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Abstract

We study a model of Bayesian persuasion where the Sender publicly designs a sig-
nal structure, privately observes the signal realization, and then reports a message to
the Receiver at a cost that depends on the signal realization. We provide sufficient
conditions for full information revelation by the Sender. These conditions are satis-
fied under a large class of commonly studied communication games. The persuasion
problem then reduces to optimizing over the distribution of the Receiver’s posteriors,
where each distribution has a cost required to sustain the Sender’s credibility in the
communication stage. We apply this to study persuasion under partial commitment.
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1 Introduction

Many economic situations involve an agent wanting to influence the action of a decision
maker. When monetary transfers are not possible, the agent could instead strategically
control the decision maker’s information to influence her beliefs about the state of the world
and thus affect the actions that she takes. Kamenica and Gentzkow (2011) (hereafter, KG)
model this as a “Bayesian persuasion” problem whereby the agent (Sender, he) designs an
information structure that generates signals about the underlying state to the decision maker
(Receiver, she).

In this paper, we study a model of Bayesian persuasion with the innovation that new
information is transmitted to the Receiver by the Sender via potentially costly messages.
The Sender first publicly commits to a signal structure that generates new information
about an unknown state. Upon privately observing the signal realization, the Sender sends
the Receiver a message at a cost that depends on both the message and signal realization.
The Receiver then updates her belief as a Bayesian and takes an action that affects the
utility of both players.

Our model adds to the canonical Bayesian persuasion setup in two substantial ways. First,
when lying (appropriately defined) is possible but comes at a cost to the Sender, our setup
can be interpreted as weakening the Sender’s commitment to truthfully revealing all new
information to the Receiver, which is a key assumption in the Bayesian persuasion literature.
This is of particular relevance to persuasion activities that require expert interpretation
or preparation of the new information. For example, drug companies can commit to the
scientific research on their new product, but the results require expert interpretation, which
is susceptible to misrepresentation. Politicians prepare for re-election by emphasizing areas
that they expect to do well in during their term, but the eventual performance statistics can
be doctored before they are released from their office.

Second, our model incorporates the Sender’s choice of “how” to generate new information
under constraints presented at the information transmission stage. One of KG’s main insights
is that the Bayesian persuasion problem is equivalent to the Sender choosing a distribution
of posteriors for the Receiver, subject to the posteriors averaging back to the prior. Each
signal from the signal structure is attached to a posterior, and the signals used to encode
the respective posteriors are fully interchangeable. Therefore, the possible limitations in the
institution for information transmission are neglected. In contrast, in our model, the signal
that is used to encode each piece of new information can matter because the Sender’s cost
to transmit the new information to the Receiver (i.e., message cost) depends on it.
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To see why this can matter in practice, consider an example where a drug company is
persuading the FDA to approve a new drug, which can be either good or bad. The drug
company could design a test that searches for “negative news”, such as cases of side effects
from the new drug. If the drug is bad, negative news will be found with probability pB; if
the drug is good, negative news is found with only probability pG < pB. Therefore, when
there is news, the FDA’s belief about the drug worsens; on the other hand, when there is
no news, the FDA’s belief improves. Alternatively, the drug company could design a test
that searches for “positive news”, such as cases of improvement in the health condition after
taking the new drug. If the drug is good (respectively, bad), good news will be found with
probability qG (respectively, qB < qG). Notice that the outcome of the positive-news test has
the opposite effect – the FDA’s belief about the drug improves (respectively, worsens) when
there is news (respectively, no news). However, if the drug company has full flexibility in
choosing the probabilities pG, pB, qG and qB (e.g., through the type of positive or negative
news to search for) and is also fully committed to revealing the test outcome, the choice
between using a negative-news test or a positive-news test is irrelevant. This is because this
is a KG persuasion problem, so it simply reduces to the choice of the distribution of two
posteriors.

Suppose now that the FDA has to rely on the drug company to report its test outcome.
Moreover, it is infinitely costly for the drug company to fabricate a piece of news, be it
positive or negative, but it is always costless to conceal it. In this case, the choice of
test becomes important. In a negative-news test, the bad posterior is attached to a signal
that is readily manipulated, since the bad news can be costlessly hidden; meanwhile, the
good posterior is attached to a signal that the drug company is committed to truthfully
report, since the fabrication of news is impossible. Since the drug company always wants
to generate the good posterior, its “good message” in the negative-news test is not credible.
However, this credibility problem is absent in a positive-news test, since the bad posterior is
now attached to a signal that the drug company is committed to truthfully report, while the
manipulable signal generates the good posterior. As such, the drug company can still achieve
the persuasion outcome of KG despite not having the commitment to truthfully reporting
all new information, but it can only be done through a good-news test.

In this paper, we define an institution as the triple of the signal space for generating new
information, the message space for communicating the new information to the Receiver, and
the messaging costs associated with each signal realization. This is distinct from the players’
preferences over actions, which has been the focus of the Bayesian persuasion literature. In
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the example above, the signals available in the institution are verifiable information that
cannot be falsified but can be costlessly hidden. Our main model considers more general
forms of institutions covering a wide range of communication games that have received
great attention in the literature. This allows for flexibility in interpreting what constitutes
information misrepresentation by the Sender and its associated costs.

Since new information is privately observed by the Sender and then reported to the
Receiver, one immediate question is when there will be full information revelation by the
Sender. In equilibrium, the Receiver cannot be systematically “fooled” by the Sender’s
messages, so the Sender’s messaging strategy must satisfy some credibility constraint. As
we show in Section 4.1, when messages are costly, the Sender could have an incentive to
generate more information than he intends to transmit to the Receiver because this could
help him sustain the credibility of a messaging strategy that has a lower ex-ante expected
cost. Therefore, we cannot appeal to simple revelation-principle arguments to obtain full
information revelation here.

We provide two sufficient conditions whereby if just one of them holds, the Sender-
optimal equilibrium is supportable by full information revelation. The first condition is that
the Sender has state-independent preferences. The second condition is on the institution, and
this condition is satisfied under many common communication protocols, such as communi-
cation with verifiable information, costly lying, and cheap talk. Full information revelation
in equilibrium implies that if the institution does not permit a piece of new information
to be credibly transmitted to the Receiver in the communication stage, then it cannot be
generated by the signal structure in the first place.

Armed with this result, we show that the Sender’s value from persuasion becomes amenable
to the belief-based approach of the Bayesian persuasion literature, whereby the problem re-
duces to finding the optimal distribution of posteriors held by the Receiver ex-post. The
difference is that here, each belief distribution is also attached to a cost that is needed to
sustain the credibility of the Sender’s messages in the communication game equilibrium.
Therefore, if the institution affords the Sender’s such credibility costlessly, the Sender can
achieve his full commitment persuasion value. Note that this does not always require giving
the Sender full commitment to truthfully revealing all information. We provide some natural
classes of institutions that provide the required credibility, even though truthful reporting
might not be an equilibrium in the associated communication games in isolation.

We then restrict our attention to the institution where the Sender faces a constant lying
cost k ≥ 0. This class of institutions allows us to quantify the Sender’s commitment level by
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the value of k. We show that under such institutions, there is no lying in any Sender-optimal
equilibrium, but the no-lying constraint restricts the set of feasible signal structures (equiv-
alently, equilibrium distribution of posteriors). As k increases, this set expands in the set
inclusion sense, so we can quantify the commitment needed for the Sender to achieve his full
commitment persuasion value. Due to the additional messaging costs, the “concavification”
method (Aumann and Maschler, 1995; KG) is generally not applicable to our model. How-
ever, because the constant lying cost simply puts a constraint on the set of feasible signal
structures, we show that this constraint can be represented geometrically when the Sender
also has state-independent preferences. Therefore, the optimal distribution of posteriors can
still admit a similar geometrical interpretation in this case.

The rest of the paper proceeds as follows. We discuss the related literature in the next
section and introduce our model in Section 3. We address issues related to full information
revelation in Section 4 and show how the problem reduces to finding the optimal distribution
of beliefs with a cost attached to each distribution in Section 5. We focus on the institution
with a constant lying cost and study issues related to partial commitment in Section 6. We
consider an extension with the Sender also incurring a belief-dependent communication cost
in Section 7. Finally, we conclude in Section 8. All omitted proofs are found in Appendix
A.

2 Related Literature

Our paper contributes to the literature on information design with a single Sender and
Receiver (e.g., KG; Rayo and Segal, 2010).1 Our main point of departure is to have the
Sender privately observe the new information and then send a message to the Receiver.
Along this line, Pei (2015) studies a model in which the Sender covertly chooses a signal
structure at a cost and then sends a cheap talk message to the Receiver. He shows that the
cost causes the Sender to always reveal all information acquired, and the Sender will choose
a more informative signal structure than the Receiver would have directly chosen by herself.
Argenziano et al. (2016) consider both covert and overt information acquisition within a
more restricted set of signal structures, and they make a similar point. In contrast, in our
model, the Sender’s choice of signal structure is always overt, there is no exogenous cost for
the signal structure, and the Sender’s message is potentially costly. Therefore, the driving
force behind information revelation in our model is very different, and the cost of our signal

1See Kamenica (Forthcoming) for a recent survey on this and other areas of information design.
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structure is endogenously derived from the communication game.
Gentzkow and Kamenica (2017) study a similar setup as ours; however, they restrict

their attention to verifiable disclosure games (à la Grossman, 1981; Milgrom, 1981) in the
communication stage,2 and they show that full information revelation is always supportable
in the Sender-optimal equilibrium. By contrast, we allow for more general forms of commu-
nication games through costly messages,3 many of which, unlike verifiable disclosure games,
do not admit a truthful reporting equilibrium in isolation. The aspect of costly messages
also relates our paper to the literature on strategic communication with lying costs (Kartik
et al., 2007; Kartik, 2009); the difference is that the Sender’s information in this literature
is exogenously given.

Our paper is also closely related to some recent papers that weaken the Sender’s commit-
ment in Bayesian persuasion problems. Lipnowski and Ravid (2017) (hereafter, LR) study
the set of Sender-optimal equilibrium outcomes in cheap talk games when the Sender has
state-independent preferences, and they show that this question can be addressed by an
information design approach subject to the Sender’s incentive constraint to truthfully reveal
his information. When framed in this way, this becomes a Bayesian persuasion problem
where the Sender has zero commitment to truthfully revealing information. As in LR, the
credibility of the Sender’s messages is an important issue in our paper; by contrast, full
information revelation is not immediate in our model with costly messages and possibly
state-dependent Sender preferences (see Section 4.1). Our model admits the setup of LR in
the institution with a constant lying cost with k = 0. When k > 0, the Sender’s value from
persuasion has a geometrical interpretation that is similar to LR’s characterization using
quasiconcave envelopes of the Sender’s value function.

Relative to LR, Min (2017), Fréchette et al. (2018) and Lipnowski et al. (2018) consider
“intermediate” models, where, with some exogenously given probability, the Sender can cost-
lessly lie about the signal realization, and with the complement probability (which measures
the Sender’s commitment level), the Sender must report truthfully. One implication of their
models is that unless the Sender can already achieve his full commitment payoff under zero

2However, Gentzkow and Kamenica (2017) also allow for multiple senders and costly signal structures.
3KG also considered an extension of their model with messaging costs in their online appendix. However,

a “persuasion mechanism” there is the Sender’s choice of both signal structure and the messaging cost
function. Therefore, having messaging costs that penalize lying by an infinite cost – which KG termed an
“honest mechanism” – is always optimal because that essentially gives the Sender full commitment power.
Our setup is quite different from that because our messaging costs are exogenously given, so whether a
mechanism is honest or not is no longer the choice of the Sender.
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commitment,4 his equilibrium payoff is capped strictly below his full commitment payoff un-
der any partial commitment level. In contrast, in our model, for a large class of institutions,
there is a “sufficient” level of commitment, which is still below full commitment, that allows
the Sender to achieve his full commitment payoff.

Another paper with the same theme is Guo and Shmaya (2018). To frame it more closely
to our context, their model can be interpreted as one where the Sender privately chooses
a signal structure, privately observes the signal realization and reports the resulting belief
over the states at a cost of lying (i.e., how miscalibrated the reported belief is). They
show that the Sender is generally better off as the cost intensity increases, and the Sender
can achieve his full commitment payoff under a sufficiently high but finite cost intensity.
Our model is quite different since our signal structure is publicly known and we focus on
costs on messages instead; however, we also consider lying costs with respect to the true
beliefs in Section 7. Finally, Best and Quigley (2017) endogenize the Sender’s commitment
by his reputational concerns; by contrast, the Sender’s commitment in our model comes
from the institution for information generation and transmission. More broadly, we view
our paper as complementary to these works in studying information design under partial
commitment. In this respect, our paper is also related to works on mechanism design with
limited commitment, e.g., Bester and Strausz (2001); Skreta (2006, 2015); Deb and Said
(2015); Doval and Skreta (2018).5

Since the new information for persuasion in our model is “signaled” (rather than directly
transmitted) to the Receiver, our paper also bears some relation to the voluminous literature
on signaling. In contrast to classic signaling games (Spence, 1973), the Sender’s private infor-
mation is endogenously determined here. In and Wright (2017) study a class of endogenous
signaling games whereby (at least part of) the Sender’s type is privately and deterministi-
cally chosen by the Sender. By contrast, our Sender’s type is stochastically determined from
a publicly chosen distribution. With more direct relations to communication, Austen-Smith
and Banks (2000), Kartik (2007) and Karamychev and Visser (2017) allow the Sender to
“burn money” to signal information; Fuchs (2015) and Kolotilin and Li (2018) allow the
Sender to make voluntary transfers to the Receiver for the same purpose. The difference
is that the cost of money burning or voluntary transfers is not directly determined by the
Sender’s information, whereas the messaging cost is a direct function of the new information
in our paper.

4Lemma 2 of Best and Quigley (2017) shows that this generically will not happen.
5Except for Bester and Strausz (2001), these papers study dynamic mechanism design problems.
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3 A Model of Persuasion with Costly Messages

3.1 Setup

There are two players – a Sender (he) and a Receiver (she) – and an unknown state ω ∈ Ω.
The state space Ω is finite with at least two elements, and the common prior is βo ∈ int(∆Ω).6

The game proceeds in two stages. In stage 1, the Sender publicly chooses the signal structure.
The set of signal realizations (or simply signals) is S, which satisfies Assumption 1 below, and
a signal structure is a measurable map π : Ω → ∆S, where π (·|ω) ∈ ∆S is the probability
measure over S in state ω. In stage 2, which is the communication stage, the Sender privately
observes the signal realization s ∈ S and then reports a message m ∈ M to the Receiver,
whereM is a complete and separable metric space. The Receiver then takes an action a ∈ A,
which affects the payoffs of both players.

If the Receiver takes action a in state ω, she obtains utility u (a, ω), while the utility of
the Sender is v (a, ω) − c (m|s). v is the Sender’s payoff, which is assumed to be bounded
above by some v̄ <∞, and c (m|s) ≥ 0 is the cost of reporting m after observing s.

Assumption 1. S = SB × R, where SB is a complete and separable metric space. For any
two signals s =

(
sB, x

)
and s′ =

(
sB
′
, x′
)
, c (m|s) = c (m|s′) ∀m ∈M if sB = sB

′.

We call the set SB the base signal set, and the base dimension of a signal completely
determines its messaging costs. Therefore, we will often abuse notation for the messaging
cost function c by also letting it be a mapping from M × SB to R+ (instead of the original
definition of a mapping from M × S to R+). The existence of the second dimension is
to allow each available base signal, which has a set of associated messaging costs, to be
replicated multiple times to generate different information for the Sender if needed.7 To
ignore irrelevant signals, we assume that for every s ∈ SB, there exists some m ∈ M such
that c (m|s) <∞ (otherwise, the Sender will never use that signal to generate information).

6Throughout, ∆X denotes the set of Borel probability measures of set X, and “int” refers to the interior
of the set. Therefore, int (∆X) refers to the set of Borel probability measures that have full support.

7This can be interpreted intuitively as allowing the Sender to have more expertise in learning information
than the “establishment” whose perception of the Sender’s messages determines his messaging costs. For
example, a drug company could test for side effects from its new drugs, and these side effects could have
varying degrees of seriousness. However, judging its seriousness requires extra expertise that is not possessed
by the public. Therefore, whether the drug company has misrepresented its test result (which determines
its messaging cost) is evaluated based on only its report about the presence or absence of a side effect but
not on the seriousness of it. In the model, the availability of a side effect is determined by the realization of
the base signal dimension, while the degree of seriousness is the second dimension, which does not affect the
messaging cost.
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We call the triple
{
SB,M, c

}
the institution for information generation and transmission,

which is distinct from the players’ preferences over actions represented by u and v. A natural
class of institutions is one where truth-telling is costless to the Sender – i.e., for every signal
s ∈ SB, there exists a different message m ∈ M , which is interpreted as the “truth” for s,
such that c (m|s) = 0. As noted in the introduction, such a setup can then be viewed as
weakening the Sender’s commitment in the Bayesian persuasion problem. In particular, the
Sender has full commitment when his messaging cost is infinite for sending any message but
the truth (i.e., the KG setup), and he has partial commitment when the messaging cost is
finite for some non-truthful messages. As a benchmark, we will use the term “the Sender’s‘
full commitment payoff ” to denote his value from persuasion under the KG setup given the
players’ preferences.

3.2 Strategies and equilibrium

The Sender’s strategy is a choice of signal structure π and a messaging rule represented by
a measurable map µ : S → ∆M , where µ (·|s) is the probability measure over M after the
Sender observes signal s. Since the signal realization is privately observed by the Sender, the
Sender and the Receiver can potentially hold different beliefs about the state in equilibrium.
To differentiate the players’ beliefs, we will use “σ” to denote the Sender’s belief and “ρ” to
denote the Receiver’s belief.8

Specifically, under a signal structure π, σπ (·|s) ∈ ∆Ω denotes the Sender’s posterior upon
observing signal s at the end of stage 1 – i.e., for any ω ∈ Ω and Borel set Ŝ ⊆ S in the
support of π,

π
(
Ŝ|ω

)
βo (ω) =

∑
ω′∈Ω

βo (ω′)
∫
s∈Ŝ

σπ (ω|s) dπ (s|ω′) . (1)

As for the Receiver, under a signal structure π and a Sender’s messaging strategy µ, we
denote ρπ,µ (·|m) ∈ ∆Ω as her posterior upon receiving message m – i.e., for any ω ∈ Ω and
Borel set M̂ ⊆M in the support of the joint measure of π and µ,

∫
s∈S

µ
(
M̂ |s

)
dπ (s|ω) βo (ω) =

∑
ω′∈Ω

βo (ω′)
∫
s∈S

∫
m∈M̂

ρπ,µ (ω|m) dµ (m|s) dπ (s|ω′) . (2)

For convenience, we will define the Receiver’s action strategy α as a measurable map from
8Since S and M are complete and separable, the regular conditional probabilities (i.e., posterior beliefs)

when conditioned on s and m, respectively, exist – see Shiryaev (1996), chapter 7. By the Radon-Nikodym
theorem, σπ and ρπ,µ defined in equations (1) and (2), respectively, define the players’ respective posteriors
almost everywhere.
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her belief (instead of the message sent by the Sender) to actions – i.e., α : ∆Ω→ ∆A, where
α (·|ρ) ∈ ∆A is the probability measure over action set A when the Receiver holds belief
ρ about the state. We let Ā (ρ) := arg max

a∈A

∑
ω∈Ω ρ (ω)u (a, ω) denote the set of Receiver-

optimal actions when the Receiver holds belief ρ, and we assume that Ā (ρ) is non-empty for
all ρ ∈ ∆Ω.

Both players are expected utility maximizers, so we sometimes abuse notation for the
players’ payoff functions to let them denote expected payoffs as well. This is done by allowing
the second arguments of u and v to also be the respective players’ beliefs (i.e., let v (a, σ) =∑
ω σ (ω) v (a, ω) and u (a, ρ) = ∑

ω ρ (ω)u (a, ω) ), and the first argument of v to also be a
distribution of actions (i.e., let v (α (·|ρ) , ω) =

∫
v (a, ω) dα (a|ρ) ). Jointly, this implies that

v (α (·|ρ) , σ) = ∑
ω σ (ω)

∫
v (a, ω) dα (a|ρ).

Our equilibrium notion is the perfect Bayesian equilibrium, with a focus on Sender-
optimal equilibria.

Definition 1. (µ;α) is a perfect Bayesian equilibrium (PBE) of the stage-2 communication
game under π if

1. Upon receiving message m ∈ M , the Receiver forms posterior ρπ,µ (·|m) ∈ ∆Ω using
Bayes’ rule according to (2) whenever possible.9

2. (Receiver’s best response) α ∈ A∗, where

A∗ :=
{
α̂ | ∀ρ ∈ ∆Ω, a ∈ A is in the support of α̂ (·|ρ) =⇒ a ∈ Ā (ρ)

}
. (R-IC)

3. (Sender’s best response) For any s ∈ S and m ∈M in the support of µ (·|s),

v
(
α (·|ρπ,µ (·|m)) , σπ (·|s)

)
−c (m|s) ≥ v

(
α (·|ρπ,µ (·|m′)) , σπ (·|s)

)
−c (m′|s) ∀m′ ∈M.

(S-IC)
9As usual, the Sender’s best response puts restrictions on the Receiver’s belief when she receives off-

equilibrium messages. To avoid distraction by this issue (which adds no substantial insight here), we assume
that there exists ao in the set of the Receiver’s optimal actions at the prior (i.e., ao ∈ Ā (βo)), with v (ao, σ) =
−∞ ∀σ ∈ ∆Ω. Action ao is interpreted as the Receiver choosing to break away from the relationship with
the Sender, which is very costly for the Sender; this is equivalent to assuming that the Sender has a very low
outside option which is also state-independent. We then let the Receiver hold the prior belief βo after every
off-equilibrium message and play ao. In all our subsequent examples, we will not explicitly specify action ao,
with the understanding that such a “leave-the-relationship-action” is always available to the Receiver.
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Let

V (π, µ;α) :=
∑
ω∈Ω

βo (ω)
∫
s∈S

∫
m∈M

v (α (·|ρπ,µ (·|m)) , σπ (·|s)) dµ (m|s) dπ (s|ω) (3)

C (π, µ) :=
∑
ω∈Ω

βo (ω)
∫
s∈S

∫
m∈M

c (m|s) dµ (m|s) dπ (s|ω) (4)

V and C are, respectively, the Sender’s expected payoff and messaging cost in equilibrium
under a strategy profile (π, µ;α).

Definition 2. A Sender-optimal equilibrium is a strategy profile (π, µ;α) that maximizes
the Sender’s ex-ante expected utility

W (π, µ;α) := V (π, µ;α)− C (π, µ) , (5)

subject to (µ;α) being a PBE of the stage-2 communication game under π, as defined in
Definition 1. The Sender’s value from persuasion is his expected utility in a Sender-optimal
equilibrium.

Remark 1. In contrast to most papers in the information design literature, we do not restrict
the Receiver to take the Sender-optimal action at each belief (see (R-IC)). This is because
such a restriction is not always consistent with a Sender-optimal equilibrium here. This is
due to the requirement for the Sender’s best response in (S-IC) in equilibrium – it is possible
that by not always breaking indifference in favor of the Sender ex-post, the Receiver’s action
helps to sustain (i.e., satisfies (S-IC)) a more favorable ex-ante distribution of posteriors for
the Sender. Therefore, this also implies that we do not have a general “revelation principle”
in which the Sender makes an incentive-compatible action recommendation to the Receiver.10

We illustrate this with an example in Section 6.3.

4 Revelation in the Communication Game

This section studies when the Sender will reveal all his information to the Receiver. At first
thought, one might think that full information revelation would follow from a “standard”

10Lipnowski and Ravid (2017) also make this point, which also arises in their problem, and relate it to
the literature on mechanism design under limited commitment (see cited papers in Section 2). As they
very neatly sum it up, in that literature, the principal’s information has to be limited due to her limited
commitment, so agents cannot always truthfully report their types; here, it is the Sender’s influence over the
Receiver’s actions that requires limitation.
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revelation principle argument: if the Sender were to garble information at the communication
stage, we can always replicate the equilibrium with a different signal structure that does the
associated information garbling on behalf of the Sender. To illustrate that this argument
does not hold here when messages are costly, we begin with an example in Section 4.1 where
full information revelation does not arise in any Sender-optimal equilibrium. We then provide
two general conditions in Section 4.2 for full information revelation to be supportable in a
Sender-optimal equilibrium.

4.1 Example without full information revelation

Let Ω = {0, 1} with a uniform prior. The set of base signals is SB = {x, y, z}, and the
message set is M = {l, h}. To simplify notation, we denote the belief as the probability of
ω = 1. The Receiver’s utility is such that it results in a set of Receiver’s optimal actions
summarized by

Ā (ρ) =


{1} if ρ = 0.2

{3} if ρ = 0.8

{0} if ρ 6= 0.2, 0.8

The Sender’s payoff is v (a, ω) = aω, and his messaging cost c is as follows:

c (l|x) = 0.1 ; c (h|x) = 0

c (l|y) = 0 ; c (h|y) = 0.1

c (l|z) = 0.1 ; c (h|z) =∞

Given Ā (ρ), it is immediate that in any Sender-optimal equilibrium, one message must
give the Receiver a belief of 0.2, and the other message must give her a belief of 0.8. We
first consider constructing an equilibrium with full information revelation. This implies that
after every observed signal, the Sender holds the same belief as the belief attached to the
message that he sends to the Receiver under his equilibrium messaging strategy.

Ideally, the Sender would use signals with base signals x and y to generate information
and then report h after x and l after y to minimize messaging costs. Consider first attaching
belief 0.8 to a signal with base x and belief 0.2 to a signal with base y. If the Receiver
expects the Sender to follow the messaging strategy above, her belief is 0.8 after m = h, and
it is 0.2 after m = l. Since belief 0.8 is the Sender’s preferred belief for the Receiver, the
Sender’s credibility to convey this belief is undoubted. However, upon observing the signal

12



with base y, the Sender’s belief is 0.2, so his expected utility from sending message l is 0.2,
while his expected utility from sending h is (0.2× 3) − 0.1 = 0.5. Therefore, the Sender’s
equilibrium constraint (S-IC) is violated at the signal with base y, so this construction is not
an equilibrium. By a symmetric argument, attaching belief 0.8 to a signal with base y and
belief 0.2 to a signal with base x cannot be sustained as an equilibrium either.

The only way the Sender’s equilibrium constraint can be satisfied at belief 0.2 is if this
belief is generated by a signal with base z – i.e., let a signal with base x generate a Sender’s
belief of 0.8 and a signal with base z generate a Sender’s belief of 0.2, and the Sender reports
h after x and l after z. Abusing notation by denoting a signal by just its base dimension,
this set of beliefs is achieved by signal structure π, where

π (x|ω = 1) = 0.8 ; π (z|ω = 1) = 0.2

π (x|ω = 0) = 0.2 ; π (z|ω = 0) = 0.8

Since x and z are realized with equal probability, the Sender’s expected payoff is 1
2 (0.8× 3)+

1
2 (0.2× 1) = 1.3, and his expected messaging cost is 1

2 × 0.1 = 0.05. This gives the Sender
his highest expected utility if we restrict the equilibrium to have full information revelation.

Now, consider a different structure π̂, where (with the same abuse of notation for signals):

π̂ (x|ω = 1) = 0.8 ; π̂ (y|ω = 1) 4
45 ; π̂ (z|ω = 1) = 1

9
π̂ (x|ω = 0) = 0.2 ; π̂ (y|ω = 0) = 0.8 ; π̂ (z|ω = 0) = 0

It is readily verified that the Sender’s belief upon observing x, y and z are, respectively,
0.8, 0.1 and 1. Let the Sender report m = h after x and report m = l after both y and z
(i.e., we do not have full information revelation now). The Receiver’s belief upon observing
messages h and l will then be, respectively, 0.8 and 0.2, as before. Notice that the Sender’s
equilibrium constraints (S-IC) are satisfied here. This is immediate for x and z. As for
y, the Sender’s expected utility from sending m = h is (0.1× 3) − 0.1 = 0.2, which is the
same as his expected utility from sending m = l. By noting that the ex-ante probabilities
of x, y and z being observed are, respectively, 0.5, 4

9 and 1
18 , the Sender’s expected payoff is

1
2 (0.8× 3) + 4

9 (0.1× 1) + 1
18 (1× 1) = 1.3 (as in under π above), while his expected message

cost is just 1
18 × 0.1 < 0.05. Therefore, the Sender’s expected utility is higher than under

any equilibrium with full information revelation.
To explain the intuition behind this, we first note that the distributions of the Receiver’s

belief are the same under the two signal structures π and π̂ (i.e., 0.2 and 0.8 with equal
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probability). The difference between π̂ and π is that π̂ further splits the belief 0.2 in a mean-
preserving way to two beliefs for the Sender – namely, beliefs 0.1 and 1. To see why this is
helpful, recall that when the Sender holds beliefs 0.2 (which happens only under π), it is not
incentive compatible for him to report a message that induces a Receiver’s belief of 0.2 if
this is at a signal with base y; therefore, a signal with base z, which has a higher messaging
cost, must be used. However, incentive compatibility is satisfied if the Sender instead holds
a lower belief of 0.1. Therefore, under π̂, information that will be used to induce a Receiver’s
belief of 0.2 is partially generated by a signal with base y, which incurs zero messaging cost;
on the other hand, under π, it is always generated by a signal with base z, which incurs a
messaging cost of 0.1. We can verify that π̂ is, indeed, the optimal signal structure because
it minimizes the use of signals with base z to generate information in general.

4.2 Conditions for full information revelation

In this subsection, we provide two separate conditions on the primitives and show (in Propo-
sition 1 below) that when either one of them holds, the Sender-optimal equilibrium is always
supportable by full information revelation. The first condition is on the Sender’s preferences,
while the second condition is on the institution.

Condition 1. The Sender’s preference is state-independent: v (a, ω) = v (a, ω′) ∀a ∈ A,
ω, ω′ ∈ Ω.

While this is a substantive restriction, state-independent preferences are satisfied in many
situations, which include the two examples in the introduction – the drug company cares
only about getting the FDA’s approval, and the politician cares only about getting votes.

The second condition is about the institution. Let M : ∆S ⇒ M , where M (Λ) is the
set of messages m′ such that c (m′|·) is integrable with respect to the measure Λ ∈ ∆S.11

Condition 2. For any m ∈M and any measure Λ ∈ ∆S such that m ∈M (Λ), there exists
s̄ ∈ S such that

1. c (m|s̄) ≤
∫
s∈S c (m|s) dΛ (s).

2. ∀m′ ∈M (Λ) , c (m|s̄)−
∫
s∈S c (m|s) dΛ (s) ≤ c (m′|s̄)−

∫
s∈S c (m′|s) dΛ (s) .

3. ∀m′ ∈M\M (Λ), c (m′|s̄) =∞.
11i.e.,M (Λ) :=

{
m′ ∈M |

∫
s∈S |c (m′|s)| dΛ (s) <∞

}
.
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Condition 2 can be interpreted as every message having a most “efficient signal” to report
it. In particular, fixing a message m, we compare the cost of reporting m after its most
efficient signal s̄ with the expected cost of reporting m after any distribution of signals.
Condition 2.1 states that the former must be lower. Condition 2.2 and Condition 2.3 imply
that this cost saving from reporting m after its most efficient signal s̄ is also greater than
using s̄ for reporting other message m′. More importantly, the following lemma shows that
this condition holds for a large class of institutions that penalize lying.

Lemma 1. The following institutions satisfy Condition 2:

• (Constant lying cost.) M = SB. For any m ∈ M and s ∈ SB, c (m|s) = 0 if m = s,
and c (m|s) = k ≥ 0 if m 6= s.

• (“Distance” lying cost.) M = SB. For any m ∈ M and s ∈ SB, c (m|s) = d (m, s),
where d is any metric on SB (equivalently, on M).12

• (Quadratic lying cost.) SB is any convex subset of R and M = SB. For any m ∈ M
and s ∈ SB, c (m|s) = (m− s)2.

• (Partial verifiability.) SB = V ∪N , where V and N are disjointed and non-empty sets,
and M = SB ∪ {φ}. For any m ∈ M and s ∈ SB, c (m|s) = 0 if m = s, m = φ or
m ∈ N , and c (m|s) =∞ otherwise.

• (Costly disclosure.) SB = V ∪ N , where V and N are disjointed and non-empty sets,
and M = SB ∪ {φ}. For any m ∈ M and s ∈ SB, c (m|s) = k > 0 if m = s ∈ V,
c (m|s) = 0 if m = φ or m ∈ N , and c (m|s) =∞ otherwise.

The institution with a constant lying cost treats all forms of lying as equal, and it also
encompasses cheap talk communication (Crawford and Sobel, 1982) when k = 0. The
institutions with a “distance” lying cost and a quadratic lying cost give intuitive measures of
the degree of lying, and the latter has been used in the literature on strategic communication
with lying costs (Kartik et al., 2007; Kartik, 2009).

The institutions with partial verifiability and costly disclosure consider communication
protocols whereby some signals are hard evidence. V is the set of verifiable signals (i.e., hard
evidence) which are impossible to falsify, N is a set of non-verifiable signals which the Sender
can costlessly claim that he received a signal in this set (e.g., the signals in N are easily

12A metric on a set X is a function d : X ×X → [0,∞) such that for any x, y, z ∈ X, (i) d (x, y) ≥ 0, (ii)
d (x, y) = 0 if and only if x = y, (iii) d (x, y) = d (y, x), and (iv) d (x, z) ≤ d (x, y) + d (y, z).
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forged), and φ is a null message which is analogous to the Sender not reporting anything.
Communication games with verifiable information were first studied by Grossman (1981) and
Milgrom (1981) who consider situations where the Sender can be vague about his private
information but he cannot tell an outright lie. They show that the Receiver’s skepticism
can cause information to “unravel”, and the Sender fully reveals his private information in
equilibrium. In the accounting literature, Dye (1985) and Jung and Kwon (1988) show that
the unraveling result breaks down when the Sender can sometimes receive no information,
which then allows him to costlessly feign ignorance whenever he wants. Verrecchia (1983)
also shows that the Grossman-Milgrom unraveling result can break down when the Sender
has to also pay a cost to reveal information, which is analogous to the institution with costly
disclosure.

Proposition 1. Suppose that (µ;α) is a PBE of the stage-2 communication game under π.
If the Sender’s preference is state-independent (i.e., Condition 1 holds) or the institution
satisfies Condition 2, there exist π̄ and µ̄ such that

1. µ̄ is a pure and fully separating strategy,13

2. (µ̄;α) is a PBE of the stage-2 communication game under π̄, and

3. W (π̄, µ̄;α) ≥ W (π, µ;α).

Proposition 1 provides conditions that allow us to restrict our attention to the Sender
playing only pure and separating messaging strategies. When this happens, the Receiver
continues to perfectly learn all new information generated by the signal structure in equi-
librium (i.e., full information revelation), despite the Sender’s ability to misrepresent it. We
explain the idea behind the proof of Proposition 1 next, and we illustrate how this result
helps us solve for the equilibrium in Section 5.

To see why pooling messages always results in a weakly suboptimal equilibrium for the
Sender when either of Conditions 1 or 2 holds, let us first suppose that the Sender is already
playing a pure messaging strategy, but the Sender pools signals s and s′ to message m. Let
σ and σ′ be, respectively, the Sender’s beliefs upon observing s and s′, and let the Receiver’s
belief after receiving m be ρ, which determines the distribution of actions that the Sender
faces from reporting m. Since the Receiver correctly conjectures the Sender’s messaging
strategy in equilibrium, σ and σ′ must average out to ρ. Suppose that c (m|s) < c (m|s′).

13µ̄ is a pure strategy if for every s ∈ S, µ̄ (·|s) is a Dirac measure on some m ∈M ; µ̄ is a fully separating
strategy if for any m ∈M , if m is in the support of both µ (·|s) and µ (·|s′), then s = s′.
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Consider another signal structure that shifts the probability of s′ (assuming the presence of
a mass for simplicity) to s and have the Sender continue to report m after s. The Sender’s
belief after s is now ρ, the Receiver’s belief (and thus actions) after m is unchanged at ρ
in equilibrium, and the Sender’s expected messaging cost is now lower. When the Sender’s
preference is state-independent (i.e., Condition 1 holds), his own belief does not affect his
payoff. Therefore, his equilibrium constraint (i.e., (S-IC)) at signal s is unchanged, which
means that this modified signal structure supports an equilibrium that gives the Sender a
higher expected utility.

When the Sender’s preference is state-dependent, part of the argument above remains
valid. In particular, because σ and σ′ will average out to ρ and the expected payoffs are
linear in the beliefs, the Sender’s expected payoff with a distribution of beliefs over σ and σ′

(i.e., in the original signal structure) will be the same as his payoff when he holds belief ρ
(i.e., after the modification). However, the equilibrium constraint (S-IC) at signal s, which
was satisfied when the Sender had belief σ, may no longer be satisfied when he holds belief
ρ. In this case, if Condition 2 holds, we can instead shift the probabilities of both s and s′

to a signal s̄ pinned down by Condition 2 and have the Sender report m after s̄, which still
results in a Receiver’s belief of ρ after receiving m. The second part of Condition 2, together
with the linearity property of payoffs in beliefs, allows the Sender’s equilibrium constraint
(S-IC) at this new signal s̄ to be written as a convex combination of the previous equilibrium
constraints of s and s′, and it is thus satisfied. The first part of Condition 2 then implies
that the Sender’s equilibrium expected messaging cost is lower. Jointly, this implies that this
modification also supports an equilibrium that gives the Sender a higher expected utility.

Proposition 1 is then obtained by combining the arguments in the preceding two para-
graphs with the observation that any randomization over messages by the Sender after any
signal realization can be replaced by a signal structure that does the randomization “on
behalf” of the Sender while maintaining his equilibrium constraint (S-IC) and the Receiver’s
posterior at every message. Intuitively, this is because by Assumption 1, for every signal
s, there exists another signal s′ that has the same base dimension as s and thus has the
same messaging costs as s. Therefore, if the Sender’s messaging strategy randomizes over
messages m and m′ after signal s, it is possible to construct another signal structure where
some of the conditional probabilities of s are moved to s′ according to the Sender’s messaging
randomization, thus replacing the randomization effect.

Proposition 2. Suppose that Condition 1 or Condition 2 holds, and a Sender-optimal equi-
librium exists. Then there exists a Sender-optimal equilibrium where the numbers of signals
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and messages used in equilibrium are, respectively, less than or equal to |Ω|.

Proposition 2 is related to the result that only |Ω| posteriors are needed in the canonical
Bayesian persuasion model (see Proposition 4 in the online appendix of KG). While the
proof here also uses results in convex analysis,14 it requires additional care for two reasons.
The standard argument for this result in the literature is to consider a set of |Ω|-dimensional
elements, each representing a belief (which is of dimension |Ω| − 1) and the Sender’s utility
under that belief, and then show that the element consisting of the prior and the Sender’s
ex-ante expected utility is in the convex hull of that set; thus, it can be written as a convex
combination of |Ω| or less elements from that set. The first complication in our model
arises from quantifying the Sender’s utility. In the canonical Bayesian persuasion model, the
Sender’s utility at every belief is well defined by the primitives (see the “v̂” function in KG).
However, in our model, the Sender’s utility at each belief includes both his payoff and his
messaging cost, but the latter is an equilibrium object. The second complication arises from
the additional stage-2 communication game here, which means that some care is required to
ensure that the chosen combination of (|Ω| or less) beliefs and utilities can be sustained as
an equilibrium in the communication game.

5 Equilibrium

One of KG’s methodological insights is that the canonical Bayesian persuasion problem re-
duces to finding a distribution of beliefs that averages back to the prior, which KG call
“Bayes plausibility”. With an additional stage-2 communication game, our model might not
be amenable to this belief-based approach because the Sender’s messaging strategy must be
determined in equilibrium, and the players’ equilibrium beliefs can also differ. The impor-
tance of Proposition 1 is that when Condition 1 or 2 holds, the Sender-optimal equilibrium
outcome can always be supported by the two players holding the same ex-post belief. There-
fore, we have to characterize only one set of belief distributions. Moreover, from Proposition
2, we can restrict our attention to distributions supported on at most |Ω| different beliefs.
The Sender’s value from persuasion then reduces to optimizing over the set of Bayes plau-

14The literature typically appeals to the Carathéodory theorem to show that only a finite number of
signals are required. The theorem states that any element x in the convex hull of a set X ⊂ Rn can be
written as a convex combination of n+ 1 or fewer elements in X. The Fenchel-Bunt theorem, which is used
here, refines the Carathéodory theorem, and it states that x can be written as n or less elements in X if X
is also a connected set. See, for example, Hiriart-Urruty and Lemaréchal (2012), Theorem 1.3.6 (pp. 29)
and Theorem 1.3.7 (pp.30).
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sible distributions of beliefs with a cost attached to each distribution. We illustrate this in
Section 5.1 below and then illustrate in Section 5.2 that the Sender might still achieve his
full commitment payoff in the absence of full commitment power.

5.1 From costly messages to costly beliefs

Since we are concerned with just one set of beliefs now, we switch notation slightly and
use β to denote a belief in ∆Ω from now on. Let D ⊂ ∆∆Ω be the set of Bayes plausible
distributions of belief supported on |Ω| or less beliefs. We represent each τ ∈ D by two 1×|Ω|
vectors: τ =

{
~β;~δ

}
=
{

(βj)j=1,...,|Ω| ; (δj)j=1,...,|Ω|

}
, where βj ∈ ∆Ω ∀j and ~δ is a probability

vector such that ∑|Ω|j=1 δjβj = βo. Given a Receiver’s action strategy α, the Sender’s payoff
from belief distribution τ =

{
~β;~δ

}
∈ D is

V ∗
({
~β;~δ

}
, α
)

=
|Ω|∑
j=1

δjv (α (·|βj) , βj) .

Let

C∗
({
~β;~δ

}
, α
)

:= min
s1,...,s|Ω|∈S

m1,...,m|Ω|∈M

∑|Ω|
j=1 δjc (mj|sj) (6)

subject to

v
(
α (·|βj) , βj

)
− c (mj|sj) ≥ v

(
α (·|βj′) , βj

)
− c (mj′|sj) ∀j, j′ = 1, . . . , |Ω| , (7)

with the convention that C∗
({
~β;~δ

}
, α
)

= ∞ when the feasible set in (7) is empty. Define
program P as:

max
τ∈D,α∈A∗

V ∗ (τ, α)− C∗ (τ, α) (P)

Theorem 1. Suppose that Condition 1 or 2 holds. A Sender-optimal equilibrium exists if
and only if a solution to program P exists. Moreover, if W ∗ is the value for program P, then
W ∗ is the Sender’s value from persuasion.

As in the canonical Bayesian persuasion model, each belief distribution is associated
with a Sender’s expected payoff. The difference here is the additional Sender’s expected
messaging cost C∗, which can be interpreted as the cost of generating each belief distribution.
In contrast to papers using information measures such as Shannon’s (1948) entropy (or a
generalized version of it) to determine the cost of a signal structure,15 C∗ is a cost to sustain

15E.g., Gentzkow and Kamenica (2014); Matyskova (2018).
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the resulting belief distribution as an equilibrium in the communication game due to the
Sender’s lack of commitment to truthfully revealing the realized signal. In particular, the
cost is infinite if the feasible set in (7) is empty; this means that any information that cannot
be credibly transmitted under the institution cannot be generated in the first place.

Since any Bayes plausible distribution of beliefs can be generated by some signal structure
(see KG), the key to establishing Theorem 1 concerns the set of Bayes plausible beliefs
sustainable in equilibrium. From Propositions 1 and 2, this will be incorporated by the set
of constraints in (7). Theorem 1 thus implies that the Sender’s value from persuasion can
be solved by a two-step process: first, we derive the cost function C∗ for any given belief
distribution for the Receiver; then, we maximize over the belief distribution.

5.2 Full commitment payoff without full commitment

Theorem 1 implies that if an institution can allow for any |Ω| beliefs to always be credibly
transmitted, the Sender can achieve his full commitment payoff regardless of the players’
preferences. The following proposition provides a few classes of institutions with this prop-
erty.

Proposition 3. The Sender’s value from persuasion is always his full commitment payoff
under the following institutions:

• Quadratic lying cost with SB = R.

• “Distance” lying cost with SB = R and d (x, y) = |x− y|.

• Partial verifiability with |V| ≥ |Ω|, or with |V| = |Ω| − 1 and the Sender having state-
independent preferences.

The first parts of Proposition 3 follow from noting that with a quadratic lying cost (and
analogously, a “linear distance” lying cost), if the set of available signals is sufficiently large,
there will exist a set of signals that is sufficiently “differentiated” in the sense that lying
across signals within this set is too costly for the Sender. In turn, using this set of signals
maintains the Sender’s credibility costlessly and allows him to achieve his full commitment
payoff. As for the institution with partial verifiability, when |V| ≥ |Ω|, there are sufficient
verifiable signals to provide the credibility for the |Ω| beliefs needed to attain the Sender’s
full commitment payoff. If the Sender also has state-independent preferences, the beliefs can
be ranked. At the Sender’s most preferred belief, his credibility to not convey other inferior
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beliefs is undoubted, so only |Ω| − 1 pieces of verifiable signals are needed to convey these
other beliefs.

Although the arguments behind Proposition 3 are simple, the result is less straightfor-
ward a priori. This is because most of these institutions do not have an intuitive sense of
providing the Sender with full commitment to truthfully revealing information. Moreover,
truth-telling is also never an equilibrium in the associated communication games in isola-
tion. In particular, Kartik et al. (2007) show that in a strategic communication game with
a quadratic lying cost, there is full information transmission in equilibrium, but it is always
via a language with costly inflation; Dye (1985) and Jung and Kwon (1988) show that under
a verifiable disclosure communication game, if the Sender can feign ignorance, there is not
even full information transmission.

6 Constant Lying Cost and Partial Commitment

In this section, we focus on the institution with a constant lying cost, which allows us to
quantify the Sender’s commitment level as the value of k. We first note a general feature of
such institutions:

Lemma 2. Under the institution with a constant lying cost k, for any α ∈ A∗ and τ ={
(βj)j=1,...,|Ω| ; (δj)j=1,...,|Ω|

}
∈ D,

C∗ (τ, α) =

0 if the no-lying constraint is satifised,

∞ otherwise,

where the no-lying constraint is satisfied if

v
(
α (·|βj′) , βj

)
− v

(
α (·|βj) , βj

)
≤ k ∀j, j′ = 1, . . . , |Ω| . (8)

There is no lying in any Sender-optimal equilibrium here, but the no-lying condition puts
a constraint on the set of sustainable belief distributions. The set, in turn, expands (in the
set inclusion sense) with k, so the Sender’s value from persuasion weakly increases in the
Sender’s commitment level k. We consider a few types of Sender’s preferences under this
institution next.
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6.1 Quadratic loss payoffs

Let Ω be a finite subset of [0, 1], and A = M = SB = [0, 1]. Let the Receiver’s and the
Sender’s payoffs be, respectively,

u (a, ω) =− (a− ω)2 , (9)

v (a, ω) =− (a− ω − b)2 , (10)

where b > 0. The quadratic loss payoffs capture the notion that actions are progressively
less preferred by the Receiver the further they are away from the true state at either side,
and b quantifies a constant bias that the Sender has for the ideal action. This is a common
specification in the communication literature and has been applied widely in areas such as
political economy and organizational economics. When endowed with a uniform prior, this
is also called the “uniform-quadratic model”. Our aim here is to characterize a prior-free
sufficient commitment level for the Sender that allows him to achieve his full commitment
payoff.

Under any Sender’s belief β ∈ ∆Ω and Receiver’s action a, the Sender’s expected payoff
is

Eβ
[
− (a− ω − b)2

]
= −V arβ (ω)− (a− b− Eβ (ω))2 . (11)

It is straightforward to show that when the Receiver holds belief β ∈ ∆Ω, her optimal action
is uniquely a = Eβ (ω). Therefore, the no-lying constraint in (8) here is

(
Eβj′

(ω)− Eβj
(ω)− b

)2
≥ b2 − k ∀j, j′ = 1, . . . , |Ω| . (12)

Proposition 4. When the players’ preferences are represented by the quadratic loss functions
in (9) and (10) and the information transmission takes place under an institution with a
constant lying cost k, the Sender can obtain his full commitment payoff whenever k ≥ b2.

This implies that the required commitment to achieve the Sender’s full commitment
payoff is k = b2. This is because (12) is always satisfied when k ≥ b2, which implies that
C∗ (τ, α) = 0 for any τ ∈ D and α ∈ A∗. Proposition 4 thus follows immediately from
Theorem 1. The Sender’s payoff (hence utility) in (11) is maximized by choosing the fully
informative signal structure so that the variance is zero, and he obtains his full commitment
payoff of −b2.
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6.2 State-independent preferences for the Sender

The “concavification” method (Aumann and Maschler, 1995; KG) provides a geometrical
characterization of the optimal signal structure under full commitment, but it is generally
not amenable to our setup due to the additional messaging cost. However, since the constant
lying cost simply puts a constraint on the set of feasible signal structures, the problem
can admit a similar geometrical characterization if the constraint can also be represented
geometrically. This will be the case when the Sender has state-independent preferences.

Suppose now that the Sender’s payoff function satisfies v (a, ω) = ν (a) ∀a ∈ A, ω ∈ Ω
(i.e., the Sender’s payoff is independent of the state). Define the correspondence v̂ : ∆Ω ⇒ A,
where for all β ∈ ∆Ω,

v̂ (β) =
{
co (ν (a)) |a ∈ Ā (β)

}
, (13)

where “co” denotes the convex hull.16

Figure 1: State-independent preferences under constant lying cost and |Ω| = 2.

Sender’s payoff

βo
β

v̂
�

β1 β2

> k

β′2

= k

Figure 1 plots the v̂ graph for |Ω| = 2. A signal structure is represented by a line joining
any two points on v̂, and the no-lying constraint in (8) restricts the vertical distance between

16We note that our definition of v̂ is slightly different from that in KG. As noted earlier, in KG, under
any belief, the Receiver is assumed to break indifference in favor of the Sender, so v̂ in KG is a function that
gives the Sender’s (indirect) payoff under each Receiver’s belief. In contrast, v̂ here is a correspondence that
gives the set of Sender’s (indirect) payoffs in which the Receiver is optimizing given her belief.
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these two points on v̂ to be less than k. The green dotted line is the concave closure of v̂,17

and the Sender’s full commitment payoff is the value of the concave closure at the prior βo,
which is marked by the shaded square. The optimal signal structure under full commitment
generates beliefs β1 and β2, but the no-lying constraint is violated for this distribution of
beliefs. Instead, the Sender must induce a less valuable distribution of beliefs – namely, β1

and β′2 – which gives him a value of persuasion marked by the red dot.

6.3 An example of the Receiver’s wariness

In this subsection, we use an example to illustrate some notions of the Receiver’s wariness
that are absent when the Sender has full commitment. Let Ω = {0, 1} and A = [0, 1].
The Sender has a state-independent payoff function ν (a), which is strictly increasing and
convex,18 with ν (0) = 0. The Receiver receives a constant marginal benefit of 1 (which is
a normalization) from her action when ω = 1, and she incurs a constant marginal loss of
L > 0 from her action when ω = 0. In addition, action is costly and she incurs a quadratic
cost of a2

2 for taking action a regardless of the state. Jointly, the Receiver’s payoff function
can be written as u (a, ω) = [ω − L (1− ω)] a− a2

2 .
Such a setup is applicable to many economic situations. For example, the Receiver could

be a politician whose policy choice is parametrized by a, where a smaller a represents more
left-wing policies and a larger a represents more right-wing policies. The politician is left-
leaning and hence incurs a private cost for implementing right-wing policies, but she is also
concerned about her re-election and has to pander her policies to her voters’ preferences.
Let ω = 0 denote a more liberal group of voters (who prefer small a) and ω = 1 denote
a more conservative group of voters (who prefer big a). The politician is uncertain about
ω, and the Sender represents a right-leaning lobbyist generating information through, say,
voter research to persuade the politician to implement more right-wing policies. Away from
political economy, the setup is also applicable to marketing and advertising – the Sender is
a seller who is generating information about an unknown state of the world that determines
the buyer’s (Receiver) utility from the seller’s good, such as insurance and other financial
products.

In the situations just described, the Sender is often able to misrepresent the new infor-
mation at some potential cost. The lobbyist could commit to the type of voter research

17The concave closure of v̂ is a function V̂ (β) :=
{

sup z
∣∣ (β, z) ∈ co (v̂)

}
.

18The results also hold if ν is not too concave for any given set of parameter values of L and k defined
below.
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but then lie about its result at a cost derived from, for example, the “effort” to doctor the
statistics and the potential backlashes when being caught doing so. Similarly, the seller
could commit to the type of research but lie about its outcome at a cost that is similar to
that above. We account for this by modeling the information gathering and transmission
process as taking place under an institution with a constant lying cost. From Proposition 2,
two different signals will be sufficient for our binary state space, so we let SB = M = {0, 1},
and the Sender faces a constant lying cost k > 0.

To simplify notation, we denote belief β as the probability of ω = 1. It is readily noted
that the Receiver’s optimal action is uniquely max {0, β − L (1− β)} when she holds belief
β. Therefore,

v̂ (β) =


{
ν (0)

}
, if β ≤ L

1+L{
ν (β − L (1− β))

}
, if β > L

1+L

We assume that βo ≤ L
1+L , so the Sender gets his worst payoff without further information

to the Receiver. It is readily verified that the concave closure of v̂ is ν (1) β, which is the
straight line joining ν (0) and ν (1). Therefore, with full commitment, the concavification
method implies that the optimal signal structure under any prior is the fully informative one.
This implies that the Sender achieves his full commitment payoff when k ≥ ν (1) because
the no-lying constraint (8) for the fully informative signal structure is satisfied. Therefore,
we will only consider k < ν (1).

Proposition 5. Suppose that k < ν (1). The Sender’s value from persuasion is kβo(1+L)
ν−1(k)+L ,

and the optimal signal structure generates beliefs 0 and β̄ = ν−1(k)+L
1+L < 1 with respective

probabilities 1 − βo(1+L)
ν−1(k)+L and βo(1+L)

ν−1(k)+L . β̄ increases with both k and L; the Sender’s value
from persuasion increases with k but decreases with L.

Figure 2 illustrates the case for a linear ν. The blue solid graph is v̂ and the green dotted
line plots its concave closure. Therefore, the Sender’s full commitment payoff is the value
on the concave closure at the prior, which is marked by V FC . The optimal signal structure
is represented by the red solid line, which joins the origin to the v̂ graph at a height of k;
the Sender’s value from persuasion is the value on this line at the prior, which is marked by
V . It is readily observed that a higher k would give a steeper line, which, in turn, gives a
higher Sender’s value from persuasion.

When L increases to L′, the v̂ graph shifts to the dashed blue graph. The concave closure
of v̂ remains unchanged, so the Sender’s full commitment payoff remains the same as well.
However, the line representing the optimal signal structure is now lower, as represented
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Figure 2: Receiver’s wariness under A = [0, 1] and linear ν.

β

Sender’s payoff

ν(1)

v̂

L
1+L

L′

1+L′

k

βo

�V FC

V

V ′

by the dashed red line. The new optimal signal structure generates a larger spread in the
Receiver’s posteriors, but the Sender’s value from persuasion drops to V ′.

Proposition 5 captures two notions of the Receiver’s wariness that make persuasion more
“difficult” for the Sender. The first is straightforward. When the Sender’s lying cost decreases
(i.e., lower k), the Sender’s ability to generate a wider spread in the Receiver’s posterior
beliefs diminishes. This is because a wider spread in the Receiver’s beliefs implies a greater
difference in the Sender’s payoffs across beliefs, which increases the Sender’s gain from lying.
Since the Sender benefits from spreading the Receiver’s beliefs here, the inability to do so
decreases the Sender’s value from persuasion.

The second notion of wariness arises in the Receiver’s response when the cost of making
mistakes about the state becomes higher, as represented by an increase in L. Under any
interior belief, the Receiver will take a lower action when the cost of making mistakes becomes
higher. In the absence of full commitment, the Sender cannot credibly let the Receiver learn
about the Sender’s preferred state (i.e., ω = 1), so the Receiver’s conservativeness against a
higher action adversely affects the Sender’s value from persuasion. By contrast, this effect
has no bite when the Sender has full commitment because the Sender will always let the
Receiver learn the state fully; therefore, a change in the value of L has no effect on the
Sender’s full commitment payoff.

The Receiver exhibits a third form of wariness when her action set is binary. If A = {0, 1},
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Figure 3: Receiver’s wariness under A = {0, 1}.

β

Sender’s payoff

ν(1)
v̂

1+2L
2(1+L)

k

βo

�
V FC

V

the Receiver will adopt a threshold action strategy with respect to her belief, which generates
the v̂ correspondence represented by the blue solid graph in Figure 3 – the Receiver chooses
a = 0 (a = 1) under belief β < (>) 1+2L

2(1+L) , and she is indifferent between either action
when β = 1+2L

2(1+L) . With full commitment and the Receiver taking the Sender’s preferred
action of a = 1 whenever she is indifferent (i.e., the KG assumptions), the optimal signal
structure generates beliefs 0 and 1+2L

2(1+L) , and the Sender’s full commitment payoff is marked
by V FC . However, when the Sender can lie about the signal at a cost k < ν (1), the Sender
will always report the signal that generates the higher belief if the Receiver were to always
choose a = 1 after it. Therefore, this cannot be an equilibrium. Nevertheless, the optimal
signal structure in the absence of full commitment remains unchanged, but the Receiver
must exhibit wariness by not always choosing the Sender’s preferred action when she holds
belief 1+2L

2(1+L) . In particular, she plays a mixed strategy at belief 1+2L
2(1+L) and chooses a = 1

with a probability of k
ν(1) < 1, which then removes the Sender’s lying incentive. This results

in a lower Sender’s value from persuasion, which is marked by V , and it is readily verified
that V = k

ν(1)V
FC . This example also illustrates why the Sender-optimal equilibrium does

not always entail the Receiver taking the Sender-preferred action when she is indifferent (see
Remark 1).
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7 Belief-dependent Communication Costs

Our analysis thus far has focused solely on the communication costs related to “encoding”
the information within the signal space and then communicating it within the message space
of the institution. What we have not considered is a penalty on the Sender for misrep-
resenting actual information, which are the beliefs over the states. This is without much
loss in equilibrium, since our results rest on equilibria exhibiting full information revelation
(equivalently, no information misrepresentation). However, there might be a concern that
the presence of information misrepresentation costs might disrupt such equilibria.

In this section, we impose an additional cost on the Sender for information misrepresen-
tation. To present this extension, we return to the convention of using “σ” to denote the
Sender’s belief and “ρ” to denote the Receiver’s belief. Let the sequence of the game be
unchanged from the baseline model, and the Receiver’s utility be as described there. The
Sender’s utility is now

v (a, ω)− c (m|s)− ψ (ρ|σ) ,

where v and c are, respectively, his payoff and messaging cost as before. The additional
ψ : ∆Ω × ∆Ω → R+ is a non-negative function, where ψ (ρ|σ) is the Sender’s cost of
inducing the Receiver to have belief ρ when he holds belief σ.19

The strategies of both players are unchanged from Section 3.2. The definition of a PBE
in the stage-2 communication game remains that as defined in Definition 1, except with a
modification on the Sender’s best response in (S-IC) to the following: for any s ∈ S and
m ∈M in the support of µ (·|s),

v
(
α (·|ρπ,µ (·|m)) , σπ (·|s)

)
− c (m|s)− ψ

(
ρπ,µ (·|m)

∣∣∣σπ (·|s)
)

≥ v
(
α (·|ρπ,µ (·|m′)) , σπ (·|s)

)
− c (m′|s)− ψ

(
ρπ,µ (·|m′)

∣∣∣σπ (·|s)
)
∀m′ ∈M. (S-IC’)

As in (5), we let W (π, µ;α) = V (π, µ;α) − C (π, µ), where V is unchanged from (3),
whereas C is now

C (π, µ) :=
∑
ω∈Ω

βo (ω)
∫
s∈S

∫
m∈M

[
c (m|s) + ψ

(
ρπ,µ (·|m)

∣∣∣σπ (·|s)
)]
dµ (m|s) dπ (s|ω) .

19Note that to ease exposition, we have simplified notation significantly for ψ. In particular, ρ is an
equilibrium object derived from Bayes rule; thus, it depends on the signal structure and the Receiver’s
conjecture about the Sender’s messaging strategy.
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Assumption 2. The function ψ satisfies:

1. for any given σ, ρ ∈ ∆Ω, ψ (ρ|σ) = 0 if ρ = σ;

2. for any given ρ, ρ′ ∈ ∆Ω and τ ∈ ∆∆Ω such that
∫
σdτ (σ) = ρ,

ψ (ρ′|ρ) ≥
∫
ψ (ρ′|σ)− ψ (ρ|σ) dτ (σ) .

Assumption 2.1 is a natural assumption that the cost of no information misrepresentation
is always zero. Assumption 2.2 is a technical condition that, by Lemma 3 below, is satisfied
by many commonly used divergence measures.

Lemma 3. Assumption 2 is satisfied by the following divergence measures:

• Euclidean distance: ψ (ρ|σ) =
√∑

ω∈Ω (σ (ω)− ρ (ω))2.

• Squared Euclidean distance: ψ (ρ|σ) = ∑
ω∈Ω (σ (ω)− ρ (ω))2.

• Kullback-Leiber divergence: ψ (ρ|σ) = ∑
ω∈Ω σ (ω) log σ(ω)

ρ(ω) .

• Jeffreys divergence: ψ (ρ|σ) = ∑
ω∈Ω (σ (ω)− ρ (ω)) log σ(ω)

ρ(ω) .
20

Proposition 6. Suppose that the Sender’s utility has an additional belief-dependent com-
munication cost ψ that satisfies Assumption 2, and a Sender-optimal equilibrium exists. If
Condition 2 holds, there exists a Sender-optimal equilibrium with full information revela-
tion (cf. Proposition 1), and the numbers of signals and messages used in equilibrium are,
respectively, less than or equal to |Ω| (cf. Proposition 2).

When there is full information revelation, the two players’ posteriors always coincide,
which implies that the Sender’s equilibrium belief-dependent communication cost ψ is al-
ways zero. Therefore, all our analysis following from Propositions 1 and 2 follows through.
Moreover, Proposition 1 is actually strengthened by the additional cost ψ in the following
sense: if ψ (ρ|σ) > 0 whenever ρ 6= σ, then under Condition 2, all Sender-optimal equilibria
must exhibit full information revelation.

20The Jeffreys divergence is first introduced in Jeffreys (1946). It is also called the J-divergence or the
symmetric divergence.
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8 Conclusion

In this paper, we have provided a model of Bayesian persuasion where the Sender does not
have full commitment to reporting all new information to the Receiver. We define an in-
stitution, which is distinct from the players’ preferences over actions, as the triple of the
signal space for generating new information, the message space for communicating the new
information to the Receiver, and the associated messaging cost at each signal realization.
The Sender’s commitment is thus derived from the institution. We provide sufficient condi-
tions under which there is full revelation of new information to the Receiver. This reduces
the problem to the familiar belief-based approach of looking for the optimal distribution of
Receiver’s beliefs, with the additional factor of a cost to sustain the belief distribution as an
equilibrium in the communication subgame. Using this, we show that some institutions con-
tinue to allow the Sender to achieve his full commitment persuasion payoff even though the
associated communication games in isolation never admit a truthful-reporting equilibrium.
The particular class of institution with a constant lying cost provides a way to quantify
the Sender’s commitment level and study its effect on the Sender’s value from persuasion,
thus helping to bridge the cheap talk communication literature and the information design
literature.
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A Proof Appendix

Proof of Lemma 1.

Fix a m ∈M and a Λ ∈ ∆S with the property that m ∈M (Λ).

“Distance” lying cost. Set s̄ to be a signal with a base signal m ∈ SB. For the first
property, the LHS is d (m,m) = 0 and the RHS is weakly positive, so the first property holds.
Next, since d is a metric, it satisfies the triangle inequality: d (m′, s) ≤ d (m′,m) + d (m, s).
Therefore, ∀m′ ∈M (Λ),

c (m|s̄)− c (m′|s̄) =0−
∫
s∈S

d (m′,m) dΛ (s)

≤
∫
s∈S

d (m, s)− d (m′, s) dΛ (s)

=
∫
s∈S

c (m|s)− c (m′|s) dΛ (s) ,

which implies the second property. For the third property, for any m′ 6= m,
∫
s∈S

c (m′|s) dΛ (s) =
∫
s∈S

d (m′, s) dΛ (s)

≤
∫
s∈S

d (m, s) + d (m′,m) dΛ (s)

=
∫
s∈S

c (m|s) dΛ (s) + d (m′,m) .

Since m ∈ M (Λ),
∫
s∈S c (m′|s) dΛ (s) < ∞. This implies that m′ ∈ M (Λ) ∀m′; therefore,

the third property is trivially satisfied.

Constant lying cost. The constant lying cost can be represented by c (m|s) = d (m, s),
where d (x, y) = 0 if x = y and d (x, y) = k if x 6= y. Notice that for any x, y, z, if x = y = z,
d (x, y)+d (y, z) = 0 = d (x, z); if x = y 6= z, d (x, y)+d (y, z) = k = d (x, z); if x 6= y 6= z and
x 6= z, d (x, y) + d (y, z) = 2k > k = d (x, z). Therefore, d satisfies the triangle inequality:
d (x, y) + d (y, z) ≥ d (x, z) ∀x, y, z.21 The previous argument for the “Distance” lying cost
thus follows through here.

21The constant lying cost is essentially the “discrete metric” except that the discrete metric is typically
defined as d (x, y) = 1 (instead of k) for any x 6= y.
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Quadratic lying cost. Set s̄ =
∫
sdΛ (s). Since S is a convex set, s̄ ∈ S. (m− s)2 is

convex in s for any m; therefore, the first property holds. Next, for any m,m′, (m− s)2 −
(m′ − s)2 = m2 − (m′)2 − 2 (m−m′) s, which is linear in s; therefore, the second property
holds. For the third property, first note that for any x, y ∈ R,

(x+ y)2 = 2x2 + 2y2 − (x− y)2 ≤ 2x2 + 2y2. (14)

For any m′ 6= m,
∫
s∈S

c (m′|s) dΛ (s) =
∫
s∈S

(s−m+m−m′)2
dΛ (s)

≤
∫
s∈S

2 (s−m)2 + 2 (m−m′)2
dΛ (s) (15)

= 2
∫
s∈S

c (m|s) dΛ (s) + 2 (m−m′)2
,

where the inequality in (15) follows from (14). Since m ∈ M (Λ),
∫
s∈S c (m′|s) dΛ (s) < ∞.

This implies that m′ ∈M (Λ) ∀m′; therefore, the third property is trivially satisfied.

Partial Verifiability. If m 6= φ, set s̄ to be a signal with a base signal m ∈ SB; if
m = φ, set s̄ to be any signal with a base in N . Therefore, c (m|s̄) = 0, and the first
property holds. For the second property, consider a m′ ∈ M (Λ), which implies that∫
s∈S c (m′|s) dΛ (s) = 0; therefore, the RHS is weakly positive. Since m ∈ M (Λ), it must
hold that

∫
s∈S c (m|s) dΛ (s) = 0, so the LHS is 0, and the second property thus holds. For

the third property, if m′ ∈M\M (Λ), then m′ ∈ V , which implies that c (m′|s̄) =∞.

Costly disclosure. If m 6= φ, set s̄ to be a signal with a base signal m ∈ SB; if m = φ,
set s̄ to be any signal with a base in N . If m ∈ V , then the values of both c (m|s̄) and∫
s∈S c (m|s) dΛ (s) must be k;22 if m ∈ N or m = φ, then the values of both must be 0.
Therefore, the first property holds, and the LHS of the second property is always zero.
Consider a m′ ∈ M (Λ). If m′ ∈ N or m′ = φ, then the RHS is also zero; if m′ ∈ V ,
then

∫
s∈S c (m′|s) dΛ (s) = k while c (m′|s̄) = ∞ because m′ 6= m. Therefore, the second

property is also satisfied. Next, consider a m′ /∈ M (Λ). This must imply that m′ ∈ V , so
c (m′|s̄) =∞ because m′ 6= m, which implies the third property.

22In particular, all signals supported on Λ must have base signal m.
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Proof of Proposition 1.

Proof. Let (µ;α) be a PBE of the stage-2 communication game under π. Let S̃ ⊆ S be
the set of signals in the support of {π (·|ω)}ω∈Ω, and let M̄ ⊆ M be the set of messages
in the support of {µ (·|s)}s∈S̃. We will prove the result under Condition 1 and Condition 2
separately. For Condition 1 (resp., Condition 2), we first construct a signal structure π̄1 and
a pure and separating messaging strategy µ̄1 (resp., π̄2 and µ̄2). We then show that (µ̄1;α)
(resp., (µ̄2;α)) is a PBE of the stage-2 communication game under π̄1 (resp., π̄2). Since the
Receiver’s strategy is unchanged at α, her best response condition (i.e., (R-IC)) is already
satisfied, so we have to only verify the Sender’s best response in (S-IC). After verifying the
PBE, we show that W (π̄1, µ̄1;α) ≥ W (π, µ;α) (resp., W (π̄2, µ̄2;α) ≥ W (π, µ;α)). Note
that under both (π̄1, µ̄1) and (π̄2, µ̄2) below, the sets of supported messages in equilibrium
will remain to be M̄ (i.e., same as under (π, µ)). For any off-the-equilibrium message m /∈ M̄
under (π̄1, µ̄1) and (π̄2, µ̄2), the Receiver will hold the same belief as upon receiving the same
message under (π, µ). Throughout, let Γ : M̄ ⇒ S̃ be a correspondence, where s ∈ Γ (m) if
and only if m is in the support of µ (·|s).

When Condition 1 holds:

Let s (m) := arg mins∈Γ(m) c (m|s),23 and let γ1 : M̄ → S be a function that satisfies the
following two properties:

1. For each m ∈ M̄ , c (m′|γ1 (m)) = c (m′|s (m)) ∀m′ ∈M .

2. γ1 (m) = γ1 (m′) if and only if m = m′.

Assumption 1 assures that γ1 exists: if s (m) = s (m′) for some m 6= m′, then γ1 (m) and
γ1 (m′) are simply different signals with the same base signal. Let S̄1 :=

{
γ1 (m) |m ∈ M̄

}
,

which is the support of π̄1 (to be defined). Since γ1 is injective but not necessarily surjective,
we redefine the codomain of γ1 to be its range S̄1, so γ1 is now bijective and thus, its inverse
γ−1

1 : S̄1 → M̄ exists (i.e., for any m ∈ M̄ , γ−1
1 (γ1 (m)) = m). The signal structure π̄1 is

defined as follows: for any Borel set Ŝ ⊆ S,

π̄1
(
Ŝ|ω

)
:=
∫
s∈S

µ
({
γ−1

1 (s′) |s′ ∈ Ŝ ∩ S̄1
}
|s
)
dπ (s|ω) ∀ω ∈ Ω.

Notice that
{
γ−1

1 (s′) |s′ ∈ S ∩ S̄1
}

= M̄ . This implies that π̄1 (S|ω) = 1 ∀ω ∈ Ω, so π̄1 is a
valid signal structure. Next, for any s ∈ S̄1, define µ̄1 (·|s) to be Dirac at m = γ−1

1 (s). The
23If there are multiple minimums, just choose one of them.
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messaging strategy after s /∈ S̄1 is irrelevant because it is not supported by π̄1 (·|ω) for any
ω ∈ Ω. µ̄1 is clearly a valid messaging strategy that is fully separating and pure.

We verify that (µ̄1;α) is a PBE under π̄1. Recall that the support of messages under
(π̄1, µ̄1) is still M̄ . Under (π̄1, µ̄1), conditional on a state ω ∈ Ω, the probability measure of
any arbitrary Borel set M̂ ⊆ M̄ is

Pπ̄1,µ̄1

(
M̂ |ω

)
=
∫
s∈S

µ̄1
(
M̂ |s

)
dπ̄1 (s|ω) (16)

=
∫
s∈{γ1(m)|m∈M̂}

dπ̄1 (s|ω)

=
∫
s′∈S

∫
m∈M̂

dµ (m|s′) dπ (s′|ω)

=Pπ,µ
(
M̂ |ω

)
, (17)

where Pπ,µ
(
M̂ |ω

)
is the probability measure of M̂ conditional on ω under (π, µ). Therefore,

for any m ∈ M̄ , ρπ̄1,µ̄1 (·|m) = ρπ,µ (·|m), which implies that the distribution of the Receiver’s
actions after any message m ∈ M̄ is the same between (π̄1, µ̄1) and (π, µ).

Under Condition 1, we can write v (a, ω) = ν (a) ∀ω. We abuse notation as previously
and let ν denote the expected payoff as well.24 For every m ∈ M̄ , the Sender’s incentive
compatibility condition upon seeing signal s (m) under (π, µ;α) (see (S-IC)) implies that for
any m′ ∈M ,

ν (α (·|ρπ,µ (·|m)))− ν (α (·|ρπ,µ (·|m′))) ≥ c (m|s (m))− c (m′|s (m))

=⇒ ν (α (·|ρπ̄1,µ̄1 (·|m)))− ν (α (·|ρπ̄1,µ̄1 (·|m′))) ≥ c (m|γ1 (m))− c (m′|γ1 (m)) (18)

This implies that ∀s ∈ S̄1,

ν
(
α
(
·|ρπ̄1,µ̄1

(
·|γ−1

1 (s)
)))
−ν (α (·|ρπ̄1,µ̄1 (·|m′))) ≥ c

(
γ−1

1 (s) |s
)
−c (m′|s) ∀m′ ∈M. (19)

Since µ̄1 (·|s) is Dirac on γ−1
1 (s) ∀s ∈ S̄1, µ̄1 (·|s) satisfies the Sender’s best response con-

straint in (S-IC) ∀s ∈ S̄1. Therefore, (µ̄1;α) is a PBE under π̄1.
24i.e., for any α (·|ρ) ∈ ∆A, ν (α (·|ρ)) =

∫
a∈A ν (a) dα (a|ρ) .
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To check that W (π̄1, µ̄1;α) ≥ W (µ, µ;α), note first that

V (π̄1, µ̄1;α) =
∑
ω∈Ω

βo (ω)
∫
m∈M̄

ν (α (·|ρπ̄1,µ̄1 (·|m))) dPπ̄1,µ̄1 (m|ω)

=
∑
ω∈Ω

βo (ω)
∫
m∈M̄

ν (α (·|ρπ,µ (·|m))) dPπ,µ (m|ω)

=V (π, µ;α) .

Next

C (π, µ) =
∑
ω∈Ω

βo (ω)
∫
s∈S

∫
m∈M̄

c (m|s) dµ (m|s) dπ (s|ω)

≥
∑
ω∈Ω

βo (ω)
∫
s∈S

∫
m∈M̄

c (m|γ1 (m)) dµ (m|s) dπ (s|ω) (20)

=
∑
ω∈Ω

βo (ω)
∫
m∈M̄

c (m|γ1 (m)) dPπ,µ (m|ω) (21)

=
∑
ω∈Ω

βo (ω)
∫
m∈M̄

c (m|γ1 (m)) dPπ̄1,µ̄1 (m|ω) (22)

=C (π̄1, µ̄1)

The inequality in line (20) follows from noting that m is in the support of µ (·|s) only if
s ∈ Γ (m), and c (m|s) ≤ c (m|s (m)) = c (m|γ1 (m)) ∀s ∈ Γ (m). The equality from line (21)
to line (22) follows from lines (16) to (17). Therefore, W (π̄1, µ̄1;α) ≥ W (µ, µ;α).

When Condition 2 holds:

Let Λ (·|m) ∈ ∆S be the regular conditional probability measure over the signal space when
conditioned on the Receiver receiving message m under (π, µ).25 By the martingale property
of Bayesian posteriors,

ρπ,µ (·|m) =
∫
s∈Γ(m)

σπ (·|s) dΛ (s|m) ∀m ∈ M̄. (23)

Define the function γ2 : M̄ → S, where for each m ∈ M̄ :
25i.e., for any Borel sets Ŝ ⊆ S and M̂ ⊆M ,∑

ω∈Ω
βo (ω)

∫
s∈Ŝ

∫
m∈M̂

dµ (m|s) dπ (s|ω) =
∑
ω′∈Ω

βo (ω′)
∫
m∈M̂

Λ
(
Ŝ|m

)
dPπ,µ (m|ω′)
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1. c (m|γ2 (m)) ≤
∫
s∈Γ(m) c (m|s) dΛ (s|m).

2. c (m|γ2 (m))−
∫
s∈S c (m|s) dΛ (s|m) ≤ c (m′|γ2 (m))−

∫
s∈S c (m′|s) dΛ (s|m) ∀m′ ∈ M

such that
∫
s∈S c (m′|s) dΛ (s|m) <∞.

3. c (m′|γ2 (m)) =∞ ∀m′ ∈M such that
∫
s∈S c (m′|s) dΛ (s|m) =∞.

4. γ2 (m′) = γ2 (m′′) if and only if m′ = m′′.

Since (π, µ;α) is an equilibrium,
∫
s∈S c (m|s) dΛ (s|m) < ∞ ∀m ∈ M̄ , so a γ2 function

satisfying the first three properties exists when Condition 2 is satisfied. By Assumption 1,
there are infinitely many signals with the same messaging costs, so the last property for γ2 is
also readily satisfied. Let S̄2 :=

{
γ2 (m) |m ∈ M̄

}
, which is the support of π̄2 (to be defined).

Analogous to γ1 above, we redefine the codomain of γ2 to be its range S̄2 so that γ2 is bijective
and, hence, its inverse function γ−1

2 : S̄2 → M̄ exists (i.e., γ−1
2 (γ2 (m)) = m ∀m ∈ M̄). The

signal structure π̄2 is defined as follows: for any Borel set Ŝ ⊆ S,

π̄2
(
Ŝ|ω

)
:=
∫
s∈S

µ
({
γ−1

2 (s′) |s′ ∈ Ŝ ∩ S̄2
}
|s
)
dπ (s|ω) ∀ω ∈ Ω. (24)

Analogous to π̄1 above, it is readily seen that π̄2 (S|ω) = 1 ∀ω ∈ Ω; therefore, π̄2 is a valid
signal structure. Let µ̄2 (·|s) be Dirac on m = γ−1

2 (s) ∀s ∈ S̄2; therefore, µ̄2 is a fully
separating and pure messaging strategy.

We verify that (µ̄2;α) is a PBE under π̄2 next. First, note that σπ̄2 (·|s) = ρπ̄2,µ̄2

(
·|γ−1

2 (s)
)

∀s ∈ S̄2. Moreover, by an argument that is analogous to lines (16) to (17), the probability
measures of any arbitrary Borel set M̂ ⊆ M̄ when conditional on a ω ∈ Ω are the same
under (π, µ) and (π̄2, µ̄2) – i.e.,

Pπ̄2,µ̄2

(
M̂ |ω

)
= Pπ,µ

(
M̂ |ω

)
. (25)

This implies that ρπ̄2,µ̄2 (·|m) = ρπ,µ (·|m) ∀m ∈ M̄ . Therefore, for any α ∈ ∆A and s ∈ S̄2,

v (α, σπ̄2 (·|s)) =
∑
ω∈Ω

ρπ̄2,µ̄2

(
ω|γ−1

2 (s)
)
v (α, ω)

=
∑
ω∈Ω

ρπ,µ
(
ω|γ−1

2 (s)
)
v (α, ω) (26)

=
∑
ω∈Ω

∫
s′∈Γ(γ−1

2 (s))
σπ (ω|s′) dΛ

(
s′|γ−1

2 (s)
)
v (α, ω) (27)

=
∫
s′∈Γ(γ−1

2 (s))
v (α, σπ (·|s′)) dΛ

(
s′|γ−1

2 (s)
)
, (28)

39



where the equality in (27) follows from (23). Next, we ease notation and denote, for each
m ∈ M̄ , αm (·) = α (·|ρπ̄2,µ̄2 (·|m)) = α (·|ρπ,µ (·|m)). Since (π, µ;α) is an equilibrium, the
Sender’s best response constraint (S-IC) implies that

∀m ∈ M̄ and s ∈ Γ (m) , v
(
αm, σπ (·|s)

)
−v

(
αm′ , σπ (·|s)

)
≥ c (m|s)−c (m′|s) ∀m′ 6= m.

(29)
Fix any s ∈ S̄2. Under µ̄2, the Sender reports m = γ−1

2 (s) ∈ M̄ with probability one. To
establish that the Sender’s best response constraint (S-IC) is satisfied under (π̄2, µ̄2;α), we
have to show that ∀m′ 6= γ−1

2 (s),

v
(
αγ−1

2 (s), σπ̄2 (·|s)
)
− v (αm′ , σπ̄2 (·|s)) ≥ c

(
γ−1

2 (s) |s
)
− c (m′|s) (30)

First, suppose thatm′ is such that
∫
s′∈Γ(γ−1

2 (s)) c (m′|s′) dΛ
(
s′|γ−1

2 (s)
)

=∞. Property 3 of γ2

implies that c (m′|s) =∞. Given that v is bounded and c
(
γ−1

2 (s) |s
)
<∞ (from Property 1

of γ2), (30) is satisfied. Next, suppose thatm′ is such that
∫
s′∈Γ(γ−1

2 (s)) c (m′|s′) dΛ
(
s′|γ−1

2 (s)
)
<

∞. We have

v
(
αγ−1

2 (s), σπ̄2 (·|s)
)
− v (αm′ , σπ̄2 (·|s))

=
∫
s′∈Γ(γ−1

2 (s))

[
v
(
αγ−1

2 (s), σπ (·|s′)
)
− v (αm′ , σπ (·|s′))

]
dΛ

(
s′|γ−1

2 (s)
)

(31)

≥
∫
s′∈Γ(γ−1

2 (s))

[
c
(
γ−1

2 (s) |s′
)
− c (m′|s′)

]
dΛ

(
s′|γ−1

2 (s)
)

(32)

≥c
(
γ−1

2 (s) |s
)
− c (m′|s) , (33)

where the equality in (31) follows from (28), the inequality in (32) follows from (29), and the
inequality in (33) follows from Property 2 of γ2. Therefore, we have checked the Sender’s
best response constraint (S-IC) is satisfied under (π̄2, µ̄2;α), so (µ̄2;α) is a PBE under π̄2.

Next, by the Radon-Nikodym theorem, σπ in (1) defines the Sender’s posterior almost
everywhere, so for any integrable function g : S × Ω→ R,

∑
ω′∈Ω

βo (ω′)
∫
s∈S

σπ (ω|s) g (s, ω) dπ (s|ω′) = βo (ω)
∫
s∈S

g (s, ω) dπ (s|ω) (34)
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Therefore,

V (π, µ;α) =
∑
ω′∈Ω

βo (ω′)
∫
s∈S

∫
m∈M̄

v (αm, σπ (·|s)) dµ (m|s) dπ (s|ω′)

=
∑
ω′∈Ω

βo (ω′)
∫
s∈S

∫
m∈M̄

∑
ω∈Ω

σπ (ω|s) v (αm, ω) dµ (m|s) dπ (s|ω′)

=
∑
ω∈Ω

∑
ω′∈Ω

βo (ω′)
∫
s∈S

σπ (ω|s)
∫
m∈M̄

v (αm, ω) dµ (m|s) dπ (s|ω′)

=
∑
ω∈Ω

βo (ω)
∫
s∈S

∫
m∈M̄

v (αm, ω) dµ (m|s) dπ (s|ω) (35)

=
∑
ω∈Ω

βo (ω)
∫
m∈M̄

v (αm, ω) dPπ,µ (m|ω) , (36)

where the equality in (35) follows from (34). By the same argument,

V (π̄2, µ̄2;α) =
∑
ω∈Ω

βo (ω)
∫
m∈M̄

v (αm, ω) dPπ̄2,µ̄2 (m|ω) . (37)

By (25), Pπ̄2,µ̄2 (·|ω) = Pπ,µ (·|ω) ∀ω, so (36) and (37) jointly imply that V (π̄2, µ̄2;α) =
V (π, µ;α). Next,

C (π̄2, µ̄2) =
∑
ω′∈Ω

βo (ω′)
∫
s∈S

∫
m∈M̄

c (m|s) dµ̄2 (m|s) dπ̄2 (s|ω′) (38)

=
∑
ω′∈Ω

βo (ω′)
∫
m∈M̄

[c (m|γ2 (m))] dPπ̄2,µ̄2 (m|ω)

≤
∑
ω′∈Ω

βo (ω′)
∫
m∈M̄

[∫
s∈Γ(m)

c (m|s) dΛ (s|m)
]
dPπ̄2,µ̄2 (m|ω) (39)

=
∑
ω′∈Ω

βo (ω′)
∫
m∈M̄

[∫
s∈Γ(m)

c (m|s) dΛ (s|m)
]
dPπ,µ (m|ω) (40)

=
∑
ω′∈Ω

βo (ω′)
∫
s′∈S

∫
m∈M̄

[∫
s∈Γ(m)

c (m|s) dΛ (s|m)
]
dµ (m|s′) dπ (s′|ω′)

=
∑
ω∈Ω

βo (ω)
∫
s′∈S

∫
m∈M̄

c (m|s′) dµ (m|s′) dπ (s′|ω) (41)

=C (π, µ) . (42)

The inequality in (39) follows from the first property of γ2, the equality in (40) follows
from (25), and the equality in (41) follows from the definition of Γ (m) that it is the set
of signals s in which m is in the support of µ (·|s). Since V (π̄2, µ̄2;α) = V (π, µ;α) and
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C (π̄2, µ̄2;α) ≤ C (π, µ;α), we have W (π̄2, µ̄2;α) ≥ W (π, µ;α).

Proof of Proposition 2.

Proof. Consider a Sender-optimal equilibrium (π, µ;α), where the set of signals supported
by {π (·|ω)}ω∈Ω is S̄, and µ (·|s) is Dirac on m = γ−1 (s), where γ : M̄ → S̄ is a bijection,
and M̄ =

{
γ−1 (s) |s ∈ S̄

}
⊆ M is the set of messages in the support of {µ (·|s)}s∈S̄. From

Proposition 1, (π, µ;α) exists. If
∣∣∣M̄ ∣∣∣ ≤ |Ω|, we are done, so we suppose that

∣∣∣M̄ ∣∣∣ > |Ω|. Let
Qπ,µ (·) ∈ ∆M̄ be the equilibrium probability measure of the messages under (π, µ).26We
introduce a few notations. Note first that since µ (·|γ (m)) is Dirac on m, σπ (·|γ (m)) =
ρπ,µ (·|m) ∀m ∈ M̄ . Let B =

{
σπ (·|γ (m)) |m ∈ M̄

}
⊂ ∆Ω, and ∀m ∈ M̄ ,

ym :=v (α (·|ρπ,µ (·|m)) , σπ (·|γ (m)))− c (m|γ (m)) ∈ R,

zm := {σπ (·|γ (m)) , ym} ∈ B × R ⊂ R|Ω|.

Let Z :=
{
zm|m ∈ M̄

}
⊂ R|Ω|. For any set A, let co (A) denote its convex hull.

Notice thatW (π, µ;α) =
∫
m∈M̄ ymdQπ,µ (m) and βo =

∫
m∈M̄ σπ (·|γ (m)) dQπ,µ (m); there-

fore, {βo,W (π, µ;α)} ∈ co (Z).27 Moreover, co (B) ⊂ ∆Ω. Define the function Y : co (B)→
R, where Y (σπ (·|γ (m))) = ym ∀m ∈ M̄ and Y (β) = ξ for any β /∈ B, where ξ is any fixed
finite value that is strictly less than minm∈M̄ ym.28 Let hyp (Y ) be the hypograph of Y –
i.e., hyp (Y ) = {{β, y} |β ∈ co (B) , y ≤ Y (β)} ⊂ R|Ω|. Recall that v is bounded above by
v̄. Since Y (β) ≤ v̄ ∀β ∈ co (B), hyp (Y ) is path-connected and, thus, connected. By the
Fenchel-Bunt theorem (see Hiriart-Urruty and Lemaréchal (2012), pp. 30, Theorem 1.3.7),
any element in co (hyp (Y )) can be written as a convex combination of at most |Ω| elements

26i.e., for any Borel set M̂ ⊆ M̄ ,

Qπ,µ

(
M̂
)

=
∑
ω∈Ω

βo (ω)
∫
s∈S̄

µ
(
M̂ |s

)
dπ (s|ω) .

27At this point, the well-known Carathéodory theorem (see Hiriart-Urruty and Lemaréchal (2012), pp.
29, Theorem 1.3.6) will imply that {βo,W (π, µ;α)} can be written as a convex combination of |Ω| + 1 or
less elements from Z. However, we want to prove that it can be written as a convex combination of only |Ω|
or less elements from Z.

28Note that ym is the Sender’s utility after message m ∈ M̄ . Since m is supported in the equilibrium
(π, µ;α), ym must be greater than −∞.
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in hyp (Y ). Since co (Z) ⊂ co (hyp (Y )), there exists a set Z̃ ⊂ co (hyp (Y )), with
∣∣∣Z̃∣∣∣ ≤ |Ω|,

and τ̃ ∈ ∆Z̃ such that ∑z̃∈Z̃ τ̃ (z̃) z̃ = {βo,W (π, µ;α)}.
We are left to show that Z̃ ⊂ Z. Let Z̃ = {z̃1, . . . , z̃K}, whereK ≤ |Ω|, and z̃k =

{
β̃k, ỹk

}
,

with β̃k ∈ co (B) ⊆ ∆Ω, ỹk ∈ R ∀k = 1, . . . , K. Since β̃k ∈ co (B) ∀k, by the Carathéodory
theorem, there exists a finite set B̂ =

{
β̂1, . . . , β̂J

}
⊂ B such that for every k = 1, 2, . . . , K,

there exists δk ∈ ∆B̂ such that ∑J
j=1 δk

(
β̂j
)
β̂j = β̃k. We take the convention that if β̃k ∈ B,

then we let β̃k ∈ B̂ with δk
(
β̃k
)

= 1.29 Now, suppose, for a contradiction, that Z̃ 6⊂ Z.
When z̃k =

{
β̃k, ỹk

}
/∈ Z, it must imply that either (i) β̃k ∈ B but ỹk < Y

(
β̃k
)
, or (ii)

β̃k /∈ B, which implies that ỹk = ξ <
∑J
j=1 δk

(
β̂j
)
Y
(
β̂j
)
. Therefore, both cases will imply

that

W (π, µ;α) =
K∑
k=1

τ̃ (z̃k) ỹk

<
K∑
k=1

τ̃ (z̃k)
J∑
j=1

δk
(
β̂j
)
Y
(
β̂j
)

= Ψ.

We will show that Ψ is attainable for the Sender in equilibrium, which then contradicts
(π, µ;α) being a Sender-optimal equilibrium. Let τ̂ ∈ ∆∆Ω be a probability measure with
support on B̂ and τ̂

(
β̂j
)

= ∑K
k=1 τ̃ (z̃k) δk

(
β̂j
)
. Notice that

J∑
j=1

τ̂
(
β̂j
)
β̂j =

K∑
k=1

τ̃ (z̃k)
J∑
j=1

δk
(
β̂j
)
β̂j

=
K∑
k=1

τ̃ (z̃k) β̃k = βo.

This implies that there exists a set of signals Ŝ = {s1, s2, . . . , sj} ⊂ S and a measurable map
π̂ : Ω → ∆Ŝ such that for each j and ω ∈ Ω, β̂j (ω) = π̂(sj |ω)βo(ω)∑

ω′∈Ω π̂(sj |ω′)βo(ω′) ,
∑J
j=1 π̂ (sj|ω) = 1,

and τ̂
(
β̂j
)

= ∑
ω∈Ω β

o (ω) π̂ (sj|ω) (see Proposition 1 in KG). Since B̂ ⊂ B, for each j ∈
{1, 2, . . . , J}, there exists a function g : {1, 2, . . . , J} → M̄ such that β̂j (·) = σπ (·|γ (g (j))).
Consider the signal structure with the same probability measure as π̂ with sj = γ (g (j));
we abuse notation and let π̂ denote this signal structure.30 By construction, σπ̂ (·|sj) =

29By the Carathéodory theorem, for each k, there exists B̂k =
{
β̂k1 , . . . , β̂

k
|Ω|+1

}
⊂ B and δ̂k ∈ ∆B̂k such

that
∑|Ω|+1
j=1 δ̂k

(
β̂kj

)
β̂kj = β̃k; we take the convention that if β̃k ∈ B, then B̂k =

{
β̃k
}

and δ̂k
(
β̃k
)

= 1.
Therefore, B̂ = ∪kB̂k; and δk (β) = δ̂k (β) if β ∈ B̂k, and zero otherwise.

30The abuse of notation arises as a signal structure is defined as a measurable map from Ω to ∆S, whereas
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σπ (·|γ (g (j))). Consider the messaging strategy µ̂, where for each sj ∈ Ŝ, µ̂(·|sj) is Dirac
on g (j). Therefore, for each m ∈ M̂ = {g (1) , g (2) , . . . , g (J)}, which is the set of messages
supported by π̂ and µ̂, ρπ̂,µ̂ (·|m) = σπ̂

(
·|sg−1(m)

)
= σπ (·|γ (m)). Thus, when the Sender’s

best response condition in (S-IC) is satisfied for (µ;α) under π, it will also be satisfied for
(µ̂;α) under π̂, so (µ̂;α) is a PBE under π̂. Moreover, W (π̂, µ̂;α) = ∑J

j=1 τ̂
(
β̂j
)
Y
(
β̂j
)

=
Ψ > W (π, µ;α), which then contradicts (π, µ;α) being a Sender-optimal equilibrium.

Proof of Theorem 1.

Proof. Let Φ (τ, α) = V ∗ (τ, α)−C∗ (τ, α) and let sup
τ∈D,α∈A∗

Φ (τ, α) = W ∗. Since the Sender’s

payoff is always finite, W ∗ < ∞. Suppose that a Sender-optimal equilibrium exists. Let
(π, µ;α) be a Sender-optimal equilibrium, and let S̄ ⊂ S and M̄ ⊂ M be, respectively, the
set of signals and messages supported in the equilibrium. By Proposition 1, it is without loss
to assume that

∣∣∣S̄∣∣∣ =
∣∣∣M̄ ∣∣∣ ≤ |Ω|, and there exists a bijection g : S̄ → M̄ such that µ (·|s) is

Dirac on g (s) ∀s ∈ S̄. We denote S̄ = {s1, s2, . . . , sK}, where K ≤ |Ω|, and let mk = g (sk).
Let β (ω|s) = π({s}|ω)βo(ω)∑

ω′∈Ω π({s}|ω′)βo(ω′) ∀ω ∈ Ω, s ∈ S̄. It is readily verified that σπ (·|sk) = β (·|sk)
∀sk ∈ S̄, and ρπ,µ (·|mk) = β (·|sk) ∀mk ∈ M̄ . Let δk = ∑

ω∈Ω β
o (ω) π (sk|ω); the ex-ante

probabilities of signal sk and mk are both δk. Therefore,

V (π, µ;α) =
K∑
k=1

δkv (α (·|β (·|sk)) , β (·|sk)) = V ∗
({
~β;~δ

}
, α
)
,

where ~β = {β (·|s1) , . . . , β (·|sK)} and ~δ = {δ1, . . . , δK}, and

C (π, µ) =
∑
ω∈Ω

βo (ω)
∫
s∈S

∫
m∈M

c (m|s) dµ (m|s) dπ (s|ω) =
K∑
k=1

δkc (mk|sk) .

Moreover, since (µ;α) is a PBE under π, ∀k, k′ = 1, 2, . . . , K,

v
(
α (·|β (·|sk)) , β (·|sk)

)
− c (mk|sk) ≥ v

(
α (·|β (·|sk′)) , β (·|sk)

)
− c (mk′ |sk) .

Therefore, C (π, µ) ≥ C∗
({
~β;~δ

}
, α
)
, which implies that

W (π, µ;α) ≤ Φ
({
~β;~δ

}
, α
)
≤ W ∗. (43)

π̂ is a map from Ω to ∆Ŝ.
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.
Next, fix any

{
~β′;~δ′

}
∈ D, with ~β′ = {β′1, . . . , β′J} and ~δ′ = {δ′1, . . . , δ′J} and J ≤ |Ω|,

and any α′ ∈ A∗. Let S̄ ′ = {s′1, . . . , s′J} and M̄ ′ = {m′1, . . . ,m′J} be a solution to program
(6) for

({
~β′;~δ′

}
, α′
)
subject to constraint (7). Consider the signal structure π′ which puts

point mass over S̄ ′: for each ω ∈ Ω and j ∈ {1, . . . , J}, set π′ (sj|ω) = β′j(ω)δj

βo(ω) . Set µ′ (·|sj)
to be Dirac on mj ∀j = 1, . . . , J . It is readily verified that ρπ′,µ′ (·|sj) = ρπ′,µ′ (·|mj) =
β′j (·) ∀j = 1, . . . , J . Since S̄ ′ and M̄ ′ satisfied constraint (7), the Sender’s best response
constraint in (S-IC) is satisfied. This implies that (µ′;α′) is a PBE under π′ , and it is
readily verified that W (π′, µ′;α′) = Φ

({
~β′;~δ′

}
, α′
)
. Therefore, there exists an equilibrium

strategy profile (π′, µ′;α′) that achieves Φ
({
~β′;~δ′

}
, α′
)
. This implies that if program P has

no solution, the Sender-optimal equilibrium cannot exist. Conversely, if program P has a
solution τ ∗ =

{
~β∗, ~δ∗

}
and α∗ that achieves W ∗, there exists an equilibrium strategy profile

(π∗, µ∗;α∗) such thatW (π∗, µ∗;α∗) = Φ (τ ∗, α∗) = W ∗. Combining this with (43) establishes
the theorem.

Proof of Proposition 3.

Proof. Note that if C∗ (τ, α) = 0 for any τ ∈ D and α ∈ A∗, the Sender value from persuasion
will be his full commitment payoff. Fix any τ =

{
(βj)j=1,...,|Ω| ; (δj)j=1,...,|Ω|

}
∈ D and α ∈ A∗.

We will show that for each institution, there exists signal s1, . . . , s|Ω| ∈ SB and messages
m1, . . . ,m|Ω| ∈ M such c (mj|sj) = 0 ∀j and they satisfy constraint (7). For the quadratic
and linear distance lying costs, set sj = (j − 1) v̄ for j = 1, 2, . . . , |Ω|, where, recall that the
Sender’s payoff is bounded above by v̄; and set mj = sj, so c (mj|sj) = 0. This implies that
c (mj′|sj)−c (mj|sj) ≥ v̄ ∀j, j′, so constraint (7) is always satisfied. Therefore, C∗ (τ, α) = 0.
Next, for the institution with partial verifiability, if |V| ≥ |Ω|, simply choose any |Ω| signals
from V and set mj = {sj} ∀j. Next, consider |V| = |Ω| − 1 and the Sender has state-
independent preferences. Without loss, let the beliefs be ordered in the Sender’s preference
according to index j. For j ≤ |Ω|−1, let sj be signals in V and mj = sj, so constraint (7) are
trivially satisfied and c (mj|sj) = 0. Let s|Ω| ∈ N and m|Ω| = s|Ω|, so c

(
m|Ω||s|Ω|

)
= 0. Given

that m|Ω| induces the best Receiver’s belief for the Sender, constraint (7) is also trivially
satisfied at s|Ω|. Therefore, C∗ (τ, α) = 0 as well.
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Proof of Lemma 2.

Proof. Pick any |Ω| signals s1, s2, . . . , s|Ω| from SB and let mj = sj ∀j. Since c (mj′|sj) −
c (mj|sj) = k for any j 6= j′, the satisfaction of constraint (8) implies the satisfaction of
constraint (7), with C∗ (τ, α) = 0. When constraint (8) is violated, then the feasible sets of
signals and messages that satisfy constraint (7) is empty, so C∗ (τ, α) =∞.

Proof of Proposition 5.

Proof. By Theorem 1, we have to only consider Bayes plausible distributions of beliefs sup-
ported on two beliefs. Let β and β̄ denote the two beliefs under the optimal signal structure
and, without loss of generality, we assume that β ≤ β̄. Bayes plausibility implies that
β ≤ βo ≤ β̄, and the probabilities of beliefs β and β̄ are, respectively, τ = β̄−βo

β̄−β and

τ̄ = βo−β
β̄−β when β 6= β̄. Since v̂ (β) is a singleton ∀β, we abuse notation and let v̂ (β) denote

the value of that single element as well. Since β ≤ βo ≤ L
1+L , v̂

(
β
)

= 0. The Sender’s value
of persuasion is thus

V̂
(
β, β̄

)
= τ0v̂

(
β
)

+ τ1v̂
(
β̄
)

=
βo − β
β̄ − β

v̂
(
β̄
)
,

with Lemma 2 requiring that v̂
(
β̄
)
≤ k. Since β̄ ≥ βo, V̂

(
β, β̄

)
is decreasing in β, so

β = 0 and V̂
(
0, β̄

)
= βo

β̄
v̂
(
β̄
)
. If β̄ ≤ L

1+L , V̂
(
0, β̄

)
= 0; if β̄ > L

1+L , V̂
(
0, β̄

)
=

βo

β̄
ν
(
β̄ − L

(
1− β̄

))
> 0, so β̄ > L

1+L . ν is convex, so it is differentiable almost everywhere,
so

d

dβ̄
V̂
(
0, β̄

)
∝ ν ′

(
−L+ β̄ (1 + L)

)
−
ν
(
−L+ β̄ (1 + L)

)
β̄ (1 + L)

> ν ′
(
−L+ β̄ (1 + L)

)
−
ν
(
−L+ β̄ (1 + L)

)
−L+ β̄ (1 + L)

≥ 0.

The last inequality follows from the convexity of ν which implies that ν ′ (x) ≥ ν(x)
x
∀x > 0.

Since V̂
(
0, β̄

)
is increasing in β̄, the optimal β̄ is set such that v̂

(
β̄
)

= k, thus implying
that β̄ = ν−1(k)+L

1+L and the Sender’s value of persuasion is V ∗ (k, L) = kβo(1+L)
ν−1(k)+L .

d
dk
V ∗ (k, L) =

βo(1+L)
(ν−1(k)+L)2

(
L+ ν−1 (k)− k dν

−1(k)
dk

)
. ν is convex implies that ν−1 is concave, so ν−1(k)

k
≥

dν−1(k)
dk

; therefore, V ∗ (k, L) is increasing in k. Finally, ν−1 (k) < 1 implies that V ∗ (k, L) is
decreasing in L.
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Proof of Lemma 3.

Proof. Fix any ρ, ρ′ ∈ ∆Ω and τ ∈ ∆∆Ω such that
∫
σdτ (σ) = ρ.

Euclidean distance: ψ (ρ|σ) =
√∑

ω∈Ω (σ (ω)− ρ (ω))2. Let || · || be the Euclidean norm;
therefore, ψ (ρ|σ) = ||ρ− σ||. Recall the reverse triangle inequality

∣∣∣∣||x|| − ||y||∣∣∣∣ ≤ ||x− y||,
which implies that∣∣∣∣ψ (ρ′|σ)− ψ (ρ|σ)

∣∣∣∣ =
∣∣∣∣||ρ′ − σ|| − ||ρ− σ||∣∣∣∣ ≤ ||ρ′ − ρ||.

Therefore,
∫
ψ (ρ′|σ)− ψ (ρ|σ) dτ (σ) ≤

∫ ∣∣∣∣ψ (ρ′|σ)− ψ (ρ|σ)
∣∣∣∣dτ (σ)

≤ ||ρ′ − ρ|| = ψ (ρ′|ρ) .

Squared Euclidean distance: ψ (ρ|σ) = ∑
ω∈Ω (σ (ω)− ρ (ω))2.

ψ (ρ′|σ)− ψ (ρ|σ) =
∑
ω∈Ω

(σ (ω)− ρ′ (ω))2 −
∑
ω∈Ω

(σ (ω)− ρ (ω))2

=
∑
ω∈Ω

ρ′ (ω)2 − ρ (ω)2 − 2σ (ω) [ρ′ (ω)− ρ (ω)]

Therefore,
∫
ψ (ρ′|σ)− ψ (ρ|σ) dτ (σ) =

∑
ω∈Ω

ρ′ (ω)2 − ρ (ω)2 − 2
∫
σ (ω) dτ (σ) [ρ′ (ω)− ρ (ω)]

=
∑
ω∈Ω

ρ′ (ω)2 − ρ (ω)2 − 2ρ (ω) [ρ′ (ω)− ρ (ω)]

=
∑
ω∈Ω

[ρ (ω)− ρ′ (ω)]2 = ψ (ρ′|ρ)

Kullback-Leiber divergence: ψ (ρ|σ) = ∑
ω∈Ω σ (ω) log σ(ω)

ρ(ω) .

ψ (ρ′|σ)− ψ (ρ|σ) =
∑
ω∈Ω

σ (ω) log σ (ω)
ρ′ (ω) −

∑
ω∈Ω

σ (ω) log σ (ω)
ρ (ω) =

∑
ω∈Ω

σ (ω) log ρ (ω)
ρ′ (ω) .
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Therefore,

∫
ψ (ρ′|σ)− ψ (ρ|σ) dτ (σ) =

∫ ∑
ω∈Ω

σ (ω) log ρ (ω)
ρ′ (ω)dτ (σ)

=
∑
ω∈Ω

ρ (ω) log ρ (ω)
ρ′ (ω) = ψ (ρ′|ρ)

Symmetric divergence: ψ (ρ|σ) = ∑
ω∈Ω (σ (ω)− ρ (ω)) log σ(ω)

ρ(ω) .

ψ (ρ′|σ)− ψ (ρ|σ)

=
∑
ω∈Ω

[σ (ω)− ρ′ (ω)] log σ (ω)
ρ′ (ω) −

∑
ω∈Ω

[σ (ω)− ρ (ω)] log σ (ω)
ρ (ω)

=
∑
ω∈Ω

σ (ω) log ρ (ω)
ρ′ (ω) + [ρ (ω)− ρ′ (ω)] log σ (ω) + ρ′ (ω) log ρ′ (ω)− ρ (ω) log ρ (ω)

Therefore,
∫
ψ (ρ′|σ)− ψ (ρ|σ) dτ (σ)

=
∑
ω∈Ω

∫
σ (ω) dτ (σ) log ρ (ω)

ρ′ (ω) + [ρ (ω)− ρ′ (ω)]
∫

log σ (ω) dτ (σ) + ρ′ (ω) log ρ′ (ω)− ρ (ω) log ρ (ω)

≤
∑
ω∈Ω

∫
σ (ω) dτ (σ) log ρ (ω)

ρ′ (ω) + [ρ (ω)− ρ′ (ω)] log
(∫

σ (ω) dτ (σ)
)

+ ρ′ (ω) log ρ′ (ω)− ρ (ω) log ρ (ω)

=
∑
ω∈Ω

ρ (ω) log ρ (ω)
ρ′ (ω) + [ρ (ω)− ρ′ (ω)] log ρ (ω) + ρ′ (ω) log ρ′ (ω)− ρ (ω) log ρ (ω)

=
∑
ω∈Ω

[ρ (ω)− ρ′ (ω)] log ρ (ω)
ρ′ (ω) = ψ (ρ′|ρ)

Proof of Proposition 6.

Proof. Let (π, µ;α) be a Sender-optimal equilibrium. Referring to the proof for Proposition
1, let π̄2 be as defined in (24) and µ̄2 (·|s) be Dirac on m = γ−1

2 (s) ∀s ∈ S̄2. We will show
that (µ̄2;α) is also a PBE here withW (π̄2, µ̄2;α) ≥ W (π, µ;α). The arguments with respect
to the messaging costs in the proof for Proposition 1 hold here, so we will omit the related
details. In particular, (25), (36) and (37) jointly imply that V (π, µ;α) = V (π̄2, µ̄2;α);
therefore, we just have to show that the Sender’s best response (which has changed from
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(S-IC) to (S-IC’)) holds here, and C (π̄2, µ̄2) ≤ C (π, µ).
By (25), ρπ̄2,µ̄2 (·|m) = ρπ,µ (·|m) ∀m ∈ M̄ , so we ease notation as before by letting

αm (·) = α (·|ρπ̄2,µ̄2 (·|m)) = α (·|ρπ,µ (·|m)). Fix m ∈ M̄ . For each s ∈ Γ (m), the Sender’s
best response in (S-IC’) holds under (π, µ), hence

v
(
αm, σπ (·|s)

)
− v

(
αm′ , σπ (·|s)

)
≥ c (m|s)− c (m′|s) + ψ

(
ρπ,µ (·|m)

∣∣∣σπ (·|s)
)
− ψ

(
ρπ,µ (·|m′)

∣∣∣σπ (·|s)
)
∀m′ ∈M. (44)

As before, let Λ (·|m) ∈ ∆S be the regular conditional probability measure over S
when conditioned on the Receiver receiving message m under (π, µ), which implies that
ρπ,µ (·|m) =

∫
s∈Γ(m) σπ (·|s) dΛ (s|m). Recall that γ−1

2 (s) is the message that the Sender
plays with probability one after observing signal s, and S̄2 is the set of signals supported by
π̄2. Under Assumption 2, ∀m′ ∈M and s ∈ S̄2,

ψ
(
ρπ̄2,µ̄2 (·|m′)

∣∣∣σπ̄2 (·|s)
)

=ψ
(
ρπ̄2,µ̄2 (·|m′)

∣∣∣ρπ̄2,µ̄2

(
·|γ−1

2 (s)
))

=ψ
(
ρπ2,µ2 (·|m′)

∣∣∣ρπ2,µ2

(
·|γ−1

2 (s)
))

≥
∫
s′∈Γ(γ−1

2 (s))
ψ
(
ρπ2,µ2 (·|m′)

∣∣∣σπ (·|s′)
)
− ψ

(
ρπ2,µ2

(
·|γ−1

2 (s)
) ∣∣∣σπ (·|s′)

)
dΛ

(
s′|γ−1

2 (s)
)
(45)

Therefore,

v
(
αγ−1

2 (s), σπ̄2 (·|s)
)
− v (αm′ , σπ̄2 (·|s))

=
∫
s′∈Γ(γ−1

2 (s))

[
v
(
αγ−1

2 (s), σπ (·|s′)
)
− v (αm′ , σπ2 (·|s′))

]
dΛ

(
s′|γ−1

2 (s)
)

(46)

≥
∫
s′∈Γ(γ−1

2 (s))

[
c
(
γ−1

2 (s) |s′
)
− c (m′|s′)

]
dΛ

(
s′|γ−1

2 (s)
)

+
∫
s′∈Γ(γ−1

2 (s))

[
ψ
(
ρπ,µ

(
·|γ−1

2 (s)
) ∣∣∣σπ (·|s′)

)
− ψ

(
ρπ,µ (·|m′)

∣∣∣σπ (·|s′)
)]
dΛ

(
s′|γ−1

2 (s)
)

(47)

≥c
(
γ−1

2 (s) |s
)
− c (m′|s) + ψ

(
ρπ̄2,µ̄2

(
·|γ−1

2 (s)
) ∣∣∣σπ̄2 (·|s)

)
︸ ︷︷ ︸

=0

−ψ
(
ρπ̄2,µ̄2 (·|m′)

∣∣∣σπ̄2 (·|s)
)

(48)
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This implies the Sender’s best response; therefore, (µ̄2;α) is a PBE under π̄2. Next,

C (π̄2, µ̄2) =
∑
ω′∈Ω

βo (ω′)
∫
s∈S

∫
m∈M̄

[
c (m|s) + ψ

(
ρπ̄2,µ̄2 (·|m)

∣∣∣σπ̄2 (·|s)
)]
dµ̄2 (m|s) dπ̄2 (s|ω′)

=
∑
ω′∈Ω

βo (ω′)
∫
s∈S

∫
m∈M̄

c (m|s) dµ̄2 (m|s) dπ̄2 (s|ω′)

≤
∑
ω∈Ω

βo (ω)
∫
s∈S

∫
m∈M̄

c (m|s) dµ (m|s) dπ (s|ω) (49)

≤
∑
ω∈Ω

βo (ω)
∫
s∈S

∫
m∈M̄

[
c (m|s) + ψ

(
ρπ,µ (·|m)

∣∣∣σπ (·|s)
)]
dµ (m|s) dπ (s|ω)

=C (π, µ)

Therefore, W (π̄2, µ̄2;α) ≥ W (π, µ;α), so W (π̄2, µ̄2;α) is also a Sender-optimal equilibrium.
The last part of the proposition follows from the same argument as Proposition 2.
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