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Abstract

We use insights from combinatorial Hodge theory and algebraic topology to analyze how

incentive compatibility constraints shape the set of implementable deterministic allocation

rules. For simply-connected domains, we show that 2-cyclic monotonicity is su¢ cient for

implementability under an additional condition on an allocation rule. The additional con-

dition ensures that local incentive compatibility implies global incentive compatibility. The

additional condition is redundant for convex and single-peaked preferences domains.

1 Introduction

One of the main goals of mechanism design is to study the properties of optimal mechanisms

maximizing a given objective, e.g. revenue or total welfare. The di¢ culty in deriving such mech-

anisms results from the designer having lack of information about agents�preferences. Hence, a

well-designed mechanism should take into account agents�ability to hide their privately held in-

formation, often called incentive compatibility constraints. This paper analyzes how the incentive

compatibility constraints shape the set of deterministic mechanisms available to the designer.

Myerson (1981) shows that in private value settings with one-dimensional types any non-

decreasing allocation rule can be implemented, i.e. there exists a payment rule that is combined

with the allocation rule produces a direct mechanism where truthtelling is in the best interests of

agents. In multi-dimensional settings Rochet (1987) shows that a condition called cycle monotonic-

ity is necessary and su¢ cient for an allocation rule to be implementable. To de�ne this condition,
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let us associate with each agent a complete directed graph with types being vertices and a di-

rected edge between two vertices having a length equal to the bene�ts from truthtelling compared

to pretending to be the other vertex�s type. The cycle monotoncity condition then says that the

length of any �nite cycle in this graph has a non-negative length. Though the cycle monotonicity

is an elegant condition, it is usually tedious to verify. An important contribution by Saks and Yu

(2005) (see also Bikhchandani et al. (2006), Ashlagi et al. (2010), Cu¤ et al. (2012), Archer and

Kleinberg (2014)) is to show that for convex domains with �nite set of outcomes it is su¢ cient to

verify only the cycles of length two - 2-cycle monotonicity condition.

In this paper, we extend the analysis of incentive-compatibility to non-convex domains. In par-

ticular, we consider simply-connected domains, which are path-connected domains where any two

curves connecting any two points can be continuously transformed one into another. For simply-

connected domains with �nite set of outcomes, if any intersection of outcome sets (subsets of types

leading to the same outcome) is simply-connected, an allocation rule satis�es 2-cycle monotonicity

and decomposition monotonicity conditions, then the allocation rule is implementable.1 The de-

composition monotonicity condition can be interpreted as a condition ensuring that local incentive

compatibility implies global incentive compatibility.

We show that decomposition monotonicity is implied by 2-cycle monotonicity if for any pair of

outcome sets and for any type in one of them there exists a type in the other outcome set such that

the interval connecting these two types belongs to the domain. Using this geometric interpretation,

we show that any 2-cycle monotonicity is necessary and su¢ cient for implementability for any

convex domain and for the domain of single peaked preferences, thus reestablishing the previous

important results of Saks and Yu (2005) and Mishra, Pramanik and Roy (2014).

In addition to a novel analysis of incentive compatibility applicable beyond convex domains,

we also introduce novel techniques to economics literature. An important step of our proofs uses a

seminal Nerve theorem from algebraic topology (Bjorner, 1995) to translate topological properties

of a system of sets to a graph associated with this system. We then analyze the properties of

edge �ows on this graph using the Helmholtz decomposition theorem from a recently developed

combinatorial Hodge theory Jiang et al. (2011). These techniques are novel and can be of a

special interests to people interested in mechanism design, networks, and possibly other areas of

economics.

The paper proceeds as follows. Section 2 presents the model and states our main result. Section

3 shows that 2-cycle monotonicity implies decomposition monotonicity for convex domains. We

also provide a geometric interpretation of decomposition monotonicity in this section. We then

apply this interpretation to single-peaked preference domain in Section 4. Section 5 concludes and

discusses related literature. The Appendix contains the proofs.

1A variant of the decomposition monotonicity condition was �rst proposed by Müller, Perea and Wolf (2007).
It was also used in Berger, Müller and Naeemi (2009) and Mishra, Pramanik and Roy (2014).

2



2 Monotonicity and Implementability

In this section we �rst present a general framework, some essential de�nitions, and some important

results of the previous literature. We then state our main result and explain the intuition behind

its proof.

Since we study incentive compatibility we consider only the perspective of a single player.2 Let

A be a �nite set of social outcomes and T � RjAj be the set of possible agent types, where jAj
denotes the cardinality of set A. We assume that if agent has type t 2 T his utility for outcome
a 2 A equals

U(a; t; p) = ta � p

where p is agent�s payment.

A direct mechanism is characterized by two functions: an allocation rule, f : T ! A, mapping

agent�s reported type to the set of outcomes, and a payment rule, p : T ! R, mapping the agent�s
reported type to the set of real numbers. We consider only deterministic allocation rules and do

not allow randomizations over outcomes in A. For convenience, we also use the following notation:

if allocation rule f chooses outcome a for type t, we consider vector f(t) 2 f0; 1gjAj having ath
component equal to 1 and all other components equal to 0. Using this notation, agent�s utility

from reporting type t0 when his true type is t equals

U(t0jt) = f(t0)t� p(t0)

where f(t0)t refers to the usual vector product. We call allocation rule f implementable if there

exists a payment rule p such that mechanism (f; p) is incentive compatible, i.e.

f(t)t� p(t) � f(t0)t� p(t0) 8t; t0 2 T

Considering only deviations t ! t0 and t0 ! t we can eliminate payments to obtain a necessary

condition for implementability, called 2-cyclic monotonicity

(f(t)� f(t0)) t+ (f(t0)� f(t)) t0 � 0 8t; t0 2 T (1)

The name of this condition comes from the following observation. One could consider a complete

directed network with types being vertices and a directed edge from type t to type t0 having

length equal to the bene�ts from truthtelling compared to pretending to be type t0: For this

network inequality (1) corresponds to a condition that the length of each 2-cycle is non-negative.

One could straightforwardly extend this condition to cycles of any length: if the length of any

�nite cycle is non-negative allocation f is called cyclically monotone. Rochet (1987) shows that

cyclical monotonicity is not only necessary, but also su¢ cient condition for an allocation rule to

be implementable.

2See Carroll (2012) on how the single agent analysis extends to settings with many agents.
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Theorem 1 (Rochet (1987)) A necessary and su¢ cient condition for f to be implementable is
being cyclical monotone, i.e. for any M and for all cycles t0; :::; tM = t0 in T

M�1X
k=0

(f(tk+1)� f(tk))tk+1 � 0 (2)

Though cyclical monotonicity fully characterizes implementable allocation rules this condition

is tedious to verify. The original and important contribution of Saks and Yu (2005) is to establish

that 2-cyclic monotonicity is su¢ cient for implementability for convex domains. Let us denote the

closure of set S as S.

Theorem 2 (Saks and Yu, 2005; Ashlagi et al., 2010) If the closure of domain T is convex,
a necessary and su¢ cient condition for f to be implementable is being 2-cyclic monotone.

Conditions (1) and (2) can be conveniently reformulated using the notion of an outcome graph

(see, e.g., Vohra (2011)). To de�ne the outcome graph, let us denote outcome set Ta as the set

of types for which outcome a is chosen. Without loss of generality we assume that each outcome

a 2 A is chosen for at least one type. The outcome graph �f of allocation rule f is then de�ned

as a directed graph with set A being its vertices and the length of a directed edge from a to b

equal to

lab = inf
t2Ta

(ta � tb)

The cyclical monotonicity of function f translates to the outcome graph. Graph �f satis�es cycle-

monotonicity property if for any natural M the length of M -cycle fa0; a1; :::; aMg with ai 2 A for
i = 0; :::;M and a0 � aM satis�es

M�1X
k=0

lakak+1 � 0

which is equivalent to the existence of a function s : A! R such that

sa � sb � lab

for all a and b in A (see Chapter 3 in Vohra (2011)).

Moreover, it is easy to verify that allocation rule f is M -cyclic monotone if and only if the

induced outcome graph �f is M -cyclic monotone. We mainly use the outcome graph to analyze

implementability of a given allocation rule.

To formulate our main theorem we need some de�nitions. We call two outcomes to be adjacent

if the closure of corresponding outcome sets have non-empty intersection, and distant otherwise.

De�nition 1 If for any two distant outcomes a; b 2 A and some path fa � a0; :::; ak � bg such

that T aj \T aj+1 6= ;, j = 0; :::; k� 1 we have lab �
k�1X
j=0

lajaj+1 we say that allocation rule f satis�es

the decomposition monotonicity property.
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Figure 1: The outcome and neighborhood graphs.

The decomposition monotonicity property requires local incentive compatibility to imply global

incentive compatibility. Indeed, we can then restate the decomposition property as follows: the

gains from deviating for distant outcomes a and b (�lab) has to be not larger than the total gains
from deviating along a path of adjacent outcomes connecting outcomes a and b. This property is

interpreted using network terms in the Appendix.

We also de�ne the notions of path-connected and simply connected sets. A set S is path-

connected if any two points x 2 S and y 2 S can be connected with a curve lying inside set S.
A set is simply-connected if it is path-connected and any two continuous curves both connecting

points x and y can be continuously transformed one into the other. We are now ready to formulate

our main theorem.

Theorem 3 Assume that the closure of domain T is simply-connected, and that any non-empty
intersection \aT a is simply-connected. Then a deterministic allocation rule f is implementable if
and only if

1) f is decomposition monotone, and

2) f is 2-cyclic monotone.

To establish the statement of the theorem (see a complete proof in Appendix) we show that

any allocation rule satisfying conditions 1), 2) also satis�es cyclic monotonicity condition and,

hence, implementable (see Theorem 1). To check cyclic monotonicity one has to verify that all

possible cycles of outcome graph �f (see the left panel of Figure 1) has a non-negative length.

The main idea of the proof is to consider �rst only cycles induced by a neighborhood graph �Nf
having the same vertices A and edges connecting only adjacent outcomes, i.e. edges ab; ba 2 �Nf
if and only if T a \ T b 6= ; (see the middle panel of Figure 1). A crucial property of neighborhood
graph �Nf is that if allocation rule f is 2-cyclic monotone then any 2-cycle of the neighborhood

graph has exactly zero length, i.e. lab + lba = 0 for any ab 2 �Nf . This allows us to regard graph
�Nf as an undirected graph with an edge �ow l, where edge �ow lab between vertices a and b equals

minus edge �ow (�lba) between vertices b and a (see the right panel of Figure 1).
To analyze properties of cycles we also complete the neighborhood graph �Nf with triples abc

such that the closures of corresponding sets have non-empty intersection T a \ T b \ T c 6= ;. This
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Figure 2: 2-cycle monotonicity imlies decomposition monotonicity for convex domains.

leads us to an important construction in algebraic topology - the nerve: the nerve N of a system of

sets fT aga2A consists of duples ab such that T a\T b 6= ; and triples abc such that T a\T b\T c 6= ;.3

In the proof of Theorem 3 we establish two important properties of the nerve N and edge

�ow l on neighborhood graph �Nf . First, all 3-cycle de�ned on triples belonging to nerve N

has 0 length. Second, the Nerve theorem from algebraic topology ensures that, given any non-

empty intersection \aT a being simply-connected (the �rst condition of Theorem 3), nerve N

inherits topological properties of the closure of domain T . Given 3-cycles having 0 length and the

topological properties of nerve N we then use the Helmholtz decomposition theorem from recently

developed Hodge theory to establish that edge �ow l is a gradient �ow, i.e. the edge �ow can

be represented as lab = sa � sb for some function s : A ! R. Hence, all cycles of neighborhood

graph �Nf has 0 length. As the �nal step, we show that the decomposition monotonicity property

ensures that all cycles of outcome graph �f have non-negative length.

3 Decomposition Monotonicity

We now analyze the decomposition monotonicity property. We �rst prove that 2-cycle monotonic-

ity implies decomposition monotonicity for convex domains. The intuition behind this proof will

then give us a more general characterization of the property.

Let us consider some domain with a convex closure T and assume there are only three possible

outcomes a,b, and c.4 Take two outcomes a and b whose outcomes sets T a and T b have empty

intersection (if all outcome sets intersect the decomposition monotonicity property is trivially

satis�ed). For each type x 2 Ta consider some type y 2 Tb. Since set T is convex interval [x;y]
lies within set T and [x;y]\T c 6= ; (see Figure 2). In addition, we denote vector fa 2 RjAj having
ath component equal 1 and all other components equal 0. We then have

x(fa � fb) = x(fa � fc) + x(fc � fb)
3The nerve of system of sets fTaga2A generally consists of all possible subsets � � A such that \a2�Ta. We can

restrict ouselves only to duples and triples in our analysis.
4Note that any convex set is also simply-connected.
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Notice that for any zx 2 [x;y]\T c there exists lx � 0 such that (x�zx) = lx(zx�y). The 2-cycle
monotonicity then implies

(x� zx)(fc � fb) = lx(zx � y)(fc � fb) � 0:

This allows us to obtain

x(fa � fb) � x(fa � fc) + zx(fc � fb):

We �nally have

lab = inf
x2Ta

x(fa � fb)

� inf
x2Ta

x(fa � fc) + inf
x2Ta

zx(fc � fb)

� inf
x2Ta

x(fa � fc) + inf
z2T c

z(fc � fb)

= lac + lcb:

The �rst inequality follows from the fact that in�mum of a sum is not smaller than the sum of

in�mums; the second inequality follows from the fact that in�mum over set Tc is smaller than

in�mum over its subset. The �nal equality follows from the de�nition of edge�s length and

infz2T c z(fc � fb) = infz2Tc z(fc � fb). Hence, 2-cycle monotonicity implies decomposition prop-
erty when there are three outcomes. The proof for any �nite number of outcomes follows the same

steps and can be found in Appendix.

Theorem 4 (Convex domains) 2-cycle monotonicity implies decomposition monotonicity for
domains with convex closures.

We �nally note that the closure of the outcome set for alternative a can be de�ned as T a = ft 2
RjAj : ta � tb � lab; 8b 6= ag \ T . Since an intersection of convex sets is a convex set we have that
all outcome sets T a as well as any non-empty intersection \aT a are convex. Since any convex set
is simply-connected the �rst condition of Theorem 3 is automatically satis�ed for convex domains.

This allows us to reestablish the important result of Saks and Yu (2005) stated in Theorem 2.

A attentive reader notices that we do not really need the closure of domain T be convex for

the proof of Theorem 4 be valid. The above proof works without any changes when allocation f

satis�es the following condition.

De�nition 2 Allocation rule f satis�es Property 1 if for any two outcomes a; b 2 A we have that
for any type x 2 Ta there exists a type y 2 Tb such that interval [x;y] 2 T :

For future reference, we state this implication as a separate theorem.

Theorem 5 If an allocation rule satis�es 2-cycle monotonicity and Property 1 it also satis�es
decomposition monotonicity.
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We use Property 1 to show that 2-cycle monotonicity implies decomposition monotonicity for

single-peaked preference domains in the following subsection.

4 Single-Peaked Preferences

Let us de�ne the domain of single-peaked preferences. We consider some ordering over a �nite

set of outcomes A. The domain of types T is single-peaked if for each t 2 T there exists an

outcome p 2 A such that for any q, q0 2 A such that q < q0 � p or q > q0 � p we have tq0 > tq.
Alternative p is called the peak of type t. Note that domain T consist only of strict types. We
now show that the single-peaked preference domain satis�es Property 1.

Let us consider outcome a 2 A and some type t 2 Ta with the peak at p 2 A. We also consider
some outcome b 6= a. Though we cannot claim that each type in set Tb has its peak at b, 2-cycle

monotonicity ensures that there always exists such type. Let us take some type �t 2 Tb. Then,
2-cycle monotonicity ensures that if type �t+� is single-peaked for some � such that �b > �c for

any c 2 Anfbg; then type �t+� also belongs to Tb (see Lemma A1): Hence, we can always choose
�t 2 Tb with the peak at b.

Let us consider the case when b = p. Then both tq and �tq are increasing for q � p and

decreasing for q � p. Hence, for all � 2 [0; 1] all types (1� �)tq + ��tq are increasing for q � p and
decreasing for q � p (as long as strict). Hence, all types in [t;�t] are single-peaked and [t;�t] 2 T :
Now consider the case b > p (a similar argument applies in case b < p). Both tq and �tq are

increasing for q � p and decreasing for q � b, so is their convex combination. For p � q � b type
tq is decreasing in q and �tq is increasing in q. We now construct a new type t0 2 Tb. We pick
t0b arbitrary and choose t

0
b�1 such that t

0
b � t0b�1 > �tb � �tb�1. If p < b � 1 we then choose t0q for

q = b� 2; :::; p satisfying to inequalities

t0q+2 � t0q+1
tq+1 � tq+2

<
t0q+1 � t0q
tq � tq+1

(3)

�tq+1 � �tq < t0q+1 � t0q (4)

This can be done by choosing t0q low enough at each step. As we show below, these inequalities

ensure that [t; t0] � T and t0 2 Tb. We �nally choose t0q such that �tq+1 � �tq < t0q+1 � t0q for q < p
and �tq � �tq+1 < t0q � t0q+1for q > b, which also ensures that t0 is single peaked.
We now show that inequalities (3) and (4) ensure that for � 2 [0; 1] (1 � �)t + �t0 is single-

peaked whenever it is strict. Note that both tq and t0q are increasing for q � p and decreasing for
q � b, so is their convex combination. Let us assume that there exists q 2 fp; :::; b� 2g such that

(1� �)tq + �t0q > (1� �)tq+1 + �t0q+1 (5)
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and

(1� �)tq+1 + �t0q+1 < (1� �)tq+2 + �t0q+2 (6)

We can rearrange inequalities (5) and (6) to obtain

1� �
�

>
t0q+1 � t0q
tq � tq+1

and
1� �
�

<
t0q+2 � t0q+1
tq+1 � tq+2

where we used tq > tq+1 > tq+2: We also know that � > 0 because inequality (6) is violated

for � = 0: The above two inequalities contradict (3). Hence, for any t 2 Ta we found t0 such
that [t; t0] 2 T . Note also that inequalities (4) guarantee that for any outcome c 6= b we have

t0b � t0c > �tb � �tc. Hence, if outcome c would be chosen for type t0 that would violate 2-cycle
monotonicity. Hence, t02 Tb.
Overall, the single-peaked preference domain satis�es Property 1 as well as decomposition

monotonicity. Finally, Lemma ?? in Appendix shows that if an allocation rule satis�es 2-cycle
monotonicity it also satis�es the �rst condition of Theorem 3, i.e. any non-empty intersection

\aT a is simply-connected, which leads to the following result.

Theorem 6 For the domain of single-peaked preferences, a necessary and su¢ cient condition for
an allocation rule to be implementable is being 2-cyclic monotone.

5 Conclusion

Using insights from combinatorial Hodge theory (Jiang et al. (2011)) and algebraic topology

(Bjorner (1995)) we provide a novel analysis of implementable allocation rules. Our main result

(Theorem 3) shows that if both a type domain and any �nite non-empty intersection outcome

sets are simply-connected, any allocation rule satisfying decomposition monotonicity and 2-cycle

monotonicity is implementable. This result provides conditions on both a type domain and an

allocation rule, which is in contrast to existing literature analyzing only conditions on type domains

where every 2-cycle monotone rule is implementable. Such Saks and Yu (2005) show that any 2-

cycle monotone allocation rule is implementable for convex domains.5 Mishra, Pramanik and

Roy (2014) prove the same result for the domain of single-peaked preferences and Mu�alem and

Schapira (2008) and Koppe, Queyranne and Ryan (2015) for some discrete domains. In contrast

5See also Bikhchandani et al. (2006) and Archer and Kleinberg (2014) for relevant characterizations. Ash-
lagi et al. (2010) also prove that if every 2-cyclical monotone allocation rule (including random allocations) is
implementable on some domain then this domain has a convex closure.
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to these papers, we provide a criterion to check the implementability of an allocation rule even if

it does not belong to a domain where every 2-cycle monotone rule is implementable.

The application of our approach is limited to settings with a �nite set of outcomes. For

settings with in�nite set of outcomes, it is hard to de�ne a neighborhood graph. In addition,

we can apply the Nerve theorem (Theorem 7) only to a �nite collection outcomes sets. We refer

readers interested in domains with an in�nite set of outcomes to Berger, Müller and Naeemi (2009),

Archer and Kleinberg (2014), Carbajal and Müller (2015), and Carbajal and Müller (2016).

The decomposition monotonicity is �rst mentioned by Müller, Perea and Wolf (2007) who

highlights its importance in characterizing Bayes-Nash incentive compatibility (see also Vohra,

2011). Our characterization of decomposition monotonicity (Theorems 4 and 5) borrows many

insights from Carroll (2012) who analyzes domains where local incentive compatibility implies

global incentive compatibility. This connection one more time highlights that decomposition

monotonicity is a condition demanding local incentive compatibility to imply global incentive

compatibility.6

Overall, we provide a systematic approach to analyze incentive compatibility in multidimen-

sional domains that go beyond convexity assumption. We believe this approach will broaden the

knowledge of domains where 2-cycle monotonicity implies implementability. We leave this exciting

perspective for future research.

6Carroll (2012) analyzes domains without transfers when local incentive compatibility implies global incentive
compatibility. Mishra, Pramanik and Roy (2015) analyzes the role of local incentive compatibility constraints in
environments with transfers highlighting the importance of taxation principle.
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6 Appendix

More on decomposition monotonicity. The decomposition monotonicity property can be
interpreted in terms of network theory as follows. Consider the restriction of the network to
adjacent outcomes endowed with a length lR which is simply the restriction of l. For any pair of
outcomes a and b, de�ne the reduced length ~lRab, which is the length of the shortest path from a
to b on the restricted network. Then the decomposition monotonicity property is equivalent to
l � ~lR. Note that we also have ~lR � ~l, where ~l is the reduced length in the full network, and that
cyclical monotonicity is equivalent to ~laa � 0 for any a.

Proposition 1 The decomposition monotonicity property is equivalent to

~l = ~lR

where ~l is the reduced length in the full network, and ~lR is the reduced length in the network
restricted to adjacent nodes.

Proof. Assume the decomposition monotonicity property holds; then by the previous discussion,
l � ~lR. Thus, ~l � ~lR. But we have ~lR � ~l, thus ~l = ~lR. Conversely, if ~l = ~lR, then l � ~l = ~lR, thus
the decomposition monotonicity property holds.

Proof of Theorem 3. We show that for a domain with a simply-connected closure T if
allocation rule f satis�es conditions 1) and 2) then all M -cycles of the outcome graph �f have
non-negative length. Theorem 1 then establishes that f is implementable.
The main idea of the proof is to �rst analyze cycles on a neighborhood graph �Nf = fA;Eg

with the set of vertices equal to the set of outcomes A; and the set of edges E connecting only
neighborhood outcomes, i.e. ab; ba 2 E if and only if the intersection of the closure of the outcome
sets is non-empty T a \ T b 6= ?. A convenient property of the neighborhood graph �Nf is that
2-cyclic monotonicity implies that every 2-cycle has exactly 0 length. To show this, let us consider
sets T a and T b having non-empty intersection. For any t 2 T a \ T b the de�nition of l weight
implies

ta � tb � lab

tb � ta � lba

Hence, lab + lba � 0. Combining this inequality with 2-cyclic monotonicity we conclude that
lba+ lab = 0. The zero length of 2-cycles allows us to regard graph �Nf as non-directed graph with
an edge �ow l where the �ow between vertices a and b equals weight lab, and the �ow between
vertices b and a equals lba or �lab: (We use a non-standard de�nition of the edge �ow: the amount
of �ow into a vertex does not need to equal the amount of �ow out of it.)
To analyze the length of 3-cycles we also complete the neighborhood graph �Nf with triples

H = fabc j T a \ T b \ T c 6= ?g. We refer to system N = (A;E;H) as the nerve of a family of
sets (T a)a2A. Condition 1) of the theorem stating that any non-empty intersection of sets \aT a is
simply-connected allows us to apply the Nerve theorem from algebraic topology (see Wu (1962)
or Bjorner (1995)) to establish that the nerve inherits the topological properties of the closure of
the domain T .7

7We avoid a formal de�nition of a nerve being simply-connected because it leads us to a long chain of supportive
de�nitions. We refer an interested reader to Jonsson (2008) for a detailed treatment.
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Theorem 7 (Nerve theorem) Let the closure of the domain T be simply-connected. If every
non-empty intersection \aT a is simply-connected, then nerve N corresponding to system (T a)a2A is
simply-connected.

The nerve theorem allows us to conclude that nerve N = (A;E;H) is simply-connected. In
addition, 2-cycle monotonicity implies that any 3-cycle de�ned for any triple of the nerve, i.e.
abc 2 H; has 0 length. To show this let us take some abc 2 H and some t 2 T a \ T b \ T c. Since
t 2 T a \ T b we have lab = �lba = ta � tb. Similar expressions hold for lbc and lca: Hence, for any
abc 2 H we have lab + lbc + lca = 0.
Using the fact that all 3-cycles on nerve have 0 length we now apply the seminal result from

Hodge theory - Helmholtz decomposition theorem (see Theorem 4 in Jiang et al. (2011)).

Theorem 8 (Helmholtz decomposition) If (A;E;H) is simply-connected and each 3-cycle
abc 2 H has 0 length the edge �ow l is a gradient �ow, i.e. lab = sa � sb for some function
s : A! R.

If edge �ow l is a gradient �ow, for any M -cycle of the neighborhood graph �Nf we have

M�1X
j=0

lajaj+1 =
M�1X
j=0

(saj � saj+1) = 0;

which establishes that any M -cycle of the neighborhood graph �Nf has zero length.
Let us now consider someM -cycle fb0; b1; :::; bM = b0g of outcome graph �f : Since the closure of

domain T is path-connected, for each edge fbj; bj+1g there exists a path fbj = a0j ; ::::; a
Kj

j � bj+1g
connecting bj and bj+1 such that T akj \ T ak+1j

6= ? for each k. Note that akjak+1j 2 �Nf . Given the
decomposition monotonicity property and that any cycle on graph �Nf has zero length we have

M�1X
j=0

lbjbj+1 �
M�1X
j=0

KjX
kj=0

l
ak
j
j a

kj+1
j

= 0

This completes the proof of the theorem. �

Proof of Theorem 4. Let us consider settings with a �nite number of outcomes. Consider
some outcomes a; b 2 A with sets T a and T b having empty intersection. Take some x 2 Ta and
y 2 Tb: Since the closure of domain T is convex we have that [x;y] 2 T : Hence, for any x 2 Ta
there exists a sequence sx = fa � ax0 ; :::; axk � bg such that T axj \ T axj+1 6= ;, j = 0; :::; k � 1 and
[x;y] \ T axj 6= 0: We then have

x(fa � fb) =
k�1X
j=0

x(faxj � faxj+1)

Notice that for any zxj 2 [x;y]\T axj there exists some l
x
j > 0 such that vectors x�zxj = lxj (zxj�zxj+1).

The 2-cycle monotonicity then implies

(x� zxj )(faxj � faxj+1) = l
x
j (z

x
j � zxj+1)(faxj � faxj+1) � 0
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This allows us to obtain

x(fb � fa) �
k�1X
j=0

zxj (faxj � faxj+1)

Let us denote the �nite set of sequences S = fsx : x 2 Tag where sx is a sequence de�ned above.
We then have

lab = infx2Tb x(fb � fa)

� infx2Tb

k�1X
j=0

zxj (faxj � faxj+1)

� infx2Tb

k�1X
j=0

infzj2Tax
j

zj(faxj � faxj+1)

� min
fa0;:::;akg2S

k�1X
j=0

infzj2Taj
zj(faj � faj+1)

= min
fa0;:::;akg2S

k�1X
j=0

lajaj+1

where we used lajaj+1 = infzj2Taj zj(faj�faj+1) = infzj2Taj zj(faj�faj+1). Since, the set of sequences
S is �nite, the minimum is achieved for some sequence. This completes the proof of the theorem.�

Lemma A1 . Assume allocation rule satis�es 2-cycle monotonicity and take some t 2 Tb and
t0 = t+� 2 T; where � : �b > �a for any a 2 Anfbg. We then must have that t0 2 Tb.

Proof. Let us assume that t0 2 Tc for some c 6= b: Then 2-cycle monotonicity implies that
t0c � t0b � tc � tb; which contradicts �b > �c: �

�

13
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