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Abstract

This paper studies large elections with costly information acquisition in a general model
that allows for conflict of interest between voters and for supermajority rules. Generically, there
exists a cursed limit equilibrium that corresponds to voting according to the prior. Only when
the cost of information is “high”, a Downsian paradox of voting prevails and, generically, in
all limit equilibria, the same outcome is elected in each state. When the cost of information is
“low”, non-constant limit equilibria are either utilitarian or information is ‘too cheap’ to protect
the minority interests and the limit outcome is utilitarian with probability zero. When the cost
of information is “intermediate”, the limit equilibria with maximal information acquisition and
the entailed welfare can be described by a generalization of the product logarithm function as a
function of the primitives of the model. This allows for rich comparative statics: more conflict
of interest between voters increases information acquisition (’competition effect’), but reduces
utilitarian welfare; voter groups with a stronger ideology have more voting power; more con-
sensus among voters can reduce the voters’ welfare. Looking beyond utilitarianism, the paper
characterizes the social welfare functions that are implementable by varying information cost;
thereby voting with costly information is related to specific axioms of social choice.

Political elections face at least two significant challenges: First, typically voting is costly for
voters and even more so informed voting. As a consequence, elections involve a free-rider problem.
Second, voters have a conflicting interest such that the election has to screen voters for efficient
decision-making. This paper studies a setup in which both problems are present:1voters preferences
depend on unknown information (‘the state’), the preferences of voters are conflicting when the
state is known, and information about the state can be acquired at a cost. The model generalizes
Martinelli [2006], most importantly by allowing for supermajority rules and a conflict of interest of
voters. More precisely, voters are separated into two groups with opposing preferences when the
state is known, a ‘majority group’ and a ‘minority group’.

We show that ‘information is power’: the more information a group of voters acquired, the more
likely the election outcome is the one preferred by the group (Lemma 4). We relate the amount of
information acquired by the groups to the primitives of the model and define a measure of ‘voting
power’ in terms of the primitives.

We characterize all limit equilibria of the model. When the cost of information is ‘high’, a variant
of the Downsian paradox of voting prevails: voters acquire so few information such that difference in
vote shares of any given alternative is small across all states. We show that as a consequence, voters

∗I am grateful to my advisor Stephan Lauermann for continual guidance. This work was supported by a grant
from the CRC TR224. This draft is very preliminary and very incomplete. Comments and suggestions are welcome.
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learn almost nothing about the state from conditioning on the election being tied. Generically, for
any equilibrium sequence, the same outcome is elected with probability 1 in each state (Corollary
2) are equlibria are not welfare-efficient. The first main result of this paper is a weak converse:
there can exist equilibrium sequences that solve both the free-rider problem as well as the screening
problem partially when cost is“intermediate”, and fully when cost is“low” (Theorem 3, Corollary 1
and Theorem 4). However, we also show that when the cost of information is“low”, voting power
is non-linear in intensities. As a consequence, the following scenario occurs: the utilitarian outcome
is the one preferred by the minority group g; however, the amount of information acquired by the
majority group exceeds the amount of information acquired by the minority group. Therefore, we
show that in any non-Downsian equilibrium, the voting outcome is the one preferred by the majority
group with probability close to 1. Information is ‘too cheap’ to protect minority interests (Theorem
4).

As the second main result, we uncover a correspondence between limit equilibria when the cost
of information are intermediate and a class of transcendental equations. Three hundred years ago,
Lambert and Euler studied the equation

zez = ν. (1)

The inverse of the function on the left hand side of (1) is called the product logarithm or the
Lambert-W function and denoted W0

2. To my knowledge, this paper is the first to discover the
Lambert function in an application in economics. The Lambert W -function appears in many physical
and mathematical problems, see for example the survey of Corless et al. [1996]3 and possesses many
known useful properties.4 When the cost of information is “intermediate”, there exist equilibria with
substantial information acquisition and their unique limit can be described by generalisations of the
Lambert W -function (Theorem 2). This explicit description allows for rich comparative statics.
To do so, we show that we can consider the best response function as a function in the margins of
victory in each state. Intuitively, this is, because the margins of victory determine the probability
that a single voter decides the election in each state, and these probabilities pin down the best
response. The possibility of deciding the election incentivizes voters to acquire information. Since,
uninformed citizen vote in the same way in each state, differences in the margin of victory across
states are a function of the information acquired. The fixed point equation of the best response
equates the difference in the margin of victory with a function of the information acquired by the
voters. We rewrite the limit fixed point equation into an equation that generalizes the Lambert
equation (1) in two main steps: Let 2n+ 1 be the size of the electorate. First, for any state ω and
any margin of victory |qω− 1

2 |, the probability that a single vote decides the election is the probability
that the binomial distribution B(2n, qω) takes the value n. We use the local version of the central
limit theorem to express the limit of this probability in terms of the density of the standard normal
distribution. The solution to the voters’ maximization problem shows how the probabilities that a
single vote is decisive in each state, translate into information acquisition. This way, we arrive at an
explicit description for the aggregate information acquired by voters as a function of the margins of
victory, and hence at a description of the left-hand side of the fixed point equation as a function of
the margins of victory. Second, we show that the expected margin of victory has to be zero in each

1Similarly, Krishna and Morgan [2011] and Krishna and Morgan [2015] study a setup in which both problems
are present. Two main differences are that in their model voting and not information is costly, and preferences do
not depend on beliefs about the state. So, inherently, there is no information aggregation problem. We discuss the
relation to models with voting cost in Section 7.

2More precisely, W0 is the principal branch of the inverse relation of the function on the left-hand side of (1).
However, we only consider real numbers z ≥ 0 such that the left-hand side is strictly increasing and the inverse is a
well-defined function.

3The Lambert W -function e.g. appears as a solution to a type of one-dimensional Schroedinger equation, in
connection to the distribution of prime numbers or in models of enzyme kinetics.

4E.g. the product logarithm is approximated by log(ν)− log(log(ν)) ≤W0(ν) ≤ log(ν). We have derived properties
of the generalized product logarithm functions that appear in the voting setting, but have not included them in this
paper: e.g. the m-th derivatives can be described recursively by a system of partial differential equations.
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state in the limit of any equilibrium sequence with substantial information acquisition. Intuitively,
if the expected margin of victory is positive in all states, the local central limit theorem entails
that the probability that the realized margin of victory is zero converges to zero exponentially fast.
Similarly, the probability that a single vote is decisive, hence the incentives of voters to acquire
information are exponentially small. we show that this ’zero-margin-of-victory’ condition pins down
the posterior belief about the state conditional on the election being tied, and therefore the relation
of the margin of victory in one state to the other. Finally, this allows writing the fixed point
equation in one variable, the margin of victory in a given state. Surprisingly, the resulting equation
is a generalization of the Lambert equation (1) and coincides with the Lambert equation when the
prior is symmetric.

The second set of results describes the welfare properties of the election as a function of the
primitives of the model. First, we see that depending on the conflict of interest of voters, election
outcomes can be arbitrarily efficient or arbitrarily inefficient. A priori one might think that the
presence of a conflict of interest might increase welfare since the competition among voter groups
might fuel information acquisition of voters. While in fact, information acquisition is higher when
there is a conflict of interest between voters due to a competition effect, interestingly a higher con-
flict of interest never improves welfare. This is because the information acquired by groups with
opposed interests does ‘cancels’ out each other in the sense that one group might vote more often for
the welfare-maximizing outcome in each state when better informed whereas the other group votes
more often against it when better informed. We show that this screening effect dominates the effect
of increased information acquisition (competition effect) such that a higher degree of the conflict
of interest unambiguously reduces social welfare. Second, the voting power of a group is inversely
related to the fraction of voters of the group for which the preferences over the alternatives are
state-independent: Naturally, these voters have no incentive whatsoever to acquire any information.
This translates into voting power since ‘information is power’. Third, we can understand the degree
of consensus of the electorate as the probability that a random pair of voters has the same ordinal
preferences when the state is known. More formally, the degree of the consensus is captured by the
relative size of the majority and the minority group. We show that a higher degree of consensus
can reduce social welfare: generically, there exists an open interval of the degree of consensus on
which the efficiency of all equilibria with substantial information acquisition is decreasing when the
consensus increases.

Finally, based on the characterization of limit equilibria, we characterize the social welfare func-
tions that can be asymptotically implemented by choice of the information cost. We show that these
are the (state-dependent) Bergson social welfare functions with parameter 0 ≤ ρ < 1 (Theorem
5). Roughly speaking, these are the social welfare functions that weights intensities of voters by a
parameter ρ (for a formal definition see Section 4). Importantly, the Bergson social welfare rules
possess an axiomatization that was provided by Roberts [1980] and Moulin [1991]. Therefore, the
importance of Theorem 5 is in building a bridge between the typically distant worlds of the axiomatic
social choice theory and the game-theoretic analysis of elections.

The rest of the paper is organized as follows: Section 1 introduces the model. Section 2 shows
that all equilibria take a cut-off form. Then, in Section 2.1 we use the local central limit theorem
to derive a formula for the probability that a single vote is decisive when the electorate grows large.
Section 2.2 explains in which sense ’information is power’ in the model of this paper and derives
formulas for the amount of information acquired by each voter group. Section 2.3 shows that any
equilibrium sequence that does not converge to voting according to the prior must satisfy that the
limit of the margin-of-victory is zero in expectation. Section 3 provides the first set of results:
Section 3.2 proves the existence of equilibria with substantial information acquisition when cost are
not “high”. Section 3.1 shows that, when cost is intermediate, these equilibria are characterized by a
class of generalized Lambert equations. Section 3.3 discusses the welfare properties of these equilibria

4



with substantial information acquisition. Section 4 characterizes the social welfare functions that
can be asymptotically implemented by choice of the information cost. Section 5 discusses the welfare
properties as a function of the primitives of the model. Section 6 discusses all other limit equilibria
of the model: In particular, Section 6.1 shows that generically a sequence of cursed equilibria exists
for which information acquisition is exponentially low and that such low information acquisition
is then self-confirming. Section 6.2 shows that, when cost is high, all limit equilibria correspond
to voting according to the prior. Section 7 discusses the related literature, in particular Martinelli
[2006], Oliveros [2013], Krishna and Morgan [2011] and Bhattacharya [2013].

1 Model

There are 2n + 1 voters, two possible election outcomes A and B, and two states of the world
ω ∈ {α, β} = Ω. Voters hold a common prior. The prior probability of α is p0 ∈ (0, 1), and
the probability of β is 1 − p0. Voters have heterogeneous preferences. The preferences are private
information. A preference type is a pair t = (y, λ) ∈ [0, 1] × {g,G}. A voter either belongs to
a majority group G or to a minority group g. The utility of a voter of type t from the outcome
x ∈ {A,B} in ω ∈ {α, β} is denoted by u(t, x, ω). For voters t = (y,G) of the majority group,

u(t, z, ω) =


1− y if (z, ω) = (A,α),

y if (z, ω) = (B, β),

0 else,

(2)

For voters t = (y, g) of the minority group,

u(t, z, ω) =


k · (1− y) if (z, ω) = (B,α),

k · y if (z, ω) = (A, β),

0 else.

(3)

for some k > 0. Note that voters of different groups have opposed interest when the state is known.
Preference types are independently and identically distributed across voters. The payoff type y of a
voter is independently drawn from the group type z, according to a commonly known distribution
F that has a strictly positive, continuous density f . We denote by Pr(λ) ∈ [0, 1] the probability that
a random voter is of group type λ ∈ {g,G}, where Pr(G) > 1

2 .

Ideology and Taste. The preference specification includes a case with a taste component t and
an ideology component e: Let i = 1

2 and e ∈ [−i, i]. Let y = i + e, then 1 − y = i − e. The
ideology component is common within a group and captures which outcome a group prefers in each
state. The personal taste component might capture state-independent beliefs about differences in
the competence of two candidates A and B.5

Threshold of Doubt. The payoff parameter describes a threshold of doubt. For a given belief
p about α, a voter of group type G prefers A if and only if

p(1− y) ≥ (1− p)y

⇔ p

1− p
≥ y

1− y
⇔ p ≥ y. (4)

5Note that the restriction e ∈ [−i, i] is without loss, since otherwise, the personal taste component is such that
the voter always prefers the same candidate in both states ω. The model presented can be easily extended to include
such partisan voters.
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Similarly, a voter of group type G prefers A if and only if

p ≤ y. (5)

For a given belief p about α, the probability that a random citizen prefers A is

ψ(p) := Pr(G)F (p) + Pr(g)(1− F (p)). (6)

Note that the assumption Pr(G) > Pr(g) together with the assumption that G has a strictly positive
density f implies that the derivative δ

δpψ(p) = (Pr(G)−Pr(g))f(p) is strictly positive. To make the

analysis interesting, we assume that Pr(G) > τ > Pr(g) such that there exists a belief pτ ∈ (0, 1)
for which ψ(pτ ) = τ . It follows from the strict monotonicity of ψ that such a belief is unique.

Timing. Firstly, the state of the world z and the private preference types realise. Then, each
voter can acquire information of quality x at cost c(x) = κ

dx
d for some given d > 16 and κ > 0.

Then, each voter receives a binary signal s ∈ {a, b} with Pr(a|α) = Pr(b|β) = 1
2 + x. Signals are

private information of the voters. Then, voters simultaneously decide if to vote for A or B. The
election outcome is chosen by τ -majority rule for τ ∈ (0, 1) with τn ∈ N and (1− τ)n ∈ N.7

Strategies. A symmetric strategy is a function from [0, 1] × {g,G} to [0, 12 ] × [0, 1]2. The first
component of a strategy is denoted x(t) and desribes the quality of information x acquired by a
voter of type t. The second component is denoted σ(a, t) and describes the probability to vote A
after receiving a. The third component is denoted σ(b, t) and describes the probability to vote for
A after receiving b. For any ω ∈ Ω, we slightly abuse notation and use σ as a generic symbol for
strategies and write

qα(σ) := Pr(G)

∫
t∈[y,G]∈[0,1]×{G}

(
1

2
+ x(t))σ(a, t) + (

1

2
− x(t))σ(b, t))dF (y)

+ Pr(g)

∫
t∈[y,g]∈[0,1]×{G}

(
1

2
+ x(t))σ(a, t) + (

1

2
− x(t))σ(b, t))dF (y) (7)

for the probability that a random citizen votes A in α. Similarly, we write

qβ(σ) := Pr(G)

∫
t∈[y,G]∈[0,1]×{G}

(
1

2
− x(t))σ(a, t) + (

1

2
+ x(t))σ(b, t))dF (y)

+ Pr(g)

∫
t∈[y,g]∈[0,1]×{G}

(
1

2
− x(t))σ(a, t) + (

1

2
+ x(t))σ(b, t))dF (y) (8)

for the probability that a random citizen votes A in β.

2 Equilibrium Characterization

We analyse the symmetric Bayes-Nash-equilibria of the Bayesian game of voters in nondegenerate
strategies and call them (voting) equilibria. A strategy is non-degenerate if the probability that a
random citizen votes A is neither 0 nor 1. For a given strategy σ, we use piv to denote the event

6As discussed in the literature, if the marginal cost of information at 0 are non-zero, that is if c′(0) > 0, then for
sufficiently large n no information acquisition is possible. Intuitively, this is true, because marginal benefits converge
to 0 as the probability that a single vote is decisive converges to 0 (see e.g. Martinelli [2006]).

7Note that the restriction on τ is innocuous since we consider the case of large elections, that is when n→∞.
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in which, from the viewpoint of a given voter, n of the other 2n voters vote for A and n for B. It
follows from the independence of types and signals across voters that

Pr(piv|ω;σ) =

(
2n

τn

)
qτnω (1− qω)(1−τ)n, (9)

where we also used that τn ∈ N and (1− τ)n ∈ N.

Theorem 1. (Cut-off Characterisation)
For any equilibrium σ, there exist y(λ) < Pr(α|piv;σn) < y(λ) for any λ ∈ {G, g} such that:

1. Any voter of type t = (y,G) votes A if y < y(G), votes B if y > y(G), and acquires information
x∗(t) > 0 with

Pr(piv|σ)[Pr(α|piv)(1− y) + Pr(β|piv)y] = c′(x∗(t)),

and votes A after receiving a, and B after receiving b if [y ∈ y(G), y(G)].

2. Any voter of type t = (y, g) votes B if y < y(g), votes A if y > y(g), and acquires information
x∗(t) > 0 with

Pr(piv|σ)[Pr(α|piv)k(1− y) + Pr(β|piv)ky] = c′(x∗(t)).

and votes B after receiving a, and A after receiving b if [y ∈ y(g), y(g)].

A Balance Condition. Note that Proposition 1 implies that in any equilibrium a random voter
plays a pure strategy with probability 1. It also follows from Proposition 1 that in any equilibrium,
a voter of t = (y, λ) only changes his vote with the signal if y(λ) ≤ y ≤ y(λ). We call

I(λ) :=

∫
y∈[0,1]

x(y, λ)dF (y)

the total information acquired by a group λ. Then,

Pr(σ(s, t) = 1|α)− Pr(σ(s, t) = 1|β) = 2(Pr(G)I(G)− Pr(g)I(g)). (10)

Here we used that the difference between the probability that a random voter of group λ receives
an a-signal in α and the probability that a random voter of type λ receives an a-signal in β is given
by 2I(λ). The equation (10) shows that the difference of the voting probabilities exactly balances
out with (twice) the net information Pr(G)I(G)− Pr(g)I(g) acquired by the voters.
Proof.

Optimal Voting Behaviour. Recall that for a given strategy σ, we use piv to denote the event
in which, from the viewpoint of a given voter, n of the other 2n voters vote for A and n for B. In
this event, if she votes A, the outcome is A, if she votes B, the outcome is B. In any other event,
the outcome is independent of her vote. Thus, a strategy is optimal if and only if it is optimal
conditional on piv. Given σ, a voter of type t = (y, λ) who acquired information of quality x and
received s weakly prefers to vote A if and only if

Pr(α|s, x,piv;σ)

{
≥ y if λ = G,

≤ y if λ = g.
(11)

The upper inequality follows from the inequality(4), and the lower inequality follows from the in-
equality (5). Note that the probability of being pivotal is strictly positive under any non-degenerate
strategy σ, hence in any equilibrium. Note that in equilibrium, any type t = (y,G) that acquires
information, that is for which x(t) > 0, votes A after a and B after b. It follows from the inequalities
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(11) that t otherwise weakly prefers to vote for the same alternative after any signal. But then, t is
strictly better off simply voting for this alternative without acquiring information. Similarly, in any
equilibrium σ, any type t = (y, g) that acquires information votes B after a and A after b. It also
follows from the inequalities (11) and the the continuity of G, that in any equilibrium the voting
behaviour of a random voter that does not acquire information is pure with probability 1.

Optimal Information Acquisition. For a type t = (y,G) let x∗(t) be the maximizer of

Pr(piv|σ)[Pr(α|piv)(1− y) + Pr(β|piv)y](
1

2
+ x)− c(x) (12)

across all x ∈ [0, 12 ] (we will show instantaneously that a maximizer of 12 is unique.). That is, x∗(t)
is the optimal choice of information quality conditional on information acquisition being optimal.8

When t chooses quality x, with probability

Pr(piv|σ)Pr(α|piv)(
1

2
+ x),

the vote of t is decisive, α holds and t received signal a. After a it is optimal for t to vote A and
this yields utility of 1− y. With probability

Pr(piv|σ)Pr(β|piv)(
1

2
+ x),

the vote of t is decisive, β holds and t received signal b. After b it is optimal for t to vote B and this
yields utility of y. When receiving b in α, t votes B and receives utility 0. Similarly, when receiving
a in β, t votes A and receives utility 0. We equate marginal benefit and marginal cost of quality x,

Pr(piv|σ)[Pr(α|piv)(1− y) + Pr(β|piv)y] = c′(x∗(t)). (13)

Since c is strictly increasing, the maximizer of (13) is unique. It follows from (9) that Pr(piv|ω;σ) > 0
for any non-degenerate strategy and any ω ∈ {α, β}. Then, it follows from c′(0) = 0 that x∗(t) > 0.
The analogous derivation shows that for voter of type t = (y, g),

Pr(piv|σ)[Pr(α|piv)k(1− y) + Pr(β|piv)ky] = c′(x∗(t)). (14)

Information Acquisition Cutoffs. A voter of type t = (y,G) is indifferent between not acquiring
information and voting A after both signals and acquiring the optimal positive amount of information
x∗(t) and voting A after a and B after b if

Pr(piv|σ)Pr(α|piv)(1− y)

= Pr(piv|σ)[Pr(α|piv)(1− y) + Pr(β|piv)y](
1

2
+ x∗(t))− c(x∗(t))

⇔ Pr(α|piv)(1− y)

Pr(α|piv)(1− y) + Pr(β|piv)y
=

1

2
+ x∗(t)− c(x∗(t)

c′(x∗(t))

⇔ Pr(α|piv)(1− y)

Pr(α|piv)(1− y) + Pr(β|piv)y
=

1

2
+
d− 1

d
x∗(t).

(15)

where we used the first order condition (13) for the equivalence on the third line. The equivalence
on the last line follows since c(x) = xd. Similarly, a voter of type t = (y,G) is indifferent between

8Recall that in equilibrium Pr(piv|α) > 0. Hence, it follows from c(x) = 0 that x∗ is never zero. On the other
hand the equilibrium choice of information quality x(t) is zero whenever voting uninformedly strictly dominates any
strategy with positive information acquisition.
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not acquiring information and voting B after both signals and acquiring he optimal positive amount
of information x∗(t) and voting A after a and B after b if

Pr(piv|σ)Pr(β|piv)y

= Pr(piv|σ)[Pr(α|piv)(1− y) + Pr(β|piv)y](
1

2
+ x∗(t))− c(x∗(t))

⇔ (1− Pr(α|piv))y

Pr(α|piv)(1− y) + Pr(β|piv)y
=

1

2
+ x∗(t)− c(x∗(t)

c′(x∗(t))

⇔ (1− Pr(α|piv))y

Pr(α|piv)(1− y) + Pr(β|piv)y
=

1

2
+
d− 1

d
x∗(t).

(16)

Note that we can interpret the left hand side h(y) := Pr(α|piv)(1−y)
Pr(α|piv)(1−y)+Pr(β|piv)y of the indifference

condition (15) as the posterior probability of α conditional on being pivotal and a signal s with
Pr(s|α) = 1 − y, and Pr(s|β) = y. Intuitively, the posterior h(y) is strictly increasing in 1 − y.
Note that h(Pr(α|piv)) = 1

2 . Since the probability of being pivotal is strictly positive in equilibrium,
it follows from the first-order condition (15) that the optimal information quality x∗(t) is strictly
larger than zero in any equilibrium. So y = Pr(α|piv) does not solve (15). It follows from an
application of the implicit function theorem that, in any equilibrium and for any n sufficiently large,
the indifference equation (15) has a unique solution

y(G) < Pr(α|piv). (17)

Details are provided in the Appendix. Analogously, in any equilibrium and for any sufficiently large
n, the indifference equation (16) has a unique solution

y(G) > Pr(α|piv). (18)

Analogously, for any equilbrium σ there exist cutoffs y(g) and y(g) such that under σ any type
t = (y, g) acquires information x(t) > 0 if and only if y ∈ [y(g), y(g)].

Note that Proposition 1 implies that for any equilibrium and any λ ∈ {α, β}, we have x(Pr(α|piv, λ)) >
0. Moreover, it follows from the first-order conditions (13) and (14) and from c′(x) = κxd−1 that
for any y ∈ [0, 1],

x(y, g)d−1 = kx(y,G)d−1,

⇔ x(y, g) = k
1
d−1x(y,G). (19)

Best Response is a Function of the Voting Probabilities. The characterisation of the best
response through the inequalities (11), the first-order conditions (13) and (14) and the indifference
equations (15) and (16) shows that the probabilities of being pivotal in α and β are a sufficient
statistic for the best response. Since, for any strategy σ, the probability of being pivotal in any state
ω is a function of the probability that a random citizen votes A in ω, we can write the best response
as a function of these voting probabilities qω.

2.1 Local Central Limit Theorem

Pivot Probabilities. The following lemmata describe the pivot probabilities in each state when
the electorate grows large, that is the probabilities of the event piv conditional on ω ∈ {α, β}. It is
useful to introduce the notation
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δω := lim
n→∞

(qω − τ)n
1
2 ∈ R ∪ {∞,−∞}. (20)

Lemma 1. Consider any strategy sequence σn. Then,

lim
n→∞

Pr(piv|ω;σn)n
1
2 =

{
φ0,τ(1−τ)(δω) if δ ∈ R,
0 if δ ∈ {∞,−∞}

where φ0,τ(1−τ) denotes the density of the normal distribution with mean 0 and variance τ(1− τ).

Proof. Note that Pr(piv|ω;σn) = Pr(B(n, qω(σn) = τn) where B(n, p) denotes the binomial distri-
bution with parameters n and p. The result follows from the local central limit theorem for triangular
arrays of integer-valued random variables; see for example Theorem 2 in Davis and McDonald [1995].

In the Online Supplement, we provide a self-contained proof of Lemma 1 that relies on Stirling’s
formula. The proof in the Online Supplement also yields

Lemma 2. Consider any strategy sequence σn. Then, for any ω ∈ {α, β}

lim
n→∞

Pr(piv|ω;σn)n
1
2 = lim

n→∞
(2π)−

1
2 (τ(1− τ))−

1
2

[
(
qω(σn)

τ
)τ (

1− qω(σn)

1− τ
)(1−τ)

]n
.

Proof. In the Online Supplement.

2.2 Information and Voting Power

Swing Voters and Vanishing Information Acquisition. Note that the function qτ (1−q)1−τ has
a unique maximum at q = τ . Consequently, ( qnτ )τ ( 1−qn

1−τ )(1−τ) ≤ 1. It follows from this observation
and Lemma 2 that for any strategy sequence σn, the probability of being pivotal converges to 0 for
n → ∞. Hence, it follows from the assumption that c(x) = xd and the first-order conditions (13)
and (14) that

x∗(t) is converging to 0 uniformly in t. (21)

Note that it is only rational for a voter to acquire information x∗(t) > 0 if, given x∗(t), one of the
signals s ∈ {a, b} reverts the preference over A and B: recall the threshold of doubt interpreta-
tion of the payoff types y, see the inequalities (4) and (5). Then, more precisely, this means that
Pr(α|piv, b;x∗(y, λ)) ≤ y ≤ Pr(α|piv, a;x∗(y, λ)). Therefore, it follows from the observation that
x∗(t) is converging to 0 uniformly that the mass of voters that acquire information, that is the swing
voters, converges to 0.
Recall the definition of h(y) after the equation (16) which we can rewrite as h(y)− 1

2 = d−1
d x∗(y(λ), λ)).

Recall that h(Pr(α|piv)) = 1
2 . A Taylor approximation of the left hand side at the root ỹ := Pr(α|piv)

gives

y(λ)− ỹ) ≈ 1

h′(ỹ)

d− 1

d
x∗(y(λ), λ)

≈ 1

h′(ỹ)

d− 1

d
x∗(ỹ) (22)

10



where the approximation on the second line follows since x(y) is continuous in y and since the
mass of swing voters converges to 0 which implies that limn→∞ y(λ) = limn→∞ ỹ. Further Taylor

approximations of F (y(λ)) and F (y(λ)) at ỹ yield9

F (y(λ))− F (y(λ)) ≈ y(λ)− y(λ)f(ỹ)

≈ f(ỹ)

h′(ỹ)

d− 1

d
x∗(ỹ), (23)

where the approximation on the last line follows from the approximation (22). We conclude that
the mass of swing voters is proportional to the information acquired by the type ỹ = Pr(α|piv)
which is indifferent before receiving a signal. Intuitively, then, the total amount of information
Iλ =

∫
y(λ)≤y≤y(λ) x(y, λ)dF (y) acquired by a group λ is proportional to the square of the information

acquired by the indifferent voter since any type that acquire information is arbitrarily close to ỹ for
n arbitrarily large.

Lemma 3. Let ỹ = Pr(α|piv). Then, for any sequence of strategies σn and any λ ∈ {G, g}, the best
response satsifies

Iλ =
2(d− 1)

d

f(ỹ)

h′(ỹ)
· x(ỹ, λ)2 +O(Pr(piv|σn)

2
d−1 )o(1). (24)

Proof. In the Appendix.
Let ỹ = Pr(α|piv). We have

lim
n→∞

qα(BR(σn)) = lim
n→∞

Pr(G)F (ỹ) + Pr(g)(1− F (ỹ))

= lim
n→∞

ψ(ỹ) (25)

where the equality on the first line follows from Theorem 1 and since the mass of swing voters
converges to zero , see the equation (22) and (21). The equality on the last line holds by the
definition of the function ψ. Analogously,

lim
n→∞

qβ(BR(σn)) = lim
n→∞

ψ(ỹ). (26)

Order of the Voting Probabilities. Recall the equation (10) which showed that the difference
of the voting probabilities is the same as twice the net information Pr(G)IG − Pr(g)Ig acquired by
the voters in equilibrium. We will now show that the net amount of information can be expressed by
the information acquired by the indifferent voter ỹ = Pr(α|piv) of the majority group G only: First,
recall that the first-order conditions (13) and (14) imply for any pay-off type y ∈ [0, 1], the voter of

the minority group g acquired k
1
d−1 times as much information as the voter of the majority group

G, i.e. x(y, g) = k
1
d−1 y(y,G); see the equation (19). Combining the equation (10), the formula in

Lemma 3 for the total amount of information Iλ acquired by each group λ and the equation (19)
gives10

9In the proof of Lemma 3 we show that the error term of the approximation (23) is of order O(Pr(piv|σn)
2
d−1 )o(1).

10More precisely,

qα − qβ = 2(Pr(G)I(G)− Pr(g)I(g))

=
4(d− 1)

d

f(ỹ)

h′(ỹ)
(Pr(G)x(ỹ, G)2 − Pr(g)x(ỹ, g)2) +O(Pr(piv|σn)

2
d )o(1)

=
4(d− 1)

d

f(ỹ)

h′(ỹ)
(Pr(G)− kPr(g))x(ỹ, G)2 +O(Pr(piv|σn)

2
d )o(1), (27)

where the equality on the first line follows from the equation (10), the equality second line follows from Lemma 3.
The equality on the last line follows from the equation (19).
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Lemma 4. Let Pr(G)− k
2
d−1 Pr(g) > (<)0, and d > 1. For any strategy sequence σn,

qα(BR(σn))− qβ(BR(σn))

=
4(d− 1)

d

f(ỹ)

h′(ỹ)
(Pr(G)− k

2
d−1 Pr(g))x(ỹ, G)2 +O(Pr(piv|σn)

2
d )o(1), (28)

where BR(σn) is the best reponse to σn.

It follows from the first-order conditions (13) and (14) that x(ỹ, G) is asymptotically equivalent

to Pr(piv|σn), that is x(ỹ, G) ∈ Θ(Pr(piv|σn)).11 Hence, if Pr(G) − k
2
d−1 Pr(g) > 0, and d > 1, it

follows from the equality (27) that there exists n̄ ∈ N such that qα − qβ > 0 for all n ≥ n̄. Anal-

ogously, Pr(G) − k
2
d−1 Pr(g) < 0, and d > 1, it follows it follows from the equality (27) that there

exists n̄ ∈ N such that qα − qβ < 0 for all n ≥ n̄.

Voting Power. Consider any equilibrium sequence for which sgn(qα−τ) 6= sgn(qβ−τ). Suppose
that group G acquires more information in expectation, that is Pr(G)IG − Pr(g)Ig > 0. It follows
from the equation (10) that qβ ≤ τ ≤ qα; consequently in any state the outcome is more likely to
be the one prefered by group G, that is A in α and B in β. Now Lemma 4 shows that the order of
the voting probabilities in the two states and the order the amount of information acquired by each

group respectively is the same as the order of Pr(G) and Pr(g)k
2
d−1 when the electorate is large.

Motivated by this observation, we call Pr(G) and Pr(g)k
2
d−1 the voting power of the majority and

the minority group respectively.

2.3 Close Elections

This section shows that in any equilibrium sequence that involves substantial information acquisition
the election is necessarily close to being tied when the electorate is large. Intuitively, a voter acquires
information to make a better voting decision. But he knows that this only matters when his vote
actually decides the election. If the election has a positive margin of victory in expectation, this
event has a probability that is exponentially small (see e.g. Lemma 2).

Lemma 5. Let ψ(p0) 6= 1
2 . Any equilibrium sequence for which Iλ does not converge to zero

exponentially fast for some λ ∈ {G, g}, satisfies limn→∞ qω = τ for all ω ∈ {α, β}.

Proof. Consider any equilibrium sequence with limn→∞ qω 6= τ for some ω ∈ {α, β}. Since the
amount of information acquired converges to zero (see (21), limn→∞ qω 6= τ for any ω ∈ {α, β} (see
also (25) and (26)). Let ε > 0 such that |ψ(p0) − τ | > 2ε. Then, there exists n(ε) ∈ N such that
|qω − τ | > ε for all n ≥ n(ε). Then, it follows from Lemma 2 that the pivot probabilities converge
to zero exponentially fast. It follows from the first-order conditions (13) and (14) that the amount
x(t) of information acquired by each type t converges to zero exponentially fast. This finishes the
proof of the Lemma.

Suppose that there exists an equilibrium sequence σn with limn→∞ qω(σn) = τ for all ω ∈ {α, β}.
It follows from the equation (25) that

lim
n→∞

ψ(Pr(piv|α;σn)) = τ. (29)

We draw several implications from the condition (29) that will be useful for the proof of the first
main result: it follows from the strict monotonicity of ψ that

11We use the Knuth-Landau notation (xn)n∈N ∈ Θ((yn)n∈N) to express that a sequence (xn)n∈N is asymptotically
equivalent to another sequence (yn)n∈N, which means that limn→∞

xn
yn
∈ R.
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lim
n→∞

Pr(piv|α) = pτ , (30)

where we defined pτ as the unique p ∈ [0, 1] for which ψ(p) = τ . Then,

lim
n→∞

Pr(piv|α)

Pr(piv|β)

p0
1− p0

=
pτ

1− pτ

⇔ φ(δα)

φ(δβ)

p0
1− p0

=
pτ

1− pτ

⇔ φ(δα) = φ(δβ)
1− p0
p0

pτ
1− pτ

, (31)

where the equivalence on the second line follows from Lemma 1. We can rewrite the equation (31)
as

e−
δ2α

2τ(1−τ) = e−
δ2β

2τ(1−τ)
1− p0
p0

pτ
1− pτ

⇔ δ2α − δ2β = [ln(
p0

1− p0
)− ln(

pτ
1− pτ

)]2τ(1− τ). (32)

3 Equilibria with Much Information

3.1 Generalized Lambert Equations

The balance condition (10) says that the difference in the voting probabilities qα− qβ equals (twice)
the net information Pr(G)IG−Pr(g)Ig acquired by the voters in equilibrium. If we impose the weak
efficiency requirement that qα ≥ τ ≥ qβ , the margins of victory |qω−τ | are small when the difference
in the voting probabilities is small and vice versa. Then, the relation between the difference in the
voting probabilities and the incentives to acquire information is antiproportional. This captures the
free-rider aspect of the election: when many voters acquire information and as a consequence, the
election outcome is more close to the outcome when states are known and less likely to be tied,
incentives to acquire information are small. Intuitively, this complementarity implies uniqueness
of the equilibrium. Theorem 2 shows that when the cost of information are intermediate (d = 3),
the unique limit equilibrium that satisfies the weak efficiency requirement is identified by a unique
scaled margin of victory limn→∞(qω − τ)n

1
2 = δω for some ω ∈ {α, β} if such an equilibrium

exists. Moreover, we show that δω = W η(ν) where W η(ν) is a function that generalises the product
logarithm function and ν and η are functions that capture the primitives of the model. To show
this, we rewrite the balance condition (10) into an equation in the variable δω only that generalises
Lambert’s equation.

Theorem 2. Let d = 3 and Pr(G)− kPr(g) > 0.12Suppose that there exists an equilibrium sequence
σn and n̄ ∈ N such that for any n ≥ n̄ and any state ω, the utilitarian outcome is more likely

to be elected in ω than not, given σn. Let ν = 8(d−1)
d

f(pτ )
h′(pτ )

(Pr(G) − kPr(g)) 1
κ (π)−

1
2 and η =[

ln( pτ
1−pτ )− ln( p0

1−p0 )
]
2τ(1− τ).

12When Pr(G) − kPr(g) > 0, the analogous result holds where the only modification is that we multiply the left
hand side of the following equations 33 and 34 by (−1).
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1. If p0 ≤ pτ , the limit of the equilibrium sequence satisfies the generalised Lambert equation

(w + (w2 + η)
1
2 )e

1
2τ(1−τ)w

2

= νp0(1− pτ ), (33)

with w = δα.

2. If p0 ≥ pτ , the limit of the equilibrium sequence satisfies the generalised Lambert equation

(w + (w2 − η)
1
2 )e

1
2τ(1−τ)w

2

= νpτ (1− p0), (34)

with w = δβ.

Note that the functions on the left hand side of the generalised Lambert equations (33) and (34)
are strictly increasing in w. For p0 ≤ pτ , the parameter η is positive and we denote by W η the
inverse of the function on the left hand side of (33). For p0 ≥ pτ , the parameter η is negative and we
denote by W η the inverse of the function on the left hand side of (34). We call W η(ν) a generalised
Lambert function.
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Figure 1: Let d = 3 and τ = pτ = 1
2 . Let Pr(G) − kPr(g) > 0. Figure 1 illustrates the reduced

form description δβ = Wη((νpτ (1− p0)) and |δβ | = (δ2α + ν)
1
2 of the Lambert-type limit equilibrium

as a function of ν and η: first, when the prior is unbiased relative to the voting rule (dotted line);
second, when the prior is biased relative to the voting rule (straight lines).

Proof of Theorem 2.. Suppose that there exists an equilibrium sequence as in the Theorem. Recall
the balance condition (10) which says that, in equilibrium, the difference of the voting probabilities
in α and β equals twice the ‘net’ information acquired by the voters,

qα − qβ = 2(Pr(G)IG − Pr(g)Ig). (35)
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Recall that we can understand the best response as a function of the voting probabilities in each
state, that is of qα and qβ . The equation (35) has to be satisfied by each fixed point of the best

response. Multiplication by n
1
2 and taking limits n→∞ gives

|δα|+ |δβ | = lim
n→∞

2(Pr(G)IGPr(g)Ig)n
1
2 , (36)

where we used the assumption of the theorem that sgn(qα−τ) 6= sgn(qα−τ) for any n large enough.
We will now use three observations from the sections 2.1, 2.2 and 2.3 to rewrite the ‘limit fixed point
equation’ (36): First, the total amount of information Iλ acquired by a group λ is proportional to
the square of the information acquired by the indifferent voter type ỹ = Pr(α|piv); see Lemma 3.
Second, it follows from the weak requirement that the utilitarian outcome is more likely to be elected
in each state, i.e. qα ≥ τ ≥ qβ and from equation (25) that the election is neccessarily close, that
is limn→∞ qω = pτ where pτ is the unique belief p ∈ [0, 1] for which ψ(pτ ) = τ . Intuitively, only a
close election creates enough incentives for information acquisition such that the election outcome
can satisfy the weak requirement. This pins down the posterior conditional on the election being
tied,

lim
n→∞

Pr(piv|α) = pτ ,

see equation (30). On the one hand, this pins down the indifferent voter type ỹ = Pr(α|piv). So,
we can express how much information ỹ acquires by use of the first-order condition (13) for pτ , for
example for group G,

x(ỹ, G)2 = p0Pr(piv|α)(1− pτ ) + (1− p0)Pr(piv|β)pτ
1

κ
, (37)

where we used the standing assumption of Theorem 2 that d = 3 or equivalently that c(x) = κ
dx

d.
On the other hand, this pins down the relation between the margin of victory in α and the margin
of victory in β, and therefore of the scaled margins of victory δα and δβ , see the equations (31) and
(32). Third, we use the local limit theorem to express the probability of the election being tied in ω
as a function of δω; see Lemma 9. All taken together, we can express the information acquired by
the voter ỹ ≈ pτ that is indifferent before receiving a signal, and hence the net information acquired,
as a function of δα and δβ . Furthermore, as just observed, we can express δβ as a function of δα. So,

lim
n→∞

2(Pr(G)IG + Pr(g)Ig)n
1
2

= lim
n→∞

[
4(d− 1)

d

f(ỹ)

h′(ỹ)
(Pr(G)− k

2
d−1 Pr(g))x(ỹ, G)2n

1
2

= [
4(d− 1)

d

f(ỹ)

h′(ỹ)
(Pr(G)− k

2
d−1 Pr(g))2φ(δα)(p0(1− pτ ))

1

κ
(38)

where the equation on the second line follows from Lemma 313 and the equation on the second line
follows from the first-order condition (13) (or (52)) and the local limit theorem Lemma 1 .14 Suppose

13Note that [O(Pr(piv|σn)
2
d−1 )o(1)]n

1
2 = 0, since the probability of being pivotal is strictly bounded above by

2n−
1
2 φ(0) for n sufficiently large (see e.g. Lemma 2).

14More precisely,

lim
n→∞

x(ỹ, G)d−1n
1
2 = (n

1
2 p0Pr(piv|α)(1− pτ ) + (1− p0)Pr(piv|β)pτ )

1

κ

= (p0φ(δα)(1− pτ ) + (1− p0)φ(δβ)pτ )
1

κ

=
[
φ(δα)(p0(1− pτ ) + (1− p0)pτ

p0

1− p0
1− pτ
pτ

)
] 1

κ

= 2φ(δα)(p0(1− pτ ))
1

κ
, (39)
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that the outcome A is favored under the prior relative to the voting rule, that is p0 ≤ pτ ; hence,

η =
[
ln( pτ

1−pτ )− ln( p0
1−p0 )

]
2τ(1− τ) ≥ 0. If we use the equation (32) and express δβ as a function of

δα on the left hand side of the ‘limit fixed point equation’ (36), we obtain

(δα(1 + (δα + η)
1
2 ) (40)

= [
4(d− 1)

d

f(ỹ)

h′(ỹ)
(Pr(G)− k

2
d−1 Pr(g))2φ(δα)(p0(1− pτ ))

1

κ

⇔ (δα(1 + (δα + η)
1
2 )eδ

2
α

1
2τ(1−τ)

= [
8(d− 1)

d

f(ỹ)

h′(ỹ)
(Pr(G)− k

2
d−1 Pr(g))(p0(1− pτ ))

1

κ
(π)−

1
2

⇔ (δα(1 + (δα + η)
1
2 )eδ

2
α

1
2τ(1−τ) = ν(p0(1− pτ ), (41)

where the equality on the first line follows from the equation (54). The first equivalence follows from
the formula for the density of the normal distribution. The equality on the last line follows from the

observation that limn→∞ Pr(α|piv) = limn→∞ ỹ = pτ and since we defined ν = 8(d−1)
d

f(pτ )
h′(pτ )

(Pr(G)−
kPr(g)) 1

κ (π)−
1
2 . Analogously, one shows that for p0 ≥ pτ it must hold that

(δβ(1 + (δβ − η)
1
2 )eδ

2
β

1
2τ(1−τ) = ν(pτ (1− p0). (42)

The classical Lambert Equation arises when the prior is uniform. Let η = 0. Then the
generalised Lambert equation (33) can be written as

2we
1

2τ(1−τ)w
2

= νpτ (1− p0)

⇔ 1

τ(1− τ)
w2e

1
τ(1−τ)w

2

=
1

4τ(1− τ)
(νpτ (1− p0))2

⇔ zez =
1

4τ(1− τ)
(νpτ (1− p0))2

for z = 1
τ(1−τ)w

2. Note that this is the classical Lambert equation as studied by Euler and Lambert

(see Lambert [1758] and Euler [1783]).

Remark 1. The converse of Theorem 3 also holds generically. Suppose, that there exists an equilib-
rium sequence (σn) that satisfies the generalised Lambert equation, that is (33) or (33) respectively.
Suppose that νp0(1− pτ ) 6= 0 or νpτ (1− p0) 6= 0. This implies that |δα| > 0 and |δβ | > 0. Suppose
that there exists a subsequence for which sgn(qα − τ) = sgn(qα − τ). Then, for this subsequence,
δα < 0 and δβ < 0 or δα > 0 and δβ > 0. In any case,

|δα|+ |δβ | > δα − δβ = lim
n→∞

(qα − qβ)n
1
2 . (43)

Now, the generalised Lambert equation is satisfied if and only if the sum of the margin of victories
equals twice the net information acquired by the voters,

|δα|+ |δβ = 2(Pr(G)IG + Pr(g)Ig), (44)

whereas in equilibrium, the difference in the margin of victories has to equal twice the net information
acquired by the voters,

δα − δβ = 2(Pr(G)IG + Pr(g)Ig), (45)

Clearly, (43), (44) and (45) cannot hold simultaneously, hence we arrive at a contradiction.

where the equality on the first line follows from the first-order condition (13) and from c(x) = κ
d
xd. The equality on

the second line follows from Lemma 1. The equality on the third line follows from the equation (31).
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3.2 Existence for Intermediate and Low Cost

Suppose that the cost of information are intermediate (d = 3) and p0 ≤ pτ . Suppose that the
generalised Lambert equations (33) and (34) would be a sufficient equilibrium condition for the

existence of a limit equilibrium. Whenever p0(1 − pτ )ν > η
1
2 , it follows from the intermediate

value theorem that there exists w = δα such that the Lambert equation is satisfied, and hence, a
limit equilibrium with the scaled margin of victory δα. As argued in the remark 1, under the limit
equilibrium strategy, it must hold sgn(δα) 6= sgn(δβ). Thus, in any state, the utilitarian outcome is
more likely to be elected than not. The following Theorem 3 shows that this heuristic intuition for
existence of a limit equilibrium with sgn(δα) 6= sgn(δβ) is indeed correct.

Theorem 3. 1. Let d = 3. There exists an equilibrium sequence for which in any state ω ∈
{α, β}, the utilitarian outcome is more likely to be elected if either p0 ≤ pτ and pτ (1− p0)ν >

(−η)
1
2 , or p0 ≥ pτ and p0(1− pτ )ν > (−η)

1
2 .

2. Let d > 3. There exists an equilibrium sequence with sgn(qα − τ) 6= sgn(qα − τ).

Note that in the case when the cost of information are intermediate (d = 3), Theorem 2 already

shows that the conditions p0 ≤ pτ and pτ (1−p0)ν ≥ (−η)
1
2 , or p0 ≥ pτ and p0(1−pτ )ν ≥ (−η)

1
2 are

necessary for the existence of equilibrium sequences for which in any state ω ∈ {α, β}, the utilitarian
outcome is more likely to be elected. This follows, since otherwise the respective generalised Lambert
equation does not have a solution δω ≥ 0. Now, Theorem 3 shows that the strict versions of
these conditions are also sufficient for existence, completing the characterisation of such equilibrium
sequences.

Proof. W.l.o.g., we restrict to the situation when Pr(G) − k
2
d−1 Pr(g) such that the order of the

voting probabilities under the best reponse is given by

qα ≥ qβ (46)

when the electorate is large; see Lemma 3. The remaining cases are analogous.
The main trick of the proof is to modify the best response function such that the modified version
satisfies the condition of Theorem 2 that in each state the utilitarian outcome is more likely to be
elected, i.e. it satisfies qα ≥ τ ≥ qβ . For this, we consider the best response as a function in the
voting probabilities qα and qβ and denote it BR(qα, qβ). For any voting probabilities (qα, qβ), we let
the modified best response be the function that maps (qα, qβ) to the pair

q̃α = max (τ, qα(BR(qα, qβ)), (47)

q̃β = min (τ, qβ(BR(qα, qβ)) (48)

The modified best reponse is continuous in qα and qβ . It follows from the Brouwer fixed point
theorem that there exists a sequence of fixed points (q̃α

∗, q̃β
∗) of the modified best reponse.

Lemma 6. Any fixed point of the modified best reponse is interior when n is large enough.

Given the Lemma, the strategies BR(q̃α
∗, q̃β

∗) are equilibria of the voting game with qα(BR(q̃α
∗, q̃β

∗)) ≥
τ ≥ qβ(BR(q̃α

∗, q̃β
∗)). This will finish the proof of Theorem 3. To prove the Lemma, first, we show

Claim 1. Suppose that there exists a sequence of non-interior fixed point (q̃αn, q̃βn) of the modified

best response. Then, limn→∞(q̃αn − τ)n
1
2 ∈ R. In particular, limn→∞ q̃ωn = τ for any ω ∈ {α, β}.

Proof. W.l.o.g. suppose that (q̃β)n = τ for any n large enough. From the definition of the
modified best response, q̃βn = τ is eqivalent to qβ(BR((q̃αn, q̃βn)) ≥ τ . It follows from (46) that
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qα(BR((q̃αn, q̃βn)) > τ , hence from the definition of the modified best response, qβ(BR((q̃αn, q̃βn)) =

q̃αn. Suppose that δα = limn→∞(q̃αn − τ)n
1
2 =∞. Then,

lim
n→∞

Pr(piv|α)

Pr(piv|β)
= lim

n→∞

φ(δα)

φ(0)

= 0. (49)

Consequently, limn→∞ Pr(α|piv) = 0. Then, it follows from the equation (25) that qβ(BR(σn)) =
limn→∞ ψ(Pr(α|piv)) = ψ(0) < τ . However, this contradicts with the assumption that limn→∞ q̃β =
τ or equivalently that limn→∞ qβ(BR(σn)) ≥ τ . Consequently, δα ∈ R.
Proof of Lemma 6.

Here, we provide the proof for the case when the cost are intermediate (d = 3). We will explain how
the insights easily generalise to the situation when cost are low (d > 3) along the way. Details of
the proof for d > 3 can be found in the Appendix.

Case 1. Suppose that there exists a sequence of fixed points ((q̃α)n, (q̃β)n) of the modified best
reponse and ñ ∈ N such that qβ(BR(((q̃α)n, (q̃β)n))) ≥ τ for any n ≥ ñ.
First, we will derive a lower bound for δα by rewriting the balance condition (10) using the same
three observations that we used to derive the generalised Lambert equations in Theorem 2.15 First,
the total amount of information Iλ acquired by a group λ is proportional to the square of the
information acquired by the indifferent voter type ỹ = Pr(α|piv). As a consequence,

lim
n→∞

(qα(BR(σn))− qβ(BR(σn)))n
1
2

= [
4(d− 1)

d

f(ỹ)

h′(ỹ)
(Pr(G)− kPr(g))x(ỹ, G)2 +O(Pr(piv|σn)

2
d )o(1)]n

1
2 (50)

where the equality on the second line follows from (10) and then restates the equation (28) from
Lemma 4. Second, Claim 1 together with 25 and the strict monotonicity of ψ implies that

lim
n→∞

Pr(α|piv; ((q̃α)n, (q̃β)n) = pτ . (51)

The equation (51) on the one hand pins down limit of the indifferent voter type ỹ = Pr(α|piv). So,
we can express how much information ỹ acquires by use of the first-order condition (13) for pτ , for
example for group G,

x(ỹ, G)2 = p0Pr(piv|α)(1− pτ ) + (1− p0)Pr(piv|β)pτ
1

κ
, (52)

where we used that a standing assumption that d = 3 or equivalently that c(x) = κxd. On the
other hand, the equation (51) pins down the relation between the margin of victory in α and the
margin of victory in β, and therefore of δ̃α and δ̃β , see the equations (31) and (32). Third, we use

the local limit theorem to express the probability of the election being tied in ω as a function of δ̃ω;
see Lemma 9. Taken together, we can express the information acquired by the indifferent voter ỹ,
and hence the net information acquired, as a function of δ̃α and δ̃β . Furthermore, we can express

δ̃α as a function of δ̃β . So,

lim
n→∞

[
4(d− 1)

d

f(ỹ)

h′(ỹ)
(Pr(G)− k

2
d−1 Pr(g))x(ỹ, G)2

= [
4(d− 1)

d

f(ỹ)

h′(ỹ)
(Pr(G)− k

2
d−1 Pr(g))2φ(δ̃β)(pτ (1− p0))

1

κ
(53)

15The reader may want to jump to the derivation (54) directly.
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where the equation on the first line follows from Lemma 316 and the equation on the second line
follows from the equations (52) and (31) and the local limit theorem Lemma 9 .17 Now,

δα = lim
n→∞

|qα(BR(σn))− τ |n 1
2

≥ lim
n→∞

(qα(BR(σn))− qβ(BR(σn)))n
1
2

≥ [
4(d− 1)

d

f(ỹ)

h′(ỹ)
(Pr(G)− kPr(g))2(pτ (1− p0)]n

1
2

= ν(pτ (1− p0)

> η
1
2

= δα, (54)

The equality on the third line follows from the equations (50) and (53) and the assumption that
δ̃β = 0. The equality on the fourth line follows from the definition of ν. The inequality on the fifth

line is the assumption that (pτ (1 − p0)ν > η
1
2 . Now, the inequality (54) is a contradiction since

clearly δα = δα.

Loosely speaking, (54) shows that the margins of victory and (twice) the net information ac-
quired under the best response are not ‘balanced’ for any potential non-interior fixed point. The
incentives to acquire information are so large when the electorate is split in state β, this is when
(q̃β)n = τ , that the difference in the margin of the victory under the best response is larger than
under the candidate fixed point ((q̃α)n, (q̃β)n). Intuitively, when the cost is lower (d > 3), voters
acquire even more information, and the margin of victory under the best response is even larger.
Details of the proof when d > 3 are given in the Appendix.

Case 2. Suppose that there exists a sequence of fixed points (q̃αn, q̃βn) of the modified best
reponse and ñ ∈ N such that qα(BR((q̃αn, q̃βn))) ≤ τ for any n ≥ ñ.
For the ease of exposition, consider the case when p0 6= pτ , and suppose w.l.o.g. that p0 > pτ . The
case pτ = p0 is proven in the Appendix. Now, δ̃α = 0 implies that the margin of victory in α is zero,
hence the probability of the election being tied is weakly larger in α than in β. This implies that the
posterior conditional on being pivotal weakly exceeds the prior, i.e. Pr(α|piv) ≥ p0. It follows from
the assumption that p0 > pτ that Pr(α|piv) > pτ . But then it follows from the equation (25) that
under the best response the margin of victory in α is strictly positive. But then it follows from the
definition that the modified best response to the fixed point does not coincide with the fixed point.
This yields a contradiction.

16Note that when d = 3, we have [O(Pr(piv|σn)
2
d−1 )o(1)]n

1
2 = 0, since the probability of being pivotal is strictly

bounded above by 2n−
1
2 φ(0) for n sufficiently large (see e.g. Lemma 2).

17More precisely,

lim
n→∞

x(ỹ, G)d−1n
1
2 = n

1
2 p0Pr(piv|α)(1− pτ ) + (1− p0)Pr(piv|β)pτ

1

κ

= (p0φ(δ̃α)(1− pτ ) + (1− p0)φ(δ̃β)pτ )
1

κ

=
[
φ(δ̃β)(p0(1− pτ )

1− p0
p0

pτ

1− pτ
+ (1− p0)pτ )

] 1

κ

= 2φ(δ̃β)(1− p0)pτ
1

κ
,

where the equality on the first line restates the equation (52). The equality on the second line follows from Lemma
1. The equality on the third line follows from the equation (31).
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3.3 Utilitarian Welfare

The outcome z ∈ {A,B} is a utilitarian outcome in state ω if z maximizes ex-ante expected utility
of voters across outcomes. It follows from the specification of the utilities of each voter type in (2)
and (3) that E(u(t, A, α)) = Pr(G)EF (y), that E(u(t, B, α)) = Pr(g)kEF (y), that E(u(t, A, β)) =
Pr(G)(1− EF (y)) and that E(u(t, B, β)) = Pr(g)k(1− EF (y)). Hence,

E(u(t, A, ω)) > E(u(t, B, ω))

⇔

{
Pr(G)− Pr(g)k > 0 if ω = α,

Pr(G)− Pr(g)k < 0 if ω = β.

So the utilitarian outcome is A in α and B in β if Pr(R)− Pr(L)k > 0. The utilitarian outcome is
B in α and A in β if Pr(R)− Pr(L)k < 0. For any sequence of strategies, let δ′ω = limn→∞ qω − τ .
N

Lemma 7. For any sequence of strategies σn, we have limn→∞ Pr(A is elected|ω;σn) = Φ(( 2
τ(1−τ) )

1
2 δω)

where Φ is the cumulative distribution function of the standard normal distribution and W η is the
generalised Lambert function (see Theorem 2).

Proof. In the Appendix.

Low Cost (d > 3).

Theorem 4. Let d > 3. Consider any equilibrium sequence σn for which there exists n̄ ∈ N such

that sgn(qα − τ) 6= sgn(qβ − τ) for all n ≥ n̄. If sgn(Pr(G)− k
2
d−1 Pr(g)) = sgn(Pr(G)− kPr(g),

lim
n→∞

Pr(A is elected|α;σn) = 1,

lim
n→∞

Pr(B is elected|β;σn) = 1.

If sgn(Pr(G)− k
2
d−1 Pr(g)) 6= sgn(Pr(G)− kPr(g),

lim
n→∞

Pr(A is elected|α;σn) = 0,

lim
n→∞

Pr(B is elected|β;σn) = 0.

Proof. Consider any equilibrium sequence σn for which there exists n̄ ∈ N such that sgn(qα − τ) 6=
sgn(qβ − τ) for all n ≥ n̄.
Claim 1. For any ω ∈ {α, β}, it holds limn→∞ δω ∈ {∞,−∞}.
Suppose w.l.o.g. that δβ ∈ R. Suppose also that δα ∈ {∞,−∞}. At first, we will lead the second
assumption to a contradiction. Under both assumptions,

lim
n→∞

Pr(α|piv;σn)

Pr(β|piv;σn)
=

p0
1− p0

Pr(piv|α;σn)n
1
2

Pr(piv|β;σn)n
1
2

=
φ(δα)

φ(δβ)

= 0,

where the equality on the second line follows from Lemma 1 and the equality on the third line follows
from the assumption that δβ ∈ R and that δα ∈ {∞,−∞}. But, then it follows from the equation
(26) that limn→∞ qβ = ψ(0) > τ , hence δβ = ∞. This contradicts with the initial assumption that
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δβ ∈ R. Hence, δβ ∈ R implies that δα ∈ R. Then, the probability that the election is tied is of the

order of n−
1
2 , that is

lim
n→∞

Pr(piv|σn)n
1
2 = lim

n→∞
[p0Pr(piv|α;σn) + (1− p0)Pr(piv|β;σn)]n

1
2

= p0φ(δα) + (1− p0)φ(δβ) ∈ R, (55)

where the equality on the second line follows from Lemma 1. Note that δα ∈ R implies that
limn→∞ qα = τ . Since ψ is strictly increasing, limn→∞ qα = τ together with the equation (25)
implies that limn→∞ Pr(α|piv;σ) = pτ ∈ (0, 1). Now, the marginal cost c′(x(ỹ, G)) of the type

ỹ = Pr(α|piv;σn) are of the order of n−
1
2 since

lim
n→∞

c′(x(ỹ, G))d−1n
1
2 = lim

n→∞
Pr(piv|σn)(ỹ(1− ỹ) + (1− ỹ)ỹ)n

1
2

= 2pτ (1− pτ )(p0φ(δα) + (1− p0)φ(δβ)) ∈ R,

where the equality on the first line follows from the first-order condition (13). The equality on the
second line follows from the equation (55) and from the earlier implication limn→∞ Pr(α|piv;σ) =
pτ ∈ (0, 1). Since c′(x) = xd−1, we see that for any d > 3, the square of the information acquired by

the type (ỹ, G), that is x(ỹ, G)2, is of an order larger than n−
1
2 , that is

lim
n→∞

x(ỹ, G)2n
1
2 =∞. (56)

It follows from Lemma 3 that the difference in the expected vote share for A in α and the expected
vote share for A in β is of an order larger than n−

1
2 , that is

lim
n→∞

(qα − qβ)n
1
2 =∞. (57)

The assumption that sgn(qα − τ) 6= sgn(qβ − τ) implies that limn→∞(qα − qβ)n
1
2 = |δα| + |δβ |.

However, this contradicts with the earlier observation that δα ∈ R or with the initial assumption
that δβ ∈ R. Hence, δα ∈ {∞,−∞}. This finishes the proof of the claim.

Suppose that sgn(Pr(G) − k
2
d−1 Pr(g)) = sgn(Pr(G) − kPr(g). W.l.o.g. suppose that Pr(G) −

kPr(g) > 0. It follows from Lemma 4 that qα > qβ for any n sufficiently large. Hence, δβ ≥
δβ . It follows from the assumption that sgn(qα − τ) 6= sgn(qβ − τ) and Claim 1 that |δα| = ∞
and |δβ | = −∞. Then, it follows from Lemma 7 that the probability that A gets elected in α

converges to Φ(( 2
τ(1−τ) )

1
2 δα) = 1. Similarly, the probability that A gets elected in β converges to

Φ(( 2
τ(1−τ) )

1
2 δβ) = 0. All other cases are proved analogously.

Intermediate Cost (d = 3).

For intermediate cost of information (d = 3), we illustrate how the efficiency of the election depends

on the primitives of the model (captured by ν = 8(d−1)
d

f(pτ )
h′(pτ )

(Pr(G)−kPr(g)) 1
κ and η =

[
ln( pτ

1−pτ )−

ln( p0
1−p0 )

]
2τ(1− τ) ):

21



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.5

0.6

0.7

0.8

0.9

1.0
Ef

fie
nc

y

Probability of Utilitarian Outcome in  for p0 0.54
Probability of Utilitarian Outcome in   for p0 0.54
Probability of Utilitarian Outcome for p0 = 1

2

Figure 2: Let d = 3 and τ = pτ = 1
2 . Let Pr(G) − kPr(g) > 0. Figure 2 illustrates the utilitarian

efficiency of the unique limit equilibrium for which, in each state, the utilitarian outcome is more
likely to be elected as a function of ν and η: first, when the prior is unbiased relative to the voting
rule (blue dotted line); second, when the prior is biased relative to the voting rule (red and green
line).

The following corollary provides the explicit formula for the distribution of the election outcome
in each state in the Lambert-type limit equilibria of Theorem 2, hence, in particular, the explicit
formula underlying the graphs in Figure 2.

Corollary 1. Let d = 3. Let Pr(G) − kPr(g) > 0.18 For any equilibrium sequence such that there
exists n̄ ∈ N and sgn(qα − τ) 6= sgn(qβ − τ) for any n ≥ n̄: the probability that A gets elected in α19

converges to

Φ((
2

τ(1− τ)
)

1
2W η(νp0(1− pτ ))) if η > 0,

Φ((
2

τ(1− τ)
)

1
2 (W η(νpτ (1− p0))2 − η)

1
2 )) if η < 0.

The probability that A gets elected in β converges to

Φ((
2

τ(1− τ)
)

1
2 (W η(νp0(1− pτ ))2 + η)

1
2 )) if η > 0,

−Φ((
2

τ(1− τ)
)

1
2W η(νpτ (1− p0))) if η < 0.

where Φ is the cumulative distribution function of the standard normal distribution.

18For Pr(G)− k
2
d−1 Pr(g) < 0, the formulas (58) below describe the probability that B gets elected in α.

19Formulas for the probability that A gets elected in β are derived analogously.
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Proof. Note that η > 0 is equivalent to p0 < pτ . Consider the case when η > 0. Consider any
equilibrium sequence such that there exists n̄ ∈ N and sgn(qα − τ) 6= sgn(qβ − τ) for any n ≥ n̄. It
follows from Theorem 2 that the limit of the equilibrium sequence satisfies the Lambert equation
(33) if η > 0. Hence, the limit of the sequence is fully described by

δα = W η(νp0(1− pτ )).

It follows from the assumption that Pr(G) − k
2
d−1 Pr(g) > 0 and from Lemma 4 that qα > qβ for

any n sufficiently large. The assumption that sgn(qα − τ) 6= sgn(qβ − τ) for any n ≥ n̄ implies that
qα > τ for any n sufficiently large. It follows from Lemma 7 that the probability that A gets elected
in α converges to

Φ((
2

τ(1− τ)
)

1
2 δα) = Φ((

2

τ(1− τ)
)

1
2W η(νp0(1− pτ ))). (58)

The formulas for all other cases are derived analogously.

4 Implementation of Social Choice Rules

This section characterises which social choice rules are implementable by choice of the cost function
c for information. For each ρ ∈ R+, define the (state-dependent) Bergson welfare function Bρ :
([0, 1]× {G, g})2n+1 × {α, β} → R (Burk [1936]) by

Bρ((yi, λi), ω) =
∑

i=1,...,2n+1

{∑
i:λi=G

(1− yi)ρ +
∑
i:λi=g

−(k(1− yi))ρ if ω = α,∑
i:λi=G

−(yi)
ρ +

∑
i:λi=g

(kyi)
ρ if ω = β

Fix some ω ∈ {α, β}. For any ρ, the restriction of the Bergson welfare function to Bρ(−, ω) for
some ω ∈ {α, β}, induces a mapping from preference profiles of the voters to (social) preferences
over election outcomes. Roberts [1980], Theorem 6 axiomatizes the mappings from strictly positive
utility profiles to (social) preferences over outcomes that are implementable by the Bergson wel-
fare functions: the implementable mappings are the only ones that satisfy continuity, anonymity,
neutrality, monotonicity, separability and scale invariance.20 A social choice rule is a function
f : ([0, 1]× {G, g})2n+1 × {α, β} → 2{A,B}. For each ρ ∈ R+, define the (state-dependent) Bergson
social choice rule fρ by

fρ((yi, λi), ω) =


{A} if Bρ((yi, λi), ω) > 0,

{A,B} if Bρ((yi, λi), ω) = 0,

{B} if Bρ((yi, λi), ω) < 0.

A cost function c robustly implements a social choice rule f if given c, for any p0 ∈ (0, 1), there
exists an equilibrium sequence σn such that

lim
n→∞

Pr(ti)i=1,...,2n+1
(some x ∈ fρ((ti), ω) is elected|ω;σn) = 1.

Lemma 8. Let ρ = 2
d−1 . The cost function c(x) = xd with d > 3 robustly implement the Bergson

social choice rule with ρ = 2
d−1 .

Proof. Note that the value of the Bergson welfare function equals the sum of the utility differences
of the type profile in a state ω, that is

Bρ((yi, λi), ω) =
∑

i=1,...,2n+1

(u(ti, A, ω)− u(ti, A, ω))ρ. (59)

20The exact definitions of these axioms are given in the cited papers.
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Hence, Bρ((yi, λi), ω) > 0 if and only if 1
2n+1

∑
i=1,...,2n+1(u(ti, A, ω) − u(ti, A, ω))ρ > 0. It fol-

lows from the weak law of large numbers that limn→∞ Bρ((yi, λi), ω) > 0 almost surely when
Et((u(t, A, ω)−u(t, B, ω))ρ) > 0 and that limn→∞ Bρ((yi, λi), ω) < 0 almost surely when Et((u(t, A, ω)−
u(t, B, ω))ρ) < 0. Now,

Et((u(t, A, α)− u(t, B, α))ρ) = Pr(G)E((1− y)ρ)− Pr(g)E(kρ(1− y)ρ)

= Pr(G)− kρPr(g)E((1− y)ρ),

Et((u(t, A, β)− u(t, B, β))ρ) = −Pr(G)E(yρ) + Pr(g)E(kρyρ)

= −(Pr(G)− kρPr(g))E(yρ).

Case 1. Let Pr(G)− kρPr(g) > 0.
First, it follows from the above observations that limn→∞ Bρ((yi, λi), ω) > 0 almost surely in α
and limn→∞ Bρ((yi, λi), ω) < 0 almost surely in β. Hence the Bergson social choice correspondence
selects {A} almost surely in α and to {B} almost surely in β as n → ∞. Recall that ρ = 2

d−1 .
It follows from Theorem 2 and Theorem 3 and the assumption of this case that there exists an
equilibrium sequence for which A is elected in α with probability converging to 1 and for which
B is elected in β with probability converging to 1. This shows that c(x) = xd implements fρ
asymptotically.

Clearly, besides the Bergson social choice rules with 0 < ρ < 1, also the constant social choice
rule that implements A in both states with probability 1 and the constant social choice rule that
implements B in both states with probability 1 is robustly implementable, namely through the trivial
equilibria in which all citizens vote for the same alternative. The Condorcet Jury Theorem that holds
in the setup of this model when cost is zero (see Bhattacharya [2013]) implies that the Bergson social
choice rule with parameter ρ = 0 (which corresponds to ’full information equivalence’) is robustly
implemented by the cost function c(x) = 0. The following theorem shows that however besides the
constant and the Bergson social choice rules no social choice rules are robustly implementable.

Theorem 5. Let ψ(p0) 6= τ .

1. The only social choice rules that are robustly implementable by some cost function are the
constant social choice rules and the Bergson social choice rules with parameter 0 ≤ ρ < 1.21

2. For the cost function c(x) = x3, there exists an equilibrium sequence for which the election
outcome coincides with the Bergson social choice rule with ρ = 1 (utilitarian welfare) with
probability strictly larger than 1

2 as n→∞. When η →∞, this probability converges to 1.

Proof.

1. We use results from the following Section 6 that finishes the characterisation of all equilibria
for any cost function c(x) = xd: Recall the assumption that ψ(p0) 6= τ from the statement of
this theorem.
Let d < 3. Corollary 2 states that all equilibrium sequences implement a constant outcome
across states.
For d = 3, there exist at most three distinct limit equilibria: a limit equilibrium that corre-
sponds to voting according to the prior (see Theorem 6), a Lambert type limit equilibrium
(see Theorem 2) and a limit equilibrium for which a fixed alternative x ∈ {A,B} is elected
with probability 1

2 ≤ pω < 1 in each state (see Remark 2). Importantly, we conclude that for
any d ≤ 3, there is no non-constant distribution of election outcomes such that for any prior
p0 ∈ (0, 1) there exists a limit equilibrium that implements the distribution. Hence, there does
not exist a non-constant social choice rule that is robustly implemented by a cost function

21Interestingly, a similar result has been independently shown by Eguia and Xefteris [2018] in a different context.
The limit equilibria under vote-buying correspond to the Bergson social choice rules (without restriction on ρ).
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c(x) = xd with d ≤ 3.
For d > 3, it follows from Theorem 8 and it proof that any limit equilibrium either implements
the constant social choice rule that selects the outcome that is favored by the prior or the
equilibrium sequence satisfies sgn(qα − τ) 6= sgn(qβ − τ). It follows from Lemma 8 that, for
d > 3, any equilibrium sequence with sgn(qα − τ) 6= sgn(qβ − τ) robustly implements the
Bergson social choice rule with ρ = 2

d−1 . Note that the function that maps d > 3 to 2
d−1 is

surjective on (0, 1). It follows from the Condorcet Jury Theorem (Bhattacharya [2013]) that
the Bergson social choice rule with ρ = 0 (full information outcome) is robustly implemented
by the cost function c(x) = 0.

2. The claim directly follows from Theorem 3 and from Corollary 1 which also, for each state,
specifies the limit of the probabilities that the election outcome in the equilibrium sequence is
utilitarian as n→∞ as a function of the primitives.

5 Determinants of Utilitarian Welfare

In this section, we study the social welfare implications of varying the preference distribution in
two ways: First, we capture the degree of the conflict of interest or the competitiveness of the
election by the difference in the aggregate intensities of both groups and show that social welfare
unambiguously decreases with the conflict of interest. However, since the election is more competitive
when the conflict of interest is higher, we show that also information acquisition increases, effectively
mitigating the welfare loss.
Conflict of Interest. Let d = 3. Consider the Lambert-type limit equilibrium σC as a function of
the conflict of interest C = (Pr(G)− kPr(g))−1 > 0. Fix some C ′ and let agents play σC′ . Suppose
that the conflict of interest increases from C ′ to C > C ′ (everything else being fixed). Then, the
election is in expectation more close to being tied as n→∞: formally,

0 <
[
Pr(σ(s, t) = 1|α;σC′ , C)− Pr(σ(s, t) = 1|α;σC′ , C)

]
n

1
2

= lim
n→∞

2(Pr(G)IG(σC′)− Pr(σC′(g)Ig(σ
′
C))n

1
2

= lim
n→∞

4(d− 1)

d

f(ỹ)

h′(ỹ)
C−1x(ỹ, G)2n

1
2

< lim
n→∞

4(d− 1)

d

f(ỹ)

h′(ỹ)
(C ′)−1x(ỹ, G)2n

1
2

= lim
n→∞

2(Pr(G)IG(σC)− Pr(σC′(g)Ig(σC))n
1
2

= lim
n→∞

[
Pr(σ(s, t) = 1|α;σC′ , C

′)− Pr(σ(s, t) = 1|α;σC′ , C)
]
n

1
2 ∈ R.

where the equality on the second line restates the equation (10). The equality on the third and fifth
line follow from Lemma 4. The inequality on the fourth line follows from C > C ′.We see that the
election is more close to being tied, because the difference in the amount of information acquired
by the majority group, that is Pr(G)IG, and the amount of information acquired by the minority
group, that is Pr(g)Ig is smaller. Hence, the screening problem worsens when the conflict of interest
increases (’screening effect’). However, as the election is also in expectation more close to being
tied, as an indirect effect the incentives to acquire information increase (’competition effect’) or, put
differently, the free-rider problem relaxes. However, intuitively, the indirect effect on information
acquisition is second-order and dominated by the direct effect of a higher conflict of interest. This is,
in fact, true and Figure 3 shows how the utilitarian efficiency of the Lambert-type limit equilibrium
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is strictly decreasing as a function of the conflict of interest C. Formally, this follows since the
reduced form δω of the Lambert-type equilibrium is strictly decreasing in C (compare with Figure
1) and since the utilitarian welfare of the equilibrium is strictly increasing in δω as Lemma 7 shows.

Moreover, the election outcome converges to the random election outcome in each state as C →
∞.

  

C'C

{Screening
Effect 

{Competition
Effect 

Figure 3: Let d = 3 and τ = pτ = p0 = 1
2 . Let Pr(G) − kPr(g) > 0. Figure 3 shows the

utilitarian efficiency of the Lambert-type limit equilibrium of Theorem 2 as a function of C =
(Pr(G)− kPr(g))−1 > 0. Figure 3 shows also how the change in utilitarian efficiency as the conflict
of interest increases from C to C ′ > C decomposes into a direct effect (the ’screening effect’) and
an indirect effect (the ’competition effect’) from more information acquisition.

Let d > 3. Theorem 4 shows how the conflict of interest interacts with the cost of informa-
tion. Whenever the utilitarian outcome is the one preferred by the minority group g, that is when
Pr(G)−kPr(g) < 0, the following can happen: When costs are low, that is when d > 3, the amount of
information acquired by the majority group, that is Pr(G)IG, might exceed the amount of informa-

tion acquired by the minority group, that is Pr(g)Ig. This is the case when Pr(G)− k
2
d−1 Pr(g) > 0;

see Lemma 3). But then, the order of the voting probabilities is given by qα > qβ for any n large
enough; see Lemma 4, so, in any equilibrium with sgn(qα − τ) 6= sgn(qβ − τ) in each state the
outcome prefered by the majority group is more likely. In fact, Theorem 4 shows that, in these
cases, the probability that the utilitarian outcome is elected converges to zero. Figure 4 illustrates
the intervals of the parameter Pr(G) for which the election outcome is inefficient when k = 2 as a
function of the level of cost d. When d grows to infinity, that is information becomes arbitrarily
cheap, the election outcome converges to the full-information outcome. Hence, for d → ∞ the mi-
nority prefered outcome is not elected.
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Figure 4: Let d > 3, k = 2 and Pr(G) > Pr(g). So, the utilitarian outcome in each state is the
one prefered by minority group if Pr(G) − 2Pr(g) < 0 ⇔ Pr(G) < 2

3 . The figures illustrate the
utilitarian efficiency of the election in the unique limit equilibrium for which the election outcome is
not constant across states as a function of d and Pr(G). The limit equilibrium is inefficient on the

open interval ( 2
2
d−1

1+2
2
d−1

, 23 ). The third figure depicts the lower bound 2
2
d−1

1+2
2
d−1

as a function of d; wee

see that the equilibrium outcome converges to the full information outcome for d→∞.

The Strength of Ideology and Voting Power. Recall the ideology and taste interpretation of the
payoff types: y = i + e for some normalised ideology component i = 1

2 , and a taste component
e ∈ [−i, i]. Whenever the taste component of a voter matters weakly more than ideology, that is
when |e| ≥ |i| or equivalently when y ∈ {0, 1}, the voter prefers either A independently of his belief
about the state or B independently of his belief about the state. Suppose that the distribution of
types differs across groups, that is y ∼ Fλ for λ ∈ {G, g}. Denote m(λ) the mass of types for which
taste dominates ideology, that is of the types for which e ∈ {− 1

2 ,
1
2}. Suppose that the conditional

distributions Fλ(−, y ∈ (0, 1)) are identical across λ ∈ {g,G}. Denote by f the densities of the
conditional distributions (Fλ)y∈(0,1). It is easy to see that for this extension of the model, the
approximation (28) of Lemma 4 generalises to

qα(BR(σn))− qβ(BR(σn))

≈ 4(d− 1)

d

1

h′(ỹ)
((1−m(G))f(ỹ)Pr(G)− k

2
d−1 (1−m(g))f(ỹ)Pr(g))x(ỹ, G)2. (60)

Hence, for any strategy sequence σn, we have

qα(BR(σn))
(<)
> qβ(BR(σn))

⇔ (1−m(G))Pr(G)− k
2
d−1 (1−m(g))Pr(g)

(<)
> 0. (61)
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We can understand (1−m(G))Pr(G) as the voting power of group G and (1−m(g))kPr(g) as the
voting power of group g. The approximation (60) implies that the group with the higher voting
power determines which outcome is more likely to be elected in each state. The following obser-
vations generalise to the extended model: For d > 3, it follows from Proposition 4 that the more
powerful group can ensure election of the prefered outcome with probability 1 in each state. For
d = 3, the outcome probabilities are continuous in the difference of the voting power (see Corollary
1). A group with more voters for which taste dominates ideology has a lower voting power, since
(1−m(λ)) decreases. In this sense, a stronger ideology of a group is directly related to voting power
and a perfect substitute for intensities or group size.

More Consensus can be Bad. To be inserted.

6 Discussion and Remarks

6.1 Cursed Downsian Equilibria

Lemma 9. For any sequence of strategies σn with limn→∞ qω ∈ (0, 1) for any ω ∈ {α, β}: If
limn→∞ |qα(σn)− τ | − |qβ(σn)− τ |n = 0 then limn→∞ Pr(α|piv, σn) = p0.

Proof. In the Appendix.
Lemma 9 formalizes the intuition that voters cannot learn anything about the state from condi-

tioning on the election being tied, for n→∞, if the probability that a random citizen votes A in α
is sufficiently close to the probability that a random voter random citizen votes A in β.

Low Information Acquisition implies no Learning about the State. Intuitively, if the total amount
of information I(λ) =

∫
y∈[0,1] x(y, λdF (y) acquired by any group is very small, then the probability

that a random citizen votes A in α and the probability that a random citizen votes A in β are very
close. In fact, if limn→∞ Iλ(σn) · n = 0 for all λ ∈ {g,G}, it follows from the equality (10) that

lim
n→∞

(|qα(σn)− τ | − |qβ(σn)− τ |)n = 0 (62)

which is the sufficient condition for no learning about the state from Lemma 9.
Roughly speaking, the equation (62) shows that sufficiently low information acquisition implies no
learning about the state in equilibrium. We claim that generically the converse is also true.

Generically, Voting According to the Prior implies Low Information Acquisition. Let |ψ(p0)−τ | >
2ε for some ε > 0: This means that a random voter prefers A with probability unequal to τ un-
der the prior (this is what we mean with ’generic’). Suppose that voters follow a strategy with
|qω − ψ(p0)| < ε for any ω ∈ {α, β}. It follows from the assumption |ψ(p0) − τ | > 2ε that

qω 6= τ , and hence ψ(p0)
τ

τ 1−p0
1−τ

1−τ
< 1. It follows from Lemma 2 that the probability of being

pivotal converges to zero exponentially fast. It follows from the first-order conditions (13) and
(14) that any type t either acquires no information or an information of a quality x∗(t) such that
c′(x∗(t)) = x∗(t)d−1 < 2Pr(piv|σ). Consequently, the total information Iλ acquired by any group λ,
converges to 0 exponentially fast.

Generically, Low Information Acquisition is Self-confirming. We claim that voting approximately
according to the prior is self-confirming. For this, consider ε > 0 with |ψ(p0)− τ | > 2ε. Recall that
we can understand the best response as a function of the voting probalities qα and qβ (see the dis-
cussion at the end of Section 2). Consider any strategy with |qω − τ | > ε for any ω ∈ {α, β}. For
example, any strategy with |qω−ψ(p0)| < ε satisfies this assumption. We just argued in the previous
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paragraph that, under the best response, Iλ converges to zero exponentially fast for any λ ∈ {G, g}.
It follows from the formula (10) that the difference qα − qβ converges to zero exponentially fast. It
follows from Lemma 9 that voters cannot learn anything from conditioning on the election being
tied, for n → ∞, that is limn→∞ Pr(α|piv, σn) = p0. Recall the observation (21) that the quality
of information acquired by any type t converges to 0 in equilibrium. It follows from (25) and (26)
that limn→∞ qω = ψ(Pr(α|piv)) = ψ(p0). Hence, there exists n(ε) such that for any n ≥ n(ε), the
best response to (qω)ω∈{α,β} is a strategy with voting probabilities ε-close to ψ(p0). It follows from
a fixed point argument, that there exists a sequence of equilibria that converge to voting according
to the prior.

We call an equilibrium sequence σn cursed if, for any λ ∈ {G, g}, the total information I(λ)
converges to zero exponentially fast under σn, and conclude

Theorem 6. (Cursed Equilibrium Sequences)
If φ(p0) 6= 1

2 , there exists a cursed equilibrium sequence σn and limn→∞ qω = ψ(p0) for any ω ∈
{α, β}.

Note that it follows from the law of large numbers that any equilibrium sequence σn with
limn→∞ qω = ψ(p0) for any ω ∈ {α, β}, satisfies

Pr(A is elected|α) = Pr(A is elected|β) =

{
1 if ψ(p0) > τ,

0 if ψ(p0) < τ.
(63)

Note that it follows from the equation (10) that for any cursed equilibrium sequence, the difference
in the voting probabilities qα and qβ is converging to zero exponentially fast. Therefore, it follows
from Lemma 9 that limn→∞ Pr(α|piv, σn) = p0. It follows from the equations (25) and (26) that
any cursed equilibrium sequence satisfies

lim
n→∞

qω = ψ(p0). (64)

6.2 High Cost

Theorem 7. (Equilibria when Costs are High)
Let d < 3 and σn be an equilibrium sequence. Then,

lim
n→∞

Pr(A is elected|α;σn) = lim
n→∞

Pr(A is elected|β;σn) ∈ {0, 1

2
, 1}.

Proof.

Claim 2. Let d < 3 and σn an equilibrium sequence. Then, δα((σn)) = δβ((σn)).

It follows from the first-order condition (13) that c′(x(ỹ, G)) = x(ỹ, G)d−1 ∈ Θ(Pr(piv|σn)).
The probability that a voter is pivotal is stricly bounded above as a consequence of Lemma 2,

Pr(piv|σn) ∈ O(n−
1
2 ). As a consequence, x(ỹ, G)2 ∈ O(n−

1
d−1 ). From Lemma 7 it follows that

the difference of the expected vote share for A in α and the expected vote share for A in β are

converging to zero at a rate larger than n−
1
d−1 , that is |qα − qβ | ∈ O(n−

1
d−1 ). For any d > 3, this

implies |qα − qβ | ∈ O(n−
1
2 ). So, in particular

δα − δβ = lim
n→∞

[
(qα − τ)− (qβ − τ)

]
n

1
2 = (qα − qβ)n

1
2 = 0.

This finishes the proof of Claim 1. Now, Theorem (7) follows from Claim 1 as follows: suppose
that δα = δβ ∈ {−∞,∞}. Then, it follows from Lemma 7 that limn→∞ Pr(A is elected|α;σn) =
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limn→∞ Pr(A is elected|β;σn) ∈ {0, 1}. Suppose that δα = δβ ∈ R. It follows from Lemma 1
that limn→∞ Pr(α|piv;σn) = p0. It follows from (25) and (26) that limn→∞ qω = ψ(p0). Hence,
ψ(p0) = τ , since otherwise δω /∈ R which contradicts the initial assumption. It follows from the strict

monotonicity of ψ that p0 = pτ . Suppose that that Pr(G)− k
2
d−1 Pr(g) > 0. It follows from Lemma

(4) that qα > qβ for any n sufficiently large. Now, suppose that δω < 0. Hence, for any n sufficiently
large, qβ < qα < τ . But, then Pr(α|piv;σn) > p0 = pτ . So, it follows from the strict monotonicity
of ψ that ψ(Pr(α|piv;σn) > τ . It follows from (25) that limn→∞ qα = limn→∞ ψ(Pr(α|piv;σn) ≥ τ .
But this contradicts with the initial assumption that δω < 0. Analogously, one leads the assumption
that δω > 0 to a contradiction. Analogously, one arrives at contradictions for the case when Pr(G)−
k

2
d−1 Pr(g) < 0. We conclude that δα = δβ ∈ R implies δα = δβ = 0. It follows from Lemma 7

that this implies that limn→∞ Pr(A is elected|ω) = 1
2 for any ω ∈ {α, β}. This finishes the proof of

Theorem 7.

Corollary 2. Let d < 3. If ψ(p0) 6= τ , then for any equilibrium sequence, limn→∞ Pr(A is elected|ω) =
1 for all ω ∈ {α, β} or limn→∞ Pr(A is elected|ω) = 0 for all ω ∈ {α, β}.
Proof. W.l.o.g. let ψ(p0) > τ , that is p0 ≥ pτ . The other case is proven in the same way. Recall
Claim 1 of Theorem 7. It follows from Lemma 7 that it suffices to show that δα = δβ /∈∈ R. Suppose
the opposite. It follows from Lemma 1 that

lim
n→∞

Pr(piv|α)

Pr(piv|β)
=

φ(δα
φ(δβ)

= 1. (65)

Hence, limn→∞ Pr(α|piv) = p0. It follows from (25) and (26) that limn→∞ qω = ψ(p0) for any
ω ∈ {α, β}. But this contradicts with the initial assumption that δω ∈ R, given that ψ(p0) > τ .

6.3 Other Equilibria

Let me finish the characterization of the limit equilibrium outcomes.

Theorem 8. Let d > 3. For any equilibrium sequence σn, denote limn→∞ Pr(A elected|ω) = zω.
Then, (zα, zβ) ∈ {(1, 0), (0, 1), (0, 0), (1, 1)}.
Proof. Consider any equilibrium sequence σn. If limn→∞ Pr(α|piv;σn) 6= pτ , then it follows from
(25) and (26) that limn→∞ qω 6= τ for any ω ∈ {α, β}. Then, it follows from the weak law of large
numbers that ((zα, zβ) ∈ {(0, 0), (1, 1)}. If limn→∞ Pr(α|piv;σn) = pτ , this implies

1− p0
p0

pτ
1− pτ

= lim
n→∞

Pr(piv|α;σn)n−
1
2

Pr(piv|α;σn)n−
1
2

=
φ(δα)

φ(δβ)
, (66)

whenever δβ ∈ R. Together with the converse argument, this implies that δα ∈ {∞,−∞} is equiv-
alent to δβ ∈ {∞,−∞}. Now, it follows by the same line of argument as used to proof Claim 1 in
the proof of Theorem 4 that

lim
n→∞

(qα − qβ)n
1
2 =∞ (67)

(see (57)). Intuitively, cost are low enough (d > 3) such that the net amount of total information

acquired and therefore the difference in vote shares (recall 10) becomes infinitely larger than n−
1
2 . If

sgn(qα− τ) 6= sgn(qβ − τ), it follows from (67) and Lemma 7 that (zα, zβ) = (1, 0). If sgn(qα− τ) =
sgn(qβ − τ), it follows from (67) and Lemma 7 that (zα, zβ) ∈ {(0, 0), (1, 1)}.
Remark 2. Let d = 3 and Pr(G)− kPr(g) > 0.22

22The analogous remark applies when Pr(G)− kPr(g) < 0.
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1. Theorem 2 characterizes all equilibrium sequences for which the utilitarian outcome is more
likely to be elected in each state for any n large.

2. It follows from Lemma 4 that Pr(G)− kPr(g) > 0 implies that qα > qβ for any n sufficiently
large. Consequently, it follows from Lemma 7 that any equilibrium sequence, for which the
utilitarian outcome is less likely to be elected in some state, satisfies sgn(qα − τ) > 0 ⇔
sgn(qβ − τ) > 0 for any n sufficiently large and sgn(qα − τ) < 0 ⇔ sgn(qβ − τ) < 0 for any

n sufficiently large. Therefore, the limit limn→∞(qα − qβ)n
1
2 of the scaled net information is

given by (|δα| − |δβ |) (whenever δα and δβ are finite real numbers). Everything else being the
same, it follows from the proof of Theorem 2 that:

1. If p0 ≥ pτ , the equilibrium sequence must satisfy the equation

w − (w2 + η)
1
2 = ν(pτ (1− p0)) (68)

for w = δα.

2. If p0 ≤ pτ , the equilibrium sequence must satisfy the equation

w − (w2 + η)
1
2 = ν(p0(1− pτ )) (69)

for w = δβ.

It is easy to show that δα ∈ R ⇔ δβ ∈ R (see e.g. the proof of Claim 1 after Theorem
3). If δα = δβ = ∞, it follows from Lemma 7 that limn→∞ Pr(A is elected|ω) = 1 for all
ω ∈ {α, β}. If δα = δβ = −∞, it follows from Lemma 7 that limn→∞ Pr(A is elected|ω) = 0
for all ω ∈ {α, β}.

7 Literature

To be inserted.

8 Conclusion

In this paper, we study large elections with costly information acquisition in a canonical and general
model that allows for conflict of interest between voters and supermajority rules. Unlike in earlier
work, both a screening and a free-riding problem are present and it is not known from the previous
literature if, in such a setting, a Downsian paradox of voting is present. The paper provides several
sets of results. First, we characterize all limit equilibria and show, in particular, when non-Downsian
limit equilibria exist. By doing so, we uncover a previously unknown relationship between the limit
equilibria of voting games with information cost and generalizations of the product logarithm or
Lambert W -function W0. The product logarithm function and its generalizations possess useful
technical properties, e.g. they follow specific differential equations. In this sense, I consider the
uncovering of the relation to voting games as a technical advance that creates room for future work.
Second, the paper provides several comparative statics results. Most importantly, we study the effect
of varying the degree of conflict of interest of voters. Thereby, we uncover a competition effect, which
shows that information acquisition increases with the conflict of interest. However, the competition
effect is dominated by a screening effect, that is, the screening problem worsens and hence, overall
a higher conflict of interest implies lower social welfare in equilibrium.
Third, based on the characterization of the limit equilibria, we characterize the social welfare func-
tions that are asymptotically implementable (Theorem 5). This characterization relates the equilib-
ria of elections with costly information to a specific class of social welfare rules, the Bergson social
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welfare rules with parameters 0 ≤ ρ < 1. Importantly, the Bergson social welfare rules possess an
axiomatization that was provided by Roberts [1980]. Therefore, the importance of Theorem 5 is in
building a bridge between the typically distant worlds of the axiomatic social choice theory and the
game-theoretic analysis of elections.
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9 Appendix

Appendix A: Equilibrium Characterisation

Lemma 10. We have that for all y ∈ [0, 1]: δh(y)
δy < 0 and δh(Pr(α|piv))

δy ≤ −1.

Proof. For the ease of notation, set p := Pr(α|piv)) for this proof.

δh(y)

δy
=

−p
(1− y)p+ y(1− p)

− (1− 2p) · (1− y)p

((1− y)p+ y(1− p))2
, (70)

δh̃(y)

δy
=

1− p
(1− y)p+ y(1− p)

− (1− 2p) · y(1− p)
((1− y)p+ y(1− p))2

. (71)

The formulas show that δh(y)
δy < 0 for any p ≤ 1

2 . They also show that δh̃(y)
δy > 0 for any p ≤ 1

2 ,

which implies that δh(y)
δy = − δh̃(y)δy < 0 for any p ≥ 1

2 . We conclude that δh(y)
δy < 0 for any p ∈ [0, 1].

Plugging in y = p into (70) yields

δh(Pr(α|piv))

δy
=

−p
2(1− p)p

− (1− 2p)
(1− p)p

(2(1− p)p)2

= −2p− (1− 2p)

4(1− p)p

= − 1

4p(1− p)
≤ −1,

where we used that the maximum of the function x(1− x) on the interval [0, 1] is 1
4 .

For any type t = (y,G),

δx∗(t)

δy
=

Pr(piv|σ)(1− 2Pr(α|piv))

d(d− 1)x∗(t)d−2

=
dx∗(t)d−1 (1−2Pr(α|piv))

Pr(α|piv)(1−y)+Pr(β|piv)y

d(d− 1)x∗(t)d−2

=
1

d− 1
x∗(t)

(1− 2Pr(α|piv))

Pr(α|piv)(1− y) + Pr(β|piv)y
. (72)

where the equality on the first line follows from the implicit function. The equality on the second
line follows from the first-order condition (13) and the assumption that c(x) = xd. Since, x∗(t) is
uniformly converging to 0 in any equilibrium sequence σn for n → ∞, it follows from the equality

(72) that δx∗(t)
δy is uniformly converging to zero. Then, it follows from Lemma 10 that the difference

of the left hand side and the right hand side of the indifference equation (15) is strictly decreasing in
y around y = Pr(α|piv) in equilibrium, for any n sufficiently large. Recall that h(Pr(α|piv) = 1

2 and
that the optimal information quality x∗(t) is strictly larger than zero in any equilibrium. Hence,
the difference of the left hand side and the right hand side of the indifference equation (15) is
negative for y = Pr(α|piv). It follows that (15) has a unique solution y(G) < Pr(α|piv) for any n
sufficiently large. Analogously, one shows that the indifference equation (16) has a unique solution
y(G) > Pr(α|piv) for any n sufficiently large.

Lemma 3. Let ỹ = Pr(α|piv). Then, for any sequence of strategies σn and any λ ∈ {G, g}, the best
response satsifies

Iλ =
2(d− 1)

d

f(ỹ)

h′(ỹ)
· x(ỹ, λ)2 +O(Pr(piv|σn)

2
d−1 )o(1). (24)
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Proof. Recall that we defined h(y) = Pr(α|piv)(1−y)
Pr(α|piv)(1−y)+Pr(β|piv)y , and the equation (16) which we

rewrite as

h(y)− 1

2
=

d− 1

d
x∗(y, λ). (73)

A Taylor approximation of the left hand side at the root ỹ := Pr(α|piv) gives

h′(ỹ)(y(λ)− ỹ) +O((y(λ)− ỹ))2 =
d− 1

d
x∗(y(λ), λ). (74)

Analogously, we obtain

h′(ỹ)(ỹ − y(λ)) +O((y(λ)− ỹ)2 =
d− 1

d
x∗(y(λ), λ). (75)

Hence,

y(λ)− y(λ) =
d− 1

d
(x∗(y(λ), λ) + x∗(y(λ), λ))

1

h(ỹ)
+O((y(λ)− ỹ)2 +O((y(λ)− ỹ)2

=
2(d− 1)

d
x(ỹ, λ)(1 + o(1))

1

h′(ỹ)
+O((y(λ)− ỹ)2 +O((y(λ)− ỹ)2. (76)

where the first line follows from the equations (73) and (75). The equality on the second line
follows, since x(y) is continuous and since limn→∞ y(λ) = limn→∞ y(λ) = ỹ. Taylor approximations
of F (y(λ) and F (y(λ)) at ỹ yield

F (y(λ))− F (y(λ) = (y(λ)− y(λ))f(ỹ) +O(y(λ)− y(λ))2) (77)

Note that it follows from the observation that the interval of swing voters vanishes for n → ∞
(see Section 2.2) that limn→∞

(y(R)−ỹ)2

y(R)−ỹ) = y(R) − ỹ = 0. Therefore the approximations (75) and

(74) imply that

h′(ỹ)(y(λ)− ỹ)(1 + o(1)) =
d− 1

d
x(y(λ)). (78)

This however in turn implies that (y(R) − ỹ) ∈ O(x(y(λ))). But, it follows from the first-order

conditions (13) and (14) that (x(y(λ), λ) ∈ O(Pr(piv|σn)
1
d ). We conclude that (y(R) − ỹ)2 ∈

O(Pr(piv|σn)
2
d ). Therefore, we can rewrite the approximation (77) further,

F (y(λ))− F (y(λ) = (y(λ)− y(λ))f(ỹ) +O(Pr(piv|σ)
2
d )

=
2(d− 1)

d

f(ỹ)

h′(ỹ)
x∗(ỹ, λ)(1 + o(1)) +O(Pr(piv|σ)

2
d ). (79)

where the equality on the last line follows from the equality (76) and the observation that (y(R)−
ỹ)2 ∈ O(Pr(piv|σn)

2
d ).
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We have

Iλ =

∫
y(λ)≤y≤y(λ)

x(y, λ)dF (y),

= (F (y(λ)− F (y(λ)))x(ỹ, λ)(1 + o(1)), (80)

where we used that y(λ) ≤ ỹ ≤ y(λ) (see Proposition 1) and that for all strategy sequences σn we
have limn→∞ |y(λ)− y(λ)| = 0 (see the discussion in Section 2.2). We obtain that

Iλ =
[2(d− 1)

d

f(ỹ)

h′(ỹ)
x∗(ỹ, λ)(1 + o(1)) +O(Pr(piv|σ)

2
d )
]
x(ỹ, λ)(1 + o(1))

= (
2(d− 1)

d

f(ỹ)

h′(ỹ)
)x∗(ỹ, λ)2(1 + o(1)) +O(Pr(piv|σ)

2
d )o(1)

= (
2(d− 1)

d

f(ỹ)

h′(ỹ)
)x∗(ỹ, λ)2 +O(Pr(piv|σ)

2
d )o(1) (81)

where the equality on the last line follows since (x(y(λ), λ) ∈ O(Pr(piv|σn)
1
d ). This equation (81)

had to be shown.

Appendix B: Equilibria with Much Information

Lemma 7. For any sequence of strategies σn, we have limn→∞ Pr(A is elected|ω;σn) = Φ(( 2
τ(1−τ) )

1
2 δω)

where Φ is the cumulative distribution function of the standard normal distribution and W η is the
generalised Lambert function (see Theorem 2).

Proof. Let qn := Pr(σn(s, t) = 1|ω). By using the normal approximation23

B(n+ 1, qn) ' N ((n+ 1)qn, (n+ 1)qn(1− qn)),

we see that the probability that A wins the election in ω converges to

Φ(
(n+ 1)q − (n+ 1) · qn
((n+ 1)qn(1− qn))

1
2

).

Taking limits n→∞, gives us

lim
n→∞

Φ(
(n+ 1)q − (n+ 1) · xn

(n+ 1)qn(1− qn))
1
2

) = lim
n→∞

Φ(
(n+ 1) 1

2 − (n+ 1)( 1
2 + (qn − 1

2 ))

(n+ 1)
1
2 (qn(1− qn))

1
2

)

= lim
n→∞

Φ((n+ 1)
1
2 (qn −

1

2
)(qn(1− qn))−

1
2 )

= lim
n→∞

Φ(2
1
2 δω(qn(1− qn))−

1
2 )

= Φ((
2

τ(1− τ)
)

1
2 δω),

where the last equality holds, because either δω ∈ {∞,−∞}, or limn→∞ qn = 1
2 .

23For this normal approximation we cannot rely on the standard central limit theorem, because qn varies with n.
However, the central limit theorem for triangular sequences holds for triangular sequences of Bernoulli distributions
B(r, q) with q bounded away from 0 and 1, by an application of the Berry-Esseen-Theorem. However, we will see
instantaneously in Section 2.3 that for any equilibrium sequence, we have limn→∞ qω ∈ {ψ(p0), τ} (see Lemma 5 and
its proof).
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Omitted Parts of the Proof of Theorem 3.
Now, we will prove Case 1 of Lemma 6 for the situation when the cost of information are low (d > 3).
Case 1. Suppose that there exists a sequence of fixed points (q̃αn, q̃βn) of the modified best reponse
and ñ ∈ N such that qβ(BR((q̃αn, q̃βn))) ≥ τ for any n ≥ ñ.
It follows from the first-order condition (13) and the observation that limn→∞ ỹ = pτ that

lim
n→∞

x(ỹ, G)d−1

2Pr(piv)(ỹ(1− ỹ)
= 1. (82)

Since, for any strategy sequence, x(t) converges uniformly to zero (see (21)), we have

lim
n→∞

x(ỹ, G)2

Pr(piv)
= lim

n→∞

x(ỹ, G)2

x(ỹ, G)d−1
x(ỹ, G)d−1

Pr(piv)

= ∞, (83)

where the equality on the second line follows from (82) and since d > 3. Also, it follows from the
assumption that q̃β = τ and from Lemma 2 together that the probability of being pivotal is a nonneg-

ative multiple of n−
1
2 for any n. Hence, it follows from the equation (83) that limn→∞ x(ỹ, G)2n

1
2 =

∞. Then, it follows from the inequality (50) that δα =∞. However, this yields a contradiction with
Claim 1 which showed that δα ∈ R.

Now, we will prove Case 2 of Lemma 6 for the situation when the cost of information are low or
intermediate (d ≥ 3).
Case 2. Suppose that there exists ñ ∈ N such that qα = τ for any n ≥ ñ. Relative to the sketch
of proof in the main text, the following proof is more involved since it does not use the assumption
that the prior favors one of the alternatives, that is the assumption that ψ(p0) 6= τ . However,
the contradiction is obtained in essentially the same way, by showing that the posterior conditional
on being pivotal would have to exceed the prior, and hence the voting probability under the best
reponse would be strictly unequal to τ when the electorate is large.
It follows from the construction of the modified best reponse and from the equation (46) that

q̃β < τ (84)

for any n ≥ n̄. Then,

δβ(BR(σn)) = lim
n→∞

|qβ(BR(σn))− τ |n 1
2

≥ lim
n→∞

(qα(BR(σn))− qβ(BR(σn))n
1
2

=
[4(d− 1)

d

f(ỹ)

h′(ỹ)
(Pr(G)− k

2
d−1 Pr(g))x(ỹ, G)2 +O(Pr(piv|σn)

2
d−1 )o(1)

]
n

1
2 ,(85)

where the inequality on the second line follows from the assumption that q̃α = τ which is equivalent to
qα(BR(σn)) ≤ τ . The equality on the third line follows from the formula for the difference in voting

probabilities in Lemma 3. It follows from the first-order condition (13) that x(ỹ, G) ∈ Θ(Pr(piv))
1
d−1 .

Consequently, limn→∞
x(ỹ,G)2

O(Pr(piv|σn)
2
d−1 )o(1)

= ∞. It follows from the inequality (85) that for any

d ≥ 3,

δβ(BR(σn)) ≥
[4(d− 1)

d

f(ỹ)

h′(ỹ)
(Pr(G)− k

2
d−1 Pr(g))x(ỹ, G)2

]
n

1
2 . (86)

Now, it follows from the assumption that q̃α = τ and from Lemma 2 that the probability of

being pivotal is a nonnegative multiple of n−
1
2 . Then, x(ỹ, G) ∈ Θ(Pr(piv)

1
d−1 and the inequality

(86) imply that
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δβ(BR(σn)) ≥ lim
n→∞

(mn−
1
2 )n

1
2

= m, (87)

for some m > 0 and any d ≥ 3. Then,

lim
n→∞

Pr(piv|β; (q̃β , q̃α))

Pr(piv|α; (q̃β , q̃α))
= lim

n→∞

φ(δβ(BR(σn))

φ(0)

< 1, (88)

where the equality on the first line follows from Lemma 1 and the assumption that qα = τ for any
n ≥ ñ. The inequality on the second line follows from (84) and since the density φ of the standard
normal distribution has a unique and strict maximum at zero. Consequently, limn→∞ Pr(piv|α) > p0.
It follows from the strict monotonicity of ψ that ψ(Pr(piv|α)) > ψ(p0) ≥ τ . Then, it follows from
the equation (25) that limn→∞ qα(BR(σn)) > τ . However, this contradicts with the assumption
that limn→∞ q̃α = τ or equivalently that limn→∞ qα(BR(σn)) ≤ τ .
This finishes the proof of the claim that there exists n̄ such that, for any n ≥ n̄, any fixed point is
interior.

Appendix C: Discussion and Remarks

Lemma 9. For any sequence of strategies σn with limn→∞ qω ∈ (0, 1) for any ω ∈ {α, β}: If
limn→∞ |qα(σn)− τ | − |qβ(σn)− τ |n = 0 then limn→∞ Pr(α|piv, σn) = p0.

Proof. We have

lim
n→∞

Pr(α|piv, σn)

Pr(β|piv, σn)
=

p0
1− p0

· Pr(piv|α, σn)

Pr(piv|βσn)
, (89)

where we used Bayes formula. Let qn := Pr(σ(s, t) = 1|α;σn) and vn := Pr(σ(s, t) = 1|β;σn). It
follows from Lemma 2 that

lim
n→∞

Pr(piv|α, σn)

Pr(piv|β, σn)
= lim

n→∞
(
qτn(1− qn)1−τ

vτn(1− vn)1−τ
)n. (90)

Consider ε > 0 such that limn→∞ qn ∈ [ε, 1 − ε] and limn→∞ vn ∈ [ε, 1 − ε]. Then, for any n
sufficiently large,

vτn(1− vn)1−τ ≥ ε2. (91)

Let L ∈ R denote the maximum of the absolute value of the derivative of the function xτ (1− x)1−τ

on [ε, 1− ε]. Then,

lim
n→∞

qτn(1− qn)1−τ

vτn(1− vn)1−τ

= lim
n→∞

(1 +
qτn(1− qn)1−τ − vτn(1− vn)1−τ

vτn(1− vn)1−τ
)n

≤ lim
n→∞

(1 +
L

ε2
|qn − vn|)n

≤ lim
n→∞

(1 +
m

n
)n for any m > 0,

= em, (92)
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where the inequality on the third line follows from the definition of L and the inequality (91). The
inequalities on the fourth line follow from the standing assumption that limn→∞ |qn − vn|n = 0.
Similarly,

lim
n→∞

qτn(1− qn)1−τ

vτn(1− vn)1−τ

= lim
n→∞

(1 +
qτn(1− qn)1−τ − vτn(1− vn)1−τ

vτn(1− vn)1−τ
)n

≥ lim
n→∞

(1− L

ε2
|qn − vn|)n

≥ lim
n→∞

(1− m

n
)n for any m > 0,

= e−m, (93)

It follows from the inequalities (92) and (93) that

lim
n→∞

qτn(1− qn)1−τ

qτn(1− qn)1−τ
= 1. (94)

It follows from the equalities (89), (90) and (94) that

lim
n→∞

Pr(α|piv, σn) = p0. (95)

10 Online Supplement

The online supplement provides a self-contained proof of the local central limit theorem for triangular
arrays of Bernoulli distributions that relies Stirling’s formula.

Lemma 2. Consider any strategy sequence σn. Then, for any ω ∈ {α, β}

lim
n→∞

Pr(piv|ω;σn)n
1
2 = lim

n→∞
(2π)−

1
2 (τ(1− τ))−

1
2

[
(
qω(σn)

τ
)τ (

1− qω(σn)

1− τ
)(1−τ)

]n
.

Proof. We have(
n

τn

)
=

n!

(τn)!((1− τ)n)!

' (2π)−
1
2 · nn+

1
2

(τn)τn+
1
2

((1− τ)n)(1−τ)n+
1
2 · e−n

e−τne−(1−τ)n

= (2π)−
1
2n−

1
2 (τn)−τn−

1
2 (1− τ)−(1−τ)−

1
2

where we used Stirling approximation

n! ' (2π)
1
2nn+

1
2 e−n

on the second line. Consequently,

Pr(piv|ω;σn) = Pr(B(n, qn) = τn)

=

(
n

τn

)
qτnn (1− qn)(1−τ)n

' n−
1
2 (2π)−

1
2 (τ(1− τ))−

1
2 (
qn
τ

)τn(
1− qn
1− τ

)(1−τ)n, (96)

where we again used a Stirling approximation on the third line. This finishes the proof.

38



Lemma 1. Consider any strategy sequence σn. Then,

lim
n→∞

Pr(piv|ω;σn)n
1
2 =

{
φ0,τ(1−τ)(δω) if δ ∈ R,
0 if δ ∈ {∞,−∞}

where φ0,τ(1−τ) denotes the density of the normal distribution with mean 0 and variance τ(1− τ).

Proof. Recall the formula (96), where we used a Stirling approximation to describe Pr(B(n, qn) =

τn) ·n 1
2 . We express the multiplicands on the right hand side of the approximation (96) one by one:

(
qn
τ

)τ = (1 + n−
1
2
δn
τ

)τ

= 1 + τn−
1
2
δ

τ
+
τ(τ − 1)

2!
· n−1(

δn
τ

)2 +O((
qn − τ
τ

)3)

= 1 + n−
1
2 δn − n−1

1− τ
2τ

δ2n +O((
qn − τ
τ

)3),

where we use an exact Taylor approximation on the second line. For this note that for any 0 ≤ z ≤
n−

1
2
δn
τ = qn−τ

τ , we have 1
3!τ(τ − 1)(τ − 2)(1 + z)τ−3z3 ∈ O(( qn−ττ )3). Similarly,

(
1− qn
1− τ

)(1−τ) = (1− n− 1
2
δn

1− τ
)(1−τ)

= 1− (1− τ)n−
1
2

δn
(1− τ)

+
(1− τ)(−τ)

2!
· n−1(

δn
1− τ

)2 +O(
qn − τ
τ

)3

= 1− n− 1
2 δn − n−1

τ

2(1− τ)
δ2n +O((

qn − τ
τ

)3)

where we again use an exact Taylor approximation on the second line. Consequently,

(
qn
τ

)τ (
1− qn
1− τ

)(1−τ)

= (1 + n−
1
2 δn − n−1

1− τ
2τ

δ2n) · (1− n− 1
2 δn − n−1

τ

2(1− τ)
δ2n) +O((

qn − τ
τ

)3)

= 1− n−1δ2n(1 +
τ2

2τ(1− τ)
+

(1− τ)2

2τ(1− τ)
) +O((

qn − τ
τ

)3)

= 1− n−1δ2n
1

2τ(1− τ)
+O((

qn − τ
τ

)3). (97)

where we use the binomial formula for the equality on the last line.
Case 1. If limn→∞ δn = δ ∈ R, then

e−
δ2

2τ(1−τ) = lim
n→∞

(1− n−1δ2 1

2τ(1− τ)
)n

= lim
n→∞

(1− n−1δ2n
1

2τ(1− τ)
+O(n−

3
2 (
δn
τ

)3))n

= lim
n→∞

(1− n−1δ2n
1

2τ(1− τ)
+O((

qn − τ
τ

)3))n

= lim
n→∞

[(
qn
τ

)τ (
1− qn
1− τ

)(1−τ)]n. (98)

where we used the limit characterisation of the e-function for the equality on the first and the second
line: For all x ∈ R, limn→∞(1 + x

n )n = ex. The equality on the third line follows from the definition
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δn = n
1
2 (qn − τ). The equality on the fourth line follows from (97). We insert the equality (98) into

(96) and obtain

Pr(B(n, qn) = τn) ' n−
1
2 (2π)−

1
2 (τ(1− τ))−

1
2 e−

δ2

2τ(1−τ)

= n−
1
2φ0,τ(1−τ)(δ) (99)

Case 2. If limn→∞ δn ∈ {∞,−∞} and limn→∞ qn = τ , then for any δ ∈ R, we have

e−
δ2

2τ(1−τ) = lim
n→∞

(1− n−1δ2 1

2τ(1− τ)
)n

≥ lim
n→∞

(1− n−1δ2n
1

2τ(1− τ)
)n

= lim
n→∞

(1− n−1δ2n
1

2τ(1− τ)
+O(n−

3
2 (
δn
τ

)3))n

= lim
n→∞

[(
qn
τ

)τ (
1− qn
1− τ

)(1−τ)]n,

where the equality on the third line follows from limn→∞
n−

3
2 δ3n

n−1δ2n
= limn→∞

(qn−τ)3
(qn−τ)2 = limn→∞ qn −

τ = 0. We insert the inequality (100) into (96) and obtain that

lim
n→∞

Pr(B(n, qn) = τn)n
1
2 ≤ (2π)−

1
2 (τ(1− τ))−

1
2 e−

δ2

2τ(1−τ)

= n−
1
2φ0,τ(1−τ)(δ) (100)

for any δ ∈ R.

Case 3. Suppose that limn→∞ qn 6= τ . Note that the function xτ (1 − x)1−τ has a unique
maximum at x = τ . Hence, limn→∞( qnτ )τ ( 1−qn

1−τ )(1−τ) < 1, and therefore

lim
n→∞

[(
qn
τ

)τ (
1− qn
1− τ

)(1−τ)]n = 0. (101)

We insert the equality (101) into (96) and obtain that

lim
n→∞

Pr(B(n, qn) = τn)n
1
2 = 0.
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