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Abstract

A single agent may encounter many sources of uncertainty and many menus of
outcomes, which can be combined together into many different decision problems.
There may be analogies between different uncertainty sources (or different outcome
menus). Some uncertainty sources (or outcome menus) may exhibit internal sym-
metries. The agent may also have different levels of awareness. In some situations,
the state spaces and outcome spaces have additional mathematical structure (e.g.
a topology or differentiable structure), and feasible acts must respect this structure
(i.e. they must be continuous or differentiable functions). In other situations, the
agent might only be aware of a set of abstract “acts”, and be unable to specify ex-
plicit state spaces and outcome spaces. We introduce a modelling framework that
addresses all of these issues. We then define and axiomatically characterize a sub-
jective expected utility representation that is “global” in two senses. First: it posits
probabilistic beliefs for all uncertainty sources and utility functions over all outcome
menus, which simultaneously rationalize the agents’ preferences across all possible
decision problems, and which are consistent with the aforementioned analogies, sym-
metries, and awareness levels. Second: it applies in many mathematical environments
(i.e. categories), making it unnecessary to develop a separate theory for each one.

Keywords: uncertainty; unawareness; analogy; category theory; Anscombe-Aumann.

JEL classification: D81.

L’algèbre est généreuse, elle donne souvent plus qu’on ne lui demande.

—Jean le Rond d’Alembert

1 Introduction

The standard model of rationality under uncertainty is subjective expected utility (SEU).
This was axiomatically characterized by the landmark results of Savage (1954) and Anscombe
and Aumann (1963). The Savage framework is the basis for almost all contemporary re-
search in decision theory. But it also has several shortcomings. It lacks a natural way
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to simultaneously model the same agent facing multiple decision problems, or facing the
same decision problem with different levels of awareness, or access to different information
sources. It also lacks a natural way to incorporate analogies between different decision
problems, or symmetries within each decision problem. It allows acts to be arbitrary func-
tions between arbitrary sets, so it does not easily adapt to environments where state spaces
and outcome spaces have additional structure (e.g. a topology) and acts must respect this
structure. Finally, it assumes that the agent already has a complete mental model of the
space of possible states of nature and the menu of possible outcomes.

In the literature, each of these problems has been addressed by augmenting the ba-
sic Savage framework in some way. This paper will present a modelling framework that
allows us to address all of these problems at the same time. First, we shall discuss the
aforementioned problems in greater detail. Then we shall discuss our proposed solution.

Multiple decision problems. On different occasions, a single agent may be confronted
with different sources of uncertainty (e.g. horse races, financial markets, weather, traffic)
and different possible sets of outcomes (e.g. financial gains or losses, social status, physical
comfort), in different combinations. A holistic model of her beliefs and preferences should
be able to represent her attitudes towards all of these decision problems simultaneously.

For example, suppose the agent faced N sources of uncertainty represented by state
spaces S1, . . . ,SN , along withM possible menus of outcomes, represented by sets X1, . . . ,XM .
For any n ∈ [1 . . . N ] and m ∈ [1 . . .M ], the agent might be confronted with a decision
problem that involves Savage acts from Sn into Xm. We could construct N ×M distinct
SEU representations to deal with these different decision problems. But it would be strange
if the agent could have different beliefs about S1 depending on whether it was combined
with X1 or X2. Likewise, it would be strange if she had a different utility function over
X1 depending on whether it was combined with S1 or S2. Furthermore, this would fail
to recognize relationships between these different spaces —for example, that X1 and X2

overlap, or that S1 is a projection of S2. It would also be unwieldy to carry around M
different beliefs for each of the N state spaces, and N different utility functions for each
of the M outcome spaces,

The obvious solution would be to construct a single “grand” state space S = S1 ×
· · · × SN and a single “grand” outcome space X = X1 ∪ · · · ∪ XN . Equipped with a single
probabilistic belief over the S, and a single utility function over X , the agent could then
construct SEU preferences for any of the N ×M decision problems she might face.

But such a model is needlessly profligate. It requires the agent to form beliefs about
combinations of events that she will never observe: for any events A1 ⊆ S1 and A2 ⊆ S2,
she must have belief about A1×A2, even though (by hypothesis), she will never encounter
a situation where she can simultaneously verify whether A1 and A2 obtain. Likewise, she
must form meaningful utility comparisons between outcomes that will never appear on the
same menu: for any outcome in X1 and outcome in X2 (or more generally, any lotteries
over outcomes), she must be able to say whether she prefers the first to the second, even
though (by hypothesis), this is a choice that she will never be required to make.

Against this, one might argue: even if the agent does not “need” a single belief about S,
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surely such beliefs should be available “in principle”, e.g. for an external analyst modelling
the agent’s behaviour. Likewise, even if the agent does not “need” a single utility function
over all of X , such a utility function should be available “in principle”. But there are
two problems with this response, one normative and one descriptive. From a descriptive
perspective, it presents the external analyst with an observability problem: if we can never
observe the agent making choices between X1-lotteries and X2-lotteries, then how can we
impute a single utility function over all X to this agent? If we never observe her betting
on arbitrary subsets of S1 × S2, then how can we impute a single belief about all of S?

More fundamentally, it is not clear whether such unified beliefs and utility functions are
even well-defined. And from a normative perspective, it is not even clear that they should
be well-defined. This is true even when there is some degree of overlap between different
menus, or correlation between different sources of uncertainty. Although the agent’s beliefs
about particular sources of uncertainty may all be compatible with one another whenever
two sources can be simultaneously observed, there might be no coherent way to combine
them into a single, coherent probabilistic belief system about the entire universe. Likewise,
although the agent’s preferences over different menus may agree whenever these menus
overlap, there might be no way to combine these local preferences into a single, coherent
global preference order. We shall illustrate with two examples.

Example 1.1. An employee in a large firm knows that during the next year, she will be
transferred to one of three divisions. Every worker in the firm must undergo an annual
performance review. But due to limited resources, the three divisions conduct these reviews
during three different but overlapping periods of the calendar year. Division 1 conducts
its reviews from January to June. Division 2 conducts them from May until October, and
Division 3 conducts them from September until February. Workers in each division can
choose the month of their performance review. The employee does not yet know when or
where she will be transferred, but in advance of the transfer, she is asked, “Hypothetically,
if you moved to Division 1 (or 2 or 3), when would you want your performance review?”

The employee always wants her performance review to be as late as possible. So she
reports the following preferences. For Division 1: Jan ≺ Feb ≺ Mar ≺ Apr ≺ May ≺ Jun.
Likewise, for Division 2, May ≺ Jun ≺ · · · ≺ Oct, and for Division 3, Sep ≺ Oct ≺
· · · ≺ Feb. Formally, there are three possible menus of outcomes: X1 = {Jan, . . . , Jun},
X2 = {May, . . . ,Oct}, and X3 = {Sep, . . . ,Feb}. The employee has transitive preferences
over each menu, which even agree on the overlap between menus. But there is no “global”
preference order over all twelve months that is consistent with these local preferences. ♦

Example 1.2. A doctor encounters patients who may have one of several diseases. There
are three main organ systems that may be implicated (Systems 1, 2, and 3). Each of these
systems can be have one of two (mutually exclusive) diseases. System 1 can have either
Disease a or Disease b, System 2 can have either c or d, and System 3 can have either e or
f , Some patients have diseases in both Systems 1 and 2, or both Systems 2 and 3, or both
Systems 1 and 3. But the doctor never encounters patients who have diseases in all three
Systems, because such a combination is always immediately fatal.
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From experience, the doctor has formed beliefs about the probability of each disease and
each (non-fatal) combination of diseases. We can represent this by introducing six state
spaces: S1, S2, S3, S12, S23, and S13, where Sj represents diseases involving only System
j, and Sjk represents diseases involving both System j and System k. Thus, S1 := {a, b},
S2 := {c, d}, S3 := {e, f}, S12 := S1×S2, S23 := S2×S3, and S13 := S1×S3. Probabilistic
beliefs are given as follows. The beliefs on the two-element spaces S1, S2 and S3 are given
by µ1 = µ2 = µ3 = (0.5, 0.5), where these vectors have the obvious meaning. The beliefs
on the four-element spaces S12, S23 and S13 are given by the following tables:

µ12 c d
a 0.1 0.4 0.5
b 0.4 0.1 0.5

0.5 0.5

µ23 e f
c 0.1 0.4 0.5
d 0.4 0.1 0.5

0.5 0.5

µ13 e f
a 0.1 0.4 0.5
b 0.4 0.1 0.5

0.5 0.5

Observe that these beliefs are consistent; for example, both µ12 and µ23 generate the same
marginal beliefs (0.5, 0.5) concerning {c, d}. But there is no “global” probabilistic belief
on S1 × S2 × S3 that is compatible with these beliefs. (See Appendix for proof.)1 ♦

Information, awareness and model underspecification. Even if we focus on a single
decision problem, the same agent may perceive this decision problem in different ways,
depending on her level of awareness or the sources of information available to her. One
could develop a distinct SEU representation for each awareness level or information source,
but this would be unparsimonious. Furthermore, it would not ensure that these different
SEU representations were “compatible” with one another —i.e. that they have the same
utility function over outcomes, and that they have the “same” beliefs (to the extent that
this is meaningful across different awareness levels or information sources). It would be
better to develop a single SEU representation that encompasses all awareness/information
levels at the same time.

A more fundamental problem with Savage framework is its assumption that the agent
can explicitly imagine all possible “states of nature” and all possible “outcomes”, and can
then conceptualize each “act” as a function mapping states to outcomes. As a descriptive
model of how actual humans make decisions, this might be unrealistic (especially if these
spaces are large). Even as a normative theory of ideal decision-making, it might be too
demanding. It might not be an accurate or parsimonious description of how the agent
perceives her world. She is certainly aware that she confronts different sources of uncer-
tainty, and that there are various actions that she might take. But she might not be able
to explicitly list every possible outcome of these actions, nor every possible contingency
that could determine the outcome of an action. Ideally, a decision theory should be neutral
about how the agent mentally represents the decision problems she faces. (See Machina
2003 for an excellent discussion of these issues.)

Analogies and symmetries. Agents often exploit analogies between novel decision
problems and familiar problems. This motivates the use of case studies in business schools,

1Similar examples appear in Vorob’ev (1962) and Hammond (2022).
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medical schools, and officer training academies. An analogy reveals that two decision prob-
lems share important structural features, despite superficial dissimilarities; in other words,
it establishes a homomorphism between them (Amarante, 2015). So an SEU representation
should incorporate any available analogies when specifying beliefs and utility functions.

Agents also often utilize symmetries in decision problems —especially in the absence of
other information. For example, suppose an agent is confronted with an urn containing an
unknown number of red and black balls, and she must bet on the colour of the next ball
drawn from the urn. If this is the only information available to the agent, then she will likely
be indifferent between betting on red and betting on black. For similar reasons, agents
normally assign probability 1/2 to each face of an unfamiliar coin, and probability 1/38 to
each slot in an unfamiliar roulette wheel. Such reasoning is formalized by the well-known
Principle of Insufficient Reason, which was implicit in early work on probability theory
(e.g. Laplace, 1820), explicitly articulated by Keynes (1921, Ch. IV), and generalized to
the Principle of Transformation Groups by Jaynes (1968, §VII; 2003, Ch.12). An SEU
representation theorem should incorporate such symmetries into the agent’s beliefs.

Diversity of mathematical modelling environments. Different mathematical en-
vironments may arise in response to different modelling requirements. In some models,
the state space and outcome space are measurable spaces, and acts are measurable func-
tions. But in other models, they might be topological spaces and continuous functions,
or differentiable manifolds and smooth functions. Instead of functions, it might be ap-
propriate to represent actions using correspondences (Ghirardato, 2001), or some other
kind of “generalized mapping” from states to outcomes. As noted above, it may some-
times be appropriate to consider a more abstract representation of the decision problem,
without any explicit specification of “states” or “outcomes”. Of course, one could develop
separate SEU representation theories to handle each of these situations. For instance, in
the setting of topological spaces and continuous functions, Zhou (1999) and Pivato and
Vergopoulos (2020) have obtained versions of the Anscombe-Aumann and Savage repre-
sentation theorems, respectively. But such duplication of effort seems inefficient. It would
be better to develop a single, “general purpose” theory, which can be applied in a variety
of mathematical environments.

A categorical approach. This paper uses methods from category theory to develop a
general SEU representation theory that addresses all of the problems raised above. Cate-
gory theory is a branch of abstract algebra that provides a powerful and versatile analytical
framework in a wide variety of mathematical domains. Roughly speaking, a category is a
family of mathematical “objects” (e.g. sets, topological spaces, algebraic structures, etc.),
connected by a network of relationships (called “morphisms”). The basic philosophy of
category theory is that all the relevant mathematical properties of an object should be de-
scribable in terms of its relationships to other objects in the same family. This allows one
to study mathematical objects without making any claims about their “internal structure”.
This is reminiscent of the methodology of modern economic theory, which seeks models of
decision-making that make the least possible ontological commitments about the “internal
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structure” of agents. This suggests that categorical methods could be useful in decision
theory. This paper is a preliminary exploration of this possibility.

The paper introduces global SEU representations. These are “global” in two senses.
First, they provide a single, holistic representation for an agent’s preferences across multiple
state spaces, multiple outcome spaces, and/or multiple levels of awareness or information
—a representation that incorporates any analogies or symmetries that the agent perceives.
Second, the framework and results can be applied in a variety of categories: measurable
spaces and measurable maps, topological spaces and continuous maps, differentiable mani-
folds and smooth maps, etc. State spaces and outcome spaces are represented as objects in
the category, while acts, analogies, symmetries, and differential awareness/information are
represented as morphisms between these objects. We make no assumption about the inter-
nal structure of these objects and morphisms. All the ingredients of the SEU representation
are obtained using the structure of the category itself.

Prior literature. There is already a considerable literature addressing some of the issues
mentioned earlier. For example, some models of unawareness involve not a single state
space, but a lattice of state spaces, representing greater or lesser degrees of awareness
of the underlying uncertainty (Heifetz et al., 2006; Ahn and Ergin, 2010; Hayashi, 2012;
Schipper, 2013; Dietrich, 2018). In other models, the state space evolves dynamically over
time, as the agent learns of new technological possibilities or new contingencies (Karni
and Vierø, 2013, 2015, 2017; Dominiak and Tserenjigmid, 2018). Rather than taking the
state space as a primitive in the model, some approaches to decision theory treat the acts
as primitives, and define the state space “endogenously” as a set of possible preferences
over these acts (Kreps, 1979; Dekel et al., 2001), or as a set of possible mappings from
acts into “outcomes” (Fishburn 1970; Schmeidler and Wakker 1990; Karni and Schmeidler
1991; Karni and Vierø 2013, 2015, 2017; Dominiak and Tserenjigmid 2018; see Karni 2017
for a good review of this approach). Some approaches go further, and altogether dispense
with the state space (Gilboa and Schmeidler, 2004; Ahn, 2008; Karni, 2006, 2007, 2011,
2013; Pivato, 2020), outcome space (Skiadas, 1997a,b), or both (Blume et al., 2021).

This paper differs from the aforementioned literature in several ways. First, our main
goal is to provide a normative analysis of “ideal rationality”, rather than a descriptive
account of actual human behaviour. Second and relatedly, the paper focuses on expected
utility representations, rather than more general models of ambiguity. Third and most
important, the paper it does not develop a single model, but rather, a modelling framework,
which can be applied to construct and analyse models in a range of environments.

This modelling framework is formulated using tools from category theory. Category
theory has already been applied in several parts of theoretical economics. These include:
social choice theory (Keiding, 1981; Kijima and Takahara, 1987; Eklund et al., 2010, 2013;
Abramsky, 2015), coalitional games (Machover and Terrington, 2014), normal form games
(Vassilakis, 1992; Tohmé and Viglizzo, 2023), extensive-form games (Lescanne and Perrinel,
2012; Abramsky and Winschel, 2017; Streufert, 2018, 2020), combinatorial games (i.e.
two-player, extensive-form games of perfect information) and the closely related topic of
game semantics in formal logic (Joyal, 1977; Hirschowitz et al., 2007; Cockett and Seely,
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2007; Honsell and Lenisa, 2011; Honsell et al., 2012a,b, 2014; Lenisa, 2015; Eberhart and
Hirschowitz, 2018), and the construction of universal type spaces in games of incomplete
information (Moss and Viglizzo, 2004, 2006; Pintér, 2010; Heinsalu, 2014; Fukuda, 2021;
Guarino, 2024; Galeazzi and Marti, 2023). The previous literature most closely related to
the present paper involves applications of category theory to decision theory (Rozen and
Zhitomirski, 2006; Bosi and Herden, 2008; Adachi, 2014; Tohmé et al., 2017; de Oliveira,
2018). Bosi and Herden (2008) consider the construction of (ordinal) utility representations
for preferences without uncertainty. Rozen and Zhitomirski (2006) and Adachi (2014)
consider decisions with uncertainty. Tohmé et al. (2017) use sheaf theory to model the
problem of building consistent preferences over a large menu from preferences over smaller
menus. de Oliveira (2018) provides an elegant categorical proof of Blackwell’s Theorem.
But none of these papers develops a model similar to the one in the present paper.

Organization. Sections 2 and 5 review basic category theory. Sections 3 and 4 intro-
duce decision environments and ex ante preference structures, which together provide the
modelling framework that accommodates all the issues raised earlier in this section. Sec-
tion 6 defines global SEU representations, Section 7 contains an Anscombe-Aumann-type
existence theorem for such representations for concrete categories, and Section 8 extends
this existence theorem to abstract categories. Appendix A contains the proofs of all results
in the text, Appendix B has the proofs of some supplementary results, and Appendix C
gives some examples of abstract categories.

Notation. Sets and subsets are denoted by upper-case calligraphic letters (A,B, . . .),
and their elements are normally denoted by the corresponding italic letters in either lower-
or upper-case (a, b, . . . , A,B, . . .). Objects in categories are also denoted by upper-case
calligraphic letters. “Standard” categories are denoted in sans serif font (e.g. Set, Meas,
Top, etc.), while generic categories, subcategories, or collections of objects in a category
are denoted by bold calligraphic font (C, S, X ). Morphisms, functions and measures are
usually denoted by Greek letters (α, β, , . . .). Vectors are indicated in bold face (p,q, . . .)
and their components by the corresponding italics (p1, p2, . . .).

2 Categories2

A category is a mathematical structure C with three parts:

• A collection C◦ of entities, called the objects of C.

• For any pair of objects A,B ∈ C◦, a collection
#»C (A,B) of entities, called morphisms

from A to B.

• For any A,B, C ∈ C◦, a composition operation ◦, such that, for any morphisms
φ ∈ #»C (A,B) and ψ ∈ #»C (B, C), we have ψ ◦ φ ∈ #»C (A, C).

2Readers familiar with basic category theory can skip ahead to Section 3.
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The composition operation has two key algebraic properties:

• Associativity. For all objects A,B, C,D ∈ C◦ and morphisms α ∈ #»C (A,B), β ∈
#»C (B, C), and γ ∈ #»C (C,D), we have γ ◦ (β ◦ α) = (γ ◦ β) ◦ α.

• Identity. For every object A ∈ C◦, there is an identity morphism IA ∈
#»C (A,A) such

that, for any object B ∈ C◦, we have IA ◦φ = φ for all φ ∈ #»C (B,A), while φ ◦ IA = φ

for all φ ∈ #»C (A,B).

C is called a concrete category if the objects in C◦ are sets (typically with some additional

“structure”), the morphisms in
#»C (A,B) are functions from the set A to the set B (which

“preserve” this structure), and the composition operation ◦ is just ordinary function com-
position. This paper will work mainly with six categories. In the category Set, objects
are sets, and morphisms are functions between them. In the category Meas, objects are
measurable spaces (i.e. sets equipped with sigma algebras), and morphisms are measurable
functions between them. In the category Top, objects are topological spaces, and morphisms
are continuous functions. In the category Metr, objects are metric spaces, and morphisms
are short maps —that is, functions such that the distance between two points is never less
than the distance between their images. In the category Diff, objects are differentiable
manifolds, and morphisms are smooth functions —that is, functions that are everywhere
infinitely differentiable. In the category UPOVS, objects are unitary partially ordered vector
spaces, and morphisms are uniferent weakly order-preserving linear functions (these will
be defined later). But not all categories are concrete. A key feature of the theory in this
paper is that it does not require a concrete category. We use the term abstract category to
refer to a category that may or may not be concrete; for some examples of non-concrete
categories, see Appendix C. Good introductions to category theory include Spivak (2014),
Simmons (2011), Riehl (2017), Leinster (2014), Awodey (2010), Adámek et al. (2009), and
Mac Lane (1998) (in roughly increasing order of difficulty).

Isomorphisms, automorphisms, and groups. Recall that a group is a structure
(G, ∗, e) where G is a set, ∗ is a binary operation on G, and e is an element of G, such
that: (i) f ∗ (g ∗ h) = (f ∗ g) ∗ h for all f, g, h ∈ G; (ii) e ∗ g = g ∗ e = g for all g ∈ G; and
(iii) for every g ∈ G, there is an element h ∈ G (the inverse of g) such that g ∗h = h∗g = e.
An example is the group of permutations of a set, where ∗ is function composition.

Now let C be a category, and let A,B ∈ C◦. A morphism φ ∈ #»C (A,B) is an isomorphism

if there is a morphism ψ ∈ #»C (B,A) (the inverse of φ) such that ψ ◦φ = IA and φ ◦ψ = IB.
The composition of isomorphisms is also an isomorphism. An isomorphism from A to
itself is called an automorphism. The set of all automorphisms of A forms a group under
composition.

This observation leads to a natural way to represent any group as an abstract, single-
object category. Given a group (G, ∗, e), we create a category that has only a single

object: C◦ = {C}. All elements of
#»C (C, C) are automorphisms, and there is a bijection

φ : G−→ #»C (C, C) such that, for any g, h ∈ G, φ(g ∗ h) = φ(g) ◦ φ(h) (in other words, φ is a
group isomorphism). In this way, group theory can be seen as a branch of category theory.
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X1 X2 X3

X12 X23 X13

ι113

ι112
ι212

ι223

ι323

ι313

S12 S23 S13

S1 S2 S3

Figure 1: Left. The outcome place category X of Example 3.1(b), in the special case of Example 1.1.
(Hooked arrows “↪→” indicate inclusion maps.) Right. The state place category S of Example 3.1(c), in
the special case of Example 1.2. (Double-headed arrows “−→→” indicate surjections.)

3 Decision Environments

Let C be a category. A decision environment on C is an ordered pair (S,X ), where S
and X are subcategories of C. In other words, S◦ ⊆ C◦ and X ◦ ⊆ C◦. Furthermore, for
any S1,S2 ∈ S◦, we have

#»S(S1,S2) ⊆ #»C (S1,S2); likewise, for any X1,X2 ∈ X ◦, we have
#»X (X1,X2) ⊆ #»C (X1,X2). We shall interpret the objects of S◦ as “abstract state spaces”,
and interpret objects of X ◦ as “abstract outcome spaces”. However, if C is an abstract
category, then these might not actually be spaces of any kind. For this reason, we shall
refer to the objects of S◦ as state places and the objects of X ◦ as outcome places.

For any state place S in S◦ and outcome place X in X ◦, the morphisms in
#»C (S,X )

represent “abstract acts” —these are devices that somehow transform the abstract “states”
in S into abstract “outcomes” in X . For simplicity, we shall call them acts. If C was a
concrete category, then S and X would be sets, and the acts in

#»C (S,X ) would be functions.
But we shall not assume this.

Heuristically, each state place in S◦ represents a source of uncertainty. Suppose that
the agent has “beliefs” about these sources of uncertainty. For any state places S1,S2 ∈ S◦,
we interpret each element of

#»S(S1,S2) as a C-morphism from S1 to S2 that is somehow
“compatible” with her beliefs about S1 and S2. (We shall make this precise shortly.) For

example, if the agent’s beliefs took the form of probability measures, then
#»S(S1,S2) could

be the set of measure-preserving functions from S1 into S2. However, we shall not (yet)
commit to any formal model of the agent’s beliefs (e.g. as probabilities), so we shall not

(yet) impose any restrictions on the sort of morphisms that can appear in
#»S(S1,S2).

Meanwhile, each outcome place in X ◦ represents an abstract “menu” of possible out-
comes. Suppose that the agent has “tastes” over these menus. For any X1,X2 ∈ X ◦,
we interpret each element of

#»X (X1,X2) as a C-morphism from X1 to X2 that is somehow
“compatible” with her tastes over X1 and X2. (We shall make this precise shortly.) For

example, if her tastes took the form of preference orders on X1 and X2, then
#»X (X1,X2)

could be the set of order-preserving C-morphisms from X1 into X2. However, we shall not
(yet) commit to any formal model of the agent’s tastes (e.g. in terms of preference orders
or utility functions), so we shall not (yet) impose any restrictions on the sort of morphisms

that can appear in
#»X (X1,X2).

Example 3.1. (a) (Classic environment) Let S and X be two objects in C◦. Let S◦ := {S}
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and X ◦ := {X}. Let
#»S(S,S) := {IS} and

#»X (X ,X ) := {IX}, where IS and IX are the
identity morphisms on S and X . Then (S,X ) is the decision environment of an agent who
faces a single source of uncertainty (namely, S), and a single set of outcomes (namely, X ).
When C = Set, this is the setting of Savage (1954).

(b) (Variable menus) Let C := Set. Let S ∈ C◦, let S◦ := {S}, and let
#»S(S,S) := {IS},

as in Example (a). Fix some other W ∈ C◦; it will play the role of a “universal” space of
outcomes. Let X ◦ be a collection of subsets of W . For any X ,Y ∈ X ◦, if X ⊆ Y , then
let

#»X (X ,Y) := {ιXY }, where ιXY : X ↪→ Y is the inclusion map.3 Meanwhile, if X 6⊆ Y ,

then let
#»X (X ,Y) := ∅. This decision environment describes an agent who faces a single

source of uncertainty (namely, S), but confronts a variety of outcome menus (the objects
in X ◦.) We do not assume that W itself is an object in X ◦. For instance, in Example 1.1,
W = {Jan,Feb, · · · ,Dec}, but X ◦ only contains the menus X1 = {Jan, . . . , Jun}, X2 =
{May, . . . ,Oct} and X3 = {Sep, . . . ,Feb}, along with the three nonempty intersections
between these menus, namely X12 = {May, Jun}, X23 = {Sep,Oct} and X31 = {Jan,Feb}.
The morphisms of X are the inclusion maps, as shown in Figure 1 (left).

(c) (Variable information or awareness) Let C := Set. Let X be a set, let X ◦ := {X}, and

let
#»X (X ,X ) := {IX}, as in Example (a). Let S be another set, and let E be a collection of

equivalence relations on S. For every equivalence relation ∼ in E , let (S/∼) be the set of
equivalence classes. For any s ∈ S and ∼ in E , let [s]∼ ∈ (S/∼) denote the corresponding
equivalence class. For any two equivalence relations ∼1 and ∼2, we say that ∼1 refines ∼2

if, for all s, t ∈ S, we have (s ∼1 t) =⇒ (s ∼2 t). This implies that every ∼2-equivalence
class is a union of ∼1-equivalence classes. So there is a unique surjective quotient map
π : (S/∼1)−→(S/∼2) defined by setting π([s]∼1) := [s]∼2 for all s ∈ S.

This yields a category S, where S◦ := {(S/∼); ∼∈ E}, and where for any ∼1 and ∼2 in

E , if ∼1 refines ∼2, then
#»S ((S/∼1), (S/∼2)) = {π}, where π is the unique quotient map,

whereas
#»S ((S/∼1), (S/∼2)) = ∅ otherwise.

There are two ways we can interpret this decision environment. According to the first
interpretation, it describes an agent who faces a single source of uncertainty (namely, S),
and a single set of outcomes (namely, X ), but has access to one of a variety of information
sources about S. Each equivalence relation ∼ in E represents one possible source of infor-
mation: if s ∼ t, then the agent simply cannot distinguish s from t given the information
represented by ∼. Thus, she cannot perform an act that depends upon the distinction
between s and t. Hence, the only feasible acts are functions from (S/∼) to X , so the agent
only forms preferences over such acts.

According to the second interpretation, the elements of E do not represent informational
constraints, but rather, cognitive constraints. Each equivalence relation ∼ represent some
level of awareness the agent might have. According to this interpretation, if s ∼ t, then the
agent is not even aware of the distinction between s and t; thus, she cannot even conceive
of an act that depends upon this distinction. Hence, only functions from (S/∼) to X are
conceivable, so the agent is only able to form preferences over such acts.

3That is, for all x ∈ X , ιXY (x) = x, seen as an element of Y.
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Note that S itself is not necessarily an object in S, unless the “discrete” equivalence
relation (where s 6∼ t whenever s 6= t) is an element of E . Recall Example 1.2. Let
S := S1 × S2 × S3. Define equivalence relations ∼1,∼2,∼3∼12,∼23,∼13 as follows: for
any s = (s1, s2, s3) and t = (t1, t2, t3) in S and j ∈ {1, 2, 3}, stipulate that s ∼j t if
and only if sj = tj. Likewise, for any j, k ∈ {1, 2, 3}, stipulate that s ∼jk t if and only
if sj = tj and sk = tk. In the notation of Example 1.2, the quotient space (S/∼j) can
be identified with Sj and the quotient space (S/∼jk) can be identified with Sjk, for all
j, k ∈ {1, 2, 3}, and the quotient maps correspond to the coordinate projection maps. In
this case, S◦ = {S1,S2,S3,S12,S23,S13} and the only morphisms are whatever coordinate
projections exist between these spaces, as shown in Figure 1 (right). ♦

It is also possible to combine the subcategory X from Example (b) with the subcategory
S from Example (c), to obtain a decision environment with both varying levels of awareness
and varying menus of outcomes; this is similar to the model of Dietrich (2018). As is
suggested by these examples, for each S in S and X in X , the pair (S,X ) can be interpreted
as what Savage called a “small world”: a simplified model of reality that contains only
the information relevant to a particular decision problem. An agent might not have the
time, information, or cognitive capacity necessary to combine all these small worlds into a
single “grand world”. As in Example 1.1, she might be able to formulate preferences over
small menus of outcomes, but not be able to formulate them over the set of all possible
outcomes. As in Example 1.2, she might have well-defined probabilistic beliefs about
particular sources of uncertainty, but be unable to formulate a probabilistic belief system
that simultaneously encompasses every source of uncertainty in the universe. Nevertheless,
the decision environment (S,X ) enables her to represent every decision problem that she
might encounter with a small world.

4 Ex ante preference structures

Let C be a category, and let (S,X ) be a decision environment on C. For every S ∈ S◦

and X ∈ X ◦, let <SX be a weak order4 on
#»C (S,X ). The collection ◦�xa

= {<SX ; S ∈ S◦
and X ∈ X ◦} is an ex ante preference structure on (S,X ) if it is “compatible” with the
morphisms of S and X in the following two senses.

(BP) For any state places S1,S2 ∈ S◦, any morphism φ ∈ #»S(S1,S2), any outcome place

X ∈ X ◦, and any acts α, β ∈ #»C (S2,X ), we have α <S2X β ⇐⇒ α ◦ φ <S1X β ◦ φ.

(TP) For any outcome places X1,X2 ∈ X ◦, any morphism φ ∈ #»X (X1,X2), any state place

S ∈ S◦, and any acts α, β ∈ #»C (S,X1), we have α <SX1
β ⇐⇒ φ ◦ α <SX2

φ ◦ β.

Compatibility condition (BP) formalizes the earlier informal assertion that the morphisms
of the subcategory S are “belief-preserving”. Likewise, condition (TP) formalizes the
earlier assertion that the morphisms of the subcategory X are “taste-preserving”.

4That is: a complete, transitive, reflexive binary relation.
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
X1 1 2 3 4 5 6
X2 1 2 3 4 5 6
X3 5 6 1 2 3 4
X12 1 2
X23 1 2
X31 1 2

Table 1: The utility functions of Example 4.1(b)

Example 4.1. (a) (Classic environment) Let (S,X ) be as in Example 3.1(a), with

S◦ = {S} and X ◦ = {X}, etc. Let < be a preference order on
#  »

Set(S,X ); then {<} is
(trivially) an ex ante preference structure on (S,X ).

(b) (Variable menus) Let (S,X ) be as in Example 3.1(b), where S◦ = {S} and X ◦ is a
collection of subsets of some “universal” outcome space W . Let X ,Y ∈ X ◦, with X ⊆ Y ,
and let ι : X ↪→ Y be the inclusion map. For any X -valued acts α, β ∈ #  »

Set(S,X ), the

compositions ι ◦ α and ι ◦ β are elements of
#  »

Set(S,Y); heuristically, these are the same
acts as α and β, but “reframed” as Y-valued acts. Condition (TP) requires that α <SX β
if and only if ι ◦ α <SY ι ◦ β. This is a version of Independence of Irrelevant Alternatives:
it says the comparison between α and β should be determined only by the outcomes that
are actually in the range of α and β (i.e. X ), and should not be affected by introducing
“irrelevant” alternatives (i.e. the other elements of Y).

For example, let <∗ be a preference order on the set
#  »

Set(S,W). For any X ∈ X ◦, every
function from S into X can be seen as a function from S into W (because X ⊆ W); hence
#  »

Set(S,X ) can be treated as a subset of
#  »

Set(S,W). So, for all X ∈ X ◦, let <SX be the

restriction of <∗ to a preference order on
#  »

Set(S,X ). Then {<SX ; X ∈ X ◦} trivially satisfies
(TP), so it is an ex ante preference structure on (S,X ).

However, not all ex ante preference structures in this decision environment arise in this
way. For instance, consider the formalization of Example 1.1 given at the end of Example
3.1(b). Let µ be some probability distribution S, and suppose the employee has SEU
preferences over acts mapping S into X1, X2, X3, X12, X23, or X31 based on the utility
functions shown in Table 1. It is easily verified that these preferences are consistent with
(TP). For example, let α, β : S−→X12 be acts. Let ι112 : X12 ↪→ X1 and ι212 : X12 ↪→ X2

be the inclusion maps, as shown in Figure 1. Clearly, the µ-expected utility of α and the
µ-expected utility of ι212◦α are both equal to µ-expected utility of ι112◦α, minus 4. Likewise
for β. Thus, α <SX12

β if and only if ι112 ◦ α <SX1
ι112 ◦ β if and only if ι212 ◦ α <SX2

ι212 ◦ β, in
accord with (TP). However, as already noted in Example 1.1, there is no utility function
on {Jan,Feb, . . . ,Dec} that is consistent with all the utility functions shown in Table 1.

(c) (Variable information and awareness) Let C = Set, and let (S,X ) be as in Example
3.1(c), where X ◦ = {X} for some set X , while S◦ is the set of quotient spaces obtained
from a collection E of equivalence relations of some set S.

For any ∼ in E , every element of
#  »

Set((S/∼),X ) can be be represented by a function
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from S into X that is constant on each ∼-equivalence class. Let ∼1 and ∼2 be in E .
Suppose ∼1 refines ∼2, so that

#»S ((S/∼1), (S/∼2)) = {π}, where π is the quotient map. If

α, β ∈ #  »

Set((S/∼2),X ), then α and α ◦ π both correspond to the same function from S to
X . Likewise, β and β ◦ π both correspond to the same function from S to X . Condition

(BP) requires that α <
(S/∼2 )

X β if and only if α ◦ π <(S/∼2 )

X β ◦ π, To understand this, note
that α and β only depend on the coarser information represented by ∼2, and do not use
the finer information represented by ∼1. So condition (BP) is a sort of Independence of
Irrelevant Information: preferences between two acts should be determined only by the
information (or awareness) needed to describe these acts.

For example, let <∗ be a preference order on the set of all functions from S to X . For
any ∼ in E , let <(S/∼)

X be the restriction of <∗ to
#  »

Set((S/∼),X ) (where we again interpret

each element of
#  »

Set((S/∼),X ) as a function from S into X that is constant on each ∼-

equivalence class). Then {<(S/∼)
X ; ∼ in E} is an ex ante preference structure on (S,X ).

But not all ex ante preference structures in this decision environment arise in this way.
Consider the formalization of Example 1.2 given at the end of Example 3.1(c). Let α, β :
S1−→X be acts. Let π12 : S12−→S1 and π13 : S13−→S1 be the coordinate projection maps
shown in Figure 1. Although they are defined on larger state spaces, the acts α◦π12, β◦π12,
α ◦ π13 and β ◦ π13 only depend on information about S1 —i.e. whether the patient has
condition a or b. For any utility function u on X , it is easily verified that the µ12-expected
utility of α◦π12 and the µ13-expected utility of α◦π13 both equal 0.5u◦α(a)+0.5u◦α(b),
which is the µ1-expected utility of α. Likewise for β. Thus, α <S1X β if and only if
α ◦ π12 <

S12
X β ◦ π12 if and only if α ◦ π13 <

S13
X β ◦ π13, in accord with (BP). ♦

Models similar to Example 4.1(c) have appeared in the literature on “framing effects”,
“unawareness” and “salience effects” (Heifetz et al., 2006; Ahn and Ergin, 2010; Hayashi,
2012; Schipper, 2013; Dietrich, 2018). However, these papers aim for descriptive models of
“bounded rationality” in real humans, so they specifically do not assume (BP). In contrast,
I assume (BP) because I am aiming for in a normative model of “ideal rationality”. Cohen
and Jaffray (1980) have a “variable-information” model of ideal rationality that does use a
version of (BP) (their Axiom 3). But their other axioms preclude an SEU representation,
and instead yield a refinement of Arrow-Hurwicz preferences, where the preference between
two acts is entirely determined by their minimum and maximum values.

In Example 4.1, S and X contained the minimum set of morphisms needed to capture
the logical relationships between the different objects. But morphisms can also encode
analogies, symmetries or invariance properties, as the next examples show.

Example 4.2. (a) (Insufficient reason) Let C = Set, let S be a finite set, and let S◦ = {S},
as in Examples 3.1(a) and 4.1(a). But now, let

#»S(S,S) be the group of all permutations
of S. Then axiom (BP) encodes a version of Laplace’s Principle of Insufficient Reason:

for any acts α, β ∈ #  »

Set(S,X ), if α < β, then α ◦ π < β ◦ π for all permutations π of S.
Heuristically, this describes an agent who regards all elements of S as indistinguishable,
and hence equally likely, ex ante.
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X1 X2 X3

X12 X23 X13

S12 S23 S13

S1 S2 S3

Figure 2: Left. The outcome place category X of Example 4.2(a). (Bidirectional arrows “
” indicate
isomorphisms; tailed arrows “�” indicate injections obtained by composing these isomorphisms with the
inclusion maps denoted by “↪→”.) Right. The state place category S of Example 4.2(b).

(b) (Analogous preferences) In Example 1.1, the reader will have noticed that the em-
ployee’s preferences over the outcome spaces X1, X2, and X3 are structurally analogous:
in all cases, she prefers later months to earlier ones. The same is true when comparing
their intersections X12, X23, and X31. This is especially clear in the utility functions of
Example 4.1(b) shown in Table 1. But the decision environment in Example 3.1(b) fails
to recognize these analogies. A better model would contain not only the inclusion maps
shown in Figure 1, but also a bijection X1−→X2 shifting time forward by four months,
and similar bijections X2−→X3, X3−→X1, X12−→X23, X23−→X31, and X31−→X12, along
with their inverse maps, as well as all the injections obtained by composing these bijections
with the original inclusion maps from Example 3.1(b). The resulting category is shown
in Figure 2 (left). The ex ante preference structure in Example 4.1(b) also satisfies (TP)
with respect to this larger network of morphisms.

(c)(Analogous Beliefs) In Example 1.2, the reader will also have noticed that the doctor’s
beliefs about the state spaces S1, S2 and S3 are analogous: in each case, the doctor
assigns equal probability to the two possible diseases. The same is true when comparing
their products S12, S23, and S31. The decision environment in Example 3.1(c) fails to
recognize these analogies. A better model would include not only the projection maps
shown in Figure 1, but also probability-preserving bijections φ1

2 : S1−→S2, φ2
3 : S2−→S3

and φ3
1 : S3−→S1 given by

φ1
2(a) = c, φ2

3(c) = e, φ3
1(e) = a,

φ1
2(b) = d, φ2

3(d) = f and φ3
1(f) = b,

and their inverses, along with the bijections (φ1
2 × φ2

3) : S12−→S23, (φ2
3 × φ3

1) : S23−→S31

and (φ3
1 × φ1

2) : S31−→S12 and their inverses, as well as all the surjections obtained by
composing these bijections with the original projection maps from Example 3.1(b). The
resulting category is shown in Figure 2 (right). The ex ante preference structure in Example
4.1(c) also satisfies (BP) with respect to this larger network of morphisms. ♦

5 Functors and natural transformations5

5Readers familiar with basic category theory can skip ahead to Section 6.
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Before giving the formal definition of global SEU representations in Section 6, we must
first review a few concepts from category theory. Let C and D be categories. Let ~C be
the set of all morphisms in C and let ~D be the set of all morphisms in D. A (covariant)

functor from C to D consists of a function F : C◦−→D◦ and a function F : ~C−→~D, such
that for all A,B ∈ C◦, the function F maps

#»C (A,B) to
#»D (F (A), F (B)), and F preserves

morphism composition. In other words: for all A,B, C ∈ C◦, and all α ∈ #»C (A,B) and

β ∈ #»C (B, C), F (β ◦ α) = F (β) ◦ F (α). We indicate this by writing “F : C �⇒ D”.

5A Forgetful functors. One natural class of functors comes from “forgetting” some of
the mathematical structure in the objects, reducing them to simpler objects. For example,
from any of the categories Meas, Top, Metr, Diff, or UPOVS introduced in Section 2,
there is a functor into the category Set, which reduces every object to its underlying
set of points, and reduces every morphism to the underlying function. These are called
forgetful functors. Similarly, there is a functor F : Top �⇒ Meas that reduces any topological
space S to the measurable space with the same set of points and the Borel sigma algebra,
and reduces every continuous function between topological spaces to the same function,
seen as a measurable function between their Borel sigma algebras. There is a functor
F : Metr �⇒ Top that reduces every metric space into a (metrizable) topological space,
and reduces every short map to a continuous map. There is a functor F : Diff �⇒ Top
that reduces every differentiable manifold into a topological manifold, and reduces every
smooth map to a continuous map.

5B Opposite categories and contravariant functors. Let C be a category. The
opposite category Cop is the category that has exactly the same objects as C, but where all
morphism have their “direction” reversed, and where morphism composition happens in
reverse order. For example, the commuting diagram on the left in the category C becomes
the commuting diagram on the right in the category Cop

A B

C

φ

ψ
ξ

A B

C

φ

ψ
ξ

A contravariant functor from C to another category D is a (covariant) functor from Cop into
D. In other words, it is a functor from C into D that “reverses the directions of arrows”.
We indicate this by writing “F : Cop �⇒ D”.

For example, let Vec be the category of vector spaces and linear functions. For any
topological space X , let Cb(X ) be the vector space of all bounded, continuous, real-valued
functions on X . This is an object in Vec. For any two spaces X and Y , and any continuous
function φ : X−→Y , there is an induced function

←−
φ : Cb(Y)−→Cb(X ) defined by setting

←−
φ (f) := f ◦ φ for any f ∈ Cb(Y). It is easily verified that

←−
φ is a linear function —that

is, a morphism in Vec. Furthermore, if Z is a third topological space, and ψ : Y−→Z is
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another continuous function, then
←−−−
ψ ◦ φ =

←−
φ ◦ ←−ψ . Thus, if we define Cb(φ) :=

←−
φ for any

continuous map φ, then we get a contravariant functor Cb : Topop �⇒ Vec. (This example is
typical of a large class of examples. Contravariant functors frequently arise by constructing
“spaces of functions” over objects.)

5C Hom functors. Let C be a category, and let X ∈ C◦. For any other object B ∈ C◦,
consider the set

#»C (X ,B) of morphisms from X into B. This is an object in Set. For any

B, C ∈ C◦ and φ ∈ #»C (B, C), there is a natural function ~φ :
#»C (X ,B)−→ #»C (X , C) defined by

setting ~φ(α) := φ ◦ α for all α ∈ #»C (X ,B). Furthermore, if D ∈ C◦ is a third object and

ψ ∈ #»C (C,D) is another morphism, then
−−−→
ψ ◦ φ = ~ψ ◦ ~φ. Thus, if we define

#»C (X , φ) := ~φ for

every C-morphism φ, then we get a covariant functor
#»C (X , •) : C �⇒ Set. This is called a

covariant hom functor.
On the other hand, for any other object B ∈ C◦, consider the set

#»C (B,X ) of morphisms

from B into X . This is also an object in Set. For any B, C ∈ C◦ and φ ∈ #»C (B, C), there

is a natural function
←−
φ :

#»C (C,X )−→ #»C (B,X ) defined by setting
←−
φ (α) := α ◦ φ for all

α ∈ #»C (C,X ). Furthermore, if A ∈ C◦ is a third object and ψ ∈ #»C (A,B) is another

morphism, then
←−−−
φ ◦ ψ =

←−
ψ ◦ ←−φ Thus, if we define

#»C (φ,X ) :=
←−
φ for every C-morphism

φ, then we get a contravariant functor
#»C (•,X ) : Cop �⇒ Set. This is called a contravariant

hom functor. (Note the similarity to the definition of Cb(•) : Topop �⇒ Vec in §5B.)

5D Natural transformations. Let C and D be two categories, and let F : Cop �⇒ D
and G : Cop �⇒ D be two contravariant functors. A natural transformation from F to G is a
collection of D-morphisms Φ = (φC)C∈C◦ indexed by the objects of C◦, where for all C ∈ C◦,
φC ∈

#»D (F (C), G(C)), such that for any A,B ∈ C◦ and any morphism ψ ∈ #»C (A,B), the
following diagram commutes:

F (A) F (B)

G(A) G(B)

φA

F (ψ)

φB

G(ψ)

We indicate this by writing: “Φ : F ≡V G”.6

For a concrete example, recall the contravariant functor Cb : Topop �⇒ Vec introduced
in §5B. By “forgetting” the vector space structure of the image objects (§5A), we can also
interpret this as a functor Cb : Topop �⇒ Set. Now let X be a topological space, and consider
the contravariant hom functor

#    »

Top(•,X ) : Topop �⇒ Set from §5C. Let u : X−→R be a
bounded, continuous, real-valued function. For any topological space S and any continuous
function α : S−→X , we can compose α with u to get a continuous function u ◦α : S−→R.
This yields a function φS :

#    »

Top(S,X )−→Cb(S), defined by setting φS(α) := u ◦ α for all

α ∈ #    »

Top(S,X ). If T is another topological space, and ψ : S−→T is a continuous function,

6One can likewise define natural transformations between covariant functors. But these are never used
in this paper.
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then it is easily verified that the following diagram commutes:

#    »

Top(S,X )
#    »

Top(T ,X )

Cb(S) Cb(T )

φS

←−
ψ

φT

ψ∗

where
←−
ψ :=

#    »

Top(ψ,X ) and ψ∗ := Cb(ψ).7

Thus, the collection Φ = (φS)S∈Top◦ is a natural transformation from the functor
#    »

Top(•,X )
to the functor Cb. This example will play a key role in Section 6.

6 Global SEU representations: definition

6A Partially ordered vector spaces. A partially ordered vector space (POVS) is a
(real) vector space V equipped with a partial order (a transitive, antisymmetric binary
relation) > that is compatible with addition and scalar multiplication in the obvious way.8

For example: R is a POVS with the obvious linear order. Here are some other examples.

Example 6.1. For any set S, the vector space RS of real-valued functions on S is a POVS
with the pointwise dominance order. If S is a measurable space, then the space L(S) of
measurable real-valued functions is a POVS. If S is a topological space, then the space
C(S) of continuous real-valued functions is a POVS. If S is a metric space, then the space
LL(S) of locally Lipschitz real-valued functions is a POVS. If S is a differentiable manifold,
then the space C∞(S) of smooth real-valued functions is a POVS. ♦

6B Unitary POVS. Let V be a POVS. An order unit for V is an element u ∈ V such
that u > 0 and such that, for any v > 0 there is some r ∈ R+ such that r u ≥ v. A unitary
partially ordered vector space is a POVS equipped with an order unit. For example, 1 is
an order unit for R, making R a unitary POVS. Here are some other examples.

Example 6.2. We continue the notation of Example 6.1.

(a) Let S be an abstract set. Let `∞(S) be the POVS of all bounded elements of RS .
(Thus, `∞(S) = RS if and only if S is finite.) This is a unitary POVS: the constant
1-valued function 1S is an order unit for `∞(S).

(b) Let S be a measurable space. Let L∞(S) be the POVS of all bounded elements of L(S).
(Thus, L∞(S) = L(S) if and only if the sigma-algebra of S is finite.) This is a unitary
POVS: 1S is an order unit for L∞(S).

(c) Let S be a topological space. Let Cb(S) be the POVS of all bounded elements of C(S).
(Thus, Cb(S) = C(S) if S is compact.) This is a unitary POVS with order unit 1S .

7Proof. For any α : T −→X , φS ◦
←−
ψ (α) = φS [

←−
ψ (α)] = u◦ (α◦ψ) = (u◦α)◦ψ = ψ∗[u◦α] = ψ∗ ◦φT (α).

8For simplicity, this paper works with partially ordered real vector spaces. But many the statements
are true for partially ordered vector spaces defined over any linearly ordered field.
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(d) Let S be a metric space. Let LLb(S) be the POVS of bounded, locally Lipschitz real-
valued functions. It is a unitary POVS with order unit 1S .

(e) Let S be a differentiable manifold. Let C∞b (S) be the POVS of bounded elements of
C∞(S). This is a unitary POVS with order unit 1S . ♦

A linear transformation φ from a unitary POVS V1 to another unitary POVS V2 is weakly
order-preserving if, for all v, w ∈ V1, we have v < w =⇒ φ(v) ≤ φ(w). It is uniferent if it
sends the order unit of V1 to the order unit of V2.

6C Utility Frames. Let UPOVS be the category of unitary partially ordered vector
spaces and uniferent, weakly order-preserving, linear transformations. A utility frame on C
is a contravariant functor L : Cop �⇒ UPOVS.9

Example 6.3. (a) Suppose C = Set. For any S ∈ Set◦, let L(S) := `∞(S) with order
unit 1S , as in Example 6.2(a). For any S1,S2 ∈ Set◦ and φ : S1−→S2, define L(φ) :
`∞(S2)−→`∞(S1) by setting L(φ)[v] := v ◦ φ for all bounded functions v : S2−→R.10

(b) Suppose C = Meas. For any S ∈ Meas◦, let L(S) := L∞(S) with order unit 1S , as
in Example 6.2(b). For any S1,S2 ∈ Meas◦ and measurable φ : S1−→S2, define L(φ) :
L∞(S2)−→L∞(S1) by setting L(φ)[v] := v ◦ φ for all bounded measurable v : S2−→R.

(c) Suppose C = Top. For any S ∈ Top◦, let L(S) := Cb(S) with order unit 1S , as in
Example 6.2(c). For any S1,S2 ∈ Top◦ and continuous map φ : S1−→S2, define L(φ) :
Cb(S2)−→Cb(S1) by setting L(φ)[v] := v ◦ φ for all bounded continuous v : S2−→R.

(d) Suppose C = Metr. For any S ∈ Metr◦, let L(S) := LLb(S) with order unit 1S ,
as in Example 6.2(d). For any S1,S2 ∈ Metr◦ and short map φ : S1−→S2, define L(φ) :
LLb(S2)−→LLb(S1) by setting L(φ)[v] := v◦φ for all bounded locally Lipschitz v : S2−→R.

(e) Suppose C = Diff. For any S ∈ Diff◦, let L(S) := C∞b (S) with order unit 1S , as
in Example 6.2(e). For any S1,S2 ∈ Diff◦ and smooth map φ : S1−→S2, define L(φ) :
C∞b (S2)−→C∞b (S1) by setting L(φ)[v] := v ◦ φ for all bounded smooth v : S2−→R. ♦

As these examples suggest, in general we will think of elements of L(S) as abstract “utility
functions” on S. If D is a subcategory of C, then let L�D : Dop �⇒ UPOVS be the restriction
of L to a utility frame on D (defined in the obvious way). Let L : Cop �⇒ UPOVS and
L′ : Cop �⇒ UPOVS be two utility frames. We say that L is a utility subframe of L′ if L(C)
is a linear subspace of L′(C) (with the same partial order and order unit) for all C ∈ C◦,
and L(φ) = L′(φ)�L(C) : L(C)−→L(B) for all B, C ∈ C◦ and φ ∈ #»C (B, C). Example 6.3(b)
is a utility subframe of Example 6.3(a) (restricted to Meas). Example 6.3(c) is a utility
subframe of Example 6.3(b) (restricted to Top). Example 6.3(d) is a utility subframe of
Example 6.3(c) (restricted to Metr), and Example 6.3(e) is a utility subframe of Example
6.3(c) (restricted to Diff). In Section 7, we construct a general utility frame that subsumes
all the cases in Example 6.3 as utility subframes.

9In the terminology of category theory, L is a UPOVS-valued presheaf.
10Note that L(φ) is not strictly order-preserving unless φ is surjective.
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6D Utility functionals. Fix a utility frame L : Cop �⇒ UPOVS. Let F : UPOVS �⇒ Set
be the forgetful functor from §5A, and let L := F ◦ L : Cop �⇒ Set. (Thus, for any
C ∈ C◦, L(C) is the set of elements in L(C), but regarded as a set, rather than an ordered

vector space.) Let X ∈ X ◦. Recall the contravariant hom functor
#»C (•,X ) : Cop �⇒ Set

from §5C. For any S1,S2 ∈ C◦ and φ ∈ #»C (S1,S2), let
←−
φ :=

#»C (φ,X ); in other words,
←−
φ :

#»C (S2,X )−→ #»C (S1,X ) is the function defined by
←−
φ (α) := α ◦ φ for all α ∈ #»C (S2,X ).

An (L-valued) utility functional for X is a natural transformation UX :
#»C (•,X ) ≡V L

(§5D). In other words, UX = (UCX )C∈C◦ , where for any C ∈ C◦, UCX :
#»C (C,X )−→L(C)

is a function such that, for any C1, C2 ∈ C◦ and φ ∈ #»C (C1, C2), the following diagram
commutes:

#»C (C1,X )
#»C (C2,X )

L(C1) L(C2)

U
C1
X

←−
φ

U
C2
X

L(φ)

(1)

Example 6.4. (a) Suppose C = Set and define L as in Example 6.3(a). Let u : X−→R
be a bounded function. For any C ∈ Set◦ and any function α : C−→X , define UCX (α) :=
u ◦ α : C−→R. Then UCX (α) ∈ L(C). For any φ : C1−→C2 and α : C2−→X , we have

UC1X ◦
←−
φ (α) = UC1X [

←−
φ (α)] = u ◦ (α ◦ φ) = (u ◦ α) ◦ φ = L(φ)[u ◦ α] = L(φ) ◦ UC2X (α). Thus,

the diagram (1) commutes.

(b) Suppose C = Meas and L is as in Example 6.3(b). Then we use the same construction
as part (a), but we require u : X−→R to be both bounded and measurable.

(c) Suppose C = Top and L is as in Example 6.3(c). Then we use the same construction
as part (a), but we require u : X−→R to be both bounded and continuous.

(d) Suppose C = Metr and L is as in Example 6.3(d). Then we use the same construction
as part (a), but we require u : X−→R to be both bounded and locally Lipschitz.

(e) Suppose C = Diff and L is as in Example 6.3(e). Then we use the same construction
as part (a), but we require u : X−→R to be both bounded and smooth. ♦

In all five cases of Example 6.4, u was an element of L(X ), and we defined UCX (α) = L(α)[u]
for all α : C−→X .11 The next result shows that this is actually the general case.

Proposition 6.5 Let L : Cop �⇒ UPOVS be a utility frame, and let X ∈ C◦.

(a) Let u ∈ L(X ). For all C ∈ C◦, define UCX :
#»C (C,X )−→L(C) as follows:

UCX (α) := L(α)[u], for all α ∈ #»C (C,X ). (2)

Then UX = (UCX )C∈C◦ is a utility functional on X .

(b) Conversely, for any utility functional UX on X , there is a unique u ∈ L(X ) such
that UX arises from u as in equation (2).

11Recall: if α is a morphism from C into X , then L(α) is a function from L(X ) to L(C), because L is a
contravariant functor. Thus, L(α)[u] ∈ L(C) because u ∈ L(X ).
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6E Local SEU representations. Let C be a category, and let L : Cop−→UPOVS be a
utility frame. For any C ∈ C◦, a belief about C is a weakly order-preserving linear functional
ρ : L(C)−→R, such that ρ(1) = 1. In other words: ρ is a UPOVS-morphism from L(C) to
R, where we regard R as a unitary POVS with order unit 1.

Example 6.6. Let C = Set and define L : Setop �⇒ UPOVS as in Example 6.3(a). Let
S be a set, let ℘(S) be the power set of S, and let µ be a probability measure on ℘(S).
Define ρS : L(S)−→R by setting ρS(v) :=

∫
S v dµ for all v ∈ L(S). Then ρS is a weakly

order-preserving linear functional with ρS(1) = 1; thus, it is a belief about S. (Similar
examples appear in categories such as Meas, Top, and Metr; see Proposition 6.8 below.)
♦

Now let S and X be objects in C◦, and let <SX be a preference order on
#»C (S,X ). An

(L-valued) local subjective expected utility (SEU) representation for <SX consists of a belief
ρS about S and an L-valued utility functional UX on X , such that:

and all α, β ∈ #»C (S,X ), α <SX β ⇐⇒ ρS
[
USX (α)

]
≥ ρS

[
USX (β)

]
. (3)

Example 6.7. Suppose C = Set and define L : Setop �⇒ UPOVS as in Example 6.3(a).
Let S and X be sets, and let ρ be a belief on S defined by a probability measure µ
on ℘(S), as in Example 6.6. Let u : X−→R be a bounded function, and define utility

functional UX :
#»C (•,X ) ≡V L as in Example 6.4(a). So for any α ∈ #»C (S, C), we have

USX (α) = u ◦ α. Thus, ρS
[
USX (α)

]
=
∫
S u ◦ α dµ. So for all α, β ∈ #»C (S,X ), formula (3)

says α <SX β ⇐⇒
∫
S u ◦ α dµ ≥

∫
S u ◦ β dµ. ♦

Suppose that ◦�xa
is an ex ante preference structure on a decision environment (S,X ).

For each choice of state place S in S◦ and outcome place X in X ◦, we could construct a
local SEU representation (3) for the preference order <SX . But such an inchoate collection
of local SEU representations would be unsatisfactory, for two reasons.

First, as noted in Section 1, it would be strange if the agent had different beliefs about
S for each possible outcome place X . Likewise, it would be strange if she had a different
utility functional over X for each possible state place S. For each S in S◦, we want a
single belief ρS that yields a local SEU representation (3) for every choice of X in X ◦.
Likewise, for each X in X ◦, we want a single utility functional UX that yields a local SEU
representation (3) for every choice of S in S◦.

Second, the agent’s preferences are congruent across different choices of S in S◦ and
different choices of X in X ◦, as formalized by the properties (BP) and (TP) from Section

4. Thus, for every pair of state places S1 and S2 in S◦ and every morphism φ ∈ #»S(S1,S2),
we want φ to somehow transform the agent’s beliefs about S1 into her beliefs about S2.
Likewise, for every pair of outcome places X1 and X2 in X ◦ and every morphism φ ∈
#»X (X1,X2), we want φ to somehow transform the agent’s utility over X1 into her utility over
X2. Such a collection of beliefs and utilities would provide a “global” SEU representation
for the entire ex ante preference structure ◦�xa

. In the following subsections, we shall develop
the components that we need to define such a global SEU representation.
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6F Belief systems. Let R be the unitary POVS of real numbers, with order unit 1. Let
L : Cop �⇒ UPOVS be a utility frame. Let S be a subcategory of C (e.g. the category of
state places in a decision environment). Let L�S : Sop �⇒ UPOVS be the restriction of L
to S. A belief system for S is a collection {ρS}S∈S◦ , where, for all S ∈ S◦, ρS is a belief
about S (i.e. a uniferent, weakly order-preserving linear transformation ρS : L(S)−→R)

such that, for any S1,S2 ∈ S◦, and any φ ∈ #»S(S1,S2), the following diagram commutes:12

L(S1) L(S2)

R
ρS1

L(φ)

ρS2

(4)

Proposition 6.8 Let L : Cop �⇒ UPOVS be a utility frame, let S be a subcategory of C,
and let {ρS}S∈S◦ be a belief system.

(a) Suppose C = Set, and L : Setop �⇒ UPOVS is as in Example 6.3(a). Then for all
S ∈ S◦, there is a unique finitely additive probability measure µS on the power set
℘(S), such that ρS : L(S)−→R is defined by

ρS(v) =

∫
S
v dµS , for all v ∈ L(S). (5)

Furthermore, for all S1,S2 ∈ S◦, we have

φ(µS1) = µS2 , for all φ ∈ #»S(S1,S2).13 (6)

(b) Suppose C = Meas, and L : Measop �⇒ UPOVS is as in Example 6.3(b). Then
for all S ∈ S◦, there is a unique finitely additive probability measure µS on the
sigma-algebra of S, satisfying equations (5) and (6).

(c) Suppose C = Top, and L : Topop �⇒ UPOVS is as in Example 6.3(c). Suppose
that all objects in S◦ are normal Hausdorff spaces. Then for all S ∈ S◦, there is a
unique finitely additive normal probability measure µS on the Borel sigma-algebra of
S, satisfying (5) and (6).14 Moreover, if S is compact, then µS is countably additive.15

(d) Suppose C = Metr, and L : Metrop �⇒ UPOVS is as in Example 6.3(d). Suppose
that all objects in S◦ are compact. Then for all S ∈ S◦, there is a unique (countably
additive) Borel probability measure µS on S satisfying equations (5) and (6).16

12In the terminology of category theory, {ρS}S∈S◦ is a co-cone from the functor L�S to the object R in
the category UPOVS.

13This means: for all B ⊆ S2, µS2(B) = µS1 [φ−1(B)].
14A Borel measure µ on a space S is normal if it is both inner-regular and outer-regular. In other words,

for any Borel subset B ⊆ S, we have µ(B) = sup
F⊆B
K closed

µ(F) = inf
B⊆O⊆S
O open

µ(O).

15This statement is also true when S is a locally compact Hausdorff space, if L : Topop �⇒ UPOVS is the
utility frame in which L(S) is the space of continuous real-valued functions on S with compact support.

16Every Borel probability measure on a metric space is normal (Aliprantis and Border, 2006, Thm.12.5).
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Remark. Suppose C = Diff, and L : Diffop �⇒ UPOVS is as in Example 6.3(e). If S ∈ S◦
is compact, then C∞(S) coincides with the Schwartz space of S.17 The dual of Schwartz
space is the space of tempered distributions (see Folland 1984, §8.5, p.258, or Katznelson
2004, §VI.4, p.146.) Thus, we could state a “part (e)” of Proposition 6.8 stating that,
for any compact manifold S, there is a unique tempered distribution µS on S, satisfying
analogies to equations (5) and (6). ♦

The situation described in the last sentence of Proposition 6.8(c) arises in a wide variety
of cases. A Riesz space is a POVS V where the partial order is a lattice —in other words, any
u, v ∈ V have a supremum u∨v and an infimum u∧v in V . All of the spaces in Example 6.2
are Riesz spaces, where (u∨ v)(s) := max{u(s), v(s)} and (u∧ v)(s) := min{u(s), v(s)} for
all u, v ∈ V and s ∈ S. A Riesz space V is Archimedean if, for any u, v ∈ V , if 0 ≤ nu ≤ v
for all n ∈ N, then u = 0. All of the spaces in Example 6.2 are Archimedean.

For any v ∈ V , define |v| := (v ∨ 0) + ((−v) ∨ 0); then |v| ≥ 0. If V has an order unit
1, then for all v ∈ V we define ‖v‖ := min{r ∈ R+; r 1 ≥ |v|}. This is a norm on V . We
say that V is an M -space if it is a Banach space with this norm.

Let UARiesz be the category of unitary Archimedean Riesz spaces and uniferent weakly
order-preserving linear functions (a subcategory of UPOVS). Let MSpace be the category
of M -spaces and continuous, uniferent weakly order-preserving linear functions (a subcat-
egory of UARiesz). Let CHS be the category of compact Hausdorff spaces and continuous
maps.

Proposition 6.9 Let C be a category, and let L : Cop �⇒ UARiesz be a utility frame.

(a) There is a functor H : C �⇒ CHS, and for all S ∈ C◦, there is a uniferent, order-
preserving linear function ßS : L(S)−→C (H(S)), whose image is both order-dense
and uniformly dense in C (H(S)). In fact, if L(S) is an M-space, then ßS is a Riesz
isomorphism from L(S) to C (H(S)).

(b) The collection (ßS)S∈C◦ determines a natural transformation ß : L ≡V C ◦H. If
L is a functor into MSpace, then this is a natural isomorphism.

(c) Let S be a subcategory of C, and let (ρS)S∈S◦ be a belief system on S. For all
S ∈ S◦, there is a unique Borel probability measure µS on H(S) such that

ρS(v) =

∫
H(S)

ßS(v) dµS , for all v ∈ L(S).18 (7)

Furthermore, for any S1,S2 ∈ S◦ and φ ∈ #»S(S1,S2), we have

φ∗(µS1) = µS2 , (8)

where φ∗ := H(φ) : H(S1)−→H(S2).

17This is the space of smooth real-valued functions on S whose derivatives all “vanish at infinity” faster
than the reciprocal of any polynomial. But if S is compact, then this is true for any smooth function.

18To understand this equation, recall that ßS(v) is a real-valued function on H(S).



Global SEU representations Draft version January 28, 2025 23

The natural transformation in part (b) means that, for all intents and purposes, any
UARiesz-valued utility frame is obtained by transforming each object in C into a compact
Hausdorff space (via some functor H), and then considering some Riesz space of continuous
real-valued functions on that compact Hausdorff space. For an MSpace-valued utility
frame, the natural isomorphism yields an even stronger statement: each object in C is
transformed into the M -space of all continuous real-valued functions on its H-associated
compact Hausdorff space. In part (c), equations (7) and (8) can be seen as versions of
equations (5) and (6) from Proposition 6.8, translated through the functor H.

6G Positive affine transformations. A positive affine transformation is an increasing
bijection φ : R−→R of the form τ(r) = a r + b for all r ∈ R, where a > 0 and b ∈ R are
constants. If b ≥ 0 and 0 < a ≤ 1, then we say τ is an affine contraction. The set of all
positive affine transformations forms a group Aff under composition, which we can regard
as a single-object category, as explained in Section 2. If X is a category, then a functor
A : X �⇒ Aff is a function that maps every X -morphism φ into an element A(φ) ∈ Aff,
such that A(φ ◦ ψ) = A(φ) ◦ A(ψ) whenever the source of φ is the target of ψ.19

Let V be a unitary POVS with order unit 1. A positive affine transformation of V is an
order-preserving bijection τ : V−→V of the form τ(v) = av+b1 for all v ∈ V , where a > 0
and b ∈ R are constants.20 The set of all positive affine transformations of V forms a group
Aff(V) under composition. There is clearly a natural group isomorphism Aff−→Aff(V).
For any τ ∈ Aff, let τV denote the corresponding element of Aff(V).

If X is a category and A : X �⇒ Aff is a functor, then A(φ)V ∈ Aff(V) for every
X -morphism φ, and A(φ ◦ ψ)V = A(φ)V ◦ A(ψ)V when the source of φ is the target of ψ.

6H Utility systems. For any C ∈ C◦, recall the covariant hom functor
#»C (C, •) :

C �⇒ Set from §5C. For any X ,Y ∈ C◦ and φ ∈ #»C (X ,Y), let ~φ :=
#»C (C, φ); in other

words, ~φ :
#»C (C,X )−→ #»C (C,Y) is the function defined by ~φ(α) := φ◦α for all α ∈ #»C (C,X ).

Let L : Cop �⇒ UPOVS be a utility frame. Let X be a subcategory of C (for example,
the category of outcome places in a decision environment). An (L-valued) utility system on
X is an ordered pair (U,A), in which

• A : X �⇒ Aff is a functor; and

• U = (UX )X∈X ◦ , where UX :
#»C (•,X ) ≡V L is a utility functional for each X ∈ X ◦;

such that, for all C ∈ C◦, all X ,Y ∈ X ◦ and all morphisms φ ∈ #»X (X ,Y), the following
diagram commutes:

#»C (C,X )
#»C (C,Y)

L(C) L(C)

UCX

#»
φ

UCY

φ̂L(C)

where φ̂ := A(φ). (9)

19If X φ−→ Y is a morphism, then its source is X and its target is Y.
20τ is not linear if b 6= 0, so it is generally not a morphism in the category POVS.
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Here, φ̂L(C) is the automorphism of the set L(C) obtained from the affine transformation

φ̂. We shall call A the affinity functor of the utility system.

Example 6.10. Suppose C = Set, Meas, Top, Metr or Diff, and define L as in Example
6.3. For all X ∈ X ◦, let uX : X−→R be a bounded function (measurable, continuous,
Lipschitz or smooth, as appropriate), and define the utility functional UX = (UCX )C∈C◦ :
#»C (•,X ) ≡V L as in Example 6.4. Let A : X �⇒ Aff be a functor, and for all X ,Y ∈ X ◦

and φ ∈ #»X (X ,Y), suppose that uY ◦ φ = φ̂ ◦ uX , where φ̂ := A(φ) (an affine function from
R to itself). Then the collection (UCX )C∈C

◦

X∈X ◦ together with A is a utility system on X .

For a concrete example, consider Table 1, showing the utility functions u1, u2, u3, u12,
u23, and u31 from Example 4.1(b) for the six outcome spaces X1, X2, X3, X12, X23, and X31

from Example 1.1. Recall that the X -morphisms between these objects are the inclusion
maps shown in Figure 1. By inspecting Table 1, one can see that:

u1 ◦ ι112 = u12 + 4, u2 ◦ ι223 = u23 + 4, u3 ◦ ι331 = u31 + 4,
u1 ◦ ι131 = u31, u2 ◦ ι212 = u12, and u3 ◦ ι323 = u23.

Let I : R−→R be the identity map, and let φ(r) := r + 4 for all r ∈ R. Then I, φ ∈ Aff.
Consider the functor A : X �⇒ Aff defined by A(ι112) = A(ι223) = A(ι331) = φ while A(ι212) =
A(ι323) = A(ι131) = I.21 If we define UX = (UCX )C∈C◦ for all X ∈ X ◦ as in Example 6.4, then
(UCX )C∈C

◦

X∈X ◦ together with A is a utility system on X . ♦

6I Global SEU representations. Let (S,X ) be a decision environment in a category
C, and let ◦�xa

be an ex ante preference structure on (S,X ). A global subjective expected
utility (SEU) representation for ◦�xa

consists of:

• A utility frame L : Cop−→UPOVS;

• A belief system (ρS)S∈S◦ ; and

• A utility system given by (UCX )C∈C
◦

X∈X ◦ and A : X−→Aff;

such that for all S ∈ S◦ and X ∈ X ◦, the pair (ρS , UX ) is a local SEU representation (3)
for <SX .

Example 6.11. (a) Suppose C = Set, and let L : Setop �⇒ UPOVS be as in Example
6.3(a). Let {µS}S∈S◦ be a collection of finitely additive probability measures defining a
belief system {ρS}S∈S◦ , as in Proposition 6.8(a). Let A : X �⇒ Aff be a functor. For all

X ∈ X ◦, let uX : X−→R be a bounded function, and define UX :
#  »

Set(•,X ) ≡V L as in

Example 6.4(a). For all X ,Y ∈ X ◦ and φ ∈ #»X (X ,Y), suppose that uY ◦φ = φ̂◦uX , where

φ̂ := A(φ). Define the utility system (UCX )C∈C
◦

X∈X ◦ as in Example 6.10.

21Since the category X in this example has no nontrivial compositions of morphisms, any function
mapping each morphism to an element of Aff is automatically a functor.
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For all S ∈ S◦ and X ∈ X ◦, define a weak order <SX on
#  »

Set(S,X ) by formula (3). Then
the system ◦�xa

:= (<SX )S∈S
◦

X∈X ◦ is an ex ante preference structure on (S,X ), and the data L,

(ρS)S∈S◦ , (UCX )C∈C
◦

X∈X ◦ and A together determine a global SEU representation for ◦�xa
.

(b) Suppose C = Meas, and let L : Measop �⇒ UPOVS be as in Example 6.3(b). Let
{µS}S∈S◦ be a collection of finitely additive probability measures defining a belief system
{ρS}S∈S◦ , as in Proposition 6.8(b). For all X ∈ X ◦, let uX : X−→R be a bounded

measurable function, and define UX :
#       »

Meas(•,X ) ≡V L as in Example 6.4(b). Now proceed
as in case (a) to get an ex ante preference structure with a global SEU representation.

(c) Suppose C = Top, and let L : Topop �⇒ UPOVS be as in Example 6.3(c). Let {µS}S∈S◦
be a set of finitely additive Borel probability measures defining a belief system {ρS}S∈S◦ , as
in Proposition 6.8(c). For all X ∈ X ◦, let uX : X−→R be a bounded continuous function,

and define UX :
#    »

Top(•,X ) ≡V L as in Example 6.4(c). Now proceed as in case (a).

(d) Suppose C = Metr, and let L : Metrop �⇒ UPOVS be as in Example 6.3(d). Let
{µS}S∈S◦ be a collection of Borel probability measures defining a belief system {ρS}S∈S◦ ,
as in Proposition 6.8(d). For all X ∈ X ◦, let uX : X−→R be a bounded locally Lipschitz

function, and define UX :
#      »

Metr(•,X ) ≡V L as in Example 6.4(d). Now proceed as in (a).

(e) Suppose C = Diff, and let L : Diffop �⇒ UPOVS be as in Example 6.3(e). Let {µS}S∈S◦
be a collection of tempered distributions defining a belief system {ρS}S∈S◦ , as in the remark
following Proposition 6.8. For all X ∈ X ◦, let uX : X−→R be a bounded smooth function,
and define UX :

#    »

Diff(•,X ) ≡V L as in Example 6.4(e). Now proceed as in case (a). ♦

The main goal of this paper is to reverse the logic of Example 6.11. Instead of stipulating
all the pieces of a global SEU representation and using these to construct an ex ante
preference structure, suppose that we begin with an ex ante preference structure ◦�xa

on
a decision environment (S,X ). Under what conditions does ◦�xa

admit a global SEU
representation? In what sense is such a representation unique? We now partly answer the
second question, before turning to the first question in Section 7.

6J Cardinal equivalence. L : Cop �⇒ UPOVS be a utility frame, and let (U,A) and

(Û , Â) be two L-valued utility systems on a subcategory X . For all X ∈ X ◦, let γX ∈ Aff.

The collection Γ = (γX )X∈X ◦ is a cardinal equivalence from (U,A) to (Û , Â) if:

• For all X ∈ X ◦, all C ∈ C◦, and all φ ∈ #»C (C,X ), ÛCX (φ) = γXL(C) ◦ UCX (φ).

• For all X ,Y ∈ X ◦ and φ ∈ #»X (X ,Y), Â(φ) = γYL(C) ◦ A(φ) ◦ (γXL(C))
−1.

We then say that (U,A) and (Û , Â) are cardinally equivalent. As the name suggests, this

means that (U,A) and (Û , Â) encode the same cardinal utility information.

Example 6.12. Again consider Table 1, showing the utility functions u1, u2, u3, u12, u23,
and u31 from Example 4.1(b) for the six outcome spaces X1, X2, X3, X12, X23, and X31
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from Example 1.1. Let (U,A) be the resulting utility system, as explained at the end of
Example 6.10. Now consider the following collection of utility functions:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
X1 2 4 6 8 10 12
X2 3 6 9 12 15 18
X3 25 26 21 22 23 24
X12 15 25
X23 107 207
X31 1 2

Let (Û , Â) be the resulting utility system.22 Define

γX1(r) := 2 r, γX2(r) := 3 r, γX3(r) := r + 20,
γX12(r) := 10 r + 5, γX23(r) := 100 r + 7, and γX31(r) := r, for all r ∈ R.

Then Γ = (γX )X∈X ◦ is a cardinal equivalence from (U,A) to (Û , Â). ♦

If (L, (ρS)S∈S◦ , U, A) is a global SEU representation for ◦�xa
, and (Û , Â) is another util-

ity system on X that is cardinally equivalent to (U,A), then it is easily verified that

(L, (ρS)S∈S◦ , Û , Â) is also global SEU representation for ◦�xa
. Thus, global SEU represen-

tations can only be unique up to cardinal equivalence of their utility systems.

7 Existence of global SEU in concrete categories

The main result of this paper yields a global SEU representation under broad conditions.
In this section, we formulate this result for the special case of concrete categories, while
in Section 8, we shall state a more general version that also applies to abstract categories.
But before stating the theorem, we need a bit more machinery.

7A Concrete categories. Throughout this section, C denotes a concrete category; in
other words, the objects in C are sets, and the morphisms are functions between these
sets. For consistency with the framework developed in Section 8, we shall use the following
notation. For any object C in C◦, let C denote the underlying set, with a, b, c etc. denoting
generic elements. For any objects B, C ∈ C◦ and any morphism φ ∈ #»C (B, C), let φ : B−→C
denote the underlying function. We shall also make the following assumption:

(CM) For all B, C ∈ C◦ and all c ∈ C, there is a constant morphism φ ∈ #»C (B, C) such that
φ(b) = c for all b ∈ B.

This assumption is satisfied by Set, Meas, Top, Metr, Diff, and many concrete categories.
(But it is not satisfied by Vec, UPOVS, and other categories of “algebraic” objects.)

22Â is much more complicated than A. For example, Â(ι112) = φ where φ(r) = r/5 + 7.
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7B The canonical frame. For all C ∈ C◦, let L(C) := `∞(C). This is a unitary, partially
ordered vector space (in fact, it is a unitary, Archimedean Riesz space). For all A,B ∈ C◦

and φ ∈ #»C (A,B), we define L(φ) := φ∗ : L(B)−→L(A) by setting φ∗(v) := v ◦ φ for all
v ∈ `∞(B). (Recall that φ : A−→B, and v : B−→R, so v ◦ φ : A−→R.) It is easily verified
that L is a utility frame on C. We shall call this the canonical frame on C.

7C Connected categories. Let C be a category. We define a binary relation ∼ on
C◦ as follows: for any X ,Y ∈ C◦, write X ∼ Y if either

#»C (X ,Y) 6= ∅ or
#»C (Y ,X ) 6= ∅.

The structure (C◦,∼) is an undirected graph. The category C is connected if this graph is
connected. For example, the two categories shown in Figure 1 are connected.

7D Ex post preferences. Let (S,X ) be a decision environment in C, and let ◦�xa
be

an ex ante preference structure on (S,X ). Fix S ∈ S◦ and X ∈ X ◦. For all x ∈ X , (CM)

yields a (unique) constant morphism κSx ∈
#»C (S,X ) with the value x. We define a weak

order <
xp

S,X on X by stipulating, for all x, y ∈ X , that x <
xp

S,X y if and only if κSx <
S
X κ

S
y .

Lemma 7.1 If the category S is connected, then <
xp

S,X is independent of S.

In light of Lemma 7.1, there is a weak order <
xp

X on X , such that for any S ∈ S◦ and
any x, y ∈ X , we have κSx <

S
X κ

S
y if and only if x <

xp

X y. Following the standard terminology

in decision theory, we shall refer to <
xp

X as the ex post preference order on X .

7E Split epimorphisms. Let B, C ∈ C◦. A morphism π ∈ #»C (B, C) is called a split
epimorphism (or a retraction) if it has a right-inverse. In other words, there is a morphism

σ ∈ #»C (C,B) such that π ◦ σ = IC. This implies that, for any other A ∈ C◦, the function

~π :
#»C (A,B)−→ #»C (A, C) is surjective. In other words: for any φ ∈ #»C (A, C) there is some

ψ ∈ #»C (A,B) making the following diagram commute:

A B

C

ψ

φ
π

σ (10)

(The construction is easy: just define ψ = σ◦φ, as suggested by diagram (10).) In fact, it is

easily shown that π is a split epimorphism if and only if the function ~π :
#»C (A,B)−→ #»C (A, C)

is surjective for all A ∈ C◦.
For example, in the category Set, every surjective function is a split epimorphism.23 For

another example, suppose C is a concrete category where we can define Cartesian products
of objects in some natural way (e.g. Meas, Top, Metr, or Diff). Suppose B = A×C for some
other object A ∈ C◦, and let π : B−→C be the projection onto the second coordinate. Fix
a ∈ A and define σ : C−→B by σ(c) := (a, c) for all c ∈ C. (For the sake of this example,
suppose that σ is a morphism in C.) Then π ◦ σ = IC, so π is a split epimorphism.24

23This assumes the Axiom of Choice.
24As these examples suggest, in concrete categories, split epimorphisms are surjective.
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7F Weakly directed subcategories. Let (D,�) be a partially ordered set. Recall that
D is a directed set if for any c, d ∈ D, there is some e ∈ D such that c� e and d� e. (For
example, any linearly ordered set is directed. So is any lattice.)

Let X be a subcategory of C. We define a partial order � on X ◦ as follows. First, for
any X ,Y ∈ X ◦, write X ; Y if either

#»X (X ,Y) 6= ∅, or there is some π ∈ #»X (Y ,X ) that
is a split epimorphism in C. (Note that we do not require π to be a split epimorphism in
X .) Now let � be the transitive closure of ;. We shall say that the subcategory X is
weakly directed if (X ,�) is a directed set. For example:

• Suppose that X is a directed category, in the sense that, for any X ,Y ∈ X ◦ there
is some Z ∈ X ◦ such that

#»X (X ,Z) 6= ∅ and
#»X (Y ,Z) 6= ∅. Then X is weakly

directed. (For example: any subcategory with a terminal object is weakly directed.
Any subcategory with finite coproducts is weakly directed.)

• Suppose that X is a connected category, and that for all X ,Y ∈ X ◦, there is some
π ∈ #»X (Y ,X ) that is a split epimorphism in C. Then X is weakly directed.

For instance, the categories from Example 3.1(b,c) (shown in Figure 1) are not weakly
directed. But the categories from Example 4.2(b,c) (shown in Figure 2) are weakly directed.

7G Structural assumptions. Let (S,X ) be a decision environment in a category C.
In addition to (CM), our main result requires two other structural assumptions:

(SC) S is connected.

(XD) X is weakly directed.

As the earlier examples show, these are mild assumptions, satisfied in most applications.

7H Probabilistic extensions of categories. For all A,B ∈ C◦, let
#   »

∆C(A,B) be the

convex space of all finite-support probability measures over
#»C (A,B). A typical element

will be indicated φ̃ = (φ1, p1; φ2, p2; . . . ; φN , pN), where φ1, φ2, . . . , φN ∈
#»C (A,B) and

(p1, p2, . . . , pN) ∈ RN
+ is a vector of non-negative real numbers summing to 1.25 We shall

denote elements of
#   »

∆C(A,B) with tildes, as in φ̃, ψ̃, etc. For every φ ∈ #»C (A,B), we

shall abuse notation by identifying φ with the element of
#   »

∆C(A,B) that assigns prob-

ability 1 to φ. For any A,B, C ∈ C◦ and φ̃ ∈ #   »

∆C(A,B) and ψ̃ ∈ #   »

∆C(B, C), if φ̃ =

(φ1, p1; φ2, p2; . . . ; φN , pN) and ψ̃ = (ψ1, q1; ψ2, q2; . . . ; ψM , qM), then we define ψ̃ ◦ φ̃ :=

ξ̃ := (ξ1, r1; ξ2, r2; . . . ; ξL, rL) ∈ #   »

∆C(A, C), where {ξ1, ξ2, . . . , ξL} := {ψm◦ψn; n ∈ [1 . . . N ]
and m ∈ [1 . . .M ]} and where, for all ` ∈ [1 . . . L], we define

r` :=
∑
{qm · pn ; n ∈ [1 . . . N ], m ∈ [1 . . .M ], and ψm ◦ ψn = ξ`}.26 (11)

25Of course, if pn = 0, then φ̃ = (φ1, p1; φ2, p2; . . . ;φn−1, pn−1; φn+1, pn+1; . . . ; φN , pN ) as well.
26If ψm ◦ ψn 6= ψm′ ◦ ψn′ whenever (m,n) 6= (m′, n′), then ξ̃ = (ψ1 ◦ φ1, q1p1; ψ1 ◦ φ2, q1p2; . . . ; ψ1 ◦

φN , q1pN ; ψ2 ◦φ1, q2p1; ψ2 ◦φ2, q2p2; . . . ; ψ2 ◦φN , q1pN ; . . . . . . ; ψM ◦φ1, qMp1; ψM ◦φ2, qMp2; . . . ; ψM ◦
φN , qMpN ). But in general, it may be that ψm ◦ ψn = ψm′ ◦ ψn′ for some (m,n) 6= (m′, n′), which is why
we use the more complex expression (11).
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The result is a new category, ∆C, with the same objects as C, but with more morphisms
between them; we shall call it the probabilistic extension of C. Note that C embeds as a
subcategory of ∆C.

An important feature of ∆C is that for all A,B ∈ C◦ the set
#   »

∆C(A,B) has a natural

convex structure. Formally, let φ̃, φ̃′ ∈ #   »

∆C(A,B). Suppose that if φ̃ = (φ1, p1; . . . ; φN , pN)

and φ̃′ = (φ1, p
′
1; . . . ; φN , p

′
N) for some φ1, . . . , φN ∈

#»C (A,B) and probability vectors
(p1, . . . , pN) and (p′1, . . . , p

′
N). (Note that we may have pn = 0 or p′n = 0 for some n ∈

[1 . . . N ].) For any q ∈ [0, 1], we define φ̃ ~q φ̃′ := (φ1, r1; . . . ; φN , rN), where, for all
n ∈ [1 . . . N ], rn := q pn + (1− q) p′n.

7I Axioms and main result. Let (S,X ) be a decision environment in C, and let ◦�xa

be an ex ante preference structure on (S,X ), regarded as a pair of subcategories of ∆C.

Thus, for all S ∈ S◦ and X ∈ X ◦, there is a preference order <SX on
#   »

∆C(S,X ). We require
<SX to satisfy the following axioms, based on those of Anscombe and Aumann (1963):

vNM Independence. For all α̃, β̃, γ̃ ∈ #   »

∆C(S,X ), if α̃ <SX β̃, then α̃ ~q γ̃ <SX β̃ ~q γ̃ for all
q ∈ [0, 1].

Mixture Continuity. For all α̃, β̃, γ̃ ∈ #   »

∆C(S,X ), the sets {q ∈ [0, 1]; α̃ ~q β̃ <SX γ̃} and

{q ∈ [0, 1]; α̃~q β̃ 4SX γ̃} are closed in [0, 1].

Statewise Dominance. For all α̃, β̃ ∈ #   »

∆C(S,X ), if α̃(s) <
xp

X β̃(s) for all s ∈ S, then α̃ <SX β̃.

Boundedness. For all X ∈ X ◦, the set X contains <
xp

X -maximal and <
xp

X -minimal elements.

Here is the first version of the main result.

Theorem 7.1 Suppose a concrete category C and decision environment (S,X ) satisfy
structural assumptions (CM), (SC), and (XD). Let ◦�xa

be an ex ante preference structure
on (S,X ) in the category ∆C. If ◦�xa

satisfies vNM Independence, Mixture Continuity,
Statewise Dominance, and Boundedness, then it admits a global SEU representation.

In this representation, the utility frame L is a utility subframe of the canonical frame,
the belief system {ρS}S∈S◦ is unique, and the utility system (U,A) is unique up to cardinal
equivalence. The affinity functor A maps every X -morphism to an affine contraction.

In Theorem 7.1, we need structural assumption (SC) so that the ex post preference
orders <

xp

X are well-defined for all X ∈ X ◦ via Lemma 7.1 (so that Statewise Dominance is
meaningful). The next example shows why we need (XD).

Example 7.2. Suppose C is a subcategory of Set. Let S◦ := {S} where S := {1, 2} ×
{1, 2, 3} and the only S-morphism is the identity function on S. Let X ◦ := {X ,Y ,Z},
where X := {x1, x2}, Y := {y1, y2}, and Z := {z1, z2}. Suppose

#»X (X ,Y) = {γ} where

γ(x1) := y1 and γ(x2) := y2. Suppose
#»X (X ,Z) = {ζ} where ζ(x1) := z1 and ζ(x2) := y2.

Aside from these morphisms and the identity maps, X has no other morphisms.
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Suppose that
#»C (S,Y) and

#»C (S,Z) each contain all 26 = 64 possible functions. How-

ever,
#»C (S,X ) contains only the four possible functions that are constant in the second

coordinate. In other words,
#»C (S,X ) = {α1, α2, α3, α4}, where

α1 :=
x1 x1

x1 x1

x1 x1

α2 :=
x1 x2

x1 x2

x1 x2

α3 :=
x2 x1

x2 x1

x2 x1

and α4 :=
x2 x2

x2 x2

x2 x2

(Here we represent functions on S using 2 × 3 arrays in the obvious way.) Thus, the

functions ~γ :
#»C (S,X )−→ #»C (S,Y) and ~ζ :

#»C (S,X )−→ #»C (S,Z) are not surjective, which
means that γ and ζ are not split epimorphisms in C. The morphism digraph of X has the

structure Y γ←− X ζ−→ Z, so X is not weakly directed. So (XD) is not satisfied.

Let L(S) := RS with the obvious partial order, as in Example 6.3(a), let uX (x1) :=

uY(y1) := uZ(z1) := 1 and uX (x2) := uY(y2) := uZ(z2) := 2, and define USX :
#»C (S,X )−→RS ,

USY :
#»C (S,Y)−→RS , and USY :

#»C (S,Z)−→RS as in Example 6.4(a). Thus, if A(γ) and
A(ζ) are both the identity map, then (U,A) is a utility system.

Let µ and µ′ be the following probability measures on S:

µ :=
1/6 1/6
1/6 1/6
1/6 1/6

and µ′ :=
1/3 1/3
1/12 1/12
1/12 1/12

Let ρ, ρ′ : RS−→R be the corresponding expectation operators.

Let ◦�xa
= {<SX ,<SY ,<SZ}. Suppose that <SX has a local SEU representation (3) given

by uX and ρ, and <SY has a local SEU representation given by uY and ρ, while <SZ has
a local SEU representation given by uZ and ρ′. Then the functions γ and ζ satisfy the
property (TP), because ρ and ρ′ both have the same marginal (1

2
, 1

2
) on the first coordinate.

However, there is no single probability measure on S (hence, no linear functional on RS)
that can provide a local SEU representation for all of <SX , <SY and <SZ . Thus, ◦�xa

does not
have a global SEU representation. ♦

7J Topological SEU representations.. A shortcoming of Theorem 7.1 is that the
resulting SEU representation is not necessarily “well-adapted” to the category C. For
example, in the category Top, we would like an SEU representation of the kind described
in Example 6.11(c). That is: L should be the utility frame of bounded continuous functions
from Example 6.3(c). For all X ∈ X ◦, the utility functional UX should arise from a bounded
continuous utility function uX : X−→R, as in Example 6.4(c). And for all S ∈ S◦, the
belief ρS should arise from a Borel probability measure, as in Proposition 6.8(c). Theorem
7.1 does not guarantee an SEU representation with these properties. But we can ensure
them with three further axioms:

Ex post Continuity. For all X ∈ X ◦, the ex post preference order <
xp

X is continuous. That
is: for all y ∈ X , the sets {x ∈ X ; x <

xp

X y} and {x ∈ X ; x 4xp

X y} are closed in X .
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Certainty Equivalents. For every ỹ ∈ ∆X , there is some x ∈ X such that ỹ ≈xp

X x.

Monotone Path Property. There is some X∗ ∈ X ◦ admitting a monotone path: a continuous
function γ : [0, 1]−→X∗ such that γ(s) ≺X∗xp γ(t) for all s < t.

Proposition 7.3 Let (S,X ) be a decision environment in Top satisfying conditions (SC)
and (XD), such that every space in S◦ is normal and Hausdorff, while every space in X ◦ is
second-countable and path-connected. Let ◦�xa

be an ex ante preference structure on (S,X )
in the category ∆Top. If ◦�xa

satisfies vNM Independence, Mixture Continuity, Statewise
Dominance, Boundedness, Ex post Continuity, Certainty Equivalents and the Monotone Path
Property, then it has a global SEU representation of the kind described in Example 6.11(c).

To understand why something like the Monotone Path Property is needed, suppose
that S is a connected topological space, while X is totally disconnected. Then

#    »

Top(S,X )
contains only constant functions, so the ex ante preference <SX would simply recapitulate
the ex post preference <Xxp. If this was true for every X ∈ X ◦, then we would not have
enough information to uniquely determine ρS on Cb(S).

More generally, if
#    »

Top(S,X ) is “small”, then its image under the utility functional UX
will be a “small” subspace of Cb(S). If this holds for all X ∈ X ◦, then ρS is not determined
on a large enough subspace of Cb(S) to identify a unique Borel measure. The Monotone
Path Property solves this problem.

If X is a connected topological space, then the conjunction of Ex post Continuity and
Certainty Equivalents is equivalent to a single axiom:

Strong ex post Continuity. For every ỹ ∈ ∆X , the sets {x ∈ X ; x <
xp

X ỹ} and {x ∈ X ;
x 4xp

X ỹ} are closed in X .

Since all objects in X ◦ are connected, we can reformulate Proposition 7.3 by replacing
Ex post Continuity and Certainty Equivalents with this single axiom. It is currently unknown
whether there are results analogous to Proposition 7.3 for other concrete categories, such
as Meas, Metr, or Diff. This is an interesting problem for future research.

8 Existence of global SEU in abstract categories

As noted in Section 1, it is sometimes implausible that a decision problem comes with an
obvious or prespecified space of possible “states of nature”, or menu of possible “outcomes”.
This has inspired several models of decision-making that explicitly eschew these ingredients
(Skiadas, 1997a,b; Gilboa and Schmeidler, 2004; Karni, 2006; Ahn, 2008; Pivato, 2020;
Blume et al., 2021). An agent might be confronted by various sources of uncertainty that
she cannot model by specifying state spaces. In each decision problem, she can choose
amongst feasible courses of action, and understands that, contingent on the resolution of
the uncertainty, these actions may yield various consequences. But she may be unable to
specify a complete outcome space for each decision problem. Thus, she lacks the resources
to model her decision problems in the standard Savage framework.
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Unless we impose some further structure, it is obviously impossible to say anything
meaningful about this case. But suppose that the agent can conceptualize the various
uncertainty sources and outcome menus as objects in an abstract category C, and she can
conceptualize the various courses of action as morphisms in C.27 We shall now show that, if
C has sufficient structure, then the agent’s preferences admit a global SEU representation.

8A Initial and terminal objects. Let C be a category. An object A ∈ C◦ is initial if,
for all other objects C ∈ C◦, there is a unique morphism A−→C (usually denoted by the
symbol ¡). If C has an initial object, then it is unique up to isomorphism. So we normally
refer to “the” initial object in C; it is generally denoted by 0C. For example, in Set, Meas,
and Top, the initial object is the empty set. Meanwhile, in UPOVS, the initial object is
R: for any other unitary POVS V , there is a unique order-preserving linear transformation

R
¡−→ V that maps 1 to the order unit of V .

An object A ∈ C◦ is terminal if, for all other objects C ∈ C◦, there is a unique morphism
C−→A (usually denoted by the symbol !). If C has a terminal object, then it is unique up
to isomorphism. So we normally refer to “the” terminal object in C; it is generally denoted
by 1C. For example, in Set, Meas, Top, and Diff, the terminal object is the singleton set
(regarded as a “one-point space” or a “zero-dimensional manifold”, as appropriate).

In many categories of “algebraic” structures (e.g. Vec), the initial and terminal objects
are the same; typically this is a “trivial” algebraic structure that contains only the identity
element. This is called a zero object. For example, in Vec, the zero object is the zero-
dimensional vector space {0}.

8B Global elements. Let C be a category with a terminal object 1C. Let C ∈ C◦. A
global element of C is a morphism φ : 1C−→C. Let C :=

#»C (1C, C) be the set of global
elements of C; we shall denote generic elements by a, b, c, etc. For any C1, C2 ∈ C◦ and
φ ∈ #»C (C1, C2), we define the function φ : C1−→C2 by setting φ(c) := φ ◦ c for all c ∈ C1

(recalling that c is itself a morphism from 1C to C1). This transformation (sending each
object C to its set C of global elements, and mapping each morphism φ to the corresponding
function φ) is a functor from C into Set.28 In many concrete categories (e.g. Set, Meas,
Top, Diff, etc.), it is naturally isomorphic to the forgetful functor. In other words: there is
a natural bijection between the elements of C and the points of the set underlying C, and
the function φ describes the way that the morphism φ maps these points. (This justifies
using the notation C to refer to both sets.)

Unfortunately, not all categories of interest have terminal objects. So we shall consider
a slightly more general construction, which subsumes global elements.

27See Appendix C for some examples of abstract categories.
28Indeed, it is the covariant hom functor

#»C (1C, •) from §5C.
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8C Strongly connected categories. The category C is strongly connected, if
#»C (X ,Y) 6=

∅ for all non-initial X ,Y ∈ C◦.29 For example: if C has a terminal object, and C 6= ∅ for
every non-initial object C ∈ C◦, then C is strongly connected.

8D Constant morphisms. Let B, C ∈ C◦. A morphism κ ∈ #»C (B, C) is constant if, for

all A ∈ C◦ and all φ, ψ ∈ #»C (A,B), we have κ ◦φ = κ ◦ψ. For example, if C has a terminal

object 1C, then any global element c ∈ #»C (1C, C) is a constant morphism. More generally,

a morphism κ ∈ #»C (B, C) is constant if there is some global element c ∈ #»C (1C, C) such that
the following diagram commutes

B

1C C
!

κ

c

But constant morphisms can exist even in categories without terminal objects. For exam-
ple: let C be the category of all nonzero-dimensional differentiable manifolds and smooth
maps, or let C be the category of perfect topological spaces and continuous functions. Nei-
ther category contains a terminal object. But if B and C are objects in these categories,
and κ : B−→C is any constant function, then κ is a constant morphism in the category.

If κ ∈ #»C (B, C) is constant, then for any objects A,D ∈ C◦ and morphisms α ∈ #»C (A,B)

and δ ∈ #»C (C,D), the morphisms κ ◦ α and δ ◦ κ are also constant. (See Lemma B.1.)

8E Constituents. Suppose C is strongly connected. Let A,B, C ∈ C◦ be non-initial,
and let ψ ∈ #»C (A, C) and φ ∈ #»C (B, C) be constant morphisms. Write ψ ∼ φ there is

some α ∈ #»C (A,B) such that ψ = φ ◦ α. This is is an equivalence relation on the set
of all constant morphisms into C (see Lemma B.2). The equivalence classes are called
constituents of C. For example, if C has a terminal object 1C, then every global element in
#»C (1C, C) determines a constituent of C. But objects in C can have constituents even if C
has no terminal object, and hence no global elements, as shown by the examples in §8D
involving differentiable manifolds and perfect topological spaces.

Let C be the set of all constituents of C. Generic elements will be denoted a, b, c, etc. If
a constant morphism φ belongs to the constituent (i.e. equivalence class) c, then we shall
say that φ has the value c. If C is strongly connected, then for any c ∈ C and any other
object B ∈ C◦, there is a unique constant morphism φ ∈ #»C (B, C) with value c (Lemma
B.3). In particular, if C has a terminal object 1C, then every constituent of C can be

realized by a morphism in
#»C (1C, C); thus, there is a bijective correspondence between the

constituents of C and the global elements of C. (This justifies using the notation C to refer
to both sets.)

8F Morphism values. Let φ ∈ #»C (C,D). For every constant morphism α ∈ #»C (A, C),
the composition φ ◦ α is also constant. Furthermore, if β ∈ #»C (B, C) is also constant, and

29We exclude the initial object 0C even though
#»C (0C,Y) 6= ∅ for all Y ∈ C◦, because in many concrete

categories 0C is the empty set, so that
#»C (X ,0C) = ∅ for all (non-initial) X ∈ C◦.
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α ∼ β, then (φ ◦ α) ∼ (φ ◦ β) (see Lemma B.4). Thus, φ maps each constituent of C to
a constituent of D; this yields a function φ : C−→D. For any constituent c ∈ C, let us
call φ(c) the value of φ at c. This transformation (sending each object C to its set C of
constituents, and mapping each morphism φ to the corresponding function φ) is a functor
from C into Set. (If C has a terminal object, then this functor is naturally isomorphic to
the one in §8B.)

8G Axiomatic characterization in abstract categories. Suppose that C is a con-
crete category satisfying condition (CM) from Section 7. For every object C ∈ C◦, there
is a bijective correspondence between the constituents of C and the elements of the set
underlying C. (This justifies using the notation C to refer to both sets.) In light of this
observation, the concepts introduced in Section 7 extend immediately to any strongly con-
nected category. For any C ∈ C◦, we define L(C) := `∞(C), to obtain a contravariant
functor L : Cop �⇒ UPOVS, which will again be called the canonical frame. Likewise, if ◦�xa

is an ex ante preference structure on a decision environment (S,X ), then for any X ∈ X ◦,
we can define an ex post preference order <

xp

X on X by considering the restriction of �SX
to constant morphisms from S into X , and Lemma 7.1 still holds in this setting: if the
subcategory S is connected, then <

xp

X is defined on X independent of the choice of S. The
probabilistic extension ∆C of C is defined exactly as before, and the four axioms of Section
7 have exactly the same formulation. We still require (S,X ) to satisfy structural conditions
(SC) and (XD), but instead of (CM), we require C to satisfy the following condition:

(CC) C is strongly connected.

Here is the abstract version of Theorem 7.1.

Theorem 8.1 Suppose a category C and decision environment (S,X ) satisfy structural
assumptions (CC), (SC), and (XD). Let ◦�xa

be an ex ante preference structure on (S,X )
in the category ∆C. If ◦�xa

satisfies vNM Independence, Mixture Continuity, Statewise Dom-
inance, and Boundedness, then it admits a global SEU representation.

In this representation, the utility frame L is a utility subframe of the canonical frame,
the belief system {ρS}S∈S◦ is unique, and the utility system (U,A) is unique up to cardinal
equivalence. The affinity functor A maps every X -morphism to an affine contraction. If
X is also strongly connected, then A maps every X -morphism to the identity map.

There are three ways in which Theorems 7.1 and 8.1 could be extended or improved.
First, like the original theorem of Anscombe and Aumann (1963), they rely on a pre-
existing “objective” probabilities (in the probabilistic extension of C) in order to derive
the existence of the “subjective” beliefs {ρS}S∈S◦ supporting SEU representation. This is
not entirely satisfactory. A better approach would be to follow the path laid by Savage
(1954), and derive an SEU representation ex nihilo, without any pre-existing probabilistic
structure at all. Second, while it is formulated for abstract categories, Theorem 8.1 still
depends on constituents of objects in the category C; it would be better to shed this
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dependence. Third, it is important to also study non-expected utility representations for
ex ante preference structures. These are interesting avenues for future research.

Finally, we mention the followup paper (Pivato, 2024), where the framework of Sections
4 and 6 of the present paper (but not the results of Sections 7 and 8) is applied to the
category of orthomodular lattices. A subcategory is the category of Boolean algebras:
decision environments in this category describe agents who represents states, actions and
outcomes in terms of linguistic descriptions. Another subcategory is the category of Hilbert
lattices, which can be used to describe quantum-mechanical uncertainty. But an axiomatic
characterization theorem is still missing in this category. This is another interesting avenue
for future research.

A Proofs

Proof of Example 1.2. By contradiction, suppose that µ is a probability distribution
on S1 × S2 × S3 that yields the marginals µ12, µ23 and µ13. Then we have the follow-
ing figure, where each three-vertex line represents an equation. For example, the line
µ23(d, f) · · · · · ·µ(a, d, f)−−−−µ(b, d, f) means that µ23(d, f) = µ(a, d, f) + µ(b, d, f).

µ13(a, f) µ13(b, f)

µ23(d, f) µ(a, d, f) µ(b, d, f) µ13(a, e) µ13(b, e)

µ23(c, f) µ(a, c, f) µ(b, c, f)

µ23(d, e) µ(a, d, e) µ(b, d, e)

µ23(c, e) µ(a, c, e) µ(b, c, e)

µ12(a, d) µ12(b, d)

µ12(a, c) µ12(b, c)

Substituting the marginal values specified in Example 1.2, this reduces to the diagram
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0.4 0.1

0.1 u v 0.1 0.4

0.4 s t

0.4 y z

0.1 w x

0.4 0.1

0.1 0.4

where s = µ(a, c, f), t = µ(b, c, f), etc. Thus, the line 0.4 · · · · · · s−−−−t means
that 0.4 = s + t. By inspecting the diagram, we see that each of the eight vari-
ables s, t, u, v, w, x, y, z is a summand in an equation with value 0.1. Since all these
variables are non-negative, we must have 0 ≤ s, t, u, v, w, x, y, z ≤ 0.1. But then
s + t + u + v + w + x + y + z ≤ 0.8 < 1, which means that µ cannot be a proba-
bility distribution. 2

Proof of Proposition 6.5. (a) For any C1, C2 ∈ C◦ and φ ∈ #»C (C1, C2), we must verify that the

diagram (1) commutes. To see this, recall that
←−
φ (α) := α◦φ for all α ∈ #»C (C2,X ). Thus,

UC1X ◦
←−
φ (α) = UC1X [

←−
φ (α)] = UC1X [α ◦ φ] = L(α ◦ φ)[u] = L(φ) ◦ L(α)[u] = L(φ) ◦ UC2X (α).

This holds for all α ∈ #»C (C2,X ); thus, UC1X ◦
←−
φ = L(φ) ◦ UC2X , so diagram (1) commutes.

(b) This follows immediately from the contravariant form of the Yoneda Lemma
(Awodey, 2010, Lemma 8.2, p.188).30 2

In the proofs of Propositions 6.8 and 6.9, we use AB to cite Aliprantis and Border (2006).

Proof of Proposition 6.8. A Riesz space V is a Fréchet lattice if there is a topology T on
V such that:

30For covariant forms of the Yoneda Lemma, see Riehl (2017, Theorem 2.2.4, p.57) or Adámek et al.
(2009, Corollary 6.19, p.88). These become the contravariant form through an extra dualization step.
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• T makes V into a topological vector space;

• T is generated by a complete metric; and

• T is locally solid, meaning that the zero vector 0 has a neighbourhood basis consist-
ing of solid sets;31 equivalently, the lattice operations of V are uniformly continuous
(AB, Theorem 8.41, p.334).

For example, any Banach lattice (in particular, any M-space) is a Fréchet lattice. If
V is a Fréchet lattice and φ : V−→R is a linear function, then φ is continuous with
respect to the Fréchet topology if and only if φ is weakly order-preserving (AB, Thm.
9.11, p.352). All of the unitary POVS that appear in the presheaves of Example 6.3(a-e)
are Fréchet lattices. Thus, to characterize the beliefs ρS that appear in belief systems
defined on these presheaves, it suffices to look at continuous linear functionals. These
are characterized by versions of the Riesz Representation Theorem, as explained below.

(a) For any set S, and every continuous linear functional ρS : `∞(S)−→R, there is a
unique finitely additive signed measure µS on ℘(S) with bounded variation that satisfies
equation (5) (AB, Corollary 14.11, p.496). If ρS is weakly order-preserving, then µS is
non-negative. If ρS is uniferent, then µS(S) = 1, so µS is a probability measure. (Thus,
we can drop the qualifier “with bounded variation”, because every probability measure
has bounded variation.)

To prove equation (6), let S1,S2 ∈ S◦, let φ ∈ #»S(S1,S2), and let µ̃ := φ(µS1). For all
v ∈ `∞(S2), we have∫
S2
v dµ̃

(∗)

∫
S1
v◦φ dµS1 (†)

ρS1(v◦φ)
(‡)

ρS1◦L(φ)(v)
(�)

ρS2(v)
(†)

∫
S2
v dµS2 ,

where (∗) is by the Change of Variables Theorem (AB, Thm.13.46, p.484), both (†) are
by equation (5), (‡) is the definition of L(φ) from Example 6.3, and (�) is by commuting
diagram (4). Thus, both µ̃ and µS2 satisfy equation (5) for ρS2 . But the measure with
this property is unique, so we must have µ̃ = µS2 . In other words, φ(µS1) = µS2 . This

argument applies to all φ ∈ #»S(S1,S2). This proves equation (6).

(b) For any measurable space S and continuous linear functional ρ : L∞(S)−→R,
there is a unique finitely additive signed measure µS (with bounded variation) on the
sigma-algebra of S that satisfies equation (5) (AB, Thm. 14.4, p.489). Now proceed as
in part (a).

(c) For any normal Hausdorff space S, and every continuous positive linear functional
ρ : Cb(S)−→R, there is a unique finitely additive, normal, positive measure µS on
the Borel sigma-algebra of S that satisfies equation (5) (AB, Theorem 14.9, p.491).
Furthermore, if S is a compact Hausdorff space, then µS is countably additive (AB,
Thm. 14.14, p.409).32 Now proceed as in part (a).

31A subset B ⊂ V is solid if, for all b ∈ B and v ∈ V, |v| ≤ |b| =⇒ v ∈ B.
32This result actually applies to linear functionals on the space of continuous real-valued functions with

compact support; this justifies Footnote 15. But if S is compact, then every function has compact support.
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(d) Let S be a metric space. The subspace LLb(S) contains the order unit 1, so
any positive linear functional ρ : LLb(S)−→R extends to a positive linear functional
ρ̃ : Cb(S)−→R (AB, Corollary 8.33, p.331). As explained above, ρ̃ is continuous in the
uniform norm (AB, Thm. 9.11, p.352). Furthermore, if S is compact, then LLb(S) =
LL(S) is uniformly dense in Cb(S) = C(S), by the Stone-Weierstrass Theorem (AB,
Thm. 9.12, p.352). Thus, the extension ρ̃ is unique. But for any compact metric
space S and any continuous linear functional ρ̃ : C(S)−→R, there is a unique countably
additive signed Borel measure µS that satisfies equation (5) (AB, Thm. 14.15, p.491).
Now proceed as in part (a). 2

Proof of Proposition 6.9. For any unitary Archimedean Riesz space V , there is a compact
Hausdorff space V§ (unique up to homeomorphism) and an injective, uniferent, order-
preserving linear function ßV : V−→C(V§) whose image is both order-dense and uniformly
dense in C(V§) (Fremlin, 2012, Theorem 353M). If W is another unitary Archimedean
Riesz space, and φ : V−→W is a uniferent, weakly order-preserving linear function,
then there is a (unique) continuous function φ§ : W§−→V§ such that, for all v ∈ V , if
w := φ(v) and v′ := ßV(v), then ßW(w) = v′ ◦ φ§ (Pivato, 2020, Proposition B1(c)).
Furthermore, if U is a third Riesz space and ψ : U−→V is another uniferent, weakly
order-preserving linear function, then (φ ◦ ψ)§ = ψ§ ◦ φ§.33 Thus, the mappings V 7→ V§
and φ 7→ φ§ determine a contravariant functor § : UARieszop �⇒ CHS.34 Finally, if V
is an M -space, then ßV is bijective, hence an isomorphism (see AB, Theorem 9.32, or
Fremlin 2012, Corollary 354L, or Meyer-Nieberg 1991, Theorem 2.1.3).

(a) Define H := § ◦ L : S �⇒ CHS. This is a composition of two contravariant functors,
so it is a covariant functor. For every S ∈ S◦, we get a compact Hausdorff space
H(S) := L(S)§. For every morphism φ ∈ #»S(S1,S2), we get a continuous function
H(φ) := L(φ)§ : H(S1)−→H(S2).

(b) Let S1,S2 ∈ C◦, and let φ ∈ #»C (S1,S2). We must show that this diagram commutes:

L(S1) L(S2)

C[H(S1)] C[H(S2)]

ßS1

L(φ)

ßS2

C[H(φ)]

(A1)

This is just a question of working through the definitions. For j = 1, 2, recall that
H(Sj) = L(Sj)§ is the set of all uniferent weakly order-preserving linear functions

33This follows from the construction of these objects. The space V§ is the set of uniferent weakly order-
preserving linear functions from V into R, endowed with the topology of pointwise convergence. (Likewise
for U§ and W§). The function φ§ :W§−→V§ is defined: φ§(η) = η ◦φ for all η ∈ W§. (Likewise for ψ§). It
follows that (φ◦ψ)§ = ψ§ ◦φ§. See the proof of Proposition B1(c) in Pivato (2020) for further explanation.

34It is essentially the contravariant hom functor
#                »

UARiesz(•,R), but it maps into CHS instead of Set.
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from L(Sj) into R; we will denote a generic function of this type by ηj. The func-
tion ßj : L(Sj)−→C[H(Sj)] is defined as follows: for any vj ∈ L(Sj), the function
ßj(vj) : H(Sj)−→R is defined by

ßj(vj)(ηj) := ηj(vj), for all ηj ∈ H(Sj). (A2)

Meanwhile, for any uniferent weakly order-preserving linear function Φ : L(S2)−→L(S1),
the induced map Φ§ : H(S1)−→H(S2) is defined by

Φ§(η1) := η1 ◦ Φ, for all η1 ∈ H(S1). (A3)

In particular, let Φ := L(φ). Then H(φ) = L(φ)§ = Φ§ is defined by (A3).

Now, for any continuous Ψ : H(S1)−→H(S2), the function C[Ψ] : C[H(S2)]−→C[H(S1)]
is defined as follows: for any continuous function f2 : H(S2)−→R, we have C[Ψ](f2) :=
f2 ◦ Ψ (a continuous function from H(S1) to R). Setting Ψ := Φ§, we see that C[Φ§] :
C[H(S2)]−→C[H(S1)] is defined by

C[Φ§](f2) = f2 ◦ Φ§, for all f2 ∈ C[H(S2)]. (A4)

Thus, for any η1 ∈ H(S1), we have

C[Φ§](f2)(η1)
(∗)

f2 ◦ Φ§(η1) = f2[Φ§(η1)]
(†)

f2[η1 ◦ Φ], (A5)

where (∗) is by (A4) and (†) is by (A3).

In particular, let v2 ∈ L(S2). Then C[Φ§] ◦ ßS2(v2) is the function defined by

C[Φ§] ◦ ßS2(v2)(η1)
(∗)

ßS2(v2)[η1 ◦ Φ]
(†)

η1 ◦ Φ(v2)
(‡)

ßS1 [Φ(v2)](η1), (A6)

for all η1 ∈ H(S1). Here, (∗) is obtained by substituting f2 := ßS2(v2) into (A5), while
(†) comes from applying equation (A2) to ßS2 and (‡) comes from applying (A2) to ßS1 .

Equation (A6) holds for all η1 ∈ H(S1). Thus, C[Φ§] ◦ ßS2(v2) = ßS1 [Φ(v2)]. This
equation holds for any v2 ∈ L(S2). Thus, C[Φ§] ◦ ßS2 = ßS1 ◦Φ. Recalling that Φ = L(φ)
and Φ§ = H(φ), we get C[H(φ)] ◦ ßS2 = ßS1 ◦ L(φ). Thus, diagram (A1) commutes.

This argument works for any S1,S2 ∈ C◦ and φ ∈ #»C (S1,S2). So ß is a natural
transformation from L to C ◦H.

(c) Let S ∈ S◦ and consider the belief ρS : L(S)−→R. Let ßS : L(S)−→C (H(S),R)
be the uniferent, weakly order-preserving linear injection described above, and let V :=
ßS [L(S)]; then V is a uniformly dense subspace of C (H(S),R), and it contains the
constant 1-valued function (because ßS is uniferent). Furthermore, ßS : L(S)−→V is
an isomorphism. Define ρ̃ := ρS ◦ ß−1

S : V−→R; then ρ̃ is a uniferent, weakly order-
preserving linear function, because it is a composition of two such functions. Thus, it can
be extended to a uniferent, weakly order-preserving linear function ρ̂ : C (H(S),R)−→R
(AB, Corollary 8.33, p.331). Now, C (H(S),R) is a Banach lattice, so ρ̂ is continuous
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with respect to the uniform norm (AB, Theorem 9.6, p.350). Since V is uniformly
dense in C (H(S),R), we conclude that the extension ρ̂ is unique. Since H(S) is a
compact Hausdorff space, there is a unique Borel probability measure µS on H(S) such
that ρ̂(f) =

∫
H(S)

f dµS for all f ∈ C (H(S),R) (AB, Theorem 14.14, p.497). But if

f := ßS(v), then ρ̂(f) = ρ̃(f) = ρ ◦ ß−1
S (f) = ρ(v). This proves equation (7). The proof

of equation (8) is very similar to the proof of equation (6) in Proposition 6.8. 2

Proof of Lemma 7.1. Let S,S ′ ∈ S. We must show that <
xp

S,X and <
xp

S′,X are identical.

First suppose that S ∼ S ′. Then either
#»S(S,S ′) 6= ∅ or

#»S(S ′,S) 6= ∅. Without loss

of generality, assume the former. Let φ ∈ #»S(S,S ′). Then κS
′

x ◦φ = κSx and κS
′

y ◦φ = κSy ,

by the definition of constant morphisms and their values. Thus,

x <
xp

S,X y ⇐(∗)
⇒ κSx <

S
X κ

S
y ⇐⇒ κS

′

x ◦ φ <SX κS
′

y ◦ φ

⇐
(†)
⇒ κS

′

x <
S′
X κS

′

y ⇐
(∗)
⇒ x <

xp

S′,X y,

as desired. Here, both (∗) are by the definition of <
xp

S,X and <
xp

S′,X , while (†) is by the
property (BP).

Now let S and S ′ be arbitrary objects in S◦. Since S is connected, there is a path
S ∼ S1 ∼ S2 ∼ . . . ∼ SN ∼ S ′ in the graph (S,∼). By the previous case, we have
<

xp

S,X=<
xp

S1,X= · · · =<xp

SN ,X=<
xp

S′,X . 2

Let X be a convex set. A function v : X−→R is mixture-preserving if v(x~q y) = q v(x) +
(1 − q) v(y) for all x, y ∈ X and q ∈ [0, 1].35 The proof of Theorems 7.1 and 8.1 will use
the classic theorem of von Neumann and Morgenstern, which we restate for reference.

Proposition A.1 Let X be a convex subset of a vector space, and let < be a weak order
on X . Suppose < satisfies the following axioms:

Independence. For all x, y ∈ X , if x < y, then x~q z < y~q z for all z ∈ X and q ∈ [0, 1].

Continuity. For all x, y, z ∈ X , the sets {q ∈ [0, 1]; x~q y < z} and {q ∈ [0, 1]; x~q y 4 z}
are closed.

Then there is a mixture-preserving function v : X−→R such that,

for all x, y ∈ X , x < y ⇐⇒ v(x) ≥ v(y). (A7)

Furthermore v is unique up to positive affine transformations. If v′ : X−→R is another
mixture-preserving function satisfying (A7), then there is some φ ∈ Aff such that v′ = φ◦v.

35These are also called affine functions. We eschew this term to avoid confusion with elements of Aff.
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If a concrete category C satisfies (CM), then it satisfies (CC), and the constituents of each
object C in C◦ correspond bijectively with the elements of the underlying set C. Thus,
Theorem 7.1 is just a special case of Theorem 8.1. So it suffices to prove Theorem 8.1.

Proof of Theorem 8.1. For all S ∈ S◦ and X ∈ X ◦, Proposition A.1 yields a mixture-
preserving function V SX :

#   »

∆C(S,X )−→R satisfying the following instance of (A7):

for all α̃, β̃ ∈ #   »

∆C(S,X ), α̃ <SX β̃ ⇐⇒ V SX (α̃) ≥ V SX (β̃). (A8)

Furthermore, this function is unique up to positive affine transformation.

For any X ∈ X ◦, let ∆X denote the set of constituents of X in the category ∆C.
For any S ∈ S◦ the elements of ∆X can be identified with the constant morphisms in
#   »

∆C(S,X ) (see Lemma B.3 in Appendix B below). Generic elements will be denoted
x̃, ỹ, z̃, etc. By definition, the ex post preference order <

xp

X is the restriction of <SX to

∆X . (By Lemma 7.1 and property (SC), this is true for any S.) Thus, if vSX is the
restriction of V SX to ∆X , then we have the utility representation:

for all x̃, ỹ ∈ ∆X , x̃ <
xp

X ỹ ⇐⇒ vSX (x̃) ≥ vSX (ỹ). (A9)

Now, ∆X is a mixture space, and <
xp

X satisfies the axioms vNM Independenceand Mixture
Continuity (because it is the restriction of<SX , which satisfies these axioms). Furthermore,
vSX is a mixture-preserving function. So (A9) says that vSX is a vNM utility representation
of <

xp

X . This can be repeated for any S ∈ S◦. Thus, by the uniqueness part of Proposition
A.1, we conclude that there is a single mixture-preserving utility function vX : ∆X−→R
such that, for all S ∈ S◦, there exist constants AS > 0 and BS ∈ R such that vSX =

AS vX+BS . By replacing V SX with V̂ SX := (V SX −BS)/AS for all S ∈ S◦ if necessary, we can
assume without loss of generality that the functions V SX that appear in the representation
(A8) are such that V SX is equal to vX when restricted to ∆X , for all S ∈ S◦.

By Boundedness, X contains a <
xp

X -minimal constituent o and <
xp

X -maximal element l.
By applying a positive affine transformation to vX if necessary, we can assume without
loss of generality that vX (o) = 0 and vX (l) = 1. Thus, 0 ≤ vX (x) ≤ 1 for all x ∈ X . So
vX is bounded.

Claim 1: There is a canonical bijection from ∆X to the set ∆(X ) of finite-support
probability distributions on X .

Proof. Let x̃ ∈ ∆X . There is some C ∈ C◦ and constant morphism φ̃ ∈ #   »

∆C(C,X ) such

that x̃ is the value of φ̃. Suppose that φ̃ = (p1, φ1; p2, φ2; . . . ; pN , φN).

First note that φ1, . . . , φN must themselves be constant morphisms in the category
C. To see this, suppose that φn is not a constant. Then there is some B ∈ C◦
and morphisms α, β ∈ #»C (B, C) such that φn ◦ α 6= φn ◦ β. But φ̃ ◦ α = (p1, φ1 ◦
α; . . . ; pN , φN ◦ α) and φ̃ ◦ β = (p1, φ1 ◦ β; . . . ; pN , φN ◦ β). If φn ◦ α 6= φn ◦ β, then

φ̃ ◦ α 6= φ̃ ◦ β, contradicting the fact that φ̃ is constant.

Let x1, . . . , xN ∈ X be the values of φ1, . . . , φN . Then (p1, x1; p2, x2; . . . ; pN , xN),
an element of ∆(X ). In this way, every element of ∆X determines an element of ∆(X ).
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Conversely, given any element (p1, x1; p2, x2; . . . ; pN , xN) of ∆(X ), let φ1, . . . , φN ∈
#»C (C,X ) be constant morphisms with values x1, . . . , xN (where C ∈ C◦ is an arbitrary

object). Let φ̃ = (p1, φ1; p2, φ2; . . . ; pN , φN). Then φ̃ ∈ #   »

∆C(C,X ) is a constant. So,
let x̃ ∈ ∆X be its value. 3 Claim 1

In light of this claim, we can treat <
xp

X as a preference order on ∆(X ) satisfying the
axioms of Proposition A.1, and we can treat vX as a mixture-preserving utility function
on ∆(X ) that represents <

xp

X .

Let L be the canonical frame on C, so that L(C) := `∞(C) for all C ∈ C◦. For any

C ∈ C◦ and X ∈ X ◦, define UCX :
#»C (C,X )−→RC as follows:

for all α ∈ #»C (C,X ), let UCX (α) := vX ◦ α. (A10)

(Recall that α : C−→X and vX : X−→R.) As observed above, vX is a bounded function.
Thus, UCX (α) is also bounded. Thus, UCX (α) ∈ `∞(C). We thus obtain a function UCX :
#»C (C,X )−→`∞(C).

Claim 2: For any X ∈ X ◦, the system UX := (UCX ; C ∈ C◦) is a utility functional.

Proof. We must show that this collection of functions defines a natural transformation
UX :

#»C (•,X ) ≡V L. The argument is similar to the proof of Proposition 6.5(a). Let

C1, C2 ∈ C◦ and let φ ∈ #»C (C1, C2). We must show that the diagram (1) commutes. So,

let α ∈ #»C (C2,X ). We must show that UC1X ◦
←−
φ (α) = L(φ) ◦ UC2X (α).

Now, UC1X ◦
←−
φ (α) = UC1X (α◦φ) = vX ◦α ◦ φ = vX ◦α◦φ. Meanwhile, UC2X (α) = vX ◦α,

so L(φ) ◦ UC2X (α) = L(φ)(vX ◦ α) = vX ◦ α ◦ φ. Thus, UC1X ◦
←−
φ (α) = L(φ) ◦ UC2X (α), as

desired. 3 Claim 2

Claim 3: There is a functor A : X �⇒ Aff making the collection {UCX ; C ∈ C◦ and
X ∈ X ◦} into a utility system.

Proof. For any X ,Y ∈ X ◦ and φ ∈ #»X (X ,Y), we must construct an affine function

φ̂ ∈ Aff that makes diagram (9) commute for all C ∈ C◦.
First, let S ∈ S◦, and recall that ~φ :

#   »

∆C(S,X )−→ #   »

∆C(S,Y) is defined by ~φ(α̃) :=

φ ◦ α̃ for all α̃ ∈ #   »

∆C(S,X ). This is a mixture-preserving transformation, by defining

formula (11). Thus, if we define V̂ SX := V SY ◦ ~φ :
#   »

∆C(S,X )−→R, then V̂ SX is another

mixture-preserving function on
#   »

∆C(S,X ). For any α̃, β̃ ∈ #   »

∆C(S,X ), we have:

α̃ <SX β̃ ⇐
(∗)
⇒ φ ◦ α̃ <SY φ ◦ β̃ ⇐

(†)
⇒ ~φ(α̃) <SY ~φ(β̃)

⇐
(‡)
⇒ V SY ◦ ~φ(α̃) ≥ V SY ◦ ~φ(β̃) ⇐

(�)
⇒ V̂ SX (α̃) ≥ V SX (β̃),

where (∗) is by property (TP), (†) is the definition of ~φ, (‡) is by the utility representa-

tion (A8), and (�) is the definition of V̂ SX . Thus, V̂ SX yields another mixture-preserving
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utility representation for <SX . By the uniqueness part of Proposition A.1, there exists

φ̂S ∈ Aff such that V̂ SX = φ̂S ◦ V SX . In other words,

V SY ◦ ~φ = φ̂S ◦ V SX . (A11)

Claim 3.1: φ̂S does not depend on the choice of S.

Proof. Recall that the constant morphisms in
#   »

∆C(S,X ) are in bijective correspondence

with the constituents of ∆X . If α̃ ∈ #   »

∆C(S,X ) is a constant morphism with value

x̃, then ~φ(α̃) = φ ◦ α̃ is a constant morphism in
#   »

∆C(S,Y) with value φ(x̃). For any

S ∈ S◦, recall that V SX , restricted to ∆X , agrees with vX , while V SY , restricted to
∆Y , agrees with vY . Thus, for any S ∈ S◦, equation (A11) yields

vY ◦ φ = φ̂S ◦ vX . (A12)

Likewise, for any other S ′ ∈ S◦, we also have

vY ◦ φ = φ̂S′ ◦ vX . (A13)

The left hand side of equations (A12) and (A13) agree, so φ̂S ◦ vX = φ̂S′ ◦ vX . Thus,

φ̂S(v) = φ̂S′(v) for all v ∈ vX (∆X ). Since φ̂S and φ̂S′ are affine functions, and the

set vX (∆X ) contains more than one point, this implies that φ̂S = φ̂S′ . O Claim 3.1

Thus, there is a single affine function φ̂ ∈ Aff (independent of the choice of S) such
that

vY ◦ φ = φ̂ ◦ vX . (A14)

Now, for any C ∈ C◦, recall that L(C) = `∞(C), and φ̂L(C) : L(C)−→L(C) is defined as

follows: for any v ∈ L(C), φ̂L(C)(v) := v′ where v′(c) := φ̂[v(c)] for all c ∈ C.
Claim 3.2: For all C ∈ C◦, the diagram (9) commutes.

Proof. Let α ∈ #»C (C,X ). By formula (A10), UCX (α) = v ∈ L(C) is the function defined

by v(c) := vX [α(c)] for all c ∈ C. Thus, φ̂L(C) ◦ UCX (α) = v′ is the function defined:

v′(c) = φ̂ ◦ vX ◦ α(c), for all c ∈ C. (A15)

Meanwhile, ~φ(α) = φ ◦α, so UCY ◦ ~φ(α) = UCY(φ ◦α) = v′′ is the function defined by

v′′(c) = vY ◦ φ ◦ α(c), for all c ∈ C. (A16)

Applying equation (A14) to compare the right-hand sides of formulae (A15) and

(A16), we see that v′ = v′′. In other words, φ̂L(C) ◦ UCX (α) = UCY ◦ ~φ(α). This holds

for any α ∈ #»C (C,X ). Thus, φ̂L(C) ◦ UCX = UCY ◦ ~φ. In other words, diagram (9)
commutes. O Claim 3.2
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Define AX ,Y(φ) := φ̂. Repeating this argument for all φ ∈ #»X (X ,Y), we obtain a

function AX ,Y :
#»X (X ,Y)−→Aff. Repeat this for all pairs of objects X ,Y ∈ X ◦.

It is easily verified that these functions preserve composition. In other words: for
any X ,Y ,Z ∈ X ◦ and φ ∈ #»X (X ,Y) and ψ ∈ #»X (Y ,Z), we have AX ,Z(ψ ◦ φ) =
AY,Z(ψ) ◦ AX ,Y(φ). Thus, these functions together define a functor A : X �⇒ Aff.
3 Claim 3

Claim 4: The affinity functor A maps all X -morphisms to contractions.

Proof. Let X ,Y ∈ X ◦, let φ ∈ #»X (X ,Y), and let φ̂ = A(φ). To see that φ̂ is a contraction,
recall that X contains <

xp

X -minimal and <
xp

X -maximal constituents oX and lX such that
vX (oX ) = 0 and vX (lX ) = 1, by Boundedness. Likewise, Y contains <

xp

Y -minimal and
<

xp

Y -maximal constituents oY and lY such that vY(oY) = 0 and vY(lY) = 1. Thus,
oY 4

xp

Y φ(oX ) 4xp

Y φ(lX ) 4xp

Y lY . Thus,

0 = vY(oY) ≤
(∗)

vY◦φ(oX )
(†)
φ̂◦vX (oX ) ≤

(∗)
φ̂◦vX (lX )

(†)
vY◦φ(lX ) ≤

(∗)
vY(lY) = 1,

where each (∗) is by statement (A9) and both (†) are by equation (A14). Thus,

0 ≤ φ̂(0) ≤ φ̂(1) ≤ 1. Thus, φ̂(x) = B x+ C for some C ≥ 0 and B ≤ 1. 3 Claim 4

Claim 5: For all C ∈ C◦, the function UCX :
#   »

∆C(C,X )−→`∞(C) is mixture-preserving.

Proof. Let α̃, γ̃ ∈ #   »

∆C(C,X ), let q ∈ [0, 1], and let β̃ := q α̃ + (1 − q) γ̃. We must show

that UCX (β̃) = q UCX (α̃) + (1 − q)UCX (γ̃). So let c ∈ C. According to defining formula

(A10), we must show that vX ◦ β̃(c) = q vX ◦ α̃(c) + (1− q) vX ◦ γ̃(c).

Now, let φ1, . . . , φN ∈
#»C (C,X ), and suppose that α̃ = (a1, φ1; . . . ; aN , φN), β̃ =

(b1, φ1; . . . ; bN , φN), and γ̃ = (g1, φ1; . . . ; gN , φN), where a = (a1, . . . , aN), b =
(b1, . . . , bN) , and g = (g1, . . . , gN) are probability vectors (some of whose entries

may be zero). Thus, for any c ∈ C, α̃(c) = (a1, φ1
(c); . . . ; aN , φN(c)), β̃(c) =

(b1, φ1
(c); . . . ; bN , φN(c)), and γ̃(c) = (g1, φ1

(c); . . . ; gN , φN(c)), where φ
1
(c), . . . , φ

N
(c)

are constituents of X , so that the expressions for α̃(c), β̃(c) and γ̃(c) represent elements
of ∆(X ).

However, if β̃ := q α̃+ (1− q) γ̃, then b = q a + (1− q) g. Thus, β̃(c) = q α̃(c) + (1−
q) γ̃(c). Thus, since vX is a mixture-preserving function on ∆(X ), we get vX ◦ β̃(c) =

vX

(
q α̃(c) + (1− q) γ̃(c)

)
= q vX ◦ α̃(c) + (1− q) vX ◦ γ̃(c), as desired.

This works for all c ∈ C, so by (A10) we conclude that UCX (β̃) = q UCX (α̃) + (1 −
q)UCX (γ̃). 3 Claim 5

For all C ∈ C◦, let VCX be the image of
#   »

∆C(C,X ) under UCX (a subset of `∞(C)). Let 0C
be the all-zero element of `∞(C), and let 1C be the all-one element.

Claim 6: For all C ∈ C◦, the image set VCX is a convex subset of `∞(C), and contains
0C and 1C.
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Proof. VCX is convex by Claim 5, because
#   »

∆C(C,X ) is convex. Recall that X has con-

stituents o and l such that vX (o) = 0 and vX (l) = 1. Thus, if o, l ∈ #»C (C,X ) are
constant morphisms with the values o and l, then UCX (o) = 0C and UCX (l) = 1C.
3 Claim 6

For all C ∈ C◦, letWCX be the linear subspace of `∞(C) generated by VCX . Then 1C ∈ WCX ,
because 1C ∈ VCX by Claim 6.

Claim 7: Let C ∈ C◦, let X ,Y ∈ X ◦, and suppose that
#»X (X ,Y) 6= ∅. Then

(a) WCX ⊆ WCY .

(b) If there is some φ ∈ #»X (X ,Y) that is a split epimorphism in C, then WCX =WCY .

Proof. (a) Let φ ∈ #»X (X ,Y), and let φ̂ = A(φ). Then φ̂(x) = B x+C for some C ≥ 0 and

B ≤ 1, by Claim 4. For any a ∈ VCX , there exists α̃ ∈ #   »

∆C(C,X ) such that a = UCX (α̃).
Then

B a + C1C = φ̂L(C)(a) = φ̂L(C) ◦ UCX (α̃)
(∗)

UCY ◦ ~φ(α̃) = UCY(φ ◦ α̃),

where (∗) is by Claim 3 and commuting diagram (9). Thus, B a + C1C is an element
of VCY , and hence, WCY . But 1C ∈ VCY also. Thus, a ∈ WCY .

This argument works for all a ∈ VCX . Thus, VCX ⊆ WCY and hence WCX ⊆ WCY .

(b) If φ ∈ #»X (X ,Y) is a split epimorphism in C, then the function ~φ :
#»C (C,X )−→ #»C (C,Y)

is surjective. Meanwhile, the function UCY :
#»C (C,Y)−→VCY is surjective, by definition.

Thus, the composition UCY ◦ ~φ is surjective onto VCY . By Claim 3 and commuting di-

agram (9), we deduce that φ̂L(C) ◦ UCX must also be surjective onto VCY , which means

φ̂L(C) : VCX−→VCY is surjective. But φ̂L(C)(VCX ) ⊆ WCX , because φ̂ is an affine transforma-
tion and 1C ∈ VCX . Thus, VCY ⊆ WCX , which means WCY ⊆ WCX . Since we have already
established the reverse inclusion in part (a), we conclude that WCY =WCX . 3 Claim 7

Claim 8: For all C ∈ C◦ and X ,Z ∈ X , if X � Z, then WCX ⊆ WCZ .

Proof. Recall that � is the transitive closure of the relation ;. Thus, it suffices to show
that, if X ; Z, then WCX ⊆ WCZ . But if X ; Z, then either (1)

#»X (X ,Z) 6= ∅, or

there is some π ∈ #»X (Z,X ) that is a split epimorphism in C. In case (1), Claim 7(a)
says that WCX ⊆ WCZ , while in case (2), Claim 7(b) says that WCX =WCZ . 3 Claim 8

Now, for all C ∈ C◦, define

L′(C) :=
⋃
X∈X ◦

WCX . (A17)

Claim 9: L′(C) is a linear subspace of `∞(C), and contains 1C.
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Proof. (a) First note that 1C ∈ L′(C) because 1C ∈ WCX for all X ∈ X ◦, by Claim 6.

Now let v,w ∈ L′(C) and r ∈ R. Then defining formula (A17) yields X ,Y ∈ X ◦
such that v ∈ WCX and w ∈ WCY . By condition (XD), there is some Z ∈ X ◦ such
that X � Z and Y � Z. Thus, Claim 8 says that WCX ⊆ WCZ and WCY ⊆ WCZ .
Thus, v,w ∈ WCZ , so that v + rw ∈ WCZ (because WCZ is a linear subspace). Thus,
v + rw ∈ L′(C). This works for all v,w ∈ L′(C) and r ∈ R, so L′(C) is a linear
subspace of `∞(C). 3 Claim 9

Claim 10: L′ is a utility subframe of L.

Proof. For all C ∈ C◦, Claim 9 says that L′(C) is a linear subspace of L(C), containing
the order unit 1C. It becomes a unitary partially ordered vector space by restricting
the order from L(C).

Now let B, C ∈ C◦ and let φ ∈ #»C (B, C), so that φ∗ := L(φ) is a UPOVS morphism
from L(C) to L(B) . We must show that φ∗ maps L′(C) into L′(B).

Let w ∈ L′(C). Then defining formula (A17) says that w ∈ WCX for some X ∈ X ◦.

Thus, w =
N∑
n=1

rn vn for some v1, . . . ,vN ∈ VCX and r1, . . . , rN ∈ R. For all n ∈

[1 . . . N ], let α̃n ∈
#   »

∆C(C,X ) be such that UCX (α̃n) = vn. Now define β̃n :=
←−
φ (α̃n) =

α̃n ◦ φ; so β̃n ∈
#   »

∆C(B,X ). Then

UBX (β̃n) = UBX ◦
←−
φ (α̃n)

(∗)
φ∗ ◦ UCX (α̃n) = φ∗(vn), (A18)

where (∗) is by Claim 2 and commuting diagram (1) (with C1 := B and C2 := C).
Thus,

φ∗(w) = φ∗

(
N∑
n=1

rn vn

)
=

N∑
n=1

rn φ
∗(vn)

(∗)

N∑
n=1

rn U
B
X (β̃n), (A19)

where (∗) is by equation (A18). The right hand side of (A19) is a linear combination
of elements of VBX , and hence an element of WBX . Thus, it is an element of L′(B), as
desired.

Thus, for any φ ∈ #»C (B, C), we can define L′(φ) to be the restriction of L(φ) to
L′(C) to obtain a map L′(φ) : L′(C)−→L′(B). Since this is a restriction of a uniferent,
weakly order-preserving linear map, it is itself a uniferent, weakly order-preserving
linear map. Thus, L′ is a utility frame. 3 Claim 10

Having established that L′ is a utility frame, we shall from now on regard U as a utility
system taking values in L′.

Claim 11: Let S ∈ S◦, X ∈ X ◦, and α̃, β̃ ∈ #   »

∆C(S,X ). If USX (α̃) = USX (β̃), then

α̃ ≈SX β̃.

Proof. If USX (α̃) = USX (β̃), then for all s ∈ S, we have vX ◦ α̃(s) = vX ◦ β̃(s) and thus

α̃(s) ≈xp

X β̃(s). Thus, Statewise Dominance implies that α̃ ≈SX β̃. 3 Claim 11
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For all S ∈ S◦ and X ∈ X ◦, we define a weak order <̂
S
X on VSX as follows: for any

a,b ∈ VSX , stipulate that(
a <̂

S
X b
)
⇔
(
α̃ <SX β̃ for some α̃, β̃ ∈ #   »

∆C(S,X ) with a = USX (α̃) and b = USX (β̃)
)
.

(A20)
Claim 11 implies that this is a well-defined weak order on VSX .

Claim 12: For all S ∈ S◦ and X ∈ X ◦, there is a mixture-preserving function

ρSX : VSX−→R that represents <̂
S
X . It is unique up to positive affine transformations.

Proof. USX is mixture-preserving by Claim 5, and <SX satisfies the vNM Independence

and Mixture Continuity on
#   »

∆C(S,X ). Thus, <̂
S
X satisfies the analogous axioms on VSX ,

which is convex by Claim 6. Now apply Proposition A.1. 3 Claim 12

Claim 13: For all S ∈ S◦ and X ∈ X ◦, ρSX is nondecreasing in every coordinate.

Proof. Let a,b ∈ VSX , and suppose that as ≥ bs for all s ∈ S. Let α̃, β̃ ∈ #   »

∆C(S,X ), such

that USX (α̃) = a and USX (β̃) = b. Then for all s ∈ S, we have vX ◦ α̃(s) ≥ vX ◦ β̃(s),

hence α̃(s) <
xp

X β̃(s) (because vX represents<
xp

X , by statement (A9)). Thus, α̃ <SX β̃, by

Statewise Dominance. Thus, a <̂
S
X b, by defining formula (A20). Thus, ρSX (a) ≥ ρSX (b),

by Claim 12. 3 Claim 13

By applying a positive affine transformation if necessary, we can assume without loss of
generality that ρSX (0S) = 0 and ρSX (1S) = 1. Recall that WSX is the linear subspace of
`∞(S) generated by VSX . Thus, ρSX extends to a unique linear functional on all of WSX .

Claim 14: Let S ∈ S◦, let X ,Y ∈ X ◦, and suppose that
#»X (X ,Y) 6= ∅. Then

(a) WSX ⊆ WSY , and ρSY agrees with ρSX on WSX .

(b) If there is some φ ∈ #»X (X ,Y) that is a split epimorphism in C, thenWSX =WSY and
ρSY = ρSX .

Proof. (a) WSX ⊆ WSY by Claim 7(a). Let φ̂ := A(φ)L(S). Let a,b ∈ VSX . Let a′ := φ̂(a)

and b′ := φ̂(b). Find α̃, β̃ ∈ #   »

∆C(S,X ) such that USX (α̃) = a and USX (β̃) = b. Let

α̃′ :=
←−
φ (α̃) = φ ◦ α̃ and β̃′ :=

←−
φ (β̃) = φ ◦ β̃. Then a′ = USY (α̃′) and b′ = USY (β̃′), by

Claim 3 and commuting diagram (9). Thus,

ρSX (a) ≥ ρSX (b) ⇐
(∗)
⇒ a <̂

S
X b ⇐

(†)
⇒ α̃ <SX β̃ ⇐

(�)
⇒ φ ◦ α̃ <SY φ ◦ β̃

⇐
([)
⇒ α̃′ <SY β̃

′ ⇐
(†)
⇒ a′ <̂

S
Y b′ ⇐

(∗)
⇒ ρSY(a′) ≥ ρSY(b′)

⇐
(])
⇒ ρSY ◦ φ̂(a) ≥ ρSY ◦ φ̂(b). (A21)

Here, both (∗) are by Claim 12, both (†) are by defining formula (A20), (�) is by (TP),

([) is by the definitions of α̃′ and β̃′, and (]) is by the definitions of a′ and b′.
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Finally, recall that ρSY(0S) = 0 and ρSY(1S) = 1. Suppose A(φ) = B x+C, for some

B > 0 and C ∈ R. Then φ̂(v) = B v + C 1S for all v ∈ L(S). Then ρSY(φ̂(v)) =
ρSY(B v + C1S) = B ρSY(v) + CρSY(1S) = B ρSY(v) + C. Thus, we get:

ρSY ◦ φ̂(a) ≥ ρSY ◦ φ̂(b) ⇔ B ρSY(a)+C ≥ B ρSY(b)+C ⇔ ρSY(a) ≥ ρSY(b). (A22)

Combining (A21) and (A22), we deduce that ρSY , restricted to VSX , is another mixture-

preserving utility representation of <̂
S
X . The uniqueness part of Proposition A.1 im-

plies that ρSY is a positive affine transformation of ρSX . But ρSY(0S) = 0 = ρSX (0S) and
ρSY(1S) = 1 = ρSX (1S), so we conclude that ρSY agrees with ρSX on WSX .

(b) WSX =WSY by Claim 7(b). Thus, part (a) implies that ρSY = ρSX . 3 Claim 14

Claim 15: For all S ∈ S◦ and X ,Z ∈ X , if X � Z, then WSX ⊆ WSZ , and ρSZ agrees
with ρSX on WSX .

Proof. WSX ⊆ WSZ by Claim 8. Recall that � is the transitive closure of the relation ;.
Thus, it suffices to show that, if X ; Z, then ρSZ agrees with ρSX on WSX .

If X ; Z, then either (1)
#»X (X ,Z) 6= ∅, or (2) there is some φ ∈ #»X (Z,X ) that is a

split epimorphism in C. In case (1), Claim 14(a) says that ρSZ agrees with ρSX on WSX .
In case (2), Claim 14(b) says that ρSZ = ρSX . 3 Claim 15

For all S ∈ S◦, define ρS : L′(S)−→R as follows. For any v ∈ L′(S), find some X ∈ X ◦
such that v ∈ WSX , and then define ρS(v) := ρSX (v).

Claim 16: For all S ∈ S◦, the function ρS is well-defined, and is a uniferent, weakly
order-preserving linear functional on L′(S).

Proof. (Well-defined) Let v ∈ L′(S). Defining formula (A17) yields some X ∈ X ◦ such
that v ∈ WSX . Suppose there is some other Y ∈ X ◦ such that v ∈ WSX also. We must
show that ρSX (v) = ρSY(v). By condition (XD), there is some Z ∈ X ◦ such that X �Z
and Y � Z. Thus, Claim 15 says that WSX ⊆ WSZ and WSY ⊆ WSZ . Furthermore, ρSZ
agrees with ρSX on WSX and ρSZ agrees with ρSY on WSY . Thus, v ∈ WSZ , and we have
ρSX (v) = ρSZ(v) = ρSY(v), as desired.

(Linear) Let v,w ∈ L′(S) and r ∈ R. Just as in the proof of Claim 9, there is some
Z ∈ X ◦ such that v,w ∈ WSZ , so that v + rw ∈ WSZ . Thus, by the definition of ρS ,
we have ρS(v + rw) = ρSZ(v + rw) = ρSZ(v) + r ρSZ(w) = ρS(v) + r ρS(w).

(Order-preserving) Let v,w ∈ L′(S), with v < w. Just as in the proof of Claim 9,
there is some Z ∈ X ◦ such that v,w ∈ WSZ . Thus, by the definition of ρS , we have
ρS(v) = ρSZ(v) ≤ ρSZ(v) = ρS(v).

(Uniferent) For any X ∈ X ◦, we have 1S ∈ VSX ⊂ WSX (by Claim 6), and thus
ρS(1S) = ρSX (1S) = 1. 3 Claim 16

Claim 17: The collection {ρS}S∈S◦ is a belief structure.
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Proof. Let L′�S be the restriction of L′ to a contravariant functor L′�S : Sop �⇒ UPOVS.
We must show that {ρS}S∈S◦ is a co-cone to R from this functor . In other words, for

all S1,S2 ∈ S◦ and φ ∈ #»S(S1,S2), we must show that the diagram (4) commutes.

Let X ∈ X ◦; then VS2X ⊆ WS2X ⊆ L′(S2), by defining formula (A17). So, let

a2,b2 ∈ VS2X ; then a2 = US2X (α̃2) and b2 = US2X (β̃2) for some α̃2, β̃2 ∈
#   »

∆C(S2,X ). Let

α̃1 :=
←−
φ (α̃2) = α̃2 ◦ φ and β̃1 :=

←−
φ (β̃2) = β̃2 ◦ φ. Then α̃1, β̃1 ∈

#   »

∆C(S1,X ). Let

a1 := US1X (α̃1) and b1 := US1X (β̃1). For notational simplicity, let φ∗ := L′(φ). Then
φ∗ : L′(S2)−→L′(S1) is a linear function, and a1 = φ∗(a2) and b1 = φ∗(b2), by Claim
2 and diagram (1). Thus,

ρS1 ◦ φ∗(a2) ≥ ρS1 ◦ φ∗(b2) ⇐⇒ ρS1(a1) ≥ ρS1(b1) ⇐
(∗)
⇒ a1 <̂

S1
X b1

⇐
(†)
⇒ α̃1 <

S1
X β̃1 ⇐

(�)
⇒ α̃2 <

S2
X β̃2

⇐
(†)
⇒ a2 <̂

S2
X b2 ⇐

(∗)
⇒ ρS2(a2) ≥ ρS2(b2).

Here, both (∗) are by Claim 12, both (†) are by defining formula (A20), and (�) is by
property (BP).

Thus, (ρS1 ◦φ∗)�VS2X and (ρS2)�VS2X
are both mixture-preserving utility representations

for <̂
S2
X , so by the uniqueness part of Proposition A.1 they are equal up to positive

affine transformation. Recall that ρS1 and ρS2 are normalized so that ρS1(0S1) = 0
and ρS1(1S1) = 1, while ρS2(0S2) = 0 and ρS2(1S2) = 1. However, φ∗(0S2) = 0S1
(because φ∗ is linear), and φ∗(1S2) = 1S1 (because φ∗(v) = v ◦ φ for any v ∈ L(S2)).
Thus, ρS1 ◦ φ∗(0S2) = ρS1(0S1) = 0 and ρS1 ◦ φ∗(1S2) = ρS1(1S1) = 0. It follows that
(ρS1 ◦ φ∗)�VS2X = (ρS2)�VS2X

.

Now, (ρS2)�WS2X
is the unique extension of (ρS2)�VS2X

to WS2X , and likewise for (ρS1 ◦
φ∗)

�WS2X
. Thus, we deduce that (ρS1 ◦ φ∗)�WS2X = (ρS2)�WS2X

. This argument works for

any X ∈ X ◦. Thus, by defining formula (A17), we conclude that ρS1 ◦φ∗ = ρS2 . Thus,
the diagram (4) commutes, as desired. 3 Claim 17

It remains to show that this data yields a local SEU representation (3) for each preference

order in ◦�xa
. So, let S ∈ S◦, X ∈ X ◦, and α̃, β̃ ∈ #   »

∆C(S,X ). Then

α̃ <SX β̃ ⇐
(∗)
⇒ USX (α̃) <̂

S
X U

S
X (β̃) ⇐

(�)
⇒ ρS [USX (α̃)] ≥ ρS [USX (β̃)], (A23)

as desired. Here, (∗) is by the defining formula (A20), while and (�) is by Claim 12. 2

Remark. Statements (A8) and (A23) are two vNM utility representations for the same
preference order <SX . By the uniqueness part of Proposition A.1, V SX must be a positive
affine transformation of ρS◦USX . Since we have normalized these functions so that V SX (0S) =
0 = ρS ◦ USX (0S) and V SX (1S) = 0 = ρS ◦ USX (1S), we conclude that in fact, V SX = ρS ◦ USX .
But this fact is never used in the above proof.
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Proof of Proposition 7.3. From Theorem 7.1, we obtain a global SEU representation.
Let X ∈ X ◦. In the first part of the proof of Theorems 7.1 and 8.1, we obtained a
mixture-preserving function vX : ∆X−→R satisfying formula (A9). We then defined the
utility functional UX by equation (A10). Let uX be the restriction of vX to X .

Claim 1: uX (X ) = vX (∆X ), which is an interval in R.

Proof. uX (X ) = vX (∆X ) by Certainty Equivalents. Meanwhile, vX (∆X ) is an interval
because ∆X is a convex set and vX is mixture-preserving. 3 Claim 1

By hypothesis, X is second-countable. Thus, given Ex post Continuity, Debreu’s Theorem
says that there is a continuous function wX : X−→R representing <

xp

X .36 Let W :=
wX (X ) ⊆ R. Since uX and wX both represent <

xp

X , there is an increasing function
φ :W−→R such that uX = φ ◦ wX .

Claim 2: φ is continuous.

Proof. (by contradiction) Suppose φ is not continuous. Any discontinuity of φ is a jump
discontinuity, because φ is increasing. Any jump discontinuity induces a gap in the
image φ(W). But φ(W) = φ ◦ wX (X ) = uX (X ), which is an interval by Claim 1.
Contradiction. 3 Claim 2

We conclude that uX is also continuous, so that UX is as described in Example 6.4(c).

Thus, for all S ∈ Top◦ and all α ∈ #    »

Top(S,X ), the composite uX ◦ α is continuous and
bounded. In other words USX (α) is continuous and bounded. Thus, USX maps all of
#    »

Top(S,X ) into a subset of Cb(S).

By the Monotone Path Property, there is a space X∗ ∈ X ◦ and a continuous function
γ : [0, 1]−→X∗ such that γ(s) ≺X∗xp γ(t) whenever s < t. Let v := uX∗ ◦ γ : [0, 1]−→R.
Then v is continuous and strictly increasing. Let a := v(0) and b := v(1). Then
v : [0, 1]−→[a, b] is a homeomorphism. For any S ∈ Top◦, let C (S, [a, b]) be the set of all
continuous functions from S into [a, b] (a subset of Cb(S)).

Claim 3: For all S ∈ Top◦, the set {USX∗(α); α ∈ #    »

Top(S,X∗)} contains C (S, [a, b]).

Proof. Let f ∈ C (S, [a, b]). Let α := γ ◦ v−1 ◦ f : S−→X∗. This is a composition of

continuous functions, hence continuous. So α ∈ #    »

Top(S,X∗). But USX∗(α) = uX∗ ◦ α =
uX∗ ◦ γ ◦ v−1 ◦ f = v ◦ v−1 ◦ f = f . This works for any f ∈ C (S, [a, b]). 3 Claim 3

For any S ∈ Top◦, defining equation (A17) says that L(S) contains the linear span

of the set {USX (α); α ∈ #    »

Top(S,X )}, for all X ∈ X ◦. Thus, Claim 3 implies that
L(S) = Cb(S). In other words, L is the utility frame from Example 6.3(c). But in this
case, if all objects in S◦ are normal Hausdorff spaces, then Proposition 6.8(c) yields a
finitely additive normal Borel probability measure µS on S for all S ∈ S◦, satisfying
equations (5) and (6). Thus, we have a global SEU representation of the kind described
in Example 6.11(c). 2

36See Theorem 5.6 of Mehta (1998) or p.631 of Bosi and Herden (2008).
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B Constants and constituents

This appendix gathers some supplementary results that justify the claims made about
constant morphisms and constituents in Section 8. Let C be a category. For any A,B ∈ C◦,
let K(A,B) be the set of constant morphisms from A to B.

Lemma B.1 If κ ∈ K(B, C), then for any other objects A,D ∈ C◦ and morphisms α ∈
#»C (A,B) and δ ∈ #»C (C,D), the morphisms κ ◦ α and δ ◦ κ are also constant.

Proof. Let Z ∈ C◦, and let φ, ψ ∈ #»C (Z,A). Then (κ ◦ α) ◦ φ = κ ◦ (α ◦ φ)
(∗)
κ ◦ (α ◦ ψ) =

(κ ◦ α) ◦ ψ, where (∗) is because κ is constant. This holds for any Z, φ and ψ. Thus,
κ ◦ α is constant.

Now let φ, ψ ∈ #»C (Z,B). Then (δ ◦κ)◦φ = δ ◦ (κ◦φ)
(∗)
δ ◦ (κ◦ψ) = (δ ◦κ)◦ψ. where

(∗) is because κ is constant. This holds for any Z, φ and ψ. Thus, δ ◦ κ is constant. 2

Let C ∈ C◦, and let K(•, C) be the set of all constant morphisms into C from any other
object. Recall: for any noninitial A,B ∈ C◦ and ψ ∈ K(A, C) and φ ∈ K(B, C), we write

ψ ∼ φ there is some α ∈ #»C (A,B) such that ψ = φ ◦ α.

Lemma B.2 If C is strongly connected, then ∼ is an equivalence relation on K(•, C), for
each C ∈ C◦.

Proof. We must show that ∼ is reflexive, symmetric, and transitive.

Reflexive. Set α = IA to conclude that φ ∼ φ.

Symmetric. Let A,B, C ∈ C◦, let ψ ∈ K(A, C) and φ ∈ K(B, C), and suppose ψ ∼ φ.

Thus, there exists α ∈ #»C (A,B) such that ψ = φ ◦ α. Recall that
#»C (B,A) 6= ∅, because

C is strongly connected. Let β ∈ #»C (B,A) be arbitrary. Then ψ ◦ β = (φ ◦ α) ◦ β =
φ ◦ (α ◦ β)

(∗)
φ ◦ IB = φ, where (∗) is because φ is constant. Thus, ψ ◦ β = φ, so φ ∼ ψ,

as desired.

Transitive. Let A1,A2,A3 ∈ C◦, let φn ∈ K(An, C) for n = 1, 2, 3, and suppose that

φ1 ∼ φ2 and φ2 ∼ φ3. Thus, there exist α1 ∈
#»C (A1,A2) and α2 ∈

#»C (A2,A3) such that
φ1 = φ2 ◦α1 and φ2 = φ3 ◦α2. Let α := α2 ◦α1. Then φ3 ◦α = φ3 ◦α2 ◦α1 = φ2 ◦α1 = φ1.
Thus, φ3 ∼ φ1, as desired. 2

For all C ∈ C◦, recall that C := K(•, C)/∼ is the set of constituents of C. For any c ∈ C and
φ ∈ K(B, C), we say that φ has the value c if φ belongs to the equivalence class c.

Lemma B.3 Suppose C is strongly connected. For all B, C ∈ C◦ and c ∈ C, there is a
unique φ ∈ K(B, C) with value c.
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Proof. (Existence) If c ∈ C, then there is some A ∈ C◦ and some κ ∈ K(A, C) such that

c is the equivalence class of κ. Let α ∈ #»C (B,A) be arbitrary (this exists because C is
strongly connected). Let φ := κ◦α. Then φ is also constant (by Lemma B.1), and φ ∼ κ
(by definition) so φ has the value c.

(Uniqueness) Let φ, ψ ∈ K(B, C) and suppose they both have the value c. Then φ ∼ ψ.

Thus, there is some α ∈ #»C (B,B) such that ψ ◦α = φ. But then φ = ψ ◦α
(∗)
ψ ◦ IB = ψ,

where (∗) is because ψ is constant. We conclude that φ = ψ. 2

Lemma B.4 Let A,B, C,D ∈ C◦ and let φ ∈ #»C (C,D). For all κ1 ∈ K(A, C) and κ2 ∈
K(B, C), if κ1 ∼ κ2, then (φ ◦ κ1) ∼ (φ ◦ κ2).

Proof. First note that φ ◦ κ1 and φ ◦ κ2 are themselves constants, by Lemma B.1. If
κ1 ∼ κ2, then there is some α ∈ #»C (A,B) such that κ2 ◦ α = κ1. But then (φ ◦ κ2) ◦ α =
φ ◦ (κ2 ◦ α) = φ ◦ κ1. Thus, (φ ◦ κ1) ∼ (φ ◦ κ2). 2

C Some abstract categories

This appendix briefly describes some non-concrete categories, to provide some context for
Section 8. In some categories, morphisms are “generalized functions”. For example:

• Objects in C◦ are sets. For any A,B ∈ C◦, the morphisms in
#»C (A,B) are correspon-

dences —i.e. functions from A into the set ℘+(B) of nonempty subsets of B. For any

morphisms φ ∈ #»C (A,B) and ψ ∈ #»C (B, C) and any a ∈ A, ψ ◦ φ(a) =
⋃

b∈φ(a)

ψ(b).37

• Objects in C◦ are finite or countable sets. For any A,B ∈ C◦, the morphisms in
#»C (A,B) are stochastic matrices —i.e. arrays φ = [φab ]

a∈A
b∈B of non-negative real num-

bers such that, for any a ∈ A,
∑
b∈B

φab = 1. For any morphisms φ ∈ #»C (A,B) and

ψ ∈ #»C (B, C) and any a ∈ A and c ∈ C, (ψ ◦ φ)ac =
∑
b∈B

φab · ψbc.

In other categories, morphisms are equivalence classes of functions. For example:

37Ghirardato (2001) studied a version of the Savage model in which acts are represented by correspon-
dences; he characterized a Choquet expected utility representations in this setting. In the present paper,
the probabilistic extension of the category just described yields a version of the Anscombe-Aumann model
in which acts are (mixtures of) correspondences. By applying Theorem 8.1, we obtain an SEU representa-
tion in this setting. For any X ∈ C◦, the set of global elements X in this category is in naturally isomorphic
to ℘+(X ). So via Proposition 6.5(b), a utility functional is determined by a function uX : ℘+(X )−→R.
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v

w

Figure 3: A 2-dimensional oriented simplicial complex. The two paths from v to w are homotopic.

• Objects in C◦ are based topological spaces (i.e. topological spaces with one point

selected as a “base point”). For any A,B ∈ C◦, morphisms in
#»C (A,B) are homotopy

equivalence classes of basepoint-preserving continuous maps formA to B. (A function
φ : A−→B is basepoint-preserving if it sends the basepoint of A to the basepoint of B.
Two basepoint-preserving continuous maps φ0, φ1 : A−→B are homotopy equivalent if
there is a continuous function Φ : [0, 1]×A−→B such that Φ(0, •) = φ0, Φ(1, •) = φ1,
and Φ(s, •) : A−→B is basepoint-preserving for all s ∈ [0, 1].)

In other categories, objects are not sets, and morphisms have no resemblance to functions.

• Fix a topological space T . The objects of C◦ are the points in T . For any objects
a, b ∈ C◦, the morphisms in

#»C (a, b) are homotopy equivalence classes of continuous
paths from a to b. (A path from a to b is a continuous function φ : [0, 1]−→T such that
φ(0) = a and φ(1) = b. Two such paths φ0 and φ1 are homotopy-equivalent if there
is a continuous function Φ : [0, 1] × [0, 1]−→T such that Φ(0, •) = φ0, Φ(1, •) = φ1,
and Φ(s, •) : [0, 1]−→T is a path from a to b for all s ∈ [0, 1].)

Composition of morphisms is obtained by concatenation of paths. If φ : [0, 1]−→T is
a path from a to b, and ψ : [0, 1]−→T is a path from b to c, then we define (ψ ∗ φ) :
[0, 1]−→T by setting (ψ ∗ φ)(t) := φ(2 t) for t ∈ [0, 1

2
] and (ψ ∗ φ)(t) := ψ(2 t− 1) for

t ∈ [0, 1
2
]; this is a path from a to c. Finally, given two morphisms (i.e. homotopy

equivalence classes of paths) [φ] and [ψ], we define [φ] ◦ [ψ] := [φ ∗ ψ].

• Fix a logical language L. The objects in C◦ are sentences in L. For any objects
a, b ∈ C◦, a morphism in

#»C (a, b) is a proof —i.e. a sequence of sentences in L that
logically derives b from a. Composition of morphisms is just concatenation of proofs:
if φ is a proof that derives b from a, and ψ is a proof that derives c from b, then the
concatenation φψ is a proof that derives c from a.

We conclude with a general class of examples. A 2-dimensional simplicial complex consists
of a collection V of zero-dimensional vertices, a collection E of one-dimensional edges that
connect pairs of vertices, and a collection F of two-dimensional triangular faces, each of
which spans three edges. (There can be many edges between any pair of vertices, and the
same edge can be part of many faces.) We will say that a simplicial complex (V , E ,F) is
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oriented if each of the edges in E is given an orientation, so that it goes from one vertex to
another; see Figure 3 for an example.

Given to vertices v, w ∈ V , a directed path is a sequence ζ = (v0, e1, v1, e2, v2, . . . , vN−1, eN , vN)
with v0, v1, . . . , vN ∈ V and e1, e2, . . . , eN ∈ E , where v0 = v, vN = w, and for all
n ∈ [1 . . . N ], en is a directed edge from vn−1 to vn.

Now let u, v, w ∈ V , and suppose that ζ = (v0, e1, . . . , eN , vN) is a directed path from
u to v and ζ ′ = (v′0, e

′
1, . . . , e

′
M , v

′
M) is a directed path from v to w. Then in particular,

vN = v = v′0. We define the concatenation of ζ and ζ ′ to be the directed path ζ ′ ∗ ζ :=
(v0, e1, . . . , eN , vN = v′0, e

′
1, . . . , e

′
M , v

′
M); this is a path from u to w.

Now fix v, w ∈ V , and suppose that ξ = (v0, e1, . . . , eN , vN) and ξ′ = (v′0, e
′
1, . . . , e

′
M , v

′
M)

are two different directed paths from v to w. We will say that ξ′ is a reduction of ξ if
M = N − 1 and there is some m ∈ [1 . . . N ] such that v′n = vn and e′n = en for all n ≤ m,
v′n = vn+1 for all n ≥ m and e′n = en+1 for all n ≥ m + 1, and the three edges en, en+1

and e′n span a face in F . Finally, given two directed paths ζ and ζ ′ from v to w, we will
say that ζ ′ is homotopic to ζ if there is a sequence of paths ξ0, ξ1, . . . , ξL from v to w such
that ξ0 = ζ, ξL = ζ ′, and for all ` ∈ [1 . . . L], either ξ` is a reduction of ξ`−1, or ξ`−1 is a
reduction of ξ`. For instance, in Figure 3, the two paths from v to w are homotopic.

It is easily verified that homotopy is an equivalence relation on the set of paths. Fur-
thermore, if for any u, v, w ∈ V and paths ζ, ζ ′ from u to v and paths ξ, ξ′ from v to w, if
ζ is homotopic to ζ ′ and ξ is homotopic to ξ′, then ξ ∗ ζ is homotopic to ξ′ ∗ ζ ′.

Now, given an oriented 2-dimensional simplicial complex (V , E ,F), consider the cate-
gory C defined as follows. The objects in C◦ are the vertices in V , and for any v, w ∈ V ,
the morphisms in

#»C (v, w) are the homotopy equivalence classes of directed paths from v to
w. Composition of morphisms is obtained by concatenation of the underlying paths; as we
have observed in the previous paragraph, this is well-defined because homotopy equivalence
is compatible with the concatenation operation.

This example is fully general, in the sense that any category can be represented as a
category of this kind, for a sufficiently large simplicial complex (V , E ,F).38
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mathématiques du Québec 1 (4), 46–52.

Karni, E., 2006. Subjective expected utility theory without states of the world. J. Math. Econom.
42 (3), 325–342.

Karni, E., 2007. A new approach to modeling decision-making under uncertainty. Econom. Theory
33 (2), 225–242.

Karni, E., 2011. A theory of Bayesian decision making with action-dependent subjective proba-
bilities. Econom. Theory 48 (1), 125–146.

Karni, E., 2013. Bayesian decision theory with action-dependent probabilities and risk attitudes.
Econom. Theory 53 (2), 335–356.

Karni, E., 2017. States of nature and the nature of states. Economics & Philosophy 33 (1), 73–90.

Karni, E., Schmeidler, D., 1991. Utility theory with uncertainty. Handbook of mathematical
economics IV, 1763–1831.



Global SEU representations Draft version January 28, 2025 57

Karni, E., Vierø, M.-L., 2013. “Reverse Bayesianism”: a choice-based theory of growing aware-
ness. The American Economic Review 103 (7), 2790–2810.

Karni, E., Vierø, M.-L., 2015. Probabilistic sophistication and reverse Bayesianism. Journal of
Risk and Uncertainty 50 (3), 189–208.

Karni, E., Vierø, M.-L., 2017. Awareness of unawareness: a theory of decision making in the face
of ignorance. J. Econom. Theory 168, 301–328.

Katznelson, Y., 2004. An introduction to harmonic analysis. Cambridge University Press.

Keiding, H., 1981. The categorical approach to social choice theory. Mathematical Social Sciences
1 (2), 177–191.

Keynes, J. M., 1921. A treatise on probability. MacMillan, London.

Kijima, K., Takahara, Y., 1987. Category-theoretic basis for social decision-making theory. Inter-
national journal of systems science 18 (2), 251–267.

Kreps, D. M., 1979. A representation theorem for “preference for flexibility”. Econometrica 47 (3),
565–577.
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