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Abstract

I study contests in which each player is ranked by a scoring rule based on both her

performance and how close this performance is to a private target, set before the contest.

Each player’s decision problem is to choose her target when performance is subject to a

random component. I analyse the incentive properties of target setting, derive conditions

on the primitives such that equilibria exist and characterise the players’ behaviour. I show

that target setting generates outcome uncertainty under a large class of conditions. In

particular, neither private abilities nor perfectly correlated states are necessary. Target

setting, therefore, has important implications in contest design as outcome uncertainty is a

salient determinant of consumers’ demand for contests.

Key Words: contests; target setting; competitive balance; incentives; incomplete information.

JEL Codes: C70; D81; D82; Z20.

1 Introduction

Competitive balance has long been thought to be important in professional sports (Rottenberg,

1956; El-Hodiri and Quirk, 1971). A sufficient degree of rivalry and competition between partic-

ipants in a contest introduces ex-ante uncertainty about the outcome. This outcome uncertainty

has been shown to be a salient determinant of the consumer demand for contests and is, conse-

quently, of crucial importance for contest designers (Neale, 1964; Knowles et al., 1992; Forrest

and Simmons, 2002; Szymanski, 2003b,a; Borland and MacDonald, 2003). Therefore, mecha-

nisms that support outcome uncertainty and generate a greater degree of competitive balance

are important for economic theory.
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In this paper, I propose a mechanism that increases competitive balance in contests by

creating outcome uncertainty. In my model this mechanism involves each player reporting a

private performance target before the contest takes place. Contestants then take part in the

contest where performance is determined by a combination of ability and the realisation of the

state of nature. The random component means that each player is unable to perfectly estimate

her performance when setting her target. Players are then ranked by a scoring rule that, amongst

other properties, penalises negative deviations from target. The player with the highest score

wins the prize. This rule-set rewards, and provides incentives for, a high performance as well

as an accurate prediction of this performance. Each player’s decision problem is to strategically

choose a target setting rule that incorporates her private information about her own ability and

her beliefs about both the abilities of her competitors and the possible states of nature.

To gain some intuition for why target setting can create outcome uncertainty, consider a

contest between two players, whom I will refer to as Michael and Jane. Suppose that Jane is

more able than Michael, and that this is common knowledge. Suppose further that there is a

good and bad state of nature. In the bad state, players’ performances are equal to their abilities,

whilst in the good state, performances are greater than abilities. Without target setting Jane will

win the contest, as her performance is always greater than Michael’s. Upon introducing target

setting, however, I show that Michael can obtain a strictly positive probability of winning. If the

probability of the good state is sixty percent, Jane incorporates the positive effect of this state

on her performance in her target sixty percent of the time. Michael, however, only does so forty

percent of the time. Effectively, Michael gambles on the less likely state in the hope that Jane

‘busts’ by failing to achieve her target if the bad state is realised. With these strategies, Michael

obtains a probability of winning of twenty-four percent. Therefore, by introducing target setting,

there is now uncertainty about the outcome as Jane only wins the contest seventy-six percent of

the time!

I generalise the above intuition by developing a model to study the effect that target setting

has on players’ incentives and their resulting equilibrium behaviour under a number of differ-

ent conditions. I show that, generically, two salient properties of the contest emerge as players

become almost sure of the state. First, the contest is incentive compatible, in a manner com-

mensurate with the classic Vickrey (1961) auction. Second, due to incentive compatibility, the

contest generates no outcome uncertainty. As each player truthfully reveals her private infor-

mation, the outcome is determined entirely by the distribution of the players’ abilities, akin to

tournament models such as Lazear and Rosen (1981). The implication is that, if players can

infer the state of nature through expertise or repetition, target setting will not be sufficient to

create competitive balance. I then demonstrate that, when the states are equally likely, there are

no pure strategy equilibria. This is because, when uncertainty about the state is maximal, the

contest becomes a discoordination game with cyclical best responses (Pangallo et al., 2017). In-

tuitively, the unique mixed strategy equilibrium involves each player approximating her expected

performance. Then, by analysing ex-post payoffs, I show that this setting generates outcome

uncertainty; that is, less able players have a positive probability of winning.

In my two main results I derive sufficient conditions on the distribution of the players’ abil-
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ities and the common prior over states such that pure strategy equilibria exist. These results

provide minimum confidence levels each player must have about a state before she takes this

state into account when setting her target. The intuition is that, once this minimum threshold

has been surpassed, information about competitors’ abilities is less valuable than more precise

information about the state. This implies that outcome uncertainty is decreasing in the precision

of this information. Moreover, when the skill gap between the players increases, the minimum

confidence level decreases to reflect the reduced expected penalty from overestimation. A graph-

ical representation of these conditions illustrates that for three quarters of the parameter space

these pure strategies will not constitute equilibria. Therefore, mixed strategies will arise under

the majority of information structures, leading to a large degree of outcome uncertainty.

Finally, I return to my motivating example and characterise equilibria when the players’

abilities are common knowledge. I demonstrate that the intuition of less able players gambling

on the less likely state holds in general; consequently, obtaining a strictly positive probability

of winning. I then extend this analysis to a setting where, rather than facing a common state,

players can face different realisations of the uncertainty. In this setting of imperfect correlation,

each competitor plays according to her marginals and effectively ignores the correlation. The

intuition is, therefore, akin to the setting with perfectly correlated states.

My analysis provides a number of salient insights. First, when players have precise infor-

mation about the state, target setting is an incentive compatible mechanism. Therefore, target

setting could be utilised by contest designers, and other economic agents, who wish to obtain

accurate performance forecasts. Second, target setting yields outcome uncertainty and generates

competitive balance under a wide range of conditions. Contest designers could, consequently,

introduce target setting to increase consumer demand via outcome uncertainty. Beyond contests,

these insights could be applied to more general economic settings1.

My target setting mechanism is inspired by several real world contests. In Olympic figure

skating, for example, each contestant submits her planned performance to judges before the

contest. Points are subtracted if her executed performance differs from this plan. Comparatively,

in Olympic weight lifting, each contestant submits an initial weight to lift and then lifts heavier

weights in successive increments. Contestants face a trade-off between starting at a low initial

weight and having to perform a greater number of lifts or starting at a high initial weight and

possibly failing to lift it within the three allowed attempts2. The main inspiration, however, is the

1One application could be sales-forecasting, which has been described as managers’ most disliked activity
(Herbig et al., 1993). Inaccurate forecasting leads to excess demand or supply when goods must be purchased
in advance of sales. Many firms employ the sales-force composite approach; however, a significant proportion
find this inaccurate (Mentzer and Cox Jr., 1984). A salient reason for this inaccuracy are the perverse incentives
this method provides. If salespeople receive bonuses for achieving self-set targets, under-reporting is a dominant
strategy. Therefore, a mechanism that provides incentives for accuracy would improve performance (Cox Jr.,
1989).

My model predicts that, if demand shocks are known to salespeople, target setting would provide such incen-
tives. Each salesperson’s target would be her expected sales adjusted for any demand shocks. There would be no
incentive to under-report. Such a situation could arise when demand shocks are predictable; for example, demand
for seasonal products like Christmas trees and pumpkins. When demand shocks cannot be inferred, my results
predict that target setting would allow less able salespeople to win the bonus. This could increase moral and
encourage higher performance. However, if there is a wide discrepancy between the abilities of the salespeople,
target setting benefits the relatively higher skilled more.

2See here for a summary of scoring in figure skating and here for a summary of rules in weight lifting,
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Apnea World Free-Diving Championship. Without the use of breathing equipment, contestants

attempt to dive to the greatest depth in the ocean before successfully returning to the surface.

The rules of this contest are very similar to the formal model in this paper as divers set private

performance targets before diving. Therefore, I will often use the example of the diving contest

to provide intuition for various assumptions and conditions3.

Conceptually, the contest I analyse is similar to those considered by Dixit (1987) and Che and

Gale (1997), who study the incentive effects of pre-committing to effort and constraints or caps

on effort, respectively. More recently, Fu et al. (2013) studied the effect of pre-contest commu-

nication. My contribution is to show that pre-committing to a target performance can increase

competitive balance. My result concerning the outcome of the contest without uncertainty is

akin to the tournament result found in Lazear and Rosen (1981), Green and Stokey (1983) and

Nalebuff and Stiglitz (1983). My contribution is to demonstrate the conditions under which my

model and the canonical tournament model are strategically equivalent. Moreover, this paper

relates to the contemporary tournament literature that explores unconventional aspects such

as the construction of optimal seeding (Groh et al., 2012), Round-Robin brackets (Arad and

Rubinstein, 2013) and strategic bracket manipulation (Vong, 2017). My use of a scoring rule is

analogous to the literature that studies the elicitation of an agent’s belief about a probabilistic

event (Hossain and Okui, 2013; Nelson and Bessler, 1989; Karni, 2009). My contribution is to

demonstrate the conditions under which my scoring rule is proper in the sense of Savage (1971).

Finally, I contribute to the literature on the economics of sport, such as Chiappori et al. (2002)

and Walker and Wooders (2001). These authors analyse theoretical models and characterise

mixed strategy Nash equilibria before taking the results to the data. Coloma (2012) extends

Chiappori et al. (2002) to a setting with incomplete information. My contribution is to analyse a

richer theoretical model with two forms of uncertainty and to characterise both pure and mixed

strategies.

The paper is structured as follows. In Section 2, I lay out the general framework and establish

existence of equilibrium. In Section 3, I make tractability assumptions to characterise the players

incentives. In Section 4, I characterise equilibria in a number of distinct settings. In Section 5, I

relax several of my tractability assumptions and consider extensions and generalisations. Finally,

I conclude in Section 6.

2 General Framework

I model the contest as a simultaneous move Bayesian game of incomplete information between a

set I of players who compete for a fixed, indivisible prize that I normalise to unity4. Each player

i ∈ I ’s ability is θi ∈ Θ ⊂ R++ and is private information. I assume that θi > θj implies that

player i is more able than player j for i, j ∈ I . In the diving contest this assumption implies that,

without taking the weather or water conditions into account, player i can dive deeper than player

particularly sections 5.5.3-5.5.14.
3Nestor (2014) provides an excellent discussion of the Apnea World Free-Diving Championship.
4This normalisation is without loss of generality and allows me to express each player’s expected payoff as her

probability of winning.
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j. Player i’s private information is associated, in the sense of Harsanyi (1967, 1968a,b), with a

belief about the abilities of her competitors (θ1, . . . , θi−1, θi+1, . . .) := θ−i ∈ Θ−i =: Θ|I | \ {θi}
and a belief about the state of nature k ∈ K ⊂ R+. The set K represents the uncertainty

the players face. In the context of the diving contest, it could capture all possible weather

and water conditions that exogenously affects the players’ performances. Player i’s beliefs are,

therefore, an element of the set of joint probability distributions over the product set Θ−i ×K

and are denoted ρ(θ−i, k) ∈ ∆(Θ−i ×K ). The set of states of the world contains all possible

combinations of the realisation of the state and the players’ abilities Ω = K ×
∏
i∈I Θ. Player

i’s performance is determined by the mapping Q : Θ ×K → R++, which is a function of her

ability and the realisation of the state. I assume this mapping is symmetric for all players; that

is, Qi = Qj = Q for each i, j ∈ I . Moreover, for θ, θ′ such that θ > θ′ and k, k′ such that k > k′,

I assume that Q(θ, ·) > Q(θ′, ·) and Q(·, k) > Q(·, k′), which together imply Q(θ, k) > Q(θ′, k′)5.

Player i’s action is to choose a performance target ti ∈ T ⊂ R++
6. After each player has

privately submitted her target, a referee collates the targets and makes them public as, for

example, the linearly ordered set (T,≥) = (ti > tj = tk > · · · ). Player i’s pure strategy is a

mapping σi : Θ→ T , which is an injective function from her private information to her choice

of target where σi(θi) ∈ T for each θi ∈ Θ. Her mixed strategy is σ̂i : Θ→ ∆(T ), a probability

distribution over pure strategies. A Bayesian-Nash equilibrium is a vector of strategies σ∗ =

(σi(θi))i∈I such that σ∗i (θi) is a best response to (σ∗1(θ1), . . . , σ∗i−1(θi−1), σ∗i+1(θi+1), . . .) :=

σ∗−i(θ−i) for each i ∈ I and θi ∈ Θ.

Given the announced targets (T,≥) and the vector of the players’ performances when state

k has been realised Qk := (Q(θ1, k), . . . , Q(θi, k), . . .), the players are ranked by a common

knowledge scoring rule. This scoring rule possesses three salient properties.

Definition 1. The scoring rule is a function S : Q(Θ×K )× T → R++. S has the following

properties:

i Given ti such that Q(θi, k) < ti, S(Q(θi, k), ti) < Q(θi, k);

ii Given ti such that Q(θi, k) ≥ ti, S(Q(θi, k), ti) = ti;

iii Given Q(θi, k) and ti such that Q(θi, k) < ti, S(Q(θi, k), ti) is decreasing in the penalty

applied to negative deviations δ > 0.

Properties i and iii ensure that player i’s score is decreasing in the difference between her

target and her performance. Intuitively, negative deviations from target are costly. Property ii

states that the target acts as an upper bound on player i’s score, implying that she accrues no

benefit from a performance greater than her target. Moreover, property ii implies that, if player

i’s performance is equal to her target, her score is also equal to this value. Finally, property iii

5This modelling choice means that, once the uncertainty has been resolved, each player’s performance is given.
I model performance in this way to focus attention on the problem of target setting, which is the unique aspect of
this paper. Note that shifting focus away from effort choices is not without precedent, as Vong (2017) considers
a strategic setting with costless effort.

6“The contest officially starts the night before a dive, when divers secretly submit the proposed depths of the
next day’s dive attempts to a panel of judges. It’s basically a bid, and there’s gamesmanship involved as each
diver tries to guess what the other divers will do”(Nestor, 2014).
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requires that, whenever player i overestimates her performance, her score is decreasing in the

penalty applied to negative deviations.

In state k player i has an ex-post payoff of uki (T) = 1S∗(S), where S∗ = max{S(Q(θ1, k), t1), . . .}
:= max S. Therefore, as the contest is winner-take-all, player i’s payoff is equal to unity if

S(Q(θi, k), ti) = S∗ and zero otherwise. If the set S∗ is not a singleton, I adopt a tie-breaker

rule that assigns each player whose score is in S∗ a 1
|S∗| probability of winning the contest. The

following proposition specifies assumptions on this environment sufficient for the existence of a

Bayes-Nash equilibrium.

Proposition 1. Suppose that I , K , T and Θ are finite. Then, a (potentially degenerate)

mixed strategy Bayes-Nash equilibrium exists in the contest with ex-ante target setting.

Proof. Detailed proofs of all results are in Appendix A.

Therefore, player i’s expected payoff is

Eθ,k[ui(σ, θi)] =
∑

(θ−i,k)∈Θ−i×K

Pr

(
S(Q(θi, k), σi(θi) > S(Q(θj , k), σj(θj) ∀ j 6= i

)
ρ(θ−i, k)

(1)

when Θ and K are finite.

3 Simplified Model

I now invoke several tractability assumptions to characterise the incentives of the players and

the resulting equilibrium behaviour. Assume that there are two players I = {1, 2}, each of

whom can be one of two types Θ = {θL, θH}, where θH > θL. The probability of player i

being relatively more able is Pr(θi = θH) := µ ∈ [0, 1], which is identical and independent

for each i ∈ I . Moreover, suppose there are two states of nature K = {kL, kH}, where

kH > kL. Denote a generic element of K as k` for ` ∈ {L,H}. The common prior over

the states is given by Pr(k = kL) := λ ∈ [0, 1]. I assume that each player has the action set

T = {tL, tH} = {Q(θi, kL), Q(θi, kH)}, with generic element t`. Finally, I assume that the

scoring rule takes the form

S(Q(θi, k`), t`) := t` − δ ·max{0, t` −Q(θi, k`)} (2)

where, if S(Q(θi, k`), t`) = S(Q(θj , k`), t`), each player wins with equal probability.

My first result states a sufficient condition on the size of the penalty applied to negative

deviations from target.

Lemma 1. A sufficient condition for the scoring rule given in (2) to satisfy property i of Defi-

nition 1 is that the penalty applied to negative deviations is strictly greater than one.

Therefore, if a player’s realised performance is less than her target, her score must be

discounted to less than her performance. Intuitively, if δ ≤ 1, falling short of one’s target
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is not punished. To see this, let t′ > t and Q(θi, k) < t. Then, if δ ≤ 1, I would have

S(Q(θi, k), t′) = (1 − δ)t′ + δQ(θi, k) > (1 − δ)t + δQ(θi, k) = S(Q(θi, k), t) and player i would

always choose ti = max T .

Combined with Lemma 1, the following two assumptions govern the players’ incentives. These

conditions determine the settings under which a relatively low ability player is able to obtain a

greater score than a high ability player through strategic target setting.

Assumption 1.

Q(θL, kH) > Q(θH , kL).

Intuitively, when the state is good, a less able player will perform better than a highly able

player who competes in the bad state. Without this assumption, a high ability player would

always win by setting her performance target equal to her ability; subsequently, removing all

outcome uncertainty.

Assumption 2.

Q(θH , kH)−Q(θH , kL) >
Q(θH , kH)−Q(θL, kL)

δ
.

The intuition is that, when a less able player perfectly estimates his performance, his score is

greater than that of a high ability player who overestimates her performance7. This assumption

increases the set of scenarios in which a less able player could obtain a greater score than a high

ability player through strategic target setting. Assumption 2 is more likely to hold when the

skill gap between high and low ability players is relatively small, which implies the variance in

the players’ abilities is not too large8.

4 Equilibrium Analysis

4.1 Equilibrium without Aggregate Uncertainty

I first study Bayes-Nash equilibria when it is common knowledge that K = {k}. If the state

is known then Pr(k = kL) ∈ {0, 1}. The purpose of this analysis is to elucidate the incentive

properties of the target setting mechanism when there is no aggregate uncertainty. The ex-post

payoffs when the state is neutral under Assumption 1 and Assumption 2 hold are illustrated in

the strategic form game of Figure 3 in Appendix A. Each payoff pair is constant sum to one. As

the players’ abilities are identically and independently distributed, the probabilities associated

with the strategic form games are

Pr(θ1 = θH ∩ θ2 = θH) = Pr(θi = θH) Pr(θi = θH),

Pr(θ1 = θH ∩ θ2 = θL) = Pr(θ1 = θL ∩ θ2 = θH) = Pr(θi = θH) Pr(θi = θL),

7When contrasting high and low ability players I will refer to them as ‘her’ and ‘him’, respectively, as in the
introduction.

8To see this, assume Q(θ, k) = θ + k and kL := 0. Then, Assumption 2 is equivalent to kH(δ − 1) > θH − θL,
and, for fixed δ and kH , is more likely to hold when the difference θH − θL is small.
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and

Pr(θ1 = θL ∩ θ2 = θL) = Pr(θi = θL) Pr(θi = θL).

Using these, I derive the players’ expected payoffs to analyse the Bayesian strategic form of the

game. For example, fix σj(θj) = (Q(θH , kL), Q(θL, kL)), which should be read as play Q(θH , kL)

when θj = θH and play Q(θL, kL) when θj = θL. Then, when σi(θi) = (Q(θH , kL), Q(θL, kH)),

player i’s expected payoff is

Eθ[ui(σ, θi)] = Eθ[ui((σi(θi), σj(θj)), θi)] = µ2 · 1

2︸ ︷︷ ︸
Pr(Si≥Sj |θi=θj=θH)

+ µ(1− µ) · 1︸ ︷︷ ︸
Pr(Si≥Sj |θi=θH ,θj=θL)

+ µ(1− µ) · 0︸ ︷︷ ︸
Pr(Si≥Sj |θi=θL,θj=θH)

+ (1− µ)2 · 0︸ ︷︷ ︸
Pr(Si≥Sj |θi=θj=θL)

= µ

(
1− µ

2

)
,

where Si := S(Q(θi, kL), σi(θi)). Under these conditions I find that, without aggregate uncer-

tainty, each player sets her performance target equal to her ability; therefore, truthfully revealing

her private information.

Proposition 2. Suppose that either Assumption 1 and Assumption 2 hold or Assumption 1

holds but Assumption 2 does not. Then, if Pr(k = k`) = 1 for ` ∈ {L,H}, the strategy profile

σ∗i (θi) = Q(θi, k`) for i ∈ I is the unique pure strategy Bayes-Nash equilibrium for all Pr(θi =

θH).

The intuition is akin to the equilibrium of second price auctions, where each bidder optimally

bids her true value. When the state is neutral9, for example, each player does not benefit from

a strategy that over-or-underestimates her performance relative to her ability. In either case,

her score would be less than if she had set her target equal to her ability. The target setting

mechanism is, therefore, ex-post dominant strategy incentive compatible. Consequently, the

player with the highest ability will win. I show in the following subsection that this finding

generalises to a setting when the players are almost sure of the state10.

If players are able to accurately deduce the state, one conclusion is that the target setting

mechanism may be superfluous. Such a situation could arise through expertise, repetition, or

if the effect of the state was very small11. Therefore, a simple rank order tournament would

induce the same outcome. A second implication is that there will not be outcome uncertainty.

Contest designers may then wish to choose this mechanism when the state is known if their goal

is incentive compatibility rather than outcome uncertainty.

4.2 Equilibria with Aggregate Uncertainty

I now revert to the assumption that K = {kL, kH} and derive the players’ expected payoffs. To

do so I take the expected payoffs in Figure 4 and Figure 6 and weight them using the common

9That is, when kL := 0.
10I will show the result holds as Pr(k = k`)→ 1.
11Let Q(θi, kH) = θi + kH and Q(θi, kL) = θi. Then, if the effect of the state is small, a performance target

equal to ability remains a dominant strategy as limkH↘ 0Q(θi, kH) = Q(θi, kL).
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prior Pr(k = kL) := λ. The expectation is now taken over both the distribution of the players’

abilities and the distribution over states. For example, player i’s expected payoff is now

Eθ,k[ui((σi(θi), σj(θj)), θi)] = λ · µ
(

1− µ

2

)
︸ ︷︷ ︸

Eθ[Pr(Si≥Sj |k=kL)]

+ (1− λ) ·
(

1− µ2

2

)
︸ ︷︷ ︸
Eθ[Pr(Si≥Sj |k=kH)]

,

when σi(θi) = (Q(θH , kL), Q(θL, kH)) and σj(θj) = (Q(θH , kL), Q(θL, kL)). The players’ ex-

pected payoffs are now defined entirely in terms of the primitives of the model due to the

assumption that the prize is equal to unity. I first demonstrate that, when uncertainty about

the state is maximal, the contest becomes a discoordination game with cyclical best responses.

Proposition 3. Suppose Assumption 1 and Assumption 2 hold. Then, if Pr(k = kL) = Pr(k =

kH), there are no pure strategy Bayes-Nash equilibria for all Pr(θi = θH).

Intuitively, given my assumption on the players’ action set, each player is unable to incorpo-

rate the expected effect of the states in her target. Players are, therefore, left without mutually

consistent best responses in pure strategies à la matching pennies. Instead, I show that it is

optimal for each player to mix over her available strategies to approximate her expected perfor-

mance.

Proposition 4. Suppose Assumption 1 and Assumption 2 hold. Then, if Pr(k = kL) = Pr(k =

kH), the strategy profile σ̂i(θi) = Ek[Q(θi, k)] for i ∈ I approximates the mixed-strategy Bayes-

Nash equilibrium for all Pr(θi = θH).

An important implication of this result is that the target setting mechanism will lead to

outcome uncertainty. By looking at ex-post payoffs it is easy to see that a less able player

will win one quarter of the time. Therefore, if uncertainty about the state is maximal, contest

designers can successfully employ target setting to introduce a degree of competitive balance.

Unlike Proposition 2, when Assumption 2 does not hold the equilibrium behaviour of the

players changes significantly. By increasing the gap between the players’ abilities the possible

penalty that results from incorrectly overestimating one’s performance is reduced.

Corollary 1. Suppose Assumption 1 holds but Assumption 2 does not. Then, if Pr(k = kL) =

Pr(k = kH), the strategy profile σ∗i (θi) = Q(θi, kH) for i ∈ I is the unique pure strategy Bayes-

Nash equilibrium, by iterated elimination of weakly dominated strategies, for all Pr(θi = θH).

Intuitively, it becomes a dominant strategy for players to use a more optimistic target given

the lower risk of overestimation. I use iterated elimination of weakly dominated strategies to

remove equilibria in which the players only behave optimistically given a particular realisation

of ability. By doing so, I pin down a unique equilibrium that is independent of the players’

abilities. An implication of this result is that the target setting mechanism will be less effective

at generating outcome uncertainty as the skill gap between players increases.

I now consider the general case when the common prior over states is unrestricted. My moti-

vation is to derive sufficient conditions on this common prior and the distribution of the players’
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abilities such that pure strategy equilibria exist. These conditions provide a characterisation of

the information structures that will not generate outcome uncertainty. I can then comment on

the relative magnitude of information structures that will lead to outcome uncertainty.

Theorem 1. Suppose Assumption 1 and Assumption 2 hold. Then Pr(θi = θH) ∈ Π̃ := (2λ, 1−
2λ) implies that Pr(k = kL) ∈ (0, 1/4) and the strategy profile σ∗i (θi) = Q(θi, kH) for i ∈ I is

the unique pure strategy Bayes-Nash equilibrium.

Conversely, Pr(θi = θH) ∈ Π̂ := (2(1− λ), 2λ− 1) implies that Pr(k = kL) ∈ (3/4, 1) and the

strategy profile σ∗i (θi) = Q(θi, kL) for i ∈ I is the unique pure strategy Bayes-Nash equilibrium.

The intuition is that there is a minimum level of confidence each player must have in a state

for her to incorporate this state in her performance target. Specifically, one state must be at

least three times more likely than the other. This is not the only necessary condition, however.

At this minimum confidence level each player must be maximally uncertain about the abilities

of her competitors. If she is strictly more likely to face a high ability competitor, for example,

she will need to be even more confident in one state arising. These conditions are illustrated in

Figure 1.

λ

µ

0

1

11/4 3/4

1−
2λ

=
µ

µ
=

2λ

2(1−
λ)

=
µ

µ
=

2λ
−

1

Π̃ ∩ (0, 1
4
) (3

4
, 1) ∩ Π̂

Pr(k = kL)

P
r(
θ i

=
θ H

)

Figure 1: Information structures that lead to pure strategies.

There are several conclusions that can be drawn from this result. The first is that information

about the state, condition upon being above the minimum confidence level, is more valuable than

information about competitors’ abilities. Intuitively, as the probability of a state approaches one,

the distribution of the players’ abilities becomes less of a concern. Therefore, in the limit, the

players’ behaviour approaches that detailed in Proposition 2. A second conclusion is that mixed

10



strategies, or strategies that are conditional upon a particular realisation of ability, will arise for

the majority of information structures. To see this note that

Π :=

[
Π̃ ∩

(
0,

1

4

)]
∪
[
Π̂ ∩

(
3

4
, 1

)]
⊂
{

(µ, λ) : (µ, λ) ∈ [0, 1]× [0, 1]

}
spans one quarter of all possible information structures. Therefore, for three quarters of all

information structures, the pure strategies detailed in Theorem 1 will not constitute equilibria.

The implication is that the target setting mechanism will lead to outcome uncertainty under the

majority of information structures. This is an important conclusion as it implies that, when the

goal is to introduce competitive balance, target setting is sufficient in the vast majority of cases.

Similarly to Corollary 1, the players’ behaviour changes significantly when Assumption 2

does not hold.

Theorem 2. Suppose Assumption 1 holds but Assumption 2 does not. Then, if Pr(k = kL) <

Pr(k = kH), the strategy profile σ∗i (θi) = Q(θi, kH) for i ∈ I is the unique pure strategy Bayes-

Nash equilibrium for all Pr(θi = θH).

Intuitively, as the potential penalty arising from overestimation is reduced, each player re-

quires a lower degree of confidence in the performance enhancing state to take it into account

in her target. In addition, once beliefs pass this minimum threshold, the players’ equilibrium

strategies become independent of the distribution of abilities. This is an extreme form of the

intuition underlying Theorem 1, where the value of information about competitors’ abilities is

decreasing in information about the state. The set of information structures that yields pure

strategies when Assumption 2 does not hold is illustrated in Figure 2. This change in information

structures has one salient implication: pure strategies will now arise for the majority of infor-

mation structures; specifically, for five eighths of the parameter space. Therefore, if the skill gap

between high and low ability players is relatively large, the target setting mechanism will only

generate outcome uncertainty under three eighths of information structures. The conclusion is

that, whilst target setting continues to introduce outcome uncertainty, the degree of competitive

balance created when the players’ abilities are highly disparate is reduced.

5 Extensions

5.1 Equilibria when Abilities are Common Knowledge

I now return to the motivating example from the introduction in a formal setting and analyse

equilibria when the players’ abilities are common knowledge. The motivation for this extension

is to develop an understanding of the effect of a published ranking on the players’ incentives and

behaviour12. Moreover, this analysis enables me to shed light on whether private information

12I have focused on the case when abilities are private for two reasons. The first is that a published ranking
should have less impact under this mechanism as it is the size of the skill gap that is important. A published
ranking that places player i above player j does not provide information about how much more able player i is.
The second reason is that private abilities allow me to study a more general setting that encompasses common
knowledge abilities as a special case.
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µ
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2λ
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P
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θ i
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θ H

)

Figure 2: Information structures that lead to pure strategies when Assumption 2 does not hold.

about abilities is necessary for outcome uncertainty.

I first suppose that the two players are equal in ability. In this case, each player incorporates

the effect of the state that is relatively more likely in her target setting.

Proposition 5. Suppose Assumption 1 and Assumption 2 hold and that θ1 = θ2 is common

knowledge. Then, if Pr(k = kL) > Pr(k = kH), the strategy profile σ∗i (θi) = Q(θi, kL) for i ∈ I

is the unique pure strategy dominance solvable Nash equilibrium. Conversely, if Pr(k = kH) >

Pr(k = kL), the strategy profile σ∗i (θi) = Q(θi, kH) is the unique pure strategy dominance solvable

Nash equilibrium.

When one state is relatively more likely than the other, each player’s expected payoff is higher

from setting a performance target that takes this state into account. Intuitively, this ensures

that each player wins with equal probability.

I now consider the more interesting setting when it is common knowledge that one player is

more able than the other. When the players’abilities are asymmetric there are no pure strategy

equilibria as the game reverts to a discoordination game. Instead, in the mixed strategy equi-

librium, the more able player acts relatively prudently. She places more probability mass on

the strategy that is in line with the common prior; that is, if the good state is more likely she

plays the strategy that incorporates that state relatively more often. Conversely, the less able

player gambles on the less likely state. If the bad state is more likely, for example, he sets his

12



performance target to take account of the good state relatively more often.

Proposition 6. Suppose Assumption 1 and Assumption 2 hold. Then, if θ1 = θH > θL = θ2

is common knowledge, the strategies Pr(σ1(θ1) = Q(θH , kL)) = Pr(k = kL) and Pr(σ2(θ2) =

Q(θL, kL)) = Pr(k = kH) constitute a mixed-strategy Nash equilibrium.

The intuition is that, because the more able player has more to lose from overestimation, she

effectively plays the odds and follows the common prior in her target setting. On the other hand,

as the less able player has more to gain, he plays against the odds to maximise his probability of

winning when the more able player guesses incorrectly. If the good state is more likely, the less

able player sets his target in line with the bad state relatively more often, in the hope that the

more able player fails to achieve her target when the bad state is realised13. Conversely, if the

bad state is more likely, the less able player sets his target in line with the good state relatively

more often. This implies that, given the more able player’s strategy, the less able player’s score

will be greater when the good state is realised.

Proposition 6 highlights an important insight about the target setting mechanism: uncer-

tainty about the players’ abilities is not a necessary condition for outcome certainty. Therefore,

even when there is a published ranking of the players’ abilities, the target setting mechanism

yields the less able player a strictly positive probability of winning; specifically, this probability

is

Pr(k = kL) Pr(k = kH) > 0.

Conversely, without target setting the more able player would always win. The implication is

that contest designers can implement this mechanism irrespective of whether players’ abilities

are private information.

To generalise the above result I will now assume that there is imperfect correlation between

the realisation of the state the players face. The intuition for this assumption is that, in the

diving context, the weather may change throughout the day as divers take part in the contest.

Therefore, divers may compete under different weather conditions. Suppose that each player

i ∈ I realises a state ki drawn from Ki = {kL, kH} := {0, 1} with joint probability distribution

%(k1, k2) ∈ ∆(K1 ×K2). I assume this joint distribution satisfies

Pr(k1 = kH ∪ k2 = kL) = Pr(k1 = kL ∪ k2 = kH), (3)

Pr(k1 = kL ∪ k2 = kL) > Pr(ki = kL ∪ kj = kH , i 6= j) > 0 (4)

and √
Pr(k1 = kH ∪ k2 = kH)− Pr(k1 = kH ∪ k2 = kH) > Pr(ki = kL ∪ kj = kH , i 6= j), (5)

as this implies 1 > corr(k1, k2) > 0. Intuitively, these conditions capture the idea that it is more

13“It’s like playing poker”, Trubridge told me.“ You are playing the other divers as much as you are playing
yourself”. The hope is that your foes will choose a shallower dive than you can do, or that they’ll choose a deeper
dive than they can do and end up “busting” (Nestor, 2014).
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likely that players face the same realisation of the state than experience different realisations.

Yet, due to imperfect correlation, asymmetric realisations are no longer ruled out.

Proposition 7. Suppose Assumption 1 and Assumption 2 hold. Moreover, suppose that there

is imperfect correlation between the states described by (3)-(5). Then, if θ1 = θH > θL = θ2

is common knowledge, the strategies Pr(σ1(θ1) = Q(θH , kL)) = Pr(k1 = kL) and Pr(σ2(θ2) =

Q(θL, kL)) = Pr(k2 = kH) constitute a mixed-strategy Nash equilibrium.

When the states are imperfectly correlated each player effectively ignores the correlation and

plays according to her marginal distribution. Specifically, the more able player acts in line with

the common prior whilst the less able player gambles on the less likely state. The intuition and

implications, therefore, carry over from the setting with perfect correlation between the states.

The gain from this analysis is the insight that private abilities and perfectly correlated states

are not necessary conditions for outcome uncertainty: the intuition generalises to more complex

informational assumptions.

5.2 Equilibria when Abilities are Continuously Distributed

In this section I relax several of the tractability assumptions that have been employed hitherto.

The main assumption throughout this section is that the players’ abilities are continuously

distributed. The purpose of this analysis is to elucidate the generality of Proposition 2 and

to gain new insights from allowing, in certain respects, a richer environment. Throughout this

section, however, I will assume that Q(θ, k) = θ + k and that kL := 0. These assumptions

simplify the exposition yet I believe they are not necessary for the results.

5.2.1 One State of Nature and a Continuous Action Set

The first setting I consider is very general. I allow for any finite number of players and an

arbitrary continuous distribution F over the players’ abilities [θ, θ]. Moreover, I allow for the

players’ strategy set to be an arbitrary real interval with bounds determined by γ
i
, γi > 0,

which need not be symmetric. The main restriction is the assumption of a single state. Player

i’s expected payoff in this setting is

Eθ[ui(σ, θi)] =

∫
Θ−i

Pr

(
S(Q(θi, kL), σi(θi) > S(Q(θj , kL), σj(θj)) ∀ j 6= i

)
dF(θ−i).

I show that the intuition developed in Proposition 2 continues to hold under these conditions;

that is, the target setting mechanism is ex-post dominant and incentive compatible when the

state is known to competitors.

Proposition 8. Suppose I = {1, . . . , N}, θi ∼ F([θ, θ]) for i ∈ I and T := [θi − γi, θi + γi].

Then, if Pr(k = k`) = 1 for ` ∈ {0, 1}, the strategy profile σ∗i (θi) = Q(θi, k`) for i ∈ I is the

unique pure strategy Bayes-Nash equilibrium for all Pr(θi = θH).

The salient implication is that the target setting mechanism will incentivise truthful informa-

tion revelation under a large class of conditions. Therefore, if the goal is incentive compatibility
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rather than competitive balance, this mechanism will perform well when information about the

state is very precise.

The intuition behind the proof is that, when each player j ∈ I \ {i} truthfully reveals

her private information, it is a dominant strategy for player i to report her ability truthfully.

Moreover, when each player j ∈ I does not truthfully report her information, player i can

increase her probability of winning by deviating to truthful revelation. In the former case, the

sufficient conditions are

F(θi) > F(θi − γi) and F(θi) > F(θi − γi(δ − 1)). (6)

Whilst, in the later case, the sufficient conditions are

F(θi + γ
1
) · · · F(θi + γ

i−1
)F(θi + γ

i+1
) · · · F(θi + γ

N
)

>

F(θi − γi + γ
1
) · · · F(θi − γi + γ

i−1
)F(θi − γi + γ

i+1
) · · · F(θi − γi + γ

N
) (7)

and

F(θi + γ
1
(δ − 1)) · · · F(θi + γ

i−1
(δ − 1))F(θi + γ

i+1
(δ − 1)) · · · F(θi + γ

N
(δ − 1))

>

F(θi − (γ
i
− γ

1
)(δ − 1)) · · · F(θi − (γ

i
− γ

i−1
)(δ − 1))×

×F(θi − (γ
i
− γ

i+1
)(δ − 1)) · · · F(θi − (γ

i
− γ

N
)(δ − 1)). (8)

Conditions (6)-(8) hold as F is nondecreasing by definition, γ
i
, γi > 0 for all i ∈ I and δ > 1

by Lemma 1.

5.2.2 Two States of Nature and a Discrete Action Set

I now introduce two states of nature to the setting with continuously distributed abilities and

assume players have the discrete action set detailed in Section 3. As before I approach the

problem of characterising equilibria by deriving the conditions under which each player has a

dominant strategy.

If each player j ∈ I \ {i} sets the lower target then player i’s best response is to use this

target if

Eθ,k[ui(σ
′, θi)] = (F(θi))

N−1 >

Pr(k = kL)(F(θi − kH(δ − 1)))N−1 + Pr(k = kH)(F(θi + kH))N−1

= Eθ,k[ui((σ
′′
i (θi), σ

′ \ {σi(θi)}), θi)]. (9)

Conversely, if each player j ∈ I \ {i} sets the higher target, player i has a profitable deviation
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to the lower target if

Eθ,k[ui((σ
′
i(θi), σ

′′ \ {σi(θi)}), θi)]

= Pr(k = kL)(F(θi + kH(δ − 1)))N−1 + Pr(k = kH)(F(θi − kH))N−1

> (F(θi))
N−1 = Eθ,k[ui(σ

′′, θi)]. (10)

Proposition 9. Suppose I = {1, . . . , N}, θi ∼ F([θ, θ]) for i ∈ I and T := {Q(θi, kL), Q(θi, kH)}.
Then, if (9) and (10) hold, the strategy profile σ∗i (θi) = Q(θi, kL) is the unique pure strategy

Bayes-Nash equilibrium.

Therefore, if (9) and (10) hold, each player setting the low performance target will constitute

a dominant strategy Bayes-Nash equilibrium. Conversely, if these conditions do not hold, the

higher performance target will constitute a dominant strategy Bayes-Nash equilibrium. Intu-

itively, as the neutral state becomes relatively more likely, the risk associated with the higher

performance target increases.

To render these conditions more tractable I assume that there are two players whose abilities

are uniformly distributed over the unit interval. These assumptions imply that (9) and (10) can

be written as

λ

∫ θi+kH(δ−1)

0

dθj + (1− λ)

∫ θi−kH

0

dθj > θi > λ

∫ θi−kH(δ−1)

0

dθj + (1− λ)

∫ θi+kH

0

dθj . (11)

Analysis of (11) yields the following equilibrium characterisation.

Example 1. Suppose I = {1, 2}, θi ∼ U([0, 1]) for i ∈ I and T := {Q(θi, kL), Q(θi, kH)}.
Then, if 1

Pr(k=kL) < δ, the strategy profile σ∗i (θi) = Q(θi, kL) is the unique pure strategy Bayes-

Nash equilibrium. Conversely, if 1
Pr(k=kL) > δ, the strategy profile σ∗i (θi) = Q(θi, kH) is the

unique pure strategy Bayes-Nash equilibrium.

Intuitively, for a fixed penalty applied to negative deviations, as the probability of the neutral

state increases, the equilibrium of Proposition 9 becomes relatively more likely. As this state

becomes more likely, the expected penalty arising from overestimation increases and the expected

gain from the higher performance target decreases. Conversely, when this state becomes less

likely, the expected gain outweighs the potential penalty.

The gain from this analysis is an insight into the role played by the penalty applied to

negative deviations from target. If the probability of the neutral state is held fixed, the size of

this penalty uniquely determines equilibrium. The greater the penalty, the less willing players

are to risk overestimation.

6 Conclusion

Target setting has two salient implications in contests. First, if each player is confident in her

knowledge of the external factors that will influence her performance, target setting is incen-

tive compatible. Each player will truthfully reveal her private information. Target setting will,
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therefore, be effective if contest designers wish to promote accurate performance forecasting.

Second, in the vast majority of cases, target setting will yield outcome uncertainty and gener-

ate competitive balance. This finding relies on neither private abilities nor perfectly correlated

uncertainty. My model predicts that contest designers could, therefore, introduce target setting

and obtain contests where less able players have a strictly positive probability of winning. Em-

pirical evidence suggests that, as a result, the consumer demand for such contests could increase;

in particular, when the contests are between individual competitors.

Future research could focus on the dual problem of each player choosing both her effort and

her target. This may yield new findings and could enable the model to capture some more

realistic features. However, effort choices are not necessary to gain insights into the problem of

competitive balance.
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Appendices

A Proofs

Proof of Proposition 1. Standard arguments imply that the results of Nash (1951) can be applied

as both the distribution of the players’ abilities and the distribution of the states of nature are

common knowledge (Fudenberg and Tirole, 1991).

Proof of Lemma 1. This has been shown to hold in general in the main text. To see that this

condition is sufficient given a particular form of production function suppose that Q(θ, k) = θ+k

and kL := 0. Suppose further that player i ∈ I is of low ability so that θi = θL. This is

without loss of generality as an analogous result holds when θi = θH . Then, supposing that

the realised state of nature is kL, player i’s score from using the action tL = Q(θL, kL) is

S(Q(θL, kL), tL) = θL. If instead, player i used the action tH = Q(θL, kH), her score would be

S(Q(θL, kL), tH) = θL+kH − δ(θL+kH − θL). Comparing these two scores yields the inequality

θL > θL + kH − δ(θL + kH − θL), which reduces to δ > 1.

Proof of Proposition 2. I first consider the case when Assumption 1 and Assumption 2 hold.

Suppose initially that K = {kL}, which implies the initial strategic form games are those given

in Figure 3. Then, by following the procedure laid out in Subsection 4.1 for deriving Eθ[ui(σ, θi)]

1

2

Q(θH , kL) Q(θH , kH)

Q(θH , kL) 1
2 ,

1
2 1, 0

Q(θH , kH) 0, 1 1
2 ,

1
2

1

2

Q(θL, kL) Q(θL, kH)

Q(θH , kL) 1, 0 1, 0

Q(θH , kH) 0, 1 1, 0

1

2

Q(θH , kL) Q(θH , kH)

Q(θL, kL) 0, 1 1, 0

Q(θL, kH) 0, 1 0, 1

1

2

Q(θL, kL) Q(θL, kH)

Q(θL, kL) 1
2 ,

1
2 1, 0

Q(θL, kH) 0, 1 1
2 ,

1
2

Figure 3: Strategic Form Games when K = {kL}.

for each possible strategy profile σ = (σ1(θ1), σ2(θ2)), I can produce the Bayesian strategic form

of the game. This is illustrated in Figure 4. Note that, to save on notation, I will denote a

strategy profile as, for example, σ = (Q(θH , kL)Q(θL, kH), Q(θH , kH)Q(θL, kL)). This should be

read player 1 sets a target of Q(θH , kL) when θ1 = θH and a target of Q(θL, kH) when θ1 = θL

whilst player 2 sets a target of Q(θH , kH) when θ2 = θH and Q(θL, kL) when θ2 = θL.

18



1

2

Q
(θ
H
,k
L

),Q
(θ
L
,k
L

)
Q

(θ
H
,k
L

),Q
(θ
L
,k
H

)
Q

(θ
H
,k
H

),Q
(θ
L
,k
L

)
Q

(θ
H
,k
H

),Q
(θ
L
,k
H

)

Q
(θ
H
,k
L

),Q
(θ
L
,k
L

)
12
,

12
1
−
µ

(1
−

µ2
),µ

(1
−

µ2
)

1
−

12
(1
−
µ

)
2,

12
(1
−
µ

)
2

1,0

Q
(θ
H
,k
L

),Q
(θ
L
,k
H

)
µ

(1
−

µ2
),1
−
µ

(1
−

µ2
)

12
,

12
µ
,1
−
µ

1
−

12
(1
−
µ

2),
12
(1
−
µ

2)

Q
(θ
H
,k
H

),Q
(θ
L
,k
L

)
12
(1
−
µ

)
2,1
−

12
(1
−
µ

)
2

1
−
µ
,µ

12
,

12
1
−

µ
22
,
µ
22

Q
(θ
H
,k
H

),Q
(θ
L
,k
H

)
0,1

12
(1
−
µ

2),1
−

12
(1
−
µ

2)
µ
22
,1
−

µ
22

12
,

12

F
ig

u
re

4
:

B
ayesia

n
stra

teg
ic

fo
rm

w
h

en
K

=
{k
L }

.

19



I will now show that, for each i ∈ I , the strategy σi(θi) = (Q(θH , kL)Q(θL, kL)) is a best

response to any strategy of player j ∈ I \ {i}. Suppose player j uses the strategy σj(θj) =

(Q(θH , kL)Q(θL, kL)), then, player i’s strategy is a best response if

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ[ui((Q(θH , kL)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1

2
> µ

(
1− µ

2

)
⇔ 1

2

(
1− µ

)2

> 0 (12)

and

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ[ui((Q(θH , kH)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1

2
>

1

2

(
1− µ

)2

⇔ 1 > µ. (13)

Conditions (12) and (13) are satisfied by the assumption that Pr(θi = θH) = µ ∈ (0, 1) and,

hence, player i’s strategy is a best response to that of player j.

Suppose now that player j uses the strategy σj(θj) = (Q(θH , kL)Q(θL, kH)). Player i’s

strategy is a best response to this if

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kH)), θi)]

> Eθ[ui((Q(θH , kL)Q(θL, kH), Q(θH , kL)Q(θL, kH)), θi)]

⇔ 1− µ
(

1− µ

2

)
>

1

2
⇔ 1

2
> µ

(
1− µ

2

)
, (14)

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kH)), θi)]

> Eθ[ui((Q(θH , kH)Q(θL, kL), Q(θH , kL)Q(θL, kH)), θi)]

⇔ 1− µ
(

1− µ

2

)
> 1− µ ⇔ µ2

2
> 0 (15)

and

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kH)), θi)]

> Eθ[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kH)), θi)]

⇔ 1− µ
(

1− µ

2

)
>

1

2

(
1− µ2

)
⇔ 1

2
> 0. (16)

Condition (14) is equivalent to (12) and is, therefore, satisfied. Condition (15) is satisfied for

µ ∈ (0, 1) and (16) is trivially satisfied. Player i’s strategy is thus a best response to player j’s.

Next, suppose that player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kL)). Player i’s
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strategy is a best response to this if

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ[ui((Q(θH , kL)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1− 1

2

(
1− µ

)2

> µ ⇔ 1 > µ2, (17)

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ[ui((Q(θH , kH)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1− 1

2

(
1− µ

)2

>
1

2
⇔ 1 > µ (18)

and

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1− 1

2

(
1− µ

)2

>
µ2

2
⇔ 1

2
+ µ(1− µ) > 0. (19)

Conditions (17)-(19) are satisfied by the assumption of µ ∈ (0, 1).

Finally, suppose that player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kH)). Player i’s

strategy is a best response to this if

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ[ui((Q(θH , kL)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

⇔ 1 > 1− 1

2

(
1− µ2

)
> 0 ⇔ 0 > −1

2

(
1− µ2

)
(20)

and

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ[ui((Q(θH , kH)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

⇔ 1 > 1− µ2

2
> 0 ⇔ 0 > −µ

2

2
. (21)

Conditions (20) and (21) are trivially satisfied for µ ∈ (0, 1).

Therefore, I have shown that, irrespective of player j’s strategy, player i’s best response is

σi(θi) = (Q(θH , kL)Q(θL, kL)). As i, j ∈ I were assigned arbitrarily and the players’ payoffs are

symmetric this implies that the strategy profile σ∗ = (Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL))

is the unique pure strategy Bayes-Nash equilibrium of the game in Figure 4.

Suppose now that K = {kH}. The initial strategic form games for this case are illustrated

21



in Figure 5. Once again I use the procedure laid out in Subsection 4.1 to derive Eθ[ui(σ, θi)]

1

2

Q(θH , kL) Q(θH , kH)

Q(θH , kL) 1
2 ,

1
2 0, 1

Q(θH , kH) 1, 0 1
2 ,

1
2

1
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Q(θL, kL) Q(θL, kH)

Q(θH , kL) 1, 0 0, 1

Q(θH , kH) 1, 0 1, 0

1

2

Q(θH , kL) Q(θH , kH)

Q(θL, kL) 0, 1 0, 1

Q(θL, kH) 1, 0 0, 1

1

2

Q(θL, kL) Q(θL, kH)

Q(θL, kL) 1
2 ,

1
2 0, 1

Q(θL, kH) 1, 0 1
2 ,

1
2

Figure 5: Strategic Form Games when K = {kH}.

for each possible strategy profile. This leads to the Bayesian strategic form of the game that is

illustrated in Figure 6.

Analogously to earlier in the proof, I will now show that, for each i ∈ I , the strategy

σi(θi) = (Q(θH , kH)Q(θL, kH)) is a best response to any strategy of player j ∈ I \{i}. Suppose

first that player j uses the strategy σj(θj) = (Q(θH , kL)Q(θL, kL)) then conditions (20) and

(21) imply that player i’s strategy is a best response. Supposing now that player j uses the

strategy σj(θj) = (Q(θH , kL)Q(θL, kH)) then conditions (17)-(19) imply that player i’s strategy

is a best response. Next, suppose that player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kL))

then conditions (14)-(16) imply that player i’s strategy is a best response. Finally, suppose that

player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kH)) then conditions (12) and (13) imply

that player i’s strategy is a best response.

Therefore, I have shown that, irrespective of player j’s strategy, player i’s best response is

σi(θi) = (Q(θH , kH)Q(θL, kH)). As i, j ∈ I were assigned arbitrarily and the players’ payoffs are

symmetric this implies that the strategy profile σ∗ = (Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH))

is the unique pure strategy Bayes-Nash equilibrium of the game in Figure 6.

I now consider the case when Assumption 1 holds but Assumption 2 does not. It will

suffice to analyse the equilibrium when K = {kL} as the strategic form games when K =

{kH} are unchanged from Figure 5 and, hence, from the Bayesian strategic form in Figure 6.

This implies that the strategy profile σ∗ = (Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH)) remains

the unique pure strategy Bayes-Nash equilibrium. Therefore, supposing that K = {kL}, the

initial strategic form games are illustrated in Figure 7. Relative to Figure 3, the changes in

payoffs from relaxing Assumption 2 occur at the action profiles σ = (Q(θH , kH), Q(θL, kL)) and

σ = (Q(θL, kL), Q(θH , kH)). The Bayesian strategic form that incorporates these changes is

illustrated in Figure 8.

I will now show that, for each i ∈ I , the strategy σi(θi) = (Q(θH , kL)Q(θL, kL)) is a best
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Figure 7: Strategic form games when K = {kL} and Assumption 2 does not hold.

response to any strategy of player j ∈ I \ {i}. Suppose player j uses the strategy σj(θj) =

(Q(θH , kL)Q(θL, kL)), then, player i’s strategy is a best response by conditions (12) and (17),

and if

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1

2
> µ(1− µ). (22)

Condition (22) holds as µ(1 − µ) is a strictly concave function that is maximised at µ∗ = 1/2;

that is, µ∗ = arg maxµ µ(1 − µ). This optimum yields a maximum value V (µ∗) = 1/4 < 1/2.

Suppose now that player j uses the strategy σj(θj) = (Q(θH , kL)Q(θL, kH)) then player i’s

strategy is a best response by conditions (14)-(16). Next, suppose that player j uses the strategy

σj(θj) = (Q(θH , kH)Q(θL, kL)) then player i’s strategy is a best response by conditions (17) and

(18), and if

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1− 1

2

(
1− µ2

)
> µ

(
1− µ

2

)
⇔ 1

2
> µ(1− µ). (23)

Condition (23) is equivalent to condition (22) and, therefore, holds. Finally, suppose that player
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j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kH)) then player i’s strategy is a best response if

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ[ui((Q(θH , kL)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

⇔ 1− µ(1− µ) > 1− 1

2

(
1− µ2

)
⇔ 1

2
> µ

(
1− µ

2

)
, (24)

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ[ui((Q(θH , kH)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

⇔ 1− µ(1− µ) > 1− µ
(

1− µ

2

)
⇔ µ

(
1− µ

2

)
> µ(1− µ) (25)

and

Eθ[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

⇔ 1− µ(1− µ) >
1

2
⇔ 1

2
> µ(1− µ). (26)

Condition (24) holds by (14), condition (25) holds for any µ > 0 and condition (26) holds by

(22).

Therefore, I have shown that, irrespective of player j’s strategy, player i’s best response is

σi(θi) = (Q(θH , kL)Q(θL, kL)). As i, j ∈ I were assigned arbitrarily and the players’ payoffs are

symmetric this implies that the strategy profile σ∗ = (Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL))

is the unique pure strategy Bayes-Nash equilibrium of the game in Figure 8. This completes the

proof of Proposition 2.

Proof of Proposition 3. Given that Assumption 1 and Assumption 2 hold, the supposition that

Pr(k = kL) = Pr(k = 1) implies that the Bayesian strategic form game in Figure 11 yields the

Bayesian strategic form illustrated in Figure 9. The expected payoffs f : (0, 1) → ( 1
2 ,

5
8 ] and

g : (0, 1)→ [ 3
8 ,

1
2 ) given in Figure 9 are defined by

f(µ) :=
1

2
+
µ

2

(
1− µ

)
>

1

2
>

1

2
+
µ

2

(
µ− 1

)
:= g(µ). (27)

I will now show that there does not exist mutually consistent best responses in pure strategies.

That is, there is no pure strategy profile σ = (σi(θi), σj(θj)) for i, j ∈ I with i 6= j such that

player i’s strategy σi(θi) is a best response to player j ∈ I \{i}’s strategy σj(θj) and vice versa.

Suppose first that player j uses the strategy σj(θj) = (Q(θH , kL)Q(θL, kL)), then, player i’s

best response is σi(θi) = (Q(θH , kL)Q(θL, kH)). Suppose now that player j uses the strategy

σj(θj) = (Q(θH , kL)Q(θL, kH)), then, player i’s best response is σi(θi) = (Q(θH , kH)Q(θL, kH)).

Next, suppose that player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kL)), then, player i’s

26
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best response is σi(θi) = (Q(θH , kL)Q(θL, kL)). Finally, suppose that player j uses the strategy

σj(θj) = (Q(θH , kH)Q(θL, kH)), then, player i’s best response is σi(θi) = (Q(θH , kH)Q(θL, kL)).

Therefore, I have shown that, for any Pr(θi = θH) = µ, there are no mutually consistent best

responses in pure strategies and, hence, there are no pure strategy Bayes-Nash equilibria. This

completes the proof of Proposition 3.

Proof of Corollary 1. Given that Assumption 1 holds but Assumption 2 does not, the suppo-

sition that Pr(k = kL) = Pr(k = 1) implies that the Bayesian strategic form game given in

Figure 11 yields the Bayesian strategic form illustrated in Figure 10, where f(µ) and g(µ) are

defined as in (27).

I will now show that, by iterated elimination of weakly dominated strategies, the unique pure

strategy Bayes-Nash equilibrium is σ∗ = (Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH)). That is,

after eliminating strategy profiles in which players employ weakly dominated strategies, the

strategy σi(θi) = (Q(θH , kH)Q(θL, kH)) for i ∈ I is a best response to any strategy of player

j ∈ I \ {i}.
Suppose first that player j uses the strategy σj(θj) = (Q(θH , kL)Q(θL, kL)) then both

σi(θi) = (Q(θH , kH)Q(θL, kL)) and σi(θi) = (Q(θH , kH)Q(θL, kH)) are best responses for player

i. Suppose now that player j uses the strategy σj(θj) = (Q(θH , kL)Q(θL, kH)) then player i’s

unique best response is the strategy σi(θi) = (Q(θH , kH)Q(θL, kH)). Next, suppose that player

j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kL)) then all of player i’s strategies constitute best

responses. Finally, suppose that player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kH)) then

both σi(θi) = (Q(θH , kH)Q(θL, kL)) and σi(θi) = (Q(θH , kH)Q(θL, kH)) are best responses for

player i.

The set of pure strategy Bayes-Nash equilibria is therefore

{(Q(θH , kH)Q(θL, kL), Q(θH , kH)Q(θL, kL)), (Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kL)),

(Q(θH , kH)Q(θL, kL), Q(θH , kH)Q(θL, kH)), (Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH))}.

Note that the strategy σi(θi) = (Q(θH , kH)Q(θL, kL)) is weakly dominated by the strategy

σi(θi) = (Q(θH , kH)Q(θL, kH)) for each i ∈ I . This implies that, by iterated elimination of

weakly dominated strategies, the unique pure strategy Bayes-Nash equilibrium is the strategy

profile σ∗IEoWDS = (Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH)). This completes the proof of

Corollary 1.

Proof of Proposition 4. Suppose each player i ∈ I employs a mixed strategy σ̂(θi) ∈ ∆(T ) that

randomises over her pure strategies with probabilities

Pr[σi(θi) = (Q(θH , kL)Q(θL, kL))] := p ∈ [0, 1],

Pr[σi(θi) = (Q(θH , kL)Q(θL, kH))] := q ∈ [0, 1],

Pr[σi(θi) = (Q(θH , kH)Q(θL, kL))] := r ∈ [0, 1]
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and

Pr[σi(θi) = (Q(θH , kH)Q(θL, kH))] := 1− p− q − r.

Player i then chooses a vector (p, q, r) ∈ [0, 1]3 to make player j ∈ I \ {I} indifferent between

her pure strategies, subject to the constraint that p + q + r ≤ 1. For player j to be indifferent

between her pure strategies the following indifference conditions must hold

Eθ,k[uj((Q(θH , kL)Q(θL, kL), σ̂(θi)), θj)] = Eθ,k[uj((Q(θH , kL)Q(θL, kH), σ̂(θi)), θj)], (28)

Eθ,k[uj((Q(θH , kL)Q(θL, kH), σ̂(θi)), θj)] = Eθ,k[uj((Q(θH , kH)Q(θL, kL), σ̂(θi)), θj)] (29)

and

Eθ,k[uj((Q(θH , kH)Q(θL, kL), σ̂(θi)), θj)] = Eθ,k[uj((Q(θH , kH)Q(θL, kH), σ̂(θi)), θj)]. (30)

The three indifference conditions (28)-(30) are sufficient to solve for the three unknown elements

of the vector (p, q, r). By Figure 9, condition (28) is equivalent to

p

2
+ q

[
1

2
+
µ

2

(
µ− 1

)]
+ r

[
1

2
+
µ

2

(
1− µ

)]
+

1

2

(
1− p− q − r

)
= p

[
1

2
+
µ

2

(
1− µ

)]
+
q

2
+
r

2
+

(
1− p− q − r

)[
1

2
+
µ

2

(
µ− 1

)]
, (31)

whilst condition (29) is satisfied if

p

[
1

2
+
µ

2

(
1− µ

)]
+
q

2
+
r

2
+

(
1− p− q − r

)[
1

2
+
µ

2

(
µ− 1

)]
= p

[
1

2
+
µ

2

(
µ− 1

)]
+
q

2
+
r

2
+

(
1− p− q − r

)[
1

2
+
µ

2

(
1− µ

)]
. (32)

Finally, condition (30) will hold if

p

[
1

2
+
µ

2

(
µ− 1

)]
+
q

2
+
r

2
+

(
1− p− q − r

)[
1

2
+
µ

2

(
1− µ

)]
= q

[
1

2
+
µ

2

(
1− µ

)]
+ r

[
1

2
+
µ

2

(
µ− 1

)]
+

1

2

(
1− p− q − r

)
. (33)

I now suppose that q∗ = r∗ = 0 and demonstrate that this condition is sufficient to identify

a mixed strategy Bayes-Nash equilibrium; that is, q∗ = r∗ = 0 pins down a unique p∗ > 0 that

satisfies (31)-(33). First, substituting q∗ = r∗ = 0 into (31) yields

p

[
1

2
+
µ

2

(
1− µ

)]
− p
[

1

2
+
µ

2

(
µ− 1

)]
+

[
1

2
+
µ

2

(
µ− 1

)]
=

1

2
,

30



which simplifies to

p∗ =
1
2 − [ 1

2 + µ
2 (µ− 1)]

[ 1
2 + µ

2 (1− µ)]− [ 1
2 + µ

2 (µ− 1)]
=

µ
2

(
1− µ)

µ
2 (1− µ) + µ

2 (1− µ)
=

µ(1− µ)

2µ(1− µ)
=

1

2
. (34)

Next, substituting q∗ = r∗ = 0 into (32) yields

2p

[
1

2
+
µ

2

(
1− µ

)]
− 2p

[
1

2
+
µ

2

(
µ− 1

)]
=

[
1

2
+
µ

2

(
1− µ

)]
−
[

1

2
+
µ

2

(
µ− 1

)]
,

which simplifies to

p∗ =
[ 1
2 + µ

2 (1− µ)]− [ 1
2 + µ

2 (µ− 1)]

2[[ 1
2 + µ

2 (1− µ)]− [ 1
2 + µ

2 (µ− 1)]]
=

1

2
. (35)

Finally, substituting q∗ = r∗ = 0 into (33) yields

p

[
1

2
+
µ

2

(
µ− 1

)]
− p
[

1

2
+
µ

2

(
1− µ

)]
+

[
1

2
+
µ

2

(
1− µ

)]
=

1

2
,

which simplifies to

p∗ =
1
2 − [ 1

2 + µ
2 (1− µ)]

[ 1
2 + µ

2 (µ− 1)]− [ 1
2 + µ

2 (1− µ)]
=

µ
2 (µ− 1)

µ
2 (µ− 1) + µ

2 (µ− 1)
=

µ(µ− 1)

2µ(µ− 1)
=

1

2
. (36)

Note that equations (34)-(36) are independent of Pr(θi = θH). Therefore, the vector (p∗, q∗, r∗) =

( 1
2 , 0, 0) makes player j indifferent between her pure strategies for all Pr(θi = θH). As player

i and j are symmetric, and were arbitrarily assigned, this vector constitutes a mixed strategy

Bayes-Nash equilibrium.

This equilibrium is equivalent to each player i ∈ I using the strategy σ̂i(θi) = Ek[Q(θi, k)]

as player i’s expected performance, when Pr(k = kL) = Pr(k = kH), is equal to

Ek[Q(θi, k)] = Pr(k = kL)Q(θi, kL) + Pr(k = kH)Q(θi, kH),

= Pr(k = kL)θi + Pr(k = kH)(θi + kH),

=
θi
2

+
kH
2

(
θi + 1

)
= θi +

kH
2
. (37)

Moreover, the mixed strategy determined by the vector (p∗, q∗, r∗) = (1
2 , 0, 0) is

σ̂(θi) = p∗Q(θi, kL) + (1− p∗ − q∗ − r∗)Q(θi, kH),

=
θi
2

+

(
1− 1

2

)(
θi + kH

)
= θi +

kH
2
. (38)

Hence, as (37) is equivalent to (37), player i’s mixed strategy σ̂i(θi) is equivalent to using

a strategy based upon her expected performance Ek[Q(θi, k)]. I have assumed that Q(θ, k) =

θ + k for exposition, but the result holds for any Q : Θ ×K that satisfies Assumption 1 and

Assumption 2.

I now suppose that p∗ = 0 and demonstrate that this condition is sufficient to identify a
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mixed strategy Bayes-Nash equilibrium; that is, p∗ = 0 pins down a unique q∗ > 0 and r∗ > 0

that satisfy (31)-(33). First, substituting p∗ = 0 into (31) yields

q

[
1

2
+
µ

2

(
µ− 1

)]
+ r

[
1

2
+
µ

2

(
1− µ

)]
+

1

2
− q

2
− r

2

=
q

2
+
r

2
+

[
1

2
+
µ

2

(
µ− 1

)]
− q
[

1

2
+
µ

2

(
µ− 1

)]
− r
[

1

2
+
µ

2

(
µ− 1

)]
. (39)

Next, substituting p∗ = 0 into (32) gives

q

2
+
r

2
+

[
1

2
+
µ

2

(
µ− 1

)]
− q
[

1

2
+
µ

2

(
µ− 1

)]
− r
[

1

2
+
µ

2

(
µ− 1

)]
=
q

2
+
r

2
+

[
1

2
+
µ

2

(
1− µ

)]
− q
[

1

2
+
µ

2

(
1− µ

)]
− r
[

1

2
+
µ

2

(
1− µ

)]
. (40)

Finally, substituting p∗ = 0 into (33) leads to

q

2
+
r

2
+

[
1

2
+
µ

2

(
1− µ

)]
− q
[

1

2
+
µ

2

(
1− µ

)]
− r
[

1

2
+
µ

2

(
1− µ

)]
= q

[
1

2
+
µ

2

(
1− µ

)]
+ r

[
1

2
+
µ

2

(
µ− 1

)]
+

1

2
− q

2
− r

2
. (41)

By simplifying (39), taking common factors, and noting that

r

[
1−

[
1

2
+
µ

2

(
1− µ

)]
−
[

1

2
+
µ

2

(
µ− 1

)]]
= r

[
µ

2

(
µ− 1

)
− µ

2

(
µ− 1

)]
= 0, (42)

I find that

−q
[
1− 2

[
1

2
+
µ

2

(
µ− 1

)]]
+

1

2
−
[

1

2
+
µ

2

(
µ− 1

)]
= 0

and thus

qµ(µ− 1)− µ

2

(
µ− 1

)
= 0 ⇒ q∗ =

µ
2 (µ− 1)

µ(µ− 1)
⇒ q∗ =

1

2
. (43)

Similarly, simplifying (41), taking common factors, and using (42) gives

−q
[
1− 2

[
1

2
+
µ

2

(
1− µ

)]]
+

1

2
−
[

1

2
+
µ

2

(
1− µ

)]
= 0,

which implies

qµ(1− µ)− µ

2

(
1− µ

)
= 0 ⇒ q∗ =

µ
2 (1− µ)

µ(1− µ)
=

1

2
. (44)

Finally, simplifying (40) obtains

[
1

2
+
µ

2

(
µ− 1

)]
− q
[

1

2
+
µ

2

(
µ− 1

)]
− r
[

1

2
+
µ

2

(
µ− 1

)]
=

[
1

2
+
µ

2

(
1− µ

)]
− q
[

1

2
+
µ

2

(
1− µ

)]
− r
[

1

2
+
µ

2

(
1− µ

)]
. (45)
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Since [ 1
2 + µ

2 (1− µ)] > [ 1
2 + µ

2 (µ− 1)] condition (45) is uniquely satisfied by r = 1− q as

[
1

2
+
µ

2

(
µ− 1

)]
− q
[

1

2
+
µ

2

(
µ− 1

)]
− (1− q)

[
1

2
+
µ

2

(
µ− 1

)]
=

[
1

2
+
µ

2

(
1− µ

)]
− q
[

1

2
+
µ

2

(
1− µ

)]
− (1− q)

[
1

2
+
µ

2

(
µ− 1

)]
equals

[
1

2
+
µ

2

(
µ− 1

)]
− q
[

1

2
+
µ

2

(
µ− 1

)]
−
[

1

2
+
µ

2

(
µ− 1

)]
+ q

[
1

2
+
µ

2

(
µ− 1

)]
=

[
1

2
+
µ

2

(
1− µ

)]
− q
[

1

2
+
µ

2

(
1− µ

)]
−
[

1

2
+
µ

2

(
1− µ

)]
+ q

[
1

2
+
µ

2

(
1− µ

)]
, (46)

which simplifies to 0 on both sides. This implies that r∗ = 1 − q∗ = 1 − 1
2 = 1

2 . Note again

that equations (43), (44) and (46) are independent of Pr(θi = θH). Therefore, the vector

(p∗, q∗, r∗) = (0, 1
2 ,

1
2 ) makes player j indifferent between her pure strategies for all Pr(θi = θH).

As player i and j are symmetric, and were arbitrarily assigned, this vector constitutes a mixed

strategy Bayes-Nash equilibrium.

This equilibrium is equivalent to each player i ∈ I using the strategy σ̂i(θi) = Ek[Q(θi, k)]

as the mixed strategy determined by the vector (p∗, q∗, r∗) = (0, 1
2 ,

1
2 ) is

σ̂(θL) = q∗Q(θL, kH) + r∗Q(θL, kL),

=
1

2

(
θL + kH

)
+
θL
2

= θL +
kH
2
. (47)

when player i has low ability, θi = θL, and

σ̂(θH) = q∗Q(θH , kL) + r∗Q(θH , kH),

=
θH
2

+
1

2

(
θH + kH

)
= θH +

kH
2

(48)

when player i has high ability, θi = θH . Hence, as (47) and (48) are equivalent to (37) for a

given realisation of θi, player i’s mixed strategy σ̂i(θi) is equivalent to using a strategy based

upon her expected performance Ek[Q(θi, k)]. This completes the proof of Proposition 4.

Proof of Theorem 1. By following the procedure laid out in Subsection 4.2 I can derive the

players’ expected payoffs Eθ,k[ui(σ, θi)] when there is both uncertainty over the players’ abilities

and over the state of nature. Collating these expected payoffs for each possible strategy profile

σ = (σ1(θ1), σ2(θ2)) leads to the Bayesian strategic form of the game illustrated in Figure 11.

I first show that the pair of inequalities 1− 2λ > µ and µ > 2λ imply that λ < 1/4. Putting

these two inequalities together yields 1−2λ > µ > 2λ, which implies 1−2λ > 2λ. This inequality

then implies that 1 > 4λ and, hence, that 1/4 > λ.

I will now show that these conditions are sufficient for the existence of a pure strategy Bayes-

Nash equilibrium in which, for each i ∈ I , the strategy σi(θi) = (Q(θH , kH)Q(θL, kH)) is a best
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response to any strategy of player j ∈ I \ {i} as in the proof of Proposition 2. Suppose first

that player j uses the strategy σj(θj) = (Q(θH , kL)Q(θL, kL)), then, player i’s strategy is a best

response if

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1− λ > 1

2
⇔ λ <

1

2
, (49)

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1− λ > 1− λ(1− µ)− µ2

2
⇔ µ > 2λ (50)

and

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1− λ > 1

2
− µ

(
λ− µ

2

)
⇔ 1

2

(
1− µ2

)
> λ(1− µ) ⇔ λ <

1

2
. (51)

Condition (50) holds by the postulate of Theorem 1 that 1− 2λ > µ > 2λ. Conditions (49) and

(51) hold by the implications of this postulate, as I showed above that these inequalities imply

λ < 1/4.

Suppose now that player j uses the strategy σj(θj) = (Q(θH , kL)Q(θL, kH)). Player i’s

strategy is a best response to this if

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kH)), θi)]

⇔ 1− 1

2
+ µ

(
1− µ

2
− λ
)
> λ(1− µ) +

µ2

2
⇔ λ <

1

2
, (52)

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kL)Q(θL, kH)), θi)]

⇔ 1− 1

2
+ µ

(
1− µ

2
− λ
)
>

1

2
⇔ λ <

1

2
(53)
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and

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kL), Q(θH , kL)Q(θL, kH)), θi)]

⇔ 1− 1

2
+ µ

(
1− µ

2
− λ
)
> µ− λ(2µ− 1) ⇔ λ <

1

2
. (54)

Conditions (52)-(54) are satisfied by the postulate of Theorem 1 that 1− 2λ > µ > 2λ.

Next, suppose that player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kL)). Player i’s

strategy is a best response to this if

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1− µ
(

1− µ

2

)
− λ(1− µ) > 1− 1

2
+ µ

(
λ− µ

2

)
⇔ λ <

1

4
, (55)

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1− µ
(

1− µ

2

)
− λ(1− µ) > 1− µ+ λ(2µ− 1) ⇔ λ <

1

2
and 2λ < µ (56)

and

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1− µ
(

1− µ

2

)
− λ(1− µ) >

1

2
⇔ λ <

1

2
and µ < 1− 2λ. (57)

Conditions (55)-(57) are satisfied by the postulate of Theorem 1 that 1− 2λ > µ > 2λ.

Finally, suppose that player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kH)). Player i’s

strategy is a best response to this if

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]⇔
1

2
> λ, (58)

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

⇔ 1

2
>

1

2
− µ

(
1− µ

2
− λ

)
⇔ λ <

1

2
(59)
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and

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

⇔ 1

2
> µ

(
1− µ

2

)
+ λ(1− µ) ⇔ λ <

1

2
and µ < 1− 2λ. (60)

As before, Conditions (58)-(60) are satisfied by the postulate of Theorem 1 that 1−2λ > µ > 2λ.

Therefore, I have shown that, irrespective of player j’s strategy, player i’s best response is

σi(θi) = (Q(θH , kH)Q(θL, kH)). As i, j ∈ I were assigned arbitrarily and the players’ payoffs are

symmetric this implies that the strategy profile σ∗ = (Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH))

is the unique pure strategy Bayes-Nash equilibrium of the game in Figure 11. I have also

demonstrated that the postulate of Theorem 1 that 1− 2λ > µ > 2λ is a sufficient condition for

the existence of this equilibrium.

I next show that the pair of inequalities 2λ − 1 > µ and µ > 2(1 − λ) imply that λ > 3/4.

Putting these two inequalities together yields 2λ − 1 > µ > 2(1 − λ), which implies 2λ − 1 >

2(1− λ). This inequality then implies that 4λ > 3 and, hence, that 3/4 < λ.

I will now show that these conditions are sufficient for the existence of a pure strategy Bayes-

Nash equilibrium in which, for each i ∈ I , the strategy σi(θi) = (Q(θH , kL)Q(θL, kL)) is a best

response to any strategy of player j ∈ I \ {i}. Suppose first that player j uses the strategy

σj(θj) = (Q(θH , kL)Q(θL, kL)), then, player i’s strategy is a best response if

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1

2
> 1− λ(1− µ)− µ2

2
⇔ λ >

1

2
and 2λ− 1 > µ, (61)

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1

2
>

1

2
− µ

(
λ− µ

2

)
⇔ λ >

1

2
(62)

and

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1

2
> 1− λ ⇔ λ >

1

2
. (63)

The second condition in (61) holds by the postulate of Theorem 1 that 2λ− 1 > µ > 2(1− λ).

The first condition in (61) and conditions (62) and (63) hold by the implications of this postulate,
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as I showed above that these inequalities imply λ > 3/4.

Suppose now that player j uses the strategy σj(θj) = (Q(θH , kL)Q(θL, kH)). Player i’s

strategy is a best response to this if

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kL)Q(θL, kH)), θi)]

⇔ λ(1− µ) +
µ2

2
>

1

2
⇔ λ >

1

2
and 2λ− 1 > µ, (64)

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kL), Q(θH , kL)Q(θL, kH)), θi)]

⇔ λ(1− µ) +
µ2

2
> µ− λ(2µ− 1) ⇔ λ >

1

2
and µ > 2(1− λ) (65)

and

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kH)), θi)]

⇔ λ(1− µ) +
µ2

2
> 1− 1

2
+ µ

(
1− µ

2
− λ
)
⇔ λ >

3

4
. (66)

Conditions (64)-(66) are satisfied by the postulate of Theorem 1 that 2λ− 1 > µ > 2(1− λ).

Next, suppose that player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kL)). Player i’s

strategy is a best response to this if

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1− 1

2
+ µ

(
λ− µ

2

)
> 1− µ+ λ(2µ− 1) ⇔ λ >

1

2
, (67)

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1− 1

2
+ µ

(
λ− µ

2

)
>

1

2
⇔ λ >

1

2
(68)
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and

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1− 1

2
+ µ

(
λ− µ

2

)
> 1− µ

(
1− µ

2

)
− λ(1− µ) ⇔ λ >

1

2
. (69)

Conditions (67)-(69) are satisfied by the implications of the postulate of Theorem 1 that 2λ−1 >

µ > 2(1− λ).

Finally, suppose that player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kH)). Player i’s

strategy is a best response to this if

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

⇔ λ >
1

2
− µ

(
1− µ

2
− λ

)
⇔ λ >

1

2
(70)

and

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

⇔ λ > µ

(
1− µ

2

)
+ λ(1− µ) ⇔ λ >

1

2
and µ > 2(1− λ). (71)

Conditions (70) and (71) are satisfied by the postulate of Theorem 1 that 2λ−1 > µ > 2(1−λ).

Therefore, I have shown that, irrespective of player j’s strategy, player i’s best response is

σi(θi) = (Q(θH , kL)Q(θL, kL)). As i, j ∈ I were assigned arbitrarily and the players’ payoffs are

symmetric this implies that the strategy profile σ∗ = (Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL))

is the unique pure strategy Bayes-Nash equilibrium of the game in Figure 11. I have also

demonstrated that the postulate of Theorem 1 that 2λ − 1 > µ > 2(1 − λ) is a sufficient

condition for the existence of this equilibrium. This completes the proof of Theorem 1.

Proof of Theorem 2. Relaxing Assumption 2 means that the players’ expected payoffs Eθ,k[ui(σ, θi)]

change relative to those in Figure 11. The resulting expected payoffs are expressed in Fig-

ure 12. In contrast to Theorem 1, I first show that 1/2 > λ > 0 is sufficient for the

existence of a pure strategy Bayes-Nash equilibrium in which, for each i ∈ I , the strategy

σi(θi) = (Q(θH , kH)Q(θL, kH)) is a best response to any strategy of player j ∈ I \ {i}. Note

that this condition is equivalent to Pr(k = kH) > Pr(k = kL). Suppose first that player j uses
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the strategy σj(θj) = (Q(θH , kL)Q(θL, kL)), then, player i’s strategy is a best response if

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1− λ(1− µ(1− µ)) >
1

2
⇔ 1

2
> λ(1− µ(1− µ)) ⇔ 1

2
> λ (72)

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1− λ(1− µ(1− µ)) > 1− λ(1− µ)− µ2

2
⇔ µ2

2
> λµ2 ⇔ 1

2
> λ (73)

and

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1− λ(1− µ(1− µ)) > 1− 1

2
+ µ2

(
1

2
− λ
)
⇔ 1

2

(
1− µ2

)
> λ(1− µ2) ⇒ 1

2
> λ. (74)

Conditions (72)-(74) are satisfied by the postulate of Theorem 2 that 1
2 > λ.

Suppose now that player j uses the strategy σj(θj) = (Q(θH , kL)Q(θL, kH)). The conditions

required for player i’s strategy to be a best response are unchanged from the proof of Theorem 1

and are given by (52)-(54). These conditions require that 1
2 > λ, which holds by the postulate

of Theorem 2.

Next, suppose now that player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kL)). Player i’s

strategy is a best response to this if

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1

2
− λ+ µ

(
µ

2
+ 2λ− µλ− 1

)
> −µ2

(
1

2
− λ
)
⇔ 1

2
> λ, (75)

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1− λ+ µ

(
µ

2
+ 2λ− µλ− 1

)
> 1− µ+ λ(2µ− 1) ⇔ µ2

2
> λµ2 ⇔ 1

2
> λ (76)
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and

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1− λ+ µ

(
µ

2
+ 2λ− µλ− 1

)
>

1

2
⇔ 1

2
+ µ

(
µ

2
+ 2λ− µλ− 1

)
> λ ⇔ 1

2
> λ. (77)

Conditions (75)-(77) are satisfied by the postulate of Theorem 2 that 1
2 > λ.

Finally, suppose now that player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kH)). Player

i’s strategy is a best response to this if

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

⇔ 1

2
> λ(1− µ(1− µ)) ⇔ 1

2
> λ, (78)

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

⇔ 1

2
>

1

2
− µ

(
1− µ

2
− λ

)
⇔ 1

2
> λ (79)

and

Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

⇔ 1

2
> λ− µ

(
µ

2
+ 2λ− µλ− 1

)
⇔ 1

2
> λ. (80)

Conditions (78)-(80) are satisfied by the postulate of Theorem 2 that 1
2 > λ.

Therefore, I have shown that, irrespective of player j’s strategy, player i’s best response is

σi(θi) = (Q(θH , kH)Q(θL, kH)). As i, j ∈ I were assigned arbitrarily and the players’ payoffs are

symmetric this implies that the strategy profile σ∗ = (Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH))

is the unique pure strategy Bayes-Nash equilibrium of the game in Figure 12 when Pr(k = kH) >

Pr(k = kL).

I will now show, as in Theorem 1, that 2λ − 1 > µ > 2(1 − λ) is sufficient for the existence

of a pure strategy Bayes-Nash equilibrium in which, for each i ∈ I , the strategy σi(θi) =

(Q(θH , kL)Q(θL, kL)) is a best response to any strategy of player j ∈ I \ {i}. Suppose first

that player j uses the strategy σj(θj) = (Q(θH , kL)Q(θL, kL)), then, player i’s strategy is a best
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response if

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1

2
> 1− λ(1− µ)− µ2

2
⇔ λ >

1

2
and 2λ− 1 > µ, (81)

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1

2
> 1− 1

2
+ µ2

(
1

2
− λ

)
⇔ 0 > µ2

(
1

2
− λ

)
⇔ λ >

1

2
(82)

and

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kL)Q(θL, kL)), θi)]

⇔ 1

2
> 1− λ(1− µ(1− µ)) ⇔ λ(1− µ(1− µ)) >

1

2
⇔ λ >

2

3
. (83)

Conditions (81)-(83) are satisfied by the postulate that 2λ− 1 > µ > 2(1− λ) as I have shown

that this implies that λ > 3
4 .

Suppose now that player j uses the strategy σj(θj) = (Q(θH , kL)Q(θL, kH)). The conditions

required for player i’s strategy to be a best response are unchanged from the proof of Theorem 1

and are given by (64)-(66). These conditions require that 2λ − 1 > µ > 2(1 − λ), which holds

by the postulate of Theorem 2.

Next, suppose now that player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kL)). Player i’s

strategy is a best response to this if

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1

2
− µ2

(
1

2
− λ
)
> 1− µ+ λ(2µ− 1) ⇔ µ− µ2

(
1

2
− λ
)
>

1

2
+ λ(2µ− 1) ⇔ λ >

1

2
,

(84)

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1

2
− µ2

(
1

2
− λ
)
>

1

2
⇔ 0 > µ2

(
1

2
− λ

)
⇔ λ >

1

2
(85)
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and

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kL)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kL)), θi)]

⇔ 1

2
− µ2

(
1

2
− λ
)
> 1− λ+ µ

(
µ

2
+ 2λ− µλ− 1

)
⇔ λ >

1

2
. (86)

Conditions (84)-(86) are satisfied by the postulate of Theorem 2 that 2λ− 1 > µ > 2(1− λ).

Finally, suppose now that player j uses the strategy σj(θj) = (Q(θH , kH)Q(θL, kH)). Player

i’s strategy is a best response to this if

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

⇔ λ(1− µ(1− µ)) >
1

2
− µ

(
1− 1

2
− λ
)
⇔ λ >

1

2
, (87)

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kL)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

⇔ λ(1− µ(1− µ)) > λ− µ
(
µ

2
+ 2λ− µλ− 1

)
⇔ λ >

1

2
and µ > 2(1− λ) (88)

and

Eθ,k[ui((Q(θH , kL)Q(θL, kL), Q(θH , kH)Q(θL, kH)), θi)]

> Eθ,k[ui((Q(θH , kH)Q(θL, kH), Q(θH , kH)Q(θL, kH)), θi)]

⇔ λ(1− µ(1− µ)) >
1

2
⇔ λ >

2

3
. (89)

Conditions (86)-(89) are satisfied by the postulate of Theorem 2 that 2λ− 1 > µ > 2(1− λ).

Therefore, I have shown that, irrespective of player j’s strategy, player i’s best response is

σi(θi) = (Q(θH , kL)Q(θL, kL)). As i, j ∈ I were assigned arbitrarily and the players’ payoffs are

symmetric this implies that the strategy profile σ∗ = (Q(θH , kL)Q(θL, kL), Q(θH , kL)Q(θL, kL))

is the unique pure strategy Bayes-Nash equilibrium of the game in Figure 12. I have also

demonstrated that the postulate of Theorem 1 that 2λ − 1 > µ > 2(1 − λ) is a sufficient

condition for the existence of this equilibrium. This completes the proof of Theorem 2.

Proof of Proposition 5. Under Assumption 1 and Assumption 2 the strategic form of the game

when θ1 = θ2 is common knowledge is given in Figure 13.
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1

2

Q(θ2, kL) Q(θ2, kH)

Q(θ1, kL) 1
2 ,

1
2 λ, 1− λ

Q(θ1, kH) 1− λ, λ 1
2 ,

1
2

Figure 13: Strategic form when types are common knowledge and θ1 = θ2.

It is clear from Figure 13 that the value of Pr(k = kL) = λ is salient in the determination

of equilibrium. Therefore, I will consider two distinct cases. Suppose first that Pr(k = kL) >

Pr(k = kH), then, each player i ∈ I has a dominant strategy in Q(θi, kL) as

Ek[ui((Q(θi, kL), Q(θj , kL)), θi)] > Ek[ui((Q(θi, kH), Q(θj , kL)), θi)]

and

Ek[ui((Q(θi, kL), Q(θj , kH)), θi)] > Ek[ui((Q(θi, kH), Q(θj , kH)), θi)].

The dominance solvable Nash equilibrium is, therefore, σ∗ = (Q(θ1, kL), Q(θ2, kL)).

Next, suppose that Pr(k = kH) > Pr(k = kL), then, each player i ∈ I has a dominant

strategy in Q(θi, kH) as

Ek[ui((Q(θi, kH), Q(θj , kL)), θi)] > Ek[ui((Q(θi, kL), Q(θj , kL)), θi)]

and

Ek[ui((Q(θi, kH), Q(θj , kH)), θi)] > Ek[ui((Q(θi, kL), Q(θj , kH)), θi)].

The dominance solvable Nash equilibrium is, therefore, σ∗ = (Q(θ1, kH), Q(θ2, kH)). This com-

pletes the proof of Proposition 5.

Proof of Proposition 6. Recall that Pr(k = kL) = λ. Then, under Assumption 1 and Assump-

tion 2, the strategic form when θ1 = θH > θL = θL is common knowledge is given in Figure 14.

1

2

Q(θ2, kL) Q(θ2, kH)

Q(θ1, kL) 1, 0 λ, 1− λ

Q(θ1, kH) 1− λ, λ 1, 0

Figure 14: Strategic form when types are common knowledge and θ1 > θ2.
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Hence, there are no equilibria in pure strategies and so I look for equilibria in mixed strategies;

that is, a strategy σ̂i(θi) ∈ ∆(T ) for each i ∈ I such that σ̂ = (σ̂1, σ̂2) constitutes a Nash

equilibrium. Suppose that Pr[σ1(θ1) = Q(θ1, kL)] := p ∈ (0, 1) and Pr[σ2(θ2) = Q(θ2, kL)] :=

q ∈ (0, 1). These mixing probabilities are is illustrated in Figure 15. A mixed strategy of player 1

1

2

Q(θ2, kL) (q) Q(θ2, kH) (1− q)

Q(θ1, kL) (p) 1, 0 λ, 1− λ

Q(θ1, kH) (1− p) 1− λ, λ 1, 0

Figure 15: Mixing probabilities when types are common knowledge and θ1 > θ2.

will constitute part of a mixed strategy Nash equilibrium if it makes player 2 indifferent between

her pure strategies. Hence, player 1 will choose p such that

Ek[u2((σ̂(θ1), Q(θ2, kL)), θ2)] = Ek[u2((σ̂(θ1), Q(θ2, kL)), θ2)]. (90)

Condition (90) is equivalent to

p · 0 + (1− p) · λ = p · (1− λ) + (1− p) · 0 ⇒ p∗ = Pr(k = kL).

Analogously, a mixed strategy of player 2 will constitute part of a mixed strategy Nash equilib-

rium if it makes player 1 indifferent between her pure strategies. Hence, player 2 will choose q

such that

Ek[u1((Q(θ1, kL), σ̂(θ2)), θ1)] = Ek[u1((Q(θ1, kH), σ̂(θ2)), θ1)]. (91)

Condition (91) is equivalent to

q · 1 + (1− q) · λ = q · (1− λ) + (1− q) · 1 ⇒ q∗ = 1− Pr(k = kL) = Pr(k = kH).

The mixed strategy Nash equilibrium is therefore σ̂∗ = (Pr(k = kL)Q(θ1, kL),Pr(k = kH)Q(θ2, kL)).

This completes the proof of Proposition 6.

Proof of Proposition 8. To prove this result I will focus on symmetric equilibria in which each

player uses the same strategy. Before demonstrating that this result holds for all σi(θi) ∈ T ,

I will analyse the case when σi(θi) ∈ {θi − γL, θi, θi + γH} and then extend my analysis to the

continuum case. Throughout the proof I will assume that Pr(k = kL) = 1, which is without loss

of generality as analogous results hold when Pr(k = kL) = 0.

The first case I will consider is when γ := γ
i

= γi = γ
j

= γj > 0 for all i, j ∈ I . For
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notational convenience I will label each strategy as

σ1
i (θi) = θi,

σ2
i (θi) = θi − γ,

σ3
i (θi) = θi + γ.

I will now show that σ1
i (θi) is a dominant strategy for each player i ∈ I . Suppose first that

this is true, then, the strategy profile σ1 = (σ1
1(θ1), . . . , σ1

N (θN ) is the unique pure strategy

Bayes-Nash equilibrium. At this strategy profile each player i has the expected payoff

Eθ[ui(σ1, θi)] =

∫
Θ−i

Pr

(
S(Q(θi, kL), σ1

i (θi) > S(Q(θj , kL), σ1
j (θj)) ∀ j 6= i

)
dF(θ−i)

= Pr(θi > θj ∀ j 6= i) = (F(θi))
N−1, (92)

which is equal to the second highest order statistic of the distribution of the players’ abilities.

Player i’s expected probability of winning the contest is, therefore, equal to the probability that

the N − 1 competitors she faces each have a lower ability than she has. I will show that player i

has no incentive to deviate from this equilibrium. If she deviates to σ2
i (θi) her expected payoff

is

Eθ[ui((σ2
i (θi), σ

1 \ {σi(θi)}), θi)] = Pr(θi − γ > θj ∀ j 6= i) = (F(θi − γ))N−1, (93)

where σ1 \ {σi(θi)} = (σ1
1(θ1), . . . , σ1

i−1(θi−1), σ1
i+1(θi+1), . . . , σ1

N (θN ). Whilst, if she deviates to

σ3
i (θi) her expected payoff is

Eθ[ui((σ3
i (θi), σ

1 \ {σi(θi)}), θi)] = Pr(θi + γ + δ(θi + γ − θi) > θj ∀ j 6= i)

= Pr(θi − γ(δ − 1) > θj ∀ j 6= i) = (F(θi − γ(δ − 1)))N−1. (94)

Equations (92)-(94) are consequences of the properties of the scoring rule (2). Comparing these

expected payoffs shows that there is no profitable deviation as

F(θi) > F(θi − γ(δ − 1)) > F(θi − γ). (95)

Condition (95) holds because F is nondecreasing by definition, γ > 0 by construction and δ > 1

by Lemma 1. To see why this result holds for any σi(θi) ∈ [θi − γ, θi + γ] consider that for any

β1, β2 ∈ (0, 1) I have, irrespective of whether β1 = β2 or β1 6= β2,

F(θi) > F(θi − β1γ(δ − 1)) and F(θi) > F(θi − β2γ).

In fact, a condition analogous to (95) will hold for any β1+β2

β1 > δ > 1, but this is not necessary

for my result.

I now show that there exists a profitable deviation for player i when all her competitors use

the strategy σ2
j (θj) for j 6= i. Suppose that the strategy profile σ2 is a Bayes-Nash equilibrium.
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Then, by following similar methods as the derivation of (92), I find that every player has an

expected payoff of (F(θi))
N−1. If player i deviates to the strategy σ1

i (θi) she obtains an expected

payoff of

Eθ[ui((σ1
i (θi), σ

2 \ {σi(θi)}), θi)] = Pr(θi > θj − γ ∀ j 6= i)

= Pr(θi + γ > θj ∀ j 6= i) = (F(θi + γ))N−1,

which I derive by following similar methods to (93). Therefore, at this strategy profile, player i

has an incentive to deviate to the strategy σ1
i (θi) as

F(θi + γ) > F(θi). (96)

Finally, I show that there exists a profitable deviation for player i when all her competitors use

the strategy σ3
j (θj) for j 6= i. Suppose that the strategy profile σ3 is a Bayes-Nash equilibrium.

Once again, each player has an expected payoff of (F(θi))
N−1. If player i deviates to the strategy

σ1
i (θi) she obtains an expected payoff of

Eθ[ui((σ1
i (θi), σ

3 \ {σi(θi)}), θi)] = Pr(θi > θj − γ(δ − 1) ∀ j 6= i)

= Pr(θi + γ(δ − 1) > θj ∀ j 6= i) = (F(θi + γ(δ − 1)))N−1,

which I derive by following similar methods to (94). At this strategy profile player i has an

incentive to deviate to the strategy σ1
i (θi) as

F(θi + γ(δ − 1)) > F(θi). (97)

As before, I can show that this can be generalised to the continuum strategy space by introducing

β1 and β2. In this case, (96) and (97) become F(θi+β1γ) > F(θi) and F(θi+β2γ(δ−1)) > F(θi),

respectively.

I have shown that, since there is an incentive to deviate for any strategy other than σ1
i (θi) for

each i ∈ I , this strategy constitutes a dominant strategy. The strategy profile σ1 is, therefore,

the unique dominance solvable pure strategy Bayes-Nash equilibrium when γ := γ
i

= γi = γ
j

=

γj > 0 .

I now consider the case when γi > γ
i
> 0 for each i ∈ I in addition to γi 6= γj and γ

i
6= γ

j

for i 6= j ∈ I . For this more general setting I label the strategies

σ̃1
i (θi) = θi,

σ̃2
i (θi) = θi − γi,

σ̃3
i (θi) = θi + γi.

As in the first half of the proof, I first assume that the strategy profile σ̃1 is the unique pure

strategy Bayes-Nash equilibrium and demonstrate that player i has no incentive to deviate. At

this strategy profile each player i ∈ I has, analogously to (92), an expected payoff of (F(θi))
N−1.
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If she now deviates to σ̃2
i (θi) she obtains an expected payoff of (F(θi − γi))

N−1. Whilst, if she

deviates to σ̃3
i (θi), her expected payoff is (F(θi − γi(δ − 1)))N−1. Therefore, player i has no

incentive to deviate from the proposed equilibrium strategy profile σ̃1 as

F(θi) > F(θi − γi) and F(θi) > F(θi − γi(δ − 1)).

Suppose instead that the strategy profile σ̃2 is the Bayes-Nash equilibrium. In this case

player i has an expected payoff of

Eθ[ui(σ̃2, θi)] = Pr(θi − γi > θj − γj ∀ j 6= i) = Pr(θi − γi + γ
j
> θj ∀ j 6= i)

= F(θi − γi + γ
1
) · · · F(θi − γi + γ

i−1
)F(θi − γi + γ

i+1
) · · · F(θi − γi + γ

N
).

If she deviates to σ̃1
i (θi) she can obtain an expected payoff of

Eθ[ui((σ̃1
i (θi), σ̃

2 \ {σi(θi)}), θi)]

= Pr(θi > θj − γj ∀ j 6= i) = Pr(θi + γ
j
> θj ∀ j 6= i)

= F(θi + γ
1
) · · · F(θi + γ

i−1
)F(θi + γ

i+1
) · · · F(θi + γ

N
).

This deviation is profitable as

F(θi + γ
1
) · · · F(θi + γ

i−1
)F(θi + γ

i+1
) · · · F(θi + γ

N
)

> F(θi − γi + γ
1
) · · · F(θi − γi + γ

i−1
)F(θi − γi + γ

i+1
) · · · F(θi − γi + γ

N
). (98)

Finally, suppose that the strategy profile σ̃3 is the Bayes-Nash equilibrium. In this case player

i has an expected payoff of

Eθ[ui(σ̃3, θi)]

= Pr(θi − γi(δ − 1) > θj − γj(δ − 1) ∀ j 6= i) = Pr(θi − (γ
i
− γ

j
)(δ − 1) > θj ∀ j 6= i)

= F(θi − (γ
i
− γ

1
)(δ − 1)) · · · F(θi − (γ

i
− γ

i−1
)(δ − 1))×

×F(θi − (γ
i
− γ

i+1
)(δ − 1)) · · · F(θi − (γ

i
− γ

N
)(δ − 1)).

If she deviates to σ̃1
i (θi) she can obtain an expected payoff of

Eθ[ui((σ̃1
i (θi), σ̃

3 \ {σi(θi)}), θi)]

= Pr(θi > θj − γj(δ − 1) ∀ j 6= i) = Pr(θi + γ
j
(δ − 1) > θj ∀ j 6= i)

= F(θi + γ
1
(δ − 1)) · · · F(θi + γ

i−1
(δ − 1))F(θi + γ

i+1
(δ − 1)) · · · F(θi + γ

N
(δ − 1)).
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This deviation is profitable as

F(θi + γ
1
(δ − 1)) · · · F(θi + γ

i−1
(δ − 1))F(θi + γ

i+1
(δ − 1)) · · · F(θi + γ

N
(δ − 1))

>

F(θi − (γ
i
− γ

1
)(δ − 1)) · · · F(θi − (γ

i
− γ

i−1
)(δ − 1))×

×F(θi − (γ
i
− γ

i+1
)(δ − 1)) · · · F(θi − (γ

i
− γ

N
)(δ − 1)). (99)

I have shown that, since there is an incentive to deviate for any strategy other than σ̃1
i (θi) for

each i ∈ I , this strategy constitutes a dominant strategy. The strategy profile σ̃1 is, therefore,

the unique dominance solvable pure strategy Bayes-Nash equilibrium when γi > γ
i
> 0 for each

i ∈ I in addition to γi 6= γj and γ
i
6= γ

j
for i 6= j ∈ I . As I have considered strategies on the

bounds of the strategy space, it is clear that conditions (98) and (99) will hold for any strategy

σi(θi) ∈ int(T ) and, hence, the strategy σi(θi) = θi will always constitute a dominant strategy.

This completes the proof of Proposition 8.

Proof of Proposition 9. I begin by deriving the two key conditions highlighted in the main text:

(9) and (10). I will then prove the result in Example 1. First, I will show, in a manner akin to

the proof of Proposition 8, that each player has a dominant strategy. Given that there are now

two states of nature each player’s expected payoff is

Eθ,k[ui(σ, θi)]

=
∑
k∈K

∫
Θ−i

Pr

(
S(Q(θi, kL), σi(θi) > S(Q(θj , kL), σj(θj)) ∀ j 6= i

)
ρ(k)dF(θ−i).

Again, to simplify notation, I will label player i’s strategies as

σ′i(θi) = Q(θi, kL) and σ′′i (θi) = Q(θi, kH).

Suppose first that σ′ = (σ′1(θ1), . . . , σ′N (θN )) is a Bayes-Nash equilibrium. Then, in this conjec-

tured equilibrium, each player has an expected payoff of

Eθ,k[ui(σ
′, θi)]

= Pr(k = kL) Pr(θi > θj ∀ j 6= i) + Pr(k = kH) Pr(θi > θj ∀ j 6= i) = (F(θi))
N−1, (100)

as Pr(k = kH) = 1 − Pr(k = kL). Now consider that player i deviates to σ′′i (θi), her expected

payoff becomes

Eθ,k[ui((σ
′′
i (θi), σ

′ \ {σi(θi)), θi)]

= Pr(k = kL) Pr(θi − kH(δ − 1) > θj ∀ j 6= i) + Pr(k = kH) Pr(θi + kH > θj ∀ j 6= i)

= Pr(k = kL)(F(θi − kH(δ − 1)))N−1 + Pr(k = kH)(F(θi + kH))N−1. (101)
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Comparing (100) and (101) provides the condition for there to be no profitable deviation, which

is (9) in the main text,

Eθ,k[ui(σ
′, θi)] = (F(θi))

N−1 >

Pr(k = kL)(F(θi − kH(δ − 1)))N−1 + Pr(k = kH)(F(θi + kH))N−1

= Eθ,k[ui((σ
′′
i (θi), σ

′ \ {σi(θi)}), θi)]. (102)

Suppose instead that σ′′ = (σ′′1 (θ1), . . . , σ′′N (θN )) is a Bayes-Nash equilibrium. Then, as in (100),

each player has an expected payoff of

Eθ,k[ui(σ
′′, θi)]

= Pr(k = kL) Pr(θi > θj ∀ j 6= i) + Pr(k = kH) Pr(θi > θj ∀ j 6= i) = (F(θi))
N−1. (103)

Now consider a deviation by player i to σ′i(θi). This deviation yields her an expected payoff of

Eθ,k[ui((σ
′
i(θi), σ

′′ \ {σi(θi)), θi)]

= Pr(k = kL) Pr(θi + kH(δ − 1) > θj ∀ j 6= i) + Pr(k = kH) · Pr.(θi − kH > θj ∀ j 6= i).

= Pr(k = kL)(F(θi + kH(δ − 1)))N−1 + Pr(k = kH)(F(θi − kH))N−1. (104)

Comparing (103) and (104) provides the condition for there to be a profitable deviation, which

is (10) in the main text,

Eθ,k[ui((σ
′
i(θi), σ

′′ \ {σi(θi)}), θi)]

= Pr(k = kL)(F(θi + kH(δ − 1)))N−1 + Pr(k = kH)(F(θi − kH))N−1

> (F(θi))
N−1 = Eθ,k[ui(σ

′′, θi)]. (105)

Conditions (102) and (105) are difficult to analyse in this general form as they depend on several

relatively complicated objects. As such, to yield more tractable expressions, I will employ the

conditions of Example 1 to simplify these terms. The assumption that there are two players

implies that N − 1 = 1, whilst the assumption of a uniform distribution of the players’ abilities

over the unit interval implies that F(x) = x. These assumptions imply that (100) and (103)

become

Eθ,k[ui(σ
′, θi)] = Eθ,k[ui(σ

′′, θi)] = θi. (106)

Imposing these assumptions on (101) yields

Eθ,k[ui((σ
′′
i (θi), σ

′ \ {σi(θi)), θi)] = λ · F (θi − kH(δ − 1)) + (1− λ) · F (θi + kH),

= λ

∫ θi−kH(δ−1)

0

dθj + (1− λ)

∫ θi+kH

0

dθj ,

= θi + kH(1− λδ). (107)
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Finally, applied to (104), these assumptions lead to

Eθ,k[ui((σ
′
i(θi), σ

′′ \ {σi(θi)), θi)] = λ · F (θi + kH(δ − 1)) + (1− λ) · F (θi − kH),

= λ

∫ θi+kH(δ−1)

0

dθj + (1− λ)

∫ θi−kH

0

dθj ,

= θi − kH(1− λδ). (108)

I can now express (102) in this more tractable form to determine the condition under which

player i will not have a profitable deviation from the strategy profile σ′. This condition is

θi > θi + kH(1− λδ) ⇔ δ >
1

Pr(k = kL)
,

which leads to the pure strategy Bayes-Nash equilibrium illustrated in Figure 16.

1

2

Q(θ2, kL) Q(θ2, kH)

Q(θ1, kL) θ1, θ2 θ1 − kH(1− λδ), θ2 + kH(1− λδ)

Q(θ1, kH) θ1 + kH(1− λδ), θ2 − kH(1− λδ) θ1, θ2

Figure 16: Equilibrium when δ > 1
λ .

Analogously, (105), the condition for player i to have a profitable deviation from the strategy

profile σ′′ is

θi > θi − kH(1− λδ) ⇔ δ <
1

Pr(k = kL)
,

which leads to the pure strategy Bayes-Nash equilibrium illustrated in Figure 17.

1

2

Q(θ2, kL) Q(θ2, kH)

Q(θ1, kL) θ1, θ2 θ1 − kH(1− λδ), θ2 + kH(1− λδ)

Q(θ1, kH) θ1 + kH(1− λδ), θ2 − kH(1− λδ) θ1, θ2

Figure 17: Equilibrium when δ < 1
λ .

Therefore, I have shown that, under these simplifying assumptions, the condition required for

determining the pure strategy Bayes-Nash equilibrium is the size of the probability of the neutral
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state relative to the size of the discount applied to negative deviations from target. Moreover,

by Wilson (1971) since each case displays an odd number of equilibria, I can conclude that there

are no non-degenerate mixed strategy equilibria. This completes the proof of Proposition 9 and

Example 1.
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