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Abstract

In this paper, we provide a novel framework for decision making under un-
certainty based on information available in the form of a data set of cases.
A case contains information about an action taken, an outcome obtained,
and other circumstances that were recorded with the action and the out-
come. The set of actions, the set of outcomes and the set of possibly relevant
recorded characteristics are derived from the cases in the data set. The in-
formation from the data set induces a belief function over outcomes for each
action. From a decision maker’s preferences over these data-generated belief
functions one can derive a representation evaluating outcomes according to
the α-maxmin criterion. New data affect behavioral parameters, such as
awareness, ambiguity and ambiguity attitude, and may suggest a classifica-
tions of data into states. Applications to machine learning and in particular,
classification problems are discussed.
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1 Introduction

In economic theory, uncertainty about outcomes of actions is almost always mod-
eled by a set of “states” that together with the action chosen determines the out-
comes that the decision maker might experience. Since it is not known which state
will be realized when the action is chosen, the decision maker faces uncertainty
over the outcome of her actions.

If a probability distribution over the unknown states is known, then each action
induces a probability distribution over the outcomes associated with an action. If a
few intuitive axioms govern a decision maker’s preferences over actions then, as von
Neumann and Morgenstern (1944) show, the preference order can be represented
by the expected value of the utility of the outcomes obtained from the action.

If probabilities of the states are unknown, Savage (1954) could show that a
somewhat more elaborate set of axioms will reveal a “subjective” probability dis-
tribution over states that will allow to represent the decision maker’s preferences
over actions by the expected utility with respect to this subjective probability dis-
tribution. Over the past thirty years, research following Schmeidler (1989) and
Gilboa and Schmeidler (1989) has derived alternative representations of prefer-
ences over actions under weaker axioms that leave room for ambiguity about the
true probability distribution over states.

Regarding knowledge about “states”, however, most of the literature on de-
cision making under uncertainty assumes that they are an exogenously known
feature of the economic model. This view was never uncontroversial (see, e.g.,
Savage, 1954). In particular, it is challenged by the recent literature on unfore-
seen contingencies. While learning the probability of states was assumed to occur
from data, states where always treated as ex-ante given and unrelated to actually
observed data. In this view, data is only collected with respect to well-specified
states.

Most statistical data, however, have been collected for purposes completely
unrelated to states that uniquely determine the outcomes of actions. Data were
collected traditionally for administrative purposes such as military or taxation
purposes.1 Even in financial markets, most data are collected as trading records
for the collection of fees or for legal purposes. In general, data are mostly collected
for reasons not directly related to the outcomes of actions.

With increasing digital data collection, storing and retrieving facilities, the
possibility to relate outcome data to data about actions and related circumstances
arises naturally. Methods like data mining and pattern recognition were invented
and have been used to extract state-like contingencies from existing data.

Traditionally, economic theory provides little clues for identifying “states” that
determine the outcomes of actions. Quite often, states are described only relative

1Probably the first census data in England were collected in the “doomsday book” for tax-
ation purposes. Trading data (prices, quantities, offers) in markets were collected for financial
contracts, and data about infections were needed to control illnesses. Answers to questionnaires
and digital pictures of persons were collected in order to record opinions and movements of
people.
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to their consequences for given actions such as “good state” or “bad state” accord-
ing to whether an action produces a “high” or a “low” monetary outcome.

While we do not want to deny that abstract theoretical considerations may
help to identify states that determine the outcomes of actions, in this paper, we
want to suggest that existing data help to shape and identify circumstances that
may determine the outcomes of an action. There may be little relevant data in a
new decision situation, yet for more familiar decision situations in the light of more
data not only probabilities of outcomes but also the description of circumstances
may be revised.

For these reasons, we take a data set of observed cases, rather than a set of
states, as the primitive concept of the model of decision making. Information from
the data set is the common feature of individual decisions at a given point in time.
Growing data may improve information leading not just to updated probabilities
over outcomes but eventually to descriptions of states. As we will show in the
paper, actions translate to mass distributions over outcomes and preferences over
actions to preferences over mass distributions. Hence, the evaluation of actions
will be subjective as reflected by the parameter of the representation we derive.
Embedding the analysis of data-based action choice in the context of the theory
of decision making under uncertainty allows us to apply the theory to economic
decision problems.2

Decision theory in the tradition of Savage (1954) considers an exogenous set
of states of the world and an independent exogenous set of outcomes as primitive
concepts of the theory. The state space is exhaustive and observing a state resolves
all uncertainty regarding the outcome of an action. Probabilities are derived from
a subjective preference over acts. Factual information regarding the set of states
and the outcomes of actions as well as the frequencies of states do not enter the
description of a decision maker’s choice situation.

Experimental evidence suggests, however, that information about the set of
states and the frequency of observations influences choice behavior.3 Furthermore,
the assumption that states are observable is far from innocuous, Gilboa et al.
(2020). Moreover, while the state space might in principle differ for different
decision makers, in economic models, one often reasonably assumes that all agents
agree on the state space, possibly because all observe the same data. Such an
assumption is however hardly ever made explicit.

To address these issues, we consider, in the spirit of Gilboa and Schmeidler
(2001), a data set of cases observed in the past as basis of our theory. Cases in the
data set record actions, outcomes and characteristics (circumstances) of decisions
observed in the past. Characteristics are factors that influence or determine the
set of outcomes of an action. They are observable, can be retrieved from data, and
can serve as empirical proxies for states.

Characteristics differ from the Savage (1954) concept of states, in three impor-
tant aspects. First, a characteristic may fail to specify an outcome for all available

2In contrast to Billot et al. (2005) and Eichberger and Guerdjikova (2010).
3The famous paradoxes of Ellsberg (1961) suggest that partial information about the proba-

bility of events substantially influences subjects’ choices.
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actions, e.g., because it has never been observed in combination with this action.
Second, the set of characteristics observed in the data need not be exhaustive: it
may capture only a subset of all relevant contingencies. Third, characteristics may
provide a coarse description of the underlying uncertainty with a single charac-
teristic corresponding to a set of states. Taking characteristics as a primitive for
our approach means that the relevant factors for determining the outcomes of an
action need not and cannot be specified ex-ante before the analysis can begin.

Since data do not uniquely identify the relevant state space4, subjective fac-
tors will influence the decision maker’s evaluation of actions: (i) predictions about
counterfactuals; (ii) awareness of "other, yet unobserved” but relevant character-
istics 5, or of yet unidentified but relevant categories, and (iii) attitude to the
indeterminacy of predictions given such unawareness.

Formally, the incompleteness in the data implies that each action induces a
set of possible outcomes for a given characteristic. Combined with the observed
frequencies of characteristics, we obtain a mass distribution (belief function) over
sets of outcome distributions. Subjective preferences over such mass distributions
induce a representation of preferences over actions as in Jaffray (1989). Notably,
the attitude towards uncertainty captured by an optimism parameter determines
the evaluation of set-valued outcomes.

In the first part of the paper, we axiomatize a preference representation for
a given data set. This representation combines the objective information in the
data with the subjective characteristics of the decision maker. It identifies the
perception of unawareness: a subjective probability γ for the possibility that an
“other” so far unobserved characteristic may occur. We also identify the subjective
attitude towards unawareness: captured by a coefficient of optimism. We also
address the issue of subjective predictions about counterfactuals. We propose a
method to determine those cases in the data which are considered most relevant
for the evaluation of the choice of an action for a given characteristic. We then
derive the sets of subjective predictions as the set of observed frequencies for the
most relevant cases.

In the second part of the paper, we study the responses as new data become
available. When new data simply increase the number of observations of cases al-
ready considered, statistical learning about frequencies arises naturally as a special
but well-defined case of our approach. In contrast to the state-based approach, the
distinction between objective, i.e., data-based, information and subjective percep-
tion of uncertainty provides a framework for studying learning about the relevant
state-space. The occurrence of action-characteristic pairs unobserved before re-
places the uncertainty about counterfactuals with objective outcome distributions
similar to theories introduced in Karni (2022). Observation of new characteristics
(similar in spirit though not in detail, to the approaches by Karni and Vierø (2017)
and by Gilboa et al. (2020)) leads to an expansion of the perceived state space.

4Few decision situations specify precisely the mapping from actions to state-contingent out-
comes. Bets as the prototypes of Savagean acts are discussed in Section 2.2.1.

5This is similar to unimaginable consequences or actions of which the decision maker is un-
aware of but that determine new conceivable states in Karni and Vierø (2017, p. 304).
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The discovery of new categories can provide a refinement for an initially coarse
perception of the state space. Furthermore, evidence from data can be used to
update the decision maker’s subjective perception of uncertainty (unawareness) as
well as his attitude towards it. Our framework thus provides a way of modeling
dynamic awareness of the state space which evolves with the available data and
might approach the ideal of a Savagean state space.

Our framework can be used to provide decision-theoretic foundations for models
of machine learning in artificial intelligence. The classification problem described
in Section 2.2.2 illustrates how our proposed representation can be used to evalu-
ate algorithms. While commonly used methods, such as entropy minimization can
be obtained as special cases of the representation, our approach specifically takes
into account the possible incompleteness of data and identifies the subjective fac-
tors (parameters) necessary for the evaluation of algorithms. Finally, our setting
allows us to take into account complexity as reflected by the description of the
set of characteristics. The identification of relevance classes pinpoints the subjec-
tive categorization used by the decision maker on the set of characteristics in the
classification problem. While using a finer categorization allows for more precise
predictions conditional on a given characteristic, it also increases the number of
observations necessary to confidently learn the underlying probabilities. A decision
maker who exhibits a coarser categorization can be deemed to have a higher cost
of complexity. In a dynamic setting in which new categories become available, the
choice of which categories to use and which to ignore is similar to the problem of
structural risk minimization in statistical learning theory. Our framework provides
a way to explore these issues from a decision-theoretic point of view.

2 Concepts, notation and leading examples

In this paper, we will not assume a priori known sets of actions and consequences.
In contrast to most of the literature, we will derive these sets from a data set of
previously observed cases. We first introduce the main concepts and notation.

2.1 Cases and states: the basic model

The primitive concept of our approach is a case c = (a, x, r) that records an action
a, an outcome r, and a vector of characteristics x listing possibly relevant context
variables. Information available at the point of decision making is a finite data
set of cases that have been observed and recorded in previous decision situations:

D =
{
(an, xn, rn)

N
n=1

}
.

Note that the same case c = (a, x, r) may have been observed several times. In
this paper, we assume that records of cases are complete (no missing entries).

Given a data set of cases D, the set of observed actions is given by:

AD = {a | (an = a;xn; rn) ∈ D for some n ∈ {1...N}} .
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The set of observed outcomes is:

RD = {r | (an;xn; rn = r) ∈ D for some n ∈ {1...N}} .

Characteristics recording the circumstances of a decision may be classified in
categories. For example, a medical doctor who has recorded the case of a patient
with a particular treatment usually also notes some biometric characteristics of
the patient. We will refer to the type of biometric data recorded, such as blood
pressure, temperature, weight, etc, as categories and to the entries in these cate-
gories as characteristics. Hence, categories classify characteristics. The data set
D identifies a set of categories T and, for each category t ∈ T , the set of observed
characteristics:

X t
D =

{
xt |

(
an;xn =

(
x1
n, .., x

t
n = xt, ..xT

n

)
; rn

)
∈ D for some n ∈ {1...N}

}
.

The set of all characteristics is obtained as the Cartesian product of X t
D:

XD =
T∏
t=1

X t
D.

When we refer to characteristics without mentioning a category, we mean the
vector x ∈ XD with components xt for all categories t ∈ T . The recorded char-
acteristics may simply reflect the nature of the available data or be deliberately
chosen to reflect a theory about the factors influencing the action payoffs.

The data set D also specifies for each characteristic x ∈ XD the frequency with
which this characteristic has been observed

fD (x) =
|{(an, xn, rn) ∈ D | (an, xn, rn) = (an, x, rn)}|

N
.

Typically, in a data set D, the outcome observed from an action a ∈ AD in
combination with characteristic x ∈ XD will not be unique. Thus, we associate
with a pair (a, x) the conditional frequency ρD (r | a, x) of an outcome r ∈ RD

when action a ∈ AD is chosen and characteristic x ∈ XD has been realized:

ρD (r | a, x) = |{(an, xn, rn) ∈ D | (an, xn, rn) = (a, x, r)}|
|{(an, xn, rn) ∈ D | (an, xn) = (a, x)}|

.

Denoting by ∆(Z) the simplex of all probability distributions over a finite set
Z, we have fD ∈ ∆(XD) and ρD (· | a, x) ∈ ∆(RD). We will denote by ℜD the set
of all finite subsets of ∆(RD).

Remark 1. We emphasize that, for a given point in time, the decision maker’s
information is fully summarized by the data set D, which we take as given. In
particular, there is no prior information about the set of possible categories, their
relevance, or the number of characteristics within each category. Over time with
new data, however, new actions, new outcomes, new categories, or new character-
istics may be discovered, as discussed in Section 5.
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2.1.1 Ambiguity: Uncertainty about outcome distributions

While a state identifies the outcome of each available action, this need not be
the case for a characteristic. If an action-characteristic combination (a, x) has not
been observed6 in D, the corresponding frequency of outcomes ρD (· | a, x) is not
well defined. The decision maker will thus have to make a subjective prediction
about the outcome of a when characteristic x occurs.

Different methods can be used to arrive at such predictions: statistical meth-
ods, logical inference, analogy or similarity. In certain situations, such a method
might uniquely identify the distribution of outcomes. In general, however, a set
of possible distributions will obtain,7 see the examples in Section 2.2. The follow-
ing sets of outcome distributions appear to be natural candidates for unobserved
action-characteristics pairs (a, x): (i) the set of all frequencies over outcomes in the
data D, RD = ∪(a,x)∈AD×XD

RD(a, x); (ii) the set of all frequencies over outcomes
observed in combination with a particular action a, RD (a) = ∪x∈XD

RD(a, x); (iii)
the set of all frequencies over outcomes observed in combination with a particular
characteristic x, RD(x) = ∪a∈AD

RD(a, x). Note that the sets of outcome distri-
butions RD,RD (a) ,RD (x) are all finite subsets of ∆(RD). More generally, the
decision maker may, for each data set D and each (a, x) identify a subset of the ob-
served action-characteristic pairs – the most relevant observations for (a, x) – and
use the corresponding observed frequencies of outcomes to form the set RD(a, x).
Section 4 describes how the most relevant sets can be identified.

We denote by RD (a, x) ⊂ ∆(RD) the set of possible outcome distributions
the decision maker associates with (a, x), and assume that this set is finite, i.e.
RD(a, x) ∈ ℜD . These sets are subjective but data-based. For observed (a, x)-
combinations, this set is a singleton and comprises the observed frequency of out-
comes RD (a, x) ={ρD (· | a, x)}. We will maintain the following assumptions for
all (a, x) ∈ AD ×XD:

� experience-based beliefs: R(a, x) ⊆ RD = ∪(a,x)∈AD×XD
RD(a, x);

� data-based beliefs: ρD (· | a, x) ∈ R(a, x);

� possibility of degenerate distributions: if ρ ∈ R(a, x) =⇒ 1{r} ∈ R(a, x) for
all r ∈ supp ρ.

For most of the discussion, we assume that the decision maker does not perceive
ambiguity due to the limited number of observations of a specific (a, x) -combination.
Such ambiguity is discussed in Eichberger and Guerdjikova (2010) and Eichberger
and Guerdjikova (2013), in the context of Billot et al. (2005). However, using the
methods applied in Eichberger and Guerdjikova (2013), it is easy to incorporate
the dependence of subjective predictions on the amount of relevant data available.
We explain how this can be done in Remark 4 in Section 4.

6Missing counterfactuals may occur even in large data sets D because of practical, legal or
moral constraints on actions.

7E.g., a non-parametric model might be only partially identified; the decision maker may
decide to use the confidence interval of a parametric estimation instead of the estimate itself;
there might be uncertainty about the correct analogy, etc.
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2.1.2 Awareness of unawareness: Other characteristics

While the set of Savage states is exhaustive, i.e., describes all relevant contingen-
cies, the set of observed characteristics need not be: there might be a state which
does not correspond to any of the characteristics observed in the data, XD. It
may be that such characteristics cannot occur in the context in which the data
were collected or that there have not yet been sufficient observations. Recording
categories of decision-relevant characteristics may make a decision maker aware of
the fact that some category could contain yet-unobserved characteristics.

We model the awareness of “other, so far unobserved, characteristics” by ex-
tending the set of characteristics XD with a (place holder) characteristic ”xo” (for
“other characteristics”). The augmented set of characteristics is X̂D = XD ∪{xo}.

From the data set D, neither a frequency for such “other” characteristics nor
an outcome distributions ρD(· | a, xo) can be deduced. A decision maker thus
faces ambiguity given this lack of information and may again associate a set of
distributionsRD (a, xo) with the occurrence of xo. A possible candidate is the set of
all outcome distributions that have been observed for an action in D, RD (a, xo) =
∪x∈XD

RD (a, x).8

The decision maker is assumed to attribute a subjective weight, interpreted as
his degree of unawareness, γD to this unobserved characteristic. (1−γD) is then the
degree of confidence assigned to the information in the data set and in particular
to the frequency of observed characteristics fD(x). This degree of unawareness is
purely subjective and will be derived from the decision maker’s preferences.9

2.1.3 Awareness of unawareness: Other categories

Each state uniquely identifies the outcome of an action. In contrast, as we saw
above, an action a in combination with a given characteristic x can result in several
distinct outcomes. In some situation, such variation can be considered as noise
and the decision maker might reasonably use the observed frequency of outcomes
ρD (· | a, x) as a unique prediction. In other contexts, the decision maker might
infer that the observed variability is due to some underlying, but so far unobserved
(latent) factor. He would thus be aware that the characteristic x corresponds to
a set of states rather than to a single state and hypothesize the existence of a
yet unobserved category, the characteristics of which would correspond to the
underlying states grouped in x. This can result in ambiguity in the immediate

8Below, we allow also for general sets of outcome distributions. Chung et al. (2018) provide a
method of estimating the outcomes on “unknown unknowns” in the context of machine learning.
Karni (2022) models “theories” about possible outcome distributions.

9Although unknown in the data set at a particular point in time, a sequence of data sets may
reveal information about the frequency of unobserved characteristics. The degree of unawareness
can, e.g., be related to the frequency of new characteristics observed over time. We consider such
learning in Section 5. Chung et al. (2018) provide an econometric method for estimating the
weight assigned to “unknown unknowns” in the context of classification, while Schipper (2022)
suggests a behavioral approach in a EU-setting.
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sense of the word.10

2.2 Leading examples

Before proceeding to the analysis of choice under uncertainty in this framework,
we will illustrate our suggested approach by two examples: the classic situation of
betting on an urn, and a medical decision.

2.2.1 Urn with unknown content

Consider an urn containing unknown objects. Sequentially, objects are drawn from
the urn. For each object a list of properties (characteristics) is recorded in the data
D. Such characteristics could include

� color: red, blue, yellow, ....

� shape: ball, cube, pyramid,.....

� material: wood, iron, glass, .....

� weight (grams): 20,10,50, ....

Characteristics are classified into categories: color c, shape s, material m, and
weight w. A category is a set of characteristics of the same type, such as a set
of colors or a set of shapes. Hence, a characteristic registered in a case may be
a quadruple (xc, xs, xm, xw) indicating the color, the shape, the material, and the
weight of the object drawn from the urn in this case.

Actions are bets on characteristics of the next object drawn from the urn.
Outcomes are monetary payments r ∈ R. All information of the agent is given by
a data set of N observed cases:

D =
{
(an, xn, rn)

N
n=1

}
.

Example 1. Table 1 shows a data set D =
{
(cn)

20
n=1

}
of 20 cases with four actions,

AD = {a1, a2, a3, a4}, two outcomes, RD = {0, 1} and a single category, the color of
the objects, XD = {R,B, Y }. Table 2 organizes these cases in a matrix listing the
observed outcome distributions with respect to the actions and the characteristics.
The first table records the first 10 cases and the second table all 20 cases. A tuple
(z1, z2) records the frequency of outcome r = 0 by z1 and the frequency of outcome
r = 1 by z2. If an action-characteristic pair (a, x) has not been observed yet, there
is ambiguity about the outcome distribution with a set of possible distributions
RD(a, x). The more cases are contained in the data set the fewer cells of the
matrix will be left open. We also include a column for so far unobserved colors,
characteristics xo the decision maker might be unaware of.

For a bet where the winning condition is recorded as a characteristic, e.g. a2
means “betting on B” and B is a characteristic in XD, it appears natural to

10Cicero writes “ex ambiguous controversial nascitur, cum res in unam sententiam scripta duas
aut plures sententias significat“.(Short, 2018, p.3)
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D A X1 R D A X1 R

c1 a2 Y 1 c11 a2 B 1

c2 a1 B 0 c12 a1 Y 0

c3 a3 Y 1 c13 a3 B 0

c4 a4 Y 1 c14 a2 B 1

c5 a2 B 1 c15 a1 R 1

c6 a3 R 1 c16 a3 Y 1

c7 a4 B 1 c17 a4 R 0

c8 a4 B 1 c18 a1 R 1

c9 a1 Y 0 c19 a3 B 0

c10 a2 Y 0 c20 a2 Y 0

Table 1: Data set: N = 20

(1− γ)fD(R) = (1−γ)
10 (1− γ)fD(B) = 4(1−γ)

10 (1− γ)fD(Y ) = 5(1−γ)
10 γ

a1 RD(a1, R) {(1, 0)} {(1, 0)} RD (a1, xo)

a2 RD(a2, R) {(0, 1)}
{(

1
2 ,

1
2

)}
RD (a2, xo)

a3 {(0, 1)} RD(a3, B) {(0, 1)} RD (a3, xo)

a4 RD (a4, R) {(0, 1)} {(0, 1)} RD (a4, xo)

N = 10

(1− γ)fD(R) = 4(1−γ)
20 (1− γ)fD(B) = 8(1−γ)

20 (1− γ)fD(Y ) = 8(1−γ)
20 γ

a1 {(0, 1)} {(1, 0)} {(1, 0)} RD (a1, xo)

a2 RD (a2, R) {(0, 1)}
{(

2
3 ,

1
3

)}
RD (a2, xo)

a3 {(0, 1)} {(1, 0)} {(0, 1)} RD (a3, xo)

a4 {(1, 0)} {(0, 1)} {(0, 1)} RD (a4, xo)

N = 20

Table 2: Data sets: N = 10 and N = 20

assume that outcome distributions are concentrated, i.e., ρD(a2,,B) = (0, 1) and
ρD(a2,,x) = (1, 0) for x ̸= B. If the action is, however, not specified completely
in regard to the characteristics in the data, for example, if action a2 is a “bet
on the color Y and the shape cube, while the set of characteristics XD records
only colors, then outcome frequencies need not be concentrated on r = 0 or r =
1. Instead, non-degenerate outcome frequencies

(
2
3
, 1
3

)
will occur, reflecting the

missing category of “shapes”. Outcome distributions that are not Dirac measures
might make the decision maker aware of missing categories.

Example 1 shows the distinction between our framework and typical experi-
ments in statistics, which rely on the specification of states. The latter consider an
urn for which it is known that all objects are balls that are distinct only in color.
Furthermore, the set of possible colors is specified. It is thus known that there is a
single category “color” with an exhaustive list of possible characteristics. The only
unknown aspect concerns the frequency of the colors in the urn. The Savagean
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acts are bets on colors which are known to be in the urn. Learning the color of
the ball drawn from the urn resolves all uncertainty and determines uniquely the
outcome for all acts. Each characteristic, i.e., each “color”, is a state in the sense
of (Savage, 1954).

2.2.2 An Application to Machine Learning: The Classification Prob-
lem

Consider the problem of choosing a procedure a, an algorithm, for classifying a
finite set of objects Ω into a finite set of classes K based on data consisting of a
vector of characteristics x of the objects. Without loss of generality, assume that
there is an (unknown) function κ : Ω → K that indicates for each object ω ∈ Ω
the class κ(ω) ∈ K it belongs to. In order to predict the class to which an object ω
belongs, the data contain a vector of characteristics χ(ω) ∈ X associated with the
object ω. An algorithm a is a (computer) program that predicts for an object
ω with characteristics x ∈ X (the likelihood of) its class k ∈ K based on the
data in the set D. An algorithm, specifies the choice of an action for each data
set: a : D → ∆(K). If a (D) = a, we write a (k, x) for the probability assigned
by the algorithm to class k given characteristics x and data set D. Algorithms
thus operate on data directly and generate outcomes. Therefore, we will take the
algorithm not as part of a case in the data but consider for the different algorithms
sets of data that contain data points (examples) classified by their labels only. Each
algorithm thus identifies a procedure for classifying the objects according to their
characteristics (labels) x ∈ X.

The algorithm derives all information about the features (characteristics of an
object) from a finite data set D̂. The data set D̂ contains data points (examples)
of objects for which the characteristics x have been recorded. For most data points
only these features x have been recorded. One distinguishes

� training data as in the data set D ⊂ D̂ that is correctly labeled and can be
used to determine the parameters of the algorithm and

� test data that contains objects and their features (characteristics) but no
labels. Denote by D̃ ={xi, i = 1, ....,M} := D̂\De the set of M unlabeled
examples for which only the features xi are given in the data set D̃.

As before, we assume that the set of characteristics XD̂ is derived from the data

set D̂. As above, characteristics are taken to be vectors with each entry corre-
sponding to a category (feature of the objects), xi = (xt

i)t∈TD̂
. Note that not all

characteristics in XD̂ need occur in the labeled training set, XD ⊆ XD̂.

The data set D̂ provides objective information about the frequency of char-
acteristics in XD̂, fD̂ (x). The training data set D identifies the frequency of an
object with characteristics x being classified as k, fD (x, k).

We thus obtain from D a classification likelihood lD (x) : XD → ∆(K), the
relative frequency with which an object with vector of features x is classified as

11



belonging to class k:

lD (x, k) =

 fD (x, k)∑
k̃∈K fD

(
x, k̃

)


k∈K

=

(
|(xi, ki) ∈ D | xi = x, ki = k|

|(xi, ki) ∈ D | xi = x|

)
k∈K

The choice of algorithm is related to the task under consideration and is partly
a matter of subjective assessment.

“Nearly all deep learning algorithms can be described as particular
instances of a fairly simple recipe: combine a specification of a data set,
a cost function, an optimization procedure and a model.” Goodfellow
et al. (2016, p.151)

11

The payoff of an algorithm for a given object with characteristics x is given
by the probability with which it correctly classifies the object, r ∈ [0, 1]12. For
any algorithm a, one can assign to any labeled data set D such that a (D, x) =
a (k, x), the payoff distribution ρD (a (k, x) , x) = ρD (a (D, x) , x):

ρD (r | a (k, x) , x) =
∑

k∈K|a(k,x)=r

lD (x, k)

Applying an algorithm a to an example xi from the test data D̃ such that
a (D) = a (k, x) yields a likelihood over predicted classes but no outcome, since
the objects in D̃ are not labeled.

In order to assess the predictive quality of an algorithm a trained by the labeled
examples in the training setD when applied to examples of the test data, one needs
to make assumptions about the classification k ∈ K of the objects in the set D̃
conditional on its features x. Assuming that the elements of D̃ are independently
drawn from a data generating process with probability distribution p (k, x), one
obtains for a (D, x) = a (k, x)

ρD̃ (r | a (k, x) , x) =
∑

k∈K|a(k,x)=r

p (k | x) .

One usually assumes that labeled examples in the training data D were also
(independently) drawn from the same data generating probability distribution
p (k, x). Unless the number of observations in both D and D̃ is large, there is,
however, no reason to assume that the probability of a correct prediction for an
object with features x, ρD(x, a) is the same for examples from the training set D
as for examples with the same features x from the test set D̃, ρD̃(x, a (k, x)). Since

11Algorithms can be obtained from regression, density estimation, probability mass function
estimation, and many other procedures etc. Goodfellow et al. (2016, pp. 98-101, 137-161).

12This assumes that the decision maker does not consider some classifications as more impor-
tant than others. Here, as in most classification algorithms, we distinguish only correcly classified
objects from falsely classified cases
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the labeled cases in the training set are used to determine the parameters of the
algorithm a, in general, a given algorithm a will make correct classifications more
often for examples from the training set than for examples from the test data.

This fact creates a well-known conflict between over- and under-fitting in the
evaluation of an algorithm. There is no optimal solution to this conflict Goodfellow
et al. (2016, Section 5.2, pp. 108-118) but one can take this conflict into account
when evaluating the outcome of an algorithm.13

Our approach addresses this conflict explicitly by considering sets of outcome
distributions: RD (a, x) = {ρD (x, a (k, x)) , ρD̃ (x, a (k, x))} for a given pair of al-
gorithm a, with a (D, x) = a (k, x), and features x.

A second difficulty concerns the classifications of characteristics which occur
in the set of unlabeled examples D̃, but not in the training set D, XD̂\XD. For
such characteristics, the set RD (a (k, x) , x) has to be specified without recurring
to available data about x. Common procedures in machine learning include kernel
and nearest neighbor methods and consist in using the observed frequencies of
”similar” characteristics, x′. Defining similarity or relevance, however, is a sub-
jective judgment which has to be made based on the context and prior knowledge
about the problem. In Section 4, we show how such subjective perception of rele-
vance can be identified based on preferences over algorithms. This in turn identifies
subjective assignments of sets of likelihoods to characteristics observed only in un-
labeled examples, LD (x), and the corresponding sets of outcome distributions,
RD (a (k, x) , x).

Given the frequency of characteristics fD̂ (x) observed in the data, an algorithm

a can be identified with a mass distribution m
fD̂
a , which assigns to each set of

outcome distributions R the frequency of those characteristics for which R occurs.

mfD
a (R) =

∑
{x∈XD|RD(a(k,x),x)=R}

fD (x)

Thus, an algorithm a can be viewed as a probability distribution over the finite
sets of outcome distributions.

Below, we propose axioms inspired by those advanced in Jaffray (1989) yielding
an α-maxmin evaluation of algorithms. Suppose, in particular, that the utility
function over outcomes is logarithmic, u (r) = ln r. For a given data set D̂ and
a corresponding training data-set D and test data-set, the algorithm a such that
a (D, x) = a (k, x) is evaluated as:

VD̂ (a) =
∑
x∈XD̂

fD̃ (x)

[
αD max

ρ∈RD(a,x)

∑
r

ρ (r) ln r + (1− αD) min
ρ∈RD(a,x)

∑
r

ρ (r) ln r

]

or, using the observed likelihoods,

13Including, weight decay in addition to the mean squared error for comparing the bias of the
estimator with the variance of the parameter estimates Goodfellow et al. (2016, p.127).
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VD̂ (a) =
∑
x∈XD̂

fD̃ (x)

[
αD maxlD(x)∈LD(x)

∑
k∈K lD (k, x) ln (a (k, x))

+ (1− αD)minlD(x)∈LD(x)

∑
k∈K lD (k, x) ln (a (k, x))

]
,

where

� αD ∈ [0, 1] is the parameter of optimism, (1− αD) is the degree of pessimism
given the observed training data D;

� γD ∈ (0, 1) is the subjective degree of ambiguity.

In the special case in which the number of observations is large and the sets of
characteristics in the training and in the test data-set coincide, XD = XD̂, the
sets of likelihoods can be taken to be singletons and coincide with the observed
frequencies, LD (k, x) = lD (k, x). For this special case, the evaluation of the
algorithm is based on its relative entropy:

VD̂ (a) =
∑
x∈XD

fD̃ (x)
∑
k

lD (k, x) ln (a (k, x)) . (1)

Note that −VD (a) is the entropy of the algorithm relative to the observed
frequency of characteristics and the classification likelihoods. The entropy is min-
imized by setting a (k, x) = lD (k, x) for all k and x.

Finally, the possibility of other (potentially unobserved characteristics) has to
be taken into account, when the algorithm is applied beyond the test data set
D̃. For such characteristics, xo, the sets LD (xo) and RD (a, xo) also have to be
subjectively specified, and a weight γD has to be assigned to the observation of
such ”other” characteristics. The resulting representation is:

VD̂ (a) = (1− γD)
∑
x∈XD̂

fD̃ (x)

[
αD max

ρ∈RD(a,x)

∑
r

ρ (r) ln r + (1− αD) min
ρ∈RD(a,x)

∑
r

ρ (r) ln r

]

+γD

[
αo
D max

ρ∈RD(a,xo)

∑
r

ρ (r) ln r + (1− αo
D) min

ρ∈RD(a,xo)

∑
r

ρ (r) ln r

]

where αo
D is the degree of optimism for unobserved characteristics.

3 Decisions for a given set of data

In this section, we show that the data-based framework that we introduced gener-
ates a belief function over outcome distributions for each action. Hence, one can
derive a representation of preferences over these belief functions similar to Jaffray
(1989). In addition, we provide axioms in order to characterize a subjective degree
of unawareness regarding potential other characteristics.
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3.1 From data to choice

At a given point in time, a decision maker knows the data in a set D. As described
in Section 2, for each pair of actions and characteristics (a, x) ∈ AD ×XD, there
is a finite set of outcome distributions RD(a, x) ⊂ ∆(RD). Recall that RD :=
∪a∈AD,x∈XD

RD(a, x) is the finite set of all frequency distributions over outcomes
in D. We assume that RD contains all degenerate outcome distributions, δr for
r ∈ RD. We denote by RD the set of all subsets of RD and by ∆ (RD)the set of
all probability distributions on RD.

The following table summarizes the primitive concepts derived from data in D
and the relevant notation:

Summary of basic notation:
A finite data set of cases: c = (a, x, r)∈D, induces

� a set of actions: a ∈ AD,

� a set of characteristics: x ∈ XD,

– a frequency distribution over characteristics: fD ∈ ∆(XD),

� extended set of characteristics: X̂D = XD ∪ {xo}

– degree of unawareness: γD

� a set of outcomes: RD,

– a frequency distribution over outcomes: ρ ∈ ∆(RD),

– the set of all finite subsets of ∆(RD): ℜD

– for each (a, x) ∈ AD × XD, a finite set of frequencies over outcomes:
RD(a, x) ∈ ℜD

� the set of all frequency distributions over outcomes in D: RD :=
∪a∈AD,x∈XD

RD(a, x)

– δr ∈ RD for all r ∈ RD

– the set of all subsets of RD: RD

– the set of all probability distributions on RD: ∆ (RD)

3.2 From actions to mass distributions

We first specify actions on the set of observed characteristics, XD.
For a given action a ∈ AD, consider the mapping: a : XD →RD which to

every characteristic x assigns the predicted set of outcomes of action a for this
characteristic, a (x) = RD(a, x) ∈ RD. Note that the frequency of characteristics
in the data fD (x) gives a probability distribution over these predictions, assigning
a probability of fD (x) to RD(a, x). Given action a, the observed frequency of
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characteristics generates a probability distribution over the power set of RD:

mfD
a (R) =

∑
{x∈XD|RD(a,x)=R}

fD(x).

By definition, mfD
a (R) ≥ 0 for all R ∈ RD and

∑
R∈RD

mfD
a (R) = 1.

A probability distribution over the elements of a power set, mfD
a ∈ ∆(RD) is a

mass distribution that defines a belief function, Grabisch (2016, p. 380). Since the
outcomes of actions on the set of observed characteristics can be represented as a
mass distribution, we use the seminal approach by Jaffray (1989) to characterize
preferences.

The set of actions AD together with the realized frequency fD generates a finite
set of mass distributions

{
mfD

a : a ∈ AD

}
. Similarly to Savage (1954), we assume

that the set of hypothetical actions AD which the decision maker can conceive is
larger than

{
mfD

a : a ∈ AD

}
and includes all mappings from characteristics to sets

of observed outcome distributions in RD:

AD = {a : XD → RD} .

We call an action unambiguous when a (x) is a singleton for all x. Such actions
induce a probability distribution over outcomesma (r) =

∑
x∈XD

fD (x) ρD (r | a, x).
Note that the specification of an action combines the (set-valued) consequences

of actions with the information contained in the mass distribution. If this infor-
mation suffices to associate a probability distribution with each action (when all
actions are unambiguous) then preferences will be over probability distributions
as in von Neumann and Morgenstern (1944).

The following example illustrates this construction.

Example 2. Consider a data setD with two characteristicsXD = {x1, x2} yielding
two outcome distributions RD = {ρ1, ρ2} with the power set RD = P({ρ1, ρ2}) =
{{ρ1}, {ρ2}, {ρ1, ρ2}}. The set of all basic actions is AD = {a : XD → RD}. Given
a probability (frequency) distribution over the characteristics {x1, x2}, say (f1, f2),
each action a ∈ AD induces a mass distribution mf

a in ∆(RD). Given the distri-
bution f on XD, the nine acts in AD induce nine mass distributions mf

a ∈ ∆(RD)
as illustrated in Table 3.

As Example 2 illustrates, the set of mass distributions mfD
a induced by the

actions a ∈ AD together with the frequency distribution fD observed in a data set
D will be a small subset of all mass distributions ∆ (RD). Allowing for mixtures of
acts in AD, however, will extend the set of mass distributions on RD considerably.

For λ ∈ [0, 1] and two actions a1, a2 ∈ AD, denote by λa1 + (1− λ) a2 the
lottery over elements of RD which associates with each x ∈ XD the set of outcome
distributions a1 (x) with probability λ and the set of outcome distributions a2 (x)
with probability (1− λ). The resulting mass distribution is:

mf
λa1+(1−λ)a2

= λmf
a1
+ (1− λ)mf

a2
. (2)
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a ∈ AD mf
a ∈ ∆(RD)

(a(x1), a(x2)) mf
a ({ρ1}) mf

a ({ρ2}) mf
a ({ρ1, ρ2})

a1 ({ρ1} , {ρ1}) 1 0 0

a2 ({ρ1} , {ρ2}) f1 f2 0

a3 ({ρ1} , {ρ1, ρ2}) f1 0 f2

a4 ({ρ2} , {ρ1}) f2 f1 0

a5 ({ρ2} , {ρ2}) 0 1 0

a6 ({ρ2} , {ρ1, ρ2}) 0 f1 f2

a7 ({ρ1, ρ2} , {ρ1}) f2 0 f1

a8 ({ρ1, ρ2} , {ρ2}) 0 f2 f1

a9 ({ρ1, ρ2} , {ρ1, ρ2}) 0 0 1

Table 3: Induced mass distributions: mf
a ∈ ∆(RD)

Mixtures of acts in AD are elements of the simplex ∆ (RD). Given the frequency
distribution fD on XD and the set of basic actions AD, let

M(AD, fD) =

{
mfD

a =
∑
k

λkm
fD
ak

| ak ∈ AD, k ∈ N

}
be the set of all mass distributions induced by mixed actions in AD.

The following Lemma 1 shows that the set of mass distributions M(AD, fD)
obtained from all mixtures of actions in AD equals the set of all mass distributions
on RD , ∆ (RD), provided that RD contains all Dirac measures over outcomes in
RD.

Lemma 1. M (AD, fD) = ∆ (RD).

3.3 Actions on the extended set of characteristics

As argued in Section 2, a decision maker may also consider the possibility of
characteristics xo that have not been recorded in the data D. In this section, we
extend the specification of actions to xo.

Assume that a decision maker associates a finite set of possible outcome dis-
tribution Ro

a ∈ ℜD with xo for every act a ∈ AD. Allowing for a (xo) = Ro
a ∈ ℜD

amounts to assuming that the decision maker can in principle envision any hypo-
thetical outcome distribution over observed outcomes.14

Given the extended set of characteristics X̂D = XD ∪{xo}, we consider actions
in the extended action set Ao

D = AD ×ℜD. As shown in the previous subsection,
each basic actions in AD induces a mass distribution mfD

a ∈ ∆(RD) which is then
combined with the set of outcome distributions Ro

a = a (xo) ∈ ℜD associated with
xo. Omitting the index fD, an extended action a can be written as (ma, Ra) ∈
∆(RD)×ℜD.

14We do not consider the possibility of ”new outcomes” and the resulting ”new actions” as in
Karni and Vierø (2017), although such an extension is possible.
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As in Subsection 3.2, we allow for mixtures on the extended set of actions
a ∈ Ao

D. Given two actions a1 =
(
ma1 , R

o
a1

)
and a2 =

(
ma2 , R

o
a2

)
and any λ ∈

[0, 1], define the convex combination of the two actions λa1 + (1− λ) a2 as the

action a =
(
mλa1+(1−λ)a2 ;R

o
λa1+(1−λ)a2

)
where Ro

λa1+(1−λ)a2
is the set of outcome

distributions,

Ro
λa1+(1−λ)a2

= λRo
a1
+ (1− λ)Ro

a2
=

{
λρ1 + (1− λ) ρ2| ρ1 ∈ Ro

a1
, ρ2 ∈ Ro

a2

}
.

By construction, mλa1+(1−λ)a2 ∈ ∆(RD) and Ro
λa1+(1−λ)a2

∈ ℜD. That is,

all convex combinations of extended actions a = (ma, R
o
a) will be elements of

∆ (RD)×ℜD.
We thus consider the set of actions AD = ∆(RD) × ℜD. It is easy to check

that AD is a mixture set.

Lemma 2. AD = ∆(RD)×ℜD is a mixture set.

3.4 Preferences and Suggested Representation

Denote by ≿ on ∆ (RD) × ℜD, the preference order of the decision maker on
the set of actions AD. We assume that the decision maker can rank all actions
in this set. Similarly to Savage (1954) this amounts to the ability to rank the
consequences of the actions associated with the different characteristics. We will
present axioms that imply that any action a = (ma, R

o
a) ∈ AD is evaluated by the

following functional:

VD (a) = (1− γD)
∑

R∈RD

ma (R)

[
αD max

ρ∈R

∑
r

u (r) ρ (r) + (1− αD)min
ρ∈R

∑
r

u (r) ρ (r)

]
(3)

+ γD

[
αo
D max

ρ∈Ro
a

∑
r

u (r) ρ (r) + (1− αo
D) min

ρ∈Ro
a

∑
r

u (r) ρ (r)

]

where

� u : RD → R is a von Neumann-Morgenstern utility function over outcomes
(unique up to a positive-affine transformation);

� αD ∈ [0, 1] is the degree of optimism and (1− αD) is the degree of pessimism
w.r.t. ambiguity in the outcome distributions given the observed data D,
and αo

D ∈ [0, 1] and (1− αo
D) are the degrees of optimism and pessimism for

other, yet unobserved, characteristics. The degrees of optimism αD and αo
D

may, but need not, coincide;

� γD ∈ (0, 1) is the degree of unawareness, the subjective weight assigned to
xo.
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Any actually observed action a ∈ AD can be evaluated using the observed frequen-
cies of characteristics fD (x) and the outcome predictions RD(a, x) derived from
the data:

VD (a) = (1− γD)
∑
x∈XD

fD (x)

[
αD max

ρ∈RD(a,x)

∑
r

u (r) ρ (r) + (1− αD) min
ρ∈R(a,x)

∑
r

u (r) ρ (r)

]
(4)

+ γD

[
αo
D max

ρ∈R(a,xo)

∑
r∈Ro

u (r) ρ (r) + (1− αo
D) min

ρ∈R(a,xo)

∑
r

u (r) ρ (r)

]

As in state-based decision theory, different representations of preferences can
be deduced from different systems of axiom, e.g., a smooth representation could
be deduced from axioms as in Eichberger and Pasichnichenko (2021). The repre-
sentation we choose has the advantage of having a small number of parameters,
which can be easily estimated in experiments and can be used to study learning.

3.5 Axiomatization

We now provide an axiomatization of preferences over the set of actionsAD=∆(RD)×
ℜD, a = (ma, R

o
a). Our axiomatization builds on the approach in Jaffray (1989).

Axiom 1 The preference order ≿ on AD is complete, transitive and non-trivial
in the following sense: there is an Ro ∈ RD and ma1 , ma2 ∈ ∆(RD) such
that for a1 = (ma1 , R

o) and a2 = (ma2 , R
o) ∈ AD, (ma1 , R

o) ≻ (ma2 , R
o).

The non-triviality condition in Axiom 1 is somewhat stronger than usual. In
particular, it requires that there is some outcome Ro associated with the “other
characteristics” which is a subset of the actually observed probability distributions
in the data and for which the decision maker is not fully indifferent among all
extended actions. This non-triviality condition requires that the decision maker
be not indifferent among all mass functions for at least some set of probability
distributions associated with the ”other” characteristics.

Axiom 2 For all
(
ma1 , R

o
a1

)
,
(
ma2 , R

o
a2

)
,
(
ma3 , R

o
a3

)
∈ AD and all λ ∈ [0; 1],(

ma1 , R
o
a1

)
≿

(
ma2 , R

o
a2

)
⇔λ

(
ma1 , R

o
a1

)
+ (1− λ)

(
ma3 , R

o
a3

)
≿ λ

(
ma2 , R

o
a2

)
+ (1− λ)

(
ma3 , R

o
a3

)
.

Axiom 3 For all
(
ma1 , R

o
a1

)
,
(
ma2 , R

o
a2

)
,
(
ma3 , R

o
a3

)
∈ AD such that

(
ma1 , R

o
a1

)
≻(

ma2 , R
o
a2

)
≻

(
ma3 , R

o
a3

)
, there are λ, µ ∈ (0; 1) such that

λ
(
ma1 , R

o
a1

)
+(1− λ)

(
ma3 , R

o
a3

)
≻

(
ma2 , R

o
a2

)
≻ µ

(
ma1 , R

o
a1

)
+(1− µ)

(
ma3 , R

o
a3

)
.

Remark 2. The three Axioms imply that preferences are separable across the two
dimensions, m and Ro, see Proposition 2 in the Appendix.
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The following corollary obtains:

Corollary 1. Axioms 1–3 imply that for any ma,mb ∈ ∆(RD), and any Ro
a, R

o
b ∈

ℜD, (ma, R
o
a) ≿ (mb, R

o
a) iff (ma, R

o
b) ≿ (mb, R

o
b) and (ma, R

o
a) ≿ (ma, R

o
b) iff

(mb, R
o
a) ≿ (mb, R

o
b).

Remark 3. Note that in general m and R are different objects, m is a probabil-
ity distribution on RD, whereas R is an element of ℜD ⊃ RD. Nevertheless,
each m which assigns a probability of 1 to a single set R ∈ RD can be uniquely
identified with an Ro ∈ ℜD such that Ro = R. We could thus use the subset of
actions for which the mass distributions have a singleton support, ∆(RD)

C ×ℜD,
as well as the subset of actions for which the set assigned to xo is an element
of RD, ∆(RD) × RD to formulate an Anscombe-Aumann-type axiom of state-
independence of preferences. More specifically, to allow for different degrees of
optimism in regard to observed and unobserved contingencies and thus for the
possibility that two sets R and R′ can be ranked when associated with the already
observed or the unobserved characteristics. Thus, our state-independence axiom
is imposed only on singleton sets.

Axiom 4 For any λ ∈ [0, 1], any {ρ1}, {ρ2} and {ρ} ∈ RD, and m and m′ ∈
∆(RD) such that m ({ρ1}) = λ, m ({ρ2}) = 1− λ, m′ ({ρ}) = 1,

(m̃, λ {ρ1}+ (1− λ) {ρ2}) ≿ (m̃, {ρ}) for some m̃ ∈ ∆(RD) holds iff

(m,Ro) ≿ (m′, Ro) holds for some Ro ∈ ℜD.

While our last Axiom 4 concentrated on preferences with respect to singletons,
we now turn to preferences regarding sets with multiple elements. Consider R
and R′ ∈ ℜD. We will write R ≿o R′ iff (m,R) ≿ (m,R′) for some and thus, by
Corollary 1, for all m ∈ ∆(RD). We will write R ≿d R′ iff for ma (R) = 1 and
mb (R

′) = 1, (ma, R
′′) ≿ (mb, R

′′) for some and thus, by Corollary 1, for all R′′ ∈
ℜD. Axiom 4 then implies that these two relations coincide for singletons {ρ} ∈
RD: {ρ} ≿o {ρ′} iff {ρ} ≿d {ρ′} for {ρ} ∈ RD, while for {ρ} or {ρ′} ∈ ℜD\RD,
the preference ≿d is not defined and the comparison of the two sets is determined
by ≿o. In both cases, with a slight abuse of notation, we write ρ ≿ ρ′. Axiom 4
thus implies a well-defined preference order over the singleton sets, regardless of
whether they are associated with observed or unobserved characteristics. This in
turn allows us to define for each set of outcome distributions R ∈ ℜD, a ”best”
and ”worst” outcome distribution ρ

R
, ρR ∈ ∆(RD). The following axiom is an

adaptation of the axiom introduced in Jaffray (1989):

Axiom 5 For all R, R′, if ρ
R
≿ ρ

R′ and ρR ≿ ρR′ , then R ≿o R′ and R ≿d R′.

Axiom 5 implies that the comparison between any two sets of outcome distributions
only depends on their best and worst elements. In contrast to Jaffray (1989),
however, preferences between sets of outcome distributions may depend on whether
they are associated with an already observed characteristic, or a yet unobserved,
”other” characteristic, i.e., ≿d and ≿o might differ on non-singleton sets.
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Axioms 1–5 allow a representation similar to 3, but for the fact that the degrees
of optimism in general depend on the best and worst outcomes in the set. To obtain
αD and αo

D that are independent of the set, we impose two additional axioms, see
Proposition 4 in the Appendix.

To understand the axiom, suppose that we compare two actions a and b with
identical mass distributions ma = mb =: m. One of the actions attributes a set
with two outcome distributions to xo, Ra = {ρ, ρ′} with ρ ≻ ρ′, while, for the
second action b, the set of outcome distributions on xo contains only the mixture
Rb = {αρ+ (1− α) ρ′}. Axioms 1–5 imply that there exists a unique α ∈ [0, 1]
such that Ra ∼o Rb. This α is the weight assigned to the best outcome of the set
Ra, i.e., the degree of optimism relative to unobserved characteristics with respect
to this set. Axiom 6 postulates that the so-determined α is independent of the set
Ra under consideration.

Axiom 6 For any ρ, ρ′, ρ′′, ρ′′′ ∈ ∆(RD), such that ρ ≻ ρ′ and ρ′′ ≻ ρ′′′ and any
m ∈ ∆(RD), let Ra = {ρ, ρ′}, Rc = {ρ′′, ρ′′′} and for some α ∈ [0, 1],

Rb = {αρ+ (1− α) ρ′}
Rd = {αρ′′ + (1− α) ρ′′′}

Then (m,Ra) ∼ (m,Rb) iff (m,Rc) ∼ (m,Rd).

The final Axiom is analogous to Axiom 6, but imposed on the set ∆ (RD), i.e.,
on the mass functions associated with the observed characteristics XD. It implies
that the degree of optimism relative to observed characteristics does not depend
on the specific set under consideration.

Axiom 7 For any {ρ} , {ρ′} , {ρ′′} , {ρ′′′} ∈ RD, such that ρ ≻ ρ′ and ρ′′ ≻ ρ′′′ and
any R ∈ ℜD, let

15 ma ({ρ, ρ′}) = 1, mc ({ρ′′, ρ′′′}) = 1 and for some α ∈ [0, 1],

mb ({ρ}) = α, mb ({ρ′}) = (1− α)

md ({ρ′′}) = α, md ({ρ′′′}) = (1− α)

Then (ma, R) ∼ (mb, R) iff (mc, R) ∼ (md, R).

Axioms 1–7 are necessary and sufficient to obtain our desired representation:

Theorem 1. The preference order ≿ on AD = ∆(RD) × ℜD satisfies Axioms
1–7, iff there is a representation

VD (m,Ro) =
∑

R∈RD

(1− γD)m (R)

[
αD max

ρ∈R

∑
r∈RD

u (r) ρ (r) + (1− αD)min
ρ∈R

∑
r∈RD

u (r) ρ (r)

]
(5)

+ γD

[
αo
D max

ρ∈Ro

∑
r∈RD

u (r) ρ (r) + (1− αo
D) min

ρ∈Ro

∑
r∈RD

u (r) ρ (r)

]
15Recall that RD is the set of all subsets of observed frequencies in the data, RD. Thus, if

RD contains the singletons {ρ}, {ρ′}, {ρ′′} and {ρ′′′}, then it also contains the sets {ρ, ρ′} and
{ρ′′, ρ′′′} and vice-versa.

21



where u is a unique (up to a positive-affine transformation) von-Neumann-Morgenstern
utility function over outcomes, γD ∈ (0, 1) is a unique parameter describing the
perception of unawareness and αD, α

o
D ∈ [0; 1] are unique parameters of optimism

relevant to the set of observed, respectively, unobserved, characteristics.

A special case of the representation is the one in which the coefficient of op-
timism does not depend on the type of characteristics under consideration, i.e.,
αD = αo

D. Such a representation can be easily obtained by replacing Axiom 7 with
the following one:

Axiom 7′ For any {ρ} , {ρ′} ∈ RD, such that ρ ≻ ρ′ and any R ∈ ℜD, let
ma ({ρ, ρ′}) = 1, and for some α ∈ [0, 1],

mb ({ρ}) = α, mb ({ρ′}) = (1− α)

Then (ma, R) ∼ (mb, R) iff for some m ∈ ∆(RD),

(m, {ρ, ρ′}) ∼ (m, {αρ+ (1− α) ρ′}) . (6)

Axiom 7′ can be seen as an extension of Axiom 4 to sets in RD containing two
elements. It requires that the mass function concentrated on a two element set
{ρ, ρ′}is considered indifferent to a mass function which mixes the two singletons
in proportions α (for the better one) and (1− α) for the worse one iff the same two
element set, but assigned on the ”other” characteristics is considered indifferent
to the singleton set {αρ+ (1− α) ρ′} which is a mixture of its two elements in
the same proportions α and (1− α). Since by Axiom 6, the coefficient α does not
depend on the choice of ρ and ρ′, we obtain that the αo

D identified in the proof of
Theorem 1 applies also to all two-element sets {ρ′′, ρ′′′} ∈ RD ⊂ ℜD. We can thus
set αo

D = αD and obtain the following Corollary:

Corollary 2. The preference order ≿ on AD satisfies Axioms 1–6 and 7′, iff there
is a representation

VD (m,Ro) =
∑

R∈RD

(1− γD)m (R)

[
αD max

ρ∈R

∑
r∈RD

u (r) ρ (r) + (1− αD)min
ρ∈R

∑
r∈RD

u (r) ρ (r)

]
(7)

+ γD

[
αD max

ρ∈Ro

∑
r∈RD

u (r) ρ (r) + (1− αD) min
ρ∈Ro

∑
r∈RD

u (r) ρ (r)

]

where u is a unique (up to a positive-affine transformation) von-Neumann-Morgenstern
utility function over outcomes, γD ∈ (0, 1) is a unique parameter describing the
perception of unawareness and αD is a unique parameter of optimism relevant both
to the set of observed and the unobserved, characteristics.
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4 Relevance of Cases and Identifying the Sets of

Subjective Likelihoods

So far, we have taken as given the subjective likelihoods assigned to a given action-
characteristic pair based on a data set D. This allowed us to extend preferences
to the set of all mass distributions. In this section, we wish to identify the sets
RD (a, x) directly from preferences.

To do so, we will make some assumptions on the class of data sets and the
corresponding sets of actions, characteristics and outcomes. We will consider given
sets of characteristics, X, actions, A and outcomes, R and the corresponding class
of data sets DX in which all observations satisfy c ∈ X × A× R. The support of
a data set is defined as:

supp (D) = {(a′, x′) | fD (a′, x′) > 0}

We start by extending the preference relation ≿D to conditional preferences,
i.e., to preferences over the choice of an action conditional on a subset of character-
istics X̃D ⊆ X̂D. The interpretation is that the decision maker can evaluate actions
once the subset of possible characteristics is restricted to X̃. E.g., an algorithm
may be evaluated based on a set of objects whose characteristics are included in
X̃. Of particular interest will be conditional preferences on a single characteristic,
x ∈ X̂D, ≿D,x. Given the additive structure of our representation, we can formally
define ≿D,xas:

a ≿D,x a′ iff RD (a, x) ≿ RD (a′, x)

For a given characteristic, x, the actions we consider associate with this char-
acteristic, a set of probability distributions over ∆ (R),

a|x : {x} ⇒ ∆(R)

Formally, under our assumption that the decision maker entertains a set of
subjective likelihoods for each action-characteristic pair, such actions represent a
subset of the mass distributions in AD, namely constant actions, ∆ (RD)

C , given
by a set R ⊆ ∆(R). However, differently from the mass distributions considered
earlier, the set RD (a, x) is not specified and has to be uncovered from preferences.
In this section, we will thus use a|x ∈ A for the actions observed in the data set used
conditional on a characteristic x. As before, R ⊆ ∆(R) denotes a hypothetical
constant action, i.e., a set of likelihoods. Conditional preferences ≿D,x compare
both types of actions, actual, as well as hypothetical. By definition, conditional
preferences over hypothetical actions are identical to unconditional preferences ≿D

over constant actions:
R ≿D,x R′

iff

R ≿ d
DR

′ for x ∈ XD

R ≿ o
DR

′ for x ∈ XD
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Assuming that we can compare a|x to hypothetical constant actions, immedi-
ately implies that for each action a|x we can infer its certainty equivalent for the
data set D, Ra|D,x such that:

a|x ∼D,x Ra|D,x

However, this certainty equivalent is not unique and thus, the set of subjective
likelihoods will not be uniquely identified.

As explained above, we will assume that the subjective likelihoods used to
evaluate actions are drawn from among those observed in the data set. Formally,

AR1 (Experience-based beliefs) For each D, a, x ∈ X̂D, there is a certainty
equivalent of a|x given by

RD (a, x) ⊆ {ρD (a′, x′) | (a′, x′) ∈ supp (D)}

s.t.
RD (a, x) ∼D,x a|x

Clearly, the set RD (a, x) is our candidate for the set of subjective likelihoods of
outcomes given (a, x). We will write Sa,x (D) for the set of action-characteristic
pairs whose observed likelihoods enter the certainty equivalent:

Sa,x (D) = {(a′, x′) ∈ RD (a, x)}

We call the action-characteristic pairs in Sa,x (D) the most relevant for (a, x) in
the support of D. We now impose the following conditions on Sa,x (D) and thus,
implicitly on Ra|D,x:

We first postulate that relevance depends only on the support of the data set:

AR2 If supp (D) = supp (D′) = S, then Sa,x (D) = Sa,x (D
′) for all (a, x) ∈ A×X.

According to axiom AR1, we can write Sa,x (D) = Sa,x (supp (D)). Maximal rele-
vance is thus a correspondence, which maps each support, S ⊆ A×X to a subset
of S, Sa,x (S) ⊆ S. Mathematically, it is an object similar to a choice correspon-
dence. We will thus impose the axioms of choice on the relevance correspondence
Sa,x (S) : 2

A×X → 2A×X . Before doing so, we postulate that if present in the data,
observations of (a, x) are the only most relevant observations for (a, x):

AR3 If (a, x) ∈ S, then Sa,x (S) = {(a, x)}.

Sen’s axioms of choice are restated as:

AR4 If (a′, x′) ∈ S ′ ⊆ S ′′ and if (a′, x′) ∈ Sa,x (S
′′), then (a′, x′) ∈ Sa,x (S

′).

This is Sen’s α-property, which states that if (a′, x′) is most relevant for (a, x)
when the support is larger, then it is also most relevant when the support is
smaller (provided (a′, x′) is still in the support).

24



AR5 If (a′, x′) and (a′′, x′′) ∈ Sa,x (S
′), S ′ ⊆ S ′′ and (a′′, x′′) ∈ Sa,x (S

′′), then
(a′, x′) ∈ Sa,x (S

′′).

This is Sen’s β-property, which states that both (a′, x′) and (a′′, x′′) are most
relevant for (a, x) in a given support, then expanding the support and finding that
(a′′, x′′) is still most relevant implies that (a′, x′) should also be most relevant.

Taken together axioms AR1-AR5 imply

Proposition 1. The class of preferences (≿D,x)x∈X̂D
D∈D

satisfy axioms AR2-AR4 iff

there exists for each (a, x) ∈ A × X a unique complete and transitive relevance
order ≥a,x such that:

� (a′, x′) >a,x (a′′, x′′) iff for some (and then all) S such that (a′, x′), (a′′, x′′) ∈
S, (a′, x′) ∈ Sa,x (S) and (a′′, x′′) ̸∈ Sa,x (S);

� (a′, x′) =a,x (a′′, x′′) iff for some (and then all) S such that (a′, x′), (a′′, x′′) ∈
S, (a′, x′) ∈ Sa,x (S) and (a′′, x′′) ∈ Sa,x (S);

� (a, x) >a,x (a′, x′) for all (a′, x′) ̸= (a, x).

Furthermore, if preferences satisfy Axioms 1–7 as well as AR1-AR4, then the
subjective likelihood sets RD (a, x) can be written as:

RD (a, x) = {ρD (a′, x′) | (a′, x′) ∈ SD (a, x)}
= arg max

(a′,x′)∈supp(D)
≥a,x

The proof follows from combining standard arguments in the theory of choice,
see, e.g., Kreps (1988, p. 14) with Theorem 1, and is, therefore, omitted. The
proposition provides an intuitive and simple rule for determining the subjective
likelihoods, RD (a, x) for the actually observed actions a: the decision maker has
a subjective relevance order, ≥a,x defined on the set of action-characteristic pairs,
X × A, which determines for each data set which of the available likelihoods are
used for each action-characteristic pair, (a, x). A natural assumption is that (a, x)
is a maximal (but potentially not unique) element of this order. The frequency of
outcomes of (a′, x′), ρD (a′, x′), is used as a subjective likelihood for (a, x) if and
only if (a′, x′) is the most relevant (but potentially not unique) w.r.t. ≥a,x pair
observed in the data set.

Remark 4. The multiplicity of subjective likelihoods in the specification ofRD (a, x)
comes from the fact that when (a, x) is not observed in the data, multiple maximal
relevant action-pair characteristics can be used to predict its outcome. The specifi-
cation, however, does not take into account two additional sources of ambiguity: (i)
ambiguity due to the limited number of observations for each action-characteristic
pair; (ii) ambiguity due to the limited relevance of the action-characteristic pairs
used for the prediction. A more general specification of RD (a, x) can be stated as:

RD (a, x) = {(1− ϵD (a′, x′)) ρD (a′, x′) + ϵD (a′, x′) δr | (a′, x′) ∈ Sa,x (D) , r ∈ R}
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where ϵD (a′, x′) ∈ [0, 1] is a coefficient of perceived ambiguity, which depends
negatively both on the number of observations of (a′, x′) in D, as well as on the
rank of (a′, x′) in the relevance order ≥a,x. Note that when ϵD (a′, x′) = 0 for
all (a′, x′), this specification coincides with the characterization in Proposition 1.
For general values of ϵ, it replaces the actually observed likelihoods with their
”discrete ϵD (a′, x′)-contaminations”, i.e., the set of likelihoods which results from
scaling down the weight assigned to the observed frequencies to (1− ϵD (a′, x′)) and
assigning the remaining weight to one of the possible outcomes, r. Of particular
interest for our representation are, of course, the best and the worst outcomes, since
the corresponding subjective likelihoods will be actually used in the α-max-min
evaluation of the action.

By replacing each observed relevant likelihood by a set of likelihoods, this
representation captures the two types of ambiguity discussed above. To see this,
consider first the case when D contains observations of (a, x). Then,

RD (a, x) = {(1− ϵD (a, x)) ρD (a, x) + ϵD (a, x) δr | r ∈ R}

The fact that ϵ is strictly decreasing in the number of observations implies that
as more observations of (a, x) are observed, the ambiguity of the prediction will
decrease and eventually converge to the actual frequency, ρD (a, x). This captures
the ambiguity due to limited number of observations which disappears when the
data set becomes large.

If, instead, the data contain the same number of observations relevant for (a, x),
but of a less relevant pair, (a′, x′), the resulting ambiguity will incorporate both the
ambiguity due to limited number of observations and that due to limited relevance
and will be larger. As the number of observations increases, this ambiguity will
decrease as well, but need not converge to 0.

These two effects were studied in Eichberger and Guerdjikova (2013). Using
methods similar to those employed in this previous work, we can identify the
corresponding coefficients of ambiguity and provide axioms for this more general
characterization of subjective likelihoods.

Remark 5. Axiom AR3 can be relaxed to allow for multiple maximal elements
of the order ≥a,x by requiring that (a, x) is always a maximal element, but not
necessarily the unique one:

AR3′ If (a, x) ∈ S, then (a, x) ∈ Sa,x (S).

A special case which could be of interest is the one in which (a, x) = (a, x′) for all
x, x′ which coincide on a given set of relevant categories, T ⊂ T

xt = x′t for all t ∈ T ⊂ T

This corresponds to a coarsening of the set of characteristics by reducing the
set of relevant categories. We write x =T x′ when x and x′ coincide on all relevant
characteristics. In this case, the relevance sets satisfy:

(a′, x′) ∈ Sa,x (S) =⇒ (a′, x′′) ∈ Sa,x (S) for all x′′ s.t. (a′, x′′) ∈ S and x′′ =T x′
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The size of the set of characteristics that are differentiated by the decision maker
is directly related to a measure of complexity, such as, for instance, the VC-
dimension. Consider, e.g., the classification problem. Out of two decision makers
such that ≿1

D=≿2
D on the set of hypothetical actions (prescribed by hypothetical

algorithms), but not necessarily on the actual actions. In particular, if for each
x and D, we have that S1

x (D) ⊇ S2
x (D), then decision maker 1 uses a coarser

representation of the set of characteristics. This can be interpreted as≿1 exhibiting
stronger preferences for simplicity relative to ≿2.

5 Acquiring new data: The Classification Prob-

lem Revisited

In Section 3.5, we elicited from preferences, for a given data set, D the subjective
parameters of the decision maker and in particular, the weight assigned on ”other
characteristics”, xo, γD, which can be interpreted as the degree of unawareness,
and the parameters of optimism for the known characteristics, αD and the ”other”
characteristics, αo

D. In general, these three components of the representation de-
pend on the available data set D.

Assume now that the decision maker obtains access to a new data set D′. This
data set may take the form of a ”continuation” of the history recorded in D, i.e.,
D ⊆ D′. For the purposes of the discussion below, we will use the classification
problem described in Section 2.2.1 to illustrate the different scenarios. In this
context, D may be the data set initially used for training, while D′ corresponds
to the training data set together with the correctly labeled test data-set, after
testing has been completed and the correct classification revealed. We will write

D =
{
(xn, rn)

N
n=1

}
and D′ =

{
(x′

n, r
′
n)

N ′

n=1

}
for the two data sets in question. For

the purposes of the following discussion, we will assume that the decision maker
uses the same utility function u to evaluate lotteries over outcomes independently
of the data set D.

5.1 Statistical learning

Statistical learning corresponds to the case in which no new characteristics are
observed in the data. Instead, learning concerns the frequency of characteristics
as well as the classification frequencies.

Consider a set of characteristics XD ⊆ X and an initial data set D. Consider a
class of data sets which are a continuation of D and contain no new characteristics:

D (D) =
{
D ◦ D̃ | XD̃ ⊆ XD

}
.

Relative to the initial data in D, the new data confirm that only characteristic
in the set XD are relevant. With D′ = D ◦ D̃, The decision maker would thus find
it less likely that ”other” characteristics could be observed in the future, suggest-
ing γD′ < γD for each D′ ∈ D (D). In a special, but particularly relevant case,
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D′ = D ◦D exactly replicates the information in D, so that fD′ (x) = fD (x) and
ρD (a (k, x) , x) = ρD′ (a (k, x) , x) remain unchanged for all x and all classification
functions a (k, x). By Proposition 1, the outcomes of “other” categories also re-
main unchanged, RD (a1, xo) = RD′ (a1, xo). Thus, the evaluations of algorithms
conditional on the two data sets D and D′ can only differ because of differences in
the subjective parameters of unawareness γ and the degree of optimism, αo. Since
the new data confirm the already available evidence, the decision maker’s attitude
towards ambiguity should not change, αo

D′ = αo
D.

For example, the following process for γ can be considered:

γD′ =
γ

D
N

N + (1− γ
D
) (N ′ −N)

< γD.

One can think of the probability distribution resulting from D as determining the
parameters of a Dirichlet distribution prior on X̂D given by: (1− γD) fD + γDδxo .
In this case, the formula above corresponds to the Bayesian update of the likelihood
assigned to other characteristics based on the Dirichlet prior. Clearly, an increase
in N ′ leads to a lower γD′ , and thus, to a lower perception of unawareness. Using
the number of instances of observation of ”other” characteristics in the data set
D, i.e., the total number of characteristics in XD, |XD| as a proxy for γD allows
us to further specify γD as:

γD =
|XD|

N + |XD|
(8)

Finally, suppose that the set of characteristics X coincides with XD, i.e., all
characteristics have already been observed in the initial data set D. Suppose also
that there is a distribution µ ∈ ∆(XD) such that the observed characteristic in
a case i is drawn identically and independently from µ. For a given D, µ defines
a measure π on the set of infinite sequences (x1, x2...) observed in a data set in
D (D). We then have that, on the class of data-sets D (D)

lim
N→∞

fD =π-a.s. µ

and since
lim

N→∞
γD = 0

lim
N→∞

(1− γD) fD + γDδxo =π-a.s. µ

We thus conclude that as the number of observations increase, the decision
maker will use the actual probability distribution over characteristics µ and will
assign a 0-weight to ”other” characteristics leading to the evaluation of an action
(π-a.s.) given by:

lim
N→∞

VD (a) =
∑
x∈XD

µ (x)
∑
k

lD (k, x) ln (a (k, x)) .

If, furthermore, the classification likelihoods also follow an i.i.d. process with
probabilities λ (k, x), lD (k, x), we will obtain π-a.s.,

lim
N→∞

VD (a) =
∑
x∈XD

µ (x)
∑
k

λ (k, x) ln (a (k, x)) .
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In the limit, evidence from data allows for learning whenever the set of characteris-
tics is well identified and when the underlying uncertainty conforms to a stationary
distribution. In this sense, our approach incorporates the standard Bayesian ap-
proach to statistical learning as a special case.

5.2 Learning new characteristics

As described above, statistical learning applies to well-structured environments in
which new data ”confirm” existing evidence. More generally, however, information
in the form of data will make the decision maker aware of new features of the
environment, such as the existence of new characteristics. We now turn to this
scenario

5.2.1 Learning Other Characteristics

Consider first the case, in which the set of observed relevant categories T remains
unchanged, but within a given category, a new characteristic is observed. Such
a characteristic can correspond to a previously unobserved color of a ball drawn
from an urn, or a new traffic situation to be learned by an autonomous vehicle
(e.g., a low-flying wild turkey at risk to collide with the windshield of the car), etc.

Suppose thus that a data-set D′ contains a single new characteristic previously
unobserved in the data-set D, xt,new for category t, e.g.,

D′ = D ◦ (xnew, k)

How would the observation of new cases containing the new characteristic xnew

change the decision maker’s preferences? First, the observation (xnew, k) will serve
as confirmation for the existence of such ”other” characteristics, xo. This will re-
inforce the perceived ambiguity and increase γ so that γD′ > γD. For instance, the
specification of γD in (8) satisfies this property and increases with the observation
of a new characteristic.

The second effect of the observation of the new characteristic consists in ob-
taining the empirical classification likelihood of an object with such ”other” char-
acteristics xo, l (x

new). This allows the decision maker to compare the ”in-sample”
performance of an algorithm (relative to the training data in D) to its ”out-of-
sample” performance in the test set. Let B∗ (D) be the (set16 of) optimal algo-
rithms for data set D. We can now compare the in-sample performance of an
optimal algorithm a∗ (D) ∈ B∗ (D) on XD to its ”out-of-sample” performance on
xnew:

VD′|XD
(a∗ (D)) > (<)VD′|{xnew} (a

∗ (D)) (9)

We will call the observation (xnew, k) a positive surprise if

VD′|XD
(a∗ (D)) < min

a∗(D)∈B∗(D)
VD′|{xnew} (a

∗ (D)) (10)

16Non-trivial multiplicity can result for a (k, xo) even when the utility function u is strictly
concave, because of the non-convexity of the optimization problem generated by a strictly positive
degree of optimism.
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and thus, all of the optimal algorithms for D perform strictly better out-of-sample
than in sample. If instead,

VD′|XD
(a∗ (D)) > max

a∗(D)∈B∗(D)
VD′|{xnew} (a

∗ (D)) (11)

then all of the optimal algorithms for D perform strictly worse out-of-sample, we
speak of a negative surprise. Intuitively, the observation of a new characteristic
represents a positive surprise, when the decision maker learns that he is able to
better forecast the class of ”other” characteristics for any of the optimally deter-
mined algorithms than that of already observed ones. This may have an effect
on the expectations the decision maker forms about his ability to predict the cor-
rect class for other yet unobserved characteristics making him more optimistic
(pessimistic) increasing (decreasing) the degree of optimism αo related to ”other”
characteristics, αo

D′ > (<)αo
D.

Combining the learning about new characteristics with statistical learning al-
lows for a dynamics similar to that discussed in Grant et al. (2017): suppose that
the initial information provided to a decision-maker is a data-set within D (D).
For such a data-set, the decision-maker entertains some degree of ambiguity γD.
As long as incoming information confirms that characteristics come from the same
set XD, i.e., the data-set remains in D (D), perceived ambiguity decreases, while
(absent observations of so far unlabeled characteristics), both the degree of opti-
mism for observed and for unobserved characteristics remain constant. However,
upon an observation of a new characteristic, the new data-set no longer belongs to
D (D). The degree of ambiguity increases as a result of the experienced surprise.
The new data set forms the base for a new class of data sets D (D′). Afterwards, as
long as no new characteristics are observed the decision maker reverts to statistical
learning and ambiguity once again decreases.

5.2.2 Learning about Unlabeled Examples

We next consider the case in which the data set is augmented by an observation

of a so far unlabeled characteristic, x̂,
(
x̂, k̂

)
. Let LD (x̂) be the initial prediction

of the classification likelihood for the unlabeled example containing x̂.
The labeled observation of x̂ will have two effects: first, just as in the case of

statistical learning, it will serve as confirmation that the relevant characteristics
belong to the set XD and will thus lead to a decrease in γ. However, just as in
the case of observing a new characteristic, the new observation can serve as a test
as to how well the optimal algorithms in D classify actual observations ”out-of-
sample” (for unlabeled examples). It is straightforward to restate the definition of
a positive / negative surprise by replacing xnew in definitions (10) and (11) by x̂
with the same interpretation as above.

A positive surprise with respect to unlabeled characteristics might have an ef-
fect on the expectations the decision maker forms about his ability to predict the
correct class for characteristics with unobserved classification, making him more
optimistic and increasing the degree of optimism α related to observed character-
istics.
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In Section 8 below, we state formally the axioms which imply the properties of
the subjective perception of unawareness and degree of optimism discussed above
in Sections 5.1, 5.2.1 and 5.2.2.

5.2.3 Contradictory evidence and new categories

When observable characteristics fail to uniquely predict the outcome of an action,
the decision maker may perceive data as contradictory and suggest that some un-
observed underlying factor may be relevant for the correct classification of objects.
Consider, e.g., a data set D in which all objects with characteristic x are classified
to be of class k, lD (x, k) = 1. The decision maker, therefore, selects an algorithm
which assigns predicts k for characteristic x with probability 1: a (x, k) = 1. As-
sume that this algorithm is applied to the test data set D̃ of the same length as D.
The correct classification of the test data set is subsequently observed and results
in lD̃ (x, k′) = 1 with k′ ̸= k: in the test set, all objects with characteristic x are
classified as k′. 17 How should the decision maker evaluate the algorithm (and in
particular, a (x, k)) in the new data set D′ = D ◦ D̃? While it is certainly possible
to use the combined frequency of observations, lD′ (x, k) = lD′ (x, k′) = 1

2
, if the

decision maker is cautious, when faced with the evidence he might be unwilling
to commit himself to a specific likelihood, and instead, similarly to the approach
suggested in Remark 4, use a set of likelihoods,

LD′ (x) = {ηδk + (1− η) lD′ (x) , ηδk′ + (1− η) lD′ (x)}

This set combines the objective frequencies lD′ (x, k) with the extreme scenarios
of one of the observed classes having a probability of 1. Note that each such
situation would correspond to the potential discovery of a characteristic for which
the outcome x is classified as k (or k′) for sure. Each of the distributions obtained
is an “η-distance” away from the realized frequency. The parameter η can be
interpreted as the subjective relevance assigned to the identification of a category
which would allow to differentiate between the two classes to which x may belong.
Special cases of such beliefs are η = 0, for which the relevance of identifying the
unobserved category is null; and η = 1, for which it is maximal. Let a∗ (x) denote
the classification prescribed by the optimal algorithm for x given η.

5.2.4 The value of new categories

We can now use the representation of preferences over algorithms to determine
the value of identifying the new category. To do so, suppose that a data set
D̃′ with a discriminatory category XT+1 =

{
xT+1
1 , xT+1

2

}
is discovered such that

the correct class of
(
x, xT+1

1

)
is always k, whereas for

(
x, xT+1

2

)
, it is k′. Let

fD̃′

(
x, xT+1

1 , k
)
= fD̃′

(
x, xT+1

2 , k′) = 1
2
.

17Similar problems arise when randomized controlled trials are conducted in different countries
and document varying levels of success of the policy intervention studied. A simple aggregation
of the results without taking into account locally specific factors might significantly bias the
results, see Deaton and Cartwright (2018).
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Three effects obtain. First, the likelihoods for each characteristic,
(
x, xT+1

1

)
and

(
x, xT+1

2

)
become:

lD
(
x, xT+1

1

)
= δk

lD
(
x, xT+1

2

)
= δk′

and the likelihood of an object with characteristic x (without the specification of
xT+1) to belong to class k or k′ is lD̃′ (x, k) = lD̃′ (x, k′) = 1

2
. This corresponds to a

decrease in perceived ambiguity and will affect the evaluation of algorithms through
the parameters of optimism and pessimism. For a pessimistic decision maker,
α = 0, the change in beliefs will positively affect the evaluation of all possible
algorithms. For an optimistic decision maker (α = 1), reduction of ambiguity will
decrease the evaluation of the algorithms.

The second effect results from the fact that algorithms now can condition on the
newly identified category. The optimal algorithm can now be adapted to predict
ã∗

(
x, xT+1

1 , k
)
= 1 and ã∗

(
x, xT+1

2 , k′) = 1 to obtain a payoff of 1 in the training
data set, regardless of the realization of xT+1. This is Blackwell’s effect, which is
always positive.

The identification of a new category also expands the set of characteristics and,
with it, the set of possible algorithms. This may correspond to an increase in com-
plexity, as captured, e.g., by the VC-dimension of the set of possible algorithms,
see Vapnik (2018, p. 145). The cost of such complexity is captured by the number
of observations necessary to make reliable predictions. This, in turn, corresponds
to the notion of ambiguity related to a limited number of observations. As long as
the VC-dimension remains finite, a larger number of observations will be needed
to obtain a prediction which limits the expected number of mistakes. This third
effect may result in beliefs which are not single-valued, but take into account com-
plexity is a source of ambiguity. In our example, the new subjective beliefs could
be given by:

LD̃′

(
x, xT+1

1

)
=

{
δk,

(
1− ϵD̃′

(
x, xT+1

1

))
δk + ϵD̃′

(
x, xT+1

1

)
δk′

}
LD̃′

(
x, xT+1

2

)
=

{
δk′ ,

(
1− ϵD̃′

(
x, xT+1

2

))
δk′ + ϵD̃′

(
x, xT+2

1

)
δk
}

We call the difference in payoffs between the two optimal algorithms a∗ (x) and
ã∗ (x, ·)

V NC(x, η) := VD̃′ (ã∗ (x, ·))− VD′ (a∗ (x))

the value of identifying the new category XT+1. V NC depends on the trade-off
between the three effects described above and gives determine the willingness to
pay for the discovery of new categories. Consider a pessimistic decision maker. If
current ambiguity due to the contradictory nature of evidence is large, whereas the
number of observations is sufficient, the negative effect of increase in complexity
will be negligible, and the new category will be adopted. In contrast, if the amount
of available data is small, the decision maker may group together categories to allow
for faster learning, as discussed in Remark 5.
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This discussion shows that our framework allows us to also formally model
the perception of “other” categories, as well as the perception of “other” charac-
teristics. This perception relies on beliefs about the nature and the structure of
the data, which cannot however be inferred from the data set itself. Thus, just
as with the perception of unawareness about other characteristics, the percep-
tion of unawareness about other categories is an individual subjective feature of
the decision-maker and may depend on the context in which learning takes place.
From a formal point of view, however, our representation derived in Theorem 1 can
be used to evaluate actions given such unawareness and can also capture the fact
that unawareness will disappear, once the relevant categories have been identified,
potentially to be replaced by ambiguity due to the increase in complexity.18

6 Concluding remarks: From characteristics to

states

In an ideal Savagean world, data are perfectly adapted to the description of un-
certainty by a set of states of the world. In particular, the decision maker is
aware of and knows all contingencies and there are no unobserved categories, or
characteristics. Notably, the following three conditions are satisfied:

(i) The set XD corresponds exactly to the Savagean state-space S, XD = S.

(ii) Actions are functions from states to outcomes: a : S → R. For each action,
a ∈ AD, and each characteristic, x ∈ XD, exactly one outcome is observed
in the data, i.e., supp (ρD (· | a, x)) is a singleton for all a and x.

(iii) There are no redundant categories and characteristics, i.e., for each t ∈ T ,
xt ̸= x̃t implies that there is an a ∈ AD and x−t ∈ Πτ ̸=tX

τ
D such that

ρD (· | a, (xt, x−t)) ̸= ρD (· | a, (x̃t, x−t)).

Suppose that the number of relevant contingencies is finite and that within a finite
number of observations, all combinations (a, x) are observed in the data. If condi-
tions (i)–(iii) are satisfied, arrival of new data corresponds to the case of statistical
learning as described in Section 5.1. Since all possible characteristics have already
been observed, no surprises occur. Thus, as the number of observations goes to
∞, γD → 0. The decision maker behaves like an expected utility maximize w.r.t.
the state space S = XD. Probabilities coincide with limit frequencies recorded in
the data.

Few decision situations satisfy the conditions listed above. A decision maker
who wishes to be a Savagean, but is faced with empirical data that do not per-
fectly fit the desiderata has to learn the best approximation of such a model given
available evidence.

18Grant et al. (2020) model the perception of ambiguity due to unawareness of propositions,
as well as the process by which such ambiguity diminishes as the decision-maker’s awareness
increases.
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The first type of learning was discussed in Section 5.2 and concerns becoming
aware of new characteristics. We can model awareness of such unawareness by
using a placeholder characteristic xo which is taken into account for the evaluation
of actions. As explained above, such learning increases the set of relevant charac-
teristics, while at the same time increasing the degree of unawareness concerning
the existence of ”other” yet unobserved characteristics.

The second type of learning concerns the learning of new categories discussed
in Section 5.2.3. For a Savagean decision maker, an action which results in two
distinct outcomes for a given state entails a contradiction and signals that the
state-space is not well-specified. Call a data set D consistent if for each a and x, a
has resulted in a single outcome in combination with x and thus, supp(ρD (· | a, x))
is a singleton. Otherwise, we call the data set inconsistent. Let

XC
D = {x | supp(ρD (· | a, x)) is not a singleton for some a}

be the set of characteristics for which such indeterminacy of outcomes has been
generated. From the point of view of a Savagean decision maker, these are the
characteristics in need of refinement if they were to represent states of the world.
The existence of such characteristics signals the decision maker’s awareness that he
is unaware of some relevant categories, without knowing explicitly what those could
be. Such awareness of unawareness, in a natural way, also leads to ambiguity: the
decision maker assigns multiple payoffs to an already observed (a, x) combination,
rather than using the generated frequency of outcomes in the data.

In turn, observing a relevant category tnew such that supp(ρD (· | a, (x, xnew)))
is a singleton for each realization of the characteristic xnew, restores consistency of
the data set, but might generate ambiguity if the relevant characteristics have not
been measured for past observations.

As the decision maker learns new categories and thus, the elements of the
support of ρD (· | a, x) can be attributed to distinct characteristics, and as sufficient
observations of the so-refined characteristics are gathered, so that the number of
missing observations becomes negligible, the two types of ambiguity related to
categories also vanish.

Finally, new measurement methods might lead to the observation of new cate-
gories, even though these might appear redundant given the empirical information
available. In particular, if ρD (· | a, (xt, x−t)) = ρD (· | a, (x̃t, x−t)) holds for all xt,
x̃t ∈ X t, all x−t ∈ Πτ ̸=tX

τ
D and all a ∈ AD, the decision maker may decide that

the relevant state-space S = Πτ ̸=tX
τ
D is a sufficient description of the underlying

uncertainty, all be it coarser than the one suggested by the data set, XD.
Whether or not such coarsening of the state-space is warranted will be an em-

pirical question. As data accumulate, such coarsening might need to be reversed,
as new observations might result in an inconsistent data set signaling that category
t is not redundant after all. The process described above would then repeat.

The preceding discussion is closely related to the literature on unawareness.
Notably, the type of learning described in Section 4.2 corresponds to the decision
maker initially perceiving a reduction of the actual state-space, which then expands
to take into account new contingencies, see e.g., Grant and Quiggin (2013a,b);
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Grant et al. (2017). In contrast, learning new categories (Section 4.3) models an
initial situation of coarsening of the state-space, which is sequentially refined, see,
e.g., Grant and Quiggin (2006); Dominiak and Guerdjikova (2021). The works
of Karni and Vierø (2013); Karni and Vierø (2017) and Vierø (2021) also model
expansion of the state-space, though one related to the discovery of new acts or new
outcomes, as opposed to learning new characteristics. The model we presented here
provides a unified framework which captures these phenomena and relates them
to empirical data.

Finally, the issue of complexity and related to it, the ability to learn the ac-
tual distribution of states and outcomes, is highly relevant. Refinements of the
set of characteristics increase the complexity of the problem (formally, the VC-
dimension) so that learning requires a larger set of observations. Modelling the
cost of complexity and the related problem of structural risk-minimization are left
as avenue for future research.

7 Appendix: Proofs

We prove the results of Theorem 1 using a sequence of Propositions. Combining
the result of Jaffray (1989) with the implications of the first three axioms in the
Anscombe-Aumann framework, see Kreps (1988, p. 102), we obtain:

Proposition 2. Preferences ≿ on AD satisfy Axioms 1 – 3 iff there exist functions
U : RD → R and Uo : ℜD → R such that for a = (ma, R

o
a) and b = (mb, R

o
b)

(ma, R
o
a) ≿ (mb, R

o
b) iff∑

R∈supp(ma)

ma (R)U (R) + Uo (R
o
a) ≥

∑
R∈supp(mb)

mb (R)U (R) + Uo (R
o
b) .

Furthermore, Uo is affine and U and Uo are unique up to a positive-affine trans-
formation with a common multiplication factor z1 > 0.

Lemma 3. Assume that preferences ≿ satisfy Axioms 1–4.

(i) For some singleton sets {ρ̄} and
{
ρ
}
∈ RD and for any m̃ ∈ ∆(RD),

(m̃, {ρ̄}) ≿ (m̃, {ρ}) ≿
(
m̃,

{
ρ
})

(12)

holds for all singleton sets {ρ} ∈ RD.

(ii) For m̄ and m satisfying m̄ ({ρ̄}) = 1 and m
({

ρ
})

= 1, and for any Ro ∈ ℜD,

(m̄, {Ro}) ≿ (m,Ro) ≿ (m,Ro) ,

holds for any m with m ({ρ}) = 1 for some singleton {ρ} ∈ RD.

(iii) If
(m̄, {ρ̄}) ≻

(
m,

{
ρ
})

there exists a unique γD ∈ [0, 1] such that

(m, {ρ̄}) ∼
(
γDm̄+ (1− γD)m, γD {ρ̄}+ (1− γD)

{
ρ
})

.
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Using Axioms 1–4 we obtain the following result.

Proposition 3. Suppose that ≿ satisfy Axioms 1–4. If

(m̄, {ρ̄}) ≻ (m, {ρ̄}) ≻
(
m,

{
ρ
})

, (13)

then γD satisfies γD ∈ (0, 1). Furthermore, there exist functions U : RD → R and
UO : ℜD → R such that for a = (ma, R

o
a) and b = (mb, R

o
b)

(ma, R
o
a) ≿ (mb, R

o
b) iff

(1− γD)
∑

R∈supp(ma)

ma (R)U (R) + γDUO (Ro
a)

≥ (1− γD)
∑

R∈supp(mb)

mb (R)U (R) + γDUO (Ro
b) ,

where U is the function identified in Proposition 2 and there is a unique γD such
that UO ({ρ}) = U ({ρ}) for all singleton sets {ρ} ∈ RD and UO (R) = 1−γD

γD
Uo (R)

for any R ∈ ℜD.
UO is affine and U and UO are unique up to a positive-affine transformation

with a common multiplication factor z1 > 0.

A consequence of the last part of the proof of Proposition 3 is that {ρ̄} and{
ρ
}
are also the best and the worst singleton elements of ℜD and that each of

them can be taken to be a Dirac measure on a single outcome, ρ̄ = δr̄, ρ = δr,
where r̄ and r, are respectively the best and the worst outcome in RD.

Corollary 3. The two inequalities in (12) hold for all singleton sets {ρ} ∈ ℜD.
Furthermore, one can set ρ = δr and ρ̄ = δr̄, for some r and r̄ ∈ RD. Finally,
there exists a utility function over outcomes u : RD → R which is unique up to a
positive-affine transformation and satisfies:

u (r) = U ({δr}) = UO ({δr})

for any r ∈ RD and

U ({ρ}) =
∑
r∈RD

u (r) ρ (r) for all {ρ} ∈ RD

UO ({ρ}) =
∑
r∈RD

u (r) ρ (r) for all {ρ} ∈ ℜD.

A straightforward adaptation of Jaffray (1989)’s result yields the following
proposition.

Proposition 4. The preference order ≿ on AD satisfies Axioms 1–5 iff there exist
a non-constant functions wd : ∆ (RD) × ∆(RD) → R non-decreasing w.r.t. the
order ≿d in its arguments, a non-constant function wo : ∆ (RD) × ∆(RD) → R
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non-decreasing w.r.t. the order ≿o in its arguments, and a unique weight γD ∈
(0, 1) such that

(ma;Ra) ≿ (mb;Rb) iff (14)∑
R∈RD

(1− γD)ma (R)wd
(
ρ
R
, ρR

)
+ γDw

o
(
ρ
Ra
, ρRa

)
≥

∑
R∈RD

(1− γD)mb (R)wd
(
ρ
R
, ρR

)
+ γDw

o
(
ρ
Rb
, ρRb

)
.

where wd (ρ, ρ) = wo (ρ, ρ) for all ρ such that {ρ} ∈ RD and wo (ρ, ρ) =
∑

r∈RD
u (r) ρ (r),

where u is the utility function over outcomes. The weights wo and wd are unique
up to a positive-affine transformation with a common factor z1 > 0.

Proof of Theorem 1
By representation (14), we can write for any R ∈ ℜD,

UO (R) = αo
D

(
ρ
R
, ρ̄R

)
wo (ρ̄R, ρ̄R)+

(
1− αo

D

(
ρ
R
, ρ̄R

))
wo

(
ρ
R
, ρ

R

)
= UO

({
ρ
R
, ρ̄R

})
(15)

and for any R ∈ RD,

U (R) = αD

(
ρ
R
, ρ̄R

)
wo (ρ̄R, ρ̄R)+

(
1− αD

(
ρ
R
, ρ̄R

))
wo

(
ρ
R
, ρ

R

)
= U

({
ρ
R
, ρ̄R

})
(16)

It is thus sufficient to determine UO and U for sets with two elements (the case
ρ
R
= ρ̄R has already been discussed above).
Consider thus ρ, ρ′ ∈ ∆(RD) with ρ ≻ ρ′, the corresponding set of these two

outcome distributions Ra = {ρ, ρ′} and the singleton set Rb = {αρ+ (1− α) ρ′}
for some α ∈ [0, 1]. By continuity, Axiom 3, there exists a unique α such that for
some (and then all) m ∈ ∆(RD), (m,Ra) ∼ (m,Rb). By Proposition 4, we then
have:

UO (Ra) = α (ρ′, ρ)
∑
r∈RD

u (r) ρ (r) + (1− α (ρ′, ρ))
∑
r∈RD

u (r) ρ′ (r)

= α
∑
r∈RD

u (r) ρ (r) + (1− α)
∑
r∈RD

u (r) ρ′ (r) = UO (Rb)

and, thus, αo
D (ρ′, ρ) = α.

By Axiom 6, for any ρ′′, ρ′′′ ∈ ∆(RD) with ρ′′ ≻ ρ′′′, the corresponding set
of these two outcome distributions Rc = {ρ′′, ρ′′′} and the singleton set Rd =
{αρ′′ + (1− α) ρ′′′} we have (m,Rc) ∼ (m,Rd). We thus obtain αo

D (ρ′′′, ρ′′) =
αo
D (ρ′, ρ) = α for any ρ, ρ′, ρ′′ and ρ′′′. It follows that

αo
D

(
ρ
R
, ρ̄R

)
= α

for all ρ
R
and ρ̄R and thus, for all R ∈ ℜD. Setting αo

D = α thus implies that for
any R ∈ ℜD,

UO (R) = αo
D max

ρ∈R

∑
r∈RD

u (r) ρ (r) + (1− αo
D)min

ρ∈R

∑
r∈RD

u (r) ρ (r) (17)
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and thus, the optimism parameter for unobserved characteristics xo does not de-
pend on the set of outcomes R.

The argument that Axiom 7 implies that there exists an αD ∈ [0, 1] such that
for any R ∈ RD,

U (R) = αD max
ρ∈R

∑
r∈RD

u (r) ρ (r) + (1− αD)min
ρ∈R

∑
r∈RD

u (r) ρ (r) (18)

is analogous and thus omitted.
Combining the representation in Proposition 3 with the expressions in (17) and

(18) gives the desired representation.□

7.1 Online Appendix

Proof of Lemma 1:
Note that for each set of outcome distributions R ∈ ℜD, there is a constant

action āR which has R as the set of outcomes for each x ∈ XD, a (x) ≡ R. The
Dirac measures δR ∈ ∆(RD) are elements of M(AD, fD) since for each R ∈ ℜD,
āR ∈ AD.

Moreover, the set of Dirac measures {δR | R ∈ ℜD} are the extreme points of
the simplex ∆ (RD). By Carathéodory’s theorem, every m ∈ ∆(RD) can be
obtained as a convex combination of these extreme points. □

Proof of Lemma 3:
(i) Note that according to Corollary 1, by the finiteness of RD and the fact

that {δr} ∈ RD for each r ∈ RD, we have that there exist singleton sets {ρ̄} and{
ρ
}
∈ RD such that for some (and thus, for any) m̃ ∈ ∆(RD),

(m̃, {ρ̄}) ≿ (m̃, {ρ}) ≿
(
m̃,

{
ρ
})

holds for all singleton sets {ρ} ∈ RD. We refer to {ρ̄} and
{
ρ
}
as the best and

the worst singleton element of RD.
(ii) Given the statement of part (i), the implication of Axiom 4 is that for m̄

and m satisfying m̄ ({ρ̄}) = 1 and m
({

ρ
})

= 1, and any m with m ({ρ}) = 1 for
some singleton {ρ} ∈ RD, we have for some (and thus for any) Ro ∈ ℜD,

(m̄, {Ro}) ≿ (m,Ro) ≿ (m,Ro) ,

i.e., m̄ andm are the best and the worst elements in ∆ (RD) among those assigning
full mass to singleton sets.

(iii) To show part (iii), consider next the extended action defined by (m, {ρ̄}).
We have, by Corollary 1,

(m̄, {ρ̄}) ≿ (m, {ρ̄}) ≿
(
m,

{
ρ
})

.

If (m̄, {ρ̄}) ≻
(
m,

{
ρ
})

, by continuity, Axiom 3, there exists a unique γD ∈ [0, 1]
such that

(m, {ρ̄}) ∼
(
γDm̄+ (1− γD)m, γD {ρ̄}+ (1− γD)

{
ρ
})
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Proof of Proposition 3:
Using γD identified in part (iii) of Lemma 3 and the representation from Propo-

sition 2, we have:

U
({

ρ
})

+ Uo ({ρ̄}) = γDU ({ρ̄}) + (1− γD)U
({

ρ
})

+γDUo {ρ̄}+ (1− γD)Uo

{
ρ
}

(1− γD)
[
Uo ({ρ̄})− Uo

({
ρ
})]

= γD
[
U ({ρ̄})− U

({
ρ
})]

(19)

When condition (13) holds, we have that γD ̸∈ {0, 1} and we can rewrite (19) as:[
Uo ({ρ̄})− Uo

({
ρ
})]

=
γD

1− γD

[
U ({ρ̄})− U

({
ρ
})]

(20)

By continuity, Axiom 3, we have that for any singleton {ρ} ∈ RD, there is a
unique coefficient λρ ∈ [0, 1] such that for any m̃ ∈ ∆(RD)(

m̃, λρ {ρ̄}+ (1− λρ)
{
ρ
})

∼ (m̃, {ρ})

and by Axiom 4, this is equivalent to the statement that for m such that m ({ρ}) =
1 and any Ro ∈ ℜD,

(λρm̄+ (1− λρ)m,Ro) ∼ (m, {Ro}) .

Hence, normalizing, w.l.o.g. U
({

ρ
})

= Uo

({
ρ
})

= 0 and U ({ρ̄}) = 1 and
thus, by (20) Uo ({ρ̄}) = γD

1−γD
, we obtain that for any {ρ} ∈ RD,

U ({ρ}) = λρ

Uo ({ρ}) =
γD

1− γD
λρ.

Using the representation in Proposition 2, we thus obtain that for ma and
mb which put their entire mass on singleton sets, i.e., supp (ma), supp (mb) ⊆
{{ρ} ∈ RD} and Ro

a = {ρa}, Ro
b = {ρb} for some singletons {ρa}, {ρb} ∈ RD, we

have

(ma, R
o
a) ≿ (mb, R

o
b) iff∑

{ρ}∈supp(ma)

ma ({ρ})U ({ρ}) + γD
1− γD

U ({ρa})

≥
∑

{ρ}∈supp(mb)

mb ({ρ})U ({ρ}) + γD
1− γD

U ({ρb})

iff

(1− γD)
∑

{ρ}∈supp(ma)

ma ({ρ})U ({ρ}) + γDU ({ρa})

≥ (1− γD)
∑

{ρ}∈supp(mb)

mb ({ρ})U ({ρ}) + γDU ({ρb}) .
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Note further than since Uo is affine, we have that for any ρ ∈ ∆(RD),

Uo ({ρ}) =
∑
r∈RD

ρ (r)Uo ({δr}) .

Since {δr} ∈ RD for every r ∈ RD, this implies, that we can set ρ = δr and
ρ̄ = δr̄, where r is the ”worst” and r̄, the ”best” outcome in RD. It is then obvious
that the two inequalities in (12) hold for all singleton sets {ρ} ∈ ℜD, and we can
thus refer to {ρ̄ = δr̄} and

{
ρ = δr

}
as the best and the worst singleton element of

ℜD. Thus, we can define u (r) = UO ({δr}) = 1−γD
γD

Uo ({δr}) = U ({δr}) for every
r ∈ RD so as to obtain for any ρ ∈ ∆(RD)

Uo ({ρ}) =
γD

1− γD

∑
r∈RD

ρ (r)U ({δr}) =
γD

1− γD

∑
r∈RD

ρ (r)u (r) (21)

and any {ρ} ∈ RD

U ({ρ}) =
∑
r∈RD

ρ (r)U ({δr}) .

Define the function UO : ℜD → R as follows. Let

UO ({ρ}) = U ({ρ}) =
∑
r∈RD

ρ (r)U ({δr}) =
∑
r∈RD

ρ (r)u (r) (22)

for all ρ ∈ ∆(RD). Provided that γD ̸= 0, for any R ∈ ℜD, we can define
UO (R) = 1−γD

γD
Uo (R) (note that by (21) and (21), this equality also holds for

singletons {ρ} ∈ ℜD). The so-defined UO (R) = 1−γD
γD

Uo (R) is a positive-affine
transformation of Uo determined in Proposition 2. Indeed, we obtain that for
a = (ma, R

o
a) and b = (mb, R

o
b)

(ma, R
o
a) ≿ (mb, R

o
b) iff∑

R∈supp(ma)

ma (R)U (R) + Uo (R
o
a)

≥
∑

R∈supp(mb)

mb (R)U (R) + Uo (R
o
b)

iff ∑
R∈supp(ma)

ma (R)U (R) +
γD

1− γD
UO (Ro

a)

≥
∑

R∈supp(mb)

mb (R)U (R) +
γD

1− γD
UO (Ro

b)

iff

(1− γD)
∑

R∈supp(ma)

ma (R)U (R) + γDUO (Ro
a)

≥ (1− γD)
∑

R∈supp(mb)

mb (R)U (R) + γDUO (Ro
b) .□
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Proof of Proposition 4:
Since the comparison between any two sets, R and R′ depends only on their

best and worst elements, since the ordering of the best and the worst elements is
the same as that of the singletons and coincides on the set RD and since the best
and the worst singletons on both RD and ℜD are given by {δr̄} and {δr}, we have
that for any (m,Ro) ∈ Ao

D,

(m ({δr̄}) = 1, {δr̄}) ≿ (m,Ro) ≿ (m ({δr}) = 1, {δr}) ,

or in the notation of Lemma 3,

(m̄, {ρ̄}) ≿ (m,Ro) ≿
(
m,

{
ρ
})

By Corollary 1, we further have:

(m̄, Ro) ≿ (m,Ro) ≿ (m,Ro) (23)

while by the non-triviality condition in Axiom 1, we have that there is an (m,Ro)
for which either:

(m,Ro) ≻ (m,Ro) or

(m̄, Ro) ≻ (m,Ro) .

If (m,Ro) ≻ (m,Ro), we have by Corollary 1 that

(m̄, {ρ̄}) ≻ (m,Ro) ≿
(
m,

{
ρ
})

and thus, (m̄, {ρ̄}) ≻
(
m,

{
ρ
})

, whereas if (m̄, Ro) ≻ (m,Ro), we have

(m̄, {ρ̄}) ≿ (m̄, Ro) ≻
(
m,

{
ρ
})

and thus, again (m̄, {ρ̄}) ≻
(
m,

{
ρ
})

. It follows that the γD identified in Lemma
3 is unique.

Next, observe that
(m̄, {ρ̄}) ∼ (m, {ρ̄})

would contradict the non-triviality assumption imposed by Axiom 1. Indeed, it
would imply, by Corollary 1 and by equation (23),

(m̄, Ro) ∼ (m,Ro) ∼ (m,Ro)

for all m ∈ ∆(RD) and all Ro ∈ ℜD, in contradiction to Axiom 1. It follows that
(m̄, {ρ̄}) ≻ (m, {ρ̄}).

Next, assume that there is an m ∈ ∆(RD) and R and R′ ∈ ℜD such that
(m,R) ≻ (m,R′). Thus,

(m, {ρ̄}) ≻
(
m,

{
ρ
})

,

which by Lemma 3 implies that γD ∈ (0, 1) and, thus, the representation of
Proposition 3.
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Thus, we can set U (R) = wd
(
ρ
R
, ρR

)
and UO (R) = wo

(
ρ
R
, ρR

)
. By Propo-

sition 3, these functions coincide on singleton sets {ρ} ∈ RD, i.e.,

wd (ρ, ρ) = wo (ρ, ρ)

and by Corollary 3, we can thus set wo (ρ, ρ) =
∑

r∈RD
u (r) ρ (r), where u is the

utility function over outcomes identified in the Corollary. The uniqueness of the
functions wo and wd follows from the respective uniqueness of U , UO and u.

Hence the result of the Proposition obtains, provided that there is an m ∈
∆(RD) and R and R′ ∈ ℜD such that (m,R) ≻ (m,R′) holds.

To complete the proof thus, suppose in a manner of contradiction that there
are no m ∈ ∆(RD), R and R′ ∈ ℜD such that (m,R) ≻ (m,R′). We then have

(m, {ρ̄}) ∼
(
m,

{
ρ
})

,

resulting in γD = 0. Furthermore, Uo ({δr̄}) = Uo ({δr}). Axiom 5 then implies,
Uo (R

o) = Uo ({δr}) for every Ro ∈ ℜD. But by Axiom 4, we then obtain that for
any λ ∈ [0, 1], any {ρ} ∈ RD, and m and m′ such that m ({ρ1}) = λ, m ({ρ2}) =
1− λ, m′ ({ρ}) = 1,

(m̄, Ro) ∼ (m,Ro) .

for some and thus, by Corollary 1, for any Ro ∈ ℜD. At the same time, Axiom 5
gives us:

(m̄, Ro) ∼ (m,Ro) ∼ (m,Ro)

for any m ∈ ∆(RD) for any Ro ∈ ℜD in contradiction to the non-triviality
assumption in Axiom 1. □

8 Appendix: Axiomatizing Preferences over Al-

gorithms with Learning

We here provide the necessary axioms which ensure that the behavior of the param-
eters of perception of unawareness and optimism satisfy the properties discussed
in Section 5. To do so, we concentrate on the special case of classification pre-
sented in Section 2.2.1 In particular, cases are pairs of characteristics and class,
(x, k), whereas actions are algorithms. For simplicity of exposition, we maintain
the notation a for an action described as a mass function as in the axiomatization
in Section 3.

Axiom 8 For any two data sets D and D′ ∈ D and any two ρa, ρb ∈ ∆[0,1],

(ma ({ρa}) = 1, {ρa}) ≿D (mb ({ρb}) = 1, {ρb})

iff
(ma ({ρa}) , {ρa}) ≿D′ (mb ({ρb}) = 1, {ρb}) .
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Axiom 8 implies that the utility function over outcomes is independent on the data
set.

Let D (D0) be the set of data sets which have the same set characteristics XD0

as D0.

Axiom 9a Let D and D′ ∈ D (D0) be such that D′ = D◦D̃. For any ρ, ρ′ ∈ ∆[0,1]

with ρ ≻ ρ′ and any Ro,

(ma ({ρ, ρ′}) = 1, Ro) ∼D (mb ({ρ}) = α, mb ({ρ′}) = 1− α,Ro)

for some α ∈ [0, 1] holds iff

(ma ({ρ, ρ′}) = 1, Ro) ∼D′ (mb ({ρ}) = α, mb ({ρ′}) = 1− α,Ro)

Axiom 9a implies that the coefficients of optimism, αD, for observed characteristics
remain unchanged across data-sets: αD = αD′ . Note that contrary to Axiom 8,
Axiom 9 is conditional on the fact that the sets of characteristics are the same
across the two data-sets. Thus, no surprises in the sense defined in the following
section are observed. It is straightforward to formulate a similar axiom in regards
to the degree of optimism relative to unobserved characteristics, αo. Since, the
cases in D0 in which all characteristics XD are observed are common to D and D′,
the set of surprises observed in D and in D′ is identical, implying that αo

D = αo
D′ :

Axiom 9b Let D and D′ ∈ D (D0) be such that D′ = D◦D̃. For any ρ, ρ′ ∈ ∆[0,1]

with ρ ≻ ρ′ and any m,

(m, {ρ, ρ′}) ∼D (m, {αρ+ (1− α) ρ′})

for some α ∈ [0, 1] holds iff

(m, {ρ, ρ′}) ∼D′ (m, {αρ+ (1− α) ρ′})

Our final axiom guarantees that perceived unawareness decreases with the number
of observations:

Axiom 10 For D and D′ ∈ D (D0) let the number of observations satisfy N ′ > N .
For any ρ, ρ′ ∈ ∆[0,1] with ρ ≻ ρ′, if for some λ ∈ [0, 1],

(ma ({ρ}) = 1, {ρ′}) ∼D ((ma′ ({ρ}) = λ, ma′ ({ρ′}) = 1− λ) , {λρ+ (1− λ) ρ′})

then

(ma ({ρ}) = 1, {ρ′}) ≻D′ ((ma′ ({ρ}) = λ, ma′ ({ρ′}) = 1− λ) , {λρ+ (1− λ) ρ′}) .

Axiom 10 compares for the two data sets D and D′ the action a, which assigns the
better outcome ρ to the observed characteristics and the worse one to the ”other”
characteristics to the action a′, which mixes ρ and ρ′ with a factor λ on both the
observed and on the ”other” characteristics. If the decision maker is indifferent
between these actions given D, this implies that the weight assigned to ρ′ and thus
to the ”other” characteristics in the evaluation of a is identical to λ. The axiom
then requires that this weight should decrease (with a becoming preferred to a′)
when the number of observations in the data set increases to that of D′.
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Axiom 11 Consider D ∈ DX such that XD ⊂ X and for xnew ∈ X\XD, k ∈ K,
let D̃ = (xnew, k)

D′ = D ◦ D̃
For any ρ, ρ′ ∈ ∆[0,1] with ρ ≻ ρ′, if for some λ ∈ [0, 1],

(ma ({ρ}) = 1, {ρ′}) ∼D ((ma′ ({ρ}) = λ, ma′ ({ρ′}) = 1− λ) , {λρ+ (1− λ) ρ′})

then

(ma ({ρ}) = 1, {ρ′}) ≺D′ ((ma′ ({ρ}) = λ, ma′ ({ρ′}) = 1− λ) , {λρ+ (1− λ) ρ′}) .

Axiom 11 is similar to Axiom 10 in that it compares for the two data-sets D and
D′ two actions: one in which mixing the good and the bad lottery ρ and ρ′ in
proportions λ and (1− λ) occurs both on the set of observed, as well as for the
”other” characteristics and a second one, in which the good lottery is obtained
for sure on the set of known characteristics, but the bad one is realized on the
unknown characteristics. In particular, λ is chosen so that it makes the decision
maker indifferent between the two actions conditional on the information in data-
set D. However, since differently from Axiom 10, in Axiom 11, data set D′ differs
from D by a surprise, i.e., by the observation of a new characteristic, the axiom
stipulates that the decision maker will have a strict preference for the action which
gives a constant mixture both on the set of observed, as well as for the ”other”
characteristics. This is tantamount to saying that the weight put on the ”other”
characteristics and thus, the perceived unawareness, will strictly increase in D′

relative to D.
Our next Axiom formalizes the notion of a positive (negative) surprise and

postulates the corresponding change in αo:

Axiom 12 Consider D ∈ DX such that XD ⊂ X and for xnew ∈ X\XD, k ∈ K,
let D̃ = (xnew, k),

D′ = D ◦ D̃.

For ρ, ρ′ ∈ ∆[0,1] with ρ ≻ ρ′ and some m, let α ∈ [0, 1] satisfy:

(m, {ρ, ρ′}) ∼D (m, {αρ+ (1− α) ρ′})

(i) then
(m, {ρ, ρ′}) ≻D′ (m, {αρ+ (1− α) ρ′})

holds iff α ̸= 1 and D̃ is a positive surprise given D, i.e.,

a∗ (D) ≻D′|XD
a∗ (D) (k, xo) for all a∗ (D) ∈ B∗ (D)

and

(ii)
(m, {ρ, ρ′}) ≺D′ (m, {αρ+ (1− α) ρ′})

holds iff α ̸= 0 and D̃ is a negative surprise given D, i.e.,

a∗ (D) ≺D′|XD
a∗ (D) (k, xo) for all a∗ (D) ∈ B∗ (D)
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Axiom 12 requires that if and only if a positive (negative) surprise has been
experienced, the decision maker’s evaluation of the outcome {ρ, ρ′} on xo in-
creases (decreases) given D′ as compared to D, i.e. the optimism parameter αo

is strictly higher (lower), (controlling for the boundaries 1 and 0) at D′ than at
D, αo

D′ > (<)αo
D. It implies that if the surprise is neither positive, nor negative,

or, if αo
D is already on the respective boundary, the optimism parameter remains

unchanged.
We next consider the case in which the data set is augmented by an observation

of a so far unlabeled characteristic, x̂,
(
x̂, k̂

)
.

Formally, define XU
D ⊆ XD to be the set of unlabeled characteristics in the data

set D:
XU

D = {x ∈ XD | lD (x) = δk0}
These are the characteristics for which the recorded class is k0. If x̂ ∈ XU

D , then
fD (x̂) > 0, but since lD (x̂) = δk0 , in general, a set, LD (x̂) is used as a prediction
of the classification likelihood. For some D ∈ D (D0), let thus D

′ = D ◦ D̃.
It is straightforward to restate the definition of a positive / negative surprise

by replacing xnew in definitions (10) and (11) by x̂ with the same interpretation
as above.

Behaviorally, given the axioms imposed on preferences, we can identify the type
of surprise related to previously unlabeled characteristics by eliciting the decision
maker’s preferences between the optimal algorithm in D conditional on the set
of observed labeled characteristics in D, XD\XU

D and the hypothetical act that
assigns the prediction a (x̂) and thus, the probability distribution over outcomes

given by a (x̂) lD′ (x̂) = a
(
k̂, x̂

)
to any XD\XU

D :

a∗ (D) ≻D′|XD\XU
D

(
≺D′|XD\XU

D

)
a∗ (D)

(
k̂, x̂

)
for all a∗ (D) ∈ B∗ (D).

Similarly to Axiom 12, Axiom 12a captures the fact that a positive (negative)
surprise with respect to unlabeled characteristics might have an effect on the ex-
pectations the decision maker forms about his ability to predict the correct class
for characteristics with unobserved classification. A positive (negative) surprise
might make him more optimistic (pessimistic) increasing (decreasing) the degree
of optimism α related to observed (but unlabeled) characteristics.

Axiom 12a Consider D ∈ D (D0) and for x̂ ∈ XU
D , let D̃ =

(
x̂, k̂

)
for some

k̂ ∈ K and
D′ = D ◦ D̃.

For ρ, ρ′ ∈ ∆[0,1] with ρ ≻ ρ′ and some Ro, let α ∈ [0, 1] satisfy:

(ma ({ρ, ρ′}) = 1, Ro) ∼D (mb ({ρ}) = α, mb ({ρ′}) = 1− α,Ro)

(i) then

(ma ({ρ, ρ′}) = 1, Ro) ≻D′ (mb ({ρ}) = α, mb ({ρ′}) = 1− α,Ro)
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holds iff α ̸= 1 and D̃ is a positive surprise given D, i.e.,

a∗ (D) ≻D′|XD\{x̂} a
∗ (D)

(
k̂, x̂

)
for all a∗ (D) ∈ B∗ (D)

and

(ii)
(ma ({ρ, ρ′}) = 1, Ro) ≺D′ (mb ({ρ}) = α, mb ({ρ′}) = 1− α,Ro)

holds iff α ̸= 0 and D̃ is a negative surprise given D, i.e.,

a∗ (D) ≺D′|XD
a∗ (D) (k, xo) for all a∗ (D) ∈ B∗ (D)

The following proposition combines Axioms 1-12a to represent preferences over
the set of algorithms for the classification problem discussed in Section 2.2.1.

Proposition 5. Consider a set of characteristics X and the associated class of
data sets DX . Axioms 1–12a imply that there exist a von-Neumann-Morgenstern
utility function u unique up to a positive-affine transformation, unique families
of parameters of optimism {αD ∈ [0, 1]}D∈DX

relevant to the set of observed char-
acteristics and {αo

D ∈ [0, 1]}D∈DX
relevant to the ”other” characteristics as well

as a family of parameters describing the perception of unawarenes for each data
set D ∈ D (D0), {γD ∈ (0; 1)}D∈DX

such that for each D ∈ D, preferences over
algorithms a (D), ≿D are represented by (5), whereas the parameters of the repre-
sentation satisfy:

1. for any D0 ∈ DX and D and D′ ∈ D (D0) with XU
D = XU

D′, αo
D = αo

D′, γD > γD′

iff N ′ > N and αD = αD′;

2. for any D0 ∈ DX , D ∈ D (D0), x ∈ XU
D, k ∈ K and D′ = D◦(x, k), αo

D = αo
D′,

γD > γD′ and

� αD′ > αD iff (x, k) is a positive surprise given D and αo
D ̸= 1

� αD′ < αD iff (x, k) is a negative surprise given D and αo
D ̸= 0

3. for any D0 ∈ DX , D ∈ D (D0), x ∈ X\XD, k ∈ K and D′ = D ◦ (x, k),
γD′ > γD and

� αo
D′ > αo

D iff (x, k) is a positive surprise given D and αo
D ̸= 1

� αo
D′ < αo

D iff (x, k) is a negative surprise given D and αo
D ̸= 0.
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