiment σ is optimal if the sender attains the optimal payoff U∗ under

σ for some equilibrium in E(σ). If there is an optimal experiment that is public, we say

that providing private information has no value to the sender.

It will be helpful to define an outcome rule by the mapping λ : Ω → ∆X which

assigns to each state ω ∈ Ω a conditional distribution over outcomes. Note that any

given combination of an experiment σ and strategies for all players induces an outcome

rule

λ(x|ω) =
∑
s∈S

∑
a∈A

µ(s|ω)α(a|s)β(x|s0, a).

As the payoffs of all players depend only on the state and the matching outcome, an

outcome rule captures all payoff relevant information from the ex-ante perspective. We

denote by Λ the set of all outcome rules: Λ ≡
{
λ : X × Ω → [0, 1] such that λ(·|ω) ∈

∆X for all ω ∈ Ω
}
.

2.5 Discussion of the model

Our model applies to a wide variety of competitive bidding procedures that share im-

portant characteristics of the non-discriminatory single-good first-price auction: a single

winning bid is chosen according to the auctioneer’s preferences, the winning bid is imple-

mented, and the losing bidders receive their outside option. Our model is general with

respect to the players’ preferences as well as the offers which the receivers can make in the

competitive bidding procedure. The framework allows for risk-aversion, nests private and

common value environments, and captures multidimensional bids as in scoring auctions

or restricted bid spaces – for instance due to budget constraints or limited commitment

and ex-post renegotiation.

13Mathevet et al. (2020) study information design under alternative equilibrium selection criteria.
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3 Optimality of public experiments

3.1 Main result

Theorem 1. Providing private information has no value to the sender.

The optimality of public experiments has two important applied implications. First,

there is no cost to transparency. This might be particularly relevant to public institutions

– such as the regulator in the offshore wind auctions described in the introduction – who

are often subject to freedom of information laws, which force them to provide all of their

information to all competitors. Second, the provision of public information is a robust

informational policy. If different competitors receive different pieces of information, it

can be difficult to prevent them from communicating their information before choosing

their offers. This is obviously not an issue if all receivers obtain the same information.

In addition, it may be considerably easier for the sender to build up and maintain the

reputation underlying the informational commitment if information is provided publicly.

The theorem follows from the observation that for any experiment and associated

equilibrium, we can find a public experiment and an equilibrium under which the sender

has a weakly higher expected payoff. We now describe the main logic of this result. Take

some experiment σ and an associated equilibrium ε ∈ E(σ) that jointly induce an outcome

rule λ. Can we implement the same outcome rule λ with a public experiment and some

equilibrium? A straightforward approach is to use a public experiment which publicizes

the winning offer under the original experiment and associated equilibrium. Formally,

this corresponds to a public experiment σp = (Sp, µp) where the set of signal realizations

is the set of winning offers under λ, i.e., Sp = supp(λ), and these are drawn according to

the outcome rule, i.e., µp = λ. Given this public experiment, the key question is whether

there exists an associated equilibrium in which for each signal realization x ∈ supp(λ),

the receiver i = ι(x) offers x and all other receivers make weakly worse offers and, thereby,

induce the sender to accept x. There are four cases of potential deviations to consider:

(1) Receiver i could deviate to make no offer, i.e. making null offer a0i .

(2) Receiver i could deviate to some other offer ai ̸∈ {x, a0i } that is weakly worse for

the sender than x: u(ai) ≤ u(x).

(3) Receiver i could deviate to some other offer ai ̸∈ {x, a0i } that is strictly better for

the sender than x: u(ai) > u(x).

(4) Some receiver j ̸= i could deviate to making an offer aj ∈ Aj strictly better for the

sender than x: u(aj) > u(x).

8



Deviations of type (1) induce an individual rationality constraint for receiver i. Given

the signal realization sp = x, all players hold in equilibrium the posterior belief

qλ(ω|x) ≡
p(ω)λ(x|ω)∑
ω′ p(ω′)λ(x|ω′)

.

Receiver i’s expected payoff from offering x, Vi(qλ(x), x), therefore equals receiver i’s

expected payoff conditional on acceptance of his offer x under the experiment σ and

equilibrium ε. This expected payoff has to be weakly positive. Otherwise, receiver i

would have a strict incentive to deviate to a0i under the original equilibrium ε.

We now turn to deviations of type (2).14 Consider an offer aj ∈ Aj from another

receiver j ̸= i which is worse for the sender than offer x but better than the deviation

offer ai, i.e., u(aj) ∈ [u(ai), u(x)]. If such an offer exists and is made by receiver j, the

sender optimally picks aj and hence the deviation to ai is not profitable.
15 We say that

aj is a competitive offer to ai and formalize this notion as follows.

Definition 1. The offer x ∈ Ai has a competitive offer at belief q ∈ ∆Ω if there is an

offer aj ∈ Aj, j ̸= i, such that for any a′i ∈ Ai with

Vi(q, a
′
i) > Vi(q, x) and u(a′i) < u(x)

we have

u(a′i) ≤ u(aj) < u(ai).

In the proof, we show that any offer x ∈ supp(λ) has a competitive offer at the belief

qλ(x) and hence, by constructing strategies where these competitive offers are made, no

type (2) deviations are profitable. Indeed, if some offer x has no competitive offer at

the belief qλ(x), receiver i would have a profitable deviation from x under the original

experiment σ and the equilibrium ε. In this case, there is no offer from some receiver j

which induces a utility for the sender in the interval [u(ai), u(x)]. Thus, the offers ai and

x are accepted in identical circumstances and generate expected profits of

Pr(accept)Vi(qλ(x), ai) > Pr(accept)Vi(qλ(x), x)

where Pr(accept) is their common probability of acceptance.

Finally, consider deviations of type (3) and (4). Note that these are deviations that

are in the interest of the sender. While we cannot exclude that such deviations exist,

we can use them to improve the sender’s expected payoff. In the proof, we show that

14The deviations of types (2), (3), and (4) can be understood as incentive compatibility constraints.
15If u(aj) = u(ai), the sender can tie-break in favor of aj to dissuade a deviation to ai.
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it is always possible to construct an equilibrium that accommodates deviations of types

(3) and (4). The resulting outcome rule differs from the outcome rule λ but generates a

strictly higher expected payoff for the sender.

We illustrate the construction in the following simple example. Suppose the state is

binary with Ω = {1, 2} and prior p = (1
3
, 2
3
), there are two receivers with binary offer sets

Ai = {a0i , a1i } for i = 1, 2, and the payoffs of the players are given by

u(a11) = 2, u(a12) = 1,

v1(1, a
1
1) = 1, v1(2, a

1
1) = −1,

v2(1, a
1
2) = 1, v2(2, a

1
2) = −2.

Consider now an experiment σ which fully reveals the state to receiver 2 and keeps

receiver 1 uninformed. In any equilibrium ε ∈ E(σ), receiver 1 always offers a01, receiver 2

offers a12 if ω = 1 and a02 if ω = 2, and the sender accepts a12 if it is offered and picks a00

otherwise.16 Thus, we obtain an outcome rule λ(x|ω) = 1(ω = 1)δa12 + 1(ω = 2)δa00 . The

public experiment which publicizes this outcome rule sends the signal realization sp = a12

if ω = 1 and sp = a00 if ω = 2. In any equilibrium for this public experiment, receiver 1

offers a11 for sp = a12 and this offer is accepted by the sender. Thus, the outcome rule λ

cannot be implemented. However, any equilibrium induces a better outcome rule under

which the sender accepts the more attractive offer a11 for ω = 1 and the outside option a00

for ω = 2.

The example also illustrates the fact that Theorem 1 is not a revelation principle.

There does not exist any public experiment under which the offer a12 is accepted in

equilibrium. This is due to the fact that for any common posterior belief, receiver 1 is

easier to persuade to offer a11 than receiver 2 is to offer a12. Thus, there exist outcome rules

that are only implementable with private experiments. However, these outcome rules do

not perform better for the sender than those outcome rules that can be implemented with

a public experiment.

3.2 Optimal information

While in general, optimal information structures in games with multiple receivers can be

hard to compute, Theorem 1 implies that the optimal public experiment can be deter-

mined using the concavification approach of Kamenica and Gentzkow (2011). Given a

public belief q ∈ ∆Ω, the sender can implement the best offer among those offers that

16The sender could equivalently pick a01 or a02 after ω = 2 and the argument would not change.
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are individually rational and have a competitive offer at q:

X ir,c(q) = {x ∈ X : Vι(x)(q, x) ≥ 0 ∩ x has competitive offer at q}

The sender’s optimal utility at posterior q is therefore given by u∗(q) = maxx∈Xir,c(q) u(x).

Let ū(q) be the concave closure of u∗(q). We then have U∗ =
∫
u∗(q)dK(q) = ū(p) where

the optimal public experiment induces a distribution K over posterior means.

4 Value of decision commitment

In this section, we study whether the sender may benefit from decision commitment.

With decision commitment, the sender selects an experiment σ and a decision strategy

β before the receivers make their offers, and the receivers observe these choices. The

receivers then play the following base game.

t=0: A signal realization s ∈ S realizes.

t=1: Each receiver i observes si ∈ Si and chooses an offer ai ∈ Ai.

t=2: An outcome x is chosen from the profile of offers a ∈ A, given s0, according to the

strategy β.

A BPE of this game consists of beliefs (ρ1, . . . , ρn) and strategies (α1, . . . , αn) for the

receivers. We denote the set of BPEs of this game by Ē(σ, β) with generic element ε̄.

In line with our analysis of the case without decision commitment, we assume that the

sender can choose her preferred equilibrium from this set. It follows that the sender’s

optimal payoff under commitment is given by

Ū ≡ sup
σ∈Σ,β∈B

sup
ε̄∈Ē(σ,β)

∑
ω∈Ω

∑
s∈S

∑
a∈A

p(ω)µ(s|ω)α(a|s)
∑
x∈X

β(x|s0, a)u(x).

The next lemma paves the way toward a characterization of the sender’s optimal

payoff under decision commitment.

Lemma 1. The sender can implement an outcome rule λ under decision commitment

if and only if λ is individually rational, that is,
∑

ω p(ω)λ(x|ω)vι(x)(ω, x) ≥ 0 for all

x ∈ supp(λ).

Proof. In the proof of Theorem 1, we establish in the case without decision commitment

that for any experiment σ and associated equilibrium ε ∈ E(σ), the induced outcome rule

λ satisfies
∑

ω p(ω)λ(x|ω)vι(x)(ω, x) ≥ 0 for all x ∈ supp(λ).17 This ensures that receiver

17See the argument following equation 3.
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ι(x) prefers offering x over the non-offer a0ι(x). The same requirement needs to be satisfied

for any experiment σ, acceptance strategy β and equilibrium ε̄ ∈ Ē(σ, β) in the game

with decision commitment. Thus, the sender can implement the outcome rule λ only if

λ is individually rational.

To show that the sender can implement any individually rational outcome rule, fix

some individually rational outcome rule λ. As in the proof of Theorem 1, we construct

the public experiment σp with Sp = supp(λ) and µp(x|ω) = λ(x|ω) for any x ∈ supp(λ)

and ω ∈ Ω. Define the acceptance strategy βp by βp(s0 = x, a) = δx if x ∈ a and

βp(s0 = x, a) = δa00 otherwise. As the sender commits to rejecting any offer other than x

for s0 = x, strategies where receiver ι(x) makes offer x and all other receivers make null

offers a0i constitute equilibrium play as x is individually rational for ι(x).

Lemma 1 has two interesting implications. The first is that the optimality of public

information extends to the setting with decision commitment. Indeed, the proof shows

that any individually rational outcome rule can be implemented with a public experiment.

Secondly, the lemma allows us to characterize the sender’s optimal payoff under decision

commitment Ū as the value of the linear program

(P̄ ) : max
λ∈Λ

∑
ω∈Ω

∑
x∈X

p(ω)λ(x|ω)u(x) s.t.
∑
ω∈Ω

p(ω)λ(x|ω)vι(x)(ω, x) ≥ 0, ∀x ∈ X.

This linear program maximizes the sender’s expected payoff by choosing from the set of

individually rational outcome rules. The value Ū is closely related to the sender’s opti-

mal payoff without decision commitment. The only difference is that without decision

commitment, the sender faces the additional constraint requiring the existence of com-

petitive offers for each implemented outcome at the respective belief. This observation is

suggestive for our following second main result.

Theorem 2. Decision commitment has no value to the sender if and only if there is an

outcome rule λ̄ which solves the linear program (P̄ ) such that any x ∈ supp(λ̄) has a

competitive offer at the belief qλ̄(x), given by

qλ̄(x|ω) =
p(ω)λ̄(x|ω)∑
ω′ p(ω′)λ̄(x|ω′)

.

The sufficiency of the theorem’s condition is implied by the following argument. Take

an outcome rule λ̄ that is optimal under decision commitment. Suppose any of its out-

comes has a competing offer at the belief conditional on the observation of this outcome.

Can we implement this outcome rule with a public experiment and an equilibrium under

which a projected winning offer is publicized, the projected winner makes the announced
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offer, and all other receivers make worse offers? As there is always a competitive offer,

the winning receiver can be discouraged from making an offer that is worse for the sender.

But can we have deviating offers that are better for the sender? The answer is no. Any

such deviating offer would need to be individually rational for the respective receiver.

But if there a individually rational offers that improve the sender’s expected payoff, the

initial outcome rule λ̄ is not optimal, which yields a contradiction.

The necessity argument uses the insight of the proof of Theorem 1, that an optimal

outcome rule is only implementable without decision commitment if it is also imple-

mentable with the public experiment and equilibrium used in the sufficiency argument

above. If any optimal outcome rule has an outcome for which there is no competitive offer

at the associated posterior belief, the respective receiver can always profitably deviate

by shading his offer. Hence, the outcome rule cannot be implemented without decision

commitment.

A sufficient condition for decision commitment to have no value is that every offer

has a competitive offer at any public belief where the offer is individually rational. This

competitiveness condition is satisfied if all receivers have equivalent sets of offers from the

sender’s perspective. Formally, this requires that for any two receivers i and j and any

offer ai ∈ Ai of receiver i, receiver j has an offer aj ∈ Aj which the sender finds equally

good, i.e., u(ai) = u(aj).

However, there are natural environments that may not be competitive. Take the

example of a first-price auction in which bidders face asymmetric budget constraints.

Suppose the first bidder has deep pockets and can potentially make any bid whereas

the second bidder has a tight budget constraint. Then, the second bidder can never

exert competitive pressure on those bids of the first bidder that exceed his budget. As a

consequence, the sender may benefit from commitment – for example in the form of bid

discounts for the second bidder – to incentivize the first bidder to make high bids.

5 Discussion

5.1 Sender state-dependent preferences

We now discuss the case in which the sender’s payoff may also depend directly on the

state. Thus, the sender has a payoff function of the form

u : Ω×X → R.

We assume that the sender’s payoff from not accepting any offer is zero, that is, u(ω, a0j) =

0 for all j = 0, 1, . . . , n. Denote sender’s expected payoff from some offer x ∈ X given
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the belief q ∈ ∆Ω by U(q, x) =
∑

ω q(ω)u(ω, x).

We first note that Theorem 1 does not extend to the case of state-dependent sender

preferences.

Proposition 1. With state-dependent preferences, the sender may benefit from providing

private information.

Proof. We prove the result using the following simple example. Suppose the state is

binary with Ω = {1, 2} and prior p = (1
3
, 2
3
), there are two receivers with offer sets

Ai = {a0i , a1i , a2i } for i = 1, 2, and the payoffs of the players are given by

u(ω, a11) = 10, u(ω, a21) = 1, u(ω, ak2) = 1(ω = k),

v1(1, a
1
1) = 3, v1(2, a

1
1) = −1, v1(ω, a

2
1) = 4,

v2(ω, a
k
2) = 1.

With a public experiment, all players share the same posterior belief q = Pr(ω = 1).

Here, receiver 1 can only be incentivized to offer a11 if (i) a11 is individual rational, i.e.,

3q + (1 − q)(−1) ≥ 0, and (ii) the offer of receiver 2 exactly matches the state, i.e.,

q ∈ {0, 1}. Conditions (i) and (ii) imply q = 1. For all other posterior beliefs, the sender

makes a payoff of 1. Thus, the sender’s best public experiment maximizes the probability

of the posterior q = 1, and is therefore the fully revealing experiment which results in an

expected payoff of
1

3
· 10 + 2

3
· 1 = 4.

Consider now the private experiment which provides receiver 1 with no information and

fully reveals the state to receiver 2. Given this experiment, there is an equilibrium in

which receiver 1 always offers a11, receiver 2’s offer matches the state, and the sender

accepts the offer a11 if it is made and otherwise accepts the offer of receiver 2. Under this

equilibrium, the sender’s payoff is 10. Hence, the sender benefits from private information

provision.

In order to discuss the insights of the example in the proof, it is helpful to extend the

notion of a competitive offer to state-dependent sender preferences.

Definition 2. The offer x ∈ Ai has a competitive offer at belief q ∈ ∆Ω if there is an

offer aj ∈ Aj, j ̸= i, such that for any a′i ∈ Ai with

Vi(q, a
′
i) > Vi(q, x) and U(q, a′i) < U(q, x)

we have

U(q, a′i) ≤ U(q, aj) < U(q, ai).
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In the example, receiver 2 can exert only limited competitive pressure on receiver 1.

In particular, the sender has no public experiment which splits the prior into posteriors

for which the offer a11 is individually rational for receiver 1 and has a competitive offer

from receiver 2. Receiver 2 needs to perfectly learn the state in order to match the

sender’s state-dependent preferences and exert maximal competitive pressure on receiver

1. However, receiver 1 needs to remain at least partially uninformed to be willing to

offer a11. A private experiment can decouple the posterior beliefs of the two receivers

and thereby generate the best possible outcome for the sender. It is worth pointing out

that the sender does not use the receivers’ private information on equilibrium path. The

privacy is only used to create a competitive threat that is not used on path.

By contrast, the sender finds it optimal to provide public information even with state-

dependent preferences if it is relatively easy to exert competitive pressure on all receivers.

Definition 3. The environment is competitive if every offer x ∈ X has a competitive

offer at any belief q ∈ ∆Ω for which Vι(x)(q, x) ≥ 0.

Proposition 2. If the environment is competitive, there is a public experiment which is

optimal and commitment has no value.

We omit the proof of this proposition as it follows exactly the proof of sufficiency for

Theorem 2, with minor adaptations to the sender’s state-dependent preferences.

In a competitive environment, the sender can exert sufficient competitive pressure

on the receivers even when these receivers share the same posterior beliefs. The same

competitive pressure also allows the sender to obtain equally good outcomes than those

achievable with decision commitment. In particular, the sender has no value of com-

mitting to reject certain offers, as the competitive offers make these rejection threats

credible.

5.2 Equilibrium selection

We use the equilibrium concept of (weak) perfect Bayesian equilibrium throughout our

main analysis. It is well known that players may play weakly dominated strategies under

this equilibrium concept. In our context, this means that losing receivers may make offers

in equilibrium that, if accepted, would lead to strictly negative payoffs for all states which

are possible under this receiver’s belief.

In this section, we follow Bergemann et al. (2017) and consider an equilibrium refine-

ment that rules out such surely dominated offers.18 Formally, an offer ai ∈ Ai is surely

dominated at a belief q if vi(ω, ai) < 0 for all ω ∈ supp(q). Given an experiment σ, some

18As Bergemann et al. (2017) note, this selection is slightly weaker than ruling out weak dominance.
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equilibrium ε ∈ E(σ) is also an equilibrium in non-surely dominated strategies if for each

receiver i, the strategy αi puts probability zero on offers that are surely dominated given

the belief ρi. We denote the set of such equilibria for the experiment σ by E∗(σ).

In the following proposition, we show that an approximate version of our Theorem 1

holds for generic payoffs of the receivers.19

Proposition 3. Take any experiment σ and equilibrium in non-surely dominated strate-

gies ε ∈ E∗(σ) that yield the sender an expected payoff of U . For generic payoffs of

the receivers and any δ > 0, there exists a public experiment σp and an equilibrium in

non-surely dominated strategies εp ∈ E∗(σp) that yield the sender an expected payoff of

Up > U∗ − δ.

Take any experiment σ and associated equilibrium ε ∈ E∗(ε) in non-surely dominated

strategies which induce an outcome rule λ. Consider now the public experiment that

publicizes the winning offer. Recall from Theorem 1, that there is an equilibrium in the

sender accepts for each sp = x some offer a(x) ∈ X with u(a(x)) ≥ u(x). The offer a(x) is

non-surely dominated at the public belief qλ(x) as it is individually rational. Supporting

a(x) in equilibrium requires another receiver to play a competitive offer for a(x) which

is non-surely dominated at qλ(x). We show that such an offer must exist at qλ(x) or

at a nearby full-support belief. For generic receiver payoffs, individual rationality and

incentive compatibility of a(x) can be preserved at nearby beliefs, and hence the sender

can arbitrarily approximate the desired distribution of public beliefs.

5.3 No signal for sender

In our main analysis, we allow for Blackwell experiments that provide the sender directly

with information about the state of the world. This assumption could be challenged in

some applications of our model. For instance, a government agency’s ability to infer the

costs of constructing a wind park from experiments about seabed and wind conditions

may vary with the agency’s engineering expertise.

As the sender has state-independent preferences and is sequentially rational in equi-

librium, the sender can only use information she directly obtains to break ties. Note that

if the sender cannot design a private signal but can observe the realization of any public

information provided to receivers, we can still construct the same public experiments and

equilibria we do in Theorems 1 and 2 and so the results still apply. If the sender cannot

observe any signal realizations herself, in some cases she may not be able to tie-break in

favor of the desired winning offer. In this extension, we show that our results extend to

19Each receiver’s payoff is given by numbers {v(ω, x)}ω∈Ω,x∈Ai\{a0
i }. We use the notion of genericity

with respect to the Lebesque measure on Rn(|Ai|−1)|Ω| which includes the case of pure common-values.
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the case without a sender signal if we allow for cheap talk between the receivers and the

sender.20

Formally, we say that the sender has no signal if she can only choose experiments

from the restricted set Σ ≡ {σ ∈ Σ : S0 = {s0}}. A receiver-public experiment for this

restricted set is a Blackwell experiment in which for each receiver i, the signal realization

si ∈ Si is a sufficient statistic for the full set of signal realizations s−0 ∈ S−0. Such

a receiver-public experiment can be captured through some experiment σp = (Sp, µp)

whose signal realizations sp ∈ Sp are observed by all receivers but not by the sender.

We introduce the possibility for cheap-talk by allowing each receiver i to send a message

mi ∈ Mi in addition to his offer ai ∈ Ai. We assume that for all receivers, Mi is finite

but sufficiently large: |Mi| ≥ |X|.

Proposition 4. If the sender has no signal and the receivers can send cheap-talk mes-

sages, the sender can attain the same optimal payoff as in the case with a sender signal.

Moreover, the sender can optimally use a receiver-public experiment.

If there are at least three receivers, it is straightforward to see that the sender can

obtain the same outcome independently of whether she can observe the public signal

realization sp. In particular, the sender can ask the receivers to report the signal real-

ization through their cheap talk message. If the sender adapts her beliefs according to

the signal realization reported by the majority, no individual receiver is pivotal for the

sender’s beliefs. Thus, there exists an equilibrium in which all receivers report the signal

realization truthfully.

The argument for two receivers is more involved. First, it is helpful to note that

the public signal realization sp can only affect the sender’s decision if she is indifferent

between the receivers’ offers. Otherwise, the sender has a strict incentive to pick one

offer independently of the signal realization. A potential problem without a sender signal

arises if there are three offers a1, a
′
1 ∈ A1, and a2 ∈ A2 such that u(a1) = u(a2) < u(a′1)

and receiver 2 has no offer a′2 with u(a′2) ∈ [u(a1), u(a
′
1)]. In this case, the offer a2 has

to serve as competitive offer to a1 and a′1. This poses no problem if the public signal

realization sp is observable to the sender who can then always detect any deviation and

identify the deviating receiver. By contrast, if the signal realization sp is only observable

to receivers and the receivers make the offers a1 and a2, the sender cannot differentiate

between a deviation by receiver 1 following the signal realization sp = a′1 and on-path

behavior for sp = a1. In the proof, we show that this problem can be resolved through

cheap talk messages. In particular, we are always in one of the following cases. In the

20Alternatively to introducing cheap-talk, our results go through when the sender does not receive a
signal but the offer sets Ai are identical – in terms of the sender’s payoff – across receivers. That is, for
any i ̸= j and ai ∈ Ai, ∃aj ∈ Aj with u(aj) = u(ai).
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first case, receiver 2 finds it optimal to report the signal realizations sp = a1 and sp = a′1

truthfully, and therefore the sender is as well off as in the case where she observes the

signal directly. In the second case, receiver 2 benefits from misreporting m2 = a′1 for

sp = a1. This misreport triggers the sender to pick a2 over a1 to punish receiver 1’s

alleged deviation from a′1 to a1. This deviation is strictly profitable for receiver 2 if the

offer a2 is strictly individually rational for receiver 2 at the posterior belief induced by

sp = a1. However, this implies that we can implement a slightly different outcome rule

under which a2 is accepted for sp = a1 and this outcome rule generates the same expected

payoff to the sender as the sender is indifferent between a1 and a2.

5.4 Limited sets of experiments

In our formulation of the sender’s information design problem, we follow the literature

in assuming that the sender can use any Blackwell experiment. In practice, senders may

face additional constraints that restrict the sender’s ability to generate information, that

is, the sender may have to choose from a restricted set of signals Σ ⊂ Σ.

We now want to argue that our main result, Theorem 1, continues to hold with

limited sets of experiments if the sender can flexibly coarsen and share information. In

the proof of Theorem 1, we show that for any experiment σ and associated equilibrium

ε ∈ E(σ), there is a public experiment σp and an associated equilibrium εp ∈ E(σp) under

which the sender obtains a weakly higher payoff than under the original experiment and

equilibrium. The public experiment σp publicizes the winning offers under the original

experiment and equilibrium. Thus, the experiment σp does not generate more information

than the original experiment σ. In other words, observing the whole profile of signal

realizations s of the original experiment σ is more informative than observing σp in the

sense of Blackwell (1951, 1953). If the sender can freely coarsen and share information

between receivers, the public experiment σp lies in the set of feasible experiments Σ as

it is obtained from first garbling and then disseminating the information content of the

original experiment σ.

6 Conclusion

In this paper, we study information design in general competitive bidding games. We

show that public information design is optimal for the sender. Moreover, the sender often

does not benefit from having commitment power regarding her offer acceptance decision.

Throughout our analysis, we assume that the sender has complete control over the in-

formation structure. In particular, the receivers have no private information at the outset
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of the relationship. Moreover, we focus on settings in which a single sender faces multiple

receivers. We leave extensions of our approach to settings with private information and

sender competition for future research.

A Appendix: Omitted proofs

A.1 Proof of Theorem 1

We first provide the following revelation principle that extends standard approaches in

the literature to our dynamic settings in which the sender is also player in the base game.

Lemma 2. For any experiment σ = (S, µ) and associated equilibrium ε ∈ E(σ), there is

an experiment σ′ = (S ′, µ′) and an associated equilibrium ε′ = ((β, α′
1, ..., α

′
n), (ρ

′
0, ..., ρ

′
n)) ∈

E(σ′) that generate the same outcome rule λ : Ω → ∆X with S ′
i = Ai for receivers

i = 1, ..., n and α′
i(ai) = δai.

Proof. Fix an experiment σ = (S, µ) and an associated equilibrium ε ∈ E(σ). Holding

the sender’s strategy β and the marginal distribution of the sender’s signal µ0(s0|ω) ≡∑
s−0

µ(s|ω) fixed, define a static base game between the receivers with the state θ ≡
(ω, s0), the prior belief f(θ) ≡ p(ω)µ0(s0|ω), and the receivers’ payoff functions γi(θ, a) ≡
β(ai|a, s0)vi(ω, ai) for all i ∈ I. Define the experiment σ = (S, µ) with S = S−0 and

µ = {µ(·|θ)} such that µ(s|θ) = µ(s0, s|ω)/µ0(s0|ω). As ε ∈ E(σ), the profile of receivers’
strategies and beliefs ((α1, . . . , αn), (ρ1, . . . , ρn)) constitutes a Bayes Nash equilibrium of

the incomplete information game induced by the static base game and the information

structure consisting of the prior f and the experiment σ . Due to the revelation principle

in Proposition 2 of Taneva (2019), there exists a direct experiment σ′ = ((A1, . . . , An), µ
′)

and an associated equilibrium ((α′
1, . . . , α

′
n), (ρ

′
1, . . . , ρ

′
n)) with α′

i(ai) = δai for all i ∈ I

which induces an identical distribution over offer profiles. Define the experiment σ′ =

(S ′, µ′) such that S ′ = (S0, A1, . . . , An) and µ′(s0, a|ω) = µ′(a|ω, s0)µ0(s0|ω). Define

the profile of strategies and beliefs ((β, α′
1, . . . , α

′
n), (ρ

′
0, ρ

′
1, . . . , ρ

′
n)) with ρ′0(ω, a|s0) =

µ′(ω, s0, a)p(ω)/
∑

ω,a µ
′(ω, s0, a)p(ω). Given the experiment σ′, all receivers play under

this profile best replies given their beliefs and other strategies. Finally, the sender’s

strategy remains optimal as the receivers’ strategies generate the same distribution over

offer profiles as in the equilibrium ε ∈ E(σ).

In the remainder of the proof, we show that for any experiment and associated equi-

librium, there exist a public experiment and an associated equilibrium which gives the

sender at least the same payoff.
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Take an arbitrary experiment σ and associated equilibrium ε ∈ E(σ) that induce

the outcome rule λ. Due to the revelation principle in Lemma 1, it is without loss of

generality to assume that Si = Ai and αi(ai) = δai for all ai ∈ Ai and i ∈ I.

Define the public experiment σp = (Sp, µp) such that Sp = supp(λ) and µp(x|ω) =

λ(x|ω) for all x ∈ supp(λ) and ω ∈ Ω. Let qλ(x) ∈ ∆Ω denote the posterior public belief

after observing sp = x, given by

qλ(ω|x) ≡
p(ω)λ(x|ω)∑
ω′ p(ω′)λ(x|ω′)

. (2)

To construct a strategy profile (βp, αp
1, . . . , α

p
n) for the public experiment σp, we define

several objects. Fix x ∈ supp(λ). Let

Ãι(x)(x) ≡
{
aι(x) ∈ Aι(x) : Vι(x)(qλ(x), aι(x)) ≥ 0 ∧ u(aι(x)) ≥ u(x)

}
be the set of offers of receiver ι(x) that the sender weakly prefers to the offer x and are

individually rational for receiver ι(x) at the belief qλ(x). For any receiver j ∈ I with

j ̸= ι(x), define the set

Ãj(x) ≡
{
aj ∈ Aj : Vj(qλ(x), aj) > 0 ∧ u(aj) > u(x)

}
consisting of all offers of receiver j that the sender strictly prefers to x and receiver j

strictly prefers to the payoff from outcome x ̸∈ Aj at the belief qλ(x), Given these sets,

let

Ĩ(x) ≡ argmax
{i∈I:Ãi(x) ̸=∅}

{
max

ai∈Ãi(x)
u(ai)

}
be the set of receivers who can make the most attractive offers to the sender from the

set {Ãi(x)}ni=0.

We first show that Vι(x)(qλ(x), x) ≥ 0. Hence the set Ãι(x)(x) always contains x and

and Ĩ(x) is well defined. Under the equilibrium ε ∈ E(σ), following the signal realization

sι(x) = x, receiver ι(x) prefers to offer x instead of not making any offer. Thus,∑
ω∈Ω

∑
(s0,a−ι(x))∈S0×A−ι(x)

ρι(x)(ω, s0, a−ι(x)|x)β(x|s0, (x, a−ι(x)))vι(x)(ω, x) ≥ 0. (3)

By Bayes’ rule, we have in any equilibrium

ρι(x)(ω, s0, a−ι(x)|x) =
p(ω)µ(s0, x, a−ι(x)|ω)∑

ω′∈Ω
∑

(s′0,a
′
−ι(x)

)∈S0×A−ι(x)
p(ω′)µ(s′0, x, a

′
−ι(x)|ω′)

. (4)
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Thus, condition (3) can be restated as∑
ω∈Ω

p(ω)
∑

(s0,a−ι(x))∈S0×A−ι(x)

µ(s0, x, a−ι(x)|ω)β(x|s0, (x, a−ι(x)))vι(x)(ω, x) ≥ 0

⇐⇒
∑
ω∈Ω

p(ω)
∑

(s0,a)∈S0×A

µ(s0, a|ω)β(x|s0, a)vι(x)(ω, x) ≥ 0

⇐⇒
∑
ω∈Ω

p(ω)λ(x|ω)vι(x)(ω, x) ≥ 0

⇐⇒ Vι(x)(qλ(x), x) ≥ 0

where the first step follows from β(x|s0, a) = 0 for x ̸∈ a, the second step follows from

the definition of λ, and the last step is implied by the definition of qλ(x).

Thus, Ĩ(x) is well defined. Pick some receiver ĩ(x) ∈ Ĩ(x) and let

aĩ(x)(x) ∈ argmax
{a′

ĩ(x)
∈Ãĩ(x)(x): u(a

′
ĩ(x)

)≥u(aj) ∀aj∈∪j ̸=ĩ(x)Ãj(x)}
Vĩ(x)(qλ(x), a

′
ĩ(x)

)

be the favorite offer of receiver ĩ(x) among all offers that cannot be improved upon by

another receiver j’s offer from the set Ãj(x). Finally, define for each j ̸= ĩ(x) the offer

acj(x) ∈ argmax
{a′j∈Aj :u(a′j)≤u(aĩ(x)(x))}

u(a′j)

which is receiver j’s most competitive offer not surpassing the offer aĩ(x)(x).

We can now specify the strategies. For any receiver i ∈ I, let αp
i be the strategy that

sends for each signal sp = x the offer aĩ(x)(x) if i = ĩ(x) and aci(x) if i ̸= ĩ(x). Define

b(a) = argmaxa′j∈a u(a
′
j) and let the sender’s strategy βp be as follows. If aĩ(x)(x) ∈ b(a),

accept aĩ(x)(x). If aĩ(x)(x) ̸∈ b(a), accept some aj ∈ b(a) breaking ties first in favor of x

whenever ĩ(x) ̸= ι(x), and second (i.e. if ι(x) = ĩ(x) or x ̸∈ b(a)) against offers made by

receiver ĩ(x).

Given the public experiment σp and the strategy profile (βp, αp
1, . . . , α

p
n) inducing the

outcome rule λp, the sender attains at least as high a payoff as she did under the original

experiment and equilibrium σ and ε. This follows from the fact that for each x ∈ supp(λ),

λp(aĩ(x)(x)|ω) = λ(x|ω) and u(aĩ(x)(x)) ≥ u(x).

It remains to show that the strategy profile (βp, αp
1, . . . , α

p
n) and the public beliefs

{qλ(x)}x∈Sp constitute an equilibrium for the public experiment σp. Note first that the

sender’s strategy βp is sequentially rational given the other strategies and the beliefs as

the strategy always picks an offer from the set of optimal offers b(a).

Next, we turn to the receivers. Fix any signal realization sp = x ∈ Sp. We check that

21



none of the receivers has an incentive to deviate (as σp is public, it suffices to check there

are no deviations at each individual signal realization). For notational convenience, for

the remainder of the proof let receiver i = ĩ(x) and let ai(x) = aĩ(x)(x).

Individual rationality At first, we check that no receiver j strictly benefits from

deviating to a0j . Receiver i prefers offering ai(x) over not making any offer if

Vi(qλ(x), ai(x)) ≥ 0.

This inequality follows directly from the fact that ai(x) ∈ Ãi(x). It is straightforward to

see that any receiver j ̸= i does not strictly benefit from deviating to a0j as these receivers

have a payoff of zero from offering acj(x) as well.

Incentive compatibility We first show that receiver i does not benefit from offering

some a′i ̸= ai(x). We do this in two cases.

Case 1. Suppose first that i ̸= ι(x). Note that receiver ι(x) offers the sender at least a

payoff of u(x) and that the sender will breaks ties in favor of x whenever i deviates to

some a′i ̸= ai(x) (given ai(x) will not be available then). Thus, the deviation a′i ̸= ai(x)

can be strictly profitable only if

(i) Vi(qλ(x), a
′
i) > Vi(qλ(x), ai(x)), (ii) u(a

′
i) ≥ u(acj) ∀j ̸= i, and (iii) u(a′i) > u(x).

Note that (i) and the individual rationality of ai(x) imply Vi(qλ(x), a
′
i) > 0; combined

with (iii) this implies a′i ∈ Ãi(x). Recall that due to the definition of ai(x) it holds that

Vi(qλ(x), ai(x)) ≥ Vi(qλ(x), a
′′
i ) for all a

′′
i ∈ Ãi(x) which satisfy u(a′′i ) ≥ u(a′j) for all a

′
j ∈

∪j ̸=iÃj(x). Thus, (i) implies that there exists some a′j ∈ ∪j ̸=iÃj(x) with u(a′j) ≤ u(ai(x))

– due to the definition of ai(x) – and u(a′j) > u(a′i). By the definition of acι(a′j)
(x), it

follows that

u(acι(a′j)(x)) ≥ u(a′j) > u(a′i),

which contradicts (ii). Thus, no such strictly profitable deviation a′i can exist.

Case 2. Next, suppose that i = ι(x). As the sender breaks ties in favor of receiver i’s

competitors whenever i deviates from ai(x) (as i = ι(x), ties are broken against i even

when she offers x), it follows that a deviation a′i can only be profitable if

(i) Vi(qλ(x), a
′
i) > Vi(qλ(x), ai(x)) and (ii) u(a′i) > u(acj) ∀j ̸= i.

We consider two subcases. First suppose a′i ∈ Ãi(x). Condition (i) and the definition

of ai(x) imply that Vi(qλ(x), a
′
i) > Vi(qλ(x), ai(x)) ≥ Vi(qλ(x), a

′′
i ) for all a

′′
i ∈ Ãi(x) that
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satisfy u(a′′i ) ≥ u(a′j) for all a
′
j ∈ ∪j ̸=iÃj(x). For each j ̸= i, from the definition of acj(x),

we have u(acj(x)) ≥ u(a′j) for all a
′
j ∈ Ãj(x). Thus, u(a′i) > u(a′j) for all a

′
j ∈ ∪j ̸=iÃj(x)

due to condition (ii). But this contradicts the definition of ai(x) as a
′
i is instead i’s favorite

offer in Ãi(x) that cannot be surpassed by another receiver’s offer in the sets Ãj(x); hence

a deviation a′i ∈ Ãi(x) satisfying (i) and (ii) is impossible.

Suppose now that there exists some a′i ̸∈ Ãi(x) which satisfies conditions (i) and (ii).

Any a′i ̸∈ Ãi(x) which respects condition (i) needs to satisfy u(a′i) < u(x). The offer

a′i can then only satisfy condition (ii) if there does not exist some a′j ∈ ∪j ̸=iAj with

u(a′j) ∈ [u(a′i), u(x)] (if such an a′j existed, then as u(ai(x)) ≥ u(x), we would have that

u(acι(j′)) ≥ u(a′j) ≥ u(a′i)). We show now that this leads to a contradiction with x being

offered by receiver i = ι(x) under the original experiment σ and associated equilibrium ε.

Following the signal realization si = x of σ, receiver i finds it optimal to offer x instead

of a′i if ∑
ω∈Ω

∑
(s0,a−i)∈S0×A−i

ρi(ω, s0, a−i|x)β(x|s0, (x, a−i))vi(ω, x)

≥
∑
ω∈Ω

∑
(s0,a−i)∈S0×A−i

ρi(ω, s0, a−i|x)β(a′i|s0, (a′i, a−i))vi(ω, a
′
i).

Recall that equilibrium beliefs satisfy equation (4). Moreover, note that β(x|s0, (x, a−i)) =

β(a′i|s0, (a′i, a−i)) as u(a
′
i) < u(x) and there does not exist some offer from other receivers

which generates a sender utility in [u(a′i), u(x)]. Thus, the inequality can be written as∑
ω∈Ω

p(ω)
∑

(s0,a−i)∈S0×A−i

µ(ω, s0, a−i|x)β(x|s0, (x, a−i))vi(ω, x)

≥
∑
ω∈Ω

p(ω)
∑

(s0,a−i)∈S0×A−i

µ(ω, s0, a−i|x)β(x|s0, (x, a−i))vi(ω, a
′
i)

which is – due to β(x|s0, a) = 0 for x ̸∈ a – equivalent to∑
ω∈Ω

p(ω)λ(x|ω)vi(ω, x) ≥
∑
ω∈Ω

p(ω)λ(x|ω)vi(ω, a′i) ⇐⇒ Vi(qλ(x), x) ≥ Vi(qλ(x), a
′
i).

As Vi(qλ(x), ai(x)) ≥ Vi(qλ(x), x) by the definition of ai(x), we obtain a contradiction to

condition (i).

We finally check whether some receiver j ̸= i has an incentive to deviate to offering

a′j ̸= acj(x). Such a deviation can only be profitable if it generates a strictly positive

payoff and is accepted; this requires (given tie-breaking in favor of ai(x)):

(i) Vj(qλ(x), a
′
j) > 0 and (ii) u(a′j) > u(ai(x)).

23



Suppose that some receiver j has an offer a′j which satisfies (i) and (ii). As u(ai(x)) ≥
u(x), it follows that a′j ∈ Ãj(x). However, this implies by condition (ii) that there exists

some a′k ∈ ∪k ̸=iÃk(x) with u(a′k) > u(ai(x)). Thus, i ̸∈ Ĩ(x), which is a contradiction.

A.2 Proof of Theorem 2

We first prove sufficiency. Suppose there exists an outcome rule λ̄ that solves (P̄ ) such

that any x ∈ supp(λ̄) has a competitive offer at the public belief qλ̄(x). We show that the

outcome rule λ̄ can be implemented without decision commitment. Consider the public

experiment σ̄p given by S̄p = supp(λ̄) and µp(x|ω) = λ̄(x|ω) for any x ∈ supp(λ̄). Let

the strategies (ᾱ1, . . . , ᾱn) for the receivers and β̄ for the sender prescribe the following

behavior for some signal realization s̄p = x ∈ supp(λ̄): receiver ι(x) offers x, some receiver

j ̸= ι(x) who has a competitive offer acj ∈ Aj to x at the public belief qλ̄(x) offers a
c
j, any

other receiver k ̸= j, ι(x) offers a0k, and the sender picks for any profile of offers a an offer

from the optimal set b(a), breaking ties in favor of x if x ∈ a and in favor of acj if a
c
j ∈ a

and x ̸∈ a.

We prove that the combination of the strategies (β̄, ᾱ1, . . . , ᾱn) and the public beliefs

{qλ̄(x)}x∈supp(λ̄) lies in the set of equilibria E(σ̄p).

Take any s̄p = x ∈ supp(λ̄). It is obvious that each receiver k ̸= ι(x) weakly prefers

following their strategy rather than deviating to a0k as both options give a payoff of zero.

Receiver ι(x) weakly prefers offering x to a0ι(x) as the expected payoff from the former is

weakly positive due to

Vι(x)(qλ̄(x), x) ≥ 0 ⇐⇒
∑
ω∈Ω

p(ω)λ̄(x|ω)vι(x)(ω, x) ≥ 0.

Moreover, receiver ι(x) never benefits from offering some aι(x) ̸= x with u(aι(x)) ≤ u(x) as

this would result in the sender accepting the competing offer acj with certainty. Any other

receiver k ̸= ι(x) would also not benefit from offering any ak ∈ Ak with u(ak) ≤ u(x) as

this would also surely result in x being accepted by the sender. By contrast, some receiver

i ∈ I would benefit from offering some x′ ̸= x with u(x′) > u(x) if Vι(x′)(qλ̄(x), x
′) >

Vι(x′)(qλ̄(x), x). However, the existence of such a deviation x′ contradicts the optimality

of λ̄ in (P̄ ). To see this, define the outcome rule λ′ such that λ′(y|ω) = λ̄(y|ω) for

all ω and y ̸= x, x′, λ′(x|ω) = 0 for all ω, and λ′(x′|ω) = λ̄(x′|ω) + λ̄(x|ω) for all

ω. The outcome rule λ′ satisfies the constraint of (P̄ ) as
∑

ω p(ω)λ
′(y|ω)vι(y)(ω, y) =
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∑
ω p(ω)λ̄(y|ω)vι(y)(ω, y) ≥ 0 for all y ̸= x, x′ and∑

ω∈Ω

p(ω)λ′(x′|ω)vι(x)(ω, x′) =
∑
ω∈Ω

p(ω)λ̄(x′|ω)vι(x)(ω, x′)

+
∑
ω∈Ω

p(ω)λ̄(x|ω)vι(x)(ω, x′) ≥ 0

as the first term on the right-hand side of the equation is weakly positive by individual

rationality of λ̄ and

Vι(x′)(x
′, qλ̄(x)) > Vι(x′)(x, qλ̄(x)) ≥ 0 =⇒

∑
ω∈Ω

p(ω)λ̄(x′|ω)vι(x′)(ω, x
′) ≥ 0.

The sender’s expected payoff under λ′ is strictly higher than under λ̄ as∑
ω∈Ω

∑
y∈X

p(ω)λ′(y|ω)u(y) =
∑
ω∈Ω

∑
y∈X

p(ω)λ̄(y|ω)u(y) +
∑
ω∈Ω

p(ω)λ̄(x|ω)(u(x′)− u(x))

with u(x′) > u(x). Thus, λ̄ is not a solution to (P̄ ), which is a contradiction.

It remains to prove necessity. Suppose that for any solution λ̄ of the linear program

(P̄ ) there is some outcome x̄ ∈ supp(λ̄) which does not have a competitive offer at the

belief qλ̄(x̄). We know from the proof of Theorem 1 that any such outcome rule λ̄ can be

implemented without decision commitment only if it can be implemented with the public

experiment σ̄p = (supp(λ̄), λ̄) specified above and an equilibrium ε ∈ E(σ̄p) under which

receiver ι(x) offers x for s̄p = x and any other receiver k ̸= ι(x) offers some ak ∈ Ak

with u(ak) ≤ u(x). For the signal realization s̄p = x̄, there is by our assumption no

competitive offer to x̄ at the public belief qλ̄(x̄). Thus, receiver ι(x̄) has some other offer

aι(x̄) which satisfies u(aι(x̄)) > u(ak) for all offers ak ∈ X \ Aι(x̄) with u(ak) ≤ u(x) and

Vι(x̄)(qλ̄(x̄), aι(x̄)) > Vι(x̄)(qλ̄(x̄), x̄). Thus, receiver ι(x̄) has a strict incentive to deviate to

offering aι(x̄).

A.3 Proof of Proposition 3

Fix some (generic) receiver payoffs and take an arbitrary experiment σ and associated

equilibrium ε ∈ E∗(σ) in non-surely dominated strategies that induce the outcome rule

λ. Let U =
∑

ω∈Ω
∑

x∈X p(ω)λ(x|ω)u(x) be the sender’s payoff from (σ, ε). Fix some

δ > 0. We will construct a public experiment and an associated equilibrium in non-surely

dominated strategies which yield the sender an expected payoff Up > U − δ.

The following technical lemma will be useful in showing that if an offer satisfies some

individual rationality and incentive compatibility constraints at some belief, the same
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holds true for nearby beliefs, including some that have full support on Ω. This will allow

us to find non-surely dominated competitive offers at nearby beliefs.

Lemma 3. For any ai ∈ Ai \ {a0i } and A′
i ⊆ Ai \ {ai}, define the set of beliefs

Q(ai, A
′
i) = {q ∈ ∆Ω : Vi(q, ai) ≥ 0 and Vi(q, ai) ≥ Vi(q, a

′
i) ∀a′i ∈ A′

i}.

For generic payoffs of receiver i, the set Q(ai, A
′
i) is either empty or is convex and contains

some q′ ∈ Q(ai, A
′
i) with q′(ω) > 0 for all ω ∈ Ω.

Proof. We prove inductively that Q(ai, A
′
i), when nonempty, is a convex polytope with

dimension |Ω| − 1. As it is a subset of the |Ω| − 1-dimensional simplex ∆Ω, the set

Q(ai, A
′
i) then contains some q′ with q′(ω) > 0 for all ω ∈ Ω.

Let A′
i = {a1i , ..., aKi }. Define the inequalities∑

ω∈Ω

vi(ω, ai)q(ω) ≥ 0 (IR)

and for each k = 0, 1, ..., K:∑
ω∈Ω

(vi(ω, ai)− vi(ω, a
k
i ))q(ω) ≥ 0 (IC-k).

Suppose K = 0. If Q(ai, A
′
i) is nonempty, some q ∈ ∆Ω satisfies (IR), and as for

generic receiver payoffs vi(ω, ai) ̸= 0 for all ω ∈ Ω and ai ̸= a0i , we have vi(ω
′, ai) > 0

for some ω′ ∈ Ω. Continuity of Vi(q, ai) ensures all q ∈ ∆Ω in a neighborhood of the

degenerate belief on state ω′ satisfy (IR). Hence Q(ai, A
′
i) has dimension |Ω| − 1. It is

also a convex polytope as it is bounded and given by the intersection of the half-spaces

{q(ω) ≥ 0}ω∈Ω and
∑

ω∈Ω q(ω) = 1, – which define ∆Ω – and (IR).

We now make the inductive step for K > 0. Suppose for any ai ̸= a0i and sets

A′
i ⊆ Ai \ {ai} of size up to K − 1, Q(ai, A

′
i) is either empty or a convex polytope of

dimension |Ω|−1. If Q(ai, A
′
i\{aKi }) is empty then Q(ai, A

′
i) is empty as well. Otherwise,

Q(ai, A
′
i\{aKi }) is a nonempty convex polytope with dimension |Ω|−1; Q(ai, A

′
i\{aKi }) can

then be represented by |Ω| vertices q1, ..., q|Ω| ∈ ∆Ω. The set Q(a,A
′
i) is the intersection

of Q(ai, A
′
i\{aKi }) and q ∈ R|Ω| satisfying (IC-K) (a half-space). If the hyperplane HIC-K

{q ∈ R|Ω| :
∑
ω∈Ω

(vi(ω, ai)− vi(ω, a
K
i ))q(ω) = 0}

does not intersect Q(ai, A
′
i \{aKi }), then Q(ai, A

′
i) is either empty or is equal to Q(ai, A

′
i \

{aKi }) and we are done. If hyperplane HIC-K intersects the interior of Q(ai, A
′
i \ {aKi }),

it partitions Q(ai, A
′
i \{aKi }) into two |Ω|−1-dimensional convex polytopes, one of which
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is Q(ai, A
′
i) in which case we are done as well. The remaining case is that the hyperplane

HIC-K intersects the boundary but not the interior of Q(ai, A
′
i \ {aKi }). This case is

non-generic as it requires HIC-K to contain some vertex of Q(ai, A
′
i \ {aKi }), i.e. for some

q ∈ {q1, ..., q|Ω|}, (vi(ω, ai) − vi(ω, a
K
i ))q(ω) = 0.21 Only a (Lebesque) measure zero of

receiver i’s payoffs from offer aKi , {vi(ω, aKi )}ω∈Ω, satisfy this linear equation.

Define the public experiment σp = (µp, Sp) as in the proof of Theorem 1 by Sp =

supp(λ) and µp(x|ω) = λ(x|ω) for x ∈ supp(λ). For sp = x ∈ supp(λ), the posterior

belief is qλ(x) as defined in Equation (2). We now use the previous lemma to show the

following result.

Lemma 4. Fix any d > 0. For each x ∈ supp(λ), there exists a belief qdλ(x) such that:

(1) |qdλ(x) − qλ(x)| < d, and (2) conditional on public belief qdλ(x) there exist non-surely

dominated offers constituting equilibrium play and yielding the sender a payoff of at least

u(x).

Proof. Fix some x ∈ supp(λ). Following the proof of Theorem 1, define the quantities

Ãι̃(x), Ãj(x) for all j ̸= ι(x), Ĩ(x), ĩ(x) and aĩ(x)(x). We prove the result in two cases.

Case 1. Suppose Ãj(x) is nonempty for some j ̸= ι(x). For each j ̸= ĩ(x), define

acj(x) = a0j if Ãj(x) = ∅ and let otherwise

acj(x) ∈ argmax
{a′j∈Ãj(x):u(a′j)≤u(aĩ(x)(x))}

u(a′j).

Consider the following strategies. The sender plays any sequentially rational strategy

breaking ties in favor of aĩ(x)(x) at s
p = x and against receiver ĩ(x) when aĩ(x)(x) is not

available. Receiver ĩ(x) offers aĩ(x)(x) and any receiver j ̸= ĩ(x) offers acj(x). Note first

that each offer made is non-surely dominated at qλ(x). The offer made by a receiver j is

either in Ãj(x) – yielding by the definition of Ãj(x) weakly positive expected payoff for j =

ĩ(x) and strictly positive payoff for j ̸= ĩ(x) – or is the null offer. Second, note that these

strategies constitute equilibrium strategies for the public experiment σp. By definition

of aĩ(x)(x), for any offer a′
ĩ(x)

∈ Aĩ(x) with Vĩ(x)(qλ(x), a
′
ĩ(x)

) > Vĩ(x)(qλ(x), aĩ(x)(x)), there

exists an offer aj ∈ ∪j ̸=ĩ(x)Ãj(x) with u(aj) ≥ u(a′
ĩ(x)

). Some such aj is played according

to the prescribed strategies, and so receiver ĩ(x) has no profitable deviation. For any

receiver j ̸= ĩ(x), any offer aj ∈ Aj with Vj(qλ(x), aj) > 0 has u(aj) ≤ u(aĩ(x)(x)). Hence,

she has no profitable deviations given the sender’s tie-breaking. It follows that we can

set qdλ(x) = qλ(x).

21To intersect the boundary and not the interior, as HIC-K is a hyperplane is must contain a face (of
some dimension) of Q(ai, A

′
i \ {aKi }), or just touch a vertex of it.
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Case 2. Suppose Ãj(x) is empty for all j ̸= ι(x). Then, as Ãι(x) is nonempty (x ∈
Ãι(x) by proof of Theorem 1), ĩ(x) = ι(x). By the proof of Theorem 1 (see ‘Incentive

Compatibility’ Case 2), x has a competitive offer c(x) ∈ ∪j ̸=ι(x)Aj at qλ(x) which is played

with positive probability under (σ, ε). As ε is an equilibrium in non-surely dominated

strategies, vι(c(x))(ω
c, c(x)) ≥ 0 for some ωc ∈ Ω (or else c(x) is surely dominated at all

beliefs).

By definition of aĩ(x), Vι(x)(qλ(x), aĩ(x)) ≥ 0. Let A′
ι(x) = {a′ι(x) ∈ Aι(x) \ {aĩ(x)} :

u(a′ι(x)) > u(c(x))}. Again by definition of aĩ(x), we have Vι(x)(qλ(x), aĩ(x)) ≥ Vi(qλ(x), a
′
ι(x))

for all a′ι(x) ∈ A′
ι(x). Hence Q(aĩ(x), A

′
ι(x)) is nonempty and by Lemma 3 is convex and

contains some q′ ∈ ∆Ω with full support on Ω. Picking some w ∈ (0, 1) close to enough to

1, we can define the belief qdλ(x) ≡ wqλ(x)+(1−w)q′ which satisfies qdλ(x) ∈ Q(aĩ(x), A
′
ι(x))

and |qdλ(x)− qλ(x)| < d. For all ω ∈ Ω, qdλ(ω|x) > 0. Consider strategies where at a signal

realization inducing public belief qdλ(x): (1) the sender plays any sequentially rational

strategy breaking ties in favor of aĩ(x) when available and against receiver ι(x) otherwise;

(2) receiver ι(x) offers aĩ(x), (3) receiver ι(c(x)) offers c(x), (4) all other receivers j offer a
0
j .

These strategies constitute equilibrium play in non-surely dominated strategies at qdλ(x).

Receiver ι(x) gets weakly positive utility from aĩ(x) and will not be accepted if she makes

any offer yielding the sender weakly less than utility u(c(x)). As qdλ(x) ∈ Q(aĩ(x), A
′
ι(x)),

there is no other offer she would like to deviate to. As u(aĩ(x)) ≥ u(x) and the set Ãj(x)

is empty for each j ̸= ι(x), no other receiver has a profitable deviation to an offer that

would be accepted. As qdλ(ω
c|x) > 0, c(x) is non-surely dominated at this belief. Finally,

u(aĩ(x)) ≥ u(x). Thus, the sender attains weakly higher utility than u(x).

By Proposition 1 in Kamenica and Gentzkow (2011), any public experiment can be

equivalently represented by the Bayes-plausible distribution of public posterior beliefs it

induces at each signal realization. Thus, the public experiment σp is equivalent to a dis-

tribution νp ∈ ∆(supp(λ)) over the beliefs {qλ(x)}x∈supp(λ) with νp(x) ≡
∑

ω p(ω)µ
p(x|ω).

For any d > 0, we will now construct a public experiment σd = (Sd, µd), which generates

beliefs qdλ(x) with respective probabilities approaching νp(x) as d → 0.

As p ∈ int(∆Ω), there exists r > 0 such that for any q ∈ R|Ω| with
∑

ω∈Ω q(ω) = 1

and |p − q| ≤ r, we have q ∈ ∆Ω, i.e., there is a closed ball around p in ∆Ω. Fix

some such r. For any d > 0, construct beliefs {qdλ(x)}x∈supp(λ) following Lemma 4.

Let pd(·) ≡
∑

x∈supp[λ] ν
p(x)qdλ(·|x). Note that pd ∈ ∆Ω as it is a convex combina-

tion of {qdλ(x)}x∈supp[λ]. For d → 0, we have0 pd → p as each qdλ(x) → qλ(x) and∑
x∈supp[λ] ν

p(·|x)qλ(x) = p(·) by Bayes-plausibility of σp. Let p−d ≡ p + r p−pd

|p−pd| . We

have p−d ∈ ∆Ω as |p− p−d| = r and
∑

ω∈Ω p−d(ω) = 1. Note that p lies on a line between

pd and p−d, so there exists a unique md ∈ [0, 1] with mdpd + (1−md)p−d = p. As d → 0,

md → 1 due to pd → p.
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We construct σd to induce a Bayes-plausible distribution over posteriors in the set

{qdλ(x)}x∈supp[λ] ∪ {p−d}. The experiment induces belief qdλ(x) for x ∈ supp[λ] with prob-

ability mdνp(x) and induces belief p−d with probability 1 − md. At each public belief

qdλ(x), define εd by strategies following the construction in Lemma 4. Conditional on

public belief p−d, let εd prescribe any non-surely dominated equilibrium strategies (an

equilibrium exists, as there are finite actions and perfect information). Note that here

the sender must obtain a weakly positive payoff. Note that σd ∈ E∗(σd) and that the

senders’ expected payoff under (σd, εd) satisfies

Ud ≥
∑

x∈supp[λ]

mdνd(x)u(aĩ(x)) ≥
∑

x∈supp[λ]

mdνd(x)u(x) = mdU.

Picking small enough d, Ud > U − δ as when d → 0, md → 1.

A.4 Proof of Proposition 4

We focus on the case of two receivers. The case with three or more receivers is straight-

forward and described in the main text. To simplify the exposition, we make two mild

assumptions. First, assume that u(ai) ≥ 0 for all ai ∈ Ai and i = 1, 2. Second, sup-

pose that u(ai) ̸= u(a′i) for all ai, a
′
i ∈ Ai with ai ̸= a′i. We also order the offer sets

Ai = {a0i , a1i , . . . , a
Ki
i } such that u(aki ) < u(ak+1

i ) for all k = 0, . . . , Ki − 1 and i = 1, 2.

Finally, suppose u(a11) ≤ u(a12) without loss of generality.

We first construct a strictly ordered set X⃗ consisting of the possible outcomes in the

set X. In particular, let X⃗ = {x0 = a01, x1 = a02, x2 = a11, . . . } and then add outcomes

from X according to increasing sender utility. If the last added element is xk ∈ Ai and the

next highest utility is generated by two offers x ∈ Aj and x′ ∈ Ai, such that u(x) = u(x′),

set xk+1 = x and xk+2 = x′.

Fix now a combination of a public experiment σp and an equilibrium ε ∈ E(σp) as

described in the proof of Theorem 1 that induces the outcome rule λ and generates the

optimal expected payoff U∗ with a sender signal.

Next, we assign to each xk ∈ X⃗ ∩ supp(λ) a competitive offer. For xk ∈ Ai, let

c(xk) = xl such that ℓ = max{ℓ′ : ℓ′ < k ∧ xℓ′ ∈ Aj}, i.e. xℓ is the closest less attractive

offer made by the other player.

Next, we construct an outcome rule λ′ which induces the same expected payoff to

the sender as λ. Identify all ai ∈ supp(λ) with aj = c(ai) such that i) u(ai) = u(aj),

ii) aj ∈ supp(λ) or ∃a′i ∈ supp(λ) ∩ Ai with c(a′i) = aj, and iii) Vj(qλ(ai), aj) > 0. We

then define the new outcome rule λ′ such that for each ai with aj = c(ai) satisfying i),

ii), and iii), we have λ′(ai|ω) = 0 and λ′(aj|ω) = λ(ai|ω) + λ(aj|ω), and for all other
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ai ∈ supp(λ), we set λ(ai|ω) = λ′(ai|ω). Note that λ′ induces the same expected payoff

as λ as it shifts probability mass only between offers ai and aj with u(ai) = u(aj).

For each ai = xk ∈ supp(λ′) with xk ̸∈ supp(λ), define as above c(xk) = xl such that

ℓ = max{ℓ′ : ℓ′ < k ∧ xℓ′ ∈ Aj}.
We aim to implement the outcome rule λ′. To this purpose, we first define the receiver-

public experiment σ′ = (S ′, µ′) with S ′ = supp(λ′) and µ′ = λ′. We aim to construct an

equilibrium ε′ for σ′ consisting of strategies of the receivers and the sender. To simplify

the exposition, we set the sets of cheap-talk messages Mi to Mi = X. For a given signal

realization s′ = ai ∈ supp(λ′) of σ′, the strategy α′
i of receiver i prescribes the receiver

to offer ai and send the message mi = ai, while the strategy of receiver j prescribes the

offer aj = c(ai) and the message mj = ai. To specify the sender’s strategy β′, we define

the set of pure strategies for receiver i that are consistent with the outcome rule λ′ and

the receivers’ strategies α′
1 and α′

2. A pure strategy (ai,mi) is consistent if ai ∈ supp(λ′)

and mi ∈ {ai, aj} with ai = c(aj), or if ai ̸∈ supp(λ′) and mi = aj for ai = c(aj). All

other pure strategies are inconsistent. For given offers and messages (ai,mi, aj,mj) with

u(ai) > u(aj), the sender picks ai. For (ai,mi, aj,mj) with u(ai) = u(aj), we have by

construction aj = c(ai) and let the sender choose according to the following rules. If

both strategies (ai,mi) and (aj,mj) are consistent and mi = mj = ai, then choose ai.

If both strategies (ai,mi) and (aj,mj) are consistent and mi ̸= mj, then choose aj. If

only one strategy is consistent, accept the offer of the receiver who played consistently.

If both strategies are inconsistent, pick any offer from {ai, aj}. Note that this strategy is

sequentially rational for the sender.

Fix a signal realization s′ = ai ∈ supp(λ′). We study whether the receivers have an

incentive to deviate from the strategies (ai,mi = ai) and (aj = c(ai),mj = ai). Consider

first deviations by receiver i (j) to a′i ̸= ai (a
′
j ̸= aj) with u(a′i) ̸= u(aj) (u(a

′
j) ̸= u(ai)).

Any deviation by receiver h ∈ {i, j} to some a′h with u(a′h) > u(ai) cannot be profitable.

If it was, a′h would be implementable for the belief qλ′(ai), resulting in an improvement

of the expected payoff to some value strictly above U∗, which yields a contradiction.

Any deviating offer a′h with u(a′h) < u(aj) is rejected and therefore trivially unprofitable.

Similarly, a deviation by receiver j to a′j with u(a′j) < u(ai) is rejected and unprofitable.

If s′ = ai is equivalent to the signal realization sp = ai under our original experiment

σp, a deviation by receiver i to a′i with u(aj) < u(a′i) < u(ai) is unprofitable as this

deviation was also available under the equilibrium εp ∈ E(σp). If s′ = ai is not equivalent

to the signal realization sp = ai under our original experiment σp, then there does not

exist a deviation a′i with u(aj) < u(a′i) < u(ai) as otherwise, ai could not have been the

competitive offer to the ’deleted’ offer aj by construction of X⃗ and the function c(·) under
the original outcome rule λ.
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Next consider deviations a′i (a
′
j) by receiver i (j) such that u(a′i) = u(aj) (u(a′j) =

u(ai)). Suppose at first that a′i ̸= ai (a
′
j ̸= aj). If a′i ̸∈ supp(λ′), the offer a′i is always

rejected as it is inconsistent, and the deviation is therefore not profitable. For a′i ∈
supp(λ′), we have either i) a′i = c(aj) or ii) aj = c(a′i). Any inconsistent deviation results

in rejection and is therefore not profitable. In case i), consistency requires mi = aj, Thus,

mi ̸= mj = ai, and aj is picked according to the sender’s strategy. In case ii), consistency

requires mi = a′i. Thus, mi ̸= mj = ai, and again aj is selected according to the sender’s

strategy. Thus, no such deviation is profitable for receiver i. Consider now receiver

j. If a′j ̸∈ supp(λ′), the deviating offer a′j is inconsistent and therefore unprofitable. If

a′j ∈ supp(λ′), we have ai = c(a′j) by the definition of c(·). Inconsistent deviations are

clearly unprofitable. The only consistent deviation therefore features mj = a′j ̸= mi = ai.

Thus, ai is picked according to the sender’s strategy, and the deviation a′j is unprofitable.

Finally, we consider deviations only in the cheap-talk message, i.e., a′i = ai (a
′
j = aj).

If u(ai) > u(aj), such deviations are clearly inconsequential and therefore unprofitable.

Thus, we focus on u(ai) = u(aj). Here again, receiver i has clearly no benefit from

deviating only in the message as this does not affect the outcome. For receiver j, there

are two ways how to induce the sender into accepting a′j = aj with a deviation in the

message. For aj ∈ supp(λ′), this is achieved bymj = aj according to the sender’s strategy.

For aj ̸∈ supp(λ), the same outcome can be obtained if there exists another offer a′i of

receiver i which has u(a′i) > u(ai) and aj = c(a′i). Note now that u(ai) = u(aj) is only

possible for signal realizations s′ = ai that have an equivalent signal realization sp = ai

under the original experiment σp. This in turn implies that any deviation in the message

that induces the sender to accept aj needs to satisfy Vj(qλ(ai), aj) ≤ 0 by the construction

of λ′. Thus, also these deviations are unprofitable and (ai,mi = ai, aj = c(ai),mj = ai)

constitutes equilibrium play for s′ = ai given the sender’s strategy.
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