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Abstract

We propose applying the Generalized Constrained Probabilistic Serial (GCPS)

mechanism of Balbuzanov (2022) to school choice problems with dichotomous

school priorities. For priorities that are neither dichotomous nor strict, we develop

a market clearing cutoffs (MCC) mechanism. These mechanisms avoid the inef-

ficiencies resulting from student proposes deferred acceptance when the schools’

priorities do not embody actual social values. They work especially well when

each student has a safe school that will certainly admit her if she is not admitted

to a school she prefers. They are strategy-proof in the large (Azevedo and Bud-

ish, 2019) and thus highly resistant to manipulation. Software implementing our

algorithms has satisfactory running times even for very large problems.

Keywords: School choice, safe schools, object allocation, deferred acceptance,

sd-efficiency, strategy-proof, strategy-proof in the large, probabilistic serial mech-

anism, Hall’s marriage theorem.

1 Introduction
Many school systems around the world now use mechanisms that pass from the stu-
dents’ reported preferences to assignments of students to schools. The Boston (or imme-

diate acceptance) mechanism1 was one of the first mechanisms used in school choice.
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1The Boston mechanism begins by assigning as many students to their favorite (according to the

submitted rankings) schools as possible. It then assigns as many of the remaining students as possible
to their second favorite schools, then as many of the students who still remain as possible to their third
choice, and so forth.
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Since it is possible that a student can (for example) greatly increase her chance of being
accepted at her second favorite school if she ranks it as her favorite, the Boston mecha-
nism is not strategy-proof, and the likelihood that other students are not reporting their
preferences truthfully makes it strategically tricky, with high stakes.

In a seminal paper Abdulkadiroğlu and Sönmez (2003) propose the application, to
school choice, of two strategy-proof mechanisms based on matching theory. The stu-

dent proposes deferred acceptance (DA) mechanism2 was originally proposed by Gale
and Shapley (1962), and it has been widely adopted for school choice and similar prob-
lems around the world. The top trading cycles (TTC) mechanism3 was originated by
David Gale, as described by Shapley and Scarf (1974), and although it has some su-
perior theoretical properties, it has found less practical acceptance. These mechanisms
require that each school have a preference ordering over possible students, called a pri-

ority, that is strict. If these do not represent actual social preferences (perhaps because
they are generated randomly, simply to fulfill the requirements of the mechanism) then
DA can yield assignments that are inefficient. These losses can be quantitatively sig-
nificant: in a study of New York City data Abdulkadiroğlu et al. (2009) found a Pareto
improving reassignment that gave almost 4300 students a school they preferred.

This paper proposes alternative mechanisms. Each of these mechanisms generates
probabilities of assigning each student to each school that are feasible: for each student,
the sum of her assignment probabilities is one, and for each school the sum of its as-
signment probabilities does not exceed its capacity. Each mechanism then implements

the assignment probabilities by generating a random deterministic assignment with a
probability distribution that realizes each of the assignment probabilities.

A feasible matrix of assignment probabilities is sd-efficient if there is no other feasi-
ble matrix of assignment probabilities that gives each student a probability distribution
over schools that first order stochastically dominates4 the given probability distribution,

2At the outset in DA each student applies to her favorite school. Each school with more applicants
than its capacity rejects the lowest priority applicants beyond the number it can serve. In each subsequent
round each student who was rejected in the preceding round applies to her favorite school among those
that have not rejected her, and each school retains the highest priority applicants, up to its capacity, among
those who have applied in all rounds, and rejects all others. The process continues in the same manner
until there is a round with no rejections.

3In TTC each student points to her favorite school and each school points to its highest priority
student. The resulting directed graph has at least one cycle, each student in a cycle is assigned to the
school she points to, and she is removed from the mechanism, along with the seat she claimed in her
school. This process is then repeated with the remaining students and seats, and it continues in this
manner until all students have been assigned. When different schools have different priorities, the role of
priorities in TTC is hard to grasp. (See Leshno and Lo (2020).)

4For a strict preference on a set of objects O, one probability distribution on O first order stochasti-
cally dominates a second probability distribution if, for each o ∈ O, the probability of an object that is
at least as desirable as o is at least as large for the first distribution as for the second. If this is the case
and the two distributions are not the same, then some such inequality holds strictly, and we say that the
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with strict domination for some students. Any probability distribution over determinis-
tic assignments that implements an sd-efficient matrix of assignment probabilities as-
signs all probability to assignments that are ex post efficient. Whereas DA randomizes
at the stage of priority assignment, we avoid inefficiencies by deferring randomization
until after sd-efficient assignment probabilities have been determined.

The schools have dichotomous priorities if, for each school, each student is either
eligible to attend that school or she is not, and the schools give equal consideration to all
eligible students. Eligibility may be based on characteristics such as test scores and res-
idential location, and the student may also be ineligible if she does not rank the school
highly enough in her reported preference. For dichotomous priorities we propose the
generalized constrained probabilistic serial (GCPS) mechanism of Balbuzanov (2022),
which is a generalization of the probabilistic serial (PS) mechanism of Bogomolnaia
and Moulin (2001) (henceforth BM). Balbuzanov shows that the allocations produced
by the GCPS mechanism are sd-efficient. Our main contribution with respect to the
GCPS mechanism is to show that, in its application to school choice, it is computation-
ally tractable.

The schools’ priorities are not dichotomous if the schools have nontrivial prefer-
ences over eligible students. We assume that each school has a finite set of priority
classes, which are ranked. A common example is that highest priority is given to stu-
dents with a sibling at the school who live in the school’s walk zone, second priority
is given to students outside the walk zone with a sibling at the school, third priority is
given to students in the walk zone without a sibling at the school, and other eligible
students have lowest priority. To apply DA in such a setting it is necessary to assign
strict priorities that refine the given coarse priorities, and again this can result in ineffi-
ciencies.

The market clearing cutoffs (MCC) mechanism is a variant of a mechanism pro-
posed by Azevedo and Leshno (2016). The MCC mechanism computes a system of
cutoff priority classes and numerical cutoffs that measure the extent to which students
in the cutoff priority classes are rationed. The allowed consumption of a student at a
school is zero if her priority at the school is below the school’s cutoff, it is one if her pri-
ority at the school is above the school’s cutoff, and when her priority at the school is the
school’s cutoff, it is determined by the school’s numerical cutoff. The computed cutoff
priority classes and numerical cutoffs are such that for each school, the total demand
(computed in the natural way) is not greater than the school’s capacity, and the school
does not restrict admission when its total demand is less than its capacity. The MCC
mechanism generalizes DA because the two mechanisms coincide when the schools’

domination is strict.
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priorities are strict.
The assignment probabilities produced by the MCC mechanism need not be sd-

efficient relative to the schools’ priorities. There are simple algorithms that pass from
a matrix of assignment probabilities that is market clearing, relative to a system of
cutoffs, to a Pareto improving matrix of assignment probabilities that is sd-efficient
within the set of matrices of assignment probabilities that are market clearing relative
to the cutoffs. An enhanced MCC mechanism is a mechanism that first computes the
MCC cutoffs and assignment probabilities, and then applies such an algorithm.

Strictly speaking, the GCPS and MCC mechanisms are not strategy-proof for the
students, but they are still quite resistant to manipulation. Intuitively, opportunities to
manipulate are uncommon, the potential gains from manipulation are small, and at-
tempting to manipulate is risky, since whenever the manipulation changes the outcome,
the student is to some extent receiving what she asks for rather than what she most
prefers. (Enhanced MCC mechanisms have an additional, minor, possibility for manip-
ulation.) Formally, we will show that the GCPS and MCC mechanisms are strategy-

proof in the large (Azevedo and Budish, 2019) which means that any expected gains
from misreporting, for students without precise information about the others’ types,
vanish asymptotically as the number of students per school increases. The underly-
ing intuition is that any benefit of a manipulation must be derived from its impact on
price-like variables whose probability distribution, from the point of view of the stu-
dent, is only slightly affected by the student’s own report. Azevedo and Budish discuss
numerous examples of mechanisms that are not strategy-proof, but are strategy-proof
in the large, and which work well in practice, as well as examples of mechanisms that
are not strategy-proof in the large for which there is empirical evidence that real world
participants strategically misreport.

In practice (e.g. Pathak (2017)) transparency and straightforward incentives are re-
quired in order for school choice mechanisms to be accepted by parents and school
administrators. DA is quite difficult for lay people to understand,5 and the Boston mech-
anism continued to be widely used for a long time, in spite of its theoretical drawbacks,
because it is more intuitive than DA. The main thrust of the GCPS and MCC mech-
anisms is very straightforward and intuitive: each student is given what she says she
wants, to the extent possible. The computation of “the extent possible” is admittedly
far from simple, but students and parents should find it easy to understand that manip-
ulation has high risks and meager potential gains.

5Ashlagi and Gonczarowski (2018) show that DA cannot be formulated in a way that makes it obvi-
ously strategy-proof (Li, 2017) for the students. Bó and Hakimov (2019) give references to an extensive
body of experimental evidence and field data showing that even though truthful revelation is a dominant
strategy in DA, misreporting of preferences is common.
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In practice almost all school choice mechanisms limit the number of schools that a
student can rank, and in large districts such restrictions seem unavoidable. We focus
on versions of the GCPS, MCC, and enhanced MCC mechanisms that finish in a single
round (other possibilities are described below) and do not assign any student to a school
she did not rank. Specifically, we assume that each student is assigned a safe school

which is guaranteed to accept the student if she is not admitted to a school she prefers,
and which she may be required to attend if other schools do not admit her. Some
systems (e.g., the state of Victoria in Australia) have neighborhood priority in which
each student’s safe school is the one whose district contains her residence, and of course
there are many other possibilities.

In the case of the GCPS mechanism we assume that for each school, the number of
students for whom that school is the safe school is not greater than the school’s capacity.
In the case of the MCC we assume that for each student, the number of students that
have equal or higher priority at the safe school is not greater than the school’s capacity.
(When priorities are dichotomous, this requirement is too stringent, which is why the
MCC mechanism and enhanced MCC mechanisms are not applicable in that case.)
In order for the GCPS and MCC mechanisms to compute feasible assignments, such
assignments must exist, and our assumptions insure that assigning each student to her
safe school is a feasible assignment.

Mechanisms that would be strategy-proof without restrictions on the number of
schools that can be ranked become manipulable when such restrictions are imposed.
Haeringer and Klijn (2009) study the Nash equilibria of matching based mechanisms
with such limitations. Calsamiglia et al. (2010) is an experimental study of the effects of
constraining the number of schools that can be ranked, for DA and TTC; a main finding
is that constraints have a large negative effect on manipulability, and reduce efficiency
and stability while increasing segregation.

When there are safe schools each student submits only a ranking of those schools
she weakly prefers to her safe school. If, for each student, the number of such schools
is not greater than the number of schools she is allowed to rank, then DA (for which
safe schools are also possible) becomes strategy-proof, and GCPS and MCC become
strategy-proof in the large, because in effect the student is allowed to rank all schools.
Of course having safe schools that students are likely to find desirable is consistent with
the main goal of school choice, which is to assign students to schools they would like to
attend. It seems likely that the guaranteed lower bounds on outcomes provided by safe
schools will be intuitively appealing to parents.

In the New York City High School Match as of 2006 (Pathak, 2006) each student
submitted a ranking of up to 12 schools. Of the roughly 100,000 participants, over 8,000
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were unmatched after the main round, in the sense that they were not offered a seat by
any school they ranked. These students submitted new rank ordered lists for the sup-
plementary round, in which schools with unfilled capacity participated. Students who
did not receive a seat in the supplementary round were assigned administratively. We
do not know the particular considerations that motivated this design. (Perhaps neigh-
borhood priority would have impeded a goal of school desegregation since there was a
high degree of de facto residential segregation.)

The important point for us is that GCPS and MCC can also be employed in multi-
round systems: each student’s safe school in the first round is participation in the second
round, for each student in the second round the safe school is participation in the third
round or administrative assignment, and so forth. In the remainder we assume a sin-
gle round because this setting is simple, but rich enough to encompass most relevant
technical issues. Issues related to multiround systems are not analyzed here.

1.1 Related Literature
The literature on school choice is now vast; Abdulkadiroğlu and Andersson (2022) is
a recent survey. In this section we survey some of the literature that is most closely
related to our work.

In response to the inefficiencies observed by Abdulkadiroğlu et al. (2009), a rather
extensive literature (Erdil and Ergin, 2008, Kesten, 2010, Tang and Yu, 2014, Kesten
and Ünver, 2015, Che and Tercieux, 2019, Dur et al., 2019, Ehlers and Morrill, 2020,
Troyan et al., 2020, Tang and Zhang, 2021, Reny, 2022, Cerrone et al., 2024) studies
how the outcome of DA might be adjusted ex post. In fact there are theoretical barriers
to improving efficiency by manipulating the breaking of ties in the schools’ rankings.
Gale and Shapley (1962) show that DA yields the best outcome for each student that can
be achieved in any allocation without justified envy for the given priorities. Improving
on results of Kesten (2006) and Erdil and Ergin (2008), Theorem 1 of Abdulkadiroğlu
et al. (2009) asserts that, for any member of a large class of tie breaking rules, there is
no mechanism that is both strategy-proof for that tie breaking rule and gives outcomes
that weakly Pareto dominate those produced by DA.

A different approach to improving efficiency is to use mechanisms which (unlike
DA and TTC, precisely because they are strategy proof) are responsive to cardinal pref-
erences. Miralles (2009) and Abdulkadiroğlu et al. (2011) study the Boston mechanism
from this point of view, and He et al. (2018) propose a version of the Hylland and Zeck-
hauser (1979) pseudo-market concept for school choice problems when the schools
have coarse priorities, as in Section 6.

Although it is not widely used, TTC continues to be a topic of research. Some
papers (Morrill, 2015, Hakimov and Kesten, 2018, Grigoryan, 2023) proposed modified
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versions of the mechanism. Leshno and Lo (2020) analyze it in terms of cutoffs for the
schools.

The GCPS, MCC, and enhanced MCC mechanisms may be applied to domains
other than school choice. For example, motivated by matching of medical residents
with hospitals in Japan and similar problems, Kamada and Kojima (2015, 2017) study
mechanisms in which regional caps on the number of residencies are implemented by
imposing caps on the number of residencies at individual hospitals in the region. This
can lead to a hospital rejecting applicants as a result of the hospital’s cap even though
other hospitals in the region have unfilled vacancies. They propose a more flexible
version of DA in which some hospitals are allowed to exceed their caps if the total
number of doctors matched to the region is below the region’s cap. Similar effects
can be achieved by running our mechanisms repeatedly while adjusting the caps of
individual hospitals.

One way to implement affirmative action objectives has been suggested by Ab-
dulkadiroğlu and Sönmez (2003). For example, a school may be divided into three
subschools, one with 30% of the seats that is reserved for minority students, one with
30% of the seats that is reserved for majority students, and one with 40% of the seats
that accepts all students. “Hard” upper and lower bounds for the percentages of students
of different types are extensively used in practice, but Kojima (2012) and Hafalir et al.
(2013) point out that they lead to conflicts with other objectives, and Ehlers et al. (2014)
suggest implementing affirmative action goals using soft bounds. Such an approach can
be implemented, at least informally, by running our mechanisms multiple times while
adjusting the parameters to better reconcile competing objectives.

We now describe the PS mechanism of BM and subsequent generalizations. BM
study the problem of assigning a different object from a finite set to each of finitely
many agents, based on their reported strict ordinal preferences. BM provide an intuitive
description of the PS mechanism in which each object is regarded as a perfectly divisible
cake of unit size. At each moment in the unit interval of time each agent consumes, at
unit speed, probability of her favorite cake, among those that have not yet been fully
consumed. Provided that there are at least as many objects as agents, at time 1 each
agent has a probability distribution over the objects, and for each object the sum of the
assignment probabilities is not greater than one. Among the most important theoretical
results are that the PS mechanism is sd-efficient but not strategy-proof.

Extensions of BM’s cake eating procedure have been proposed in (at least) six other
papers. Using the method of network flows (which is also used in the proof of Theorem
1 in Appendix A) Katta and Sethuraman (2006) extend the PS mechanism to profiles
of preferences with indifferences. Their mechanism has both the PS mechanism for
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strict preferences and the mechanism proposed by Bogomolnaia and Moulin (2004)
for matching problems with dichotomous preferences as special cases. Bogomolnaia
(2015) provides a welfarist characterization of it.

Kojima (2009) studies perhaps the simplest extension of BM in which agents receive
multiple objects. Each agent receives r ≥ 2 objects, and the number of objects is r times
the number of agents. The mechanism is shown to be sd-efficient and envy-free, but
not weakly strategy-proof, as this concept is defined by BM.

Yılmaz (2010) studies house allocation problems with existing tenants, which are
object allocation problems in which some objects have owners who can insist on not
receiving a worse object. He proposes the special case of the mechanism studied here
for that problem, and in particular he recognizes the relationship between Hall’s mar-
riage theorem, its generalization by Gale (1957), and the set of feasible allocations.
His algorithm is generalized by Athanassoglou and Sethuraman (2011) to problems in
which agents have fractional endowments. Yılmaz (2009) uses the methods of Katta
and Sethuraman (2006) to extend the mechanism to the domain of preferences with
indifferences.

Budish et al. (2013) (BCKM) study problems in which there are constraints that
require that certain sums of probabilities are bounded, either below, in which case the
constraint is a floor constraint, or above, in which case it is a ceiling constraint. For
a problem with only ceiling constraints in which there is a “null object” (e.g., being
unemployed, unhoused, or unschooled) that is available in infinite supply, and which
is not involved in any constraint, they propose a generalized probabilistic serial (GPS)
mechanism. As in BM, at each moment in [0, 1] each agent increases her probability
of her favorite available object. When a ceiling constraint binds with equality, the sets
of available objects are revised by disallowing further consumption of probabilities that
would violate a constraint. Since the null object is always available, each agent’s set of
available objects is always nonempty. Thus at time 1 each agent has total probability
one, and the GPS assignment is defined as the probability shares that have been con-
sumed by each agent at time 1. BCKM also developed an algorithm (described for our
special case in Online Appendix C) for implementation, which passes from a matrix
of assignment probabilities to a random deterministic assignment whose distribution
realizes the given probabilities.

Balbuzanov (2022) generalizes the BCKM mechanism by allowing the set of fea-
sible allocations to be an arbitrary polytope in the nonnegative orthant of the space of
matrices of assignment probabilities. (Echenique et al. (2021) follow this approach in
their study of pseudo-market equilibria with constraints.) We specialize this mechanism
to a setting that is slightly more general than school choice.
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1.2 Structure of the Paper

We briefly describe the structure of the remainder. Sections 2-5 describe the GCPS
mechanism and our algorithm for computing it. Section 2 gives an overview, and defi-
nitions of key technical concepts. Section 3 states our generalization of Hall’s marriage
theorem. During the allocation process there can be a critical pair consisting of a set
J of agents and a set P of objects such that the agents in J must be assigned all of the
remaining capacity of the objects in P . Section 4 studies such pairs. Section 5 describes
the algorithm for computing the GCPS allocation.

Section 6 defines the MCC mechanism, and describes a method of computing it.
Section 7 explains that GCPS allocations are sd-efficient (this result is due to Bal-
buzanov) and also efficient in relation to other orderings of the set of probability mea-
sures on objects derived from an ordinal preference that correspond to the limits of
extreme risk loving and extreme risk averse cardinal preferences. As mentioned earlier,
the MCC mechanism does not produce efficient assignment probabilities, and in Sec-
tion 7 we explain how to pass to assignment probabilities that are efficient relative to
the given priorities, thereby defining enhanced MCC mechanisms.

Section 8 presents examples illustrating why the GCPS and MCC mechanisms are
not strategy-proof, and then defines strategy-proofness in the large, and proves that the
GCPS and MCC mechanisms satisfy this condition. Section 9 considers the fairness
properties of GCPS allocations. Section 10 provides some concluding remarks.

Appendix A contains some proofs (of Theorem 1 and Propositions 2 and 4) not
presented in the body of the paper, and Appendix B proves a result from Section 8.
Online Appendix C describes a special case of an algorithm of BCKM that implements
a matrix of assignment probabilities by passing to a random deterministic assignment
whose distribution realizes the given probabilities. Online Appendix D gives a brief
informal description of the software package GCPS MCC Schools, which implements
the algorithms described in Sections 5 and 6 and Online Appendix C. The software has
satisfactory running times for the largest contemporary school choice problems, and is
ready for practical application.

2 Overview of the GCPS Mechanism
We begin the technical exposition with a high level overview of the GCPS mechanism.
We first review some basic definitions.

A polytope Q may be defined to be the convex hull of a finite set of points, or as an
intersection of finitely many closed half spaces that happens to be bounded. To avoid
technical detail our discussion in this paragraph assumes that Q is full dimensional, in
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the sense that its affine hull is the entire Euclidean space of which it is a subset. Among
the finite systems of weak linear inequalities that may be used to define Q, there is a
unique (up to rescaling of inequalities by multiplication by positive scalars) such system
that is minimal, and that is contained in any other such system. Its elements are the facet

inequalities of Q. For each facet inequality the corresponding facet is the subset of Q
on which the facet inequality holds with equality. A subset of Q is a face if it is Q itself,
the null set, or the intersection of some set of facets. A polytope Q is the convex hull
of a finite set of points, and among the finite sets whose convex hulls are Q, there is a
unique such set that is minimal in the sense that it is contained in any other such set,
whose elements are the vertices of Q. The vertices of Q may also be described as its
extreme points, where an extreme point of Q is a point that cannot be expressed as a
convex combination of other points of Q.

In Balbuzanov (2022) the set of feasible allocations is a given polytope Q in the
nonnegative orthant of the space of matrices of assignment probabilities. Let R be the
intersection of the nonnegative orthant with the sum of Q and the nonpositive orthant.
That is, a point in the nonnegative orthant is in R if and only if it lies below some
point of Q. The GCPS allocation process is a piecewise linear function p : [0, 1] →
R. It begins with p(0) equal to the origin and increases each student’s probability of
receiving her favorite object, among those she is allowed to consume, until one of the
facet inequalities of R is encountered.

A key result (Balbuzanov’s Proposition 1) is that the facet inequalities of R (other
than the nonnegativity conditions) require that weighted sums of probabilities, with
nonnegative weights, not exceed certain quantities. When the process encounters one or
more facet inequalities, each student’s set of allowed objects is updated by disallowing
further consumption of probabilities that would result in one of these facet inequalities
being violated. The process then continues, with each student increasing the probabil-
ity of receiving her favorite allowed object until additional facet inequalities of R are
encountered, and again the students’ sets of allowed objects are updated. (For the prob-
lems we study each student’s set of allowed objects is always nonempty.) Eventually
the process arrives at a point p(1) ∈ Q that is, by definition, the GCPS allocation.

A computational implementation of the GCPS mechanism must have a way of de-
tecting when the allocation process encounters a facet of R. One possible implementa-
tion first passes to the description of Q as a convex hull of vertices. The vertices of R
are all the points obtained from vertices of Q by changing some of the components to
zero, and one may then pass from this set of vertices to the description of R as an in-
tersection of finitely many half spaces. The computational problem of passing from the
description of a polytope as a convex hull of vertices to its description as an intersection
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of half spaces, and the reverse computation, are well studied, and efficient softwares
for these tasks are available. (See Section 3 of Balbuzanov (2022).) However, even if
the number of bounding inequalities of Q and the number of bounding inequalities of
R are small, large data structures can arise at intermediate stages of the computation.
For example, for the problem of assigning n objects to n agents the numbers of facet
inequalities of Q and R are constant multiples of n, but Q has n! vertices.

Our first main result is a generalization of Hall’s marriage theorem. For a class
of problems somewhat more general than school choice problems it gives a set of in-
equalities, in closed form, that constitute a necessary and sufficient condition for the
nonemptiness of Q. A direct consequence is a result giving a set of inequalities that
contains the facet inequalities of R. The number of such inequalities is 2|O|, where O is
the set of schools and |O| is its cardinality. An algorithm that monitors these inequalities
has reasonable running times when |O| ≤ 25.

A second main innovation is another algorithm (described in Section 5) for com-
puting the GCPS allocation. In addition to computing p, it computes a piecewise linear
path p : [0, 1] → Q such that p(t) ≤ p(t) for all t, by iteratively computing the linear
segments of the combined path (p, p) : [0, 1] → R ×Q. Each linear segment continues
in the same direction until the time at which continuing further would result in the vi-
olation of one of the constraints. At such a time there is a polynomial time procedure
that either finds a new direction for p that allows continuation of (p, p) with the given
direction of p, or finds a set of agents J and a set of objects P such that the only feasible
allocations give the agents in J all of the remaining resources in P and their maximum
allowed consumptions of objects in the complement of P . The algorithm is recursive
in the sense that its continuation combines the application of the algorithm to the con-
tinuation for J and P with the application of the algorithm to the continuation for the
complements of these sets. The algorithm has been implemented (see Online Appendix
D) and computational experience shows that it is capable to handling very large school
choice problems.

3 A Generalized Hall’s Marriage Theorem

In this section we introduce the formal framework, state the generalization of Hall’s
theorem, and provide useful characterizations of Q and R.

A communal endowment economy (CEE) is a quintuple E = (I, O, r, q, g) in which
I is a nonempty finite set of agents, O is a nonempty finite set of objects, r ∈ RI

+,
q ∈ RO

+, and g ∈ RI×O
+ . We say that ri is i’s requirement, qo is the quota of o, and gio is

i’s o-max. We say that E is integral if r ∈ ZI
+, q ∈ ZO

+, and g ∈ ZI×O
+ . In comparison
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with most models of random assignment, the matrix g is the main novelty, and we will
see that it may represent several things and be used in various ways.

An allocation for I and O is a matrix p ∈ RI×O
+ . Such a p is integral if p ∈ ZI×O

+ .
A partial allocation for E is an allocation p such that

∑
o pio ≤ ri for all i,

∑
i pio ≤ qo

for all o, and pio ≤ gio for all i and o. A feasible allocation is a partial allocation m
such that

∑
omio = ri for all i. A partial allocation p is possible if there is a feasible

allocation m such that p ≤ m. Let Q be the set of feasible allocations, and let R be the
set of possible partial allocations.

For J ⊂ I and P ⊂ O let J c = I \ J and P c = O \ P be the complements. We
say that E satisfies the generalized marriage condition (GMC) if, for every J ⊂ I and
P ⊂ O, ∑

i∈J

ri ≤
∑
i∈J

∑
o∈P c

gio +
∑
o∈P

qo.

We will refer to this relation as the GMC inequality for (J, P ). Note that the GMC
inequality for ({i}, ∅) is ri ≤

∑
o gio, and the GMC inequality for (I, O) is

∑
i ri ≤∑

o qo. The GMC is obviously necessary for the existence of a feasible allocation. Our
first main result is:

Theorem 1. The CEE E has a feasible allocation if and only if it satisfies the GMC.

Our proof of Theorem 1 (in Appendix A) is an application of the max-flow min-
cut theorem of Ford and Fulkerson (1956). Hall’s marriage theorem, the Gale supply-
demand theorem, and the max-flow min-cut theorem are three members of a large and
important class of results in combinatorial matching theory that are equivalent in the
informal sense that relatively simple arguments (described in detail by Reichmeider
(1978, 1985)) allow one to pass from any member of the class to any other. As yet
another member of this class, Theorem 1 does not provide distinctly novel mathematical
information. Its primary significance here, and perhaps more generally, is that the test
it provides is in closed form.

Several types of CEE occur in our discussion. A Hall marriage problem is a CEE
such that for all i and o, ri = 1, qo = 1, and gio ∈ {0, 1}. In this case elements of I are
boys and elements ofO are girls. Intuitively a Hall marriage problem is a bipartite graph
with an edge connecting boy i to girl o if i and o are compatible. The set of neighbors

of boy i is Ng(i) = { o ∈ O : gio = 1 }, and for J ⊂ I we set Ng(J) =
⋃

i∈J Ng(i).
We say that E satisfies the marriage condition if |J | ≤ |Ng(J)| for all J ⊂ I . The
GMC inequality for J and P = Ng(J) gives this inequality. Conversely, for a given
J ⊂ I , the contribution of o ∈ Ng(J) to the right hand side of the GMC inequality is
minimized if o ∈ P , and the contribution of o ∈ Ng(J)

c is minimized if o ∈ P c, so if
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the GMC is satisfied for J and Ng(J), then it is satisfied for J and any P . Therefore
|J | ≤ |Ng(J)| for all J implies that the GMC is satisfied, so Theorem 1 implies that E
has a feasible allocation if and only if the marriage condition is satisfied.

For a Hall marriage problem an integral feasible allocation is called a matching.
(Each of the boys has a different partner.) Hall’s marriage theorem asserts that a Hall
marriage problem has a matching if and only if it satisfies the marriage condition. To
pass from a feasible allocation to a matching one can repeatedly adjust the allocation
along paths of fractional allocations that alternate between boys and girls, and either
form a loop or pass from one incompletely allocated girl to another. A more precise and
general version of this argument is given in Online Appendix C.

A Gale supply-demand CEE is a CEE E such that gio ∈ {0, ri} for all i ∈ I and
o ∈ O. The Gale (1957) supply-demand theorem6 is the special case of Theorem 1 for
a Gale supply-demand CEE.

We say that E is a school choice CEE if ri = 1 and gio ∈ {0, 1} for all i and o, and
we write E = (I, O, 1, q, g) to indicate that this is the case. In a school choice CEE
elements of I are students, elements of O are schools, and each student must receive
a seat in some school. In an integral school choice CEE each school has an integral
number of seats, and for each student i and school o, gio = 1 if i is eligible to attend o,
and otherwise gio = 0.

For i ∈ I let
αi = { o ∈ O : gio > 0 }

be the set of objects that are possible for i, and for P ⊂ O let JP = { i ∈ I : αi ⊂ P }
be the set of agents who cannot be allocated objects outside of P . If E is an integral
school choice CEE, then for any P ⊂ O, JP minimizes the difference between the right
hand side and the left hand side of the GMC inequality. Therefore E satisfies the GMC
if and only if, for each P ⊂ O, |JP | ≤

∑
o∈P qo.

The next result gives a finite collection of inequalities, in closed form, that contains
the facet inequalities of R. If p is a partial allocation, let

E − p = (I, O, r′, q′, g′)

be the derived CEE in which r′i = ri −
∑

o pio, q
′
o = qo −

∑
i pio, and g′io = gio − pio. If

p is a partial allocation, m is an allocation, and p ≤ m, then m is a feasible allocation
for E if and only if m− p is a feasible allocation for E − p. Thus a partial allocation p

6Although this result is attributed to Gale (1957) by Yılmaz (2010), and perhaps others, this exact for-
mulation does not appear in Gale’s paper. The paper does consider slightly more complicated problems,
and it is easy to see that this result can be obtained from Gale’s methods in the same manner.
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is possible if and only if E − p has a feasible allocation, which of course is the case if
and only if E − p satisfies the GMC. Substituting the definitions above into the GMC
inequality for E − p and (J, P ), then simplifying, gives∑

i∈Jc

∑
o∈P

pio ≤
∑
o∈P

qo +
∑
i∈J

∑
o∈P c

gio −
∑
i∈J

ri. (1)

Proposition 1. R is the set of partial allocations p such that (1) holds for all J ⊂ I and
P ⊂ O.

4 Critical Pairs
In this section we work with a given CEE E that satisfies the GMC. For J ⊂ I and
P ⊂ O we say that the pair (J, P ) is critical for E if (J, P ) ̸= (∅, ∅) and it satisfies the
GMC inequality for (J, P ) with equality:∑

i∈J

ri =
∑
i∈J

∑
o∈P c

gio +
∑
o∈P

qo.

We refer to this condition as the GMC equality for (J, P ). Our goal in this section is to
understand the relationship between critical pairs and feasible allocations, and how the
various critical pairs for E are related to each other.

We say that E is critical if (I, O) itself is a critical pair, which is the case if and only
if
∑

i ri =
∑

o qo, so that any feasible allocation consumes all of the available resources.
We say that E is simple if there are no critical pairs (J, P ) with (J, P ) ̸= (I, O).

Evidently, if (J, P ) is critical for E, then any feasible allocation m gives the agents
in J all of the endowment of objects in P and also as much of the objects in P c as g
allows. Conversely, if m is a feasible allocation such that

∑
i∈J mio = qo for all o ∈ P

and mio = gio for all i ∈ J and o ∈ P c, then∑
i∈J

ri =
∑
i∈J

∑
o

mio =
∑
i∈J

∑
o∈P c

mio +
∑
o∈P

∑
i∈J

mio =
∑
i∈J

∑
o∈P c

gio +
∑
o∈P

qo.

Lemma 1. For J ⊂ I and P ⊂ O the following are equivalent:

(a) (J, P ) is critical for E;

(b) There is a feasible allocation m such that
∑

i∈J mio = qo for all o ∈ P and
mio = gio for all i ∈ J and o ∈ P c;

(c) For every feasible allocation m,
∑

i∈J mio = qo for all o ∈ P and mio = gio for
all i ∈ J and o ∈ P c.
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The next result gives a key property of critical pairs. Its proof (in Appendix A)
applies the last result.

Proposition 2. The set of critical pairs for E is a lattice in the sense that if (J, P ) and
(J ′, P ′) are critical pairs, then so are (J ∪ J ′, P ∪ P ′) and (J ∩ J ′, P ∩ P ′).

Now suppose that (J, P ) is critical for E. Let

E(J,P ) = (J,O, r|J , q′, g|J×O) and E(J,P ) = (J c, P c, r|Jc , q′′, g|Jc×P c)

where q′o = qo if o ∈ P , q′o =
∑

i∈J gio if o ∈ P c, and q′′ : P c → R+ is the function
q′′o = qo −

∑
i∈J gio. Clearly E(J,P ) is critical, and E(J,P ) is critical if and only if E is

critical.
Any feasible allocation for E is the sum of a feasible allocation for E(J,P ) and a

feasible allocation for E(J,P ), so E(J,P ) and E(J,P ) satisfy the GMC. Conversely, any
sum of a feasible allocation for E(J,P ) and a feasible allocation for E(J,P ) is a feasible
allocation forE. Thus a critical pair splits the given allocation problem into two smaller
problems of the same type. This is very important because it allows our algorithm to be
recursive.

We say that (J, P ) is a minimal critical pair for E if there is no critical pair (J ′, P ′)

for E with J ′ ⊂ J , P ′ ⊂ P , and (J ′, P ′) ̸= (J, P ). The next result (whose proof
follows easily from the discussion above and is therefore left as an exercise) implies
that if (J, P ) is a minimal critical pair for E, then E(J,P ) is simple.

Lemma 2. If J ′ ⊂ J and P ′ ⊂ P , then (J ′, P ′) is critical for E if and only if it is
critical for E(J,P ).

Since (J, P ) is a critical pair for E, any feasible allocation m has mio = 0 for all
i ∈ J c and o ∈ P , and in this sense gio > 0 is illusory. We say that E is tight if gio = 0

for all critical pairs (J, P ) and all i ∈ J c and o ∈ P . The (J, P )-tightening of E is
E ′ = (I, O, q, r, g′) where g′io = 0 if i ∈ J c and o ∈ P , and otherwise g′io = gio. Since
E satisfies the GMC, it has a feasible allocation m, which necessarily has mio = 0 for
all i ∈ J c and o ∈ P , so it is a feasible allocation for E ′, and consequently E ′ satisfies
the GMC.

A tightening sequence for E is a sequence (J1, P1), . . . , (Jℓ, Pℓ) for which there is
a sequence E0 = E,E1, . . . , Eℓ of CEE’s such that for each j = 1, . . . , ℓ, (Jj, Pj) is a
critical pair for Ej−1 and Ej is the (Jj, Pj)-tightening of Ej−1. By induction each Ej

satisfies the GMC.
The following result is obvious:
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Lemma 3. IfE = (I, O, r, q, g) satisfies the GMC, (J, P ) is a critical pair forE, g′ ≤ g,
E ′ = (I, O, r, q, g′), and E ′ satisfies the GMC, then (J, P ) is a critical pair for E ′.

In view of the last result, if (J1, P1), . . . , (Jℓ, Pℓ) and (J ′
1, P

′
1), . . . , (J

′
ℓ′ , P

′
ℓ′) are

tightening sequences, then so is (J1, P1), . . . , (Jℓ, Pℓ), (J
′
1, P

′
1), . . . , (J

′
ℓ′ , P

′
ℓ′). There-

fore starting with E and repeatedly tightening with respect to critical pairs, including
pairs that become critical as a result of the tightening, until no further tightening is pos-
sible, leads to a tight CEE that is independent of the order of tightening, that we call the
tightening of E.

5 The GCPS Allocation
We now define the GCPS precisely and describe how it can be computed. We work
with a fixed CEE E = (I, O, r, q, g) that satisfies the GMC and a profile ≻ = (≻i)i∈I

of strict preferences over O. Recall that for each i, αi = { o : gio > 0 }. For each o let
ωo = { i : o ∈ αi }. Let ei be i’s most preferred element of αi. Let T = maxi ri. Let
θ be the matrix whose entry θio is 1 if o = ei and zero otherwise. Let t∗ ≥ 0 be the
number such that θt ∈ R if 0 ≤ t ≤ t∗ and θt /∈ R if t > t∗, and let p : [0, t∗] → RI×O

+

be the function p(t) = θt.
There is a pair (J, P ) such that p(t) satisfies inequality (1) for (J, P ) strictly if

0 ≤ t < t∗ and violates it if t > t∗. At time t∗ the requirements of the agents in J
can exactly be met by giving them all that they are allowed to consume of objects in P c

and all of the remaining objects in P . The GCPS allocation GCPS(E,≻) is defined7

(recursively) to be the sum of p(t∗) and the GCPS allocations of (E − p(t∗))(J,P ) and
(E − p(t∗))(J,P ).

The main computational challenge is to compute t∗ and a pair (J, P ) that becomes
critical at that time. According to Proposition 1, the facet inequalities of R, other than
those associated with the ri and gio, are a subset of those given by (1) for various J and
P . For a given P ⊂ O it is easy to find the J ⊂ I that minimizes the difference between
the two sides of (1) for (J, P ). An algorithm that searches over all P ⊂ O has been
implemented, and works reasonably well for moderate (roughly |O| ≤ 25) numbers of
schools. It has a computational burden that is roughly proportional to the number 2|O|

of subsets of O, which makes it unsuitable for very large school choice problems.
Next, we note that t∗ is the value of the linear program

max t subject to (m, t) ∈ Q× [0, 1] and θt ≤ m.

7Proposition 2 and Lemma 2 imply that the choice of (J, P ) does not matter if more than one pair
becomes critical at t∗, because the overall effect of the recursive descent is to decompose according to
the minimal pairs that become critical at time t∗.
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This is conceptually significant because there are polynomial time algorithms for linear
programming (Khachian, 1979, Karmarkar, 1984) which in turn will imply that there is
a polynomial time algorithm for the computation of the GCPS mechanism. However,
actual computational experience shows that this approach works quite poorly, even for
fairly small problems8.

We now describe a computational procedure that is not as well founded theoreti-
cally, but which works quite well in practice. It computes a piecewise linear function
p : [0, t∗] → Q such that p(t) ≤ p(t) for all t. By repeatedly trying to find a way to
continue p, we eventually compute t∗ and a pair (J, P ) that becomes critical at time t∗.

We first need to find an initial point p(0) ∈ Q. A feasible allocation is a maxi-

mal flow of the network (NE, AE) defined in the proof of Theorem 1 in Appendix A.
The problem of computing a maximum flow of a network is very well studied, and the
literature continues to advance (e.g., Chen et al. (2022)). In practice the push-relabel
algorithm of Goldberg and Tarjan (1988) is satisfactory in the sense of not adding sig-
nificantly to the overall computational burden.

Suppose that we have computed p and p on an interval [0, t0]. We will describe a
procedure that searches for a matrix θ ∈ ZI×O such that

p(t0) + θε ≤ p(t0) + θε ∈ Q (∗)

for sufficiently small ε > 0. If the search succeeds, then we let t1 is the largest number
such that p(t0) + θ(t− t0) ≤ p(t0) + θ(t− t0) ∈ Q for all t ∈ [t0, t1], we define p and p
on the interval [t0, t1] by setting p(t) = p(t0) + θ(t− t0) and p(t) = p(t0) + θ(t− t0),
and we iterate the computation with t1, p(t1), and p(t1) in place of t0, p(t0), and p(t0).
If the search fails, our search will uncover a polynomial time algorithm for computing
a critical pair for E − p(t0), so that so t∗ = t0.

Fix θ ∈ ZI×O. If p(t0) + θε ∈ Q for small ε > 0 then:

(a) For all i and o, if o /∈ αi, then θio = 0.

(b) For all i,
∑

o θio = 0.

Furthermore, p(t0) + θε ≤ p(t0) + θε ≤ g for small ε > 0 if and only if, for all i and o:

(c) If pio(t0) = pio(t0), then θio ≥ 0, and θio ≥ 1 if o = ei.

8One issue is that, in the standard formulation of a linear program as max cx subject toAx ≤ b the
matrix A has a column for each school, a row for each school’s capacity constraint, a row for each
student i for the inequality

∑
j∈αi\{ei} mij ≤ 1, and a row for each student i for the inequality t ≤

1 −
∑

j∈αi\{ei} mij . Thus A has (
∑

i |αi| − |I|)(|O| + 2|I|) entries, and thus more than one hundred
billion entries when |I| = 100, 000, |O| = 500, and the average value of |αi| is 6.
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(d) If pio(t0) = gio, then θio ≤ 0.

If θ satisfies (a)–(d), then p(t0) + θε ∈ Q for small ε > 0 if and only if, for all o:

(e) If
∑

i pio(t0) = qo, then
∑

i θio ≤ 0.

Our search for a θ satisfying (a)–(e) begins by defining an initial θ
0

as follows. For
each i, if piei(t0) > piei(t0), then we set θ

0

io = 0 for all o, and if piei(t0) = piei(t0), then
we set θ

0

iei
= 1, we set θ

0

ioi
= −1 for an arbitrary oi ̸= ei such that pioi(t0) > pioi(t0),

and we set θ
0

io = 0 for all other o. By construction θ
0

satisfies (a)–(d).
More generally, suppose that a θ ∈ ZI×O satisfying (a)–(d) is given. For o ∈ O let

J(o) = { i ∈ ωo : if pio(t0) = pio(t0), then θio > 0, and θio > 1 if o = ei }

be the set of i such that decreasing θio by one does not result in a violation of (a) or (b).
For i ∈ I let

P (i) = { o ∈ αi : either θio < 0 or pio(t0) < gio }

be the set of o such that increasing θio by one does not result in a violation of (b) or (c).
A pivot for θ is a sequence o0, i1, o1, . . . , oh−1, ih, oh such that o0, . . . , oh are distinct

elements of O, i1, . . . , ih are distinct elements of I , and:

(a’)
∑

i pio0(t0) = qo and
∑

i θio0 > 0;

(b’) for each g = 1, . . . , h, ig ∈ J(og−1) and og ∈ P (ig);

(c’) either
∑

i pihoh(t0) < qoh or
∑

i θihoh < 0.

Given such a pivot, we can define θ
′
by setting

θ
′
igog−1

= θigog−1 − 1 and θ
′
igog = θigog + 1

for g = 1, . . . , h and θ
′
io = θio for all other (i, o). Since θ satisfies (a) above and

og−1, og ∈ αig for all g, θ
′
satisfies (a). Clearly θ

′
satisfies (b) because θ satisfies (b) and

for each g the decrease of θigog−1 balances the increase of θigog . Since θ satisfies (c) and
(d) above, (b’) implies that θ

′
also satisfies (c) and (d).

We have
∑

i θ
′
io0

=
∑

i θio0 − 1,
∑

i θ
′
iog =

∑
i θiog for g = 1, . . . , h − 1, and if∑

i pihoh(t0) = qoh , then
∑

i θioh < 0 and thus
∑

i θioh ≤ 0. Therefore replacing θ with
θ
′

reduces (in an obvious sense) the extent to which (e) is violated. If it is possible,
repeating this construction eventually produces an element of ZI×O satisfying (a)–(e).
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We now describe how the algorithm searches for pivots. Supposing that (e) does not
hold, fix o0 such that

∑
i pio0(t0) = qo and

∑
i θio0 > 0. We set P0 = {o0} and define

sets J1, P1, J2, P2, . . . by continuing inductively with

Jg =
⋃

o∈Pg−1

J(o) \
⋃
f<g

Jf and Pg =
⋃
i∈Jg

P (i) \
⋃
f<g

Pf .

If there such an h, let h be the smallest integer such that there is an oh ∈ Ph such
that either

∑
i pioh(t0) < qoh or

∑
i θioh < 0. We can construct a pivot by choosing

ih ∈ Jh such that oh ∈ P (ih), choosing oh−1 ∈ Ph−1 such that ih ∈ P (oh−1), choosing
ih−1 ∈ Jh−1 such that oh−1 ∈ P (ih−1), and so forth.

Now suppose that there is no h and oh ∈ Ph such that either
∑

i pioh(t0) < qoh or∑
i θioh < 0. Let J =

⋃
g Jg and P =

⋃
g Pg. If o ∈ P and i ∈ J c, then i /∈ J(o),

so pio(t0) = pio(t0). If i ∈ J and o ∈ P c, then o /∈ P (i), so pio(t0) = gio. Thus
p(t0)− p(t0) is a feasible allocation for E − p(t0) that gives all of the resources in P to
agents in J and that gives gio − pio(t0) to i ∈ J whenever o ∈ P c. By Lemma 1, (J, P )
is a critical pair for E − p(t0). Thus our procedure for finding a pivot fails only when
t0 = t∗, in which case it computes a critical pair.

Since the computational procedure descends recursively to a small number of sim-
pler subproblems, in assessing its theoretical complexity, the remaining issue is the
complexity of using this process to compute a critical pair for E − p(t∗). The number
of times that pivots need to be computed while computing t1 or (J, P ) is bounded by
the initial value

∑
o∈P̃

∑
i θ

0

io where

P̃ = { o :
∑
i

pio(t0) = qo and
∑
i

θ
0

io > 0 },

which is in turn bounded by the number of i such that piei(t0) = piei(t0). Without going
into any detail, it is clear that the computation of either a pivot or a critical pair has
polynomially bounded complexity.

In the linear programming approach, linear programming is used to compute t∗.
The procedure above gives a polynomial time method of computing a critical pair for
E−p(t∗), so (in conjunction with a polynomial time algorithm for linear programming)
it gives a polynomial time algorithm for computing the GCPS allocation.

For our procedure the remaining issue is the number of times that a transition such
as the one from t0 to t1 is performed. Unfortunately we have been unable to make
progress on this problem, and in fact we have been unable to show that our procedure
is an algorithm in the sense of necessarily halting after finitely many steps. (As far
as we know, it could zigzag infinitely many times while approaching some point of Q
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asymptotically.) As we explain in Online Appendix D, it has been implemented and has
acceptable running times for problems at the scale of the world’s largest school choice
problems.

Comparison with linear programming is suggestive. Both our procedure and the
simplex method ascend within polytopes along piecewise linear paths, with the next
direction at an endpoint of a line segment of the path determined by local information.
The famous Klee-Minty cube (Klee and Minty, 1972) shows that the worst case running
time of the simplex algorithm is very bad. However, such anomalies are unheard of in
practical applications, and the simplex method continues to be competitive with leading
versions of interior point methods. A number of theoretical explanations of the typical
running time of the simplex algorithm (e.g., Spielman and Teng (2004)) have been
advanced.

6 The Market Clearing Cutoffs Mechanism
The market clearing cutoffs (MCC) mechanism is applicable when the schools’ priori-
ties are not dichotomous. When the schools’ priorities are strict, it is equivalent to DA,
but when the schools’ priorities are coarse, enhanced MCC mechanisms (defined in the
next section) avoid the inefficiencies that arise when DA is applied after choosing strict
priorities that refine the given priorities.

Azevedo and Leshno (2016) study a model with a continuum of students in which
the schools’ cutoffs are analogous to prices. Our framework is similar, insofar as our
agents are, in effect, infinitely divisible. At a technical level, up to a certain point
the discussion below follows the corresponding material in Appendix A of their paper.
Similar ideas appear in Abdulkadiroğlu et al. (2015).

We take as given a CEE E = (I, O, r, q, g), a profile ≻ = (≻i) of preferences over
O, and a matrix e = (eio) of priorities that are nonnegative integers, where the objects
“prefer” agents with greater priorities.

A coarse profile for an object o is a nonnegative integer Co. Let e be an integer
that is at least as large as any eio, let r be a real number that is at least as large as
any ri, and let Ψ = {0, . . . , e} × [0, r]. Elements of Ψ are fine cutoffs. For i, o, and
ψo = (Co, ρo) ∈ Ψ, the maximum allowed consumption of o by i is

gio(eio, ψo) =


0, eio < Co,

min{r − ρo, gio}, eio = Co,

gio, eio > Co.

The demand of agent i, as a function of a profile of fine cutoffs ψ ∈ ΨO, is gener-
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ated by having i consume as much of the favorite object as allowed, then as much of the
second favorite object as allowed, and so forth, until either she has fulfilled her require-
ment or she has consumed as much of each object as she is allowed to consume. These
demands Dio(ψ) of i for the various objects o can be defined implicitly by requiring
that:

(a) 0 ≤ Dio(ψ) ≤ gio(eio, ψo) for all o;

(b)
∑

oDio(ψ) ≤ ri;

(c) If either
∑

oDio(ψ) < ri or there is an o′ such that o′ ≺i o and Dio′(ψ) > 0, then
Dio(ψ) = gio(eio, ψo).

Let D(ψ) be the matrix with entries Dio(ψ). For o ∈ O let Do(ψ) =
∑

iDio(ψ).
We completely order the elements of Ψ according to restrictiveness by specifying

that for ψ = (C, ρ) and ψ = (C ′, ρ′), ψ ≤ ψ′ if either C < C ′ or C = C ′ and ρ′ ≤ ρ.
As usual, ψ < ψ′ means that ψ ≤ ψ′ and ψ′ ̸= ψ. For given ψ−o ∈ ΨO\{o}, Dio is
a nonincreasing function of ψo with respect to this order. An obvious but important
property of demand, which Azevedo and Leshno (2016) call gross substitutes, is that
when o ̸= o′, for a fixed ψ−o′ , Dio is a nondecreasing function of ψo′ . It follows that for
given ψ−o, Do is a nonincreasing function of ψo, and when o ̸= o′, for given ψ−o′ , Do

is a nondecreasing function of ψo′ .
We endow Ψ with the topology induced by our ordering: a set is open if it is a union

of open intervals (ψ, ψ′) and half open intervals [(0, 0), ψ) and (ψ, (e, r)], defined as
usual. Clearly each Dio is continuous with respect to the product topology of ΨO.

Let

Io(ψ−o) = {ψo : Do(ψo, ψ−o) ≤ qo and Do(ψo, ψ−o) = qo if ψo > (0, 0) }

be the set of ψo that either equate supply and demand for o or allow any eligible agent i
to consume up to gio of owithout exhausting o’s quota. SinceDo is continuous and non-
increasing as a function of ψo, and Do((e, r), ψ−o) = 0, Io(ψ−o) is a closed subinterval
of Ψ. It is nonempty, either by the intermediate value theorem if Do((0, 0), ψ−o) ≥ qo,
or because Do((0, 0), ψ−o) < qo so that (0, 0) ∈ Io(ψ−o).

Let J : ΨO → ΨO be the function with component functions

Jo(ψ) =


min Io(ψ−o), ψo < min Io(ψ−o),

ψo, ψo ∈ Io(ψ−o)

max Io(ψ−o), max Io(ψ−o) < ψo.
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The set of fixed points of J is F = {ψ ∈ Ψ : ψo ∈ Io(ψ) for all o }. In the usual sense
F is the set of ψ such that markets clear:

F = {ψ ∈ Ψ : for each o, Do(ψ) ≤ qo and ψo = (0, 0) if Do(ψ) < qo }.

We note that this concept embeds a variant of stability: there is no agent-object pair
(i, o) such that i is eligible to consume o in the sense that eio ≥ Co, i is able to consume
additional o insofar as Dio(ψ) < gio, i is assigned a positive amount of an object that i
likes less than o, and either o has unused capacity or eio > Co.

We partially order ΨO by specifying that ψ ≤ ψ′ if ψo ≤ ψ′
o for all o. For ψ, ψ′ ∈

ΨO, ψ∨ψ′ and ψ∧ψ′ are the elements of ΨO with components (ψ∨ψ′)o = max{ψo, ψ
′
o}

and (ψ∧ψ′)o = min{ψo, ψ
′
o}. A set L ⊂ ΨO is a lattice if, for all ψ, ψ′ ∈ L, ψ∨ψ′ and

ψ ∧ ψ′ are elements of L, and it is a complete lattice if, in addition, for every S ⊂ L, L
contains a least upper bound

∨
S and a greatest lower bound

∧
S of S. For ∅ ≠ S ⊂

ΨO, the elements of ΨO with components inf{ψo : ψ ∈ S } and sup{ψo : ψ ∈ S }
are the greatest lower bound and least upper bound of S, and the elements ψl, ψu ∈ ΨO

with components ψl
o = (0, 0) and ψu

o = (e, r) for all o are the least upper bound and
greatest lower bound of ∅, so ΨO is itself a complete lattice.

Lemma 4. J is a weakly increasing function: if ψ ≤ ψ′, then J(ψ) ≤ J(ψ′).

Proof. For o′ ̸= o, Do(ψ) is a nondecreasing function of ψo′ , so the lower and upper
bounds of Io(ψ−o) are nondecreasing functions of ψo′ , and thus Jo(ψ) is a nondecreas-
ing function of each of these components. Of course for given ψ−o, Jo(ψ) is also a
nondecreasing function of ψo.

Now Tarski’s fixed point theorem implies that F is a complete (and thus nonempty)
lattice. The market clearing cutoffs (MCC) mechanism allocation for E, ≻, and e is

MCC(E,≻, e) = D(
∧

F).

In general MCC(E,≻, e) need not be a feasible allocation. For example, if agent
i’s eligible objects all have high demand, it can happen that for each of them the only
possible values of the coarse cutoff are above the agent’s priority at the object, in which
case MCCio(E,≻, e) = 0 for all o. If, for an agent i, there is some object o such that
gio ≥ ri and

∑
j:ejo≥eio

rj ≤ qo, then o is a safe object (for MCC) for i. If every agent
has a safe object, then MCC(E,≻, e) is a feasible allocation. In the context of school
choice this notion of a safe school is too restrictive when priorities are dichotomous
because it requires that every student is eligible at a school whose number of eligible
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students is not greater than its capacity, and for this reason the GCPS mechanism is
more appropriate in that case.

A natural method of approximating the minimal fixed point of a function satisfying
the hypotheses of the Tarski fixed point theorem is to iterate the function beginning at
a point below the minimal fixed point: set ψ0 = ψl, and for t > 0 set ψt = J(ψt−1).
Since ψ0 ≤ ψ1, 0 ≤

∧
F , J is monotonic, and

∧
F is a fixed point, by induction ψt ≤

ψt+1 ≤
∧

F for all t. Since {ψt} is monotonic and bounded above, it must converge to
a point ψ∗ ≤

∧
F . Since D is continuous, ψ∗ must be a fixed point of J , so ψ∗ =

∧
F .

(Simple examples show that this procedure need not converge in finitely many steps.)
We expect the distance from the iterate to the solution to decrease geometrically, and
last part of the description of an algorithm is to specify that it terminates when the
distance is less than some chosen quantity. This algorithm has been implemented (see
Online Appendix D) and is fast enough for practical purposes.9

Example 1. Suppose that I = {1, 2, 3}, O = {a, b, c}, ri = 1, qo = 1, gio = 1,
and eio = 0 for all i and o, with preferences a ≻1 c ≻1 b, a ≻2 b ≻2 c, and c ≻3

a ≻3 b. Let ψ0 = (ψ0
a, ψ

0
b , ψ

0
c ) where (with r = 1) ψ0

a = ψ0
b = ψ0

c = (0, 0). Then
Da(ψ

0) = 2, Db(ψ
0) = 0, and Dc(ψ

0) = 1, so ψ1 = (ψ1
a, ψ

0
b , ψ

0
c ) where ψ1

a = (0, 1
2
).

We have Da(ψ
1) = 1, Db(ψ

0) = 1
2
, and Dc(ψ

0) = 3
2
, so ψ2 = (ψ1

a, ψ
0
b , ψ

2
c ) where

ψ2
c = (0, 1

2
). Now Da(ψ

2) = 3
2
, Db(ψ

2) = 1
2
, and Dc(ψ

2) = 1, so ψ3 = (ψ3
a, ψ

0
b , ψ

2
c )

where ψ3
a = (0, 2

3
). Since Da(ψ

3) = Db(ψ
3) = Dc(ψ

3) = 1, the MCC allocation is
1
3
a+ 1

6
b+ 1

2
c→ 1, 1

3
a+ 2

3
b→ 2, and 1

3
a+ 1

6
b+ 1

2
c→ 3.

Now suppose that we have a school choice CEE: ri = 1 for all i and gio ∈ {0, 1}
for all i and o. If the priorities are strict (eio ̸= ei′o for all o and distinct i and i′ such
that gio = 1 = gi′o) then the computational procedure above coincides with the student
proposes deferred acceptance algorithm. Thus the MCC mechanism agrees with DA
when the priorities are strict.

An alternative to the MCC mechanism is to assign the allocation D(
∨
F) to E, ≻,

and e. In the school choice context this coincides with school proposes deferred ac-
ceptance when priorities are strict. The main motivations for preferring DA to school
proposes deferred acceptance are that it is strategy-proof for the students and gives the
student optimal stable matching. However, we will see that in general the MCC mech-
anism is not strategy-proof, and it will be evident that the alternate given by D(

∨
F) is

9There is an active literature (e.g., Fearnly et al. (2022) and references therein) on other algorithms
for computing Tarski fixed points in finite search spaces. For functions on continuous search spaces,
complexity results are likely to depend on additional hypotheses imposed on the function, and it seems
that such problems are less well studied.

23



also strategy-proof in the large, as this concept is defined in Section 8, so D(
∨
F) may

be preferred if the social values expressed by the priorities are sufficiently important.
He et al. (2018) present a variant of the Hylland and Zeckhauser (1979) pseudo-

market mechanism for this problem that also achieves an allocation that fulfills the given
coarse priorities. It takes the agents’ cardinal utilities as inputs (the MCC mechanism
avoids the practical difficulties associated with the elicitation of cardinal utilities) and
its allocations are efficient in a stronger sense than sd-efficiency, and fair in a strong
sense (He et al., 2015) that is defined in terms of cardinal preferences. Insofar as the
allocation it produces is part of a Kakutani fixed point, algorithms for computing it are
likely to be significantly harder to program, and may have unacceptable running times
on large problems.

7 Efficiency
This section studies the efficiency properties of the GCPS and MCC mechanisms. At
the outset we should mention that mechanisms that are ordinal (that is, based on the
agents’ reports of ordinal preferences) and nondictatorial often allow allocations that
are inefficient in comparison with those produced by mechanisms taking cardinal utility
functions as inputs (Featherstone and Niederle, 2008, Miralles, 2009, Abdulkadiroğlu
et al., 2011, Troyan, 2012, Abdulkadiroğlu et al., 2015, Ashlagi and Shi, 2016, He et al.,
2018).

We work with a CEE E = (I, O, r, q, g) and a fixed profile of preferences ≻. Our
first objective is to show that if E satisfies the GMC, then the GCPS mechanism applied
to E and ≻ yields an allocation that is efficient in a strong sense. The MCC mechanism
does not yield allocations that are efficient in this sense, but there will be algorithms
that pass from the MCC allocation to allocations that are efficient relative to the given
priorities.

For i ∈ I , an allocation for i is a vector mi ∈ RO
+ such that mi ≤ gi and∑

omio = ri. The stochastic dominance relation sd(≻i) on allocations for i derived
from ≻i is defined bym′

i sd(≻i)mi if
∑

p⪰io
m′

ip ≥
∑

p⪰io
mip for all o ∈ O. Usually in

applications of this concept mi is a probability distribution on O, but the concept makes
perfect sense in our more general context, and standard arguments generalize straight-
forwardly to show thatm′

i sd(≻i)mi if and only if
∑

om
′
ioui(o) ≥

∑
omioui(o) for any

cardinal utility function ui : O → R such that for all o, o′ ∈ O, ui(o) ≥ ui(o
′) if and

only if o ⪰i o
′.

Two other well-studied extensions of a given preference to preferences over lotteries
relate to lexicographic preferences (Cho, 2016; Schulman and Vazirani, 2015; Cho and
Doğan, 2016; Saban and Sethuraman, 2014; Cho, 2018). The first extension, which is
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called the downward lexicographic extension (dl-extension) compares two i-allocations
as follows. One of the i-allocations is preferred if it assigns a higher amount of the most
preferred object than the other. If the two i-allocations assign the same amount of the
most preferred object, then the one that is preferred is the one that assigns the greater
amount of the second most preferred object. If the two amounts are equal again, then the
i-allocation that assigns a greater amount of the third most preferred object is preferred,
and so on. The second extension, which is called the upward lexicographic extension
(ul-extension) is a dual of the dl-extension. It lexicographically minimizes amounts
of less preferred objects, starting from the least preferred object.10 The dl- and ul-
extensions yield preferences that represent the limits of standard vNM utility functions
with extreme risk loving and extreme risk aversion, respectively.

For d ∈ {sd, dl, ul}, a feasible allocationm′ d-dominates another feasible allocation
m if m′

i d(≻i)mi for all i and there is some i such that m′
i ̸= mi. A feasible allocation

m is d-efficient if there is no feasible allocation that d-dominates it. The following
result is essentially due to Cho and Doğan (2016). (Lemma 3 of BM is a precursor.)
We provide no proof because it is easy to see that their proof works, essentially without
any modification, in our more general setting.

Lemma 5. sd-efficiency, dl-efficiency, and ul-efficiency are equivalent.

The next result now follows from the sd-efficiency of the GCPS allocation, which
is a special case of Proposition 3 of Balbuzanov (2022).

Theorem 2. For d ∈ {sd, dl, ul}, the GCPS allocation for E and ≻ is d-efficient.

We now study the constrained (by the priorities) efficiency of the MCC mechanism.
Let e be a matrix of priorities, and let ψ ∈ ΨO be a profile of fine cutoffs. An allocation
mi for i is an (e, ψ)-allocation for i if, for all o, mio ≤ gio(eio, ψo). For d ∈ {sd, dl, ul}
and (e, ψ)-allocations mi and m′

i for i, mi is (e, ψ, d)-dominated by m′
i if m′

i d(≻i)mi.
If, in addition, m′

i ̸= mi, then m′
i strictly (e, ψ, d)-dominates mi. The following is an

obvious consequence of the construction of individual demand.

Lemma 6. For each d ∈ {sd, dl, ul}, every (e, ψ)-allocation for i is (e, ψ, d)-dominated
by Di(ψ).

10Formally, the downward lexicographic relation dl(≻i) on allocations for i derived from ≻i is defined
by specifying that m′

i dl(≻i)mi if either m′
i = mi or there is an o ∈ O such that

∑
p⪰io′

m′
ip =∑

p⪰io′
mip for all o′ ∈ O such that o′ ≻i o and

∑
p⪰io

m′
ip >

∑
p⪰io

mip. The upward lexicographic
relation ul(≻i) is defined by specifying that m′

i ul(≻i)mi if either m′
i = mi or there is an o ∈ O such

that
∑

o′⪰ip
m′

ip =
∑

o′⪰ip
mip for all o′ ∈ O such that o ≻i o

′ and
∑

o⪰ip
m′

ip <
∑

o⪰ip
mip.
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A partial allocation p is an (e, ψ)-allocation if each pi is an (e, ψ)-allocation for
i. For d ∈ {sd, dl, ul}, a (e, ψ)-allocation p is (e, ψ, d)-efficient if there is no (e, ψ)-
allocation p′ such that p′i (e, ψ, d)-dominates pi for all i, and p′i strictly (e, ψ, d)-dominates
pi for some i. Lemma 6 implies that:

Proposition 3. If p∗ = MCC(E,≻, e), and ψ is a vector of fine cutoffs such that
D(ψ) = p∗, then, for any d ∈ {sd, dl, ul}, p∗ is (e, ψ, d)-efficient.

Example 2. Suppose that I = {1, 2, 3, 4} and O = {a, b, c}, with ri = 1 and gio = 1

for all i and o. Suppose that qa = qb = 1 and qc = 4, eia = eib = 0 and eic = 1 for all i,
and the preferences are a ≻1 b ≻1 c, a ≻2 b ≻2 c, b ≻3 a ≻3 c, and b ≻4 a ≻4 c. The
MCC fine cutoffs are ψ0

a = ψ0
b = (0, 3/4) and ψ0

c = (0, 0), and the MCC allocation is
1
4
a+ 1

4
b+ 1

2
c→ i for all i.

Let π : ψ 7→ (Co)o∈O be the natural projection onto profiles of coarse priorities,
and for ψ ∈ ΨO with components ψo = (Co, ρo) let ψ∗ be the element of ΨO with
components ψ∗

o = (Co, r). As Example 2 illustrates, if i and j are both marginal at
o and o′, in the sense that eio, ejo = Co and eio′ , ejo′ = Co′ , then it can happen that
p∗io, p

∗
io′ , p

∗
jo, and p∗jo′ are all positive. If o ≻i o

′ and o′ ≻j o, then a Pareto improving
trade is possible. Since i and j have already been judged to be equally worthy of o and
o′, such a trade is unambiguously welfare improving. More complicated trades may
also be possible, and the social desirability of these is less clear. Allowing all mutually
improving trades that do not give objects to agents who are unqualified to consume
them leads to the notion of d-efficiency within the set of feasible allocations that fulfill
π(ψ), which is (e, ψ∗, d)-efficiency.

Let m be a feasible (e, ψ)-allocation. We form a directed graph G = (V,A) whose
set of vertices is V = { (i, o) ∈ I ×O : mio > 0 } and whose set A of arcs is the set of
((i, o), (j, p)) ∈ V × V such that p ≻i o, eip ≥ Cp, and mip < gip. The following is a
variant of Lemma 3 of Bogomolnaia and Moulin (2001). Since the argument is simple,
and similar to theirs, we do not provide a proof.

Lemma 7. For any d ∈ {sd, dl, ul}, m is (e, ψ∗, d)-efficient if and only if G is acyclic.

Suppose we have found a cycle (i1, o1), . . . , (ik, ok) of G. Let

∆ = min{mi1,o1 , . . . ,mik,ok , gi1,o2 −mi1,o2 , . . . , gik−1,ok −mik−1,ok , gik,o1 −mik,o1},

and let m′ be the allocation obtained from m by decreasing each mih,oh by ∆ and
increasing each mih,oh+1

(and mik,o1) by ∆. If G′ = (V ′, A′) is the directed graph for
m′, defined as above, thenA′ is a proper subset ofA. Therefore repeating this maneuver
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leads, in finitely many steps, to an (e, ψ∗, d)-efficient allocation. In fact there are a great
many algorithms that pass from an arbitrary allocation that fulfills ψ to an (e, ψ∗, d)-
efficient allocation. How to do this in a way that might be regarded as fairest or most
symmetric seems like an interesting, but complicated, issue. We define an enhanced

MCC mechanism to be any mechanism that first computes the MCC allocation p∗ and
then uses some algorithm to pass from p∗ to an (e, ψ∗, d)-efficient allocation. In the
final allocation of Example 1 the only mutually beneficial trade is between agents 1 and
3, and the unique enhanced MCC allocation is 2

3
a + 1

6
b + 1

6
c → 1, 1

3
a + 2

3
b → 2, and

1
6
b+ 5

6
c→ 3

Superficially the passage from the MCC allocation to an enhanced MCC alloca-
tion resembles the procedure of Kesten (2010) (and the extensive literature (Tang and
Yu, 2014, Dur et al., 2019, Ehlers and Morrill, 2020, Troyan et al., 2020, Tang and
Zhang, 2021, Reny, 2022, Cerrone et al., 2024) following up on his work) which passes
from the DA allocation, which is a deterministic assignment, to an efficient assignment.
However, the closest point of comparison is actually with the GCPS mechanism applied
without safe schools, with each student ranking all schools, in a setting in which every
student is eligible to attend any school, and the number of students is not greater than
the sum of the schools’ capacities, so that each student is guaranteed a seat in some
school. Kesten’s mechanism begins by generating priorities, which we may assume
are random, and running DA. The allocation is then modified by repeated trades along
improving cycles, in a way that requires that some agents relinquish their priorities, but
that never leads to worse outcomes for those who do so, and thus may be voluntary, or
at least imagined to be voluntary. In the GCPS mechanism randomization is deferred to
the implementation (Online Appendix C) stage, and it is never necessary to endow stu-
dents with things that they will subsequently be asked to relinquish. In addition, GCPS
achieves sd-efficiency, which is stronger than ex post efficiency.

8 Strategy-Proofness
We now discuss the issue of manipulability for the GCPS, MCC, and enhanced MCC
mechanisms. The predominant character of the GCPS and MCC mechanisms is that the
student is given probability of a seat in the schools that she says she most prefers, to the
extent possible. In order for a manipulation to succeed, the manipulation must affect
the student’s outcome, which means that the student is actually consuming the schools
in the order of reported preference rather than actual preference. Thus we should expect
that opportunities to successfully manipulate are rare, the gains from successful manip-
ulations are slight, and attempts at manipulation are risky, often resulting in the student
getting what she said she wants instead of what she actually wants.
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A mechanism (understood as a map from profiles of revealed preferences to proba-
bility distributions over outcomes) is strategy-proof if reporting a false preference never
results in higher expected utility, or, equivalently, always gives a distribution over out-
comes that is stochastically dominated, for the actual preferences, by the distribution
resulting from truthful revelation. We will see that none of our mechanisms is strategy-
proof in this exact sense.

We begin with a simple example illustrating how GCPS can fail to be strategy-proof.
Suppose that a and b are the agent’s first and second favorite object, with qa = qb = 1,
and there are A − 1 other people who have a as their favorite and B − 1 other people
who have b as their favorite, where 1 < A < B. Further, assume that no one outside the
set of agents who have a as their favorite will ever consume any a and no one outside
the set of agents who have b as their favorite will ever consume any b. If the agent
reports the truth she will receive 1

A
units of a and none of b. If she reports that b is

her favorite and a is her second favorite, then she will consume b between time 0 and
time 1

B
while A−1

B
units of A are being consumed by others, and then she will receive

1
A
(1 − A−1

B
) units of a, so her total consumption of a and b will be 1

A
(1 + 1

B
). This

can be an improvement if the utility difference between a and the agent’s third favorite
object is more than A times the utility difference between a and b.

Proposition 1 of BM asserts (among other things) that the PS mechanism is weakly

strategy-proof : reporting false preference never gives an allocation that is strictly sd-
preferred to the allocation resulting from truthful revelation. Kojima (2009) gives an
example (p. 138) that shows weak strategy-proofness does not extend to the allocation
of r ≥ 2 objects per agent.

There are three different ways a student might try to manipulate: a) reporting that
some of the schools that are actually worse than the safe school are better than it; b)
reporting that some of the schools that are actually better than the safe school are worse;
c) reordering of the schools that are better than the safe school. A manipulation attempt
of type a) will be called an augmentation; following Roth and Rothblum (1999), a
manipulation attempt of type b) will be called a truncation; a manipulation attempt of
type c) will be called a reordering.

Yılmaz (2010) (Example 5) presents the following example of an unambiguously
successful truncation manipulation of GCPS for a house allocation problem with exist-
ing tenants.11 There are three homeowners and three houses, with 1 endowed with a, 2

11Theorem 3 of Cho (2018) asserts that the PS mechanism is dl-strategy proof, which means that
manipulation never results in a dl-better allocation. This example shows that Cho’s result does not extend
to house allocation problems with existing tenants.
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endowed with b, and 3 endowed with c, and preferences

b ≻1 c ≻1 a, a ≻2 b, b ≻3 a ≻3 c.

In the GCPS process b is exhausted at time 1
2
, which results in P = {a} becoming

critical, with JP = {2}, so the GCPS allocation gives 1
2
b+ 1

2
c to 1, a to 2, and 1

2
b+ 1

2
c

to 3. If 1 reports the preference b ≻′
1 a (i.e., b ≻′

1 a ≻′
1 c) then P = {a, b} is critical at

time 0, and the allocation gives b to 1, a to 2, and c to 3.
As Yılmaz points out, this manipulation continues to be possible in problems ob-

tained by replicating each agent a certain number of times. For example, suppose that
there are four copies of agents of type 1 and 5 copies each of agents of types 2 and 3.
With truthful revelation, {a, b} becomes critical at time 4

9
, and the allocation is 4

9
b+ 5

9
c

to agents of types 1 and 3 and 4
5
a + 1

5
b to agents of type 2. Again, an agent of type 1

who deviates to b ≻′
1 a gets only b.

For a simple example of how MCC can fail to be strategy-proof, consider that in
Example 1, if agent 1 reports the preference a ≻1 b ≻1 c, then the MCC allocation is
1
2
a + 1

2
b → 1, 1

2
a + 1

2
b → 2, and c → 3. This can be a successful manipulation if 1 is

predominantly concerned about the probability of a.
The remainder of the section presents two positive theoretical results concerning

the manipulability of the GCPS and MCC mechanisms. Our main result is that both the
GCPS and MCC mechanisms are strategy-proof in the large, roughly as this concept is
defined by Azevedo and Budish (2019) (AB). In order to explain this we briefly review
their (appropriately modified) definitions, beginning with notation for probability.

For a measurable space X , ∆(X) is the set of probability measures on X . If X
is finite, then ∆◦(X) is the set of elements of ∆(X) that assign positive probability to
each element of X . For x ∈ X , let δx ∈ ∆(X) be the Dirac measure that assigns all
probability to x.

In our model there is a finite set T of ordinal preference types. In our model there
is also a finite set O of objects. Each t ∈ T there is a set Ut of vNM utility functions
ut : O → [0, 1] that are consistent with t; let ut also denote the induced function on
∆(O).

For each integral market size n ≥ 1 let χn : T n → ∆(T ) be the function

χn(t1, . . . , tn) =
n∑

i=1

1
n
δti ,
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and let ∆n(T ) = χn(T n). Define θn : T ×∆(T ) → ∆(∆n(T )) by

θn(t1,m) =
∑

t−1∈Tn−1

δχn(t1,t−1) · Pr(t−1|t−1 ∼ iid(m))

where iid(m) is the measure on T n−1 generated by n−1 independent draws distributed
according to m. For each n, t, t′ ∈ T , and m ∈ ∆(T ) the total absolute difference

between the distributions generated by t and t′ is

Dn(t, t′,m) =
∑

τ∈∆n(T )

|θn(t,m)(τ)− θn(t′,m)(τ)|.

Lemma A.1 of AB asserts that for any m ∈ ∆◦(T ) and ε > 0 there is a constant
C(m, ε) > 0 such that Dn(t, t′,m) < C(m, ε)n−1/2+ε for all n and t, t′ ∈ T .

A (direct) mechanism is a sequence {Φn} where Φn : T n → ∆(O)n. Let Σn be
the set of permutations σ : {1, . . . , n} → {1, . . . , n}. For σ ∈ Σn let σ also de-
note the function σ : T n → T n given by σ(t1, . . . , tn) = (tσ(1), . . . , tσ(n)), and define
σ : ∆(O)n → ∆(O)n similarly. For the time being attention is restricted to mechanisms
that are anonymous, meaning that for each n, Φn is invariant with respect to permuta-
tions of its arguments:

Φn(σ(t1, . . . , tn)) = σ(Φn(t1, . . . , tn))

for all n, σ ∈ Σn, and (t1, . . . , tn) ∈ T n. Anonymity implies that for each n there is
a function Φ̃n : T ×∆n(T ) → ∆(O) such that Φn

i (t1, . . . , tn) = Φ̃n(ti, χ
n(t1, . . . , tn))

for all (t1, . . . , tn) and i. Define ϕn : T ×∆(T ) → ∆(O) by

ϕn(t,m) =
∑

τ∈∆n(O)

Φ̃n(t, τ) · θn(t,m)(τ).

The mechanism {Φn} is strategy-proof in the large (SP-L) if, for any m ∈ ∆◦(T )

and ε > 0, there is an integer n0 such that for all n > n0, t, t′ ∈ T , and ut ∈ Ut,

ut(ϕ
n(t,m)) > ut(ϕ

n(t′,m))− ε.

As AB explain (p. 88) this notion weakens strategy-proofness in two ways: a) manipu-
lation is only required to be approximately unrewarding asymptotically as n increases;
b) agents are assumed to have weak information concerning the distribution of reports.
Of course for school choice there are typically many students per school, and students
and their parents do not have detailed information concerning the preferences of others.
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The reason that the GCPS and MCC mechanisms are SP-L is familiar: each agent’s
outcome depends on her own report and on equilibrating variables that depend on the
distribution of all agents’ reports. Let P denote a space of equilibrating variables. We
assume that there are functions ξ : T × P → ∆(O) and fn : ∆n(T ) → P for each n
such that Φ̃n(t, τ) = ξ(t, fn(τ)) for all t ∈ T and τ ∈ ∆n(T ).

We also assume that ut(ξ(t, p)) ≥ ut(ξ(t
′, p)) for all t, t′ ∈ T , ut ∈ Ut, and p ∈ P .

For the GCPS mechanism an element of P is a schedule of times at which pairs become
critical, and for the MCC mechanism an element of P is a profile of fine cutoffs, so this
is indeed the case. Since any benefit of manipulation must be the result of its effect on
the distribution of distributions of types, Lemma A.1 of AB now implies that {Φn} is
SP-L. Although the details of our framework are somewhat different, this result can also
be understood, at least in principle, as a consequence of Theorem 1 of AB because our
assumptions imply that {Φn} is envy-free: for all n, (t1, . . . , tn) ∈ T n, i, j = 1, . . . , n,
and uti ∈ Uti and utj ∈ Utj , if p = fn(χn(t1, . . . , tn)), then

uti(Φ
n
i (t1, . . . , tn))) = uti(ξ(ti, p)) ≥ uti(ξ(tj, p)) = uti(Φ

n
j (t1, . . . , tn)).

As AB explain in their Appendix C, these definitions and results extend straightfor-
wardly to mechanisms that are semi-anonymous, as defined by Kalai (2004), in which
the set of agents is divided into finitely many groups, with each group having a different
set of ordinal preference types. For the GCPS mechanism a natural group would be a
set of students that have the same safe school, and for the MCC mechanism a natural
group would be a set of students that have the same priorities. In this sense we now
have:

Theorem 3. The GCPS and MCC mechanisms are SP-L.

We should mention that an enhanced MCC mechanism may allow a manipulation
in which a student upgrades the ranking of a school that is popular, in order to increase
her allocation of it coming from the MCC mechanism, because she is confident that
during the reallocation-to-attain-efficiency phase she will be able to trade this allocation
for probability of schools she desires. The effect of this type of manipulation on the
fairness of the mechanism is ambiguous: the manipulating student may be regarded
as taking advantage of a flaw of the mechanism, or she may be regarded as partially
compensating for a penalty that the mechanism imposes on students whose preferences
are unusual. On the whole this type of manipulation seemingly does little to change the
overall character of an enhanced MCC mechanism.

Our other theoretical result is that manipulation of the GCPS mechanism by aug-
mentation is unambiguously unsuccessful. We fix an integral school choice CEE E =
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(I, O, 1, q, g) that satisfies the GMC and a profile ≻ of preferences over O. We assume
that the safe school is the ≻j-worst element of αj . We also fix a particular student i ∈ I

whose possible deviations from truthful reporting are studied.

Theorem 4. Let α′
i = αi ∪ {o∗}, where o∗ is an element of O \ αi, and let ≻′

i be a
preference over O that has α′

i as the set of schools weakly preferred to the safe school,
and that agrees with ≻i on αi. Let ≻′ = (≻′

i,≻−i). Then

GCPSi(≻) sd(≻i)GCPSi(≻′).

The primary interest of this result is probably its proof (in Appendix B) which lays out
a detailed analytic framework for understanding the impact of one agent changing her
consumption of an object incrementally.

9 Fairness
We now briefly consider fairness properties of the GCPS and MCC mechanisms. Let
E = (I, O, 1, q, g) be a school choice CEE that satisfies the GMC, and let ≻ be a profile
of preferences. It is obvious from the definition that the GCPS mechanism satisfies
anonymity (the outcomes do not depend on the ordering of the agents, or their “names”)
and equal treatment of equals (the GCPS gives the same allocations to i and j if ri = rj ,
gi = gj , and ≻i = ≻j).

The other fairness property considered by BM is envy-freeness. They show that the
PS mechanism is envy-free in the strong sense that if mi and mj are the allocations of
the PS mechanism for ≻, then mi sd(≻i)mj . It is not reasonable to expect this if the
two agents have different opportunities, and in recognition of this Abdulkadiroğlu and
Sönmez (2003) introduced a notion of no justified envy. This concept takes on different
meanings depending on the setting. (For a recent discussion see Romm et al. (2020).)
We follow Yılmaz (2010) in the context of school choice. If E is a school choice CEE
with g ∈ {0, 1}I×O, we say that m ∈ Q has no justified envy if, for all i, j ∈ I , if
αi ⊂ αj and oi ≻i oj for all oi ∈ αi and oj ∈ αj \ αi, then mi sd(≻i)mj . Intuitively,
i’s envy of j is not justified if i is not eligible to attend a desirable element of αj , or if
j can demand a seat in a desirable element of αi because less desirable elements of αi

are not in αj .

Proposition 4. If E is a school choice CEE with g ∈ {0, 1}I×O, then GCPS(≻) has
no justified envy.

In addition to E and ≻, suppose that e is a matrix of priorities. As above, it is easy
to see that the MCC mechanism satisfies anonymity and equal treatment of equals. In
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this context we say that a feasible allocation m has no justified envy if, for all i, j ∈ I ,
if eio ≥ ejo for all o, αi ⊂ αj , and oi ≻i oj for all oi ∈ αi and oj ∈ αj \ αi, then
mi sd(≻i)mj . Suppose that c is a profile of fine cutoffs and m is a feasible allocation
that fulfills c. If eio ≥ ejo for all o, αi ⊂ αj , and oi ≻i oj for all oi ∈ αi and oj ∈ αj \αi,
then mio ≥ mjo for all o ∈ αi such that

∑
o′⪰io

mio′ < 1, and thus mi sd(≻i)mj .
Therefore:

Proposition 5. If E is a school choice CEE with g ∈ {0, 1}I×O, then MCC(E,≻, e)
has no justified envy.

10 Concluding Remarks
This paper has studied two mechanisms that can be applied to school choice. We have
focused on the case in which each student is endowed with a safe school, to which
admission is guaranteed in the event that the student is not admitted to a school she
prefers. Such guarantees seem intuitively attractive from the point of view of welfare,
and they simplify the student’s decision and improve incentives to reveal preferences
truthfully. Nevertheless the mechanisms are somewhat more general than the school
choice setting, and can be applied in other settings.

Using a novel generalization of Hall’s marriage theorem, and an innovative algo-
rithm, we have provided a tractable method of computing the GCPS mechanism of Bal-
buzanov (2022) for school choice. This mechanism is appropriate when the schools’
priorities are dichotomous. The allocation it produces is sd-efficient.

For priorities that are coarse, but not dichotomous, the MCC mechanism computes
a profile of fine cutoffs such that for each school, total demand is not greater than the
school’s quota, and the school does not restrict admission if its total demand is less
than its quota. An enhanced MCC mechanism combines the MCC mechanism with
an algorithm that passes from the allocation produced by the MCC mechanism to an
allocation that is sd-efficient within the set of allocations that do not give any probability
of schools to students who are unqualified, in the sense that their priority is less than
the school’s coarse cutoff.

These mechanisms are not strategy-proof, but intuition strongly suggests that ma-
nipulation is difficult, and necessarily entails some risk of receiving probability of ad-
mission to less preferred schools. This intuition is confirmed by the formal result that
the GCPS mechanism and the MCC mechanism are SP-L. Azevedo and Budish (2019)
point to several examples of mechanisms that are not strategy-proof, but are strategy-
proof in the large, and which work well in practice.

A software package (described in Online Appendix D) for computing the mecha-
nisms has been developed. Extensive testing has shown that the implementations of
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the algorithms are reliable, and have acceptable running times, even at the scale of the
world’s largest school choice problems. In this sense our mechanisms are ready for
practical application.

There are many directions for further research. A possibility we hope to explore
is to modify the GCPS mechanism so that instead of consuming probability of desir-
able objects, the agents may discard probability of undesirable objects, which seems
appropriate for problems, perhaps such as chore assignment, in which the agents’ main
concern is to avoid the objects that are most noxious for them.
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Abdulkadiroğlu, A. and Andersson, T. (2022), School choice. NBER Working Paper

29822.
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A Miscellaneous Proofs

Proof of Theorem 1. Our proof of Theorem 1 applies the theory of network flows. (Ahuja
et al. (1993) provides a general introduction and overview.) Let (N,A) be a directed
graph (N is a finite set of nodes and A ⊂ N × N is a set of arcs) with distinct dis-
tinguished nodes s and t, called the source and sink respectively. For the sake of sim-
plicity and clarity of intuition (the formal analysis can be more general) we assume that
(n, s), (t, n), (n, n) /∈ A for all n ∈ N , and that (n′, n) /∈ A whenever (n, n′) ∈ A.

A flow is a function f : N ×N → R such that:

(a) for all n and n′, if (n, n′) /∈ A, then f(n, n′) ≤ 0 ;

(b) for all n and n′, f(n, n′) = −f(n′, n);

(c)
∑

n′∈N f(n, n
′) = 0 for all n ∈ N \ {s, t}.
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Clearly (a) and (b) imply that f(s, n), f(n, t) ≥ 0 for all n, and that f(n, n′) = 0 if
neither (n, n′) nor (n′, n) is in A. Summing (b) over n and n′, then applying (c), gives

0 =
∑
n∈N

∑
n′∈N

f(n, n′) =
∑
n′∈N

f(s, n′) +
∑
n′∈N

f(t, n′),

so (b) allows us to define the value of f to be

|f | =
∑
n∈N

f(s, n) =
∑
n∈N

f(n, t) ≥ 0.

A capacity is a function c : N × N → [0,∞] such that c(n, n′) = 0 whenever
(n, n′) /∈ A. A cut is a set S ⊂ N such that s ∈ S and t ∈ Sc where Sc = N \ S is the
complement. For a capacity c, the capacity of S is

c(S) =
∑

(n,n′)∈S×Sc

c(n, n′).

A flow f is bounded by a capacity c if f(n, n′) ≤ c(n, n′) for all (n, n′), and it is a
maximum flow for c if it is maximal for |f | among the flows bounded by c. When f is
bounded by c and S is a cut we have

|f | =
∑
n′∈N

f(s, n′) =
∑

(n,n′)∈S×N

f(n, n′) =
∑

(n,n′)∈S×Sc

f(n, n′) ≤ c(S).

(The first equality is the definition of |f |, the second is (c) for n ∈ S \{s}, and the third
applies (b).) The max-flow min-cut theorem (Ford and Fulkerson, 1956) asserts that for
a given c, there is a flow f bounded by c and a cut S such that |f | = c(S).

We consider a particular directed graph (NE, AE) in which the set of nodes isNE =

{s} ∪ I ∪O ∪ {t} and the set of arcs is

AE = { ai : i ∈ I } ∪ { aio : i ∈ I, o ∈ O } ∪ { ao : o ∈ O }

where, for i ∈ I and o ∈ O, ai = (s, i), aio = (i, o), and ao = (o, t). Let cE be the
capacity in which:

cE(ai) = ri, cE(aio) = gio, cE(ao) = qo.

Suppose that S is a cut, and let J = I ∩ S and P = O ∩ S. An arc can go from a node
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in S to a node in Sc by going from s to J c, from J to P c, or from P to t, so

cE(S) =
∑
i∈Jc

ri +
∑
i∈J

∑
o∈P c

gio +
∑
o∈P

qo.

If f is a flow, there is an allocation p such that pio = f(aio) for all i and o. Con-
versely, if p is an allocation, the unique flow fp such that fp(aio) = pio for all i and
o has fp(ai) =

∑
o pio for all i and

∑
i pio = fp(ao) for all o. Evidently p is a partial

allocation if and only if fp is bounded by cE , and it is a feasible allocation if and only
if, in addition, fp(ai) = ri for all i, which is the case if and only if |fp| =

∑
i ri.

Thus there is a feasible allocation if and only if the maximum value of a flow
bounded by cE is

∑
i ri, and the max flow-min cut theorem implies that this is the case

if and only if the minimum capacity of a cut for cE is
∑

i ri. Since cE({s}) =
∑

i ri,
this is the case if and only if, for every cut S, cE(S) ≥

∑
i ri. For every J ⊂ I and

P ⊂ O, {s}∪J ∪P is a cut, and every cut has this form, so there is a feasible allocation
if and only if

∑
i ri ≤ cE({s} ∪ J ∪P ) for all J ⊂ I and P ⊂ O. Subtracting

∑
i∈Jc ri

from both sides reveals that this is the GMC inequality for J and P .

Proof of Proposition 2. Let m be a feasible allocation for E. For each o ∈ P ∪ P ′ we
have either

∑
i∈J mio = qo and mio = 0 for all i ∈ J c or

∑
i∈J ′ mio = qo and mio = 0

for all i ∈ J ′c, so
∑

i∈J∪J ′ mio = qo. For each i ∈ J ∪ J ′ and o ∈ (P ∪P ′)c = P c ∩P ′c

we have mio = gio, either because i ∈ J and o ∈ P c or because i ∈ J ′ and o ∈ P ′c. In
view of Lemma 1, (J ∪ J ′, P ∪ P ′) is critical.

For each o ∈ P ∩ P ′ we have
∑

i∈J mio = qo and mio = 0 for all i ∈ J c and∑
i∈J ′ mio = qo and mio = 0 for all i ∈ J ′c, so

∑
i∈J∩J ′ mio = qo. For each i ∈ J ∩ J ′

and o ∈ (P ∩ P ′)c = P c ∪ P ′c we have mio = gio, either because i ∈ J and o ∈ P c or
because i ∈ J ′ and o ∈ P ′c. Again Lemma 1 implies that (J∩J ′, P ∩P ′) is critical.

Proof of Proposition 4. Suppose that i, j ∈ I , αi ⊂ αj , and oi ≻i oj for all oi ∈ αi and
oj ∈ αj \αi. At each time t during the allocation process there are sets of schools Pi(t)

and Pj(t) such that for times slightly greater than t, i is required to consume from Pi(t)

and j is required to consume from Pj(t), and either Pi(t) = Pj(t) or Pi(t)∩ Pj(t) = ∅.
If Pi(t) = Pj(t), then i weakly prefers her favorite element of αi ∩ Pi(t) to every
element of αj ∩ Pi(t). If, at some time t, we start to have Pi(t) ∩ Pj(t) = ∅, it must be
because Pi(t) is part of a critical pair, with αi ⊂ Pi(t) and αj \ Pi(t) ̸= ∅. From this
time going forward i will be consuming an element of αi and j will be consuming an
element of αj \ αi. Thus at every time i is consuming a school that she weakly prefers
to the school that j is consuming, so GCPSi(E,≻) sd(≻i)GCPSj(E,≻).
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B Eating Function Analysis

In this Appendix we prove Theorem 4. This proof is based on a detailed analysis of
the consequences of manipulation in terms of its effect on the continuous time eating
process of BM, as generalized by Kojima and Manea (2010) and here.

We fix a school choice CEE E = (I, O, 1, q, g) that satisfies the GMC and a profile
≻ = (≻j)j∈I of strict preferences over O. Fixing i ∈ I , let o∗ be an element of O \ αi,
let α′

i = αi ∪ {o∗}, and let ≻′
i be a preference over O that has α′

i as the set of schools
weakly preferred to i’s safe school, and that agrees with ≻i on αi. We wish to show that
the augmentation manipulation of reporting ≻′

i rather than ≻i results in an allocation for
i that is weakly sd(≻i) worse. For ρ ∈ [0, 1] letEρ = (I, O, 1, q, gρ) where gρio∗ = ρ and
gρjo = gjo for all (j, o) ̸= (i, o∗). Fixing õ ∈ αi, we will show that i’s total consumption
of schools that are ≻i-weakly preferred to õ is weakly decreasing as ρ increases, or,
equivalently, that the consumption of schools that are ≻′

i-weakly preferred to õ does not
increase more rapidly than i’s consumption of o∗ increases.

For a general (not necessarily school choice) CEE E, j ∈ I , and t ∈ [0, 1], an eating

schedule on [0, t) is a function ej : [0, t) → O that is piecewise constant (i.e., changes
objects finitely many times) and right continuous: for any t′ ∈ [0, t) there is an ε > 0

such that ej(t′′) = ej(t
′) for all t′′ ∈ [t′, t′ + ε). For such an ej , o ∈ O, and t′ ∈ [0, t] let

pjo(ej, t
′) =

∫ t′

0

1ej(s)=o ds,

and let τjo(ej) = sup{ t′ : pjo(ej, t′) < gjo }.
An eating function on [0, t) is a vector e = (ej)j∈I of eating schedules on [0, t). For

t′ ∈ [0, t] let p(e, t′) ∈ RI×O
+ be the allocation with components pjo(ej, t′). For J ⊂ I ,

P ⊂ O, and t′ ∈ [0, t] let

s(J,P )(e, t
′) =

∑
o∈P

qo +
∑
i∈J

∑
o∈P c

gio −
∑
i∈J

ri −
∑
i∈Jc

∑
o∈P

pio(e, t
′),

and let τ(J,P )(e) = sup{ t′ : s(J,P )(e, t
′) > 0 }. For j ∈ I and t′ ∈ [0, t] let

αj(e, t
′) = αj \

(
{ o : pjo(ej, t′) ≥ gio } ∪

⋃
J⊂I,P⊂O : s(J,P )(e, t

′) ≤ 0 and j ∈ Jc

P
)

be the set of objects that are still available to j at time t′. Note that αj(e, ·) is right
continuous. Let e≻j (e, t

′) be the ≻j-best element of αj(e, t). We say that ej is myopic

for e if, for all t′ ∈ [0, t), ej(t′) = e≻j (e, t
′).
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Lemma 8. If E satisfies the GMC, then for each t ∈ (0, 1] there is a unique eating
function e on [0, t) such that each ej is myopic for e on [0, 1).

Proof. For sufficiently small ε > 0, if, for each j, ej is the constant function on [0, ε)

with value e≻j (0), and e = (ej)j , then for all t′ ∈ [0, ε), each ej is myopic for e.
Therefore there is a t ∈ (0, t] and a vector of eating schedules e on [0, t) such that each
ej is myopic for e.

Suppose that e′ is also a vector of eating schedules on [0, t) such that each e′j is
myopic for e′. For each j we have ej(0) = e≻j (e, 0) = e≻j (e

′, 0) = e′j(0), so ej and e′j
agree on the degenerate interval [0, 0]. If t̂ ∈ [0, t) and each ej and e′j agree on [0, t̂],
then αj(e, t̂) = αj(e

′, t̂) for all j ∈ I , so for some ε > 0, each ej and e′j agree on
[0, t̂+ ε). Therefore, for the given t, the vector e is unique.

If t < 1, then, since E satisfies the GMC, p(e, t) is a possible allocation, and thus
each αj(e, t) is nonempty, so for some ε > 0 we can extend e to [0, t + ε) by setting
ej(t

′) = e
≻j

j (e, t) for all t′ ∈ [t, t + ε), and each extended ej will be myopic for the
extended e. It follows that there is a unique maximal t, which must be t.

For ρ ∈ [0, 1] let eρ be the eating function on [0, 1) given by Lemma 8 for Eρ and
≻′. The quantities pjo(eρ, t) are piecewise linear functions of (ρ, t), and each τio(eρ)
and τ(J,P )(e

ρ) are piecewise linear functions of ρ. (If, for some t, these conditions hold
for (ρ, t) ∈ [0, 1]× [0, t], then they also hold on [0, t + ε] for some ε > 0, so they hold
everywhere.)

For ρ0 ∈ (0, 1) and ε ∈ (0,min{ρ0, 1− ρ0}) let

I(ρ0, ε) = (ρ0 − ε, ρ0 + ε) and J (ρ0, ε) = [ρ0, ρ0 + ε).

We say that ρ0 ∈ (0, 1) is semigeneric if, for sufficiently small ε > 0, there are affine
functions

t0, t1, . . . , tK : J (ρ0, ε) → [0, 1]

such that 0 ≡ t0 < t1 < · · · < tK ≡ 1 and for each j and k there is an ojk ∈ O such that
eρj (t) = ojk for all ρ ∈ J (ρ0, ε) and t ∈ [tk−1(ρ), tk(ρ)). We say that ρ0 is generic if, for
sufficiently small ε > 0, there are such affine functions on the domain I(ρ0, ε). Basic
properties of piecewise linear functions imply that there are finitely many elements of
[0, 1] that are semigeneric but not generic, and that all other points are generic.

We now fix a semigeneric ρ0, ε, and t0, . . . , tK as above. We assume that this
collection is minimal in the sense that for each k = 1, . . . , K − 1 there is some j such
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that ojk ̸= oj,k+1. For each k = 1, . . . , K let

Pk = { (J, P ) : tk(ρ) = τ(J,P )(e
ρ) for all ρ ∈ I(ρ0, ε) }.

For (J, P ) ∈ Pk let Lk,(J,P ) = { j ∈ J c : ojk ∈ P }.
Our claim will follow if i’s total consumption of goods ≻′-weakly preferred to õ

does not increase more rapidly than i’s consumption of o∗ on J (ρ0, ε). Note that when
õ ≻′

i o
∗ the claim holds because Lemma 8 implies that the eating function up to the

time when i stops eating õ does not depend on ρ. Henceforth we assume that o∗ ≻′
i õ.

Similarly, the claim is immediate if i’s consumption of o∗ does not vary as ρ varies in
J (ρ0, ε). Therefore we may assume that there is some k∗ < K such that τio∗(e

ρ
i ) =

tk∗(ρ) for ρ ∈ J (ρ0, ε).
Let o∗∗ be the object that agent i starts consuming immediately after ceasing con-

sumption of o∗. Consumption of schools weakly preferred to õ may continue until
time 1, and our claim also follows easily in this case. Since E is a school choice
CEE, consumption of o∗∗ and õ by i can only end before time 1 if there are integers
k∗∗ ≤ k̃ < K and pairs (J∗∗, P ∗∗) ∈ Pk∗∗ and (J̃ , P̃ ) ∈ Pk̃ such that o∗∗ ∈ P ∗∗, õ ∈ P̃ ,
and i ∈ Lk∗∗,(J∗∗,P ∗∗) ∩ Lk̃,(J̃ ,P̃ ). Henceforth we assume this, and that k∗∗ and k̃ are the
smallest such integers.

For each k let σk be the number such that tk(ρ) = tk(ρ0) + σk(ρ − ρ0) for all
ρ ∈ J (ρ0, ε). Evidently σk∗ = 1, and our goal is to show that σk̃ ≤ 1. In fact we will
show that σk ≤ 1 for all k.

For each j and k = 1, . . . , K there is a number κj,k−1 such that

pjojk(e
ρ, t) = pjojk(e

ρ0 , tk−1(ρ0)) + κj,k−1(ρ− ρ0) + t− tk−1(ρ)

for all ρ ∈ J (ρ0, ε) and t ∈ [tk−1(ρ), tk(ρ)). Clearly κjk = κj,k−1 when oj,k+1 = ojk

and κjk = −σk when oj,k+1 ̸= ojk. For j ∈ Lk,(J,P ) and ρ ∈ J (ρ0, ε) we have

pjojk(e
ρ, tk(ρ)) = pjojk(e

ρ0 , tk(ρ0)) + (pjojk(e
ρ, tk(ρ))− pjojk(e

ρ, tk(ρ
0)))

+(pjojk(e
ρ, tk(ρ

0))− pjojk(e
ρ0 , tk(ρ

0)))

= pjojk(e
ρ0 , tk(ρ0)) + (σk + κj,k−1)(ρ− ρ0).

Lemma 9. If (J, P ) ∈ Pk, then∑
j∈Lk,(J,P )

κj,k−1 = −|Lk,(J,P )|σk.
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Proof. In view of the equation above, the claim follows from the fact that the quantity∑
j∈Lk,(J,P )

∑
o∈P

pjo(e
ρ, tk(ρ)) = C + (

∑
j∈Lk,(J,P )

κj,k−1 + |Lk,(J,P )|σk) · (ρ− ρ0)

does not depend on ρ, where C =
∑

j∈Lk,(J,P )

∑
o∈P pjo(e

ρ0 , tk(ρ0)).

Lemma 10. If k ̸= k∗, k∗∗, then
∑

j κjk =
∑

j κj,k−1, and
∑

j κjk∗∗ = 1+
∑

j κj,k∗∗−1.

Proof. If k ̸= k∗, k∗∗ and (J, P ) is a minimal element of Pk, then κjk = σk for all
j ∈ Lk,(J,P ), so ∑

j∈Lk,(J,P )

κjk = −|Lk,(J,P )|σk =
∑

j∈Lk,(J,P )

κj,k−1.

Since the set of critical pairs is a lattice (Proposition 2) the set of Lk,(J,P ) such that
(J, P ) is a minimal element of Pk is a partition of

⋃
(J,P )∈Pk

Lk,(J,P ). For j outside this
union we have κjk = κj,k−1 because ojk = oj,k−1. Therefore summing the equation
above gives the first claim.

If (J, P ) is a minimal element of Pk∗∗ such that i ∈ J c and o∗∗ ∈ P , then κjk∗∗ =

σk∗∗ for all j ∈ Lk∗∗,(J,P ) \ {i}, and κik∗ + κik∗∗ = σk∗∗ and κik∗ = −1, so∑
j∈Lk∗∗,(J,P )

κj,k∗∗−1 = −|Lk∗∗,(J,P )|σk∗∗ = −1 +
∑

j∈Lk∗∗,(J,P )

κj,k∗∗ .

Now summing as above gives the second claim.

Lemma 11. If 0 ≤ k < k∗ then σk = 0 and κjk = 0 for all j. We have σk∗ = 1,
κik∗ = −1, and κjk∗ = 0 for all j ̸= i. If k∗ < k < k∗∗, then κjk ≤ 0 for all j, and∑

j κjk = −1. If k∗∗ ≤ k, then
∑

j κjk = 0, and
∑

j∈I−k
κjk ≥ −1 and

∑
j∈I+k

κjk ≤ 1,
where I−k = { j : κjk < 0 } and I+k = { j : κjk > 0 }.

Proof. The claims for k < k∗ follow from the fact that eρ does not depend on t for
t < tk∗(ρ). The definitions give σk∗ = 1, κik∗ = −1, and κjk∗ = 0 for all j ̸= i. From
the last result and induction,

∑
j κjk = −1 if k∗ ≤ k < k∗∗ and

∑
j κjk = 0 if k∗∗ ≤ k.

If (j, k) ̸= (i, k∗∗), then either κjk = κj,k−1 (if ojk = oj,k−1) or

κjk = −σk =
∑

j′∈Lk,(J,P )
κj′,k−1

|Lk,(J,P )|

is an average, where (J, P ) is an element of Pk such that j ∈ Lk,(J,P ). For k < k∗∗,
κjk ≤ 0 follows by induction. This equation with k∗∗ in place of k also holds when
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(J, P ) ∈ Pk∗∗ and j ∈ Lk,(J,P ), so κjk∗∗ ≤ 0 holds for j ̸= i. Since
∑

j κjk∗∗ = 0, it
follows that

∑
j∈I−

k∗∗
κjk∗∗ ≥ −1 and

∑
j∈I+

k∗∗
κjk∗∗ ≤ 1. When k > k∗∗ this averaging

cannot increase −
∑

j∈I−k
κjk or

∑
j∈I+k

κjk, so induction implies that these quantities
are not greater than 1.

The last result implies that κjk ≥ −1 for all j and k, so Lemma 10 implies that
σk ≤ 1 for all k. As we noted previously, this implies the desired result.
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For Online Publication

C Implementation

In this Appendix we consider the problem of passing from a matrix of assignment prob-
abilities to a random deterministic assignment whose distribution realizes the given
probabilities, showing that this is possible, and describing an algorithm for this task.

Let E = (I, O, 1, q, g) be an integral school choice CEE that satisfies the GMC,
and let Q be its set of feasible allocations. BCKM say that m ∈ Q is implementable if
its assignment probabilities are those resulting from some probability distribution over
deterministic assignments12. Recalling that the vertices of Q are its extreme points, we
see that every element of Q is implementable if and only if each of its vertices is a
deterministic assignment, which is to say that its entries are elements of {0, 1}.

As we explain in detail below, Theorem 1 of BCKM has the following result as a
special case, and in turn this result has the Birkhoff-von Neumann theorem as a special
case.

Theorem 5. Each vertex of Q is integral.

We quickly review the related concepts and results of BCKM. A constraint set is a
nonempty subset of I × O, and a constraint structure H is a set of constraint sets. A
vector of quotas q = (qS, q

S)S∈H is integral if qS, qS ∈ Z for all S. An allocation m is
feasible under q if qS ≤

∑
io∈S mio ≤ qS for all S ∈ H. Let Mq be the set of feasible

allocations for q. If H contains all singletons, then Mq is bounded, hence a polytope.
The constraint structure H is universally implementable if, whenever q is integral,

each vertex of Mq is integral. A constraint structure is a hierarchy if, for all S, S ′ ∈ H,
we have S ⊂ S ′ or S ′ ⊂ S or S ∩S ′ = ∅, and H is a bihierarchy if there are hierarchies
H1 and H2 such that H1 ∪ H2 = H and H1 ∩ H2 = ∅. Theorem 1 of BCKM asserts
that if H is a bihierarchy, then it is universally implementable.

Let H1 = { {i} × O : i ∈ I }, H2 = { {(i, o)} : (i, o) ∈ I × O }, and H3 =

{ I × {o} : o ∈ O }, corresponding to the constraints
∑

omio = 1, 0 ≤ mio ≤ gio, and∑
imio ≤ qo respectively. We can show that H = H1 ∪H2 ∪H3 is a bihierarchy either

by setting H1 = H1 ∪H2 and H2 = H3 or by setting H1 = H1 and H2 = H2 ∪H3, so
our Theorem 5 follows from their Theorem 1.

The practical implementation of a random allocation depends not only on the exis-
tence of a representation of it as a convex combination of pure allocations, but also on

12Recently Akbarpour and Nikzad (2020) expanded the scope of this concept by studying a notion of
approximate implementation that is appropriate when some constraints need not be satisfied exactly.
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an efficient algorithm for generating a random pure allocation with a probability distri-
bution that averages to the given allocation. To this end we describe the argument in
Appendix B of the Online Appendices of Budish et al., which they attribute to Tomomi
Matsui and Akihisa Tamura, as it applies to our setting.

We work with the directed graph (NE, AE) defined in the proof of Theorem 1 in
Appendix A. Recall that the set of nodes is NE = {s} ∪ I ∪O ∪ {t}, where s and t are
artificial nodes called the source and sink. The set of arcs is

AE = { ai : i ∈ I } ∪ { aio : i ∈ I, o ∈ O } ∪ { ao : o ∈ O }

where, for i ∈ I and o ∈ O, ai = (s, i), aio = (i, o), and ao = (o, t). If m ∈ Q, let
C(m) = { aio : mio /∈ Z } and D(m) = { ao :

∑
imio /∈ Z }. The nonintegrality set of

m is B(m) = C(m) ∪D(m) ⊂ AE .
Recall that the floor of a real number x is the largest integer that is not greater than

x, and the ceiling of x is the smallest integer that is not less than x. When x is an integer,
it is both the floor and ceiling of itself.

Proposition 6. If the nonintegrality set of m ∈ Q is nonempty, then there are m0,m1 ∈
Q \ {m} such that m is a convex combination of m0 and m1, and for both h = 0, 1:

(a) For each i and o, mh
io is between the floor and the ceiling of mio.

(b) For each o,
∑

im
h
io is between the floor and the ceiling of

∑
imio.

(c) The nonintegrality set of mh is a proper subset of the nonintegrality set of m.

Proof. An allowed path is a sequence n1, . . . , nh of distinct nodes in I ∪O ∪ {t} such
that h > 2, for all g = 1, . . . , h − 1 either (ng, ng+1) ∈ B(m) or (ng+1, ng) ∈ B(m),
and either (nh, n1) ∈ B(m) or (n1, nh) ∈ B(m). Given such a cycle, for each i and
o, if aio = (ng, ng+1) (aio = (ng+1, ng)) for some g, then we say that aio is a forward

(backward) arc. For γ ∈ R let mγ ∈ RI×O be the matrix with components

mγ
io =


mio + γ, aio is a forward arc,

mio − γ, aio is a backward arc,

mio, otherwise.

Let α be the smallest positive number such that one of the following occurs:

(a) mα
io ∈ Z for some aio ∈ C(m).

(b)
∑

im
α
io ∈ Z for some ao ∈ D(m).
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Let β be the smallest positive number such that m−β satisfies one of these conditions.
Let m0 = mα and m1 = m−β , so that m = β

α+β
m0 + α

α+β
m1.

For each i and g such that ng = i, (i, ng−1) is a backward arc and (i, ng+1) is a
forward arc, so

∑
om

γ
io =

∑
omio = ri for all γ. Since E is integral, it follows that

m0 and m1 satisfy all the constraints defining Q. It is now easy to see that m0 and m1

satisfy (a)–(c) of the statement.
The remainder of the proof describes an algorithm for constructing an allowed cycle.

An allowed path is a sequence n1, . . . , nh of distinct nodes in I ∪O ∪ {t} such that for
all g = 1, . . . , h − 1 either (ng, ng+1) ∈ B(m) or (ng+1, ng) ∈ B(m). By hypothesis
there are n1 and n2 such that (n1, n2) ∈ B(m). Therefore we may suppose that an
allowed path n1, . . . , ng has already been constructed.

To show that there is some ng+1 ̸= ng−1 such that either (ng, ng+1) ∈ B(m)

or (ng+1, ng) ∈ B(m), we enumerate cases: a) if (ng, ng−1) ∈ C(m), then (since∑
omio = 1) there is an o ∈ O \ {ng−1} such that (ng, o) ∈ C(m); b) if (ng−1, ng) ∈

C(m), then either there is an i ∈ I \ {ng−1} such that (i, ng) ∈ C(m), or (ng, t) ∈
D(m); c) if (ng, ng−1) ∈ D(m), then there is an i such that (i, ng) ∈ C(m); d) f
(ng−1, ng) ∈ D(m), then (since

∑
i

∑
omio = |I|) there is an o ∈ O \ {ng−1∥ such that

(ng, o) ∈ C(m). Since NE is finite, continuing the construction in this fashion leads
eventually to ng+1 ∈ {n1, . . . , ng−2}, so this process eventually constructs an allowed
cycle.

To generate a random integral allocation whose expectation is the given m we re-
peatedly execute the computation described in this argument, passing to m0 with prob-
ability β

α+β
and passing to m1 with probability α

α+β
. It is easy to show that this is a

polynomial time algorithm, but in fact it has been implemented (Online Appendix D)
and in practice its running time is insignificant..

D GCPS MCC Schools

For the application to school choice, versions of the algorithm described in Sections 5–7
and Online Appendix C have been encoded, using the C programming language, in the
software package GCPS MCC Schools, which can be downloaded13. This package
provides the six executables makex, gcps, lpgcps, mcc, emcc, and purify.

The executable makex constructs random examples of the sort of problem that
might occur in a large school district. The schools and students are spaced evenly
around a circle. Each student’s safe school is the school that is closest to her home.

13Open the url https://github.com/Coup3z-pixel/SchoolOfChoice/ in a web
browser. Detailed instructions for download and installation are given in GCPS Schools User Guide.pdf.
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Each school has a random valence, which is normally distributed, for each student-
school pair there is a normally distributed idiosyncratic shock, and the student’s utility
for a seat in the school is the sum of these two quantities minus the distance between her
home and the school. The schools that the student is eligible for are those that provide
at least as much utility as the safe school, and the student’s preference over such schools
is the one induced by these utilities.

Each student has a normally distributed test score. Each school’s raw priority for
a student is her test score minus the distance from her home to the school. There is
a positive integer number of priority classes. The students receiving top priority at a
school are those students for whom the school is their safe school. The other students
are divided, as evenly as possible, into the remaining priority classes, with students with
higher raw priorities at the school receiving higher priority. The students’ preferences
over eligible schools and the schools’ priorities constitute a school choice problem.

The executables gcps, mcc, and emcc each take a school choice problem as input
and output a feasible allocation. Both gcps and emcc have been extensively tested,
on sample problems generated by makex with up to 500 schools and up to 100,000
students. They are reliable, with running times that vary only slightly with the particular
problem, and which scale with roughly the square of the number of students, with emcc
consistently taking roughly one third of the time consumed by gcps. (For a given
number of students, gcps is somewhat slower if there are more schools and fewer
students per school.) The running times are acceptable for practical application: for
example, for a problem with 500 schools and 99,500 students, the running time of
gcps on a MacBook Pro is 23 hours and 47 minutes, and the running time of emcc is
4 hours and 32 minutes.

Using the algorithm described by BCKM and in Online Appendix C, the executable
purify takes a feasible allocation as an input and outputs a random deterministic
assignment whose distribution averages to the given allocation. At the scale of problems
considered here its running time is insignificant. The computations passing from the
mcc allocation to the emcc allocation have a similar character, so there is no significant
difference between the running times of mcc and emcc.

Overall, we can conclude that there are no computational barriers impairing gcps
and emcc, so these algorithms are ready for initial practical application.
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