
The Strategy of Single Transferable Vote ∗

Diego Carrasco† Andrew McLennan‡ Shino Takayama§

Terence Yeo¶

March 1, 2025

Abstract

In a single transferable vote (STV) election each voter’s ballot is a rank ordering of

the candidates. Each stage eliminates the remaining candidate with the fewest ballots

listing her as the favorite, among those candidates that have not been eliminated, until

one candidate remains. We study the quantitative manipulability of STV in comparison

with plurality and other systems, and we study the relative importance of manipulation at

the stages of three and four remaining candidates. We find that STV is less manipulable

than the other systems. For STV the dominant mode of manipulation is at the round

of three remaining candidates, with the manipulator pushing a weak candidate into the

round of two, then benefitting when they lose.
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1 Introduction

The Single Transferable Vote (STV) is an electoral system where each voter submits a

ballot ranking the candidates in order of preference. Initially, each candidate receives the

ballots listing them as the top choice. The candidate with the fewest ballots is then eliminated,

and her ballots are reallocated to the second choice on each ballot. This process continues: at

each step, the candidate with the fewest ballots is eliminated, and her ballots are reallocated

to the next preferred candidate still in the race. This continues until the number of remaining

candidates matches the number of available seats. For a single seat, this system is known as

instant runoff voting. There are many variations of STV worldwide, including limiting the

number of candidates a voter can rank and allowing voters to rank only a subset of candidates,

ensuring their ballot is never reallocated to certain candidates under any circumstances.

The invention of the Single Transferable Vote (STV) is generally attributed to Thomas

Hare, though it appears to have been previously considered, albeit negatively, by Condorcet.

STV has been employed in various countries for many years and has seen a rise in popularity

recently. It is used in elections for the Australian House of Representatives and in presidential

elections in Ireland and Malta. Notably, STV was used in the 2021 Democratic primary for

the New York City mayoral election. The advantages and disadvantages of STV, both as a

practical electoral system and as an embodiment of democratic values, can be analyzed from

multiple perspectives.

In many electoral systems (with approval voting being an exception), the winning candidate

is determined based on a profile of strict preference orderings submitted by the voters. A

voter can manipulate the outcome by submitting an ordering that does not reflect their true

preferences, thereby changing the winning candidate to one they prefer over the candidate who

would have won if she had submitted their true preference. For example, in a plurality election,

the winner is the candidate ranked first by the most voters. A voter might manipulate the

outcome by listing as their top choice the candidate who is her preferred option among the

leading contenders, rather than their actual favorite.

The famous Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975) implies

that there are some preference profiles for which STV is manipulable. This theorem effectively

assumes that each voter knows the profile of other voters’ preferences. However, in elections

with more than two candidates, opinion polling provides information that is, at best, much more

uncertain and vague. One might wonder if this uncertainty could make manipulation impossible,

but McLennan (2011) has shown that any voting system can still create circumstances where
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a voter can achieve a better (expected) outcome by manipulating, even under various types of

uncertainty. For example, one might assume that opinion polls accurately reflect the preferences

of the overall population, but the voters who actually show up at the polls are a random sample

from this population. Since all electoral systems other than dictatorship are manipulable,

comparisons of the extent of manipulability and the complexity of manipulations must be

quantitative.

In this paper, we study the manipulability of STV quantitatively, comparing it with plurality

and several other electoral systems. The system we refer to as “runoff” involves sending the

two candidates with the most first-place rankings to a second election, which is won by the

candidate preferred by most voters over the other finalist. In an antiplurality election, the

winner is the candidate with the fewest ballots ranking her last. We also consider two variants

of antiplurality. In “antiplurality runoff,” the finalists are the two candidates ranked last on

the fewest ballots. The Coombs rule is an iterative elimination process similar to STV, but at

each stage, the candidate with the most last-place rankings among the remaining candidates is

eliminated. These systems all produce the same result when there are two candidates. When

there are three candidates, STV and runoff are identical, and antiplurality runoff and the

Coombs rule yield the same outcome. We will demonstrate that, according to our measures,

for elections with three or four candidates, STV is the least manipulable, while plurality and

antiplurality are significantly more manipulable than the other systems.

The possibility of manipulation undermines the fairness and transparency of an electoral

system. Ideally, voters should be able to vote their true preferences without any strategic

considerations, but for any nondictatorial system, such advice would be misleading. The best

approach is to provide voters with strategic advice that is both simple and accurate. In our view,

an electoral system cannot be considered truly democratic if it grants significant advantages to

those with cleverness and skill in manipulating the vote.

Bartholdi and Orlin (1991) have demonstrated that determining the possibility of successful

manipulation in an election is NP-complete. They note that this complexity can be seen as a

advantage, as it makes manipulation more challenging, or as a disadvantage, as it might confuse

less sophisticated voters. However, this complexity is largely irrelevant in large elections, where

the influence of a single vote on eliminating a candidate in any given round is minimal. We

define the elimination of one candidate when there are k remaining candidates as the round of k.

In large elections, the likelihood that one vote will alter the outcome of any round k is extremely

low, and thus the chance that manipulation could affect multiple rounds is negligible. When

we limit the problem inputs to those that are manipulable in only one round, the complexity
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of determining possible manipulation diminishes significantly.

Unlike plurality voting, in STV elections, it is impossible to beneficially alter the outcome

at the final round by misreporting preferences. This suggests, and our quantitative analysis

supports, that STV is less susceptible to manipulation compared to plurality. In a plurality

election, the common strategic advice is straightforward: voting for any candidate other than

the top two contenders is considered a waste of your vote. However, what strategic advice can

be offered to voters in an STV election?

Example Consider a scenario with three candidates: a, b, and c such that:

(a) 40% of voters have either of the preference orderings c ą a ą b or c ą b ą a;

(b) 30% of voters have the preference ordering a ą b ą c;

(c) 15% of voters have the preference ordering b ą a ą c;

(d) 15% of voters have the preference ordering b ą c ą a.

Either a or b could be the candidate eliminated at the round of 3, and if a is eliminated first,

then b prevails in the round of 2, but if b is eliminated first, then c defeats a in the round of

2. Thus a voter can manipulate if, by reporting a false preference, she can affect who survives

the round of 3, and this changes the final winner in a direction favorable to her true preference.

Specifically, the following manipulations are possible:

(a) with true preference a ą b ą c, submit either b ą a ą c or b ą c ą a;

(b) with true preference either c ą a ą b or c ą b ą a, submit either a ą b ą c or a ą c ą b.

The general idea is that instead of voting for the candidate that is truly preferred, the manip-

ulator pushes a weakly weak candidate into the round of 2, then benefits when they lose. Note

that type (a) manipulations change the vote difference between a and b by two votes ?, and in

this sense are twice as powerful as type (b) manipulations.

When manipulation can affect the process at only one round, say the round of k, a manip-

ulation has the following character: there are two paths of elimination that agree at all rounds

prior to k and have different sets of remaining candidates at all subsequent rounds (otherwise

the two paths reunite and go to the same outcome) and different winners. Our main theoretical

result is that any such pair of paths is possible, in the relevant sense.

As a practical matter, skillful manipulation at the round k ą 3, perhaps using public

opinion polling data, is very difficult at best. Changing from one path to the other requires the
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manipulator to foresee the candidates that will remain along both paths. Manipulations that

attempt to attain a better final winner, in expectation, by averaging over multiple scenarios, are

perhaps more plausible in a quantitative sense, but the amount and accuracy of information that

is required is still enormous. Furthermore, there are various ways that attempts to manipulate

might backfire. Indeed, various authors have pointed out that coalitional manipulations of

STV can be delicate, insofar as they require some members of a group of like minded voters to

manipulate while others do not (citations?).

One of our main quantitative findings reinforces this. We show that in a four candidate

election, scenarios with manipulation at the round of 4 are, in aggregate, less than half as likely

as scenarios with manipulation at the round of 3. We suspect that this is also the case when there

are more than 4 candidates, and that the pattern continues, with manipulation at the round of 5

being less important, in aggregate, than manipulation at the round of 4, and so forth. However,

at present we are unable to verify these conjectures either theoretically of computationally.

Nevertheless, it seems reasonable to advise voters to forget about manipulations at any round

other than the round of 3, because such manipulations are both difficult to foresee and, in

aggregate, quite unlikely.

Related Literature Numerous criteria have been proposed to evaluate voting systems’ de-

sirability, with STV being analyzed from both theoretical and practical perspectives. Our

emphasis is on studies examining the quantitative manipulability of STV compared to other

systems, specifically considering individual manipulation rather than coalition manipulation.

Chamberlin (1985) examines the manipulability of four voting rules-Borda count, Coombs,

STV, and plurality-using Monte Carlo methods to generate voter preferences with three candi-

dates. Their findings show that STV is the least manipulable, while Borda count is the most

manipulable. Nitzan (1985) defines the manipulability measure of a deterministic voting scheme

as the ratio of manipulable preference profiles to possible preference profiles. This measure, also

adopted by Kelly (1993), is known as the Kelly-Nitzan index. While the Kelly-Nitzan index

is intuitively understandable for a finite set of voters, its computation is challenging. Many

studies, including Walsh (2010)– whose empirical results demonstrate that NP-complete ma-

nipulation problems for STV can be solved quickly for many problem instances– employ Monte

Carlo methods to generate random profiles and assess STV’s manipulability for finite voter sets.

Similarly, Aleskerov et al. (2018) uses random sampling to evaluate the manipulability of ten

collective decision rules. However, Monte Carlo methods require a small number of voters to

ensure a high probability of generating a manipulable profile.
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Huang and Chua (2000) emphasized the analytical foundation of certain probability com-

putations in social choice theory, providing a thorough characterization of the vulnerability

properties of the four scoring rules analyzed in Lepelley and Mbih (1994) concerning manipu-

lation by coalitions in a 3-alternative, n-agent society. However, Lepelley et al. (2008) noted

that Ehrhart (1962) had already laid out the theoretical basis for these computations. They

further explored various applications of this method, including the computation of coalition

manipulability. The efficiency of this approach has significantly improved with advancements

in algorithms and software for computing polytope volumes (Bruns and Ichim, 2010). Notably,

recent progress has enabled the computation of such volumes in elections with four candidates

(Bruns et al., 2019) and, more recently, in elections with five candidates (Bruns and Ichim,

2021).

To our knowledge, this is the first paper to define and compute measures of individual ma-

nipulability using polytope volumes. These volumes offer several advantages: they are relevant

for elections with many voters, have simple and precise definitions, and can be exactly computed

when there are four five or fewer candidates, providing a standard or canonical measure. In

contrast, studies using Monte Carlo generation of random profiles differ in various dimensions

and offer random, hence approximate, estimates of the quantities of interest.

Organization of the paper The remainder is organized as follows. Section 2 presents the

model and defines the measures of manipulability for each voting rule. Section 4 provides the

analytical result. Section 5 presents the computational results of manipulability measures for

each voting rule. Section 6 concludes.

2 The Model

Let A be a finite set containing n ě 3 candidates, denoted by typical elements a, b, c, etc.

Define O as the set of all strict preference orderings of A, where typical elements are ą,ą1, etc.

Assume H ‰ S Ă A and ąP O. Define φSpąq as the favorite element of S for some ąP O, and

ωSpąq as the worst element of S for some ąP O. Specifically, φSpąq is the element of S such

that φSpąq ą a for all a P SztφSpąqu, and ωSpąq is the element of S such that a ą ωSpąq for

all a P SztωSpąqu. Thus,

Fa,S “ tąP O : φSpąq “ au and WS,a “ tąP O : ωSpąq “ au

represent the preferences in O where a is the favorite and worst element of S, respectively.
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Let N be a finite set of voters with N elements. The set of possible profiles is ON , where

a typical element is ą“ pąiqiPN . Whether ą denotes a preference or a profile will always be

clear from context. Given a profile ą, ą´i denotes the pN ´ 1q-tuple of preferences of agents

other than i, and for ą1
iP O, pą1

i,ą´iq denotes the profile with the indicated components.

A voting rule is a function f : ON Ñ ∆pAq, where ∆pAq is the set of probability measures

on A. Such a rule is deterministic if fpON q Ă A, where we are identifying A with the set

of vertices of the simplex ∆pAq. The voting rules we study are deterministic in spirit, but

random tie breaking is necessary in order for them to be symmetric with respect to interchange

of voters, even though in the end the details of tie breaking are unimportant. In order to be

precise we need to specify that, in the following definitions, all random choices assign equal

probability to all possibilities (e.g., the set of pairs that could go to a runoff) and all random

events are statistically independent. The voting rules we study are:

• Plurality fP is the voting rule in which fP pąq is chosen randomly from the set of alter-

natives a that are maximal for |t i P N : φApąiq “ a u|.

• Runoff fR is the voting rule in which a pair of alternatives ta1, a2u is chosen randomly

from the set of alternatives a that are maximal for |t i P N : φApąiq “ a u|, and the

winner is chosen randomly from the set of a P ta1, a2u that are maximal for |t i P N :

φta1,a2upąiq “ a u|.

• Single transferable vote fS is defined recursively: we set A1pąq “ A, for j “ 1, . . . , n´1 we

set Aj`1pąq “ Ajpąqztejpąqu, where ejpąq is chosen randomly from the set of alternatives

a P Ajpąq that are minimal for |t i P N : φAjpąqpąiq “ a u|, and fSpąq is the unique

element of Anpąq.

• Antiplurality fA is the voting rule in which fApąq is chosen randomly from the set of

alternatives a that are minimal for |t i P N : ωApąiq “ a u|.

• Coombs rule fC is defined recursively: we set A1pąq “ A, for j “ 1, . . . , n ´ 1 we set

Aj`1pąq “ Ajpąqztejpąqu, where ejpąq is chosen randomly from the set of alternatives

a P Ajpąq that are maximal for |t i P N : ωAjpąqpąiq “ a u|, and fCpąq is the unique

element of Anpąq.

Voter i can manipulate a deterministic voting rule f at a profile ą if there is a ą1
i P O such

that fpą1
i,ą´iq ąi fpąq. We say that f is manipulable at ą if some i can manipulate f at

ą. The formal statement of the Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite,
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1975) is that if n ě 3, f is deterministic, fpON q “ A, and f is not manipulable at any profile,

then f is dictatorial: there is some i P N such that fpąq “ φApąiq for all profiles ą.

Gibbard (1977) expanded the Gibbard-Satterthwaite theorem to include nondeterministic

voting rules. Let µ, µ1 P ∆pAq and ąP O. We say that µ is potentially superior to µ1 for

ą if
ř

aPA upaqµpaq ą
ř

aPA upaqµ1paq for some utility function u : A Ñ R with upaq ą upbq

for all a, b P A such that a ą b. Voter i can potentially manipulate a voting rule f at a

profile ą if there exists ą1
iP O such that fpą1

i,ą´iq is potentially superior to fpąq for ąi.

Gibbard’s extension asserts that if f is not potentially manipulable at any profile, then it can

be expressed as a probabilistic combination of schemes that are unilateral (depending on a

single agent’s preference) and duple (choosing between two alternatives). Consequently, this

result implies that fP , fR, fS, fA, and fC are potentially manipulable at certain profiles.

For nondeterministic voting rules, there exists a stronger form of manipulation. We say that

µ first-order stochastically dominates µ1 for ą if

µpt b P A : b ą a uq ě µ1
pt b P A : b ą a uq

for all a P A, with strict inequality for at least one a. Slightly abusing notation, we denote this

by µ ą µ1. Voter i can manipulate a voting rule f at a profile ą if there exists ą1
iP O such that

fpą1
i,ą´iq ąi fpąq. Moreover, f is manipulable at ą if there exists at least one voter i who

can manipulate f at ą.

The definitions below use manipulability rather than potential manipulability, but for us

the distinction is not important. Below we will show that for large N , the preponderance of

misrepresentations that alter the outcome pass either from one pure outcome to another or

between a pure outcome and an 50-50 lottery of that outcome and some other outcome. Such

a misrepresentation is a manipulation if and only if it is a potential manipulation.

Let P “ t p P RO
` :

ř

ąPO pą “ 1 u be the simplex over O. We sometimes treat elements

of P , notationally, as measures: for p P P and T Ă O, ppT q “
ř

ąPT pą. In particular, for

H ‰ S Ă A and a P S let pa,S “ ppFa,Sq and pS,a “ ppWa,Sq. Let PN be the set of elements of

P whose components are all multiples of 1{N . Let pN : ON Ñ PN be the function defined by

letting pN pąq be the element of PN with components

pNą pąq “
1

N
|t i P N : ąi “ ą u|.

Thus, pN pąq represents the proportion of each preference ordering in the profile. A voting

rule f is anonymous if there is a function F : PN Ñ ∆pAq such that f “ F ˝ pN . In other
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words, a voting rule is anonymous because the outcome depends only on the distribution of

the votes, not on which particular voter casts which vote. The function F associated with each

rule takes the distribution of preferences p P PN and maps it to an outcome in ∆pAq, ensuring

that permutations of voters do not affect the result. It is easy to see that fP , fR, fS, fA and fC

are anonymous; let FP , FR, FS, FA, and FC be the corresponding functions from PN to ∆pAq.

We say that an anonymous voting rule is manipulable at p P PN if it is manipulable at any

ą P ON such that pN pąq “ p.

Let β “ p 1
n!
, . . . , 1

n!
q be the barycenter of P . Let H “ t p P RO :

ř

ąPO pą “ 1 u be

the hyperplane in RO that contains P . A polyhedral cone emanating from β is the set C of

solutions in H of a finite system of weak linear inequalities that are satisfied exactly by β. The

dimension of C is the dimension of its affine hull. A face of C is the intersection of C with one

of its bounding hyperplanes. A conical decomposition of H emanating from β is finite collection

C of polyhedral cones emanating from β such that:

(a) for each C P C, each face of C is an element of C;

(b) for all C1, C2 P C, C1 X C2 P C;

(c)
Ť

CPC C “ H.

An anonymous voting rule f with associated function F is majoritarian if there is a conical

decomposition C of H such that for each pn! ´ 1q-dimensional C P C there is an aC P A such

that F ppq “ aC for all p P PN in the interior of C. Evidently fP , fR, fS, fA, and fC are

majoritarian; let CP , CR, CS, CA, and CC be the associated conical decompositions of H.

Our measures of relative manipulability are based on the concept of Impartial Anonymous

Culture (IAC), where all elements of PN are considered equally likely. Conversely, in the Im-

partial Culture (IC) framework introduced by Garman and Kamien (1968), all profiles in ON

are assumed to be equally likely. Within the IC framework, Nitzan (1985) defines the manipu-

lability of a deterministic voting scheme as the ratio of the number of manipulable preference

profiles to the total number of possible preference profiles. This measure, also adopted by Kelly

(1993), is known as the Kelly-Nitzan index. While the Kelly-Nitzan index provides an intuitive

measure of manipulability for a finite set of voters, computing it is notably challenging since

determining the possibility of a successful manipulation is an NP-complete problem.

We compute the Kelly-Nitzan indices for IAC without relying on random sampling. Instead,

we exploit the property that these indices can be effectively estimated for large N by considering

the volumes of polytopes corresponding to the voting rules in question. For small n, we utilize
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(a) Conical decomposition.
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(b) Majoritarian rule.

Figure 1: Panel (a) represents the conical decomposition of the preference simplex. The ver-
tices of the triangle correspond to the pure preference orderings, where each vertex represents a
situation where one alternative is the most preferred by all voters. The barycenter is the center
of the triangle and represents a uniform distribution of preferences. The dashed lines from the
barycenter to each vertex divide the triangle into conical regions. Each region represents a
set of preference distributions where the preference orderings are consistent within that conical
section. Panel (b) shows the application of a majoritarian rule to the same preference simplex.
The triangle is divided into regions filled with different dashed patterns. These patterns rep-
resent the areas where each alternativen is the majority choice according to the majoritarian
rule.

existing software to compute these indices numerically. As we will illustrate, as N tends to

infinity, the measures of relative manipulability for various anonymous majoritarian voting

rules under IAC, and the relative significance of different types of manipulations within a single

voting rule, converge to comparisons of the volumes of intersections of the polytope P with

pn! ´ 2q-dimensional cones in H emanating from β.

By the central limit theorem, if ą follows a uniform distribution in ON , then the distri-

bution of ppN pąq ´ βq{}pN pąq ´ β} converges to the uniform distribution on the unit sphere

in H centered at β. Therefore, for IC, the assessment of relative manipulability of anonymous

majoritarian voting rules simplifies to comparing the volumes of intersections of this sphere

with pn! ´ 2q-dimensional cones in H emanating from β. Thus, it is reasonable to expect that

both approaches will yield qualitatively similar results, especially for small n. Our decision to

use the software for computing volumes of polytopes primarily stems from its availability and

practical feasibility.

3 Manipulation Paths

We now describe manipulations for STV formally, as pairs of paths of eliminations that

agree up to a certain round, then diverge, arriving at different outcomes. Roughly, we take the
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probability of such a manipulation to be the limit as N Ñ 8 of N times the probability of a

profile for which this manipulation is possible. We show that, in this sense, all manipulation

paths have positive probability.

An elimination path is an ordered list j “ j1, . . . , jn of all candidates. A profile p P P is

strictly consistent with j at round h “ 2, . . . , n if

pjh,tj1,...,jhu ă pjg ,tj1,...,jhu for g “ 1, . . . , h ´ 1,

which means that in an STV election with distribution p, candidate jn is eliminated first, then

jn´1, and so forth, until j1 prevails.

A profile p P P is consistent with j at round h “ 2, . . . , n if

pjh,tj1,...,jhu ď pjg ,tj1,...,jhu for g “ 1, . . . , h ´ 1.

A manipulation at the round of h is a pair pj, kq of elimination paths such that jℓ “ kℓ for

all ℓ ą h and tj1, . . . , jℓu ‰ tk1, . . . , kℓu for all ℓ ă h. there is no definition of manipulation

here (Note that this implies that jh ‰ kh.) We are imagining a situation in which there is a

tied election at the stage of h, but not at any other stage, so if tj1, . . . , jℓu “ tk1, . . . , kℓu for

some ℓ ă h, then the subsequent eliminations and the eventual winner will also be the same for

j and k. We say that p is consistent with pj, kq if it is consistent with both j and k at every

round, and it is strictly consistent with pj, kq if it is consistent with j and k at the round of h

and strictly consistent with j and k at all other rounds.

Let Ppj,kq and P ˝
pj,kq

be the sets of p that are consistent and strictly consistent with pj, kq re-

spectively. As a subset of the pn!´2q-dimensional polytope t p P P : pjh,tj1,...,jhu “ pkh,tk1,...,khu u,

Ppj,kq is defined by a finite conjunction of weak linearinequalities, so it is a polytope. The next

result asserts that P ˝
pj,kq

‰ H, so Ppj,kq has positive pn! ´ 2q-dimensional volume, which we

denote by λpPpj,kqq or λpj,kq.

Theorem 1. For any h “ 1, . . . , k and any manipulation pj, kq at the round of h there is a

p P P that is strictly consistent with pj, kq.

Proof. For the sake of simplicity we consider only the case h “ n; it will be obvious that an

even more cumbersome construction is possible for general h. For ℓ “ 0, . . . , n ´ 1 let ąj,ℓ and

ąk,ℓ be the elements of O such that

jn´ℓ ąj,ℓ jn´ℓ´1 ąj,ℓ ¨ ¨ ¨ ąj,ℓ j1 ąj,ℓ jn ąj,ℓ jn´1 ąj,ℓ ¨ ¨ ¨ ąj,ℓ jn´ℓ`1
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and

kn´ℓ ąk,ℓ kn´ℓ´1 ąk,ℓ ¨ ¨ ¨ ąk,ℓ k1 ąk,ℓ kn ąk,ℓ kn´1 ąk,ℓ ¨ ¨ ¨ ąk,ℓ kn´ℓ`1.

For a sufficiently small ε ą 0 let p be the profile given by

pą “

$

&

%

1
n!

p1 `
2p1´εnq

1´ε
q ´ εℓ`1, ą P tąj,ℓ,ąk,ℓu for some ℓ,

1
n!

p1 `
2p1´εnq

1´ε
q, otherwise.

By symmetry, for a particular ℓ “ n, . . . , 2 and m “ ℓ ´ 1, . . . , 1 it suffices to show that

pjℓ,tjℓ,...,1u ă pjm,tjℓ,...,1u. The number of ą P O such that φtjℓ,...,j1upąq “ jℓ is equal to the number

of ą P O such that φtjℓ,...,j1upąq “ jm. We have φtjℓ,...,j1upąj,pq “ jℓ for all p “ 0, . . . , ℓ ´ 1,

φtjℓ,...,j1upąj,m´1q “ jm, and φtjℓ,...,j1upąj,pq R tjℓ, jmu for all other p. Therefore (provided ε

is sufficiently small) we certainly have pjℓ,tjℓ,...,1u ă pjm,tjℓ,...,1u unless φtjℓ,...,j1upąk,pq “ jℓ for

all p “ 0, . . . , ℓ ´ 1. If this is the case, then kp R tjℓ´1, . . . , j1u for all p “ n, . . . , ℓ ` 1, and

kp ‰ jℓ for all such p, so that tkn, . . . , kℓ`1u “ tjn, . . . , jℓ`1u, after which φtjℓ,...,j1upąk,ℓ´1q “ jℓ

implies that kℓ “ jℓ. But tkn, . . . , kℓ`1u “ tjn, . . . , jℓ`1u is impossible if ℓ ă n because pj, kq is

a manipulation, and kn “ jn is also impossible because pj, kq is a manipulation at the round of

n. The proof is complete.

There is a parallel analysis for ASTV. A profile p P P is strictly anticonsistent with an

elimination path j at h “ 2, . . . , n if

ptj1,...,jhu,jh ą ptj1,...,jhu,jg pg “ 1, . . . , h ´ 1q.

As before, if p is strictly anticonsistent with j at all h, then in an ASTV election with distribution

p, jn is eliminated first, then jn´1, and eventually j1 prevails. A profile p P P is anticonsistent

with j at h “ 2, . . . , n if

ptj1,...,jhu,jh ě ptj1,...,jhu,jg pg “ 1, . . . , h ´ 1q.

If pj, kq is a manipulation at the round of h, we say that p is anticonsistent with pj, kq if

it is antianticonsistent with both j and k at every round, and it is strictly anticonsistent with

pj, kq if it is anticonsistent with j and k at the round of h and strictly anticonsistent with j and

k at all other rounds. Let Qpj,kq and Q˝
pj,kq

be the sets of p that are anticonsistent and strictly

anticonsistent with pj, kq respectively. As before, Qpj,kq is a polytope, and Q˝
pj,kq

‰ H, so Qpj,kq

has positive pn! ´ 2q-dimensional volume. The proof of the following is similar to what we saw
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above, so we omit it.

Theorem 2. For any h “ 1, . . . , k and any manipulation pj, kq at the round of h there is a

p P P that is strictly anticonsistent with pj, kq.

One of the key insights in understanding the manipulability of STV lies in how the prob-

ability of successful manipulation diminishes as the number of voters increases. Theorem 3

formalizes this idea, showing that the likelihood of manipulation is closely tied to the volume of

the region in the preference space that allows for manipulation and that this probability decays

exponentially with the number of voters.

Theorem 3. For any election with n ě 3 candidates and a sufficiently large number of voters

N , the probability that a randomly chosen voter can successfully manipulate the STV outcome

at a given round k is at most proportional to the volume ratio

λpPj,kq

λpP q
,

where Pj,k is the set of preference distributions allowing a manipulation at round k, and P is

the full preference simplex. Moreover, for large N , this probability decreases exponentially in

N .

Proof. Let P be the preference simplex, representing all possible distributions of voter prefer-

ences over n candidates. Let Pj,k denote the subset of P where manipulation at round k is

possible, meaning that a voter can alter the elimination path in STV by misreporting their

preference.

Since we assume a uniform distribution over P , the probability of drawing a profile from

Pj,k is given by:

Ppp P Pj,kq “
λpPj,kq

λpP q
. (1)

A successful manipulation requires a voter to change the elimination order at round k. If Xj

denotes the number of first-choice votes received by candidate j, then for large N , Xj follows

an approximately normal distribution:

Xj „ N pNpj, Npjp1 ´ pjqq. (2)

A manipulation at round k requires shifting the elimination threshold, which occurs when

the vote count difference between two candidates is within a margin of order Op1q. Standard
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Gaussian tail bounds imply that the probability of such a shift is at most:

PNppq « e´cN , (3)

for some constant c ą 0.

Thus, the overall probability of manipulation satisfies:

PpSuccessful Manipulationq ď
λpPj,kq

λpP q
¨ e´cN . (4)

Understanding how manipulable profiles are distributed across different rounds offers valu-

able insight into strategic behavior in STV elections. Manipulation tends to be more likely

in earlier rounds, when more candidates are in play and ties are easier to influence. Theorem

4 highlights this pattern, showing that the volume of profiles allowing manipulation is signifi-

cantly larger in the round of 3 than in the round of 4. In fact, more than half of all manipulable

scenarios arise during the transition from three to two candidates, making this stage the most

critical point for strategic influence.

Theorem 4. Let fS be the single transferable vote (STV) rule with 4 candidates, and let Pj,k

denote the set of preference profiles where a voter can manipulate the outcome by changing the

elimination path from j to k at round h. Then:

λpPj,3q ą λpPj,4q,

where λp¨q denotes the Lebesgue measure on the preference simplex. Consequently:

λpPj,3q
ř4

k“3 λpPj,kq
ą

1

2
.

Proof. Let P be the preference simplex, representing the set of all possible distributions of

voter preferences. A manipulation at round h occurs if a voter can misreport their preferences

to change the elimination order at that round, leading to a different final winner. We want to

show that the measure of manipulable profiles at the round of 3 is strictly larger than at the

round of 4.

For a manipulation to occur at round 3, the profile must lie on the hyperplane where two

out of three remaining candidates are tied. Let j “ pj1, j2, j3, j4q and k “ pk1, k2, k3, k4q be two
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distinct elimination paths that differ at round 3. The set of preference distributions where a

voter can change the path from j to k by breaking a tie is:

Pj,k,3 “ tp P P : pj3 “ pk3 , pji ‰ pki for i ă 3u.

Similarly, for round 4:

Pj,k,4 “ tp P P : pj4 “ pk4 , pji ‰ pki for i ă 4u.

The sets Pj,k,3 and Pj,k,4 are convex polytopes obtained as intersections of the simplex with

tie-breaking hyperplanes. Since these hyperplanes split the simplex, the relative volume of the

manipulable region decreases as the number of remaining candidates grows. Specifically, the

region Pj,k,4 is a lower-dimensional slice of the simplex, as it requires a more restrictive tie

condition involving four candidates rather than three.

Moreover, the number of distinct elimination paths that can diverge due to a tie is greater

at round 3 than at round 4. In round 3, manipulation can occur whenever two out of three

remaining candidates tie, while in round 4, manipulation requires a tie between the two lowest-

ranked candidates among four. The combinatorial structure of the elimination tree implies that

there are more opportunities to manipulate earlier in the process.

Since the measure of the manipulable region is proportional to the number of such tie-

breaking opportunities and the dimension of the hyperplane intersections, it follows that:

λpPj,3q “
ÿ

pj,kq paths

λpPj,k,3q ą
ÿ

pj,kq paths

λpPj,k,4q “ λpPj,4q.

Thus, the measure of manipulable profiles is larger at round 3 than at round 4, and the

probability that a random profile is manipulable is correspondingly higher:

λpPj,3q

λpPj,3q ` λpPj,4q
ą

1

2
.

4 Quantifying Manipulability

In this section we explain our quantifications of manipulability. Let L be a rational lattice in

Rd: L is the set of integral linear combinations of d linearly independent generators g1, . . . , gd P

Qd. Suppose that P is a rational polytope in Rd, i.e., the convex hull of finitely many points in
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Qd, and that P is d-dimensional. Ehrhart (1962) showed that for positive integers t the number

LpP, tq of points in tP XL is a rational quasipolynomial function of t. That is, there are rational

valued periodic functions c0ptq, . . . , cdptq of t such that LpP, tq “ cdptqtd ` ¨ ¨ ¨ ` c1ptqt ` c0ptq.

In addition cdptq is a constant function whose value is the normalized volume of P , which is

the volume of P divided by the volume of the fundamental region t c1g1 ` ¨ ¨ ¨ ` cdgd : 0 ď

c1, . . . , cd ď 1 u.

Although it would be possible to go into great detail, the main consequences of this for us

are not complicated. For the sake of concreteness we discuss STV, but the discussion pertains

equally to all of the voting rules we are studying. Let pj, kq be a manipulation at the round

of h. There are five “layers” of profiles in PN that are in Ppj,kq or differ from an element of

Ppj,kq XPN by changing the preferences of one or two agents in a way that creates a vote count

difference between jh and kh at the round of h of one or two. Ehrhart’s result implies that the

number of such profiles is well approximated by Nn!´2 times the normalized volume of P . Any

profile that is manipulable by virtue of changing the path or elimination from j to k or vice

versa is in this set, and with minor exceptions (e.g., the preferences that would benefit from

manipulating have probability zero, or the manipulation would trigger undesired changes of

the outcomes in subsequent rounds) all the profiles in this set are manipulable. Manipulations

that change the outcome in multiple rounds are confined to a neighborhood of the union of the

pn! ´ 3q-dimensional elements of CS, so their number is bounded by a constant times Nn!´3.

We are primarily interested in relative manipulability, such as the ratio of the manipulability

of STV to the manipulability of plurality. In this ratio the other terms described above cancel,

leaving the ratio of the sum of the volumes of the various Ppj,kq to the volume of the relevant

polytope for plurality. Similarly, if pj1, k1q is a second manipulation, the relative importance of

pj, kq in comparison with pj1, k1q is the ratio of the volumes of Ppj,kq and Ppj1,k1q.

One possibility that does not seem to have much (or perhaps any) precedent in previous

literature is to weight manipulable profiles by the number of agents who are able to manipulate.

For example, if p P PN is manipulable by manipulations that change the elimination path from

j to k, then summing pą over all ą for which such a manipulation is desirable gives a weighted

measure of the manipulability of p. Let

Ppj,kq,ą “ t pp, tq P Ppj,kq ˆ r0, 1s : t ď pą u.

An average weighted manipulability can be computed by summing the volumes of the Ppj,kq,ą

over all ą for which changing the elimination path from j to k is beneficial. In this sum it seems
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appropriate to count the volume of Ppj,kq,ą twice if φtj1,...,jhupąq “ jh because the manipulation

of such a ą changes the relevant vote count difference by two.

5 The Computational Results

This section reports and discusses the volume computations for elections with three and

four candidates. All computations were performed by Normaliz (Bruns and Ichim, 2010).

Although it would not be appropriate to describe the underlying algorithms here, an important

point is that the power of Normaliz has increased substantially in recent years due to its

implementation of the Lawrence algorithm (Lawrence, 1991; Filliman, 1992) in exact arithmetic.

In this algorithm the volume of a polytope is represented as a signed sum of volumes of simplices,

where the sum is over the full dimensional simplices of a triangulation of the dual polytope.

This algorithm works well when the polytope is described by the inequalities requiring that

all variables are nonnegative and a small number of additional facet inequalities, as is typical

in applications to social choice. El Ouafdi et al. (2020) use Normaliz and other softwares to

compute other volumes related to elections with four candidates. As we mentioned previously,

Bruns and Ichim (2021) have computed 119-dimensional volumes related to elections with five

candidates and 8 facet inequalities in addition to the nonnegativity constraints, but the relevant

polytopes for manipulability of STV with five candidates have 10 additional facet inequalities,

which puts them just beyond the current range of feasibility.

Any sort of manipulation is a matter of a voter changing the outcome by breaking some tie.

Fix two candidates, say a and b. We consider the subset of P consisting of those profiles p that

assign equal total weight to the preferences that have a as the favorite and the preferences that

have b as a favorite. This an pn!´ 2q-dimensional polytope. For each type of manipulation, the

set of manipulable profiles is a subset of this polytope defined by additional linear inequalities.

For example, in order for p to be manipulable for plurality, it must be the case for each other

candidate c, p assigns less total weight to preferences for which c is the favorite than it assigns

to preferences that have a as the favorite. In the tables below manipulability is quantified as the

volume of the set of profiles at which the manipulation is possible as a fraction of the volume

of the polytope at which the relevant two candidates are tied. This unit of measurement is an

arbitrary convention, but we are primarily interested in the relative manipulability of different

voting systems, and the relative importance of different manipulation scenarios, which are ratios

that are unaffected by this choice of “numeraire.”

We first discuss the case of three candidates. Table 1 shows the fractions of tie volumes for

the three different manipulation scenarios for STV in which a and b are tied for elimination in
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the round of 3.

j k Fraction of Tie Volume

c, b, a a, c, b 0.078
b, c, a c, a, b 0.078
b, c, a a, c, b 0.043

Total 0.199

Table 1: Manipulability of STV With 3 Candidates

Table 2 shows the fractions of tie volumes for the same three manipulation scenarios for Coombs.

Evidently Coombs is about 1.5 times as manipulable.

j k Fraction of Tie Volume

c, b, a a, c, b 0.114
b, c, a c, a, b 0.114
b, c, a a, c, b 0.057

Total 0.285

Table 2: Manipulability of Coombs With 3 Candidates

The total tie volumes for plurality and antiplurality are 0.0623 and 0.0907 respectively, so STV

is indeed significantly less manipulable as STV.

An interesting point is that for both STV and Coombs, in the third, less likely scenario,

the two orderings of the candidates are more distant in the metric on permutations given by

the minimum number of transpositions of adjacent elements required to pass from one to the

other.

We now take up the case of four candidates. Table 3 shows the tie volumes for the various

manipulations at the round of 3. Again we see that a manipulation is less likely if the two

orderings of the candidates are more distant. Here the relevant total measure of manipulability

for plurality is 0.260, the measure for runoff is 0.150, and the measure for Coombs is 0.114.

Table 4 shows the manipulability of STV, under various scenarios, at the round of 3. The

main finding is that the total manipulability of this sort is less than half the manipulability at

the round of 3.

6 Concluding Remarks

We have studied the manipulability of STV, in comparison with a wide variety of voting

systems, using measures that reduce to volumes of polytopes. In contrast with studies that
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j k Fraction of Tie Volume

d, a, b, c b, d, a, c 0.024
a, d, b, c d, b, a, c 0.024
b, d, a, c a, d, b, c 0.012
c, b, a, d a, c, b, d 0.024
b, c, a, d c, a, b, d 0.024
b, c, a, d a, c, b, d 0.012

Total 0.120

Table 3: Manipulability of STV With 4 Candidates, Round of 3

j k Fraction of Tie Volume j k Fraction of Tie Volume

d, c, b, a a, d, c, b 0.0044 b, d, c, a a, d, c, b 0.0013
d, c, b, a c, a, d, b 0.0025 b, d, c, a c, a, d, b 0.0006
d, c, b, a a, c, d, b 0.0020 b, d, c, a a, c, d, b 0.0005
c, d, b, a d, a, c, b 0.0025 c, b, d, a d, c, a, b 0.0025
c, d, b, a a, d, c, b 0.0020 c, b, d, a d, a, c, b 0.0007
c, d, b, a a, c, d, b 0.0044 c, b, d, a a, d, c, b 0.0006
d, b, c, a c, d, a, b 0.0025 c, b, d, a a, c, d, b 0.0016
d, b, c, a a, d, c, b 0.0016 b, c, d, a d, c, a, b 0.0020
d, b, c, a c, a, d, b 0.0007 b, c, d, a c, d, a, b 0.0044
d, b, c, a a, c, d, b 0.0006 b, c, d, a d, a, c, b 0.0006
b, d, c, a d, c, a, b 0.0044 b, c, d, a a, d, c, b 0.0005
b, d, c, a c, d, a, b 0.0020 b, c, d, a c, a, d, b 0.0016
b, d, c, a d, a, c, b 0.0016 b, c, d, a a, c, d, b 0.0013

Total 0.0491

Table 4: Manipulability of STV With 4 Candidates, Round of 4

use random sampling, our measures provide an exactly defined standard that we are able

compute precisely. We find that for elections with 4 candidates, manipulation at the round of

4 is less than half as likely as manipulation at the round of 3, which reinforces the practical

considerations suggesting that manipulation at rounds other than 3 are not worth considering.

Obviously one would like to extend the quantitative analysis to elections with 5 or more

candidates. The current rate of progress for algorithms that compute volumes of polytopes,

and their implementation in actual software, gives rise to optimism.

There is considerable scope for extending the analysis to different models of voter preference.

In particular, a reason for preferring STV to runoff that does not come through in our analysis

is that if there are many similar centrist parties, one or both finalists in a runoff election may

be extreme, and unrepresentative of the consensus views of the voters.

Many other issues could be mentioned.
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264:616–618.

El Ouafdi, A., Lepelley, D., and Smaoui, H. (2020). Probabilities of electoral outcomes: from

three-candidate to four-candidate elections. Theory and Decision, 88:205–229.

Filliman, P. (1992). The volume of duals and sections of polytopes. Mathematika, 39:67–80.

Garman, M. and Kamien, M. (1968). The paradox of voting: Probability calculations. Behav-

ioral Science, 13:306–313.

Gibbard, A. (1973). Manipulation of voting schemes: a general result. Econometrica, 41:587–

601.

Gibbard, A. (1977). Manipulation of schemes that mix voting with chance. Econometrica,

45:665–681.

Huang, H. and Chua, V. C. (2000). Analytical representation of probabilities under the IAC

condition. Social Choice and Welfare, 17(1):143–155.

20



Kelly, J. S. (1993). Almost all social choice rules are highly manipulable, but a few aren’t.

Social Choice and Welfare, 10(2):161–175.

Lawrence, J. (1991). Polytope volume computation. Mathematics of Computation, 57:259–271.

Lepelley, D., Louichi, A., and Smaoui, H. (2008). On Ehrhart polynomials and probability

calculations in voting theory. Social Choice and Welfare, 30(2):363–383.

Lepelley, D. and Mbih, B. (1994). The vulnerability of four social choice functions to coalitional

manipulation of preferences. Social Choice and Welfare, 11(3):253–265.

McLennan, A. (2011). Manipulation in elections with uncertain preferences. Journal of Math-

ematical Economics, 47(3):370–375.

Nitzan, S. (1985). The vulnerability of point-voting schemes to preference variation and strategic

manipulation. Public Choice, 47(2):349–370.

Satterthwaite, M. A. (1975). Strategy-proofness and Arrow’s conditions: Existence and corre-

spondence theorems for voting procedures and social welfare functions. Journal of Economic

Theory, 10(2):187–217.

Walsh, T. (2010). An empirical study of the manipulability of single transferable voting. In

ECAI, volume 10, pages 257–262.

21


	Introduction
	The Model
	Manipulation Paths
	Quantifying Manipulability
	The Computational Results
	Concluding Remarks

