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Abstract

In dynamic games, players may observe a deviation from a pre-play,

possibly incomplete, non-binding agreement before the game is over.

The attempt to rationalize the deviation may lead players to revise

their beliefs about the deviator�s behavior in the continuation of the

game. This instance of forward induction reasoning is based on interac-

tive beliefs about not just rationality, but also the compliance with the

agreement itself. I study the e¤ects of such rationalization on the self-

enforceability of the agreement. Accordingly, outcomes of the game are

deemed implementable by some agreement or not. Conclusions depart

substantially from what the traditional equilibrium re�nements suggest.

A non subgame perfect equilibrium outcome may be induced by a self-

enforcing agreement, while a subgame perfect equilibrium outcome may

not. The incompleteness of the agreement can be crucial to implement

an outcome.
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1 Introduction

In many economic situations, agents can communicate before they start to act.

Players with strategic power may exploit this opportunity to coordinate on

some desirable outcome, or to in�uence other players�behavior by announcing

publicly how they plan to play. I will refer to the common, possibly partial

understanding of how each player is expected to play as an agreement. In most

cases, the context allows players to reach only a non-binding agreement, which

cannot be enforced by a court of law. The only way a non-binding agreement

can a¤ect the behavior of players is through the beliefs it is able to induce in

their minds. When the game is dynamic, even if players tentatively trust the

agreement at the outset, they are likely to question this trust and revise their

beliefs based on strategic reasoning and the observed behavior. The fact that

an agreement is in place can modify the interpretation of unexpected behavior.

All this can be decisive for the incentives to �ght or accommodate a deviation

from the agreed-upon play. Taking these forward induction considerations

into account, this paper sheds light on which agreements players can believe

in and, among them, which agreements players will comply with. Moreover,

in an implementation perspective, the paper investigates which outcomes of

the game can be enforced by some agreement. The paper will not deal with

the pre-play communication phase. Yet, assessing their credibility has a clear

feedback on which agreements are likely to be reached.

In static games, it is well-known that Nash equilibrium characterizes the

set of action pro�les that can be played as the result of a non-binding agree-

ment, reached at a pre-play round of cheap talk communication.1 In dynamic

games, this role is usually assigned to Subgame Perfect Equilibrium (hence-

forth, SPE). Because SPE induces a Nash equilibrium in every subgame, this

seems prima facie a sensible choice. But does SPE truly characterize self-

enforcing agreements in dynamic games?

Relevant economic decisions can seldom be interpreted as unintentional

mistakes. A deviation from an equilibrium path can safely be interpreted as

1Nevertheless, Aumann [2] provides an argument against this view.
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disbelief in some features of the equilibrium. Often, it clearly displays con�-

dence that none of the adverse re-coordination scenarios will realize. Then,

credible threats are not the ones that rely on illusory re-coordination, but

those that best respond to the potentially pro�table continuation plans of

the deviator. Indeed, compliance with non-binding agreements often relies on

the threat/concern that a deviation will provoke the end of coordinated play,

rather than less advantageous re-coordination. Moreover, agreements are of-

ten incomplete: di¤erently than a SPE, they do not pin down exactly what

to do in every contingency. Partially con�icting interests, legal constraints,

social taboos, unilateral communication channels (e.g., the announcements

of a central bank), anticipated distrust or objective impossibility of credible

re-coordination after deviations: these are only some of the reasons why play-

ers may be unable or unwilling to reach a complete agreement. In economic

applications, absence of a (intuitive) SPE solution is often blamed on a mis-

speci�cation of the model, rather than on the objective impossibility to reach

a precise agreement among players. A classical example is the Hotelling model

in its original formulation with linear transportation cost, which has no SPE

in pure strategies.2 A quadratic transportation cost has been introduced by

D�Aspremont et al. [20] to obtain a unique SPE solution, where the �rms

locate at 0 and 1 (the extremes of the spectrum). In a separate note, I obtain

the transportation-e¢ cient (1=4; 3=4) as the unique, symmetric locations pair

that can be induced by a self-enforcing agreement.

To illustrate these insights in a simple but meaningful economic environ-

ment, in Section 2 I analyze an entry game in monopolistic competition. De-

pending on the value of the entry cost, SPE turns out to be too permissive, too

restrictive, or simply inadequate to evaluate the credibility of the incumbent�s

threats.

That SPE can be too permissive is not a new observation. Classical ex-

amples, such as the battle of the sexes with an outside option (Ben Porath

2A SPE in mixed strategies has been found numerically by Osborne and Pitchik [34]. In
this equilibrium, counterintuitively, �rms locate at a distance that puts them at risk of a
�price war�, whereby a slightly higher distance would prevent this possibility.
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and Dekel [14]), have already shown this point. This paper captures these

re�nement arguments in a simple and general way.

That SPE can be too restrictive may instead sound surprising, therefore

I sketch here the intuition behind this observation. Consider the following

game.
AnB W E AnB L R

N 3; 3 �� �! U 1; 1 2; 2

S 0; 0 2; 2 D 0; 6 3; 5

In the �rst stage, Ann and Bob can potentially coordinate on two outcomes,

(N;W ) and (S;E). If they fail to coordinate, the game either ends (after

(S;W )),3 or moves to a second stage (after (N;E)), where in the unique equi-

librium all actions are played with equal probability. So, the unique SPE of

the game induces outcome (S;E). But (S;E) is Pareto-dominated by (N;W );

hence, Ann and Bob would rather reach an agreement that induces (N;W ).

So, they agree to play (N;W ) and that Ann should play U in case of devia-

tion of Bob.4 Is the agreement credible? If Bob is rational5 and believes in

the agreement, he has no incentive to deviate. Then, after a deviation, Ann

cannot believe at the same time that Bob is rational and believes in the agree-

ment. If she drops the belief that Bob believes in the agreement and maintains

the belief that Bob is rational, she can believe that Bob does not believe in U

and that he will play L. Hence, she can react with U . Anticipating this, Bob

can believe in U and refrain from deviating. Further steps of reasoning do not

modify the conclusion: the agreement is credible and, once believed, players

will comply with it. Therefore, the agreement is self-enforcing.

The further inadequacy of SPE comes from the intrinsic assumption of

agreement completeness. In the entry game of Section 2, for intermediate val-

3This is just to keep the game small: it could continue in a symmetric way with respect
to after (N;E), and the analysis would not change.

4To keep the game small, the Nash threat U that sustains (N;W ) is also played with
positive probability in the SPE. This is by no means necessary for its credibility: in the
Supplemental Appendix, I present a similar game where the Nash outcome is sustained by
a credible threat that di¤ers from the unique equilibrium action of the subgame.

5The notion of rationality employed in this paper simply requires expected utility maxi-
mization, without imposing by itself any restriction on beliefs. See Section 3 for details.
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ues of the entry cost, the most realistic threat by the incumbent does not com-

pletely specify its plan, therefore its credibility cannot be evaluated through

SPE. Moreover, the complete agreement on the SPE that deters entry is not

credible, because the continuation plan of the entrant is not part of any ra-

tional entry plan. Yet, the SPE threat is credible, and its credibility relies on

the (physiological) uncertainty regarding the behavior of the entrant. Some-

times, an outcome can be achieved only by not fully specifying the reactions

to deviations either: see Section 4.3.

In section 3, I model agreements with sets of plans of actions, as opposed

to one pro�le of strategies, from which players are expected to choose. Per se,

plans of actions (also known as �reduced strategies�) already feature a basic

form of incompleteness: they do not prescribe moves after a deviation from

the plan itself. However, an agreement can also specify alternative plans that

players are expected to follow after deviations from the own primary plans

(and so on, in a lexicographic fashion). For notational simplicity, I restrict the

attention to the class of �nite games with complete information, observable

actions,6 and no chance moves. However, the methodology can be applied to

all dynamic games with perfect recall and countably many information sets,

hence possibly in�nite horizon.

In Section 4, I study credibility and self-enforceability of agreements start-

ing from primitive assumptions about players�strategic reasoning.

An agreement is credible when players may comply with it in case they are

rational, they believe in the agreement, they believe as long as possible that co-

players are rational and believe in the agreement, and so on. When a player�s

move is not rational under belief in the agreement (such as Bob�s deviation

to E in the example above), I assume that co-players keep the belief that the

player is rational (if per se compatible with the observed move) and drop the

belief that the player believes in the agreement.7 Under this reasoning scheme,

6Games where every player always knows the current history of the game, i.e. � allowing
for truly simultaneous moves � information sets are singletons. For instance, all repeated
games with perfect monitoring are games with observable actions.

7This appears as the most sensible choice given the cheap-talk nature of the agreement.
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deviations, or more generally past actions, are not interpreted as mistakes but

as intentional choices. To see this clearly, suppose that in the game above

Ann and Bob agree on (S;E), without specifying what to do in case of Ann�s

deviation. If Ann believes in E, she has the incentive to deviate to N only

if she expects R with su¢ ciently high probability. Then, Bob expects her to

play D after the deviation.8 This instance of forward induction reasoning is

based not just on the belief in Ann�s rationality, but also on the belief that

Ann believes in the agreement.

Under a credible agreement, the outcomes players should reach (according

to the agreement) and might reach (according to strategic reasoning) overlap

but need not be nested. I will refer to the former as the outcome set the agree-

ment prescribes, and to the latter as the outcome set the agreement induces. A

credible agreement is self-enforcing when it induces a subset of the outcomes

it prescribes.

A set of outcomes is implementable when it is induced by a self-enforcing

agreement. I provide necessary and su¢ cient conditions for the implementabil-

ity of an outcome set. An outcome set is implementable if it is prescribed by a

Self-Enforcing Set of plans (henceforth, SES). SES�s are self-enforcing agree-

ments that do not require players to promise, and co-players trust, what they

would do after a own deviation. Thus, they can be seen as a set-valued coun-

terpart of SPE where the behavior of deviators is not exogenously given but

determined by forward induction. In games with two players or two stages,

every implementable outcome set is induced by a SES. For a single outcome

of a two-players game, SES�s boil down to Nash equilibria in extensive-form

rationalizable9 plans that satisfy a strictness condition.10 To complete the

search for implementable outcomes in games with more than two players and

8This induces Bob to play L and thus Ann not to deviate from S. Therefore, the SPE
outcome (S;E) obtains without explicit threats. This is by no means a general property
of a SPE, not even when unique: see the modi�cation of the game in the Supplemental
Appendix.

9The original notion of extensive-form-rationalizability is due to Pearce [35], and has
been later re�ned by Battigalli [5] and Battigalli and Siniscalchi [11].
10Every feature of this simple characterization is not assumed, but derived from �rst

principles.
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stages, tight agreements augment SES�s by restricting the expected behavior

of deviators. An outcome set is implementable if and only it is prescribed by

a tight agreement. Since a tight agreement induces exactly the outcome set

it prescribes, we have a �revelation principle�for agreements design: players

need not be vague about the outcomes they want to achieve.

Tight agreements and SES�s have the double value of solution concepts and

�soft mechanisms� for implementation,11 because they prescribe directly the

outcome set they induce. They provide to the analyst (or a mediator) all possi-

ble predictions (and an implementation strategy) under the non-binding agree-

ments motivation, abstracting away from the foundations of self-enforceability.

In particular, after a standard elimination procedure (extensive-form rational-

izability), they only require to verify one-step conditions instead of doing all

steps of reasoning under all candidate self-enforcing agreements.

This work is greatly indebted to the literature on rationalizability in dy-

namic games. In this literature, restrictions to �rst-order beliefs are usually ac-

counted for through Strong-�-Rationalizability (Battigalli, [7]; Battigalli and

Siniscalchi, [12]). Strong-�-Rationalizability does not require players to main-

tain belief in the rationality of the co-players when their behavior cannot be

optimal under their �rst-order belief restrictions. To de�ne self-enforceability

under the di¤erent hypotheses of this paper, another elimination procedure

with belief restrictions, Selective Rationalizability, is constructed and analyzed

epistemically in the companion paper ([17]). Selective rationalizability cap-

tures common strong belief in rationality (Battigalli and Siniscalchi [11]), i.e.,

the hypothesis that each order of belief in rationality holds as long as not

contradicted by the observed behavior. Thus, it combines �unrestricted�(i.e.,

based only on beliefs in rationality) and �restricted�(i.e., based also on �rst-

order belief restrictions) forward induction reasoning. The structure given by

agreements to the belief restrictions, the epistemic priority attributed to the

beliefs in rationality, and the requirement of self-enforceability sharpen the

predictions of this paper with respect to Extensive-Form Best Response Sets

11�Soft�in the sense that they not modify the rules of the game, they only act via beliefs.
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(Battigalli and Friedenberg [8]), which capture the predictions of Strong-�-

Rationalizability across all �rst-order belief restrictions. For instance, com-

petition among �rms on price, quantity, or quality often leads to a precise

outcome thanks only to strategic reasoning about rationality, without any ex-

plicit coordination (see cobweb stability or Cournot duopoly). This predictive

power would be lost with Strong-�-Rationalizability in subgames that cannot

be rationally reached under belief in the agreement; the Hotelling model is

a point in case. In Section 5, I expand on this comparison and I revise the

results of Section 4 under Strong-�-Rationalizability.

When the agreement prescribes a speci�c outcome, another reasonable (but

less agnostic) way to interpret deviations is that the deviator believed in the

agreed-upon path (i.e., that co-players would have complied with it), but does

not believe in the threats. In Section 6, I provide an example where this stricter

rationalization of deviations matters, and I show that a simple revision of the

methodology accommodates it. All the general insights of the paper are robust

to these stricter strategic reasoning hypotheses, although they re�ne the set

of implementable outcomes.

Strategic stability à la Kohlberg and Mertens [29] and related re�nements

are often justi�ed with stories of forward induction reasoning that involve the

equilibrium path as a focal point. However, understanding and applying sta-

bility and related re�nements presents various di¢ culties.12 Stability is hard

to interpret and verify, and does not o¤er an implementation strategy: what

should players exactly agree on/believe in? Later re�nements focus exclu-

sively on sequential equilibria and, to simplify the analysis, sacri�ce depth of

reasoning (e.g., forward induction equilibria of Govindan and Wilson [24] cap-

ture only strong belief in rationality13) or scope (e.g., the intuitive criterion of

Cho and Kreps [19] and divine equilibrium of Banks and Sobel [3] are tailored

on signaling games). Overall, the motivation for equilibrium is unspeci�ed

12An interesting critique of this kind to strategic stability has been put forward by Van
Damme [40].
13See [24], pag. 11 and 21. An explicit example of this fact is provided by Perea ([36],

pag. 509).
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and the language does not allow to talk of incomplete agreements. Then, the

analysis of Section 6 can also be seen as a general and transparent approach

to the forward induction stories in the background of this literature. It turns

out that the spirit of subgame perfection (i.e., the idea that a deviator will

best reply to the equilibrium strategies after the deviation) is at contradiction

precisely with this kind of forward induction reasoning.

The Appendix collects the proofs of the results of Section 4, which can be

replicated under the alternative strategic reasoning hypotheses of Sections 5

and 6. Other results from Sections 5 and 6 are proved in the Supplemental

Appendix, which also contains other examples and technical remarks that

can be useful to whoever wishes to develop (as opposed to just apply) the

methodology.

2 An example

Consider the following linear city model of monopolistic competition. Two

�rms, i = 1; 2, sell the same good at the extremes of a continuum of potential

buyers of measure 48. The payo¤ of buyer j 2 [0; 48] when she buys from �rm
i is u � pi � t � dij, where u = 72 is the utility from the good, pi is the price

�xed by �rm i, t = 1=2 is the transportation cost, and dij is the distance from

�rm i: d1j = j and d2j = 48� j. Then, �rm i faces demand

Di(pi; p�i) = max f0;min f48; 24� pi + p�i; 2 � (72� pi)gg

(see Green et al. [31] for more details). There are two technologies: k = A,

with marginal cost mc = 48 and no �xed cost; and k = B, with no marginal

cost and �xed cost F such that �rm i is indi¤erent between the two technologies

for p�i = 24. Suppose that �rms choose technology and price simultaneously.14

14If �rms could choose the production technology after �xing prices and observing de-
mands, a cost function with economies of scale would appear (linear up to q = 24 and �at
thereafter), but the analysis would be substantially unchanged. If �rms could irreversibly
choose and observe each other�s technology before �xing prices, the technology choice stage
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Then, for p�i 2 [24; 72], �rm i�s best response correspondence is

bpi(p�i) =
8><>:
36 + 1

2
p�i (with k = A) if p�i < 48

f36; 60g (with k = B;A) if p�i = 48

12 + 1
2
p�i (with k = B) if p�i > 48

:

For p�i < 24, �rm i has no incentive to produce. For p�i > 72, �rm i�s demand

depends only on pi and the optimal value is 48 with k = B. With k = A,

every price above 60 is dominated by 60 and every price below 48 generates

losses; with k = B, every price above 48 is dominated by 48. Finally, for

any conjecture � 2 �(p�i), no pi < E�(p�i) can do better than bpi(E�(p�i)),
because demand cannot increse above the upper bound and is linear in p�i
below it. Hence, the rational prices are [36; 60]. For each (pi; p�i) 2 [36; 60]2,
�rm i�s demand is 24 � pi + p�i, thus the best replies to � 2 �(p�i) arebpi(E�(p�i)). Hence, the rationalizable prices of each �rm (in the static game)

are [36; 42] (with k = B) and [54; 60] (with k = A). The pure equilibrium

price pairs are (40; 56) and (56; 40), and the unique mixed equilibrium assigns

probability 1=2 to 40 and 56 for both �rms. Pro�ts are increasing in the other

�rm�s price, so let � > � > � denote the pro�t of �rm 2 in the three equilibria

(� is the expected pro�t in the mixed equilibrium), and let � denote �rm 2�s

pro�t when p1 = 36.

Suppose now that �rm 1 is already in the market, while �rm 2 still has to

pay an entry cost E. If �rm 2 does not enter, its pro�t is 0. Can �rm 1 deter

the entry of �rm 2 by announcing how it plans to react?15 I am going to tackle

would be strategically equivalent to a hawk-dove game with the payo¤s of the four subse-
quent equilibria. This structure would have the same implications for the entry problem
with high and intermediate cost of entry (Cases 1 and 2 with the three equilibrium payo¤s of
hawk-dove), but no credible entry deterrance for low entry cost (Case 3): see also footnote
17.
15Dixit [20] studies entry deterrance through an irreversible investment in productive ca-

pacity. Interestingly, Dixit motivates his analysis with the following observations: �The
theory of large-scale entry into an industry is made complicated by its game-theoretic as-
pects. Even in the simplest case of one established �rm facing one prospective entrant, there
are subtle strategic itneractions. [...] In reality, there may be no agreement about the rules
of the post-entry duopoly, and there may be periods of disequilibrium before any order is
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this question for di¤erent values of the entry cost E.

Case 1) � < E < � (SPE is too permissive). According to SPE, entry
is deterred by two equilibria of the subgame that follows it. But if �rm 2 is

rational and expects �rm 1 to react rationally, �rm 2 will enter only if the

expected p1 is not lower than some ep > 48 (that depends on E). Then, entry
displays �rm 2�s intention to employ k = B with some p2 2

�
12 + 1

2
ep; 42�.

Given this, �rm 1 has the incentive to choose k = A and p1 2
�
42 + 1

4
ep; 60�,

thus p1 > ep. So, �rm 2 has always the incentive to enter. With further steps of
reasoning, (p1; p2) converges to the equilibrium (56; 40), which does not deter

entry.

Case 2) � < E < � (agreement incompleteness). According to SPE,

entry is deterred by equilibrium (40; 56). But p2 = 56 is incompatible with

forward induction reasoning. If �rm 2 is rational and believes that �rm 1 is

rational, �rm 2 will enter only if its expectation about p1 is not lower than

some ep 2 (40; 48] (that depends on E). Then, entry displays �rm 2�s intention
to �x either p2 2

�
36 + 1

2
ep; 60� with k = A, or p2 2 [36; 42] with k = B, but

not p2 = 56. Note however that every p1 2 [36; 42][ [54; 60] is a best response
to a belief over such entry plans of �rm 2. Hence, it is credible that �rm 1 will

react to entry with p1 = 40. But credibility of p1 = 40 requires uncertainty

about p2, thus it must be formulated as a unilateral threat and not as part of

a complete agreement with �rm 2. Even more interestingly, �rm 1 does not

actually need to specify p1: it is enough to announce the use of technology

k = B. Then, �rm 2 will expect �rm 1 to �x p1 2 [36; 42]. If ep > 42, this

is su¢ cient to deter entry. If ep 2 (40; 42], �rm 2 may believe that entry will

be pro�table and �x p2 2
�
36 + 1

2
ep; 57� with k = A. But then, realizing this,

�rm 1 would best reply with p1 2
�
12 + 1

4
ep; 40:5� and k = B. This realization

is based not just on the belief that �rm 2 is rational, believes that �rm 1

is rational, and so on, but also on the belief that �rm 2 believes in �rm 1�s

established.�I consider an incumbent who wants to avoid wasteful investment, or who (at
the opposite extreme of Dixit) has no dismissal/switching costs and no commitment power;
then, the credibility of her claims must be assessed.
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announcement, which is not at odds with rational entry. If needed, further

steps of reasoning eventually bring the highest possible p1 below ep. Hence,
the announcement of k = B by the incumbent is credible and deters entry.

Such a parsimonious announcement can have real-life advantages; for instance

it may be illegal to state future prices.16 Moreover, under this announcement,

all reactions to entry that are compatible with strategic reasoning turn out

to deter entry. This is not true when �rm 1 announces exactly p1 = 40:

entry cannot be rationalized under belief in this announcement, and every

p1 2 [36; 42] [ [54; 60] remains an equally justi�able reaction. In Section 4.1 I
will expand on this point after analyzing formally the k = B announcement.

Case 3) � < E < � (SPE is too restrictive). Now, �rm 2 enters in every

SPE. But, as in Case 2, there is ep 2 (36; 40] such that both p2 2 �36 + 1
2
ep; 60�

and p2 2 [36; 42] are compatible with forward induction reasoning, and then
all p1 2 [36; 42][ [54; 60] as well. So, �rm 2 can credibly threaten to �x p1 < ep
and deter entry.17 The arguments for the credibility of this threat are identical

to the arguments for the credibility of the SPE threat in Case 2, and break

the logics of subgame perfection: credibility is not granted by coordination

after entry but by beliefs over potentially pro�table continuation plans of the

entrant that are compatible with forward induction reasoning.

Case 4) When E is an agreed-upon payo¤. The game would be strate-
gically equivalent if entry was costless and E was the value of an exogenously

given outside option. What if E is �rm 2�s payo¤ from an agreement with

�rm 1 that comes into place if �rm 2 does not enter? (For instance, a collusive

agreement on another market.) Then, entry could be interpreted as disbelief

16Harrington [27] documents instances of "mutual partial understanding" among �rms
which leaves the exact path of price increase undetermined to escape antitrust sanctions.
Such mutual understanding can be modeled as an incomplete agreement, whose conse-
quences can be studied with the methodology developed in this paper.
17One could argue that alternated best responses from p1 would lead to the (68; 100)

equilibrium in the long run. If �rms are impatient, this is immaterial for the analysis. If
�rms are patient and the technology choice is not irreversible, �rm 2 could try to upset this
trajectory by switching to k = 2 at any time. The choice of p1 < ep is justi�ed precisely by
this uncertainty.
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in �rm 1�s threat, or as disbelief in the �rm 1�s promises in case of no en-

try. The analysis of Cases 1-2-3 remains valid if �rms commonly believe that

entry would be interpreted as disbelief in the threat and not as disbelief in

the agreed-upon path (that grants payo¤ E to �rm 2). This kind of forward

induction reasoning is modeled explicitly in Section 6.

3 Agreements, beliefs and strategic reasoning

3.1 Framework

Primitives of the game. Let I be the �nite set of players. For any pro�le
of sets (Xi)i2I and any J � I, I write XJ := �j2JXj, X := XI , X�i := XInfig.

Let (Ai)i2I be the �nite sets of actions potentially available to each player.

Let H � [t=1;:::;TA
t [ fh0g be the set of histories, where h0 2 H is the empty

initial history and T is the �nite horizon. The set H must have the following

properties. First property: For any h = (a1; :::; at) 2 H and l < t, it holds

h0 = (a1; :::; al) 2 H, and I write h0 � h.18 Let Z := fz 2 H : /9h 2 H; z � hg
be the set of terminal histories (henceforth, outcomes or paths)19, and H :=

HnZ be the set of non-terminal histories (henceforth, just histories). Second
property: For every h 2 H, there exists a non-empty set Ai(h) � Ai for each
i 2 I20 such that (h; a) 2 H if and only if a 2 A(h). Let ui : Z ! R be the
payo¤ function of player i. The list � =



I;H; (ui)i2I

�
is a �nite game with

complete information and observable actions.

Derived objects. A plan of actions (henceforth, just �plan�) of player i
is a function si that assigns an action si(h) 2 Ai(h) to each history h that can
be reached if i plays si. Let Si denote the set of all plans of player i. A pro�le

of plans s 2 S naturally induces a unique outcome z 2 Z. Note that, when
referring to pro�les of plans rather than to agreements, the word �induce�will

18Then, H endowed with the precedence relation � is a tree with root h0.
19�Path� will be used with emphasis on the sequence of moves, and �outcome� with

emphasis on the end-point of the game.
20When player i is not truly active at history h, Ai(h) consists of just one "wait" action.
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still be used with this traditional meaning. Let � : S ! Z be the function that

associates each pro�le of plans with the induced outcome. For any h 2 H, the
set of plans of i compatible with h is:

Si(h) := fsi 2 Si : 9z � h;9s�i 2 S�i; �(si; s�i) = zg :

Fix subsets of plans (bSj)j2I . For each i 2 I, let bSi(h) := Si(h) \ bSi. For
any J � I, let H(bSJ) := n

h 2 H : bSJ(h) 6= ;o denote the set of histories

compatible with bSJ .
3.2 Beliefs, Rationality, and Rationalizability

A player�s beliefs over co-players�plans are modeled as a Conditional Proba-

bility System (henceforth, CPS).

De�nition 1 Fix i 2 I. An array of probability measures (�i(�jh))h2H over

S�i is a Conditional Probability System if for each h 2 H, �i(S�i(h)jh) = 1,
and for every h0 � h and bS�i � S�i(h0),

�i(bS�ijh) = �i(S�i(h0)jh) � �i(bS�ijh0).
The set of all CPS�s on S�i is denoted by �H(S�i).

A CPS is an array of beliefs, one for each history, that satis�es the chain

rule: whenever possible, the belief at a history is an update of the belief at

the previous history based on the observed co-players�moves.21

For any player i and any set of co-players J � In fig, I say that a CPS
�i strongly believes (Battigalli and Siniscalchi [11]) bSJ � SJ if for every h 2
21Note that a player can have correlated beliefs over the plans of di¤erent co-players,

although players will not make use of joint randomization devices. The two things are
not at odds, because players can believe in spurious correlations among co-players�plans
(see, for instance, Aumann [1] and Brandenburger and Friedenberg [16]). However, strategic
independence (Battigalli [5]) could be assumed throughout the paper and the results would
not change. See the companion paper for details.
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H(bSJ), �i(bSJ�SIn(J[fig)jh) = 1. I say that a CPS strongly believes a pro�le or
a sequence of sets when it strongly believes each set of the pro�le or sequence.

I consider players who respond rationally to their beliefs. A rational player,

at every history, chooses an action that maximizes her expected payo¤ given

her belief about how co-players will play and the expectation to choose ratio-

nally again in the continuation of the game. By standard arguments, this is

equivalent to playing a sequential best reply to the CPS.

De�nition 2 Fix �i 2 �H(S�i). A plan si 2 Si is a sequential best reply to
�i if for each h 2 H(si), si is a continuation best reply to �i(�jh), i.e., for
each esi 2 Si(h),X

s�i2S�i(h)

ui(�(si; s�i))�i(s�ijh) �
X

s�i2S�i(h)

ui(�(esi; s�i))�i(s�ijh). (1)

I say that a plan si is justi�able if si 2 �i(�i) for some �i 2 �H(S�i).

The set of sequential best replies to �i (resp., to some �i 2 �i � �H(S�i)) is

denoted by �i(�i) (resp., by �i(�i)).

I consider players who always ascribe to each co-player the highest order

of strategic sophistication that is compatible with her past behavior. This

means that players strongly believe that each co-player is rational; strongly

believe that each co-player is rational and strongly believes that everyone else is

rational; and so on. This form of common strong belief in rationality (Battigalli

and Siniscalchi 2002) is captured by the following version of extensive-form-

rationalizability, which I will call Rationalizability for brevity.22

De�nition 3 Let S0 := S. Fix n > 0 and suppose to have de�ned ((Sqj )j2I)
n�1
q=0 .

22For conceptual coherence with the notion of Selective Rationalizability (see Section
3.3), this de�nition of extensive-form-rationalizability combines strong rationalizability as
in Battigalli [7] (i.e., with memory of all previous steps) with independent rationalization
as in Battigalli and Siniscalchi [10] (i.e., with strong belief in each Sqj instead of just S

q
�i).

However, as far as extensive-form-rationalizability is concerned, all the classical de�nitions
(Pearce [35], Battigalli [5], Battigalli and Siniscalchi [11]) are equivalent for the scope of this
paper. See the companion paper for details.
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For each i 2 I and si 2 Si, let si 2 Sni if and only if si 2 �i(�i) for some
�i 2 �H(S�i) that strongly believes ((S

q
j )j 6=i)

n�1
q=0 .

Finally, let S1i := \n�0Sni . The pro�les S1 are called rationalizable.

3.3 Agreements, belief in the agreement, and Selective

Rationalizability

All the notions introduced in this section are illustrated with concrete examples

in the next section.

Players talk about how to play before the game starts. I assume that:

� Players do not coordinate explicitly as the game unfolds: all the oppor-
tunities for coordination are discussed beforehand.

� No subset of players can reach a private agreement, secret to co-players.

� Players do not agree on the use of (joint) randomization devices.23

Under these assumptions, agreements can be modeled as follows:

De�nition 4 AnAgreement is a pro�le e = (ei)i2I where each ei = (e0i ; e
1
i ; :::; e

ki
i )

is a chain of subsets of rationalizable plans:

e0i � e1i � ::: � ekii � S1i :

First, an agreement speci�es for each player i 2 I a set of plans e0i that
player i promises to follow. Second, the agreement can also specify alternative

sets of plans eni (n = 1; :::; ki) that player i promises to follow once he fails to

23The use of randomization devices can be easily introduced in the methodology. Note
however that a player would lack the strict incentive to use an individual randomization
device over the own actions. Therefore, in absence of joint randomization devices, only sets
of outcomes instead of outcome distributions can be enforced anyway. As Pearce [35] puts
it, �this indeterminacy is an accurate re�ection of the di¢ cult situation faced by players in
a game.�
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follow any of the plans in en�1i . So, the plans in eni nen�1i will be relevant for

co-players�beliefs only after a deviation by player i from the plans in en�1i .24

The focus on rationalizable plans is without loss of generality: agreements that

feature non-rationalizable plans can be analyzed in the same way, but do not

o¤er any additional opportunity in terms of outcomes they can induce.

With respect to a strategy pro�le, which can be seen as a complete agree-

ment, an agreement can involve two forms of incompleteness. First, e0i may

not be a singleton. Hence, player i can have more than one plan which is

compatible with the agreement. The same applies to each further eni . Second,

when a history h may not be allowed by any plan in ekii , thus the agreement

does not say anything about what player i should do from h onwards.

I will often focus on reduced agreements, where each player i is silent about

how she would play after a own deviation from the plans in e0i . Reduced

agreements do not require players to trust the promises of a co-player who

has already violated the agreement. Path agreements are reduced agreements

that represent players who simply agree on an outcome to achieve. So, players

do not specify how they will react to someone else�s deviation either. Path

agreements are to be expected, for instance, when discussing deviations is

�taboo�. Formally:

De�nition 5 An agreement e = (ei)i2I is:

i reduced if for every i 2 I, ei = (e0i );

ii a path agreement on z 2 Z if for every i 2 I, ei = (e0i ) = (S1i (z)).

Note that a path agreement on z must feature all rationalizable plans of

player i compatible with z to remain silent regarding i�s reactions to co-players�

deviations.25 Instead, like any other reduced agreement, a path agreement

24In light of this, agreements could be given a more synthetic but less handy representation
with just one set of strategies (as opposed to plans of actions) for each player. In particular,
tight agreements (see De�nition 14) could also be expressed in this more familiar language
for a solution concept. However, the chosen formulation of agreements is more transparent
regarding players�beliefs, see De�nition 6.
25The restriction that i will react in a rationalizable way will not have any actual bite,

because players are able to conclude this already from the beliefs in rationality.
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remains silent regarding i�s continuation plans after the own deviations by not

introducing alternative plans. Introducing all rationalizable plans (as e1i = S
1
i )

would be equivalent: these two ways of not specifying a player�s behavior from

some history onwards will be convenient in di¤erent contexts.

I say that a player i believes in the agreement if she believes as long as

possible that each co-player j is carrying on a plan in e0j ; and when this is no

more possible, she believes as long as possible that j is carrying on a plan in

e1j ; and so on.
26

De�nition 6 Fix an agreement e = (ei)i2I . I say that player i believes in the
agreement when, for each j 6= i, �i strongly believes e0j ; :::; e

kj
j .

Let �e
i be the set of all �i 2 �H(S�i) where player i believes in the agree-

ment.

I take the view that players re�ne their beliefs about co-players� plans

through strategic reasoning based on beliefs in rationality and beliefs in the

agreement. In particular, I assume that every player, as long as not contra-

dicted by observation, believes that each co-player is rational and believes in

the agreement; that each co-player believes that each other player is rational

and believes in the agreement; and so on. At histories where common belief

in rationality and agreement is contradicted by observation, I assume that

players maintain all orders of belief in rationality that are per se compatible

with the observed behavior, and drop the incompatible orders of belief in the

agreement. In the companion paper (Catonini [17]), I provide the details of

this reasoning scheme, and I show that its behavioral implications are cap-

tured by an elimination procedure called Selective Rationalizability.27 Fix
an agreement e = (ei)i2I .

26This is reminiscent of the agreement being a basis for the player�s CPS: see Siniscalchi
[38].
27See the Supplemental Appendix for the equivalence between this de�nition of Selective

Rationalizability and the more complicated one that is given an epistemic characterization
in the companion paper.
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De�nition 7 Let S0e := S
1. Fix n > 0 and suppose to have de�ned ((Sqj;e)j2I)

n�1
q=0 .

For each i 2 I and si 2 S1i , let si 2 Sni;e if and only if si 2 �i(�i) for some
�i 2 �e

i that strongly believes ((S
q
j;e)j 6=i)

n�1
q=0 .

Finally, let S1i;e := \n�0Sni;e. The pro�les S1e are called selectively-rationalizable.

Selective Rationalizability re�nes Rationalizability with the belief in the

agreement and strategic reasoning about it. In particular, the �rst step re�nes

Rationalizability with the belief in the agreement; the second step re�nes a

player�s plans further with strong belief that each co-player re�nes her ratio-

nalizable plans with the belief in the agreement as well; and so on.

Player i is required to believe in the agreement everywhere in the game

and at all steps of reasoning, because �i always has to belong to �
e
i . Hence,

Selective Rationalizability yields the empty set whenever a co-player j, at some

step n, allows a history h only with plans that violate the agreement; that is,

h 2 H(Snj;e), but Snj;e(h) \ emj = ; for some m with emj \ Sj(h) 6= ;. Then,
no �i 2 �e

i strongly believes S
n
j;e, thus S

n+1
i;e = ;: the belief in the agreement

is incompatible with strategic reasoning and it is rejected as a whole. The

belief that j believes in the agreement, instead, is imposed by strong belief in

S1j;e, thus it is abandoned as soon as not compatible with all orders of belief

in rationality of j. The same applies to higher order beliefs in the agreement.

Recall that I will refer to �(e0) as the outcome set that the agreement

prescribes, and to �(S1e ) as the outcome set the agreement induces: For a set

of plans S� � S, I will still say that �(S�) are the outcomes the set induces,
as customary.

4 Self-enforceability and implementability

4.1 Credibility and Self-Enforceability

In order to evaluate a given agreement, two features have to be investigated.

First, whether the agreement is credible or not. Second, if the agreement is
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credible, whether players will certainly comply with it or not. An agreement

is credible if believing in it is compatible with strategic reasoning.

De�nition 8 An agreement e = (ei)i2I is credible if S1e 6= ;.

Credibility does not imply that players will comply with the agreement,

but only that they may do so everywhere in the game. A credible agreement

induces each player i to strongly believe in the (non-empty) set of agreed-upon

plans that are compatible with strategic reasoning, namely S1�i;e \ e0�i. I say
that an agreement is self-enforcing if this belief will not be contradicted by

the actual play.

De�nition 9 A credible agreement is self-enforcing if �(S1e ) = �(S
1
e \ e0).

Self-enforceability implies that, for all their re�ned beliefs, players will

comply with the agreement on the induced paths, so that no violation of the

agreement will actually occur. That is, �(S1e ) � �(e0).
So, a self-enforcing agreement may induce a strict subset of the outcomes

it prescribes. When instead the agreement is not vague about the outcome(s)

it is going to induce, I say that the agreement is truthful.28

De�nition 10 A self-enforcing agreement is truthul if �(S1e ) = �(e
0).

To illustrate the whole methodology, I am going to analyze several agree-

ments for the game in the Introduction and one agreement from the game of

Section 2.

In the introductory game, all plans are justi�able, hence they are all ra-

tionalizable: S0e = S. Consider �rst the path agreement on (S;E): e
0
A = fSg,

e0B = fE:L;E:Rg. We have �e
A = f�A : �A(fE:L;E:Rg jh0) = 1g and �e

B =

f�B : �B(Sjh0) = 1g. So, S1e = fS;N:Dg � fE:L;E:Rg: Ann plays either S,
or N:D if she gives su¢ ciently high probability to E:R; Bob plays E and either

L or R depending on his new belief after being surprised by Ann�s deviation.

28The choice of the term �truthful� is clearly inspired by the implementation literature,
although an important caveat applies: see the end of Section 4.2.
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Then, we have S2e = fS;N:Dg � fE:Lg, and �nally S3e = fSg � fE:Lg = S1e :
e is truthful.

The following agreements require only one step of reasoning, except for the

�unilateral�agreement that requires two.

Agreement Reduced �Complete� �Unilateral� Path on (N;W )

eA e0A = fN:Ug e0A = fN:Ug e0A = SA e0A = SAn fSg
eB e0B = fWg (fWg ; fW;E:Lg) (fWg ; fW;E:Lg) e0B = fWg

S1A;e � S1B;e (SAn fSg)� fWg fN:Ug � fWg fN:Ug � SB (SAn fSg)� SB
S1A;e � S1B;e (SAn fSg)� fWg fN:Ug � fWg fN:Ug � fWg (SAn fSg)� SB
Conclusion Truthful Truthful Self-enforcing Credible

The path agreement on (N;W ) is not self-enforcing, while the path agree-

ment on the SPE path (S;E) is, but this is far from true in general, even

when the SPE is unique: see the Supplemental Appendix. The other three

agreements are self-enforcing and induce (N;W ). The �rst agreement has the

advantage of being reduced: Ann is not required to trust a statement of Bob

about what he will do after deviating. The second and third agreements have

the seeming advantage that only N:U and not N:D is compatible with strate-

gic reasoning for Ann (S1A;e = fN:Ug). But in both cases, after E, all beliefs
about Bob�s next move are equally compatible with strategic reasoning, and

Ann believes in L (and thus plays U) only by Bob�s post-deviation promise.

This is why requiring S1e � e0 does not seem to be a compelling strengthening
of self-enforceability.

Sometimes, agreements incompleteness induces steps of reasoning that re-

�ne players�beliefs after deviations, so that all remaining beliefs induce re-

actions that discourage the deviation. I illustrate this fact with a concrete

example from the game of Section 2. (The game is not �nite, but the method-

ology can be applied as is to all games with a countable number of non-terminal

histories.) Consider the announcement by the incumbent (�rm 1) of technol-

ogy k = B. Formally, this is a reduced agreement where e01 is the set of all

technology-price pairs with k = B, and e02 = S2. Compatibly with Case 2,
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suppose that entry is pro�table only if, in expectation, p1 � 41. Omitting

�entry�in the description of �rm 2�s plans, we have:

S11 [36; 48]� fk = Bg [ [48; 60]� fk = Ag
S12 fno-entryg [ [36; 48]� fk = Bg [ [56:5; 60]� fk = Ag
S21 = S

1
1 [36; 42]� fk = Bg [ [54; 60]� fk = Ag

S22 = S
1
2 fno-entryg [ [36; 42]� fk = Bg [ [56:5; 60]� fk = Ag

S1e S11;e = S
1
1 ; S

1
2;e = fno-entryg [ [56:5; 57]� fk = Ag

S2e S22;e = S
1
2;e; S

2
1;e = [40:25; 40:5]� fk = Bg

S3e = S
1
e S21;e = S

3
1;e; S

3
2;e = fno-entryg

The announcement of k = B is not per se su¢ cient to deter entry, but it entails

su¢ ciently low prices by the incumbent for the entrant to employ k = A and

exclude the highest rationalizable prices. Anticipating this, the incumbent has

the strict incentive to use k = B and exclude the highest prices compatible

with k = B as well. In turn, this provides the strict incentive to �rm 2

not to enter. So, the agreement is credible and it deters entry. Note that

strategic reasoning (in particular, belief in S12;e after entry) always induces

the incumbent to choose technology-price pairs that deter entry, absent any

restriction on the entrant�s continuation plan. Under the SPE threat p1 = 40,

instead, entry cannot be rationalized under belief in the threat (�entry�would

not be in S12;e), therefore any belief over the entrant�s rationalizable plans (S
1
2 )

remains possible.

4.2 Implementability and agreements design

I say that an agreement implements a set of outcomes P � Z when it is

self-enforcing and it induces P .

De�nition 11 A set of outcomes P � Z is implementable if there exists a
self-enforcing agreement such that �(S1e ) = P .

A set of outcomes induced by a merely credible agreement does not corre-

spond to what players agreed upon and believe in. For this reason, implemen-
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tation requires the agreement to be self-enforcing. All in all, only self-enforcing

agreements are able to induce a speci�c outcome.

Proposition 1 If �(S1e ) is a singleton, then e is self-enforcing.

Which sets of outcomes are implementable? How to design agreements that

implement them? This section aims to answers these questions.

By de�nitions of self-enforceability and implementability, every implementable

outcome set is induced by S1e \ e0 for some self-enforcing agreement e. This
provides some useful necessary conditions for implementability.

Proposition 2 For every self-enforcing agreement e = (ei)i2I , the set S� =

�i2IS�i := S1e \ e0 satis�es the following properties:
Realization-strictness: For each i 2 I and �i that strongly believes S��i,

�(�i(�i)� S��i) � �(S�);

Self-Justi�ability: For each i 2 I and si 2 S�i , there exists �i that strongly
believes (S�j )j 6=i and (S

1
j ) such that si 2 �i(�i).

Corollary 1 If a set of outcomes is implementable, then it is induced by a
Cartesian set of rationalizable pro�les that satis�es Realization-strictness and

Self-Justi�ability.

Self-Justi�ability says that, for each player i, each plan in S�i is justi�able

under strong belief that each co-player j carries on a plan in S�j , and some

other rationalizable plan otherwise. Realization-strictness says that players

have the strict incentive to stay on the paths induced by S� whenever they

strongly believe that co-players carry on plans in S��i. Analogously, say that

a Nash equilibrium s� = (s�i )i2I is realization-strict when it provides strict

incentive to stay on path, that is, argmaxsi2Si ui(�(si; s
�
�i)) = Si(�(s

�)) for

all i 2 I. Then, when S� induces a unique outcome z = �(S�), Realization-
strictness boils down to S� being a set of realization-strict Nash equilibria.
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Proposition 3 A Cartesian set of rationalizable pro�les that induce the same
outcome satis�es Realization-strictness if and only if each element is a realization-

strict Nash equilibrium.

Corollary 2 If an outcome is implementable, then it is induced by a realization-
strict Nash equilibrium in rationalizable plans.

These necessary conditions simplify the search for implementable outcome

sets. First, a standard elimination procedure like Rationalizability is per-

formed. Then, for each candidate outcome set, one can look for a set of

rationalizable pro�les that induces it and satis�es Realization-strictness and

Self-Justi�ability. If the set satis�es a further forward induction condition, I

call it a Self-Enforcing Set.

De�nition 12 Fix a Cartesian set of rationalizable pro�les S� = �i2IS�i �
S1 that satis�es Self-Justi�ability. The closure of S� (under rationalizable

behavior), denoted by S
�
= �i2IS

�
i , is, for each i 2 I, the set of all si 2 S1i

such that si 2 �i(�i) for some �i that strongly believes (S�j )j 6=i and (S1j )j 6=i.

De�nition 13 A Cartesian set of rationalizable pro�les S� is a Self-Enforcing
Set if it satis�es Realization-strictness, Self-Justi�ability, and:
Forward Induction: For each i 2 I and si 2 S

�
i , there exists �i that strongly

believes (S�j )j 6=i, (S
�
j)j 6=i, and (S

1
j )j 6=i such that si 2 �i(�i).

The closure of a set includes all rationalizable plans that players who

strongly believe in the set and in the rationalizable plans of co-players may

play. Forward Induction says that such players need not change their behavior

when they also strongly believe that co-players form beliefs in the same way.

That is, when they predict the behavior of deviators from the set with forward

induction reasoning (i.e., when they strongly believe in the closure of the set).

A SES and its closure are realization-equivalent: by Self-Justi�ability, S� �
S
�
, and by Realization-strictness, �(S

�
) � �(S�). So, in terms of induced
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outcomes, SES�s are �closed under rationalizable behavior�,29 and indeed boil

down to �sets closed under rational behavior�(Basu and Weibull [4]) in static

games. By Forward Induction, the closure of the SES cannot be further re�ned

with forward induction considerations. Therefore, the agreement on the SES

implements precisely the SES outcome set (�(S�)).

Proposition 4 Fix a SES S� = �i2IS�i . The reduced agreement e = ((S�i ))i2I
is truthful.

Corollary 3 If an outcome set is induced by a SES, then it is implementable
(with a truthful, reduced agreement).

An example of SES is provided in the next section.

The current gap between necessary and su¢ cient conditions for implemen-

tation is given by a seemingly strong condition: Forward Induction. But the

power of Forward Induction is mitigated by Self-Justi�ability and Realization-

strictness. Realization-strictness implies that deviations from the SES paths

cannot be rationalized under belief in the SES. Therefore, Forward Induction

does not restrict the beliefs about the �rst player who deviates more than

Self-Justi�ability. Then, if there are no other co-players, or if there is no time

for the �rst deviation to trigger other deviations by other players, Forward

Induction has no bite. I say that a game has two stages when Z � A [ A2.

Proposition 5 In games with 2 players or 2 stages, any Cartesian set of
rationalizable pro�les that satis�es Realization-strictness and Self-Justi�ability

also satis�es Forward Induction.

Hence, in these games, SES�s fully characterize implementable outcome

sets and provide truthful, reduced agreements that implement them.

Theorem 1 In games with 2 players or 2 stages, the following hold:

29Note that closedness in terms of plans (S� = S
�
) would be very hard to satisfy: as

already stressed, there are typically many rationalizable continuation plans of deviators,
that justify many possible reactions.
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1. a Cartesian set of rationalizable pro�les is a Self-Enforcing Set if and

only if it sati�es Realization-strictness and Self-Justi�ability;

2. an outcome set is implementable if and only if it is induced by a Self-

Enforcing Set;

3. every implementable outcome set is implemented by a truthful, reduced

agreement.

Proof. Statement 1 follows from Proposition 5. Statement 2 follows from

Corollary 1 and statement 1 for the �only if�part, and from Proposition 4 for

the �if�part. Statement 3 follows from statement 2 and Proposition 4. �
Moreover, in two-players games, Realization-strictness implies Self-Justi�ability

for a set of pro�les that all induce the same outcome.

Proposition 6 In 2-players games, any Cartesian set of rationalizable pro�les
that induces a unique outcome and satis�es Realization-strictness also satis�es

Self-Justi�ability.

Then, in two-players games, implementable outcomes are fully character-

ized by realization-strict Nash equilibrium in rationalizable plans.

Theorem 2 In 2-players games, an outcome is implementable if and only if it
is induced by a realization-strict Nash equilibrium in rationalizable plans, and

it is implemented by the truthful, reduced agreement on the Nash itself.

Proof. �Only if�coincides with Corollary 2. For �if�and the �nal state-
ment: let s� = (s�i )i2I 2 S1 be a realization-strict Nash equilibrium. By

Proposition 3, the singleton fs�g satis�es Realization-strictness. By Propo-
sition 6, it also satis�es Self-Justi�ability. By Proposition 5, it also satis�es

Forward Induction, thus it is a SES. Then, by Proposition 4, �(s�) is imple-

mented by the reduced agreement e = (fs�i g)i2I . �

How to �ll the gap between necessary and su¢ cient conditions in games

with more than two players and stages? Forward Induction may be violated
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because a deviation from a SES induces further deviations down the line. Possi-

bly, this can be avoided by restricting the behavior of the deviator, compatibly

with forward induction reasoning. This is what tight agreements do.

De�nition 14 An agreement e = (ei)i2I is tight when:

T1 e0 satis�es Realization-strictness;

T2 for every i 2 I and h 2 H(S1i ), there is n � ki such that

eni \ Si(h) 6= ;;

T3 for every i 2 I and h 2 H(�i(�e
i ) \ S1i ), there is n � ki such that

; 6= eni \ Si(h) � �i(�e
i ):

Remark 1 If e = (ei)i2I is tight, e0 satis�es Self-Justi�ability.

Like a SES, a tight agreement initially speci�es plans that satisfy Realization-

strictness (by T1) and Self-Justi�ability (by Remark 1). Di¤erently than a

SES, a tight agreement also speci�es alternative plans e1i ; :::; e
ki
i that each

player i should follow, until all histories compatible with her rationalizable

plans, H(S1i ), are reached by some e
n
i (this is T2). All histories that player i

can rationally reach under belief in the agreement, H(�i(�
e
i )\S1i ), must �rst

be reached by some eni only with plans that can be justi�ed under belief in the

agreement (this is T3). Then, all such plans can be believed by co-players who

reason by forward induction based on rationality and the agreement.30 This

makes the agreement credible and, by T1, self-enforcing. Self-Justi�ability of

e0 adds truthfulness.
30By imposing belief in these alternative plans, the Forward Induction condition of SES�s

becomes unnecessary. A SES S� can indeed be transformed into the following tight agree-
ment e = (ei)i2I : for each i 2 I, e0i = S�i , e1i = S

�
i , e

2
i = S

1
i . Introducing e

2
i is immaterial

for the agreement but veri�es T2: introducing all or none rationalizable plans of a player
are equivalent ways not to restrict behavior, but the �rst is convenient for tight agreements,
the second for SES�s.
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Proposition 7 Tight agreements are truthful.

Theorem 3 An outcome set is implementable if and only if it is prescribed by
a tight agreement.31

Proof. "If" comes from Proposition 7. For "only if": see the Appendix.

�

Tight agreements close the gap between necessary and su¢ cient conditions

for implementability in all games, and the roadmap for the joint search of im-

plementable outcome sets and agreements that implement them. If a candidate

set of outcomes is implementable, a tight agreement that implements it can be

found by following the search for SES�s �rst, and introducing alternative plans

if Forward Induction cannot be satis�ed. All the games in the paper have two

stages; therefore, by Theorem 1, the search can stop at SES�s, without the

need to verify Forward Induction. A case where Forward Induction cannot

be satis�ed but the search for a tight agreement is completed succesfully is

presented in the next section.

Since tight agreements are truthful and fully characterize implementable

outcomes, we have the following �revelation principle�for agreements design.

Corollary 4 Every implementable outcome set is implemented by a truthful
agreement.

This means that if players want to implement an outcome z (or a set P ),

there is no use of being vague about it in the agreement.

The use of the terms �truthful�and �implementation�is indeed inspired by

an analogy with robust implementation (Bergemann and Morris [15]). A ro-

bust mechanism implements the outcome assigned by the social choice function

31The �only if� statement, and thus also Corollary 4 rely on the game being �nite, in
particular on �nite horizon. This is because agreements are �nite sequences, but in games
with �nite horizon the set of induced paths may squeeze for in�nite steps of reasoning. A
characterization of implementable outcomes with truthful agreements in games with in�nite
horizon, if possible, is subject for future research.
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to players�types for all their beliefs about co-players�types; a self-enforcing

agreement implements (a subset of) the agreed-upon outcome(s) for all play-

ers�re�ned beliefs. When players use direct mechanisms, they truthfully reveal

their types and the corresponding outcome obtains; when players use truthful

agreements, they declare precisely the outcome(s) they want to achieve. Both

direct mechanisms and truthful agreements su¢ ce for implementation. Note

though an important di¤erence: while a direct mechanism requires player to

specify only their type, a truthful agreement, beside the outcome(s), can also

specify o¤-the-path(s) behavior. This can be seen as the price to pay for the

agreement being a �soft mechanism�, which does not change the rules of the

game.

4.3 Further examples

The aim of this section is two-fold. First, it provides concrete examples of (the

search for) a SES and of a tight agreement where, respectively, realization-

strict Nash and SES�s do not implement the desired outcome. Second, it

shows that, after a deviation from the desired path, agreement incompleteness

regarding the reaction of co-players (as allowed by SES) or restrictions to

the continuation plan of the deviator (as allowed by tight agreements) can

be necessary for implementation. This complements the example of Section 2,

where the incumbent can specify precisely a credible reaction that deters entry,

while specifying the behavior of the entrant is unneeded or even precludes the

implementation of no-entry.

Peacekeeping game The example of Section 2 showed why the behavior

of deviators may need to be left unspeci�ed. Here I show by example that

also leaving the behavior of co-players partially unspeci�ed may be needed

for implementation. This form of agreement incompleteness is enabled by

je0j > 1, even when �(e0) is a singleton, and it is allowed by SES�s. Consider
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the following 4-players game,32 where in the subgame, Cleo chooses the matrix,

Ann the row, and Bob the column (payo¤s are in alphabetical order).

DAVE � Out �! 0; 0; 0; 0

Instigate #

Int Arms Race Peaceful Not Arms Race Peaceful

AR �1;�1;�1;�1 �1;�3; 1;�2 AR �3;�3; 0; 2 5;�6; 0; 1
P �3;�1; 1;�2 0; 0;�1;�3 P �6; 5; 0; 1 0; 0; 0; 0

Dave, a weapons producer, can Instigate a con�ict between Ann and Bob.

If he does, Ann and Bob can engage in the Arms Race, or remain Peaceful.

Engaging in the arms race transfers 1 util to Dave. Cleo, a superpower, can

Intervene to avoid an escalation of the con�ict and impose sanctions against

Dave. The cost of the sanctions for Dave is 3, and the cost of peacekeeping

for Cleo is 1 if both Ann and Bob both engage in the arms race and 2 if only

one does. In the �rst case, without Cleo�s intervention, the war comes to a

costly impass. In the second case, without Cleo�s intervention, the peaceful

player gets conquered and loses all its resources (6) to the other; with Cleo�s

intervention, the defended player has to share its resources with Cleo.

The game has only one SPE, where Dave instigates, Cleo does not in-

tervene, and Ann and Bob engage in the arms race.33 Even allowing for

randomizations, there is no credible speci�cation of Ann, Bob, and Cleo�s ac-

tions that induces Dave not to instigate. However, Cleo can threaten Dave

to intervene, and Ann and Bob remain silent about their plans. I show

that S� = fAR;Pg � fAR;Pg � fIntg � fOutg, inducing outcome (Out),
is a SES. All plans are justi�able, hence rationalizable. Since the game has

2 stages, by Theorem 1 it su¢ ces to show Realization-strictness and Self-

32This game is freely inspired by the leading example in Greenberg [25], with a funda-
mental di¤erence: in that example, the superpower remains silent, and there simply exist
beliefs about its behavior that make the warring countries behave as desired; here the war-
ring countries remain silent and the superpower speaks, and this su¢ ces to pin down beliefs
that all induce the desired behavior by the �rst mover (here a fourth country).
33Ann and Bob may have the incentive to be peaceful only if they assign probability at

least 2=3 to the other being peaceful and Cleo intervening. But if both are peaceful with
probability at least 2=3, Cleo would rather not intervene.
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Justi�ability. For Dave, they both follow from the fact that �D(�D) = fOutg
for every �D that strongly believes S

�
C . For every i = A;B;C, Realization-

strictness trivially follows from �(Si � e0�i) = f(Out)g. Self-Justi�ability

for Cleo: Int is justi�ed by �C with �C((P;AR; Inst)j(Inst)) = 1, and let

�C(SA � SB � fOutg jh0) = 1 for �C to strongly believe (S
�
j )j 6=C ; for Ann,

AR (resp., P ) is justi�ed by any �A with �A((AR; Int; Inst)j(Inst)) = 1 (resp.,
with �A((P; Int; Inst)j(Inst)) = 1), and let �A(SB � fIntg � fOutg jh0) = 1
for �A to strongly believe (S

�
j )j 6=A; likewise for Bob.

Should I stay or should I go? In the department of dean Ann there are

two game theorists, Bob and Cleo, who are up for midterm review. Ann max-

imizes the bene�t from game theorists to the department, which is marginally

decreasing, minus the opportunity cost of their salaries, which is marginally

increasing. Ann o¤ers to Bob and Cleo the renewal at salary r, lower than the

market salary w, but su¢ cient to make them prefer to Stay if they still have

to pay cost g < w� r to Go on the market. If they both stay, the game ends.
If one stays and the other does not, say Bob, the game continues as in the

�gure. (What happens if they both go will not matter for the analysis.) Cleo

can Stay or Go on the market as well; Ann can Shut down Bob�s position,

or keep it Open. If Cleo stays, she has no bargaining power and her salary

remains r. If Cleo is on the market and Ann has shut down Bob�s position,

Ann is in a weak bargaining position and Cleo obtains a raise to v > r + g

(v < w). If Ann keeps Bob�s position open and Cleo stays, Bob bargains a

salary t > r + g (t < v). If both Bob and Cleo are on the market, bargaining

is complicated and gets delayed to the market stage. Ann can Hire or Not;

Bob and Cleo can Stay or Go for good. As deadlines approach, all players

must make their choices without knowing the choices of others. If Ann hires a

new game theorist at w, she will keep only Cleo if she stays, or Bob if he stays

and Cleo leaves, both at salary r. If Ann does not hire and Bob and Cleo do

not leave, they will bargain a salary t; if one leaves and the other stays, the

latter bargains a salary u with t < u < v. Ordinal payo¤s compatible with
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this story are in the �gure (cardinal payo¤s will not matter for the analysis).

Bob � Go �!
Stay # (Cleo

6; 3; 3 stays)

AnC Stay Go

Open 5; 4; 3 �� �!
Shut 4; 2; 3 2; 2; 6

Hire Stay Go Not Stay Go

Stay 1; 0; 1 1; 1; 2 Stay 3; 4; 4 3; 5; 2

Go 1; 2; 1 1; 2; 2 Go 3; 2; 5 0; 2; 2

When Ann o¤ers the renewal to Bob and Cleo, she calls for a meeting to

set expectations for the next year and induce them to accept her o¤er. Is

there an agreement that achieves this goal? We will look for an agreement

that implements outcome (Stay) in the game above; by symmetry, it can be

extended to the whole game. All plans are justi�able, hence rationalizable.

Following the roadmap of Section 4.2, we look for e0 that induces (Stay)

and satis�es Realization-strictness and Self-Justi�ability. Bob�s Realization-

strictness is satis�ed if e0A = fSg, or if O:N 62 e0A and S 62 e0C . In the �rst
case, Ann�s and Cleo�s Self-Justi�ability require G:G 2 e0C and S 62 e0C , so
we have fG:Gg � e0C � fG:S;G:Gg. In the second case, Ann�s and Cleo�s
Self-Justi�ability require O:H 62 e0A and G:S 62 e0C , so we are back to the �rst
case. Thus, let us focus on agreements with e0A = fSg, e0B = fSg, and either
e0C = fG:Gg, or e0C = fG:S;G:Gg. Does any of the two constitute a SES? No.
The closure of e0 for Ann includes O:N but not O:H: under belief that Cleo

plays G in the second stage, H is not a best reply to any belief in the last stage

that induces Ann to play O. But then, Forward Induction is violated for Cleo,

because the only sequential best reply under strong belief in S and fS;O:Ng
is G:S. Therefore, we try to �nd a tight agreement with e0 as above. Pick

e0 = (S; S;G:G) and restrict Bob�s behavior after his deviation by imposing

e1B = fS;G:Gg. Also let e1A = fS;O:Hg, so that all histories are reached by all
players and T2 is satis�ed. (T1 is Realization-strictness of e0.) Is T3 veri�ed?

Under belief in the agreement, players play exactly e0, so it immediate to check

that T3 is satis�ed.

Informally speaking, at the meeting Ann claims that if Bob or Cleo will

not stay, she will shut down his/her position. Everybody knows that this

will induce the other game theorist, say Cleo, to bargain a higher salary by

going on the market, and that Ann could then be tempted to keep the other
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position open and weaken Cleo�s bargaining position. However, Ann, Bob and

Cleo convene that once on the market, they will take their less risky options:

Ann will hire and Bob and Cleo will leave. By stating what he would do

after the own deviation, Bob helps making it unpro�table. This can be in

the own interest of a player who agrees on a desired path. More generally, the

restriction to the behavior of a deviator can be seen as an �agreement of beliefs�

among the other players, remaining agnostic about how it is originated. Here,

the belief that Bob will �nally leave prevents a �signaling war�between Ann

and Cleo that would not allow them to coordinate on a threat. Cleo�s claim to

leave in the last stage is credible because Ann�s deviation can be interpreted

as disbelief that Cleo goes on the market instead of belief that her move will

reassure Cleo that she has optimistic beliefs about succesful bargaining. Note

also that the tight agreement above is a �complete agreement�, in that it

speci�es one action for each player and history, and it corresponds to a SPE.

If the true game was the one in the �gure, specifying that Bob goes at the

initial history is immaterial, and outcome (Stay) would be implemented also

by the reduced agreement with e0 = (S; fS;G:Gg ; G:G). This is not a truthful
agreement, hence not a SES. For this reason, SES�s do not fully characterize

the outcomes implemented by reduced agreements, and not all outcomes that

can be implemented by a reduced agreement can be implemented by a truthful

reduced agreement, calling for restrictions to the behavior of deviators and

tight agreements.

5 Epistemic priority to the agreement

The literature on strategic reasoning with �rst-order belief restrictions is mostly

based on the use of Strong-�-Rationalizability (Battigalli [7], Battigalli and

Siniscalchi [12]). Strong-�-Rationalizability is here denoted by ((Sqi;�e)i2I)
1
q=0

and de�ned like Selective Rationalizability without requiring that plans are ra-

tionalizable; i.e., as in De�nition 7 with Si in place of S1i . The di¤erences be-

tween the results of this paper and the results in this literature are due to (i) the
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adoption of Selective Rationalizability in place of Strong-�-Rationalizability,

(ii) the structure on the �rst-order belief restrictions imposed by the notion of

agreement, and (iii) the focus on self-enforceability rather than just credibility.

Di¤erences and similarities between Selective Rationalizability and Strong-

�-Rationalizability are deeply analyzed in [17]. Here I only recall the main

conceptual di¤erence between the two solution concepts. Consider a move that

a player would not rationally make under belief in the agreement. Contrary to

Selective Rationalizability, Strong-�-Rationalizability captures the hypothesis

that, upon observing such move, co-players drop the belief that the player

is rational. I call this hypothesis (epistemic) priority to the agreement (as

opposed to rationality). So, the question is: how would the adoption of Strong-

�-Rationalizability instead of Selective Rationalizability a¤ect the results of

this paper?

In the example of Section 2, the incumbent could deter entry also in Case

1 by threatening a low rational price; then, entry would be considered a sign

of the entrant�s irrationality, and the incumbent could expect a high entrant�s

price which does not best reply to any belief that justi�es entry. This is a typ-

ical loss of re�nement power that the inversion of epistemic priority entails. In

all other examples, all plans are rationalizable; then, Selective Rationalizabil-

ity and Strong-�-Rationalizability coincide and the insights are robust to the

inversion of epistemic priority.

The formal analysis of Section 4 can be replicated under priority to the

agreement as follows. Allow agreements to feature non-rationalizable plans.

Remark 2 Under priority to the agreement, the results of Section 4 hold
through verbatim after substituting everywhere:

1. selectively-rationalizable plans (S1e ) with strongly-�-rationalizable plans

(S1�e);

2. rationalizable plans (S1) with justi�able plans (S1) in Proposition 6 and

Theorem 2, and with all plans (S) elsewhere.34

34Where Self-Justi�ability is among the hypotheses, that plans are justi�able is implied.
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To verify Remark 2, one can follow the proofs for Section 4 with the op-

portune substitutions, as highlighted in the Appendix. A credible agreement

under priority to rationality needs not be credible under priority to the agree-

ment: as shown in [17], Selective Rationalizability does not re�ne Strong-�-

Rationalizability for the same �rst-order belief restrictions. Across all agree-

ments, instead, more outcome sets can be implemented under priority to the

agreement.

Proposition 8 If an outcome set is implementable under priority to rational-
ity, then it is implementable under priority to the agreement.

Note in particular that, by Remark 2.2, under priority to the agreement any

Nash equilibrium in justi�able plans of a two-players game is a self-enforcing

agreement, also when incompatible with just strong belief in rationality.35

Battigalli and Friedenberg [8] capture the implications of Strong-�-Ratio-

nalizability across all �rst-order belief restrictions with the notion of Extensive

Form Best Response Set. An EFBRS is a Cartesian set of plans pro�les S� =

�i2IS�i satisfying the following:

EFBRS: for each i 2 I and si 2 S�i , si 2 �i(�i) for some �i that strongly
believes S��i with �i(�i) � S�i .

With (S�j )j 6=i in place of S
�
�i, the EFBRS condition corresponds to Self-Justi�ability

under priority to the agreement, plus a �maximality�requirement: all the se-

quential best replies to some justifying beliefs must be in the EFBRS. Gener-

ically, maximality has no bite,36 thus SES�s generically re�ne EFBRS�s. The

three reasons are the anticipated ones. Under priority to rationality, SES�s are

in rationalizable plans; however, SES�s generically re�ne EFBRS�s also under

35As shown by the introductory example of the companion paper, Strong-�-
Rationalizability can yield the outcome of a non-subgame perfect equilibrium in sequentially
rational plans even in a perfect information game (i.e., a game where players move one at
a time), where the unique backward induction outcome is also the unique extensive-form-
rationalizable one: see Battigalli [6], Heifetz and Perea [28], Chen and Micali [18], Perea
[37].
36Generically, every plan can be justi�ed by a CPS that has not other sequential best

reply.
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priority to the agreement. This can be seen already in static games, where

EFBRS�s boil down to best response sets, while SES�s boil down to sets closed

under rational behavior. First, EFBRS�s can be based on �rst-order belief

restrictions that impose belief in speci�c randomizations, or, more fundamen-

tally, di¤er across two players regarding the moves of a third player. Instead,

SES�s/agreements align any two players�beliefs about a third player�s moves.

(Relatedly, the restrictions are not expressed by the EFBRS itself, while SES�s

provide directly the restrictions that induce the outcomes they prescribe.) Sec-

ond, an EFBRS may induce a larger set of outcomes with respect to what

players expect under the restrictions that yield it. Realization-strictness/self-

enforceability rule this out.37

6 Epistemic priority to the path

Consider the twofold repetition of the following game. All plans are justi�able,

hence also rationalizable.

AnB Work FreeRide

W 2; 2 1; 3

FR 3; 1 0; 0

Suppose that Ann and Bob agree on the SPE where Bob works in the �rst

period and Ann works in the second period. Then, if Bob observes that Ann

works in the �rst period and believes that she is rational, he must believe that

she does not believe that he plays as agreed. In the baseline analysis of this

paper, Bob was free to believe, for instance, that Ann did not believe that he

37Relatedly, Battigalli and Siniscalchi [12] show that when Strong-�-Rationalizability is
non-empty under belief in a particular outcome, the outcome is induced by a self-con�rming
equilibrium (Fudenberg and Levine [23]). Regardless of the epistemic priority choice, im-
plementable outcomes are instead all Nash by Corollary 2 and Remark 2. This is because
under a self-enforcing agreement, players have the incentive to stay on path for all their
re�ned beliefs. This allows to �nd plans of co-players against which there is no incentive
to deviate. Credibility, instead, may be granted just by some correlated belief about the
reactions of co-players to the deviation.
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would have worked in the �rst period. Then, Bob could think that Ann is

going to work also in the second period, and best-respond by free-riding, as

agreed.

Suppose now instead that Bob believes that Ann trusted him, in the follow-

ing sense: she believes that he would have not violated the agreement before

her. Then, Bob must interpret Ann�s deviation as an attempt to gain a higher

payo¤ than under the agreement, and the only way for her to do so is to free

ride after the deviation. If Ann anticipates that Bob will interpret the devi-

ation in this way, she expects him to work after the deviation, and therefore

she has incentive to deviate. The agreement is not credible.

When this way of interpreting a deviation is transparent to players, the

interactive beliefs about (compliance with) the agreed-upon path receive a

higher epistemic priority in players�strategic reasoning than the beliefs in the

rest of the agreement: when Bob cannot believe anymore that Ann believes in

the whole agreement, he keeps the belief that Ann believed in (his compliance

with) the path, and drops the belief that Ann believes that he will comply

o¤-path. Giving for granted that rationality keeps the highest epistemic pri-

ority, I call this �ner epistemic priority ordering "priority to the path". First,

each orders of belief in rationality is maintained as long compatible with the

observed behavior. Second, each order of belief in the path is maintained as

long as compatible with all orders of belief in rationality. Third, each order of

belief in the whole agreement is maintained as long as compatible with all the

aforementioned beliefs. In the companion paper, I capture epistemic priority

orderings among di¤erent theories of players�behavior with a generalization of

Selective Rationalizability. Such procedure is specialized here for the problem

at hand. Fix a path z 2 Z and let ((Sqj;z)j2I)1q=0 denote Selective Rationaliz-
ability under the path agreement on z.38 Fix an agreement e = (ei)i2I with

e0 � S(z) and �i2Iekii � S1z .

De�nition 15 Let S0ez = S
1
z . Fix n > 0 and suppose to have de�ned ((S

q
j;ez)j2I)

n�1
q=0 .

38The method can be generalized to any agreement, by analyzing �rst strategic reasoning
under strong belief in the paths induced by e0 (i.e., strong belief in [z2�(e0)Sj(z)).
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For each i 2 I and si 2 S1i;z, let si 2 Sni;ez if and only si 2 �i(�i) for some
�i 2 �e

i that strongly believes ((S
q
j;ez)j 6=i)

n�1
q=0 .

Finally, let S1i;ez := \n�0Sni;ez . The pro�les S1ez are called z-selectively-rationalizable.

The �rst two levels of epistemic priority are captured by Selective Ratio-

nalizability under the path agreement on z. Thus, the credibility of the path

agreement is a preliminary test for the self-enforceability of an agreement that

prescribes z under priority to the path. Then, the �z-rationalizable� plans

(S1j;z)j2I are re�ned using the belief in the whole agreement. So, the agree-

ment must be compatible with strategic reasoning around the path.39

The analysis of Section 4 can be replicated under priority to the path for

single outcomes. Allow agreements (including SES�s) to prescribe only z and

feature only z-rationalizable plans. Then, the following holds.

Remark 3 Under priority to the path, the results of Section 4 hold through
verbatim after substituting everywhere:

1. outcome sets P with single outcomes z;

2. selectively-rationalizable plans (Se) with z-selectively-rationalizable plans

(Sez);

3. rationalizable plans (S1) with z-rationalizable plans (S1z ).

To verify Remark 3, one can follow the proofs for Section 4 with the op-

portune substitutions, as highlighted in the Appendix. Although the set of

z-selectively-rationalizable plans does not re�ne the set of selectively rational-

izable plans for a given agreement, the following holds.

Proposition 9 If an outcome is implementable under priority to the path,
then it is implementable under priority to rationality.

39In the companion paper, I provide an example of a SPE whose path constitutes a credible
path agreement, but no explicit threats are credible under priority to the path.
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For all the agreements analyzed in the previous sections that prescribe a

precise outcome z, the conclusions do not change under priority to the path.

Hence, the insights from the examples are robust to the �ner epistemic priority

order adopted in this section. In the example of this section, the agreement

on the SPE plans is self-enforcing under priority to rationality (by Theorem 2)

but not to the path because the corresponding path agreement is not credible.

Such path resembles40 a �path that can be upset by a convincing deviation�,

a notion proposed by Osborne [33] for repeated coordination games. Osborne

proves that such paths are not stable, in the sense of Kohlberg and Mertens

[29]. In the Supplemental Appendix, I prove that agreements on such paths

are not credible. Analogously, in signaling games, Battigalli and Siniscalchi

[12] show that a violation of the intuitive criterion implies emptiness of Strong-

�-Rationalizability with belief restrictions on the equilibrium outcome distri-

bution, and Cho and Kreps [19] show that an equilibrium that does not satisfy

the intuitive criterion is not strategically stable. Sobel et al. [39] provide sim-

ilar arguments both for the intuitive criterion and for divine equilibria (Banks

and Sobel [3]).

In all these re�nements, and in Govindan and Wilson [24], the focus is kept

on sequential equilibria. Already under the baseline hypotheses of Section 4,

the distinction between subgame perfect and non-subgame perfect equilibria

appears meaningless for self-enforceability (see the example of Section 2).41

Further, subgame perfection even seems at odds with the stricter interpretation

of deviations that these re�nements aim to capture: if the deviator is trying to

achieve a higher payo¤ than under the path, she will certainly not best reply

to the threat (see the �rst example in the Supplemental Appendix).

40Osborne�s de�nition is more restrictive. The epistemic approach of this paper allows to
capture precisely the hypotheses that inspire Osborne�s solution concept.
41Interestingly, Man [32] �nds out that also the invariance argument, used to motivate

the notions of forward induction of Kohlberg and Mertens [29] and Govindan and Wilson
[24], does not imply sequential equilibrium.
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7 Appendix - Proofs

To prove all the results of Section 4 under priority to the agreement (i.e., to

prove Remark 2), substitute (S1i )i2I with (Si)i2I (or S
1
i where indicated in

footnote) and ((Sqj;e)j2I)
1
q=0 with ((S

q
j;�e)j2I)

1
q=0; under priority to the path

(i.e., to prove Remark 3), substitute P � Z with z 2 Z, (S1i )i2I with (S1i;z)i2I ,
and ((Sqj;e)j2I)

1
q=0 with ((S

q
j;ez)j2I)

1
q=0 (recalling that only agreements and SES�s

that prescribe a single z are considered).

Proof of Proposition 1. Since e is credible, S1e \ e0 6= ;. Since �(S1e )
is a singleton and �(S1e ) � �(S1e \ e0), �(S1e ) = �(S1e \ e0). �

Proof of Proposition 2. Let e = (ei)i2I be an agreement that implements
P . Let S� = S1e \ e0.
Fix i 2 I and �i that strongly believes S��i. Fix �0i 2 �e

i that strongly

believes ((Sqj;e)j 6=i)
1
q=0 such that �

0
i(�jh) = �i(�jh) for all h 2 H(S�). Thus,

�i(�
0
i) � S1i;e. So, by self-enforceability of e, �(�i(�0i)�S��i) � �(S�). For every

si 2 �i(�i), there is s0i 2 �i(�0i) such that si(h) = s0i(h) for all h 2 H(S�).
Then, �(�i(�i)� S��i) � �(S�) as well.
Fix si 2 S�i � S1i;e. By �niteness of the game,

42 for every si 2 S1i;e there
exists �i 2 �e

i that strongly believes ((S
q
j;e)j 6=i)

1
q=0, thus that strongly believes

(S1j;e)j 6=i, (S
1
j )j 6=i, and (e

0
j)j 6=i, such that si 2 �i(�i). Then, �i strongly believes

also (S1j;e \ ej)j 6=i. �

Proof of Proposition 3. Let z := �(S�). If: For each i 2 I and s�i 2
S��i, by de�nition of realization-strict Nash we have ui(z) = ui(�(s

0
i; s�i)) >

ui(�(s
00
i ; s�i)) for all s

0
i 2 Si(z) and s00i 62 Si(z). Then, for each �i that strongly

believes S��i, since �i(S
�
�ijh0) = 1, every continuation best reply to �i(�jh0) is in

Si(z). Thus, we have �i(�i) � Si(z). Hence, �(�i(�i)�S��i) = fzg. Only if: For
each (s�i )i2I 2 S�, i 2 I, and �i that strongly believes S��i with �i(s��ijh0) = 1,
by Realization-strictness �i(�i) � Si(z). For every continuation best reply

42The vast majority of in�nite dynamic games used in applications (such as in�nitely
repeated games) satisfy this property too (see, for instance, the class of "simple dynamic
games" de�ined in Battigalli and Tebaldi, 2017)
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si to �i(�jh0), there exists s0i 2 �i(�i) such that s0i(h) = si(h) for all h 2 H(si)
with �i(S�i(h)jh0) > 0. Hence, �i(�i) � Si(z) and �i(S�i(z)jh0) = 1 require
si 2 Si(z). Thus, argmaxsi ui(�(si; s��i)) = Si(z) 3 s�i : (s�i )i2I is a realization-
strict Nash. �

Proof of Proposition 4. By Self-Justi�ability, S� � S1e . By de�nition,
S1e = S

�
. Thus, by Forward Induction, S1e � S2e , and obviously S1e � S2e . So,

S� � S1e = S2e = S1e .
For each i 2 I and si 2 S1i;e, there is �i that strongly believes (S

�
j )j 6=i

and thus S��i such that si 2 �i(�i). By Realization-strictness, for each h 2
H(S�) \H(si), si(h) = s0i(h) for some s0i 2 S�i (h). Then, �(S1e ) � �(S�).
So, �(S1e ) = �(S1e ) � �(S�) = �(S1e \ S�), and obviously �(S1e \ S�) �

�(S1e ). Thus, �(S
1
e ) = �(S

1
e \ S�) = �(S�): e is self-enforcing and truthful.

�

Proof of Proposition 5. Suppose that S� = �i2IS�i � S1 satis�es

Realization-strictness and Self-Justi�ability. For each j 2 I and sj 2 S
�
j , there

is �j that strongly believes (S
�
i )i6=j and thus S

�
�j such that sj 2 �j(�j). Hence,

by Realization-strictness, for each h 2 H(S�)\H(sj) there is s0j 2 S�j (h) such
that sj(h) = s0j(h). Then H(S

�
) � H(S�). Moreover, by Self-Justi�ability,

S�j � S
�
j for all j 2 I.

In games of depth 2,H(S
�
) � H(S�) impliesH(S�j) � H(S�j ) for all j 2 I.43

So, strong belief in S�j � S
�
j implies strong belief in S

�
j . Then, for each i 2 I,

De�nition 12 implies that S
�
i satis�es Forward Induction.

In two-players games, for each �i that strongly believes S
�
j � S

�
j and S

1
j

(j 6= i), there is �0i that strongly believes S�j , S
�
j , and S

1
j such that �i(�jh) =

�0i(�jh) for all h 2 H(S
�
) � H(S�) and all h 2 H(S

�
i )nH(S

�
j), thus for all

h 2 H(S
�
i ). Since �i(�i) � S

�
i by de�nition of S

�
i , �i(�i) = �i(�

0
i). Then,

De�nition 12 implies that S
�
i satis�es Forward Induction. �

Proof of Proposition 6. Let S� be a Cartesian set of rationalizable

pro�les with �(S�) = fzg. By Proposition 3, it is a set of realization-strict
43Because it implies that the moves allowed by S

�
j and S

�
j at h

0 are the same.
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Nash equilibria. Fix i 2 I and si 2 S�i . Since si 2 S1i ,44 by �niteness of the
game there exists �i that strongly believes S

1
j (j 6= i) such that si 2 �i(�i).45

Fix sj 2 S�j and construct �
0
i that strongly believes S

�
j and S

1
j such that

�0i(sjjh0) = 1 and �0i(�jh) = �i(�jh) for all h 62 H(S�j ). Since (si; sj) is a

realization-strict Nash that induces z, for every h � z the set of continuation
best replies to �0i(�jh) coincides with Si(z). For every h 2 H(si) with h 6� z,
h 62 H(S�j ), thus si is a continuation best reply to �0i(�jh) by �0i(�jh) = �i(�jh).
So, si 2 �i(�0i). �

Proof of Remark 1. Fix i 2 I. By T3, e0i = e0i \ Si(h0) � �i(�e
i ), and

by T2, every �i 2 �e
i strongly believes (S

1
j )j 6=i (beside (e

0
j)j 6=i). �

Proof or Proposition 7. Fix i 2 I and �i 2 �e
i . For each j 6= i and

h 2 H(S1j ), by T2 there is n � kj such that enj \ Sj(h) 6= ;. Then, since �i
strongly believes enj , �i(S

1
j �S�i;jjh) � �i(enj �S�i;jjh) = 1. Thus, �i strongly

believes (S1j )j 6=i. Therefore, �i(�
e
i ) \ S1i = S1i;e for all i 2 I.

Now, �x again i 2 I and �i 2 �e
i . For each j 6= i and h 2 H(S1j;e) =

H(�j(�
e
j)\ S1j ), by T3 there is n � kj such that enj \ Sj(h) � �j(�e

j)\ S1j =

S1j;e. Then, since �i strongly believes e
n
j , �i(S

1
j;e�S�i;jjh) � �i(enj�S�i;jjh) = 1.

Thus, �i strongly believes (S
1
j;e)j 6=i, beside (S

1
j )j 6=i. Therefore, �i(�

e
i )\S1i �

S2i;e, and obviously S
2
i;e � S1i;e. So, S1i;e = S2i;e for all i 2 I. Thus, S1e = S1e .

For each i 2 I and si 2 S1i;e, there is �i that strongly believes (e0j)j 6=i and
thus e0�i such that si 2 �i(�i). By Realization-strictness, for each h 2 H(e0)\
H(si), we have si(h) = s0i(h) for some s

0
i 2 e0i \ Si(h). Then, �(S1e ) � �(e0).

For each i 2 I, by T3 at h0, e0i � �i(�e
i ) \ S1i = S1i;e = S

1
i;e.

So, �(S1e ) = �(S1e ) � �(e0) = �(S1e \ e0), and obviously �(S1e \ e0) �
�(S1e ). Thus, �(S

1
e ) = �(e

0) = �(S1e \ e0): e is self-enforcing and truthful. �

Proof of Theorem 3 (Only if). Fix an implementable outcome set P
and a self-enforcing agreement e = (ei)i2I that implements it. Let M be the

44Under priority to the agreement, here S1i must be substituted by S1i in place of S
0
i = Si.

In the rest of the proof, substitute S1j with Sj as usual.
45Much milder conditions than �nitess guarantee this fact. For instance, simple games as

de�ned by Battigalli and Tebaldi [13].
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smallest m � 0 such that S1e = Sme (it exists by �niteness of the game)46.

Note that, for each i 2 I, SMi;e is the set of all si 2 S1i such that si 2 �i(�i) for
some �i that strongly believes ((S

q
j;e)j 6=i)

M
q=0 and ((e

q
j)j 6=i)

kj
q=0.

The proof is constructive. Let eki+1i := S1i . For each q = 0; :::;M + ki + 1,

let

eqi =
S

(n;m)2f0;ki+1g�f0;Mg:n+m�q
(eni \ SM�m

i;e ).

To see graphically the construction of each eqi , suppose that M � ki. In the

table below, each box represents the intersection of its coordinates, and the

union of the boxes marked with "x" represents eqi for some q � ki:

\ SMi;e ::: SM�q
i;e ::: ::: S0i;e

e0i x x x

::: x x

eqi x

:::

eki+1i

So, eqi is the union of all boxes above the line that connects box e
q
i \ SMi;e with

box e0i \S
M�q
i;e . Starting from e0i = e

0
i \SMi;e , every increase of q by 1 shifts such

line by 1 to the right, until eki+M+1
i = eki+1i \ S0i;e = S1i (all other boxes are

subsets). Note that for q > ki, e
q
i includes the whole columns from SM�q+ki+1

i;e

to SMi;e ; for q > M , e
q
i includes the whole rows from e0i to e

q�M�1
i . If M < ki,

the table will have more rows than colums and rows will start to be �lled

earlier than columns.

Without loss of generality, suppose that eni ( en+1i for each n = 0; :::; ki +

M ;47 then, e = (ei)i2I is an agreement. To see that e prescribes P , note that

P = �(S1e ) = �(S
M
e \ e0) = �(e0),

46Here �niteness cannot be substituted by milder assumptions; for instance, in an in�nitely
repeated game, convergence to S1 and S1e may require an in�nite number of steps.
47If eni = e

n+1
i for some n, en+1i can simply be eliminated from the chain.
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where the �rst equality is by implementation of P , the second by self-enforceability

of e, and the third by construction.

I am going to show that strong belief in (eqi )
ki+M+1
q=0 is equivalent to strong

belief in (Sqi;e)
M
q=0 and (e

q
i )
ki
q=0. This yields S

1
j;e = �j(�

e
j) \ S1j for each j 2 I.

First, I show that every �j that strongly believes (S
q
i;e)

M
q=0 and (e

q
i )
ki
q=0

strongly believes also (eqi )
ki+M+1
q=0 . Since eki+1i = S0i;e = S

1
i , formally �i strongly

believes also eki+1i . Fix q 2 f0; :::; ki +M + 1g. For each h 2 H(eqi ), by

construction h 2 H(eni \ Smi;e) for some n 2 f0; :::; ki + 1g and some m 2
f0; :::;Mg with eni \Smi;e � e

q
i . Since �j strongly believes e

n
i and S

m
i;e, it strongly

believes also eni \Smi;e, thus 1 = �j((eni \Smi;e)�S�j;ijh) � �j(e
q
i�S�j;ijh). Hence,

�j strongly believes e
q
i .

Second, I show that every �j that strongly believes (e
q
i )
ki+M+1
q=0 strongly

believes also (eqi )
ki
q=0 and (S

q
i;e)

M
q=0.

Fix n = 0; :::; ki and h 2 H(eni ). Fix the highest m 2 f0; :::;Mg such that
h 2 H(Smi;e) (it exists because S0i;e = S1i � eni ). I show that ; 6= eM�m+n

i \
Si(h) � eni . Note that e

n
i \ Smi;e � eM�m+n

i . Since h 2 H(eni ) \ H(Smi;e), by
credibility of e there exists �0j that strongly believes (S

q
i;e)

M
q=0 and (e

q
i )
ki
q=0 such

that �0j(e
n
i � S�j;ijh) = �0j(Smi;e � S�j;ijh) = 1. Hence, ; 6= eni \ Smi;e \ Si(h) �

eM�m+n
i . Moreover, for every m0 with m < m0 � M , Sm

0
i \ Si(h) = ; by

construction of m, and for every m0 � m, Sm0
i \ en0i � eM�m+n

i only if n0 � n,
which implies en

0
i � eni . So, e

M�m+n
i \ Si(h) � eni . (Graphically: e

n
i \ Smi;e is

along the diagonal that identi�es eM�m+n
i , all the boxes to the left of column

Smi;e do not reach h, and the triangle to the right occupies only rows above row

eni .)

Fix m = 0; :::;M and h 2 H(Smi;e). Fix the lowest n 2 f0; :::; ki + 1g
such that h 2 H(eni ) (it exists because e

ki+1
i = S1i � Smi;e). I show that

; 6= eM�m+n
i \ Si(h) � Smi;e. Note that eni \ Smi;e � eM�m+n

i . Since h 2
H(eni )\H(Smi;e), by credibility of e there exists �0j that strongly believes (S

q
i;e)

M
q=0

and (eqi )
ki
q=0 such that �

0
j(e

n
i �S�j;ijh) = �0j(Smi;e�S�j;ijh) = 1. Hence, ; 6= eni \

Smi;e\Si(h) � eM�m+n
i . Moreover, for every n0 with 0 � n0 < n, en0i \Si(h) = ;

by construction of n, and for every n0 � n, Sm0
i;e \en

0
i � eM�m+n

i only ifm0 � m,
which implies Sm

0
i;e � Smi;e. So, eM�m+n

i \Si(h) � Smi;e. (Graphically: eni \Smi;e is
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along the diagonal that identi�es eM�m+n
i , all the boxes above line eni do not

reach h, and the triangle below occupies only columns left of column Smi;e.)

With m = 0, the last paragaph also shows that e satis�es T2. With

m = M , since SMi;e = �i(�
e
i ) \ S1i , it shows that e satis�es T3. It remains to

show that e satis�es T1. Fix i 2 I and �i that strongly believes e0�i. I am
going to show that �(�i(�i)� e0�i) � �(e0). Fix �0i 2 �e

i that strongly believes

((Sqj )j 6=i)
1
q=0 such that for each h 2 H(e0�i), �0i(�jh) = �i(�jh) (it exists because

agreements are in rationalizable plans). Thus,

�(�i(�i)� e0�i) = �(�i(�0i)� e0�i) = �((�i(�0i) \ S1i )� e0�i).

By �0i 2 �e
i , �i(�

0
i) \ S1i � SMi;e . So, by e0 = SMe \ e0 and self-enforceability of

e,

�((�i(�
0
i) \ S1i )� e0�i) � �(SMe ) = �(SMe \ e0) = �(e0):

�
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8 Supplemental Appendix

8.1 On SPE and self-enforcing agreements

Consider the following game.

AnB W E AnB L C R

N 6; 6 �� �! U 9; 0 0; 5 0; 3

S 0; 0 2; 2 M 0; 5 9; 0 0; 3

D 0; 7 0; 7 1; 8

All plans are justi�able, hence they are all rationalizable. The subgame

has one pure equilibrium, (D;R), and no mixed equilibrium: for Ann to be

indi¤erent between U and M , Bob must randomize over fL;Cg, but when he
is indi¤erent between them, he prefers R; for Ann to be indi¤erent between

U and D or M and D, Bob must randomize over, respectively, fL;Rg and
fC;Rg, but R dominates L against fU;Dg and C against fM;Dg. So, the
game has only one SPE, inducing outcome (S;E).

The SPE outcome (S;E) is implementable, but di¤erently from the game

in the Introduction, only with an agreement that features also the o¤-the-

path threat R by Bob. For instance, the reduced agreement on the strict

Nash (S;E:R) is self-enforcing by Theorem 2. Instead, the path agreement

on z = (S;E) is not self-enforcing because Ann may rationally deviate and

then play U or M , hence Bob could best reply with any action, and not just

with R. Formally, we have S1A;z = S
1
A;z = fS;N:U;N:Mg and S1B;z = S1B;z =

fE:L;E:C;E:Rg.
Note moreover that if Ann believes in the SPE path, it is not rational

for her to deviate and then play D. Thus, if Bob interprets the deviation of

Ann as an attempt to increase her payo¤ with respect to the equilibrium (as

implicitly assumed by strategic stability and related re�nements, see Section

6), the fact that R is a best reply to D which is best reply to R itself is of no

value: R is a credible reaction of Bob only by virtue of other beliefs he may

have.

1



Players can also implement the outcome (N;W ), and di¤erently from the

game in the Introduction, only with an agreement that does not feature a

threat played with positive probability in an equilibrium of the subgame (here,

just D). For instance, the reduced agreement with e0A = fN:U;N:Mg and
e0B = fWg is self-enforcing: we have S1e = fN:U;N:M;N:Dg � fWg, thus
S1e = S1e = S((N;W )).

To conclude, note that there is no conceptual di¤erence behind the reasons

for self-enforceability of the SPE and of the Pareto-superior Nash outcome.

8.2 Another form of agreement incompleteness

Consider the following game.

4; 9; 5 AnB w e

" o n 3; 9; 0 0; 8; 2

Ann 5; 0; 1 s 0; 3; 0 1; 5; 2

# i u " "
Bob �! Cleo � �a �! Bob

# d #
CnB l c r AnB w e

t 5; 4; 1 5; 6; 0 5; 0; 0 n 3; 9; 0 0; 8; 2

b 5; 4; 0 5; 0; 1 5; 10; 1 s 0; 3; 0 1; 5; 2

All plans are justi�able, hence they are all rationalizable. Players want to

implement outcome (o). As suggested in Section 4, we �rst look for the sets

S� = S�A � S�B � S�C � S1 = S that induce (o) and satisfy Self-Enforceability
and Self-Justi�ability. Ann�s Self-Enforceability requires Bob not to play d

and Cleo not to play u. Then, Bob�s Self-Justi�ability requires that Cleo may

play t, and Cleo�s Self-Justi�ability requires that Bob may play e in a subgame

he allows. Hence, calling SwB and S
e
B the binary sets of plans of Bob where the

last move is w and e respectively, the required sets S� coincide with those that
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satisfy

S�A = fog , S�B � SwB [ SeB, SeB \ S�B 6= ;, S�C � ft:a; b:ag , t:a 2 S�C :

Does any of these sets satisfy Forward Induction? No. Under belief in S�C , it

is irrational for Bob to play d:l, because both plans in SeB guarantee a higher

payo¤. Yet, it is rational to play d:c, because t:a 2 S�C . Therefore, Forward
Induction requires Cleo to play b and not t, a contradiction. Thus, there is no

SES that implements (o).

So, we look for a tight agreement e where e0 satis�es the conditions above

and alternative plans of Ann and Bob, e1A and e
1
B, are introduced to reach

all histories (for T2) and restrict their behavior after deviations to i and d.

First, observe that we need e0C = ft:ag. If b:a 2 e0C , then, regardless of

e1A, we have d:r 2 �B(�e
B) \ SB((i; d)), but d:l 62 �B(�e

B). So, for Bob, T3

imposes d:l 62 e1B \ SB((i; d)) 6= ;, but then t:a 62 �C(�
e
C), a violation of

T3. Still, without restrictions on e1A, we have d:c 2 �B(�e
B) \ SB((i; d)), so

again d:l 62 e1B \ SB((i; d)) 6= ; and t:a 62 �C(�e
C). Hence, we must obtain

d:c 62 �B(�e
B). So, we must impose i:s:s 62 e1A. If Ann guarantees to play n in

a speci�c subgame, then we have �i(�
e
B) � SwB ; hence, T3 imposes e0B � SwB ,

a contradiction of the conditions on e0B. So, the only remaining option is

e1A = fi:n:n; i:n:s; i:s:ng. Then, on the one hand there is �B 2 �e
B with

�B(i:n:sj(i)) = �B(i:s:nj(i)) = 1=2 and �B(�B) = SeB; on the other hand,

for every �B 2 �e
B, there is sB 2 �B(�B) \ (SwB [ SeB) that gives to Bob an

expected payo¤ of at least 6:5, so d:c 62 �B(�e
B) \ SB((i; d)) = ;.

e0A = fog ; e0B = S
w
B [ SeB; e0C = ft:ag ;

e1A = fi:n:n; i:n:s; i:s:ng ; e1B = fd:l; d:c; d:rg :

The vagueness of Ann about in which subgame she is going to play n is a

kind of agreement incompleteness that, like here, can be necessary to imple-

ment an outcome. It can be interpreted as Ann doing the following speech: �I

guarantee that I will be prepared to play n in at least one contingency, but I
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cannot guarantee that I will be prepared to play n in both.�

This kind of strategic uncertainty also arises naturally from strategic rea-

soning. Example ?? in Battigalli [6] (provided by Gul and Reny) shows that

already the set of justi�able plans of a player is not a Cartesian product of

sets of actions at di¤erent information sets. This is the reason why extensive-

form rationalizability is de�ned as an elimination procedure of plans instead

of actions at di¤erent information sets, and agreements are de�ned in terms

of plans as well.

8.3 Proofs for Sections 5 and 6

For any h 2 Hn fh0g, let p(h) 2 H be the immediate predecessor of h.

Proof of Proposition 8
Fix an outcome set P � Z that is implementable under priority to ratio-

nality. Then, by Theorem 3, P is implemented by an agreement e = (ei)i2I

which is tight under priority to rationality. The proof is constructive. Let M

be the smallest m such that Sm = S1 (it exists by �niteness of the game).

For each i 2 I and n = 0; :::; ki, let

eni := fsi 2 S1i : 9s0i 2 eni ;8h 2 H(s0i) \H(S1); s0i(h) = si(h)g ;

for each n = ki+1; :::; ki+M +1, let eni = S
ki+M+1�n
i . Assume without loss of

generality that eni ( en+1i for each n = 0; :::; ki +M ,48 so that e = (ei)i2I is an

agreement. I am going to show that e is tight under priority to the agreement.

Indicate with T1a, T2a and T3a the conditions of tightness under priority to

the agreement (i.e., with Si in place of S1i ).

First, I show that e satis�es T1a (which is identical to T1). Fix i 2 I and
�i that strongly believes e

0
�i � S1�i. For each j 2 I and sj 2 e0j , there is s0j 2 e0j

such that s0j(h) = sj(h) for all h 2 H(S1) \H(s0j), and vice versa. Hence, (i)
�(Si � e0�i) \ �(S1) = �(Si � e0�i) \ �(S1), and there exists �0i that strongly
48If eni = e

n+1
i for some n, en+1i can simply be eliminated from the chain.
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believes e0�i such that (ii) �i(S�i(z)jh) = �0i(S�i(z)jh) for all h 2 H(S1)

and z 2 �(S1). By T1, �(�i(�
0
i) � e0�i) � �(e0) � �(S1). Then, by (i),

�(�i(�
0
i)� e0�i) = �(�i(�0i)� e0�i) � �(S1). Note that �(�i(�i)� e0�i) � �(S1)

as well, because �(�i(�i) � e0�i) = �(�i(e�i) � e0�i) � �(S1) for any e�i that
strongly believes ((Sqj )j 6=i)

1
q=0 with e�i(�jh) = �i(�jh) for all h 2 H(e0�i). Hence,

by (ii), �(�i(�i)� e0�i) = �(�i(�0i)� e0�i). So, we obtain

�(�i(�i)� e0�i) = �(�i(�0i)� e0�i) = �(�i(�0i)� e0�i) � �(e0) = �(e0):

Moreover, e satis�es T2a by eki+M+1
i = Si. It remains to show that e

satis�es T3a.

Fix �i 2 �e
i and h 2 H(�i(�i) \ Si).49 Suppose �rst that p(h) 2 H(S1).

By construction of e, I can construct �0i 2 �e
i that strongly believes

50

((Sqj )j 6=i)
1
q=0 such that for each h 2 H(S1) and z 2 �(S1), �0i(S�i(z)jh) =

�i(S�i(z)jh). Since �i and �0i strongly believe S1�i (by �j 6=ie
kj+1
j = S1�i and by

T2 respectively), �(�i(�i)� S1�i); �(�i(�0i)� S1�i) � �(S1). Then,

�(�i(�i)� S1�i) = �(�i(�0i)� S1�i) = �((�i(�0i) \ S1i )� S1�i):

Thus, since p(h) 2 H(�i(�i)) \ H(S1), p(h) 2 H(�i(�0i) \ S1i ) \ H(S1) as
well; moreover, at p(h), plans in �i(�i) and in �i(�

0
i) \ S1i must prescribe the

same moves. Hence, h 2 H(�i(�0i) \ S1i ): Then, by T3, there is n � ki such
that

; 6= eni \ Si(h) � �i(�e
i ):

So, by construction of e, eni \ Si(h) 6= ;.
Fix si 2 eni \ Si(h) � S1i . By construction of e, there is s0i 2 eni \ Si(h) �

�i(�
e
i ) such that s

0
i(h) = si(h) for all h 2 H(s0i) \ H(S1). Fix b�i 2 �e

i such

that s0i 2 �i(b�i) and e�i that strongly believes ((Sqj )j 6=i)1q=0 such that si 2 �i(e�i).
Fix bh 62 H(S1�i) with p(bh) 2 H(S1�i), j 6= i, and sj 2 Sj(bh). If sj 62 S1j , let

49Of course, the intersection with Si is super�uous here. It will be substituted with S1i
in the next proof.
50Since agreements are in rationalizable plans, adding strong belief in ((Sqj )j 6=i)

1
q=0 is

always possible without modifying the CPS at the rationalizable histories.
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�
bh
j (sj) = sj. Else, let m be the smallest q � kj + 1 such that emj \ S1j (bh) 6= ;
(m exists because ekj+1j = S1j ) and �x s

0
j 2 emj \S1j (bh). De�ne �bhj (sj) 2 Sj(bh)

as �bhj (sj)(h) = s0j(h) for all h 2 H(s0j) with h 6� bh, and �bhj (sj)(h) = sj(h) for
all h 2 H(sj) with h � bh. Since sj; s0j 2 S1j , there are �j; �0j that strongly
believe ((Sqk)k 6=j)

1
q=0 such that sj 2 �j(�j) and s0j 2 �j(�0j). Since there is k 6= j

such that bh 62 H(S1k ) and p(bh) 2 H(S1k ), there is �j that strongly believes
((Sqk)k 6=j)

1
q=0 such that �j(�jh) = �0j(�jh) for all h 6� bh and �j(�jh) = �j(�jh) for

all h � bh. Then, �bhj (sj) 2 �j(�j) � S1j , and since �
bh
j (sj)(h) = s0j(h) for all

h 2 H(S1) \H(s0j), by s0j 2 emj and construction of e, �
bh
j (sj) 2 emj as well.

Now, since enj � enj for all j 6= i and n � kj and by T2 H(e
kj
j ) = H(S

1
j ),

I can construct �i 2 �e
i such that �i(�jh) = b�i(�jh) for all h 2 H(S1�i) and

�i(s�ijh) = e�i �(�j 6=i�bhj )�1(s�i))jh� for all bh 62 H(S1�i) with p(bh) 2 H(S1�i),
h � bh, and s�i 2 (�j 6=i�bhj )(S�i(bh). Then, si 2 �i(�i) � �i(�e

i ).

Suppose now that h 62 H(S1). Then, there is h0 � h such that h0 62 H(S1)
and p(h

0
) 2 H(S1). As just shown, there is n � ki such that ; 6= eni \Si(h

0
) �

�i(�
e
i ) \ S1i . So, it su¢ ces to show that eni \ Si(h) 6= ;. Since each �i 2

�e
i strongly believes ((S

q
j )j 6=i)

1
q=0 and h 2 H(�i(�e

i ) \ Si), h 2 H(S1i ). Fix
si 2 eni \Si(h

0
) � S1i , s0i 2 S1i (h) and �i; �0i that strongly believe ((S

q
j )j 6=i)

1
q=0

such that si 2 �i(�i) and s0i 2 �i(�0i). By h
0 62 H(S1), p(h0) 2 H(S1), and

h
0 2 H(eni ) � H(S1i ), there exists �00i that strongly believes ((S

q
j )j 6=i)

1
q=0 such

that �00i (�jh) = �i(�jh) for all h 6� h
0
, and �00i (�jh) = �i(�jh) for all h � h

0
. So,

there is s00i 2 �i(�00i ) � S1i such that s00i (h) = si(h) for all h 6� h
0
with h 2 H(si)

and s00i (h) = s0i(h) for all h � h
0
with h 2 H(s0i). Thus, si 2 Si(h

0
) implies

s00i 2 Si(h
0
) and then s0i 2 Si(h) implies s00i 2 Si(h). Moreover, si 2 eni implies

s00i 2 eni by construction of eni . Hence, ; 6= eni \ Si(h). �

Proof of Proposition 9. For each P � Z which is implementable under
priority to the path, a tight agreement e that implements P under priority

to rationality can be constructed exactly like in the proof of Proposition 8,

substituting T1,T2,T3 with T1p,T2p,T3p (the requirements of tightness under

priority to the path, that is, with S1z in place of S1), S with S1, S1 with

S1z , and ((S
q
i )i2I)

1
q=0 with ((S

q
i;z)i2I)

1
q=0. �
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Proposition 10 Let z = (a1; :::; aT ) be a path that can be upset by a convinc-
ing deviation. The path agreement on z is not credible.

Proof. Fix a two-players (i and j) static game G with action sets Ai
and Aj and payo¤ function vk : Ai � Aj ! R, k = i; j. Let bk and ck be

the �rst- and second-ranked stage-outcomes of G for player k = i; j. A path

z = (a1; ::; aT ) of Nash equilibria of the T-fold repetition of G can be upset by

a convincing deviation if there exist � 2 f1; :::; T � 1g and bai 6= a�i such that,
letting T := T � � ,

vi(bai; a�j ) + vi(ci) + (T � 1)vi(bi) < TX
t=�

vi(a
t) < vi(bai; a�j ) + Tvi(bi); (I)

Tvj(b
i) > max

aj2Ajnfbijg
vj(b

i
i; aj) + (T � 1)vj(bj): (J)

Condition I says that player i bene�ts from a unilateral deviation at � only

if followed by her preferred subpath.51 Condition J says that player j cannot

bene�t from a unilateral deviation from that subpath even if followed by her

preferred subpath.52

Now I can prove the proposition. Let ei = (Si(z)) and ej = (Sj(z)). Letbh := (a1; ::; (bai; a�j )) and z := (a1; ::; (bai; a�j ); bi; :::; bi). Suppose that S1e (z) 6= ;,
otherwise S2e = ;. Then, for each k = i; j, there exists �k that strongly believes
S1�k and S�k(z) such that �k(�k) \ Sk(z) 6= ;.
Fix n 2 N and suppose that Sn�1i (z) 6= ;. Fix sj 2 Sj with �i(sjjh0) 6= 0.

Since �i strongly believes S
1
j and Sj(z), sj 2 S1j (z). Fix �j that strongly.believes

(Sqi )
1
q=0 with sj 2 �j(�j). Since �j strongly believes Si(z), for each h 62

H(Si(z)) with p(h) � z, �j(Si(h)jp(h)) = 0. Thus, there exists �0j that

strongly believes (Sqi )
n�1
q=0 such that (i) �

0
j(�jh0) = �j(�jh0), (ii), �0j(Si(z)jbh) = 1,

51In the example of Section 5, i = Ann, j = Bob, (a1; a2) = ((FR;W ); (W;FR)), bi =
(FR;W ), ci = (W;W ), � = 1, bai = W , thus T � 1 = 0. Formally, the �rst inequality in
(I) is not satis�ed (equality holds), but this is immaterial because bi and ci entail the same
action for Bob, against which the best reply of Ann induces bi:
52This implies that i�s preferred stage-outcome is Nash, reason why Osborne (1991) refers

to coordination games.
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and (iii) �0j(�jh) = �j(�jh) for all h 2 H(Sj(z)) with h 6� z and h 6� bh.
Then, there exists s0j 2 �j(�

0
j) � Snj such that: by �j(�j) \ Sj(z) 6= ;,

�j(Si(z)jh0) = 1, and (i), s0j 2 Sj(z) � Sj(bh); by (ii) and (J), s0j 2 Sj(z);
by (iii) and sj; s0j 2 Sj(z), s0j(h) = sj(h) for all h 2 H(Sj(z)) with h 6� bh.
With these s0j�s, I can construct �i that strongly believes (S

q
j )
n
q=0 such that

�i(Sj(z)jh0) = 1, and �i(Sj(ez)jh0) = �i(Sj(ez)jh0) for all ez 6� bh. Thus, by
�i(�i) \ Si(z) 6= ;, �i(Sj(z)jh0) = 1, and (I), ; 6= �i(�i) \ Si(z) � Sn+1i (z).

So, by induction, there exists �i that strongly believes (S
q
j )
1
q=0 and Sj(z) such

that ; 6= �i(�i)\Si(z) � S1i;e(z). On the other hand, for every �i that strongly
believes Sj(z), by (I) �i(�i) \ Si(bh) � Si(z), so S1i;e(bh) � Si(z). The two

things combined imply that for every �j that strongly believes S
1
i;e and Si(z),

�j(Si(z)jbh) = 1. So, by (J), S2j;e(bh) � Sj(z). Since Sj(z) � Sj(bh), for every �i
that strongly believes S2j;e and Sj(z), �i(Sj(z)jh0) = 1, so by (I) �i(�i)(z) = ;.
Hence S3i;e(z) = ;. So, S4j;e = ;. �

8.4 On the de�nition of Selective Rationalizability.

Consider the following, alternative de�nition of Selective Rationalizability.

De�nition 16 Let ((Smi )i2I)
1
m=0 denote the Rationalizability procedure. Con-

sider the following procedure.

(Step 0) For each i 2 I, let bS0i;e = S1i .
(Step n>0) For each i 2 I and si 2 Si, let si 2 bSni;e if and only if there is

�i 2 �e
i such that:

S1 si 2 �i(�i);

S2 �i strongly believes bSqj;e for all j 6= i and q < n;
S3 �i strongly believes bSqj for all j 6= i and q 2 N.
Finally, let bS1i;e = \nn�0 bSi;e. The pro�les in bS1e are called selectively-

rationalizable.
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This is the de�nition of Selective Rationalizability provided and charater-

ized epistemically in [17]. It di¤ers from the de�nition used in this paper

because of requirement S3 in place of the requirement that si 2 S1i . Here I
argue that the two de�nitions are equivalent for the analysis of agreements.

The two de�nitions are equivalent for the same agreement whenever the

agreed-upon plans are chosen only according to what they prescribe at the

rationalizable histories (H(S1)).

Proposition 11 Fix an agreement e = (ei)i2I such that, for each i 2 I,

n = 0; :::; ki, si 2 eni , and s0i 2 S1i , if s0i(h) = si(h) for all h 2 H(S1)\H(s0i),
then s0i 2 eni . Then, bS1e = S1e .

Proof. By induction.
Induction hypothesis: for each m � n, bSme = Sme ; moreover, unlessbSn+1e = Sn+1e = ;, for each i 2 I and h 62 H(S1) with p(h) 2 H(S1), there

exists a map �hi;n : Si(h)! Si(h) such that:

a) for each si 2 Si(h)nS1i (h), �hi;n(si) = si;

b) for each si 2 S1i (h),

(i) �hi;n(si)(h) = si(h) for all h 2 H(si) with h � h,

(ii) �hi;n(si) 2 Smi;e for all m � n with Smi;e(h) 6= ;,

(iii) if eqi \ Si(h) 6= ; for some q = 0; :::; ki, �hi;n(si) 2 e
q
i .

Basis step: S0e = bS0e = S1, and the required maps exist by property of e
(in particular, (iii) can always be satis�ed).

Inductive step. For bSn+1e = Sn+1e , since by the induction hypothesisbSme = Sme for eachm � n, it su¢ ces to show that for every i 2 I and si 2 Sn+1i;e ,

there is b�i 2 �e
i that strongly believes ((S

m
j;e)j 6=i)

n
m=0 and ((S

m
j )j 6=i)

1
m=0 such

that si 2 �i(b�i). So, �x �i 2 �e
i that strongly believes ((S

m
j;e)j 6=i)

n
m=0 and

�0i that strongly believes ((S
m
j )j 6=i)

1
m=0 such that si 2 �i(�i) \ �i(�0i). By the

induction hypothesis, I can construct b�i such that b�i(�jh) = �i(�jh) for all
h 2 H(S1�i) and b�i(s�ijh) = �0i((�j 6=i�hj;n)�1(s�i)jh) for all h 62 H(S1�i) with
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p(h) 2 H(S1), h � h, and s�i 2 �j 6=i�hj;n(S�i(h)). By (iii), b�i 2 �e
i . By

(ii), b�i strongly believes ((Smj;e)j 6=i)nm=0 and, by (a), also ((Smj )j 6=i)1m=0. By (i),
si 2 �i(b�i).
Now �x h 62 H(S1) with p(h) 2 H(S1). If Sn+1i;e (h) = ;, let �hi;n+1 = �hi;n.

Else, we need to update �hi;n(si) for each si 2 S1i (h). Fix �i that strongly be-
lieves ((Smj )j 6=i)

1
m=0 such that si 2 �i(�i). Unless bSn+1e = Sn+1e = ;, there existsbsi 2 Sn+1i;e (h) =
bSn+1i;e (h) with bsi 2 eqi for all q = 0; :::; ki such that eqi\Si(h) 6= ;,

otherwise, for any j 6= i, there would not be any b�j 2 �e
j that strongly be-

lieves Sn+1i;e = bSn+1i;e . Fix b�i 2 �e
i that strongly believes ((S

m
j;e)j 6=i)

n
m=0 such

that bsi 2 �i(b�i). Since b�i strongly believes S0�i;e = S1�i, by the induction

hypothesis I can construct �i such that �i(�jh) = b�i(�jh) for all h 6� h and

�i(s�ijh) = �i((�j 6=i�hj;n)�1(s�i)jh) for all h � h and s�i 2 �j 6=i�hj;n(S�i(h)).
By (iii), �i 2 �e

i . By (ii), �i strongly believes ((S
m
j;e)j 6=i)

n�1
m=0. By (i), there

is si 2 �i(�i) such that si(h) = bsi(h) for all h 2 H(si) with h 6� h (thus

si 2 Si(h)) and si(h) = si(h) for all h 2 H(si) with h � h. So, �hi;n+1(si) = si
satis�es (i). If si 2 S1i , then si 2 Sn+1i;e , satisfying (ii), and by the property

of e, si 2 emi for every m such that bsi 2 emi , satisfying (iii). So, it only re-
mains to show that si 2 S1i . Since bsi 2 S1i , there is also b�i that strongly
believes ((Smj )j 6=i)

1
m=0 such that bsi 2 �i(b�i). Thus, I can construct also �i that

strongly believes ((Smj )j 6=i)
1
m=0 such that �i(�jh) = b�i(�jh) for all h 6� h and

�i(�jh) = �i(�jh) for all h � h, so clearly si 2 �i(�i) � S1i . �
The intuition is the following: under an agreement in this class, all ratio-

nalizable plans can always be justi�ed at the non-rationalizable histories under

both de�nitions, while the two de�nitions do not di¤er in terms of beliefs they

allow at the rationalizable histories. This class of agreements su¢ ces for the

implementation of all implementable outcome sets, for the following reason.

Restricting behavior at the non-rationalizable histories cannot have a direct ef-

fect on the induced paths, which are always rationalizable. It can only have an

indirect e¤ect via a player�s beliefs by combining an co-player�s agreed behav-

ior at rationalizable and non-rationalizable histories in a particular way. But

given that the behavior of the co-player before and after our player leaves the

rationalizable histories can always be �disentangled� (because the co-player
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gets surprised by �nding herself at the non-rationalizable histories and has to

come up with new beliefs), this indirect e¤ect can also be obtained directly

by only restricting her behavior at the rationalizable histories. This can be

proven formally with the same arguments of the proof of Proposition 8.

Proposition 12 Fix a self-enforcing agreement e� = (e�i )i2I . Then, there

exists an agreement e = (ei)i2I that satis�es the condition in De�nition 11

such that �(S1e ) = �(S
1
e� ).

Proof. By Theorem 2, there exists a tight agreement e = (ei)i2I such that
�(S1e� ) = �(S1e ). De�ne an agreement e = (ei)i2I by letting, for each i 2 I
and n = 0; :::; ki,

eni = fsi 2 S1i : 9s0i 2 eni ;8h 2 H(S1) \H(si); si(h) = s0i(h)g :

I show that also e is tight, so that �(S1e ) = �(e
0) = �(e0) = �(S1e ) = �(S

1
e� ).

T2 is obvious.

To see T1, follow the proof for Proposition 8 that e satis�es T1a (which

coincides with T1).

To see T3, �x i 2 I, �i 2 �e
i , and h 2 H(�i(�i)\S1i ), and follow the proof

for Proposition 8 that e satis�es T3a (which coincides with T3 by �i(�
e
i ) =

�i(�
e
i ) \ S1i in that proof). �
The same is true if self-enforceability is de�ned using De�nition 16 (and it

can be proven in the same way). Therefore, we have the following.

Corollary 5 The implementable outcome sets under the two de�nitions of
Selective Rationalizability coincide.

This would not be true if agreements were allowed to feature non ratio-

nalizable plans. In this case, some eni could reach a history h 62 H(S1i ) with
some plan si 62 Smi , although h 2 H(Smi ), so that no sj 2 S1j (h) 6= ; is com-
patible with the belief in eni . This can imply the elimination of a move by j at

a rationalizable history (possibly dominant within the rationalizable paths!)

under De�nition 7, whereas the agreement would not be credible at all under

De�nition 16.
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