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Abstract

We introduce a model of probabilistic verification into the standard
mechanism design setting. The principal can verify the truthfulness of
the reported type with a statistical test. Testing generates a binary
outcome—pass or fail—that depends stochastically on the agent’s true
type and reported type. The principal commits to a mechanism, which
assigns a test to each message and then a decision based on the test
outcome. We solve for the optimal mechanism under quasilinear pref-
erences. If verification is more accurate, then the optimal allocation is
more efficient, and the principal extracts a greater share of the surplus.
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1 Introduction

Private information is not entirely private—it can often be verified, at least
partially. For instance, if a U.S. taxpayer claims a tax deduction, the IRS
can demand receipts proving eligibility. A consumer applying for a new
credit card is asked to report his income, and the credit card company can
request a monthly pay stub as confirmation. Disability insurance claimants
must undergo medical tests to confirm the legitimacy of their claims.

In the classical paradigm of mechanism design, the principal cannot
perform such verification. Instead, the principal elicits messages from the
agents. The mechanism must be designed so that the agents are willing
to reveal their private information. How can the principal use verification
to encourage agents to reveal their information? More generally, how does
the verification technology change the set of implementable social choice
functions?

These questions require a formal model of verification in mechanism de-
sign. Green and Laffont (1986) provide the first such model. They restrict
the messages that each type can send, and famously show that these restric-
tions invalidate the revelation principle. Subsequent models have introduced
hard evidence (Bull and Watson, 2004, 2007) or included verification as one
dimension of the economic outcome (Strausz, 2016). These models of veri-
fication inherently assume that the ability of a type to mimicking another
type is either perfect or completely lacking.

We take a distinct approach by modeling verification as a part of the
principal’s technology and by introducing randomness into the verification
outcome.

In Section 2, we present our model of verification in a standard principal–
agent setting. The agent has a private type and the principal controls deci-
sions. The verification technology is represented by a family of binary tests.
A test is characterized by the probability with which each type can pass it.
The agent is free to fail the test, so really this probability is an upper bound.

Following the tradition in mechanism design, we assume that the princi-
pal has full commitment and can elicit messages from the agent. With the
new verification technology, a mechanism has two parts—a testing rule and
a decision rule. The testing rule specifies the test that will be conducted
following each message. The decision rule species the decision that will be
chosen following the agent’s message, the selected test, and the binary test
outcome. The agent’s strategy also has two parts. First he chooses what
message to send. Then, after observing the test that the principal has se-
lected, he chooses the probability with which he will pass the test, subject
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to the type-specific upper bound imposed by the technology.
In Section 3, we reduce the class of mechanisms in two stages. First,

we apply the standard revelation principle (Proposition 1), which remains
valid under our approach. Next, we reduce the class of testing functions
that need to be considered (Theorem 1): For each fixed type, we define a
partial order on the space of tests that compares how well tests can distin-
guish that type from other types. If for each type there exists a test that is
most-discerning for that type, then there is no loss in restricting to testing
functions that assign to each type report the corresponding most discerning
test. From this identification, we define the authentication rate, which spec-
ifies the probability with which type θ can pass the test identified with type
θ′. We also show that being most discerning for a certain type is necessary
for a te t to be the sa In Section 4, we work with the authentication rate di-
rectly. We characterize whether a given authentication rate can be induced
by an underlying testing technology (Theorem 2). Previous attempts to
introduce verification have worked directly with the reduced form and then
imposed various conditions on the reduced form. Our characterization re-
sult makes two contributions. First, it substantially generalizes the previous
conditions to allow for probabilistic rather than partial verification, Second,
our condition sheds new light on the interpretation of the previous condi-
tions. In Section 5 we use the authentication rate micro-founded above to
solve for optimal mechanisms in a few standard mechanism design settings.
Previous models were difficult to analyze because nonrandom verification
invalidated the first-order envelope approach. The structure of the opti-
mal mechanism in these models reflects the perfectness of their verification
technology: mechanism are often discontinuous and the local incentive con-
straints are not binding (Townsend, 1979; Ben-Porath et al., 2014; Erlanson
and Kleiner, 2015); the few models of probabilistic verification are reduced
to nonrandom verification through unbounded punishments (Ferraioli and
Ventre, 2018; Caragiannis et al., 2012).

We use the first-order envelope approach to derive a suitable virtual value
that reflects the verification technology. The solution methods are similar
to the classical methods, except this new virtual value replaces Myerson’s
expression for the virtual value. Consequently, the impact of verification
technology on the optimal allocation is cleanly encoded in this single ex-
pression.

We characterize the optimal mechanism with verification for the nonlin-
ear pricing problem (Theorem 3), the selling of a single indivisible good and,
the auction setting Theorem 4.

Section 6 connects our modelling approach through tests to previous ap-
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proaches. In particular, our model can be interpreted as a model of stochas-
tic evidence. We also discuss related literature that has proceeded, in par-
allel, in both the economics and computer science literature. Proofs are in
Appendix A, along with formal measure-theoretic definitions.

2 Model

2.1 Setting

Consider a standard principal–agent setting. The agent draws a private type
θ ∈ Θ from a commonly known distribution µ ∈ ∆(Θ). The principal con-
trols decisions x ∈ X. Preferences for both players depend on the decision
x and the agent’s type θ. The Bernoulli utility functions for the agent and
principal, respectively, are denoted by

u : X ×Θ→ R and v : X ×Θ→ R.

The object of interest is a social choice function

f : Θ→ ∆(X),

which assigns a decision lottery to each type.1

2.2 Verification technology

To the principal–agent setting we add a verification technology, in the form
of statistical testing. There is a set T of available tests, with generic element
τ . The principal can conduct one test from this set. Each test generates a
binary outcome—pass or fail. The agent’s type determines the probability
that he is able to pass each test, but the agent is always free to fail a test.
This assumption breaks the symmetry between passage and failure; they are
not arbitrary labels.

The testing technology is characterized by the performance function

p : Θ× T → ∆({0, 1}),
1Each set is assumed to be endowed with a σ-algebra, and all functions are assumed to

be measurable. The space of probability measures on a measurable space (Z,Z) is denoted
∆(Z). Every function into a space of probability distributions is assumed to satisfy the
requirements of a stochastic kernel. That is, a function k from a measurable space Y into
∆(Z) is formally a map from Y × Z to [0, 1] such that for each y, the map k(y, ·) is in
∆(Z), and for each E ∈ Z, the map k(·, E) is a measurable function from Y into [0, 1],
where [0, 1] is endowed with the usual Borel σ-algebra.
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which assigns to each type θ and test τ a distribution over the set {0, 1} of
outcomes, where 1 denotes passage and 0 denotes failure. This distribution
is denoted pθ,τ , and can be identified with the passage probability, denoted
p(θ, τ). If the agent has type θ and is given test τ , then he can elect to pass
the test with any probability between 0 and p(θ, τ).

Assume that for each test τ , the function p(·, τ) is not constant, so that
performance on test τ is not independent of the agent’s type. This assump-
tion is without loss of generality because we can remove all uninformative
tests from the testing set without changing the set of implementable social
choice rules.2

In practice, verification can take many forms: evidence, questioning,
examinations. Our model abstracts from the process of verification; instead,
we identify the verification technology with its statistical properties, which
determine the agent’s incentives.

Our abstract notion of testing has two features. First, the principal
and agent understand the testing technology in the sense that they have a
common understanding of the performance function p. As a special case,
this allows for deterministic testing, in which case p simply specifies which
types can pass which tests. More generally, we our model allows for test
outcomes to be stochastic.

Second, the agent is free to fail. The agent plays an active role in deter-
mining his performance on a test, subject to the constraints imposed by the
passage function p. One interpretation is that each test corresponds to a
piece of evidence that the principal can ask for. Then freedom to fail reflects
the fact that an agent with evidence can choose not to provide it. But this
applies more broadly than evidence. Often, the agent knows at least one
way to assure failure on a test, even if he does not know exactly how to pass.

2.3 Mechanisms, strategies, and implementation

As in the standard mechanism design framework, the principal has full com-
mitment power and elicits (cheap-talk) messages from the agent. The princi-
pal commits to the test she will conduct as a function of the message. Then
she observes the binary outcome of the test and commits to a decision as a
function of the message, the test, and the test outcome. This is formalized
as follows.

Definition 1 (Mechanism). A mechanism consists of a message space M

2We use this assumption in Section 4 to rule out uninteresting cases where the authen-
tication rate is not unique.
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together with a testing rule g1 : M → ∆(T ) and a decision rule g2 : M ×
T × {0, 1} → ∆(X).3 Such a mechanism is denoted (M, g).

The principal’s mechanism induces a multistage decision problem for the
agent, with the following timing.4

1. The principal commits to a mechanism (M, g).
2. Nature draws the agent’s type θ according to µ.
3. The agent observes θ and chooses a message m to send.
4. The principal observes message m and selects test τ according to test-

ing rule g1

5. The agent observes test τ and chooses whether to intentionally fail the
test.

6. The principal observes the test outcome and takes a decision x ∈ X
according to decision rule g2.

We allow the agent to mix his actions, and we next define a (behavioral)
strategy for the agent.

Definition 2 (Strategy). A strategy a = (a1, a2) for the agent consists of a
message strategy a1 : Θ→ ∆(M) and a performance strategy a2 : Θ×M ×
T → [0, 1] satisfying a2(θ,m, τ) ≤ p(θ, τ) for all θ ∈ Θ, m ∈M , and τ ∈ T .

The performance function p imposes an upper bound on the passage rate
that the agent selects. This constraint is incorporated into the definition of a
strategy, so it is redundant to speak of a “feasible” strategy. The principal’s
mechanism and the agent’s strategy together determine a stochastic process,
represented as

µ−→ Θ
a1−→M

g1−→ T
a2−→ {0, 1} g2−→ X. (1)

This diagram should not be interpreted as a Markov process. The arrows in-
dicate transitions,but not the full dependence. Transitions controlled by the
agent depend on all previous states; transitions controlled by the principal
depend on all previous states except the true type.

Because there are so many successive stages of randomization, writing
out distributions of decisions quickly becomes unwieldy. To get around
this problem, we adopt formalism from Markov processes to represent the

3Since the principal has commitment power, the decision rule need only specify de-
cisions following history (m, t, z) if test t is in the support of g1 after message m. To
simplify notation, we do not restrict the domain of g2, but sometimes we will not specify
the decisions on these unsupported histories.

4Equivalently, an extensive form game in which the agent is the only strategy player.
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composition of behavioral strategies. The meaning should be intuitively
clear, and this is sufficient to follow the main text. The details of the notation
are only needed for the proofs, and can be found in Appendix A.1.

In particular, the the mechanism g and the strategy a together induce
the social choice function

µ⊗ a1 ⊗ g1 ⊗ a2 ⊗ g2 ∈ ∆(Θ×M × T × {0, 1} ×X).

This joint distribution is constructed in the natural way, which is defined
via integration in Appendix A.1. We can also compute the induced social
choice function as5

f = (a1 ⊗ g1 ⊗ a2)g2.

We conclude this section with the suitable definitions of implementation
in our setting. Social choice functions depend both on the principal’s mech-
anism and the agent’s strategy. A profile consists of a mechanism (M, g)
and a strategy a such that a is a best response to (M, g). A profile (M, g, a)
implements the social function f = (a1 ⊗ g1 ⊗ a2)g2. We are interested in
the class of all social choice functions that are implemented by some profile.
Such social choice functions are implementable. The space of all mechanisms
is large, so we next find a smaller classes of mechanisms that is sufficient to
trace out all implementable social choice functions.

3 Reducing the class of mechanisms

Characterizing the class of implementable social choice rules is challenging
because we must consider profiles (M, g1, g2, a1, a2). In this section, we show
in stages that it is without loss to consider a special subclass of profiles.
First, we use the classical revelation principal to show that, without loss, we
may consider profiles that are direct (M = Θ) and truthful (a1 = id). Second
we show that without loss, we may consider profiles in which the agent does
not voluntarily fail, that is, a1

θ,m,τ = pθ,τ for all types θ, messages m, and

tests τ . This leaves only the testing rule g1 and the decision rule g2. Third,

5Here, the transitions kernels are built up as follows:

a1 : Θ→ ∆(M),

a1 ⊗ g1 : Θ→ ∆(M × T ),

a1 ⊗ g1 ⊗ a2 : Θ→ ∆(M × T × {0, 1}),

(a1 ⊗ g1 ⊗ a2)g2 : Θ→ X.
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we give a condition under which we may focus on a single, fixed testing rule
g1 that assigns to each type report the most discerning test for that type.
In total, these simplifications reduces the characterizations from considering
all five objects in the profile to simply the decision function g2.

3.1 Revelation principle

First, we apply the classical revelation principle. The argument goes though
as usual because we model verification as a technology, rather than a re-
striction on the message space. Such a message restriction can invalidate
the revelation principle, as shown by Green and Laffont (1986).

Proposition 1 (Revelation principle)
If a social choice function f is implemented by a profile (M, g, a), then f is
also implemented by a profile (M̂, ĝ, â) with M̂ = Θ and â1 = id.

3.2 No failure

We can further simplify the problem by restricting attention to strategies
in which the agent does not fail freely. Indeed, if the agent chooses to
fail, redefine the decision lottery following passage so that by passing with
maximal probability the agent replicates the previous decision distribution.

Proposition 2 (No voluntary failure)
If a social choice function f is implemented by a direct, truthful profile
(M, g, a), then f is also implemented by a direct, truthful profile for which
â2
θ,m,τ = pθ,τ for all θ ∈ Θ, m ∈M , and τ ∈ T .

We can restrict attention to a particular deviation. The agent can mis-
report his type and then freely fail, and we will compare this deviation to
truthful reporting and then no voluntary failure. The challenge is that we
don’t know which test is being used. This is where the more discerning order
comes in, as we describe next.

3.3 Most discerning tests

The revelation principle substantially reduces the class of mechanisms we
need to consider. But characterizing the space of implementable social choice
rules remains a challenge because the principal must jointly choose the test-
ing function and the decision function. The agent’s incentives to misreport
depend on the testing function.
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In this section, we introduce an order on the class of tests. Ultimately
we provide a condition for a test to be a maximum with respect to this
order, in which case we may restrict attention to mechanisms in which a
particular mapping is chosen. If this condition is met it is without loss to
restrict attention to a particular mapping g1 from Θ into T . This means
that irrespective of the preferences and the decision problem, the principal
will always conduct the same test g1(θ) on an agent who reports type θ.

To define the partial order, we introduce a few further definitions. A
probability measure ν on R has an associated right-continuous cumulative
distribution function F : R→ [0, 1] and an associated left-continuous quan-
tile function Q : (0, 1) → R. If ν has compact support, then we can also
define Q on the endpoints 0 and 1. We need to generalize these objects to
kernels. The cumulative distribution kernel

F̃ : R→ ∆([0, 1])

assigns to each point s the uniform distribution on [F (s−), F (s)], where
F (s−) = limr↓s F (r). If f is continuous at s, then this interval is a point,
and the uniform distribution is the point mass δF (s) at continuity points s
of F . Formally the quantile kernel

Q̃ : [0, 1]→ ∆(R)

assigns to each point q ∈ [0, 1] the point mass δQ(q).
For each type–test pair (θ, τ), the probability measure pθ,τ has these

associated kernels, which we denote by F̃θ,τ and Q̃θ,τ , respectively. Finally,
we define the composition of kernels as in the theory of Markov processes.6

We can now introduce a new type-specify order on the test space.

Definition 3 (Discernment order). Fix a type θ ∈ Θ. Test τ is more θ-
discerning than test ψ, denoted τ �θ ψ, if for all types θ′ ∈ Θ,

pθ′,τ F̃θ,τ Q̃θ,ψ �1 pθ′,ψ. (2)

The idea of this condition is that if type θ is assigned to test ψ, then
the principal can replace test ψ by test τ without introducing any new
deviations. This condition can be replaced with the piecewise inequality

6Let P be a measure on R and F a cumulative distribuion kernel. PF̃ denotes the
measure that is given by PF̃ (A) =

∫
R
F̃ (s)(A) dP (s).
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that

p(θ, τ) ≥ p(θ, ψ) =⇒ p(θ, τ)

p(θ′, τ)
≥ p(θ, ψ)

p(θ′, ψ)
,

p(θ, τ) < p(θ′, ψ) =⇒ 1− p(θ′, τ)

1− p(θ, τ)
≥ 1− p(θ′, ψ)

1− p(θ, ψ)
,

provided that the denominators do not vanish. Cross-multiplying gives a
condition that makes sense even when some terms are zero.There are two
separate cases, depending on the relative passage rate of type θ on tests τ
and ψ. If type θ is more likely to pass test τ than test ψ, then the relative
passage rate of type θ compared to type θ′ must be greater on test τ than
on test ψ. If type θ is more like to fail test τ than test ψ, then the relative
failure rate of type θ compared to type θ′ must be smaller on test τ than on
test ψ.

Definition 4 (Most discerning test). Test τ is most θ-discerning if τ �θ ψ
for all tests ψ ∈ T .

The definition of most discerning tests has a natural extension to testing
fuctions.

Definition 5 (Most discerning testing function). A testing function g1 : Θ→
T is most discerning if for each type θ, the test g1(θ) is most θ-discerning.

Recall that the revelation principle (Proposition 1) and the no-failure
result (Proposition 2) tell us that we need only consider direct, truthful
profiles with no voluntary failure. Hereafter, we will call this canonical
implementation. The two propositions tell us that every implementable
social choice function is canonically implementable.

Now we can turn to the main implementation result.

Theorem 1 (Implementation)
Let g1 be a testing function.

1. If g1 is most discerning, then for every utility function u, the following
holds: Every implementable social choice function can be canonically
implemented with testing function g1.

2. If g1 is not most discerning, then for some utility function u, the
following holds: There exists a social choice function f such that with
respect to u, the function f is canonically implementable but not with
the testing function g1.
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Part 1 says that our discernment order is sufficient. When there exists a
most discerning testing function, then mechanisms using this testing func-
tions trace out the space of all implementable social choice functions. This
is the third and final step in reducing the class of profiles that we need to
consider.

Part 2 says that our discernment order is necessary. To be sure, pref-
erences matter. As an extreme case, if every type of agent is indifferent
between every decision, then every social choice function is implementable,
even without any verification technology. But our condition is necessary if
we want to restrict to mechanisms with a fixed testing function that works
no matter the agent’s preferences.

4 Reduced-form authentication rate

4.1 Characterization

Suppose that for every type there is at least one mostly discerning test. We
find a reduced form authentication rate α : Θ × Θ → [0, 1] that suffices to
characterize the underlying testing environment.

Let g1 be a mostly discerning testing rule. The authentication rate in-
duced by g1 is the function α : Θ×Θ→ [0, 1] defined by

α(θ, θ′) = p(θ, g1(θ′)).

Proposition 3 (Authentication rate)
Every mostly discerning testing rule induces the same authentication rate.

This common rate is called the authentication rate induced by the testing
technology, and it is defined for any testing technology for which there exists
a most discerning testing rule.

Four our main characterization result, we state the following condition.

Definition 6 (Normality). An authentication rate is normal if, for all
θ1, θ2, θ3, we have

α(θ1, θ3)α(θ2, θ2) ≥ α(θ1, θ2)α(θ2, θ3),

whenever α(θ2, θ2) ≥ α(θ2, θ3), and we have

(1− α(θ1, θ3))(1− α(θ2, θ2)) ≤ (!− α(θ1, θ2))(1− α(θ2, θ3)),

whenever α(θ2, θ2) < α(θ2, θ3).
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Theorem 2 (Reduced-form characterization)
An authentication rate α : Θ × Θ → [0, 1] is induced by some testing tech-
nology if and only if α is normal.

A function α : Θ×Θ→ [0, 1] is transitive if

α(θ1, θ3)α(θ2, θ2) ≥ α(θ1, θ2)α(θ2, θ3),

for all θ1, θ2, θ3 ∈ Θ.

Corollary 1 (Transitivity)
If an authentication rate α : Θ×Θ→ [0, 1] satisfies α(θ, θ) ≥ α(θ, θ′) for all
θ, θ′ ∈ Θ, then α is induced by some testing technology if and only if α is
transitive.

The nested range condition used in Green and Laffont (1986) is a special
case of the transitivity condition here. The message correspondence in Green
and Laffont (1986) can be represented in our language as a {0, 1}-valued
authentication rate with α(θ, θ) = 1 for all θ. In particular, α(θ, θ) =
1 ≥ α(θ, θ′) for all types θ and θ′ so Corollary 1 says that this message
correspondence can be induced by some underlying testing technology if
and only if

α(θ1, θ3) ≥ α(θ1, θ2)α(θ2, θ3)

for all θ1, θ2, θ3 ∈ Θ, where we have suppressed the term α(θ2, θ2) on the left
side because it equals 1. If either α(θ1, θ2) or α(θ2, θ3) vanishes, then the
inequality is immediately satisfied. Thus, it requires that if θ1 can mimic
θ2, and θ2 can mimic θ3, then θ1 can mimic θ3, which is precisely the nested
range condition.

4.2 Example with three types

The agent has three possible types, Θ = {θ1, θ2, θ3}. When can α : Θ×Θ→
[0, 1] be the reduced form of an underlying test technology? We assume here
that α(θ, θ) = 1 for all θ ∈ Θ: If α is a reduced form, this means that there
is no false detection.

θ1 θ2 θ3

α(θ1, θ2) α(θ2, θ3)

α(θ1, θ3)We further assume that α(θi, θj) = 0
whenever i > j. With all these assump-
tion in place the question whether α can
be the reduced form of a mostly discern-
ing test technology boils down to a sin-
gle inequality:

α(θ1, θ3) ≥ α(θ1, θ2)α(θ2, θ3).
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For α with α(θ1, θ2) = 1/3, α(θ2, θ3) = 1/2 and α(θ1, θ3) = 1/8 the inequality
is violated. This means that there cannot exists a test technology with
mostly discerning tests that would induce α.

Suppose that α is induced by a selection of tests (that are not all mostly
discerning nonetheless. Denote the test that is associated with type θi by
τi. The assumptions on α lead to the following passage probabilities:p(θ1, τ1) p(θ1, τ2) p(θ1, τ3)

p(θ2, τ1) p(θ2, τ2) p(θ2, τ3)
p(θ3, τ1) p(θ3, τ2) p(θ3, τ3)

 =

1 1/3 1/8
0 1 1/2
0 0 1


Suppose that these are the only tests at the disposal of the principal, T =
{τ1, τ2, τ3}, We want to demonstrate that in this setting the choice of the
optimal test (g1) for any type report (in a direct mechanism) can no longer
be disentangled from the design of the subsequent decision rule (g2).

Consider an allocation problem; X = [0, 1] describes the probability of
allocating a good to the agent. The agent wants to maximize the probability
of receiving the good irrespective of his type. First consider the social choice
function f = (1/8, 1/2, 1), where component i is the value at θi. This
function is implemented by the mechanism

(g1(θ1), g1(θ2), g1(θ3)) = (τ1, τ3, τ3),

g2(θ1, τ1, 1), g2(θ2, τ3, 1), g3(θ3, τ3, 1)) = (1/8, 1, 1),

where g2(θ1, τ1, 1) denotes the allocation probability after a type report θ1,
the conduction of test τ1 and the test outcome 1. The allocation probabilities
after test outcome 0 is set to 0. Any direct mechanism that implements f
must counter a type report θ2 with test τ3. Otherwise an agent of type θ1

will always find a profitable to misreport his type as θ2. Next consider the
social choice function f̃ = (1/3, 1, 0). It is implemented by

(g1(θ1), g1(θ2), g1(θ3)) = (τ1, τ2, τ3),

g2(θ1, τ1, 1), g2(θ2, τ2, 1), g3(θ3, τ3, 1)) = (1/3, 1, 0).

any implementation must have a type report θ2 followed by a test τ2. Oth-
erwise the good cannot be allocated to type θ2 with probability 1.

These examples of social choice functions show that there cannot be a
fixed test that is assigned to report θ2 in all problems.

The example shows that without mostly discerning tests, the test choice
cannot be reduced into α. Correspondingly one cannot assume a reduced
form mimicking relationship α that describes the ability of a type to mimic
another type universally, that is in any possible preference and decision
environment, if it does not obey the condition of Theorem 2.
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5 Applications

We now take advantage of the reduced-form representation to solve a few
classical problems in mechanism design with quasilinear utility. The solu-
tions can be expressed in terms of a new expression for the virtual value
that reflects the verification technology.

For the applications, consider an authentication rate α : Θ × Θ → [0, 1]
satisfying the following assumptions.

1. α(θ, θ) = 1 for all θ.
2. α is transitive.
3. For each θ′, the function α(·, θ′) is absolutely continuous.
4. For each θ, the right and left partial derivatives ∂1α(θ+, θ) and ∂1α(θ−, θ)

exist, and the functions θ 7→ ∂1α(θ+, θ) and θ 7→ ∂1α(θ−, θ) are inte-
grable.

5.1 Nonlinear pricing setting

Consider the standard nonlinear pricing setting from Mussa and Rosen
(1978). The agent’s type θ is drawn from an interval Θ = [

¯
θ, θ̄] accord-

ing to a cdf F with strictly positive density f . The agent’s utility from
consuming quantity q and making transfer t is

u(q, t, θ) = θq − t.

The principal’s utility from receiving transfer t and providing quantity q is

v(q, t) = t− c(q),

where the cost function c is strictly increasing and strictly convex. We
further assume c(0) = c′(0) = 0 and limq→∞ c

′(q) =∞. The principal’s cost
is independent of the agent’s type.

The novelty is that the principal has access to detection technology char-
acterized by some function α. The agent is free to walk away at any time,
so the participation constraint must be satisfied ex post, even if the agent
is detected as lying. In particular, we rule out upfront payments.7

By the truthfulness principle, we may restrict attention to mechanisms
in which the agent reports truthfully since doing so does not reduce the
set of resulting social choice functions. Since α(θ, θ) = 1 for all types θ,
lies will not be detected on-path. Therefore, we may assume that if a lie

7For a model allowing upfront payments, see Border and Sobel (1987).
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is detected, the principal holds the agent to zero utility, e.g., by refusing
service (q = t = 0).

The principle chooses a quantity function q : Θ → R+ and a transfer
function t : Θ→ R to solve

maximize

∫ θ̄

¯
θ

[t(θ)− c(q(θ))]f(θ) dθ

subject to θq(θ)− t(θ) ≥ α(θ, θ′)[θq(θ′)− t(θ′)], θ, θ′ ∈ Θ

θq(θ)− t(θ) ≥ 0, θ ∈ Θ.

The first constraint is incentive compatibility. The agent is authenticated
with probability α(θ, θ′) and in this case his utility is θq(θ′) − t(θ′). With
complementary probability, the agent’s lie is detected so he receives utility
zero. The second constraint is the participation constraint.8

5.2 Virtual value

For each type θ, let
λ(θ) = −∂1α(θ+, θ),

where the derivative is the right partial derivative with respect to the true
type. This function λ parametrizes the local precision of the verificaiton
technology. For θ ≥ θ′, let

Λ(θ, θ′) = exp

(
−
∫ θ

θ′
λ(s) ds

)
.

In this section, we provide an informal derivation of the suitable virtual
value in the presence of verification. Recall Myerson’s virtual value

ϕM (θ) = θ − 1− F (θ)

f(θ)
.

For intuition, it is convenient to express the virtual value in terms of an
integral as

θ − 1

f(θ)

∫ θ̄

θ
f(s) ds. (3)

The virtual value ϕ(θ) is the marginal effect on total revenue from allocating
an additional unit to type θ. This effect comes in two parts. First, the effect

8More precisely, this is the ex post participation constraint following authentication.
We are assuming that, after detection, the ex post participation constraint holds with
equality.
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on the revenue from type θ is just θ because the principal can extract the
additional utility that type θ gets from the higher allocation. The second
reflects the loss of revenue on all higher types, weighted by the density of
those types.

With verification, the marginal effect on the utility of higher types is
much smaller. Indeed, the effect of type θ′ on a higher type θ is proportional
to Λ(θ, θ′). Formally, let

ϕ(θ) = θ − 1

f(θ)

∫ θ̄

θ
Λ(s, θ)f(s) ds.

Comparing with Myerson’s expression, it is immediate that

ϕM (θ) ≤ ϕ(θ) ≤ θ.

5.3 Nonlinear pricing solution

Theorem 3 (Optimal nonlinear pricing)
If ϕ is weakly increasing, then the optimal quantity and transfer functions
q? and t∗ are unique and given by

c′(q?(θ)) = ϕ(θ)+, t?(θ) = θq?(θ)−
∫ θ

¯
θ

Λ(θ, s)q?(s) ds.

5.4 Single indivisible good

Suppose there is only one potential buyer: n = 1. Now we can denote the
single buyer’s allocation by x and transfer by t, dropping the subscript i.
Define θ∗ by ϕ(θ∗) = θ0. If θ < θ∗, then the buyer is not served and pays
nothing. If θ ≥ θ∗, then the buyer receives the good with probability one
and pays

t̂(θ) = θ −
∫ θ

θ∗
Λ(θ, s) ds.

That is, the price depends on the agent’s type, so this is not longer a posted
price mechanism.

With out expression for the virtual value, it is straightforward to allow
for multiple players and obtain the analogous solution for auctions.

Suppose the principal has a single indivisible good. There are n buyers,
labeled i = 1, . . . , n. Each buyer’s type θi ∈ Θi = [

¯
θi, θ̄i] is drawn indepen-

dently from a cdf Fi with positive density fi. The utility for buyer i is given
by

ui(q, t, θ) = θiqi − ti,
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for i = 1, . . . , n. The principal’s utility is

v(q, t) =
n∑
i=1

ti.

That is, the principal assigns no value to this good. This is without loss,
but simplifies the notation.

Posted pricing is no longer optimal. This can be extended to auctions.

5.5 Auctions

Theorem 4 (Optimal auction)
Suppose ϕi is weakly increasing for each i. Then the seller’s maximal revenue
is achieved by the allocation function q? and transfer function t? given by

q?i (θ) =

{
1 if ϕi(θi) > 0 ∨maxj 6=i ϕj(θj),

0 otherwise,

and

t?i (θ) = θiQ
?
i (θi)−

∫ θi

¯
θi

Λi(θi, si)Q
?
i (si) dsi,

where Q?i is the interim expectation of q?i :

Q?i (θi) =

∫
Θ−i

q?i (θi, θ−i)f−i(θ−i) dθ−i.

6 Discussion

6.1 Partial verification

Our model formalizes the interpretation of partially verifiable information
originally suggested by Green and Laffont (1986, p. 55):

To give the model some real content, the proper interpretation
of M(·) is that the principal also has some information, and
that the principal can act on this information, to inflict severe
punishment on the agent in some circumstances . . . . It is not
the case that the principal has an independent observation on θ.
Rather, the principal can observe a binary variable whose value
is (non-stochastically) jointly determined by the truth θ and the
message θ′, sent by the agent. Its value indicates whether or not
θ′ ∈M(θ).
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We their model to reflect the fact that there is uncertainty about whether
a misreport will be detected. Singh and Wittman (2001) use a model of de-
terministic partial verification, but address this issues in the conclusion and
suggest fuzziness for future research. In our model no incentive constraint
can be dropped. Each incentive constraint gets relaxed proportional to the
probability that the corresponding type is able to mimic another type.

Partial verification has also been studied by computer scientists, begin-
ning with Nisan and Ronen (2001) who examined distributed algorithms for
shortest-path or scheduling. The computer science literature largely works
within the quasi-linear setting: Fotakis and Zampetakis (2015); Auletta
et al. (2011) show that it is NP-complete to determine whether a social
choice function can be implemented in a non-truthful way; but truthful im-
plementation can be recognized efficiently; Yu (2011) corrects the proof in
the quasi-linear environment. Rochet (1987) and Vohra (2011) show that in
the quasi-linear environments implementability of social choice function is
equivalent to cyclical monotinicity.

Probabilistic verification Caragiannis et al. (2012) and Ferraioli and
Ventre (2018) introduce probabilistic verification and characterize the set of
implementable social choice functions in a quasi linear environment. Their
assumptions about the verification technology reflect the properties of prob-
abilistic verification algorithms, but are not explicitly microfounded. 9 Ac-
cordingly Caragiannis et al. (2012) assume that for any pair of type and
report there is a probability of successful mimicking and that every type
can successfully report the truth with probability one.

In contrast our reduced form mimicking relationship – the authetication
rate α– allows for type I error and is not restricted to quasi-linear utilities.
As a consequence, the characterization Caragiannis et al. (2012) provide does
not apply to our setting. Under their assumptions the verification technology
effectively degenerates to deterministic verification: Either a type can fully
mimic another type or if the probability is less than one the agent can be
completely deterred from mimicking, as possible fines following the detection
of a lie can be chosen arbitrarily high. We allow for environments where the
punishment is limited.10 Since the agent may face the punishment with

9 Examples for this algorithms are primality tests by Solovay and Strassen (1977) and
Rabin (1980). With probability smaller than one this algorithms produces conclusive
evidence that an inputted number is composite if the number is indeed composite. By
constructing this algorithms never produces false evidence, mark a number as composite
when it is prime.

10We do not impose any structure on the outcome space or restrict to a quasilinear
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a low probability, the requirements on the magnitude of the punishment
become greater and less realistic. But more fundamentally, the agent may
experience this punishment on the equilibrium path, so it is not necessarily
optimal to impose the greatest punishment.

6.2 Stochastic evidence

The literature on hard evidence (Bull and Watson (2004) and Lipman and
Seppi (1995)) gives a microfoundation for the deterministic mimicking rela-
tion introduced in Green and Laffont (1986). We microfound the reduced
form model with tests. But the connection to this part of the literature is
deeper: Tests can be interpreted as stochastic evidence: Any test τ ∈ T
corresponds to a piece of hard evidence. In this interpretation of tests, the
principal can communicate with the agent before he learns himself what
pieces of evidence are at his disposal. We assume that the agent can provide
at most one piece of evidence or choose not to provide any evidence.

In a direct mechanism of this model, the principal asks the agent for a
piece of evidence after a type report.

Since the provision of evidence is at the discretion of the agent a mecha-
nism must specify an outcome for any piece of evidence provided (not only
for the one that the agent was asked for) and for the case that no evidence
was provided. 11

But the commitment assumption allows us to restrict attention to mecha-
nism where the principal implements the same outcome after she is provided
with any piece of evidence she did not ask for or with no evidence at all. In
this setting, free to fail corresponds to withholding evidence.

The interpretation as stochastic evidence allows us to connect our char-
acterizations to the existing results on verification and hard evidence:

Our assumption on the existence of mostly discerning test for a type is
a stochastic generalization of the assumption on the existence of maximal
(or normal) pieces of evidence in Bull and Watson (2004) and Lipman and
Seppi (1995). If we assume that the passage probabilities are all either zero
or one, our assumption boils down to normality. Similarly the conditions of
Theorem 2 are a stochastic generalization of the nested range condition in
Green and Laffont (1986) and again reduces exactly to this condition if one
assumes degenerate passage probabilities.

Deneckere and Severinov (2008) consider deterministic evidence but al-
low their revelation mechanism to be random. In such a random mechanism

setting. We view transfers, if available, as part of the outcome.
11 Kartik and Tercieux (2012) and Strausz (2016) also discuss this issue

20



an agent who declares his type cannot be sure what evidence he is asked
for. If he is lying, this effectively induces a probability of getting caught. By
allowing for random verification technology, in an environment with most
discerning test this uncertainty is independent of the mechanism, resulting
in tractability.

6.3 Related literature

Lying costs Another approach to relax incentive constraints in a mecha-
nism design framework is lying costs: Lacker and Weinberg (1989), Maggi
and Rodriguéz-Clare (1995), Crocker and Morgan (1998), Kartik et al.
(2007), Kartik (2009), and Deneckere and Severinov (2017). In these mod-
els, the costs of lying are exogenous. In contrast, we study the design of the
mechanism to discourage lying when the agents have no inherent aversion to
lying. Recently in computer science, Kephart and Conitzer (2016) studies
various forms of the revelation principle. One condition that is most similar
to ours is a condition that lying costs satisfy the triangle inequality.

Verification In economics ”verification” usually describes models where
the principal learns the true type of an agent after a certain action (paying
a fee, allocating the good to particular agent). This literature was started
by Townsend (1979) who studied a costly verification model for debt con-
tracts. Ben-Porath et al. (2017) show a connection between costly verifica-
tion models and evidence games. Most applications assume that monetary
transfers are not feasible and use the verification technology as a substitute:
Ben-Porath et al. (2014) (allocation problem), Erlanson and Kleiner (2015)
(voting), Halac and Yared (2016) Optimal Delegation, Limited Awareness,
and Financial Intermediation,(delegation) and Li (2017) (allocation, limited
punishment). Costless verification with limited punishment is studied by
Mylovanov and Zapechelnyuk (2017).

Finally, the literature on evidence games has been growing rapidly. Re-
cent papers include Hart et al. (2017) and Koessler and Perez-Richet (2017).
Our commitment assumption sets us apart from this literature, an interest-
ing future research question is therefore how our technology would effect the
outcomes of these games.

7 Conclusion

We have introduced a model of probabilistic verification that is founded on
a model of tests. We define a test as a noisy signal about the type that is
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chosen by the principal but can be strategically downward manipulated by
the agent. Our framework can be interpreted as a generalization of hard evi-
dence models; downward manipulations correspond to withholding evidence.
We find conditions under which the optimal test choice can be disentangled
from the subsequent decision problem. Under this conditions the underly-
ing test technology can be compiled into a reduced form mimicking relation
between types. We also characterize all mimicking relations between types,
that can be microfounded with our framework.

The stochastic nature of the tests translates into uncertainty on the
agent’s side about the success of a misrepresentation of his type. This fea-
ture of our model stands in stark contrast to verification models that are
based on hard evidence. It allows us to characterize the solution to stan-
dard mechanism design problems enhanced with verification by a first order
approach.

This can be used to quantify the value of verification technology. We
hope to use this quantification in future work to study models where the
investment in verification technology is endogenous.
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A Proofs

A.1 Kernels

We begin with some notation. If k is a kernel from X × Y to Z, then kx is
a kernel from Y to Z, kx,y is a measure on Z. In short, subscripts indicate
“sections” of a function. If µ is a measure on X then µk is a kernel from Y
to Z, and if ν is measure on X × Y , then νk is a measure on Z. In short,
measures take expectations pointwise, where a kernel from X to Y can be
thought of as a function from X × Y.

The main proof requires the following facts about kernels, which we state
without proof. Below, R is assumed to be equipped with its Borel σ-algebra.
Similarly each subset of R is equipped with the induced σ-algebra. A kernel
on R means a kernel from some Borel subset of R to R. The domain of
a such a kernel k is denoted dom k. This domain is assumed to be large
enough so that all products considered below are well-defined.

The first lemma shows that our definitions of a distribution kernel and its
associated quantile kernel are suitable generalizations of the corresponding
functions for continuous random variables.

Lemma 1 (Distribution kernels). For measures µ and ν on R, the following
hold:

(i) µF̃µ = U[0,1];

(ii) U[0,1]F̃
−1
ν = ν;

(iii) µF̃µF̃
−1
ν = ν.

The notion of a downward kernel is intimately related to first-order
stochastic dominance.

Definition 7. A kernel d on R is downward if d(s, (−∞, s]) = 1 for all
s ∈ dom d.

Lemma 2 (Downward kernels). For measures µ and ν on R, the following
are equivalent:

(i) µ �1 ν;
(ii) F̃µF̃

−1
ν is downward;

(iii) µd = ν for some downward kernel d.

(i) If µ �1 ν, then F̃µF̃
−1
ν is downward;

(ii) µ �1 ν if and only if there exists a downward kernel d such that µd = ν.
In short, downward kernels relate dominating measures to dominated

measures. Next we introduce the standard notion of monotonicity for ker-
nels.
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Definition 8. A kernel m on R is monotone if s > t implies ms �1 mt, for
all s, t ∈ domm.

Monotone kernels preserve first-order stochastic dominance, as we now
show.

Lemma 3 (Monotone kernels).
(i) A kernel m on R is monotone if and only if µ �1 ν implies µm �1 νm,

for all µ, ν ∈ ∆(domm).
(ii) The composition of monotone kernels is monotone.

A.2 Proof of Proposition 1

Fix a profile (M, g1, g2, a1, a2) that implements a social choice function f .
Define a new profile (M̂, ĝ1, ĝ2, â1, â2) as follows. Set M̂ = Θ, â1 = id, and
ĝ1 = a1g1. For each θ ∈ Θ, set â2

θ,θ = a1
θa

2
θ and ĝ2

θ = a1
θg

2. The agent’s
off-path play can be specified arbitrarily. First, we check that this induces
the same social choice rule. Evaluating at type θ ∈ Θ gives

(â1
θ ⊗ ĝ1 ⊗ â2

θ)ĝ
2 = (δθ ⊗ ĝ1 ⊗ â2

θ)ĝ
2

= (ĝ1 ⊗ â2
θ,θ)ĝ

2
θ

= (a1
θg

1 ⊗ a1
θa

2
θ)a

1
θg

2

= (a1
θ ⊗ g1 ⊗ a2

θ)g
2.

Now we need to check that there are no feasible deviations. Fix type θ.
It suffices to check that for each deviation (d̂1, d̂2) in the new mechanism,
there is a deviation (d1, d2) that induces the same social choice function in
the original mechanism. Take d1 = d̂1a1 and d2

θ,m = d̂2
θ,θ for all θ ∈ Θ and

m ∈M .

A.3 Proof of Proposition 2

Fix a direct and truthful profile (M, g1, g2, a1, a2) that implements a social
choice function f . Define a new profile (M̂, ĝ1, ĝ2, â1, â2) as follows. Follow-
ing the theorem statement, set M̂ = Θ, ĝ1 = g1, â1 = id, and â2

θ,θ,τ = pθ,τ
for all θ, θ′ ∈ Θ and τ ∈ T .

Finally, we define ĝ2. Fix θ and τ . The technology constraint implies
that a2

θ,θ,τ �1 pθ,τ . By Lemma 2, there exists a downward kernel dθ,τ such

that a2
θ,θ,τ = pθ,τdθ,τ . Set ĝ2

θ,τ = dθ,τg
2
θ,τ .
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A.4 Proof of Theorem 1

For part 1.
For part 2. First we prove sufficiency of our condition.

Lemma 4. Consider a type-test pair (θ, τ̄) such that τ̄ is maximal for type
θ̄.

(i) For each test τ ∈ T ,
pθ̄,τ̄ F̃θ̄,τ̄ F̃

−1
θ̄,τ

= pθ̄,τ .

(ii) For each type θ ∈ Θ, score kernel q satisfying q �1 pθ, and test τ ∈ T ,

qτ̄ F̃θ̄,τ̄ F̃
−1
θ̄,τ
�1 pθ,τ .

Proof. Part (i) is immediate from the facts about kernels. For part (ii), it
suffices to show

pθ,τ̄ F̃θ̄,τ̄ F̃
−1
θ̄,τ
�1 pθ,τ , (4)

for then we get the desired inequality by applying Lemma 3 (i) with the
kernel F̃θ̄,τ̄ F̃

−1
θ̄,τ

, which is monotone by Lemma 3 (ii).

To prove (4), right-apply the monotone kernel F̃−1
θ̄,τ

to get

pθ,τ̄ F̃θ̄,τ̄ F̃
−1
θ̄,τ
�1 pθ,τ F̃θ̄,τ F̃

−1
θ̄,τ
�1 pθ,τ ,

where the first inequality uses Lemma 3 (i) and the second inequality uses
Lemma 2.

Fix type θ̄ ∈ Θ and test τ̄ ∈ T such that τ̄ is maximal for type θ̄.
Consider an arbitrary incentive-compatible direct mechanism g. Define a
new mechanism ĝ that coincides with the old mechanism, except we set

ĝ1
θ̄ = δτ̄ , ĝ2θ̄,θ̄ =

∫
T
g1(θ̄,dτ) F̃θ̄,τ̄ F̃

−1
θ̄,τ
gθ̄,τ .

Suppose that in the new mechanism, the agent uses strategy (δθ̄, q).
From the definition of e∗,

δθ̄ ⊗ e∗ ⊗ q = δθ̄ ⊗ δτ̄ ⊗ qτ̄ .

Therefore, decision set A has probability∫
S
q(τ̄,ds) g∗θ̄,τ̄ (s,A) =

∫
S
q(τ̄,ds)

∫
τ
e(θ̄,dτ) (F̃θ̄,τ̄ F̃

−1
θ̄,τ
gθ̄,τ )(s,A)

=

∫
T
e(θ̄,dτ)

∫
S
q(τ̄,ds) (F̃θ̄,τ̄ F̃

−1
θ̄,τ
gθ̄,τ )(s,A)

=

∫
T
e(θ̄,dτ) (qτ̄ F̃θ̄,τ̄ F̃

−1
θ̄,τ
gθ̄,τ )A,

(5)
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where we have used Fubini’s theorem and then expressed the inner integrand
as a composition of kernels.

To see that the mechanism replicates the decision distribution for type
θ̄, put q = pθ̄ in (5) and apply Lemma 4 (i) to get∫

T
e(θ̄,dτ) (pθ̄,τgθ̄,τ )A =

∫
T
e(θ̄,dτ)

∫
S
pθ̄(τ,ds) g(θ̄, τ, s, A)

= (δθ̄ ⊗ e⊗ pθ̄)gA.

To see that there are no profitable deviations, we show that this decision
distribution can be achieved in the incentive-compatible mechanism (e, g)
with a score kernel q′ from T to S defined by

q′τ = qτ̄ F̃θ̄,τ̄ F̃
−1
θ̄,τ
.

By Lemma 4 (i), q′ �1 q, so it must be feasible if q′ is. From (5), the outcome
distribution is∫

T
e(θ̄,dτ) (q′τgθ̄,τ )A =

∫
T
e(θ̄,dτ)

∫
S
q′(τ̄,ds) g(θ̄, τ, s, A)

= (δθ̄ ⊗ e⊗ q′)gA.

Next, we prove necessity. Suppose

A.5 Proof of Theorem 2

First we characterize the discerning order in terms of the primitive p(θ, τ).

Lemma 5. Test τ? is more discerning for type θ? than test τ if and only if

(1− p(θ?, τ?))(1− p(θ, τ)) ≤ (1− p(θ?, τ))(1− p(θ, τ?))
and p(θ?, τ)p(θ, τ?) ≤ p(θ?, τ?)p(θ, τ)

Proof. Denote the cdf of Pθ,τ F̃θ∗,τ by G. Calculating yields,

G(q) =

{
1−p(θ,τ)
1−p(θ?,τ)q, 0 ≤ q < 1− p(θ?, τ)

1− p(θ, τ) + p(θ,τ)
p(θ?,τ) [q − (1− p(θ?, τ))], 1− p(θ?, τ) ≤ q ≤ 1

i.e. the piecewise linear function, whose graph connects (0, 0), (1−p(θ?, τ), 1−
p(θ, τ)) and (1, 1)
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We identify any function of this form with a tuple (x, y), such that the
graph of the function linearly interpolates the points (0, 0), (x, y) and (1, 1).
Graphically a function G(x′,y′) dominates G(x,y), if (x′, y′) lies above the
curve of Gx,y, this yields,

∀q : G(x,y)(q) ≤ G(x′,y′)(q)⇔ x′y ≤ xy′ and(1− x)(1− y′) ≤ (1− y)(1− x′)

A test τ∗ is more discerning for type θ∗ than test τ , if for all θ,

Pθ,τ F̃θ∗,τ ≥1 Pθ,τ∗F̃θ∗,τ

⇔∀q ∈ [0, 1] : G(1−p(θ∗,τ),1−p(θ,τ))(q) ≤ G(1−p(θ∗,τ∗),1−p(θ,τ∗))(q)

⇔(1− p(θ?, τ?))(1− p(θ, τ)) ≤ (1− p(θ?, τ))(1− p(θ, τ?))
and p(θ?, τ)p(θ, τ?) ≤ p(θ?, τ?)p(θ, τ).

Now we turn to the main proof of the theorem. Suppose α is induced
by mostly discerning tests, then transitivity of α and intransitivity of 1− α
follow from Lemma 5.

If on the other hand α is transitive and 1 − α is intransitive, setting
T = Θ with passage probabilities p(θ, θ′) = α(θ, θ′) for all types θ and all
tests θ′ forms a test environment which has mostly discerning tests (again
by Lemma 5 for any type and induces α as reduced form.

A.6 Proof of Proposition 3

Fix a type θ0 ∈ Θ. Let τ and ψ be tests that are both θ0-mostly discerning.
By assumption, the test are informative, so we may pick a type θ such that
p(θ, τ) 6= p(θ0, τ). By Lemma 5, we have

p(θ0, τ)p(θ, ψ) = p(θ, τ)p(θ0, ψ),

(1− p(θ0, τ))(1− p(θ, ψ)) = (1− p(θ, τ))(1− p(θ0, ψ)).

Combining these inequalities gives

p(θ0, ψ)(p(θ, τ)− p(θ, τ)) = p(θ0, τ)(p(θ, τ)− p(θ, τ)),

p(θ, ψ)(p(θ, τ)− p(θ0, τ)) = p(θ, τ)(p(θ, τ)− p(θ0, τ)),

so p(θ0, ψ) = p(θ0, τ) and p(θ, ψ) = p(θ, τ). This argument goes through for
teach type θ unless p(θ, τ) = p(θ0, τ) and p(θ, ψ) = (θ0, ψ). But in this lass
case, we have p(θ, ψ) = p(θ0, ψ) = p(θ0, τ) = p(θ, τ), so we are done.
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A.7 Proof of Theorem 3

First, we introduce notation. For a given quantity function q, there is a one-
to-one correspondence between a transfer function t and a utility functions
U , given by U(θ) = θq(θ) − t(θ). We will interchangeably refer to such a
mechanism as (q, t) or (q, U).12 Let

u(θ, θ′) = α(θ, θ′)[θq(θ′)− t(θ′)].

In particular, U(θ) = u(θ, θ).

Lemma 6 (Utility bound). Let q be a bounded quantity function. If (q, U)
is a feasible mechanism, then

U(θ) ≥
∫ θ

¯
θ
α(θ, s)q(s) ds,

for each type θ. Moreover, if q is monotone, then there exists a feasible
mechanism with quantity q that achieves this bound pointwise.

Now we prove the theorem, taking the lemma as given. There is no loss
in restricting attention to bounded quantity functions.13 Pick a bounded
quantity function q : Θ → R+. The principal’s objective function can be
decomposed as the difference between the total surplus and the agent’s rents:∫ θ̄

¯
θ

[θq(θ)− c(q(θ))]f(θ) dθ −
∫ θ̄

¯
θ
U(θ) dθ.

Plug in the bound from Lemma 6 and switch the order of integration to
obtain the following upper bound on the principal’s objective:

V (q) =

∫ θ̄

¯
θ

[ϕ(θ)q(θ)− c(q(θ))]f(θ) dθ.

The quantity function q? from the theorem statement maximizes the ex-
pression in brackets pointwise, and t? is the corresponding transfer that

12This is a slight abuse of notation, but the symbol t or U will make it clear whether
the second argument is a transfer function or a utility function.

13 There are no explicit bounds on the quantity function q, so first we must justify the
restriction to bounded quantity functions. Pick a quantity q̄ such that θ̄q̄ = c(q̄). Then
offering more than q̄ will always result in weakly negative profits, so we can remove those
offerings from the menu and increase the sender’s revenue. Therefore, the is no loss in
focusing on quantity functions that are bounded above by q̄.
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achieves the utility bound. Since q? is monotone, this mechanism is feasible
and hence optimal.

Now we turn to the proof of the lemma. First we bound the right-
derivative of U , wherever it exists. If U is right-differentiable at θ, then by
Theorem 1 in Milgrom and Segal (2002),

U ′(θ+) ≥ ∂1u(θ, θ) = q(θ)− λ(θ)U(θ). (6)

To make use of (6), we need to check that U is absolutely continuous.
Even though u(θ, θ′) has a kink, is derivative exists almost everywhere, a
slight adaption of Theorem 2 in Milgrom and Segal (2002) show shows that
U is absolutely continuous. Therefore, U is differentiable almost everywhere,
so

U(θ) =

∫ θ

¯
θ
U ′(s+) ds.

Now apply (6) and the integral form of Gronwall’s inequality to obtain the
desired inequality.

It remains to verify incentive compatibility. We need to show that for
all types θ and reports θ′,

U(θ) ≥ α(θ, θ′)[(θ − θ′)q(θ′) + U(θ′)],

or equivalently,

U(θ)− α(θ, θ′)U(θ′) ≥ (θ − θ′)α(θ, θ′)q(θ′). (7)

We separate into two cases.
If θ > θ′, the inequality reduces to∫ θ

θ′
α(θ, s)q(s) ds ≥ (θ − θ′)α(θ, θ′)q(θ′). (8)

If θ < θ′, then the left side of (7) is at least

−α(θ, θ′)

∫ θ′

θ
α(θ′, s)q(s) ds,

so a sufficient inequality is∫ θ′

θ
α(θ′, s)q(s) ds ≤ (θ′ − θ)q(θ′). (9)

If q is monotone, then (8) and (9) both hold, completing the proof.
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