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Abstract

Abundant experimental and �eld evidence suggests that people tend to dis-

like open disagreement. We propose a formalization of perceived disagreement

and study the implications of perceived disagreement aversion in disclosure

games involving agents with di¤erent priors. Across a variety of settings, the

ideal conditions for disclosure involve identical prior variances and di¤ering

prior means. When equilibrium disclosure is partial, it is biased towards evi-

dence that is congruent with the most con�dent agent�s prior bias. Perceived

disagreement aversion leads to assortative matching in prior beliefs that pro-

vides a theoretical basis for echo chambers. Equilibria may feature higher

average perceived or actual disagreement than a hypothetical full disclosure

scenario. Perceived disagreement aversion arises endogenously within simple

games of delegation and competitive authority assignment.
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1 Introduction

Decentralized information exchange within social networks is an important channel

shaping public opinion, which is ever more important in the digital era (Internet, so-

cial media).1 While avoiding some of the distortions that are particularly relevant for

centralized information �ows, this source of information itself exhibits many forms

of bias. In particular, people do not talk equally easily about all topics, are not

equally willing to disclose all facts or opinions, and are not equally likely to talk to

everyone. A 2016 poll by the online employment website CareerBuilder �nds that 42

percent of respondents avoid talking politics at the o¢ ce while 44 percent may talk

about it but interrupt the conversation if it becomes heated.2 ;3 Social-psychologists

have developed a wide repertoire of concepts to describe informational biases aris-

ing in social networks, e.g. Taboos, Overton windows, opinion corridors, political

correctness, conversational mine�elds, echo chambers, con�rmation bias, pluralistic

ignorance, information avoidance.

An important role in generating these biases can be attributed to the tendency to

avoid con�ict in opinions (i.e. to the desire to be perceived as having similar beliefs as

the counterparty), or perceived disagreement aversion. A large body of experimental

and �eld evidence documents that individuals tend to state opinions that conform

to what they believe others think. In the seminal experiments conducted by Asch

(1955), subjects wrongly evaluated the length of a line in public after being exposed

to other participants�(arti�cially induced) wrong assessment. Deutsch and Gerard

(1955) showed that this e¤ect is weaker if subjects report their judgment privately, so

1See Sunstein (2007), p. 52.: "In contrast to television, many of the emerging technologies
are extraordinarily social, increasing people�s capacity to form bonds with individuals and groups
that would otherwise have been entirely inaccessible. Email, instant messaging, texting and Internet
discussion groups provide increasingly remarkable opportunities, not for isolation, but for the creation
of new groups and connections."

2Political Talk Heats Up the Workplace, According to New CareerBuilder Survey, Career-
Builder.com, Press Releases, July 2016.

3See also for example the following recommendation from the gentleman�s manual "Hills Manual
of Social and Business Forms" from (1879): �Do not discuss politics or religion in general company.
(...) To discuss those topics is to arouse feeling without any good result.�

2



that others�perceived disagreement is una¤ected. Mutz (2006) reviews a number of

studies showing that Americans avoid discussing politics with non like-minded people

for fear of creating tensions.4 Bursztyn et al. (2017) found that subjects were more

likely to publicly reveal immigration-critical views two weeks after Donald Trump�s

victory than two weeks before it (i.e. before it became apparent that such views

might be shared by a large fraction of the population). Prentice and Miller (1993)

established that a large fraction of students refrained from expressing dissent with

campus alcohol practices for fear of stigma, vastly underestimating the share of people

sharing their opinion.5

While there is ample evidence of the relevance of perceived disagreement aver-

sion, to the best of our knowledge it has not been formally modeled. This paper is a

�rst step towards �lling this gap. We suggest a formalization of perceived disagree-

ment aversion and analyze its consequences for the incentives to generate and share

hard (veri�able) information with other agents which may have di¤erent prior be-

liefs.6 Given mutually known priors, our baseline speci�cation measures i�s perceived

disagreement between herself and another agent j simply as the (absolute) distance

4See Mutz (2006), p. 107: "There is already ample evidence in support of the idea that people
avoid politics as a means of maintaining interpersonal harmony. For example, in the mid 1950s,
Rosenberg noted in his in-depth interviews that the threat to interpersonal harmony was a signi�cant
deterrent to political activity. More recent case studies have provided further support for this thesis.
Still others have described in great detail the lengths to which people will go in order to maintain
an uncontroversial atmosphere. Likewise, in focus group discussions of political topics, people report
being aware of, and wary of, the risks of political discussion for interpersonal relationships. As one
focus group participant put it, "It s not worth it to try and have an open discussion if it gets them
[other citizens] upset."

5Disagreement aversion has many potential causes (see Golman et al., 2016, for a general review of
what the authors term a preference for belief consonance). Individuals might experience an intrinsic
psychological discomfort from being explicitly confronted with disagreement in views (Festinger,
1957; Domínguez et al., 2016). The aversion may instead be driven by the anticipation of adverse
consequences stemming from disagreement. For instance, political practice in north-western Europe
(e.g. Netherlands and the so-called Polder model, Scandinavia) puts a strong emphasis on reaching
consensus, in particular in negotiations between di¤erent labor market organizations.

6Heterogeneous priors are an integral part of many social situations. Instances range from views
on general questions (climate change, immigration, free trade, religion, minority rights) to how to
manage a �rm or optimize an investment portfolio. A key underlying source is that people have
di¤erent personal histories (experiences, socialization, education). See Morris (1995) for an early
general discussion, and Acemoglu et al. (2016), Banerjee and Somanathan (2001), Gentzkow and
Shapiro (2006), and Dixit and Weibull (2007) for modeling applications.
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between i�s expected value of the state (i�s �rst order belief) and i�s expectation of

j�s expected value of the state (i�s second order belief), the utility of a perceived

disagreement averse agent being strictly decreasing in this distance.

A main source of tension for information sharing originates in the mechanics of

Bayesian updating: Though agents update their prior expectation in the same di-

rection whatever the observed signal, the magnitude of belief adjustment depends

on the prior belief distribution. It follows that disagreement may well increase fol-

lowing the disclosure of particular signal realizations.7 As a consequence, a perceived

disagreement averse agent has incentives to selectively reveal or hide his private infor-

mation. The same robust intuition also implies that the bene�ts of generating costly

information, as regards the reduction in (perceived) disagreement, also depends on

agents�prior distributions. One of our contributions is to characterize how di¤erent

speci�cations of prior heterogeneity may facilitate or hinder information generation

and sharing within a given group of disagreement averse agents, as well as a¤ect the

choice of conversation partners.

Our baseline model is a simple game of strategic disclosure by a potentially in-

formed sender (S) who is averse to disagreement as perceived by an uninformed

receiver (R). The sender privately observes, with some commonly known probability,

an informative signal drawn from a known distribution, and can decide whether to

disclose it to the receiver or not.8

Information transmission in equilibrium can be characterized based on the dif-

ferences in means and variances of the heterogeneous prior distributions. This is

interesting because these quantities have a natural interpretation. The prior mean

represents an agent�s prior stance. The prior variance represents his con�dence in

his prior stance and his willingness to revise his stance as new information becomes

available. While we consider various speci�cations of the state space, the prior dis-

7This is most easily seen by comparing the belief adjustment with a degenerate prior (which is
zero) to the one with, e.g., a uniform prior (which is strictly positive).

8As is standard (see, e.g., Jung and Kwon, 1988), scope for selective disclosure emerges when the
probability of being informed is interior, preventing full unraveling.
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tributions and the signal structure, the basic intuition is most apparent within the

simple setup in which the state of the world is either 0 or 1 and S�s signal is binary

and of known precision (call this the binary-binary setting). In this setup, we denote

the commonly known prior beliefs that the state is 1 by �i, i 2 fS;Rg.

With heterogeneous priors, this game has (almost always) a unique pure-strategy

equilibrium that always features some information transmission, as at least one signal

realization is disclosed. Whether full disclosure is feasible however crucially depends

on the prior pro�le. For any signal precision, full disclosure is feasible if �S is close

enough to 1 � �R while for low enough precision, full disclosure is not feasible if

�S is close enough (but not identical) to �R: The pro�le of priors that makes it

easiest to achieve full disclosure thus features similar prior variances and a potentially

large di¤erence in prior means. In such a pro�le, agents�willingness to revise their

stance, and hence the magnitude of their belief adjustments, in the face of con�rming

and contradictory evidence is similar.9 In contrast, given a small di¤erence in prior

variances, a potentially signi�cant di¤erence in prior means (�S � 1 � �R) is better

than almost none (�S � �R).10 The reason is that su¢ ciently di¤erent means ensure

that a player with a higher (lower) mean will be relatively less a¤ected by a higher

(lower) signal, which in turn implies convergence in posterior beliefs whatever signal

is disclosed.

We �nd that if disclosure is partial, the information selectively revealed by S

is biased towards evidence that is congruent with the more con�dent player�s prior

belief. As an illustration, in the binary-binary setting, consider the case in which

the most con�dent player assigns higher probability to state 1. Then, if equilibrium

involves partial disclosure, only 1-signals are shown.11

9This result extends beyond the binary world: In the canonical normal priors - normal signals
setting, full disclosure is possible if and only if prior variances are identical, and full disclosure is the
only equilibrium outcome if and only if prior means furthermore di¤er.
10In the normal-normal setting, when prior variances di¤er, the set of disclosed signals has zero

measure under identical prior means and instead positive measure when prior means di¤er.
11Within the normal-normal setting, consider a situation in which both prior means and variances

di¤er across players. Then, only signals within a bounded interval are disclosed, and this interval is
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We demonstrate in the binary-binary setting that perceived disagreement aversion

generates echo chamber-like dynamics in simple matching scenarios. If receivers are

randomly matched with senders and priors are publicly observed, a more con�dent

receiver is less likely to encounter contradicting information, this probability tend-

ing to zero as his prior variance tends to 0. Allowing for repeated random pairwise

encounters, this leads to inertia in learning dynamics. We then show that con�r-

matory information bias is further strengthened if disagreement averse senders can

choose whom to be matched with, while society exhibits a su¢ ciently high degree

of polarization in priors. Senders, rationally anticipating the nature of equilibrium

disclosure, only interact with receivers whose prior mean is similar to their own (as-

sortative matching). Our equilibrium characterization then implies that in the ex-

clusively like-minded matches that are formed, only information congruent with the

shared bias will be disclosed.

Our theory of perceived disagreement aversion hence o¤ers a putative explanation

of the following two stylized facts. First, many citizens are exposed disproportion-

ately to information that con�rms their worldview (echo chambers). Second, there is

very signi�cant positive assortative matching in communicative behavior on the basis

of worldviews (worldview homophily), partially as a result of the Internet. These

stylized facts are often presented and discussed together.12 Our tentative explanation

of these facts rests on rationality, heterogeneous priors and aversion to (perceived)

closer to the prior mean of the more con�dent player in terms of Hausdor¤ distance.
12See Mutz (2006), p. 9: "Social network studies have long suggested that likes talks to likes; in

other words, people tend to selectively expose themselves to people who do not challenge their view
of the world. Network survey after network survey has shown that people talk more to those who are
like them than to those who are not, and political agreement is no exception to this general pattern."
See also Sunstein (2007), p. 145: "because of self-sorting, people are often reading like-minded
points of view, in a way that can breed greater con�dence, more uniformity within groups, and more
extremism. Note in this regard that shared identities are often salient on the blogosphere, in a way
that makes polarization both more likely and more likely to be large." See also Sunstein (2007), p. 63:
"The phenomenon of group polarization has conspicuous importance for the communications market,
where groups with distinctive identities increasingly engage in within-group discussion. (...) New
technologies, emphatically including the Internet, make it easier for people to surround themselves
(virtually of course) with the opinions of like-minded but otherwise isolated others, and to insulate
themselves from competing views. For this reason alone, they are breeding ground for polarization,
and potentially dangerous for both democracy and social peace."
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disagreement.13

We extend our analysis in various directions.14 First, we adapt our baseline mea-

sure of perceived disagreement, which presumes commonly known priors, to allow for

uncertainty about priors. Within our baseline bilateral disclosure game, (expected)

prior heterogeneity in means continues to be conducive to information transmission,

echoing the results obtained under known priors. Furthermore, we show that uncer-

tainty about priors may actually be bene�cial for information sharing in equilibrium.

In our baseline model of equilibrium disclosure the sender aims at being "politi-

cally correct," in the sense of selectively disclosing only signals that reduce perceived

disagreement. There is an ongoing debate about the value of such self-censorship. In

particular, critics of this view of political correctness often point to the bene�ts of

encouraging people to freely speak their minds. Linking to this debate, we evaluate

the value of commitment to a full disclosure strategy - or, respectively, the hidden

cost of political correctness - and �nd that equilibrium disclosure by a perceived dis-

agreement averse sender induces higher perceived disagreement in expectation than

commitment to a full disclosure strategy if and only if the sender is more con�dent.

Interestingly, equilibrium disclosure might also dominate full disclosure with respect

to expected actual disagreement. To see this, we take the perspective of a third party

who cares about minimizing the expected ex post actual disagreement between S and

R. Then, while it is immediate that full disclosure is the optimal commitment strat-

egy whenever the third party shares the prior of either S or R, this need no longer be

the case when the third party has a di¤erent prior, highlighting once again the role

13An alternative theory explaining these stylized facts is that people talk in order to make the
right decisions (say, match the state) and induce others to do the same. This theory predicts that
more similar worldviews lead to better information transmission but thereby fails to explain why
homogeneity in groups seems to correlate with (con�rmation) biased learning. One might assume
that individuals underestimate the extent to which peer group members�information correlates with
their own, and as a consequence overweight others�information. This theory of so-called correlation
neglect has been explored in Levy and Razin (2015) and Glaeser and Sunstein (2009). The theory
assumes an element of bounded rationality, which is not the case of ours.
14For expository reasons we chose to present these extensions within the binary state - binary

signal model.
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of prior heterogeneity.

Our main analysis exogenously assumes perceived disagreement aversion and de-

rives implications for information transmission. The main results on equilibrium in-

formation transmission hold independently of whether perceived disagreement causes

purely psychological costs or indirectly a¤ects material payo¤s via its e¤ect on deci-

sions in equilibrium of a larger game. As an illustration, we consider simple games

of delegated decision making and competition for authority, in which a disclosure

stage is followed by one or several stages of decision making that generate material

payo¤s for both the sender and the receiver. We show that in equilibrium, in his

quest to in�uence subsequent decision making, the privately informed party acts as

if disagreement averse at the disclosure stage, giving rise to the same dependence of

equilibrium information transmission on prior heterogeneity as in our main (reduced

form) setup.

While our main focus is on the implications of perceived disagreement aversion

for the incentives to share information, it also generates novel insights regarding the

generation of information. To see this we consider a game of costly collective acquisi-

tion of public signals by parties who are (perceived) disagreement averse. Though the

game is strategically di¤erent from our disclosure game, it addresses a similar prob-

lem of learning in (two person) groups with heterogeneous prior beliefs. We �nd that

moderate heterogeneity in prior means optimally incentivizes information acquisition,

which echoes previous �ndings for strategic disclosure.

Literature review In its foundations, our paper relates to a literature studying

how (public) information relates to disagreement in beliefs. The literature so far

focused on actual (instead of perceived) disagreement, trying to explain phenomena

such as polarization, which refers to situations where individuals update in opposite

directions on the basis of the same information. This may result from di¤erent prior

beliefs (Dixit and Weibull, 2007; Acemoglu et al., 2007; Sethi and Yildiz, 2012),

di¤erent privately observed prior signals (Andreoni and Mylovanov, 2012) as well as
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ambiguity (Baliga et al., 2013).15 Under certain conditions, disagreement in beliefs

may persist in the long run, i.e. asymptotically (Acemoglu et al., 2016; Andreoni and

Mylovanov, 2012).16

An extensive body of research dating back to Grossman (1981), Milgrom (1981),

and Milgrom and Roberts (1986) studies strategic disclosure of veri�able signals by

a privately informed sender.17 These models typically involve a di¤erence in players�

preferences over the receiver�s action conditional on the state. Newer papers study

the case of di¤erent prior beliefs, often featuring identical material preferences given

the state, such as Banerjee and Somanathan (2001) and Kartik et al. (2015). While

these papers, thus, share important elements of our analysis, perceived disagreement

does not play a role in shaping equilibrium incentives for disclosure. Relatedly, Che

and Kartik (2009) examine the e¤ect of prior belief misalignment on the sender�s

incentives to privately acquire costly information. Prior misalignment hurts disclosure

but increases information acquisition, so that the receiver may ultimately bene�t

from more misalignment. While potential bene�ts of prior misalignment also feature

prominently in our analysis, this results from a di¤erent mechanism.18 In particular,

when information transmission is driven by perceived disagreement aversion, (some)

prior misalignment encourages disclosure independently of whether information is

given exogenously or acquired at some cost.

A strand of the literature on strategic information transmission features an en-

dogenous preference for belief conformity arising from reputational concerns. Mor-

ris (2001) (see also Sobel, 1985; Benabou and Laroque, 1992; Ely and Välimäki,

15Several papers in network economics consider the e¤ect of individual conformity to the beliefs
or opinions of others on belief polarization (Dandekar et al., 2013; Buechel et al., 2015; Golub and
Jackson, 2012).
16Sethi and Yildiz (2016) focus on the fact that observing others�opinion over time, an observer

learns both about their subjective prior and about their private information concerning some objec-
tive state, thereby triggering non-trivial dynamics in belief updating.
17See in particular also Jung and Kwon (1988) for the baseline model of random disclosure as well

as Shin (1994a,b). See Sobel (2013) for a general review of the literature on strategic information
transmission.
18This is apparent by noting that their result rests on strictly positive costs of information acqui-

sition.
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2003) studies a sender-receiver game with an endogenous reputational concern of the

sender for being perceived as unbiased, which leads to distorted communication.19

In Gentzkow and Shapiro (2006), the sender wishes to signal a high quality of her

information to the receiver who may remain uninformed about the actual state. This

leads her to bias her message towards the receiver�s prior belief.20 Similarly, in our

setup if the sender is less con�dent, she omits signals contradicting the receiver�s

prior. The motivation is however very di¤erent: In our model the sender wants to

mitigate perceived ex post disagreement with the quality of her information being

known. This same objective will as a matter of fact lead the sender to omit signals

that con�rm the receiver�s prior if the latter is less con�dent.

Our study also contributes to the growing body of literature on psychological

game theory, which posits preferences that directly incorporate beliefs (of arbitrary

order) about others� strategies or beliefs (Geanakoplos et al., 1989; Battigalli and

Dufwenberg, 2009). Here, our analysis is related to Ely et al. (2015) who consider the

behavior of a principal wishing the beliefs of an agent to follow a speci�c time path

exhibiting suspense or surprises. While this paper as well as our baseline speci�cation

focus on pure belief-based preferences, several more applied models allow preferences

to depend on the interplay between beliefs and material payo¤s, see, for instance,

the models of reciprocity (Rabin, 1993; Dufwenberg and Kirchsteiger, 2004) or guilt

aversion (Battigalli and Dufwenberg, 2007), as well as the settings in our section 3.3.

Our paper also relates to a rich theoretical and empirical literature in social psy-

19Loury (1994) o¤ers a stimulating discussion of self-censorship and political correctness in public
discourse stemming from such concerns.
20The models in Ottaviani and Sørensen (2006a) and Ottaviani and Sørensen (2006b) embed a

similar setting with ex post veri�able reports, resulting in S�s reporting conforming to his own
prior. Visser and Swank (2007) study deliberative committees whose members want to signal high
expertise. This gives them an incentive to pretend to have similar signals (i.e. to agree) and to decide
against the prior. Within a similar setup Levy (2007) focuses on the impact of transparency rules
on decision making. In a principal-agent setting, Prendergast (1993) examines the agent�s incentive
to match the (noisy) information of the principal in his report. Bursztyn et al. (2017) consider a
setting where a sender has to communicate his type to a receiver and has an incentive to appear
of the same type as the receiver. Bénabou (2012) shows that agents with anticipatory utility may
converge to each other�s wrong beliefs due to the dependence of one�s payo¤s on the actions of the
others.
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chology on biases in network formation, communication and norm adoption, dating

back to the 1950s, 1960s and 1970s (see Newcomb, 1961; Homans, 1961; Asch, 1955;

Lazarsfeld and Merton, 1954; Festinger, 1950; Rosenberg, 1954; Huston and Levinger,

1978; Go¤man, 1959). Finally, our paper also links to a research agenda in political

economy and political theory on deliberative and so-called epistemic democracy (see

Estlund, 2009; Landemore and Elster, 2012; Sunstein, 2007; Mutz, 2006; Huckfeldt

et al., 2004; Feddersen and Pesendorfer, 1998; Coughlan, 2000; Austen-Smith and

Feddersen, 2006) originating in Condorcet�s seminal work on majority voting. The

agenda evaluates democratic institutions and practices in terms of their ability to ag-

gregate information (their so-called truth-tracking properties), which ultimately rests

on citizens� incentive or ability to use their private information as well as share it

with each other.

The remainder of the paper is organized as follows. Section 2 presents the bench-

mark model and the main theoretical results. Section 3 considers extensions of the

model and possible microfoundations. Section 4 concludes. All proofs, unless explic-

itly stated otherwise, are relegated to the online Technical Appendix.

2 Main analysis

2.1 The disclosure game

There are two agents - the sender (S, he) and the receiver (R, she) and a state of Na-

ture ! 2 f0; 1g : Player i 2 S;R assigns prior probability �i 2 (0; 1) to ! = 1. Priors

are common knowledge.21 S holds with probability ' 2 (0; 1) a privately observed

informative signal which has a value of either 0 or 1. Thus, S holds information

� 2 f0; 1;?g, where ? stands for no signal. If S obtains a signal, it is identical to

the state with probability p 2
�
1
2
; 1
�
; i.e. P (� = !) = p for � 6= ?. If S obtains a

signal, he can disclose it to R or not. Denote S�s disclosed information by d, where

21We consider the case of privately known priors in section 2.5.
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d 2 f0; 1;?g and where ? stands for no disclosure. R simply observes S�s signal if

disclosed and subsequently updates beliefs. Let e�S(�) and e�R(d) denote the posterior
probability assigned by S and R, respectively, to ! = 1 given obtained information

(� or d) and respective priors �S and �R.

After the disclosure stage, R evaluates how much S�s expected posterior belief is

di¤erent from her own. In particular, R�s perceived disagreement is

�(d; �S; �R) = jER[ES[!j�; �S] jd ]� ER[!jd; �R]j

=
���ER[e�S(�) jd ]� e�R(d)��� : (1)

The expression �(d; �S; �R) captures the extent to which R thinks that S beliefs are

ex ante biased in a speci�c direction relative to her own, conditional on disclosure

d.22

S is averse to perceived disagreement on the part of R; i.e. wants to minimize R�s

ex post perception of disagreement. Hence, S�s utility function for given priors �S

and �R is given as

US(�S; �R; d) = ��(d; �S; �R): (2)

In other words, S�s utility is maximized if R thinks that S holds the same posterior

belief as she. Note also that S�s actual posterior belief does not enter S�s utility

function. R�s preferences are left unspeci�ed, this player being entirely passive.

Our equilibrium concept throughout is Perfect Bayesian equilibrium: Players�

strategies are sequentially rational given their beliefs and others�equilibrium strate-

gies. Second, beliefs are derived via Bayes�rule whenever possible.

A disclosure strategy of S speci�es a probability of disclosing at each information

set of S, and a disclosure strategy is informative if S discloses with positive ex ante

probability. The three informative and pure disclosure strategies are respectively full

22Note that the values of ER[e�S(�) j? ] and e�R(d) depend on the assumed disclosure strategy of S;
whereas �(1; �S ; �R) and �(0; �S ; �R) do not. To avoid any ambiguities, we often explicitly write
�X(d; �S ; �R); where X is the putative equilibrium disclosure strategy of S. In the Appendix, we

similarly introduce EXR [e�S(�) j? ] and e�XR (?):
12



disclosure (called FD), disclosure of only 1-signals or only 0-signals (called D1 and

D0, respectively). We denote by ND the strategy of never disclosing. An equilibrium

featuring disclosure strategy X 2 fFD;D1; D0; NDg is called an X-equilibrium.

An equilibrium featuring an informative disclosure strategy is called informative. If

�i > (<)
1
2
; we say that i�s prior is biased towards state 1 (0). If �i >

1
2
; a 1-signal is

congruent with i�s prior bias and a 0-signal contradicts it (vice versa if �i <
1
2
). If �i

is strictly closer to the boundary than �j, then i is said to be more con�dent than j

(or i holds a more con�dent prior than j).

2.2 Equilibrium characterization

As our next proposition shows, S�s optimal disclosure strategy depends on the relation

between players� prior beliefs, i.e. on the position of �S relative to the following

thresholds:

��S(�R; p) =
(1� p)(1� �R)
1� p+ �R(2p� 1)

;

���S (�R; p) =
p(1� �R)

�R + p(1� 2�R)
:

The above two functions have the following properties. For �R 2 (0; 1) and

p 2
�
1
2
; 1
�
, it always holds that 0 � ��S(�R; p) < ���S (�R; p) � 1. Also, ��S(�R; p) is

decreasing in p while ���S (�R; p) is increasing in p. Finally, �
�
S(�R;

1
2
) = ��S(�R;

1
2
) =

1��R while ��S(�R; 1) = 0 and ���S (�R; 1) = 1: As we shall see, for any given �R these

two functions divide the parameter space into three regions, each of which features a

unique equilibrium prediction.

Proposition 1 1. If �S = �R; then any disclosure strategy of S is an equilibrium

disclosure strategy.

2. Given �S 6= �R :

a) There exists no ND-equilibrium.

b) The D0-equilibrium exists if and only if �S 2 (0; ��S(�R; p)].
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Figure 1: Equilibrium characterization in the baseline model.

c) The FD-equilibrium exists if and only if �S 2 [��S(�R; p); ���S (�R; p)].

d) The D1-equilibrium exists if and only if �S 2 [���S (�R; p); 1):

e) Equilibria in mixed disclosure strategies exist if and only if

�S 2 f��S(�R; p); ���S (�R; p)g:

Figure 1 provides an illustration of our characterization for �R = 0:3: The thick

curves correspond to ��S(0:3; p) and �
��
S (0:3; p). Strictly between the two thick curves

(in the gray area), only the FD-equilibrium exists. Instead, strictly above (below)

of the upward (downward) sloping thick curve, only the D1 (D0) equilibrium exists.

Finally, for �S = �R; the FD-, D0-, D1- and ND-equilibria exist for any p � 1
2
. Note

that ' does not a¤ect the parameter values for which the di¤erent types of equilibrium

exist, and it is thus left unspeci�ed for this �gure.

Proposition 1 leads to the following corollary.

Corollary 1 a) If �S is su¢ ciently close to 1��R; then FD is the unique equilibrium.

b) Given p < max
n

(1��R)2
(1��R)2+(�R)2

; (�R)
2

(1��R)2+(�R)2

o
and �R 6= 1=2, if �S is su¢ ciently

close (but not equal to) �R, then FD is not an equilibrium.

c) For given �i, the set of �j for which FD exists is increasing in p. It is (0; 1) if

p = 1.

14



d) If equilibrium features partial disclosure of the D0 or D1 type, the signal that

is disclosed is the one that is congruent with the bias of the more con�dent player.

Summarizing, our characterization exhibits the following key properties:

1. Except under knife-edge conditions, there is a unique equilibrium.

2. Unless �S = �R; there exists no ND-equilibrium. The reason is that for any p

and �S 6= �R; the disclosure of at least one type of signal (either 0 or 1) leads

to a strict decrease in disagreement with respect to prior disagreement. This

follows from the statistical property that (in this binary setup) from S�s ex ante

perspective an informative signal always reduces disagreement by moving R�s

belief towards his own prior in expectation.

3. Full disclosure is not always feasible. The intuition comes from contemplating

the fact that belief updating has two dimensions: Direction and intensity. In

our setup, players both update in the same direction after any signal (no po-

larization), but they update with di¤erent intensities. In Figure 2 below, the

thin continuous curve shows e�i(1) as a function of �i for p = 0:85 and the thick
curve plots e�i(1) � �i; which is single peaked and concave in �i: We see that
very con�dent types update very little no matter the signal, while maximum

updating arises for a prior moderately biased against the observed signal. Dis-

agreement will increase after a signal if the player assigning the largest prior

probability to the state indicated by the signal is also the player who updates

the most. A 1-signal, for example, will increase disagreement if �i < �j and �j

shifts upward more than �i:

4. Point a) of Corollary 1 states that for any p, FD is possible if �S is close enough

to 1 � �R: Such S-prior can have a very di¤erent mean than R�s prior but it

has the same variance (i.e. exhibits the same con�dence). A technical intuition

is as follows. As noted above, for any �S; �R; p at least one signal (0 or 1)
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Figure 2: Intensity of belief updating given a 1-signal as a function of �i:

strictly decreases disagreement with respect to the status quo. Next, note that

if �S = 1� �R, both signals yields the same posterior disagreement, i.e.

e�S(1)� e�R(1) = e�S(0)� e�R(0):
Since at least one signal strictly reduces disagreement, the other must achieve

the same. Hence, FD is achievable for any p for �S = 1��R.23 A more concrete

intuition (see Figure 2) is that when priors are symmetric around 1
2
; the prior

with the highest (lowest) prior mean moves strictly less than the other prior

after a 1-signal (0-signal). Thus the di¤erence in posterior means is always

smaller than the di¤erence in prior means.

5. Point b) of Corollary 1 states that for p low enough, FD is impossible if �S

is close enough (but not identical) to �R. Note that prior variances are very

similar if either prior means are approximately symmetric around 1
2
, or if these

are approximately identical. Yet, full disclosure is signi�cantly less robust in

the latter case. The result shows that prior variances are not the only factor

a¤ecting disclosure and that prior means also play an important role. For an

23Note furthermore that updating prior ��S with a 1-signal or instead �
��
S with a 0-signal yields

1� �R.
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intuition, let both priors be strongly biased towards 0 and very close to each

other. Given that e�i(1) � �i is single peaked in �i (see Figure 2), we see that
after a 1-signal the player with the highest prior updates more intensely. In

consequence, the spread between beliefs will increase after this signal.

6. Point c) of Corollary 1 means that a su¢ ciently precise signal allows for full

disclosure. For an intuition, note that in the limit case of p = 1 any signal

trivially reduces disagreement to 0. Low signal quality thus triggers two types

of costs for R; exogenous and endogenous (i.e. strategic). The �rst is the lower

informativeness of S�s signals and the second is the lower informativeness of S�s

disclosure strategy.

7. For the intuition behind Point d) of Corollary 1, consider the case where the

two players have opposite prior biases and let the most con�dent player be very

con�dent and the other player�s prior be close to 1
2
. The �rst player updates

very little no matter the signal, so that her posterior is virtually identical to

her prior no matter the signal observed. The moderate player instead updates

signi�cantly. Now, note that a signal congruent with (in contradiction with) the

con�dent player�s bias moves the belief of the moderate player closer to (away

from) the con�dent player�s prior.

2.3 Matching

2.3.1 Non-selective matching

Within a simple randommatching setup, Point d) of Corollary 1 naturally implies that

the more R�s prior is biased towards a given state, the less likely she is to be exposed

to information contradicting her prior. Assume that a given receiver eR, whose prior
� eR is publicly observed, is randomly matched with a perceived disagreement averse
sender whose publicly observed prior is drawn from the uniform distribution on [0; 1].
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Given �S; � eR and p; the standard disclosure game ensues. We call this game non-
selective matching.

The following result characterizes the con�rmatory bias arising under non-selective

matching.

Remark 1 For any !; p; under non-selective matching, the ex ante probability thateR observes a 0-signal (1-signal) is decreasing (increasing) in � eR:
For instance, consider the case of a 0-signal. By Proposition 1 the ex ante proba-

bility that eR is exposed to a 0-signal is the probability that S�s signal is 0 and that
�S is such that the equilibrium is D0 or FD. This equals

Pr[� = 0 j! ] Pr[�S < ���S (� eR; p)] = Pr[� = 0 j! ]���S (� eR; p);
which is strictly decreasing in � eR.
Within a dynamic version of the above non-selective matching scenario whereeR repeatedly plays the same one-shot disclosure game against short-sighted senders

(i.e. who do not update from observing eR�s period-t prior), perceived disagreement
aversion on the part of senders thus slows down eR�s learning of the true state (i.e.
causes inertia in beliefs) if the state is not congruent with eR�s extreme prior bias.
Note that eR�s learning is only slowed down as opposed to entirely impeded, as eR
acknowledges that no disclosure by S does not necessarily imply that he holds no

information.

2.3.2 Selective matching

In reality, individuals often choose their conversation partners and we now explore

this possibility within the context of our model. We �nd that selective matching

further increases the prospect of echo chambers: Individuals select matching partners

with similar priors, which in turn induces partial and con�rmatory disclosure.

We de�ne the game of selective matching as follows. Suppose a large population

of senders and receivers, all senders being (perceived) disagreement averse. As before,
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senders and receivers are randomly matched and observe each others�priors. Yet, in

contrast to non-selective matching, a match becomes active if and only if the sender

accepts it. We focus on the sender�s payo¤s. If the match does not become active,

the sender obtains a payo¤ of 0, which represents his outside option. If the match

becomes active, the standard disclosure game introduced in section 2.1 ensues and

the sender�s �nal payo¤ equalsW > 0 minus the ex post perceived disagreement after

the disclosure stage. The interpretation of the payo¤s is that psychological payo¤s

only arise once a sender explicitly decides to become involved in conversation. For

simplicity, assume that the sender�s match acceptance decision is made before his

information is realized.

Let ES[�j�S; �R] denote the sender�s ex ante expectation of the receiver�s ex post

perceived disagreement given �S; �R conditional on the match becoming active.
24 It

follows that S will accept a match with R if and only if

W � ES[�j�S; �R]: (3)

Furthermore, ES[�j�S; �R] satis�es the following description.

Proposition 2 ES[�j�S; �R] is continuous and V-shaped with respect to �R, and it

reaches its minimum of 0 at �R = �S.

Figure 3 illustrates the above proposition. We assume p = 0:9, ' = 0:6, �S = 0:7.

The thick curve shows ES[�j�S; �R] as a function of �R. For W = 0:1 (represented

by the horizontal dotted line), only values of �R situated between �R1 and �R2 satisfy

(3). This is formalized in the following corollary.

Corollary 2 Given W; p, there are thresholds �
R
< �S < �R such that S accepts a

match with R if and only if �R 2
h
�
R
; �R

i
, where lim

W!0
f�

R
; �Rg = �S:

24Note that ES [�j�S ; �R] is uniquely de�ned. In particular, if X and X 0 are two equilibrium
disclosure rules given �S ; �R; then ES [�

X j�S ; �R] = ES [�
X0 j�S ; �R] (as is shown in the proof of

Proposition 2). Recall furthermore that by Proposition 1 there is a unique equilibrium disclosure
rule except under knife-edge conditions.
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Figure 3: Perceived disagreement expected by S in equilibrium as a function of �R:

The above corollary states that the only matches that become active are those

involving players whose priors are su¢ ciently similar.

Proposition 1 and this corollary imply that the prospect of con�rmatory infor-

mation bias is strengthened under selective matching in societies that are su¢ ciently

polarized. To see this, consider the following scenario. Priors belong either to
�
0; �
�

or
�
�; 1
�
; where � < 1

2
< � = 1 � � and the conditional distribution of priors on

each of the two intervals is uniform. Call this society
�
�; �

�
: We consider through-

out a receiver eR with � eR > � (i.e. biased towards 1) and compare outcomes under
respectively non-selective and selective matching.

Remark 2 Consider a society
�
�; �

�
: Let � >

p�
p
p(1�p)

2p�1 and � eR � �: Given !; for
W small enough eR observes a 0-signal with probability weakly larger than 1

2

�
1�� eR
�

�
P [� =

0 j! ] under non-selective matching and instead with probability zero under selective

matching.

Under non-selective matching, with a probability bounded below by 1
2

�
1�� eR
�

�
,eR�s match is such that the implied equilibrium is either FD or D0. To see this, note

�rst that eR is matched half of the time with a sender satisfying �S 2 (0; �). Second,
conditional on �S 2 (0; �) the probability that �S � 1 � � eR (yielding FD or D0 by
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Corollary 1) is 1�� eR
�
. As long as � eR is not extremely high, there is thus a signi�cant

probability, weakly larger than P [� = 0 j! ]1
2

�
1�� eR
�

�
, that eR encounters a 0-signal.

Selective matching yields a very di¤erent picture. For W very small, by Corollary

2 a sender S will accept a match with a receiver R if and only if �R � �S: As a result,

any active match in which eR (recall � eR > �) participates will involve an S satisfying
�S > �. If furthermore � >

1
2p�1

�
p�

p
p (1� p)

�
; it holds true that � > ���S (� eR; p)

so that by transitivity, any active match involving eR satis�es �S > ���S (� eR; p) and
thus yields the D1 equilibrium by Proposition 1. Hence, eR never observes a 0-signal
no matter the state. Finally, note that 1

2p�1

�
p�

p
p (1� p)

�
is increasing in p and

not very large as long as p is not very high (for p = 3
4
it equals 0:634); which shows

that weak societal polarization su¢ ces to create strong echo chamber dynamics under

selective matching.

2.4 The hidden cost of political correctness

Can S�s attempt to minimize perceived disagreement be counter-productive from an

ex ante perspective, thereby revealing a hidden cost of political correctness (relative

to a hypothetical case of full transparency)? We address this question in two di¤erent

ways: �rst, from S�s own perspective in terms of perceived disagreement, and then

from the perspective of a third party (e.g., a social planner) who cares about actual

disagreement (i.e. would like to reduce social polarization).

First, from S�s ex ante perspective, can the expected value of ex post perceived

disagreement be higher in a (partial disclosure) equilibrium than it would be under

(non-equilibrium) full disclosure? In such a case, S would prefer to commit to full

disclosure if he could. This question is answered in the next proposition.

Proposition 3 1. Let parameters be such that D1 is the unique equilibrium. If

�S > �R; then S ex ante strictly prefers full disclosure over the D1-equilibrium. Vice

versa if �S < �R.
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2. Let parameters be such that D0 is the unique equilibrium. If �S < �R; then S

ex ante strictly prefers full disclosure over the D0-equilibrium. Vice versa if �S > �R.

In a partial disclosure equilibrium, S would thus ex ante prefer to instead commit

to full disclosure if and only if he is the most con�dent player, which always holds true

in D1 (D0) when �S > �R (�S < �R). The intuition is as follows. In a partial dis-

closure equilibrium, e.g. D0, the omission of 1-signals has two countervailing e¤ects.

The upside is that S bene�ts from hiding a 1-signal once he holds it. The down-

side is that when S holds no signal, R interprets silence as a possible concealment

of a 1-signal, which increases perceived disagreement relative to prior disagreement.

The negative e¤ect of equilibrium concealment overweighs its positive e¤ect if S is

the most con�dent party. Recall that in this case, S omits signals contradicting his

bias in a partial disclosure equilibrium (see Corollary 1.d). But R places a higher

weight on the state corresponding to the omitted signal that S does, which leads R

to overweight (in S�s eyes) the probability that such a signal is held (and omitted) by

S, thereby in�ating perceived disagreement after no disclosure. Instead, under full

disclosure, R�s prior does not a¤ect her ex post perception of S�s posterior (which is

always common knowledge).

A second key question is whether from the ex ante perspective of a third party

(TP) endowed with a prior b�, the expected value of ex post actual disagreement
can be higher in equilibrium than it would be under FD. I.e. would TP prefer a

truthful sender or a perceived disagreement averse sender if aiming at minimizing

the expected ex post actual disagreement? Note that actual disagreement is di¤erent

from perceived disagreement. The actual disagreement given that S holds signal � and

discloses d is
���e�S(�)� e�R(d)���, where e�R(d) is pinned down by R�s beliefs concerning

S�s disclosure rule. In what follows, if �i < b� < �j; we say that S and R�s priors are
on di¤erent sides of b�:
Proposition 4 Let parameters be such that there exists no FD-equilibrium. In the

eyes of a third party with prior b� the expected actual disagreement:
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1. is strictly larger in equilibrium than under FD if at least one of the following

conditions holds:

a) S�s and R�s priors are on di¤erent sides of b�;
b) R�s prior is further away from b� than is S�s prior.
2. is strictly smaller in equilibrium than under FD if the following two conditions

hold simultaneously:

a) S�s and R�s priors are either both strictly smaller or both strictly larger thanb�;
b) S�s prior is further away from b� than R�s prior and is su¢ ciently close to the

boundary.

Part 1 of the proposition �nds that equilibrium information omission can indeed

be counterproductive while Part 2 identi�es conditions under which it is helpful. A

general intuition behind our results is that TP expects new information to lead S�s

and R�s beliefs to converge to her prior. The disclosure strategy of S a¤ects only the

speed of convergence of R�s beliefs, as S�s actual posterior beliefs are independent of

his disclosure strategy.

In Point 1.a), S�s and R�s priors are on di¤erent sides of b�: Here, given that S�s
and R�s beliefs move closer to b� in expectation, they must also be moving closer to
each other. Hence TP would prefer that both S and R learn as fast as possible and

would thus prefer FD over partial disclosure. The second case in Point 1 is when

�S and �R are on the same side of b�, but R is further away. An instance of this is
the case of b� < �S < �R. Again TP expects S and R to converge to her prior b�,
i.e. to both decrease. R will move towards S (since R�s prior decreases) but S will

simultaneously move away from R (since S�s prior also decreases). In consequence,

TP would prefer to speed up R�s convergence by giving her full information.

Point 2 describes the case when �S and �R are on the same side of b�, but S is
further away from b� and is close to the boundary. An instance of this is the case ofb� < �R < �S � 1. Here, both players�beliefs decrease. But decreasing R�s belief
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moves it away from S�s. So TP would prefer to slow down R�s learning and thus

would choose partial disclosure.

2.5 Strangers�talk

Conversations often take place between parties who do not exactly know each others�

priors but who might hold some relevant information concerning these priors (for

example, by observing each other�s accent, dressing style, profession, social networks).

We now characterize equilibrium outcomes for a set of stylized scenarios featuring

privately known priors.

Technically, since the measure of disagreement (1) is de�ned for given priors, the

expected disagreement perceived by R under unknown �S, given disclosure d, is

ER;f�Sg[�(d; �S; �R)] = ER;f�Sg

h���ER;f�g[e�S(�) jd ]� e�R(d)���i ;
where Ei;fzg stands for an expectation over di¤erent possible realized values of the

random variable z, as computed by i: Note that R takes the expectations sequen-

tially: �rst, over all possible signal realizations to compute her second-order belief for

given �S, and only then over all possible realizations of �S to compute the expected

disagreement. In other words, she treats di¤erent cases of �S as separate instances of

disagreement. For example, an uninformed receiver with prior equal to 0:5 would not

consider a sender with the same prior as disagreeing with her if S is known to hold

either a 0- or a 1-signal (with 50% chance each), yet would treat their disagreement

as having a positive value in case if S is known to hold the prior belief of either 0 or 1.

Besides being more tractable, this approach re�ects the intuition that disagreement

caused by di¤erent priors is essentially more severe than the one caused by di¤erent

private signals. Indeed, while the latter type of disagreement can generally be resolved

by information exchange (Aumann, 1976), the disagreement caused by di¤erent prior

beliefs cannot, since it is driven by a di¤erence in initial worldviews which are beyond

discussion.
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In turn, the expected utility of S under privately known priors becomes

�ES;f�Rg[ER;f�Sg[�(d; �S; �R)]] = �ES;f�RgER;f�Sg
h���ER;f�g[e�S(�) jd ]� e�R(d)���i :

These preferences give rise to the following equilibrium characterization.

Proposition 5 Let priors be privately observed and drawn from publicly known dis-

tributions GS and GR, endowed with respective probability density functions gS and

gR:

a) If gS and gR are both symmetric around 1=2, then there exists an FD-equilibrium.

b) If gS and gR are s.t. gS(x) = gR(1 � x) for all x 2 [0; 1] (i.e. they are

symmetric w.r.t. each other around 1
2
) and gS(x)

gR(x)
is monotone in x, then there exists

an FD-equilibrium.

c) If gS and gR are identical and su¢ ciently skewed to the right (left), then there

exists a D1 (D0) equilibrium, but no FD and D0 (D1) equilibrium.

d) If S�s prior is commonly known and su¢ ciently close to 1=2 while gR is sym-

metric around 1=2, then there exists an FD-equilibrium.

Point a) shows that two-sided uncertainty about priors is bene�cial to disclosure

if none of the two players is a priori biased in one or the other direction. If this

condition is satis�ed, this provides an argument for not encouraging revelation of

information about respective biases (e.g., disclosing one�s own prior political stance

in a conversation). For an intuition, note that if gS and gR are both symmetric around

1=2, in a putative FD-equilibrium the payo¤ from disclosing is the same no matter

the signal held by S. Since it is impossible that both signals increase disagreement

under FD (i.e. that an informative experiment increases expected disagreement from

the ex ante perspective), this implies that both should at worst leave disagreement

unchanged. Full disclosure is thus incentive compatible for S.

Point b) shows that if players are both a priori biased in di¤erent directions but

in an equivalent (i.e. mirror-image like) fashion, then an FD-equilibrium exists. This
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Figure 4: Equilibrium characterization under uncertainty about priors.

contrasts with point c), which states that FD may be infeasible if both priors are

drawn from the same biased distribution. The �ndings of Points b) and c) echo

Proposition 1, which highlights the bene�t of diversity. For example, for p = 0:7, if

�S and �R are both distributed according to the same truncated normal distribution

with mean 3=4 and standard deviation � = 0:3, the only (pure strategy) equilibrium is

D1. The FD-equilibrium instead exists if the distribution of �R stays the same while

the distribution of �S is re�ected around 1=2, i.e. changed to a truncated normal with

mean 1=4 and standard deviation � = 0:3. Figure 4 provides examples of pro�les of

distributions of prior beliefs, complemented by a description (in bold) of the implied

equilibrium disclosure.

Finally, Point d) shows that two-sided uncertainty is not strictly necessary to

ensure FD. The latter is feasible if S�s prior is known and close to 1
2
while R�s prior

is symmetrically distributed around 1
2
.

Note that all results in Proposition 5 hold in approximation, i.e. as one density

function (uniformly) converges to the other density, or instead to the symmetric

re�ection around 1
2
of the other density.25

25A formal proof is available upon request.
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3 Extensions

In what follows, we consider a set of key extensions of our main setup. We �rst

consider a general information structure with continuous signals satisfying the mar-

ginal likelihood ratio property (MLRP), while maintaining the assumption of a binary

state. In the second subsection, we assume a continuous state space, considering a

Normal priors-Normal signals setup. The third subsection �nds that perceived dis-

agreement aversion arises endogenously in a variety of simple dynamic games. In our

�nal subsection, we consider disagreement aversion within a game of costly collective

acquisition of public signals.

3.1 Binary state and continuous signals

We now show that our equilibrium characterization in the baseline setting carries

over qualitatively to the case of an information structure with continuous signals

satisfying MLRP. Assume that S�s signal s is drawn from an interval [s; s]. Given state

! 2 f0; 1g, s is distributed according to F (sj!) with continuous and di¤erentiable

density f(sj!). Assume that d
ds
f(sj1)
f(sj0) > 0 (MLRP), meaning that a higher signal

implies a higher conditional probability of state 1. Upon learning s, the updated

belief of i is

e�i(s) = �if(sj1)
�if(sj1) + (1� �i) f(sj0)

=
�i

�i + (1� �i)
f(sj0)
f(sj1)

;

which is increasing in s. Assume furthermore that the extreme signals s (s) are

such that lims!s
f(sj1)
f(sj0) = 0 and lims!�s

f(sj1)
f(sj0) = 1. Each of these two extreme signal

realizations makes the observer (almost) sure that the state is 0 or 1, respectively.

Note that there exists a threshold signal ~s 2 (s; s) such that whatever �i 2 (0; 1); it

holds true that e�i(s) R �i for s R ~s. Signal ~s satis�es f(sj0) = f(sj1) and we call it
the uninformative signal. We say that signal s > (<)~s indicates state 1 (0). We say

that signal s > (<)~s is congruent with j�s prior bias if �j > (<)
1
2
. We call the above

27



setup the binary state-continuous signals environment. We call simple disclosure

equilibrium (SD equilibrium) an equilibrium featuring two thresholds s < s1 < s2 < s

such that S discloses s if and only if s � s1 or s � s2. As with the binary signals

environment, we call full disclosure (FD) an equilibrium where S discloses all signals.

We obtain the following equilibrium characterization.

Proposition 6 1. If �S 2 f�R; 1� �Rg then there exists an FD-equilibrium. If �S =2

f�R; 1� �Rg ; then the unique equilibrium is an SD equilibrium.

2. In equilibrium, all signals congruent with the bias of the more con�dent player

are disclosed. Signals contradicting the bias of the more con�dent player are partially

disclosed.

The fundamental qualitative features of equilibrium echo those arising under bi-

nary signals. Except under knife-edged conditions, the equilibrium is unique. Only

signals that are congruent with the prior of the more con�dent player are fully re-

vealed. Furthermore, if �S = 1 � �R, a full disclosure equilibrium exists, implying

that increasing prior misalignment can be helpful.

We now reexamine the issue of the hidden cost of political correctness already

studied for the case of binary signals. Our original results (Propositions 2 and 3)

carry over essentially identically to the continuous signals setup.

Proposition 7 1. Let parameters be such that in the unique equilibrium, the non-

disclosure interval contains signals indicating state 0. If �S > �R; then S ex ante

strictly prefers full disclosure over the SD equilibrium. Vice versa if �S < �R.

2. Let parameters be such that in the unique equilibrium, the non-disclosure inter-

val contains signals indicating state 1. If �S < �R; then S ex ante strictly prefers full

disclosure over the D0-equilibrium. Vice versa if �S > �R.

Proposition 8 All the statements in Proposition 4 apply.
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3.2 Continuous state space and continuous signals

Assume that the state space is <. S and R�s commonly known priors are normal

and given by respectively N(�S; 
2
S) and N(�R; 

2
R). S is known to hold a signal

with probability ' 2 (0; 1) : Given realized state !, S�s signal equals ! + "; where

" � N(0; "), this being commonly known.
26 We denote signal realizations by �.

Note the standard result that

Ei [! j� ] =
�i

1
2i
+ � 1

2"
1
2i
+ 1

2"

:

We provide an equilibrium characterization for the same one-shot disclosure game.

S, if he holds a signal, is free to either disclose it or omit it. We say that a signal

� increases (decreases) disagreement if and only if �(�) > (<) j�S � �Rj ; i.e. if

the distance between posterior means conditional on � is larger (smaller) than that

between prior means: We say that player i is more con�dent than j if and only if

the variance of i�s prior belief is smaller, i.e. i < j. This is analogous to our

previous de�nition of con�dence for the binary state case, which also implies that a

more con�dent player has a smaller variance of prior beliefs.27

We obtain the following equilibrium characterization.

Proposition 9 1. Let 2S = 2R: If �S = �R; then any signal leaves disagreement

equal to the (zero) prior disagreement and any disclosure rule is an equilibrium dis-

closure rule. If �S 6= �R, then any signal strictly decreases disagreement and the only

equilibrium is FD.

2. Let S 6= R and �S = �R. Any signal other than � = � strictly increases

disagreement and there exists no equilibrium in which any signal other than � is

disclosed. In any equilibrium, S discloses with ex ante probability zero.
26A previous version of this paper contains an analysis of the case where priors are beta distribu-

tions and signals are drawn according to a state-dependent binomial distribution. Results (available
upon request) echo those obtained in the binary and normal environments, in that they highlight
the central role of di¤erences in prior variances.
27In the binary state case, the variance of prior beliefs of player i is given by �i(1� �i), which is

strictly decreasing in the distance of �i from 1=2.
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3. Let S 6= R and �S 6= �R:

a) Any equilibrium features a �nite � > 0 such that S discloses his signal if and

only if � 2 I = [e� � �; e� + �], where
e� = �S(

2
R + 

2
")� �R(2S + 2")
2R � 2S

:

b) In any equilibrium, the interval of disclosed signals is closer to the prior mean of

the more con�dent player in terms of Hausdor¤ distance. In particular, e� =2 (�S; �R)
and e� is strictly closer to the prior mean of the more con�dent player.
Point 1 states that if both priors have the same variance, then all signals weakly

reduce disagreement, resulting in existence of the FD-equilibrium.28 This is analogous

to the binary state case, where FD exists when players are equally con�dent as they

have identical prior variances (i.e. �S = �R or �S = 1� �R). Note that if and only if

�S 6= �R; all signals strictly reduce disagreement and FD is the unique equilibrium,

which indicates a positive role of di¤erences in prior means, as in the binary case.

Points 2 and 3 consider the case of di¤erent prior variances. Point 2 assumes

S 6= R and �S = �R = �: Here, any signal � 6= � strictly increases disagreement,

as posterior means always di¤er after disclosure. For any � 6= �, the posterior mean

of the more con�dent player is closer to � than that of the other player, as a lower

prior variance causes higher inertia in belief updating. In equilibrium, S always

conceals � 6= � and thereby induces a perceived disagreement of 0. In consequence,

S essentially never discloses (i.e. with ex ante probability 0).

Point 3.a states that given S 6= R and �S 6= �R, equilibrium communication fea-

tures a non-degenerate interval of signals that are disclosed. A di¤erence in means,

conditional on di¤erent (though potentially arbitrary close) variances, thus improves

disclosure in comparison to the case of identical means. This echoes our �nding for

the binary model (cf. Corollary 1, points a) and b)). Qualitatively, the equilib-

28The result that all signals reduce disagreement under i = j in the normal-learning setup has
also been shown in Che and Kartik (2009).
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rium exhibits the "opinion corridor" property. Only evidence that belongs to some

predetermined interval I is disclosed. Again, the underlying mechanism is that the

di¤erence in belief inertias implies that su¢ ciently high and su¢ ciently low signals

increase disagreement. Finally, Point 3.b is reminiscent of Corollary 1.d, obtained in

the binary setting. The set of disclosed signals is biased towards the prior mean of the

more con�dent player. Concluding, our main qualitative insights from the analysis of

the discrete state space carry over to this continuous state space setup.

3.3 Instrumental disagreement aversion

Aversion to perceived disagreement on the part of a privately informed party might

stem from the fact that it adversely a¤ects subsequent interaction with the unin-

formed party. We here consider simple dynamic games in which the informed party

(S) may disclose her private information in stage 1 to some another party (R), while

in subsequent stages players make decisions which are payo¤-relevant to both S and

R and which depend on players��rst- and second-order beliefs. In contrast to the

previous analysis, S is not assumed to be intrinsically disagreement averse. We con-

sider two setups matching this description in what follows and �nd that in both, S

is de facto averse to perceived disagreement at the initial disclosure stage and acts

accordingly. This endogenous preference in turn leads to the informational biases

characterized previously. In all setups considered, the underlying environment is as

in the main section. The state space is f0; 1g ; priors are commonly known and S is

known to hold a binary signal of precision p with probability ':

3.3.1 Delegated decision making

An uninformed principal (R) faces a potentially informed agent (S), both being risk

neutral. The principal faces a technical problem and there are two potential ap-

proaches (0 and 1) for tackling it. One and only one of these actually solves the

problem, but its identity is a priori unknown. We call the good approach (either 0
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or 1) the state. With probability ', the agent holds information concerning the state

in the form of a binary signal of precision p. If the problem is tackled, this yields a

payo¤ of 1 + � to the principal, where � 2 [0; 1]. If not, the principal�s payo¤ is 0.

The commonly known prior probability attached by i 2 S;R to state 1 is denoted

�i 2 (0; 1):

The game has two stages. Stage 1 is the disclosure game studied in the main

section. In stage 2, after observing S�s disclosure, R decides whether or not to attempt

to tackle the problem by hiring S. If S is not hired, the problem remains untackled

and R thus simply obtains a payo¤ of 0. If S is hired, the contract proposed by R

speci�es a reward of 1 if and only if the agent tackles the problem successfully (this

outcome being observable). By hiring S; R incurs a privately observed and random

(transaction) cost c, which is drawn from a uniform distribution on [0; 1]. Let I(k) be

an indicator function, where outcome k = 1(0) indicates success (failure), I(1) = 1

and I(0) = 0. Conditional on S being hired, outcome k 2 f0; 1g being secured and

the transaction cost being c, the payo¤ of R is thus I(k)� � c:

If hired, S has in total a unit of work time available and decides freely how much

time to dedicate to each approach. S incurs a cost �1
2
e2z of working ez units of

time on project z 2 f1; 2g. The good approach is successful with probability e if e

units of time are dedicated to it. The bad approach leads to failure for sure. Thus,

conditional on hiring, e¤orts e0 and e1 and outcome k 2 f0; 1g, the payo¤ obtained

by S is I(k)� 1
2
e20 � 1

2
e21. If S is not hired, her payo¤ is 0.

An equilibrium featuring the full disclosure strategy in stage 1 is called an FD-

equilibrium. We refer to the disclosure game studied in the main section of the paper

as the simple disclosure game. We obtain the following result.

Proposition 10 For X 2 fFD;D0; D1g; there exists an X-equilibrium if and only

if there exists an X-equilibrium in the simple disclosure game.

We prove the statement in what follows, proceeding by backward induction. We

�rst consider the optimal action choice of the agent if hired. Let e�i(�) denote the
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posterior probability assigned by i to state 1 conditional on signal � 2 f0; 1;?g in

a putative FD-equilibrium, where ? stands for no signal. Given posterior belief e�S;
the agent solves

max
e1;e2

�e�Se1 + (1� e�S)e2 � 12(e1)2 � 12 (e2)2
�
s.t. e1 + e2 � 1:

It is straightforward that the agent�s optimal total e¤ort will equal 1. Otherwise,

increasing one of the two e¤ort levels while keeping the other constant yields an

increase in revenue. The maximization problem of the agent thus rewrites as:

max
x2[0;1]

�e�Sx+ (1� e�S)(1� x)� 12x2 � 12(1� x)2
�
;

The �rst-order condition reads 2e�S � 2x� = 0, yielding x� = e�S: The agent�s
optimal e¤ort choice is thus to dedicate to each project a share of her total time

equal to the probability that she assigns to the project being the good project.

We now consider the principal�s hiring decision after observing the disclosure d 2

f0; 1; ;g. If she decides to hire, and expects the disclosure rule of S to be X, the

principal expects to obtain the pro�t of ��X(d) where, given the optimal e¤ort choice

of S shown above

�X(d) = e�XR (d)EXR [e�S(�) jd ] + (1� e�XR (d))(1� EXR [e�S(�) jd ]):
The principal thus hires if and only if c is smaller than ��X(d) (i.e. if and only if hiring

yields a net bene�t). Note that the above function is maximized if one of the two

extreme consensus scenarios is reached: e�XR (d) = e�S(d) = 0 or e�XR (d) = e�S(d) = 1.
In other words, S exhibits a form of disagreement aversion at the disclosure stage, in

attempting to maximize the probability of being hired (which increases with �X(d)).

We now examine the disclosure choice of the agent if she holds a signal � 2 f0; 1g.

In a putative FD-equilibrium, let:

�(�; �S; �R) = �
FD(�)� �FD(?); � 2 f0; 1g:
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Note that �(�; �S; �R)� is thus the change in R�s subjective expected payo¤ from

hiring caused by S disclosing signal � in a putative FD-equilibrium. Clearly, in the

FD-equilibrium S has no strict incentive to deviate when holding a �-signal if and

only if �(�; �S; �R) � 0: In words, S discloses her signal only if the disclosure weakly

increases the probability that she is hired (thereby obtaining a positive utility instead

of 0). Now, it is easily shown that �(0; �S; �R) and �(1; �S; �R) are both positive if

and only if

�S 2
�
(1� p)(1� �R)
1� p+ �R(2p� 1)

;
p(1� �R)

�R + p(1� 2�R)

�
:

This condition is equivalent to the one for FD appearing in Proposition 1.

Thus, in the considered game, perceived disagreement aversion on the side of

S arises endogenously from S�s incentive to convince R in stage 1 that S�s e¤ort

allocation in stage 2 will be in line with R�s view on the optimal e¤ort allocation.29

3.3.2 Competing for authority

We here consider a game in which players compete for authority. The game has

four stages. In stage 1, S can disclose her signal to R if she holds one. In stage 2,

players engage in a Tullock contest to determine the assignment of authority (relevant

for stage 4 later). Players simultaneously choose e¤orts and given e¤orts levels ei; ej,

player i wins with probability ei
ei+ej

: In stage 3, S has a second opportunity to disclose

her signal if she did not disclose it in stage 1 (i.e. S is not able to commit to non-

disclosure in stage 1). In stage 4, the winner of the contest (who was selected in stage

2) picks an action a 2 R: Players�utility function is �(! � a)2 � �ei; where ! is the

state of the world as before, and a is an action picked by the player who obtains the

�nal decision authority.

29A previous version of this paper analyses an investment game which can be seen as a more
general version of this game. S, a privately informed entrepreneur, seeks funding for a project
from a risk-averse investor (R). For �xed beliefs about the state, S�s expected pro�t is increasing
in the amount invested by R. As a result, the investor�s expected payo¤ in equilibrium becomes a
function of the uncertainty about the state and belief disagreement. We �nd that maximal disclosure
takes place under moderate prior misalignment (analysis available upon request). Speci�cally, the
disclosure optimal R-prior is located strictly between �S and 1� �S :
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We characterize conditions under which there exists an equilibrium with full dis-

closure (FD) already in stage 1, so that both the Tullock contest and the �nal action

choice happen under full information. We �rst provide a necessary condition and

then provide a su¢ cient condition. We introduce the following objects:

b��S(�R; p) = �R(1� p)(1 + �R(2p� 1))
�R(1� �R)(1� 2p)2 + 2(1� p)p

;

b���S (�R; p) = �Rp(1� �R(2p� 1))
�R(1� �R)(1� 2p)2 + 2(1� p)p

;

Ioutcome(�R; p) =
hb��S(�R; p); b���S (�R; p)i ;

Idisagreement(�R; p) = [�
�
S(�R; p); �

��
S (�R; p)] ;

where ��S() and �
��
S () were de�ned in section 2.1.

Proposition 11 There exists an equilibrium featuring full disclosure in stage 1:

a) only if �S belongs to Idisagreement(�R; p);

b) if �S belongs to the intersection of Idisagreement(�R; p) and Ioutcome(�R; p):

Figure 5 shows the intervals Ioutcome and Idisagreement, assuming �R = 0:3: The

interval Ioutcome is located between the two dashed curves and always contains �R.

The interval Idisagreement (which is the one appearing in Proposition 1) is located

between the two continuous curves and always contains 1� �R: For any given p, FD

in period 1 requires that �R is between the two continuous curves. Second, there

exists an equilibrium with FD in period 1 if �R is located between the two continuous

curves as well as between the two dashed curves. We see that for p not too high, full

disclosure in stage 1 is achievable only if �S is moderately di¤erent from �R: The main

qualitative insight is that some prior misalignment can thus be essential to ensure an

equilibrium featuring FD in stage 1.

The interval Ioutcome corresponds to the complete set of values of �S for which S

strictly favours disclosing no matter his signal if his concern is to minimize �(!�a)2
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Figure 5: Disclosure-relevant intervals of �S.

under the assumption that R has authority (and thus anticipating that R ultimately

takes action a = e�R(d)). The interval Idisagreement is familiar from our main analysis.

It corresponds to the values of �S for which S strictly favours disclosing no matter

his signal if his concern is to minimize perceived disagreement after disclosure.

In a putative equilibrium with FD in stage 1, S will disclose in stage 1 only if disclo-

sure leads to weakly lower e¤ort by R at the contest stage than non-disclosure. This,

in turn, is true if and only if disclosure reduces perceived disagreement by the end of

stage 1, which is equivalent to the requirement that �S belongs to Idisagreement(�R; p):

This explains Proposition 11.a. At the same time, full disclosure is optimal from

the perspective of stage 3 if �S belongs to Ioutcome(�R; p): Hence, a su¢ cient condi-

tion for the equilibrium with FD in stage 1 is that �S belongs to the intersection

of Idisagreement(�R; p) and Ioutcome(�R; p) (Proposition 11.b). Note �nally that if �S

belongs to Idisagreement(�R; p) but not to Ioutcome(�R; p); it is unclear whether or not

there exists an equilibrium with FD in period 1. S indeed potentially faces a trade-o¤.

While full disclosure minimizes the e¤ort level of R at the contest stage, it subopti-

mally in�ects R�s action choice (which hurts S if R is ultimately assigned authority).
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3.4 Joint observation of public signals

We here study the following simple game of voluntary and costly collective exposure to

a public signal. The state ! belongs to f0; 1g. Both players�utility function contains

the loss from perceived disagreement as in (1), minus an extra i.i.d. cost of partici-

pation drawn from the uniform distribution on [0; 1]. In stage 1, each player decides

whether or not to participate after privately observing her cost ci of participating.

In stage 2, if both have decided to participate, players incur the participation cost

and both observe the same randomly drawn public binary signal taken from f0; 1g

which is identical to the state with probability p. If at least one of the agents has

opted against participating, players incur no cost and no signal is observed. We call

agents x and y; where agent k 2 fx; yg assigns prior probability k to state 1. Note

that the environment is essentially non-strategic: Each player faces a simple decision

problem and prefers to participate if and only if the expected reduction in perceived

disagreement, conditional on joint observation of the signal, is larger than the private

cost ci of participating.

The following expression measures the ex post di¤erence in beliefs conditional on

a given public signal:

Di(x; y; p) = jP (! = 1 j� = i; x)� P (! = 1 j� = i; y )j ; for i 2 f0; 1g :

From the perspective of agent k 2 fx; yg ; the expected posterior di¤erence in beliefs

conditional on joint exposure to a signal of quality p is thus given by:

�k(x; y; p) = P (� = 0 jk )D0(x; y; p) + P (� = 1 jk )D1(x; y; p):

Note that �k(x; y; 1
2
) is simply the prior disagreement. The value of a signal of

quality p to player k 2 fx; yg is thus:

V k(x; y; p) = �k
�
x; y;

1

2

�
� �k(x; y; p):

Clearly, player k decides to participate if and only if ck � V k(x; y; p): We obtain the
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following characterization of the value of participating for each player.

Proposition 12 1. For given x and p > 1
2
; V x(x; y; p) � 0 for any y, while

V x(x; y; p) = 0 if and only if y 2 f0; x; 1g:

2. For given x; V x(x; y; p) is single peaked in y on (0; x) and on (x; 1).

3. For given x � 1=2; V x(x; y; p) reaches its maximum for y = y� 2 (0; 1=2). For

given x < 1=2; V x(x; y; p) reaches its maximum for y = y� 2 (1=2; 1)

Point 1 states that as long as y =2 f0; x; 1g; an informative public signal strictly

reduces the expected value of ex post disagreement from the ex ante perspective of

both players.30

Note that the marginal value of participating is trivially 0 if parties share the same

prior (in which case there is no disagreement both before and after the signal), or if the

prior of one party equals 0 or 1 (in which case the latter party does not update). Point

2 states that a player�s willingness to participate is maximized when her opponent

has a moderately di¤erent prior. Intuitively, some degree of prior disagreement gives

su¢ cient scope for disagreement reduction, and hence stimulates signal acquisition.

At the same time, too extreme priors lead to stickiness of beliefs. Point 3 states that

player k�s optimal conversation partner (i.e. the partner maximizing k�s participation

incentive) is always biased in the opposite direction. Figure 6 illustrates this result

by showing the expected value of a joint signal as a function of the opponent�s prior

for x = 0:3 and p = 0:8.

Next, consider a social planner who designs a two-members committee with the

objective of maximizing the probability that a signal is acquired by the committee.

We can show that this probability is maximized if the experts have priors that are

symmetric around 1
2
(i.e. oppositely biased) and non-radical.

30Note that this property does not generalize to continuous state environments. For instance, in
the normal-normal setup considered earlier, an informative experiment can increase a player�s ex
ante expectation of ex post perceived disagreement, as compared to prior disagreement. Indeed,
consider the case of identical prior means and di¤erent variances. In this case, a signal leads with
probability one to a strictly positive ex post disagreement that is larger than prior disagreement of
0. In consequence, the value of jointly observing a signal is negative for both parties.
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Figure 6: Expected value of a joint signal as a function of the opponent�s prior.

Proposition 13 For given p, there is a unique pair fx�; y�g maximizing the probabil-

ity of signal acquisition. For this pair, it holds true that y� = 1�x� and x� =2 f0; 1
2
; 1g.

For an intuition, consider the case when V x(x; y; p) � V y(x; y; p). Since both

players should agree to participate while one can show that V k is a linear function of k

for k 2 fx; yg, this constraint should be binding at the optimum so that V x(x; y; p) =

V y(x; y; p). In turn, for non-identical priors such symmetry is achieved if and only if

y� = 1� x�. Finally, the priors should not be too extreme to ensure su¢ cient belief

updating after a signal.

4 Conclusion

This paper introduces a new type of belief-dependent preferences re�ecting an aver-

sion to perceived disagreement. Our analysis has identi�ed a range of implications

for important instances of strategic communication and social learning. Disagreement

aversion often leads to biases in information disclosure, in which case selective disclo-

sure is biased towards the prior mean of the most con�dent player. Such disclosure

bias may in turn be counterproductive from an ex ante perspective, in terms of min-

imizing ex post perceived disagreement or actual disagreement in beliefs. Generally,

more similar prior variances bene�cially a¤ect disclosure while some heterogeneity in
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prior means is helpful. If matching of informed and uninformed parties is endogenous,

informed parties unfortunately prefer to interact with parties whose prior is similar,

leading to incomplete disclosure featuring con�rmatory bias. Finally, disagreement

aversion can stimulate social learning in heterogeneous groups.

Our results provide a plausible explanation for stylized facts such as echo cham-

bers and increasing social polarization. Further work building on the assumption of

disagreement-aversion might provide more insight into the causes and consequences

of contemporary societal patterns of belief heterogeneity.

References

Acemoglu, D., V. Chernozhukov, and M. Yildiz (2016). Fragility of asymptotic agree-

ment under Bayesian learning. Theoretical Economics 11 (1), 187�225.

Acemoglu, D., V. Chernozhukov, M. Yildiz, et al. (2007). Learning and Disagreement

in an Uncertain World. Technical report, Collegio Carlo Alberto.

Andreoni, J. and T. Mylovanov (2012). Diverging opinions. American Economic

Journal: Microeconomics 4 (1), 209�232.

Asch, S. E. (1955). Opinions and social pressure. Readings about the social animal 193,

17�26.

Aumann, R. J. (1976). Agreeing to disagree. The annals of statistics 4 (6), 1236�1239.

Austen-Smith, D. and T. J. Feddersen (2006). Deliberation, preference uncertainty,

and voting rules. American political science review 100 (2), 209�217.

Baliga, S., E. Hanany, and P. Klibano¤ (2013). Polarization and ambiguity. The

American Economic Review 103 (7), 3071�3083.

Banerjee, A. and R. Somanathan (2001). A simple model of voice. The Quarterly

Journal of Economics 116 (1), 189�227.

40



Battigalli, P. and M. Dufwenberg (2007). Guilt in games. The American economic

review 97 (2), 170�176.

Battigalli, P. and M. Dufwenberg (2009). Dynamic psychological games. Journal of

Economic Theory 144 (1), 1�35.

Bénabou, R. (2012). Groupthink: Collective delusions in organizations and markets.

The Review of Economic Studies 80, rds030.

Benabou, R. and G. Laroque (1992). Using privileged information to manipulate mar-

kets: Insiders, gurus, and credibility. The Quarterly Journal of Economics 107 (3),

921�958.

Buechel, B., T. Hellmann, and S. Klößner (2015). Opinion dynamics and wisdom

under conformity. Journal of Economic Dynamics and Control 52, 240�257.

Bursztyn, L., G. Egorov, and S. Fiorin (2017). From extreme to mainstream: How

social norms unravel. Technical report, National Bureau of Economic Research.

Che, Y.-K. and N. Kartik (2009). Opinions as incentives. Journal of Political Econ-

omy 117 (5), 815�860.

Coughlan, P. J. (2000). In defense of unanimous jury verdicts: Mistrials, communi-

cation, and strategic voting. American Political science review 94 (2), 375�393.

Dandekar, P., A. Goel, and D. T. Lee (2013). Biased assimilation, homophily, and the

dynamics of polarization. Proceedings of the National Academy of Sciences 110 (15),

5791�5796.

Deutsch, M. and H. B. Gerard (1955). A study of normative and informational

social in�uences upon individual judgment. The journal of abnormal and social

psychology 51 (3), 629.

41



Dixit, A. K. and J. W. Weibull (2007). Political polarization. Proceedings of the

National Academy of Sciences 104 (18), 7351�7356.

Domínguez, D., F. Juan, S. A. Taing, and P. Molenberghs (2016). Why do some �nd

it hard to disagree? An fMRI study. Frontiers in human neuroscience 9, 718.

Dufwenberg, M. and G. Kirchsteiger (2004). A theory of sequential reciprocity. Games

and economic behavior 47 (2), 268�298.

Ely, J., A. Frankel, and E. Kamenica (2015). Suspense and surprise. Journal of

Political Economy 123 (1), 215�260.

Ely, J. C. and J. Välimäki (2003). Bad reputation. The Quarterly Journal of Eco-

nomics 118 (3), 785�814.

Estlund, D. M. (2009). Democratic authority: A philosophical framework. Princeton

University Press.

Feddersen, T. and W. Pesendorfer (1998). Convicting the innocent: The inferior-

ity of unanimous jury verdicts under strategic voting. American Political science

review 92 (1), 23�35.

Festinger, L. (1950). Informal social communication. Psychological review 57 (5), 271.

Festinger, L. (1957). A theory of cognitive dissonance. Evanston, Il: Row, Peterson.

Geanakoplos, J., D. Pearce, and E. Stacchetti (1989). Psychological Games and

Sequential Rationality. Games and Economic Behavior 1, 60�79.

Gentzkow, M. and J. M. Shapiro (2006). Media bias and reputation. Journal of

political Economy 114 (2), 280�316.

Glaeser, E. L. and C. R. Sunstein (2009). Extremism and social learning. Journal of

Legal Analysis 1 (1), 263�324.

42



Go¤man, E. (1959). The presentation of self in everyday life. Garden City, NY:

Doubleday Anchor Books.

Golman, R., G. Loewenstein, K. O. Moene, and L. Zarri (2016). The preference for

belief consonance. The Journal of Economic Perspectives 30 (3), 165�187.

Golub, B. and M. O. Jackson (2012). How homophily a¤ects the speed of learning and

best-response dynamics. The Quarterly Journal of Economics 127 (3), 1287�1338.

Grossman, S. J. (1981). The Informational Role of Warranties and Private Disclosure

about Product Quality. The Journal of Law & Economics 24 (3), 461�483.

Homans, G. C. (1961). Human behavior: Its elementary forms.

Huckfeldt, R., P. E. Johnson, and J. Sprague (2004). Political disagreement: The

survival of diverse opinions within communication networks. Cambridge University

Press.

Huston, T. L. and G. Levinger (1978). Interpersonal attraction and relationships.

Annual review of psychology 29 (1), 115�156.

Jung, W.-O. and Y. K. Kwon (1988). Disclosure When the Market Is Unsure of

Information Endowment of Managers. Journal of Accounting Research 26 (1), 146�

153.

Kartik, N., F. X. Lee, and W. Suen (2015). Does competition promote disclosure.

Technical report.

Landemore, H. and J. Elster (2012). Collective wisdom: Principles and mechanisms.

Cambridge University Press.

Lazarsfeld, P. F. and R. K. Merton (1954). Friendship as a social process: A substan-

tive and methodological analysis. Freedom and control in modern society 18 (1),

18�66.

43



Levy, G. (2007). Decision making in committees: Transparency, reputation, and

voting rules. American economic review 97 (1), 150�168.

Levy, G. and R. Razin (2015). Correlation neglect, voting behavior, and information

aggregation. American Economic Review 105 (4), 1634�45.

Loury, G. C. (1994). Self-censorship in public discourse: a theory of �political cor-

rectness�and related phenomena. Rationality and Society 6 (4), 428�461.

Milgrom, P. and J. Roberts (1986). Relying on the Information of Interested Parties.

The RAND Journal of Economics 17 (1), 18�32.

Milgrom, P. R. (1981). Good news and bad news: Representation theorems and

applications. The Bell Journal of Economics 12 (2), 380�391.

Morris, S. (1995). The common prior assumption in economic theory. Economics &

Philosophy 11 (2), 227�253.

Morris, S. (2001). Political correctness. Journal of political Economy 109 (2), 231�265.

Mutz, D. C. (2006). Hearing the other side: Deliberative versus participatory democ-

racy. Cambridge University Press.

Newcomb, T. M. (1961). The acquaintance process. Holt, Rinehart & Winston.

Ottaviani, M. and P. N. Sørensen (2006a). Reputational cheap talk. The Rand journal

of economics 37 (1), 155�175.

Ottaviani, M. and P. N. Sørensen (2006b). The strategy of professional forecasting.

Journal of Financial Economics 81 (2), 441�466.

Prendergast, C. (1993). A theory of "yes men". The American Economic Re-

view 83 (4), 757�770.

44



Prentice, D. A. and D. T. Miller (1993). Pluralistic ignorance and alcohol use on

campus: some consequences of misperceiving the social norm. Journal of personality

and social psychology 64 (2), 243.

Rabin, M. (1993). Incorporating Fairness Into Game Theory and Economics. Amer-

ican Economic Review 83, 1281�1302.

Rosenberg, M. (1954). Some determinants of political apathy. Public Opinion Quar-

terly 18 (4), 349�366.

Sethi, R. and M. Yildiz (2012). Public Disagreement. American Economic Journal.

Microeconomics 4 (3), 57.

Sethi, R. and M. Yildiz (2016). Communication with unknown perspectives. Econo-

metrica 84 (6), 2029�2069.

Shin, H. S. (1994a). The burden of proof in a game of persuasion. Journal of Economic

Theory 64 (1), 253�264.

Shin, H. S. (1994b). News management and the value of �rms. The RAND Journal

of Economics 25 (1), 58�71.

Sobel, J. (1985). A Theory of Credibility. Review of Economic Studies 52, 557�573.

Sobel, J. (2013). Giving and receiving advice. In M. Acemoglu, D. Arellano and

E. Dekel (Eds.), Advances in Economics and Econometrics: Tenth World Congress,

pp. 305�341. New York: Cambridge University Press.

Sunstein, C. R. (2007). Republic. com 2.0. Princeton University Press.

Visser, B. and O. H. Swank (2007). On committees of experts. The Quarterly Journal

of Economics 122 (1), 337�372.

Vives, X. (2010). Information and learning in markets: the impact of market mi-

crostructure. Princeton University Press.

45



Disliking to disagree

Florian Ho¤mann, Kiryl Khalmetski, Mark T. Le Quement

Technical Appendix [for online publication]

Appendix I: Preliminaries

Throughout the proofs we use the following notation for the perceived disagreement

under equilibrium of type X = fD0; D1; FD;NDg given the disclosed information

d = f0; 1;?g:

�X(d) =
���ER[e�S(�)jd]� e�R(d)��� :

Note that trivially, �X(1) and �X(0) are actually independent of X while �X(?)

is not, so that we typically omit the superscript in the �rst two cases. Note also that

the notation is slightly abusive in the sense that it does not make explicit that �X(d)

depends on �S; �R: Besides, it is convenient to denote the highest and the lowest prior

belief as, respectively

� = maxf�S; �Rg;

� = minf�S; �Rg:

We now characterize equilibrium posterior beliefs (obtained by applying Bayes�

rule) that shall be used in checking incentives in di¤erent putative equilibria. Note

that in any equilibrium

e�i(1) =
Pr[� = 1j! = 1]�i

Pr[� = 1j! = 1]�i + Pr[� = 1j! = 0](1� �i)
=

p�i
p�i + (1� p)(1� �i)

;

e�i(0) =
Pr[� = 0j! = 1]�i

Pr[� = 0j! = 1]�i + Pr[� = 0j! = 0](1� �i)
=

(1� p)�i
(1� p)�i + p(1� �i)

;

1



In a ND-equilibrium, e�NDR (?) = �R and

ENDR [e�Sj?] = Pr[� = 0jd = ?; ND]e�S(0) + Pr[� = 1jd = ?; ND]e�S(1)
+Pr[� = ?jd = ?; ND]�S

= '((1� p)�R + p(1� �R))e�S(0)
+'(p�R + (1� p)(1� �R))e�S(1)
+ (1� ') �S:

In a D1-equilibrium:

e�D1R (?) = Pr[� = 0jd = ?; D1]e�R(0) + Pr[� = ?jd = ?; D1]�R
=

Pr[� = 0]

Pr[� = 0] + Pr[� = ?]
e�R(0) + Pr[� = ?]

Pr[� = 0] + Pr[� = ?]
�R

=
'((1� p)�R + p(1� �R))

'((1� p)�R + p(1� �R)) + (1� ')
e�R(0)

+
1� '

'((1� p)�R + p(1� �R)) + (1� ')
�R;

ED1R [
e�Sj?] = Pr[� = 0jd = ?; D1]e�S(0) + Pr[� = ?jd = ?; D1]�S

=
'((1� p)�R + p(1� �R))

'((1� p)�R + p(1� �R)) + (1� ')
e�S(0)

+
1� '

'((1� p)�R + p(1� �R)) + (1� ')
�S:

In a D0-equilibrium:

e�D0R (?) = Pr[� = 1jd = ?; D0]e�R(1) + Pr[� = ?jd = ?; D0]�R
=

Pr[� = 1]

Pr[� = 1] + Pr[� = ?]
e�R(1) + Pr[� = ?]

Pr[� = 1] + Pr[� = ?]
�R

=
'(p�R + (1� p)(1� �R))

'(p�R + (1� p)(1� �R)) + (1� ')
e�R(1)

+
1� '

'(p�R + (1� p)(1� �R)) + (1� ')
�R;

2



ED0R [
e�Sj?] = Pr[� = 1jd = ?; D0]e�S(1) + Pr[� = ?jd = ?; D0]�S

=
'(p�R + (1� p)(1� �R))

'(p�R + (1� p)(1� �R)) + (1� ')
e�S(1)

+
1� '

'(p�R + (1� p)(1� �R)) + (1� ')
�S:

Appendix II: Proposition 1 and Corollary 1

Proof of Proposition 1

Proposition 1 follows from a set of Lemmas, which are stated and proved in what

follows.

Lemma II.A Assume �S 6= �R. Then, ES[�
FD] < j�S � �Rj : I.e. under full

disclosure, from S�s ex ante perspective, the expected value of R�s ex post perceived

disagreement is strictly reduced relative to prior disagreement.

Proof. Assume without loss of generality that �S > �R. Then, the di¤erence

between prior disagreement and S�s ex ante expected value of ex post perceived

disagreement under full disclosure is

(�S � �R)� ES[�FD] = (�S � �R)

�'(�Sp+ (1� �S)(1� p))�(1)

�'(�S(1� p) + (1� �S)p)�(0)

�(1� ')(�S � �R)

= (�S � �R)� '(�Sp+ (1� �S)(1� p))

�
�

�Sp

�Sp+ (1� �S)(1� p)
� �Rp

�Rp+ (1� �R)(1� p)

�
�'(�S(1� p) + (1� �S)p)

�
�

�S(1� p)
�S(1� p) + (1� �S)p

� �R(1� p)
�R(1� p) + (1� �R)p

�
�(1� ')(�S � �R)

3



= '
(�S � �R)(1� �R)�R(2p� 1)2

(1� p+ �R(2p� 1))(�R + p(1� 2�R))
> 0:

Hence, from S�s ex ante perspective, the full disclosure strategy will on average

reduce perceived disagreement relative to prior disagreement. �

Lemma II.B Unless �S = �R; there exists no ND-equilibrium (where S omits to

disclose all signals).

Proof.

Consider �S > �R. Assume by contradiction that there exists an ND-equilibrium.

Then, R�s perceived disagreement conditional on no disclosure is

�ND(?) =
���ENDR [e�S(�)j?]� e�NDR (?)

���
=

X
�2f0;1;?g

�
P (� j�R )

�e�S(�)� e�R(�)�� ;
where P (� j�R ) is the ex ante probability attributed by R to signal � 2 f0; 1;?g;

where ? stands for no signal: If �S 6= �R, then Lemma II.A implies

minfe�S(0)� e�R(0); e�S(1)� e�R(1)g < �S � �R:
Consequently, for �S 6= �R we have (given that e�S(?)� e�R(?) = �S � �R)X

�2f0;1;?g

�
P (� j�R )

�e�S(�)� e�R(�)�� > minfe�S(0)� e�R(0); e�S(1)� e�R(1)g:
Hence, in a putative ND-equilibrium, for some � 2 f0; 1g S would have a strict

incentive to deviate by disclosing �. The case of �R > �S proceeds analogously.

Finally, if �S = �R, we trivially haveX
�2f0;1;?g

�
P (� j�R )

�e�S(�)� e�R(�)�� = 0 = e�S(0)� e�R(0) = e�S(1)� e�R(1);
so that S has no strict incentive to deviate from the equilibrium strategy given � 2

f0; 1g. �
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Lemma II.C If �S = �R, then any disclosure strategy is an equilibrium disclosure

strategy.

Proof. Let �S = �R and �x any disclosure strategy eD of S. Denote by ��R the

probability assigned by R to � = � given d = ?, R�s prior being �R. I.e., formally,

��R = Pr[� = �jd = ?; �R]. We have

�
eD(?) =

����E eD
R [
e�Sj?]� e� eDR(?)����

=

������ �0R
e�S(0) + �1Re�S(1) + (1� �0R � �1R)�S

��0Re�R(0)� �1Re�R(1)� (1� �0R � �1R)�R
������

=

������ �
0
R(
e�S(0)� e�R(0)) + �1R(e�S(1)� e�R(1))

+(1� �0R � �1R)(�S � �R)

������ = 0; (4)

where the last equality is due to �S = �R. Hence, S will be indi¤erent between

disclosure of any signal (leading to 0 posterior disagreement) and non-disclosure.

Consequently, the speci�ed disclosure strategy constitutes an equilibrium. �

Lemma II.D Let �S 6= �R. D0 exists if and only if �S � ��S(�R).

Proof. The D0-equilibrium exists if and only if the following S�s incentive con-

straints are satis�ed:

�D0(0) � �D0(?) � �D0(1): (5)

Using (4), the second incentive constraint simpli�es to (denoting again ��R =

Pr[� = �jd = ?; �R]):

�D0(?)��D0(1) � 0, (6)����1R(e�S(1)� e�R(1)) + (1� �1R)(�S � �R)���� ���e�S(1)� e�R(1)��� � 0, (7)

(1� �1R)
�
� � � � �p

�p+ (1� �)(1� p)
+

�p

�p+ (1� �)(1� p)

�
� 0, (8)
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�
1�

'(�p+ (1� �)(1� p))
'(�p+ (1� �)(1� p)) + (1� ')

�
�
�
� � � � �p

�p+ (1� �)(1� p)
+

�p

�p+ (1� �)(1� p)

�
� 0, (9)

(� � �)(2p� 1)(1� ')

�
�(1� p+ �(2p� 1))� (1� p)(1� �)

(1� p+ �(2p� 1))(1� p+ �(2p� 1))(1� '(p� �(2p� 1))
� 0: (10)

On the left-hand side of the last inequality, all terms are always positive except

for the numerator, which is increasing in both � and � and is equal to 0 if and only if

� =
(1� �)(1� p)
1� p+ �(2p� 1) , � =

(1� �)(1� p)
1� p+ �(2p� 1)

:

Thus, independently of whether �S = � or �S = � (i.e. of whether �S > �R or

�S < �R) we have

�D0(?)��D0(1) � 0 if and only if �S �
(1� �R)(1� p)
1� p+ �R(2p� 1)

= ��S(�R): (11)

Note further that �D0(?) � �D0(1) � 0 implies �D0(0) � �D0(?). Indeed,

otherwise we would have �D0(?) � minf�D0(0);�D0(1)g, i.e. it would hold true

that

�1Rje�S(1)� e�R(1)j+ (1� �1R)j�S � �Rj � minn���e�S(0)� e�R(0)��� ; ���e�S(1)� e�R(1)���o :
This, in turn, yields

j�S � �Rj � je�S(�)� e�R(�)j;8� 2 f0; 1g:
The latter would imply that (a putative) full disclosure equilibrium does not yield

an expected value of ex post perceived disagreement that is strictly smaller than

prior disagreement. But this contradicts Lemma II.A. Thus, (5) holds if and only if

�S � ��S(�R). �
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Lemma II.E Let �S 6= �R. D1 exists if and only if �S � ���S (�R).

Proof. The D1-equilibrium exists if and only if the following S�s incentive con-

straints are satis�ed:

�D1(1) � �D1(?) � �D1(0): (12)

Using (4), the second incentive constraint simpli�es to (denoting again ��R =

Pr[� = �jd = ?; �R]):

�D1(?)��D1(0) � 0, (13)����0R(e�S(0)� e�R(0)) + (1� �0R)(�S � �R)���� ���e�S(0)� e�R(0)��� � 0, (14)

(1� �0R)
�
� � � � �(1� p)

�(1� p) + (1� �)p
+

�(1� p)
�(1� p) + (1� �)p

�
� 0, (15)�

1�
'(�(1� p) + (1� �)p)

'(�(1� p) + (1� �)p) + (1� ')

�
�
�
� � � � �(1� p)

�(1� p) + (1� �)p
+

�(1� p)
�(1� p) + (1� �)p

�
� 0, (16)

(� � �)(2p� 1)(1� ')

�
�(�(2p� 1)� p) + p(1� �)

(p� �(2p� 1))(p� �(2p� 1))(1� '(1� p+ �(2p� 1))
� 0: (17)

On the left-hand side of the last inequality, all terms are always positive except

for the numerator, which is decreasing in both � and � and is equal to 0 if and only

if

� =
p(1� �)

� + p(1� 2�) , � =
p(1� �)

� + p(1� 2�)
:

Thus, independently of whether �S = � or �S = � (i.e. of whether �S > �R or

�S < �R) we have

�D1(?)��D1(0) � 0 if and only if �S �
p(1� �R)

�R + p(1� 2�R)
= ���S (�R): (18)

Note further that �D1(?) ��D1(0) � 0 implies �D1(1) � �D1(?) by the same

argument as in the proof of Lemma II.D. Thus, (12) holds if and only if �S � ���S (�R).

7



�

Lemma II.F Let �S 6= �R: FD exists if and only if �S 2 [��S(�R); ���S (�R)].

Proof. The FD-equilibrium exists if and only if the following S�s incentive con-

straints are satis�ed:

j�S � �Rj � �FD(1); (19)

j�S � �Rj � �FD(0): (20)

Note that the reverse inequality to (19) holds under the same conditions as (8),

which is turn is equivalent to (6). Hence, by the proof of Lemma II.D j�S � �Rj �

�FD(1) i¤ �S � ��S(�R) (with j�S � �Rj = �FD(1) i¤ �S = �
�
S(�R)). Consequently,

(19) holds if and only if �S � ��S(�R). Analogously, from the proof of Lemma II.E

we obtain that (20) holds if and only if �S � ���S (�R). Hence, both constraints hold

simultaneously if and only if �S 2 [��S(�R); ���S (�R)]. �

Lemma II.G Let �S 6= �R: Mixed strategy equilibria exist if and only if �S 2

f��S(�R); ���S (�R)g.

Proof. First, if �S 6= �R, there cannot be an equilibrium in which S�s disclosure

strategy (call this strategy M) speci�es omitting to disclose with a non-degenerate

probability after both signals 0 and 1. Indeed, by the same arguments as in the proof

of Lemma II.B (using the same notation), one can show that in such an equilibrium

(call it an M -equilibrium), it will be true that

�M(?) =
X
�

P (� j�R )j�S(�)� �R(�)j > minf
���e�S(0)� e�R(0)��� ; ���e�S(1)� e�R(1)���g:

Hence, after some signal e� 2 f0; 1g; ex post perceived disagreement will be strictly
smaller than �M(?). But given this, S would deviate to disclosing for sure when

holding signal e�.
8



Consider now the remaining case of an equilibrium in which S�s disclosure strategy

(call this strategy fM) speci�es mixing between disclosure and non-disclosure only for
one signal �� 2 f0; 1g.

For the case of �� = 1, such an equilibrium requires the indi¤erence condition

�
fM(?)��(1) = 0. Letting ��R denote the probability, in the eyes of R; of S holding

a signal � conditional on no disclosure, this is equivalent to:����1R(e�S(1)� e�R(1)) + (1� �1R)(�S � �R)���� ���e�S(1)� e�R(1)��� = 0, (21)

(1� �1R)
�
� � � � �p

�p+ (1� �)(1� p)
+

�p

�p+ (1� �)(1� p)

�
= 0, (22)

� � � � �p

�p+ (1� �)(1� p)
+

�p

�p+ (1� �)(1� p) = 0, (23)�
�;

(1� �)(1� p)
1� p+ �(2p� 1)

�
= � , (24)�

�;
(1� �)(1� p)
1� p+ �(2p� 1)

�
= �: (25)

Thus, given �S 6= �R, S is indi¤erent between sending 1 and no disclosure if and

only if �S = �
�
S(�R). It then holds true that �

fM(?) > �(0) since
minf

���e�S(0)� e�R(0)��� ; ���e�S(1)� e�R(1)���g < j�S � �Rj
by Lemma II.A.

For the case of �� = 0, analogously, such an equilibrium requires the indi¤erence

condition �fM(?)��fM(0) = 0. This is further equivalent to:����0R(e�S(0)� e�R(0)) + (1� �0R)(�S � �R)���� ���e�S(0)� e�R(0)��� = 0, (26)

(1� �0R)
�
� � � � �(1� p)

�(1� p) + (1� �)p
+

�(1� p)
�(1� p) + (1� �)p

�
= 0, (27)�

� � � � �(1� p)
�(1� p) + (1� �)p

+
�(1� p)

�(1� p) + (1� �)p

�
= 0, (28)
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�
�;

p(1� �)
� + p(1� 2�)

�
= � , (29)(

�;
p(1� �)

� + p(1� 2�)

)
= �: (30)

This similarly leads to �S = �
��
S (�R). �

Proof of Corollary 1.

Step 1. Point a) follows from the fact that ��S(�R) < 1 � �R < ���S (�R). By

Proposition 1, this means that for " small enough, �S 2 (1 � �R � "; 1 � �R + ")

satis�es conditions such that the FD-equilibrium is the unique equilibrium.

Step 2. This proves Point b). Consider �rst �R < 1=2 and �S su¢ ciently close to

�R. Then, by Proposition 1, given that �
�
S(�R) < 1� �R < ���S (�R), the equilibrium

features no full disclosure if and only if �R < ��S(�R; p). In turn, for �R < 1=2 we

have

�R < ��S(�R; p),

p <
(1� �R)2

(1� �R)2 + (�R)2
: (31)

Hence, for any �S su¢ ciently close to �R < 1=2 under the above condition we obtain

�S < �
�
S(�R; p), in which case D0 is the unique equilibrium.

Consider �R > 1=2 and �S su¢ ciently close to �R. Then, by Proposition 1, given

that ��S(�R) < 1 � �R < ���S (�R), the equilibrium features no full disclosure if and

only if �R > �
��
S (�R; p). In turn, for �R > 1=2 we have

�R > ���S (�R; p),

p <
(�R)

2

(1� �R)2 + (�R)2
: (32)

Hence, for any �S su¢ ciently close to �R > 1=2 under the above condition we obtain

�S > �
��
S (�R; p), in which case D1 is the unique equilibrium.

10



Finally, note that (31) and (32) combine into

�R =2 [��S(�R; p); �
��
S (�R; p)],

p < max

�
(1� �R)2

(1� �R)2 + (�R)2
;

(�R)
2

(1� �R)2 + (�R)2

�
:

This together with Proposition 1 leads to the claim.

Step 3. Point c) follows due to ��S(�R; p) (resp. �
��
S (�R; p)) being continuously

decreasing (resp. increasing) in p and being equal to 0 (1) if p = 1.

Step 4. This proves point d). Let �R < 1=2, i.e. R is biased towards 0.

By Proposition 1, a D1-equilibrium exists if and only if �S � ���S (�R) > 1 � �R.

This implies that �S is closer to 1 than �R is close to 0, meaning that �S is biased

towards 1 and S is more con�dent than R.

By Proposition 1, a D0-equilibrium exists if and only if �S � ��S(�R) < 1 � �R.

This in turn is compatible with two cases: Either �R is the most con�dent prior or

�S is the most con�dent prior, in which case it also holds true that �S � �R: In both

cases, note that that the most con�dent of the two priors is smaller than 1
2
; i.e. the

more con�dent player is biased towards 0:

Let R be biased towards 1 (�R � 1=2). The symmetric argument as given for the

case of �R < 1=2 applies. �

Appendix III: Propositions 3 and 4

Proof of Proposition 3

Step 1. Consider the case �S > �R in D0-equilibrium. From S�s ex ante perspective,

the expected ex post perceived disagreement is

ES[�
D0] = (Pr[� = 1 j�S ] + Pr[� = ? j�S ])(ED0R [e�Sj?]� e�D0R (?))

+Pr[� = 0 j�S ](e�S(0)� e�R(0)):
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At the same time, under full disclosure

ES[�
FD] = Pr[� = 1 j�S ](e�S(1)� e�R(1)) + Pr[� = 0 j�S ](e�S(0)� e�R(0))

+Pr[� = ? j�S ](�S � �R):

Using the expressions obtained in Appendix I, it follows that:

ES[�
D0]� ES[�FD]

= Pr[� = 1 j�S ](ED0R [e�Sj?]� e�D0R (?)� (e�S(1)� e�R(1)))
+Pr[� = ? j�S ](ED0R [e�Sj?]� e�D0R (?)
�(�S � �R))

= '(�Sp+ (1� �S)(1� p))

�

0@ �
'(�Rp+(1��R)(1�p))

'(�Rp+(1��R)(1�p))+(1�')
� 1
��e�S(1)� e�R(1)�

+
�

(1�')
�R'p+(1��R)'(1�p)+(1�')

�
(�S � �R)

1A
+(1� ')

0@ �
'(�Rp+(1��R)(1�p))

'(�Rp+(1��R)(1�p))+(1�')

��e�S(1)� e�R(1)�
+
�

(1�')
�R'p+(1��R)'(1�p)+(1�')

� 1
�
(�S � �R)

1A
= �1�2

where

�1 =
(�S � �R)2(1� 2p)2(1� ')'

(�Rp+ (1� �R)(1� p))(�Sp+ (1� �S)(1� p))(1� p'+ �R'(2p� 1))
> 0;

�2 = (�R + �S � 1)(1� p) + �R�S(2p� 1):

Note that �2 is an increasing function of �S. At the same time, by Proposition

1, it must be true that �S < ��S if the D0-equilibrium is the unique equilibrium.

Consequently,

�2(�S) < �2(�
�
S) =

�
�R +

(1� �R)(1� p)
1� p+ �R(2p� 1)

� 1
�
(1� p)

+�R
(1� �R)(1� p)
1� p+ �R(2p� 1)

(2p� 1)

= 0:

12



Hence, �1�2 < 0 so that

ES[�
D0]� ES[�FD] < 0;

i.e. the sender would ex ante prefer D0 over FD.

Step 2. Consider the case �S > �R in D1-equilibrium. From S�s perspective, the

ex ante expected ex post perceived disagreement is

ES[�
D1] = (Pr[� = 0 j�S ] + Pr[� = ? j�S ])(ED1R [e�Sj?]� e�D1R (?))

+Pr[� = 1 j�S ](e�S(1)� e�R(1))
It follows that

ES[�
D1]� ES[�FD]

= '(�S(1� p) + (1� �S)p)

�

0@ �
'(�R(1�p)+(1��R)p)

'(�R(1�p)+(1��R)p)+(1�')
� 1
��e�S(0)� e�R(0)�

+
�

(1�')
'(�R(1�p)+(1��R)p)+(1�')

�
(�S � �R)

1A
+(1� ')

0@ �
'(�R(1�p)+(1��R)p)

'(�R(1�p)+(1��R)p)+(1�')

��e�S(0)� e�R(0)�
+
�

(1�')
'(�R(1�p)+(1��R)p)+(1�')

� 1
�
(�S � �R)

1A
= �3�4;

where

�3 = � (�S � �R)2(1� 2p)2(1� ')'
(�R(1� p) + (1� �R)p)(�S(1� p) + (1� �S)p)

� 1

1� '((1� �R)(1� p) + �Rp)
< 0;

�4 = p(1� �R)� �S(p(1� �R) + �R(1� p)):

Function �4 is decreasing in �S. At the same time, by Proposition 1 it must be true

that �S > �
��
S if the D1-equilibrium is the unique equilibrium. Consequently,

�4(�S) < �4(�
��
S ) = p(1� �R)�

p(1� �R)
�R + p(1� 2�R)

(p(1� �R) + �R(1� p)) = 0:
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Hence, �3�4 > 0, i.e.

ES[�
D1]� ES[�FD] > 0;

i.e. the sender would ex ante prefer FD over D1.

Step 3. Consider the case �S < �R. Then, it can be shown that

ES[�
D0]� ES[�FD] = ��1�2 > 0;

ES[�
D1]� ES[�FD] = ��3�4 < 0.

Thus, the sender would ex ante prefer FD over D0 and D1 over FD whenever D0 and

D1 are the unique equilibria, respectively. �

Proof of Proposition 4

Step 1. In Steps 1-4 below, we consider the case that �S > �R. De�ne as e�(Partial,b�)
and e�(Full,b�) the expected actual disagreement under partial and full disclosure
respectively, from the perspective of a third party endowed with prior b�. Denote
further by e�i(�;Partial) and e�i(�;Full) the posterior of player i conditional on obtained
information � under partial and full disclosure respectively. We have:

e�(Partial,b�) = Eb�
h���e�S(�;Partial)� e�R(d;Partial)���i

� Eb�
he�S(�;Partial)� e�R(d;Partial)i

= Eb�[e�S(�;Partial)]� Eb�[e�R(d;Partial)]
= Eb�

he�S(�;Full)i� Eb� he�R(d;Partial)i : (33)

In the above, the equality Eb�[e�S(�;Partial)] = Eb� he�S(�;Full)i follows from the

fact that S�s expected posterior is independent of the disclosure rule. Note on the

other hand that

e�(Full,b�) = Eb�
h���e�S(�;Full)� e�R(d;Full)���i

= Eb�
he�S(�;Full)i� Eb� he�R(d;Full)i : (34)
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To see this, note that under FD, it always holds true that d = �. Recall also thate�S(�) > e�R(�) for any � given �S > �R:
It follows from the above analysis that

e�(Partial,b�)� e�(Full,b�) � Eb� he�R(d;Full)i� Eb� he�R(d;Partial)i : (35)

Step 2. We now show that Eb�
he�R(d;Full)i � Eb� he�R(d;Partial)i > 0 if and

only if b� > �R: Here we follow the steps of the analysis presented in Kartik et al.

(2015). One can verify that

e�R(d) = e�(d)�R
�e�(d)�R

�
+ (1� e�(d))1��R

1��

;

where e�(d) denotes the hypothetical posterior belief of R if she had a prior b� and
observed d. One can verify that the above function is concave in e�(d) if � < �R and
convex if the opposite inequality holds. Blackwell (1953) has shown that a garbling

increases (resp. reduces) an individual�s expectation of any concave (resp. convex)

function of his posterior. Then, since partial disclosure is a garbling of full disclosure,31

we obtain that

Eb�
he�R(d;Partial)i < (>)Eb� he�R(d;Full)i if b� > (<)�R (36)

given that R�s posterior is a convex (concave) function of eb�(�) if b� > (<)�R.
Step 3. (35) and (36) together imply

e�(Partial,b�)� e�(Full,b�) > 0 if b� > �R.
Thus, the third party would prefer full disclosure over partial disclosure wheneverb� > �R, i.e. whenever �R < b� < �S or b� � �S > �R.

31See Kartik et al. (2015) for a formal de�nition of garbling.
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Step 4. Consider b� < �R < �S. If �S is su¢ ciently close to 1, then we have:
e�(Partial,b�) = Eb�

h���e�S(�;Partial)� e�R(d;Partial)���i
= Eb�

he�S(�;Partial)� e�R(d;Partial)i
= Eb�[e�S(�;Partial)]� Eb�[e�R(d;Partial)]
= Eb�

he�S(�;Full)i� Eb� he�R(d;Partial)i :
Note in the above that we have equalities at all stages in contrast to (33). This

together with (34) and (36) implies

e�(Partial,b�)� e�(Full,b�) = Eb� he�R(d;Full)i� Eb� he�R(d;Partial)i < 0.
Hence, in this case the third party would prefer partial disclosure over full disclosure

in terms of minimizing expected actual disagreement.

Step 5. The proof for the remaining case of �S < �R is conceptually identical to

what has been presented, and is hence omitted. We obtain the following counterparts

of the statements proven above:

e�(Partial,b�)� e�(Full,b�) > 0 if b� < �R,e�(Partial,b�)� e�(Full,b�) < 0 if �S < �R < b� and �S is close to 0.
�

Appendix IV: Proposition 5

Proof of Proposition 5.a)

Step 1. Consider a putative FD-equilibrium. Let GS(GR) denote the (symmetric)

cumulative distribution function of S�s (R�s) prior belief. Then, if the sender discloses

0-signal, the receiver with the prior �R believes that the disagreement is

�(0) =

Z 1

�S=0

���e�S(0)� e�R(0)��� dGS(�S):
16



In turn, the sender expects that the receiver�s perceived disagreement is

ES[�(0)] =

Z 1

�R=0

Z 1

�S=0

���e�S(0)� e�R(0)��� dGS(�S)dGR(�R).
If the sender does not disclose, the expected perceived disagreement is

ES[�
FD(?)] =

Z 1

�R=0

Z 1

�S=0

j�S � �RjdGS(�S)dGR(�R).

In FD-equilibrium we must have ES[�(0)]� ES[�FD(?)] < 0. We have

ES[�(0)]� ES[�FD(?)]

=

Z 1

�R=0

Z 1

�S=0

����e�S(0)� e�R(0)���� j�S � �Rj� dGS(�S)dGR(�R):
Denote e�(�; �) the posterior belief given obtained/disclosed signal � and prior belief
�. Besides, denote �(�i; �j) =

���e�(0; �i)� e�(0; �j)���� j�i � �jj. Then,Z 1

�R=0

Z 1

�S=0

����e�S(0)� e�R(0)���� j�S � �Rj� dGS(�S)dGR(�R)
=

Z 1

�R=0

Z 1

�S=0

�(�S; �R)dGS(�S)dGR(�R)

=

Z 0:5

�R=0

Z 1

�S=0

�(�S; �R)dGS(�S)dGR(�R)

+

Z 0:5

�R=0

Z 1

�S=0

�(�S; 1� �R)dGS(�S)dGR(1� �R)

=

Z 0:5

�R=0

Z 1

�S=0

�(�S; �R)dGS(�S)dGR(�R)

+

Z 0:5

�R=0

Z 1

�S=0

�(�S; 1� �R)dGS(�S)dGR(�R)

=

Z 0:5

�R=0

Z 1

�S=0

(�(�S; �R) + �(�S; 1� �R)) dGS(�S)dGR(�R);
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where the third equality follows due to symmetry of G. Next, denote �(�S; �R) =

�(�S; �R) + �(�S; 1� �R). Then, similarly,Z 0:5

�R=0

Z 1

�S=0

(�(�S; �R) + �(�S; 1� �R)) dGS(�S)dGR(�R)

=

Z 0:5

�R=0

Z 1

�S=0

�(�S; �R)dGS(�S)dGR(�R)

=

Z 0:5

�R=0

0@ R 0:5
�S=0

�(�S; �R)dGS(�S)

+
R 0:5
�S=0

�(1� �S; �R)dGS(1� �S)

1A dGR(�R)
=

Z 0:5

�R=0

Z 0:5

�S=0

(�(�S; �R) + �(1� �S; �R))dGS(�S)dGR(�R):

Let us now show that �(�S; �R) + �(1� �S; �R) < 0 for any �S < 0:5 and �R < 0:5

in which case the whole integral on the right-hand side is negative. Denote as before

� = maxf�S; �Rg and � = minf�S; �Rg. Then, (noting that 1� � > 1� � > � > �

due to both � < 0:5 and � < 0:5)

�(�S; �R) + �(1� �S; �R)

= �(�S; �R) + �(�S; 1� �R) + �(1� �S; �R) + �(1� �S; 1� �R)

=
�e�(0; �)� e�(0; �)�� (� � �)
+
�e�(0; 1� �)� e�(0; �)�� (1� � � �)

+
�e�(0; 1� �)� e�(0; �)�� (1� � � �)

+
�e�(0; 1� �)� e�(0; 1� �)�� (1� � � (1� �))

= 2(e�(0; 1� �)� e�(0; �) + 2� � 1)
= 2

�
(1� �)(1� p)

(1� �)(1� p) + �p �
�(1� p)

�(1� p) + (1� �)p + 2� � 1
�

= �
2(1� 2p)2(1� �)(1� 2�)�

(1� p+ �(2p� 1))(� + p(1� 2�)) < 0;

where the inequality follows due to � < 0:5.

Step 2. By symmetry considerations, the same property holds for 1-signals,

i.e. ESER[�(1)] � ESER[�FD(?)] < 0. Formally, the proof proceeds analogously
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rede�ning �(�i; �j) =
���e�(1; �i)� e�(1; �j)���� j�i � �jj. �

Proof of Proposition 5.b)

In what follows, we assume without loss of generality that MLRP is satis�ed as

@

@x

gS(x)

gR(x)
> 0. (37)

Step 1. Denote the di¤erence in disagreement under disclosure and no disclosure

in a putative FD-equilibrium as

�0(�S; �R) = j�S � �Rj �
���e�(0; �S)� e�(0; �R)��� ;

�1(�S; �R) = j�S � �Rj �
���e�(1; �S)� e�(1; �R)��� :

In FD, we haveZ 1

�R=0

Z 1

�S=0

�0(�S; �R)gS(�S)gR(�R)d�Sd�R � 0;Z 1

�R=0

Z 1

�S=0

�1(�S; �R)gS(�S)gR(�R)d�Sd�R � 0:

Since the joint distribution of priors is completely symmetric with respect to either

boundary (0 or 1), the e¤ect of 0-disclosure on the expected disagreement should be

equivalent to the e¤ect of 1-disclosure, i.e.Z 1

�R=0

Z 1

�S=0

�0(�S; �R)gS(�S)gR(�R)d�Sd�R

=

Z 1

�R=0

Z 1

�S=0

�1(�S; �R)gS(�S)gR(�R)d�Sd�R:

This implies that for i = 0; 1Z 1

�R=0

Z 1

�S=0

�i(�S; �R)gS(�S)gR(�R)d�Sd�R � 0,Z 1

�R=0

Z 1

�S=0

�(�S; �R)gS(�S)gR(�R)d�Sd�R � 0:
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where �(�S; �R) = �0(�S; �R) + �1(�S; �R):

Step 2. We haveZ 1

�R=0

Z 1

�S=0

�(�S; �R)gS(�S)gR(�R)d�Sd�R

=

Z 0:5

�R=0

Z 1

�S=0

�(�S; �R)gS(�S)gR(�R)d�Sd�R

+

Z 0:5

�R=0

Z 1

�S=0

�(�S; 1� �R)gS(�S)gR(1� �R)d�Sd�R

=

Z 0:5

�R=0

Z 0:5

�S=0

�(�S; �R)gS(�S)gR(�R)d�Sd�R

+

Z 0:5

�R=0

Z 0:5

�S=0

�(1� �S; �R)gS(1� �S)gR(�R)d�Sd�R

+

Z 0:5

�R=0

Z 0:5

�S=0

�(�S; 1� �R)gS(�S)gR(1� �R)d�Sd�R

+

Z 0:5

�R=0

Z 0:5

�S=0

�(1� �S; 1� �R)gS(1� �S)gR(1� �R)d�Sd�R

=

Z 0:5

�R=0

Z 0:5

�S=0

&(�S; �R)d�Sd�R;

where

&(�S; �R) = �(�S; �R)gS(�S)gR(�R) + �(1� �S; �R)gS(1� �S)gR(�R)

+�(�S; 1� �R)gS(�S)gR(1� �R) + �(1� �S; 1� �R)gS(1� �S)gR(1� �R):

Hence, given Step 1, for the main claim it is su¢ cient to show that &(�S; �R) � 0 for

any f�S; �Rg 2 [0; 0:5]2:

Step 3. Let us show that &(�S; �R) is increasing in p for p 2 (1=2; 1) and

f�S; �Rg 2 [0; 0:5]2. To simplify the notation, let us denote gS(�S) � gS1, gR(�R) �

gR1, gS(1� �S) � gS2; gR(1� �R) � gR2.

Consider �rst 0:5 � �R > �S: Substituting all expressions into &(�S; �R) and
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simplifying, we obtain

&(�S; �R) = � 1(�R + �S � 1)(gR2gS1 + gR1gS2)

+� 2(�R � �S)(gR1gS1 + gR2gS2);

where

� 1 = �2� (1� p)p
(�R + p� 2�Rp)(�S + p� 2�Sp� 1)

� (1� p)p
(�R + p� 2�Rp� 1)(�S + p� 2�Sp)

;

� 2 = 2� (1� p)p
(�R + p� 2�Rp� 1)(�S + p� 2�Sp� 1)

� (1� p)p
(�R + p� 2�Rp)(�S + p� 2�Sp)

:

Taking the derivative of &(�S; �R) with respect to p and simplifying we obtain

@&(�S; �R)

@p
= T1 + T2;

T1 = (1� �R)�R
(2p� 1)(1� 2�R)

(�R + p� 2�Rp� 1)2(�R + p� 2�Rp)2
�(gR2 � gR1)(gS1 � gS2);

T2 = (1� �S)�S
(2p� 1)(1� 2�S)

(�S + p� 2�Sp� 1)2(�S + p� 2�Sp)2
�(gR2 + gR1)(gS1 + gS2):

Consider now the case �R < �S � 0:5: Substituting all expressions into &(�S; �R)

and simplifying, we obtain in this case

&(�S; �R) = � 1(�R + �S � 1)(gR2gS1 + gR1gS2)

+� 2(�S � �R)(gR1gS1 + gR2gS2);

Taking the derivative of &(�S; �R) with respect to p and simplifying we obtain

@&(�S; �R)

@p
= bT1 + bT2;
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where

bT1 = (1� �R)�R
(2p� 1)(1� 2�R)

(�R + p� 2�Rp� 1)2(�R + p� 2�Rp)2
�(gR2 + gR1)(gS1 + gS2);bT2 = (1� �R)�R

(2p� 1)(1� 2�S)
(�S + p� 2�Sp� 1)2(�S + p� 2�Sp)2

�(gR2 � gR1)(gS1 � gS2):

Recall that f�S; �Rg 2 [0; 0:5]2 by assumption. Hence, to show that
@&(�S ;�R)

@p
� 0

in either case we need to show that

(gR2 � gR1)(gS1 � gS2) > 0.

This is done in the next step.

Step 4. By initial assumption, we have that for any x

gR(x) = gS(1� x).

In particular, this implies
gR(0:5)

gS(0:5)
= 1:

Note that then the MLRP in (37) implies that for any �R < 0:5 and �S < 0:5

gS(�S)

gR(�S)
<

gS(0:5)

gR(0:5)
<
gS(1� �R)
gR(1� �R)

,

gS(�S)

gR(�S)
< 1 <

gS(1� �R)
gR(1� �R)

: (38)

Since by initial assumption gR(x) = gS(1� x), (38) is equivalent to

gS(�S)

gS(1� �S)
< 1 <

gR(�R)

gR(1� �R)
:

In terms of our previous notation, this is equivalent to

gS1 < gS2;

gR1 > gR2:
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Finally, this leads to

(gR2 � gR1)(gS1 � gS2) > 0. (39)

Step 5. Applying (39) to the expressions for @&(�S ;�R)
@p

from Step 3, we obtain

@&(�S; �R)

@p
� 0:

At the same time, it is easy to verify that &(�S; �R) = 0 for p = 1=2. Consequently,

&(�S; �R) � 0 for any p > 1=2. Then, by Step 2 this results inZ 1

�R=0

Z 1

�S=0

�(�S; �R)gS(�S)gR(�R)d�Sd�R � 0:

By Step 1, this implies that the incentive constraints for full disclosure are satis�ed.

�

Proof of Proposition 5.c)

Step 1. Let us show that for su¢ ciently high x, it holds that �S > ���S (�R) =

p(1��R)
�R+p(1�2�R)

for any f�S; �Rg 2 [x; 1]2. Indeed, it is easy to verify that x > ���S (x) if

and only if x > p

p+
p
p(1�p)

. Thus, we have that for x > p

p+
p
p(1�p)

and any f�S; �Rg 2

[x; 1]2 it holds

�S � x > ���(x) � ���(�R),

where the last inequality is due to ���S (x) decreasing in x. Hence, �S > �
��
S (�R) for

any f�S; �Rg 2 [x; 1]2.

Analogously, one can show that for any su¢ ciently small y (in particular, for any

y <
p+
p
p(1�p)�1
2p�1 ), it holds �S < �

�
S(�R) for any f�S; �Rg 2 [0; y]2.

Step 2. Let us show that if the common distribution of priors g is shifted to the

right, then D1-equilibrium always exists. The incentive constraints for D1 are (see
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Step 1 in the proof of Proposition 5.a)Z 1

�R=0

Z 1

�S=0

e�0(�S; �R)g(�S)g(�R)d�Sd�R � 0; (40)Z 1

�R=0

Z 1

�S=0

e�1(�S; �R)g(�S)g(�R)d�Sd�R � 0; (41)

where

e�0(�S; �R) = �D1(?; �S; �R)��(0; �S; �R);e�1(�S; �R) = �D1(?; �S; �R)��(1; �S; �R):

At the same time, for any constellation f�S; �Rg 2 [x; 1]2 and x su¢ ciently high

we have �S > �
��
S (�R) by Step 1, which then implies by Proposition 1

e�0(�S; �R) � 0;

e�1(�S; �R) � 0:

Consequently, Z 1

�R=x

Z 1

�S=x

�0(�S; �R)gS(�S)gR(�R)d�Sd�R � 0; (42)Z 1

�R=x

Z 1

�S=x

�1(�S; �R)gS(�S)gR(�R)d�Sd�R � 0: (43)

Finally, (42) and (43) result in (40) and (41) as far as g is su¢ ciently skewed to the

right.

Step 3. The non-existence of other pure strategy equilibria (besides D1) if g

is su¢ ciently shifted to the right follows by the analogous argument. In particular,

by Step 1 and Proposition 1 for any given constellation f�S; �Rg 2 [x; 1]2 with x

su¢ ciently high the S�s incentive constraints for other equilibria (D0 and FD) are

not satis�ed. Consequently, they are still not satis�ed once we integrate them over

all possible constellations f�S; �Rg 2 [x; 1]2 like in Step 2. If the probability mass set

on f�S; �Rg =2 [x; 1]2 gets su¢ ciently small, the same applies to the integration over
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all possible constellations f�S; �Rg 2 [0; 1]2.

Step 4. Consider the case when the distribution g is su¢ ciently skewed to the left,

i.e. to values [0; y]2. As before, Step 1 implies that for any given f�S; �Rg 2 [0; y]2 we

have �S < �
�
S(�R), i.e. the S�s incentive constraints for D0 are satis�ed, while for D1

and FD they are not satis�ed. Consequently, the same holds once we integrate them

over all possible priors constellations in [0; y]2, and hence in [0; 1]2 (under su¢ ciently

skewed distribution).

Proof of Proposition 5.d)

Suppose that S�s prior �S is commonly known. That of R is drawn from a symmetric

distribution G over [0; 1]: Then, by the same steps as in the proof of Proposition 5.a

we obtain

ES[�(0)]� ES[�FD(?)] =
Z 1

�R=0

����e�S(0)� e�R(0)���� j�S � �Rj� dGR(�R)
=

Z 0:5

�R=0

(�0(�S; �R) + �0(�S; 1� �R)) dGR(�R): (44)

Consider �R < 0:5 such that 1� �R > �S > �R. For such �R it holds

�0(�S; �R) + �0(�S; 1� �R)

=
�e�(0; �S)� e�(0; �R)�� (�S � �R)
+
�e�(0; 1� �R)� e�(0; �S)�� (1� �R � �S)

= e�(0; 1� �R)� e�(0; �R) + 2�R � 1
=

(1� �R)(1� p)
(1� �R)(1� p) + �Rp

� �R(1� p)
�R(1� p) + (1� �R)p

+ 2�R � 1

= � (1� 2p)2(1� �R)(1� 2�R)�R
(1� p+ �R(2p� 1))(�R + p(1� 2�R))

< 0:

Since the probability mass of �R < 0:5 such that the condition 1� �R > �S > �R
is satis�ed is su¢ ciently large for �S su¢ ciently close to 0:5, the right-hand side of

(44) is negative as well. Hence, the sender would prefer to disclose 0-signal over
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no disclosure. The same claim for 1-signals follows by symmetry considerations.

Consequently, the FD-equilibrium exists. �

Appendix V: Proposition 2

Step 1. First, note that �(0; �S; �R) and �(1; �S; �R) are V-shaped with respect to

either �S or �R reaching its minimum at �S = �R. Indeed, since e�i(0) is increasing in
�i, it follows that �(0; �i; �j) decreases in �i if �i < �j and increases in �i otherwise,

being equal to 0 for �i = �j. The same argument applies to �(1; �S; �R).

Step 2. Let us show another auxiliary result thatES[�D0(?; �S; �R)] andES[�D1(?; �S; �R)]

are V-shaped with respect to �R reaching its minimum at �S = �R. Consider

ES[�
D1(?; �S; �R)]. Using the expressions from Appendix I, we get:

ES[�
D1(?; �S; �R)]

=
p(1� p')� �S(2p� 1)(1� ')

p� �S(2p� 1)
j�S � �Rj

1� '(1� p+ �R(2p� 1))
: (45)

Taking the derivative with respect to �R and simplifying we obtain (for �R 6= �S)

@ES[�
D1(?; �S; �R)]
@�R

= sgn[�R � �S]
p(1� p')� �S(2p� 1)(1� ')

p� �S(2p� 1)
1� '(1� p+ �S(2p� 1))
(1� '(1� p+ �R(2p� 1)))2

It is easy to verify that all terms on the right-hand side following the sign function

are always positive. Hence, the sign of the derivative is determined by sgn[�R � �S],

which implies that function ES[�D1(?; �S; �R)] is V-shaped with respect to �R, being

kinked at �S = �R where it is equal to 0 (see 45).

Consider ES[�D0(?; �S; �R)]. Using the expressions from Appendix I, we get:

ES[�
D0(?; �S; �R)]

=
1� p+ �S(2p� 1)(1� ')� (1� p)2'

1� p+ �S(2p� 1)
j�S � �Rj

1� '(p� �R(2p� 1))
: (46)
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Taking the derivative with respect to �R and simplifying we obtain (for �R 6= �S)

@ES[�
D0(?; �S; �R)]
@�R

= sgn[�R � �S]
1� p+ �S(2p� 1)(1� ')� (1� p)2'

1� p+ �S(2p� 1)
1� '(p� �S(2p� 1))
(1� '(p� �R(2p� 1)))2

It is easy to verify that all terms on the right-hand side following the sign function

are always positive. Hence, the sign of the derivative is determined by sgn[�R � �S],

which again implies that function ES[�D0(?; �S; �R)] is V-shaped with respect to

�R, being kinked at �S = �R where it is equal to 0 (see 46).

Step 3. Let us show that ES[�FD], ES[�D0], and ES[�D1] are all V-shaped with

respect to �R and reach their minimum at �S = �R. We have

ES[�
FD] = Pr[�S = 1j�S]�(1; �S; �R)

+Pr[�S = 0j�S]�(0; �S; �R) + Pr[�S = ?j�S]j�S � �Rj; (47)

ES[�
D0] = Pr[�S = 0j�S]�(0; �S; �R)

+(1� Pr[�S = 0j�S])�D0(?; �S; �R); (48)

ES[�
D1] = Pr[�S = 1j�S]�(1; �S; �R)

+(1� Pr[�S = 1j�S])�D1(?; �S; �R): (49)

Note now that by Steps 1 and 2, it holds true that �(0; �S; �R); �(1; �S; �R),

�D0(?; �S; �R); �D1(?; �S; �R) and j�S � �Rj are all V-shaped and reach their min-

imum (which equals 0) for �S = �R: It follows immediately that ES[�
FD]; ES[�

D0]

and ES[�D1] exhibit these same properties.

Step 4. Let us show that ES[�] is uniquely de�ned, i.e. that if X and X 0 are

two equilibrium disclosure rules given �S; �R; then ES[�
X j�S; �R] = ES[�X0j�S; �R].

First note thatES[�] = 0 in any equilibrium if �S = �R (see the proof of Lemma II.C).

Consider �S 6= �R. Then, by Proposition 1 the only instances where the equilibrium is

not unique are when �S = �
�
S(�R) and �S = �

��
S (�R). Consider �S = �

�
S(�R), in which

case by Proposition 1 there exist FD, D0 and mixed disclosure equilibria. By (21)-
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(25) in the proof of Lemma II.G, if �S = �
�
S(�R), then S must be indi¤erent between

disclosing � = 1 and non-disclosure for any �1R, i.e. in any disclosure equilibrium in

which � = 1 is not disclosed with positive probability (this includes D0). I.e. it must

be true that:

�(1; ��S(�R); �R) = �
D0(?; ��S(�R); �R): (50)

Note that by (4) �D0(?; ��S(�R); �R) is a weighted average between �(1; �
�
S(�R); �R)

and j��S(�R)� �Rj. Together with (50), this implies

�(1; ��S(�R); �R) = j��S(�R)� �Rj: (51)

(47), (48), (50) and (51) jointly imply thatES[�FDj�S = ��S(�R)] is equal toES[�D0j�S =

��S(�R)], as well as to the corresponding value under any other equilibrium involving

randomization between disclosure and non-disclosure when � = 1 (recall that this is

the only possible mixed-disclosure strategy equilibrium if �S = �
�
S(�R) by the proof

of Lemma II.G). Consequently, ES[�] is uniquely de�ned if �S = ��S(�R). By an

analogous argument, ES[�] is uniquely de�ned if �S = �
��
S (�R).

Step 5. Let us show that ES[�] is continuous in �R. Note �rst that ES[�D0],

ES[�
FD] and ES[�D1] are all continuous in �R. Besides, by Step 4, ES[�] is uniquely

de�ned. This together with Proposition 1 implies that ES[�] is equal either to

ES[�
D0], ES[�FD] or ES[�D1] depending on whether, respectively, �S 2 (0; ��S(�R)],

�S 2 [��S(�R); ���S (�R)] and �S 2 [���S (�R); 1), being continuous at �R = (��S)�1(�S)

and �R = (�
��
S )

�1(�S). Consequently, ES[�] is also continuous in �R.

Step 6. Consider �nally the perceived disagreement from S�s perspective. By

Step 5, ES[�] is continuous in �R and is equal either toES[�
D0], ES[�FD] orES[�D1].

By Step 3, all these functions are V-shaped with respect to �R reaching its minimum

at �S = �R. Consequently, the same holds for ES[�]. �
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Appendix VI: Proposition 6

Proposition 6 follows from a set of Lemmas (Lemmas V.A to V.D), which are stated

and proved in what follows. In a given SDE featuring the non-disclosure interval

(s1; s2) ; we denote R�s perceived disagreement conditional on disclosure of a signal s

by �(s) and conditional on non-disclosure by �(s1;s2)(?):

�(s) =
���e�S(s)� e�R(s)��� for s 2 [s; �s];

�(s1;s2)(?) =
���E;s1;s2R [e�Sj?]� e�s1;s2R (?)

��� :
Lemma V.A If �S 6= �R, then �(s) satis�es the following:

i) lims!s�(s) = lims!�s�(s) = 0:

ii) There exists bs such that �(s) is increasing in s for all s < bs and decreasing
in s for all s > bs.
iii) es > (<)bs if and only if the player with the lower prior is less (more) con�dent.

Instead, es = bs if and only if �S = 1� �R; i.e. if players are equally con�dent.
Proof.

Step 1. i) is immediate. To show ii) we �rst prove that there is a unique bs such
that

d

ds

�e�S(bs)� e�R(bs)� = 0
Indeed,

d

ds

�e�S(s)� e�R(s)�
=

d

ds

 
�S

�S + (1� �S)
f(sj0)
f(sj1)

� �R

�R + (1� �R)
f(sj0)
f(sj1)

!

=
f(sj0)
f(sj1)

0B@ �R (1� �R)�
�R + (1� �R)

f(sj0)
f(sj1)

�2 � �S (1� �S)�
�S + (1� �S)

f(sj0)
f(sj1)

�2
1CA d

ds
: (52)
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Consider the solution to

�R (1� �R)
�
�S + (1� �S)

f(sj0)
f(sj1)

�2
= �S (1� �S)

�
�R + (1� �R)

f(sj0)
f(sj1)

�2
:

Both sides are decreasing in s, but we claim that they increase at di¤erent rates. To

see this, note that

d

ds
�R (1� �R)

�
�S + (1� �S)

f(sj0)
f(sj1)

�2
= 2�R (1� �R) (1� �S)

�
�S + (1� �S)

f(sj0)
f(sj1)

�
d

ds

f(sj0)
f(sj1) ;

d

ds
�S (1� �S)

�
�R + (1� �R)

f(sj0)
f(sj1)

�2
= 2�S (1� �R) (1� �S)

�
�R + (1� �R)

f(sj0)
f(sj1)

�
d

ds

f(sj0)
f(sj1) :

The result then follows from the fact that

2�R (1� �R) (1� �S)
�
�S + (1� �S)

f(sj0)
f(sj1)

�
d

ds

f(sj0)
f(sj1)

R 2�S (1� �R) (1� �S)
�
�R + (1� �R)

f(sj0)
f(sj1)

�
d

ds

f(sj0)
f(sj1)

is equivalent to

�R�S + �R (1� �S)
f(sj0)
f(sj1) Q �R�S + �S (1� �R)

f(sj0)
f(sj1)

which, in turn, is equivalent to �R Q �S: Hence, bs (where �(s) reaches its extremum)
must be unique. Then, claim ii) follows from continuity and (i) together with �(es) =
j�S � �Rj > 0.

Step 2. To show (iii), de�ne again � = maxf�S; �Rg and � = minf�S; �Rg such

that �(s) = e�(s; �)� e�(s; �). From (52) we then have:

d

ds
�(es) =

�
�
�
1� �

�
� �

�
1� �

�� d
ds

f(esj0)
f(esj1) R 0

() �
�
1� �

�
Q �

�
1� �

�
;
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so that by claim ii) es > (<)bs if and only if � is less (more) con�dent than �, andes = bs if and only if players are equally con�dent. �
Lemma V.B (i) If �S = f�R; 1� �Rg, then there exists an FD-equilibrium.

(ii) If �S 6= f�R; 1 � �Rg, then in any equilibrium a positive measure of signals

is not disclosed.

Proof.

Step 1. Let us show the existence of FD for �S = f�R; 1 � �Rg. If �S = �R

then trivially �(s) = 0 for any s, so that S has always an incentive to disclose s. If

�S = 1 � �R, then es = bs by Lemma V.A(iii). Consequently, for any s 2 [s; �s] we
obtain

�FD(?) = j�S � �Rj = �(es) = �(bs) � �(s);
where the last inequality is by Lemma V.A (ii). Hence, S has an incentive to disclose

all signals in equilibrium.

Step 2. Let us show that for �S 6= f�R; 1��Rg there exists no equilibrium where

the set of non-disclosed signals has 0-measure. Assume by contradiction that this

is the case. Consider thus a putative equilibrium featuring a disclosure rule eD such

that the set of non-disclosed signals has 0-measure. Then, the perceived disagreement

upon non-disclosure is � eD(?) = j�S � �Rj, since R assigns probability 1 to the fact
that S is uninformed. At the same time, since �(s) is single peaked at bs by Lemma
V.A(ii) and es 6= bs by Lemma V.A(iii), we have

�(bs) > �(es) = j�S � �Rj = � eD(?),
so that S has an incentive not to disclose all signals located su¢ ciently close to bs,
which is a contradiction.

Lemma V.C If �S 6= f�R; 1� �Rg, then the unique equilibrium is an SDE.

Proof.
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Step 0. Steps 1-2 introduce key equilibrium conditions. In steps 3-4, we show

that there exists a unique SDE. Step 5 proves that any equilibrium is an SDE.

In what follows, we assume �S > �R: The proof for the reverse case follows the

same steps and is omitted.

Step 1. Consider a putative simple disclosure equilibrium with non-disclosure

interval (s1; s2). From R�s point of view, S does not disclose an observed signal with

probability

PrR(s 2 (s1; s2)) = �R
Z s2

s1

f(sj1)ds+ (1� �R)
Z s2

s1

f(sj0)ds:

When S does not disclose, R�s posterior is

e�s1;s2R (?)

=
'

(1� ') + 'PrR(s 2 (s1; s2))

Z s2

s1

(�Rf(sj1) + (1� �R) f(sj0)) e�R(s)ds
+

(1� ')
(1� ') + 'PrR(s 2 (s1; s2))

�R

Similarly, R�s belief about S�s posterior in this case is

Es1;s2R [e�Sj?]
=

'

(1� ') + 'PrR(s 2 (s1; s2))

Z s2

s1

(�Rf(sj1) + (1� �R) f(sj0)) e�S(s)ds
+

(1� ')
(1� ') + 'PrR(s 2 (s1; s2))

�S:

Step 2. Given the de�nition of SDE and the fact that �(s) is single peaked, S

must be indi¤erent between disclosure and non-disclosure at s1 and s2. Hence, we

require

�(s) = �(s1;s2)(?) for s = s1; s2: (53)

Next, implicitly de�ne s�2(s1) as a value of s2 6= s1 equalizing

�(s1) = �(s2)
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for given s1 < bs: There is a unique such value by Lemma V.A (ii). We additionally
(abusively) de�ne s�2(bs) = bs. Then, the equilibrium condition (53) holds if and only

if

�(s1) = �
(s1;s�2(s1))(?):

De�ne the function

(s1) � �(s1;s�2(s1))(?)��(s1):

It follows that the SDE featuring the non-disclosure interval (s1; s�2(s1)) exists if and

only if

(s1) = 0: (54)

In the next steps, we show that there always exists a unique value of s1 satisfying the

above condition, which implies that there always exists a unique SDE.

Step 3. This step proves existence of an SDE, i.e. show that there exists s1 such

that (s1) = 0. Denote s01 the smallest value of s such that �(s) = �(es) = �S � �R.
Note that s01 < bs given �S 6= f�R; 1� �Rg. Indeed, we know from Lemma V.B. that

in this case �(bs) > �S � �R, and we also know from Lemma V.A that �(s) is single

peaked in s with a maximum at bs and with lims!s�(s) = lims!�s�(s) = 0.

Let us prove that (s01) > 0. By Step 1 we have

�(s01;s
�
2(s

0
1))(?) =

'

(1� ') + 'PrR [s 2 (s01; s�2(s01))]

Z s�2(s
0
1)

s01

(�S(s)� �R(s)) ef(s)ds
+

�
1� 'PrR [s 2 (s01; s�2(s01))]

(1� ') + 'PrR [s 2 (s01; s�2(s01))]

�
(�S � �R)

=
'

(1� ') + 'PrR [s 2 (s01; s�2(s01))]

Z s�2(s
0
1)

s01

(�S(s)� �R(s)) ef(s)ds
+

�
1� 'PrR [s 2 (s01; s�2(s01))]

(1� ') + 'PrR [s 2 (s01; s�2(s01))]

�
�(s01)

> �(s01) (55)

where the second equality is by construction of s01, and the strict inequality follows

from the fact that �S(s)� �R(s) > �(s01) for all s 2 (s01; s�2(s01)) since s01 < bs as noted
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above. This implies that (s01) = �
(s01;s

�
2(s

0
1))(?)��(s01) > 0:

Now let us show that (bs) < 0. Since bs = s�2(bs) by construction, it holds that
PrR [s 2 (bs; s�2(bs))] = 0 so that

�(bs;s�2(bs))(?) = �S � �R = �(s01) < �(bs); (56)

where the inequality is due to s01 < bs.
Thus, we have shown that (s01) > 0 and (bs) < 0. From continuity of (s) on

[s01; bs]; it then follows that there exists at least one s1 2 (s01; bs) such that (s1) = 0.
Step 4. We now show that there exists a unique SDE. By Step 1 we have

�(s1;s�2(s1))(?)

=
'

(1� ') + 'PrR(s 2 (s1; s�2(s1)))

Z s�2(s1)

s1

(�S(s)� �R(s)) ef(s)ds
+

�
1� 'PrR(s 2 (s1; s�2(s1)))

(1� ') + 'PrR(s 2 (s1; s�2(s1)))

�
(�S � �R)

=
'

(1� ') + 'PrR(s 2 (s1; s�2(s1)))

0@ R s�2(s1)
s1

(�S(s)� �R(s)) ef(s)ds
�PrR [s 2 (s1; s�2(s1))] (�S � �R)

1A
+(�S � �R) :

Denote �(s1) =
'

(1�')+'PrR[s2(s1;s�2(s1)]
so that

�0(s1) =
@�(s1)

@s1
= �

�
'

(1� ') + 'PrR [s 2 (s01; s�2(s01))]

�2
�
�
@ PrR [s 2 (s01; s�2(s01))]

@s1
+
@ PrR [s 2 (s01; s�2(s01))]

@s�2

@s�2(s1)

@s1

�
= [�(s1)]

2

�ef(s1)� ef(s�2)@s�2@s1
�
> 0:
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Then, taking the derivative of �(s1;s�2(s1))(?) with respect to s1 we obtain

@�(s1;s�2(s1))(?)
@s1

= �0(s1)

�Z s�2

s1

(�S(s)� �R(s)) ef(s)ds� PrR [s 2 (s01; s�2(s01))] (�S � �R)�
+�(s1)(�(�S(s1)� �R(s1)) ef(s1) + (�S(s�2)� �R(s�2)) ef(s�2)@s�2@s1
+(�S � �R)

�ef(s1)� ef(s�2)@s�2@s1
�

= [�(s1)]
2

�ef(s1)� ef(s�2)@s�2@s1
�

�
�Z s�2

s1

(�S(s)� �R(s)) ef(s)ds� PrR [s 2 (s01; s�2(s01))] (�S � �R)�
��(s1)((�S(s1)� �R(s1))

�ef(s1)� ef(s�2)@s�2@s1
�

+(�S � �R)
�ef(s1)� ef(s�2)@s�2@s1

�

= �(s1)

�ef(s1)� ef(s�2)@s�2@s1
�0BBB@

�(s1)
R s�2
s1
(�S(s)� �R(s)) ef(s)ds

+(1� �(s1) PrR [s 2 (s01; s�2(s01))]) (�S � �R)

�(�S(s1)� �R(s1))

1CCCA
= �(s1)

�ef(s1)� ef(s�2)@s�2@s1
��
�s1;s�2(s1)(?)��(s1)

�
= �(s1)

�ef(s1)� ef(s�2)@s�2@s1
�
(s1):

Thus,
@(s1)

@s1
= �(s1)

�ef(s1)� ef(s2)@s�2
@s1

�
(s1)��0(s1): (57)

Note that �0(s1) > 0 and @s�2
@s1

< 0 for any s1 < bs by Lemma V.A (ii). Then, (57)

implies that for any s1 < bs such that (s1) � 0 it holds 0(s1) < 0. Consequently,

if (s0) = 0 for some s0 < bs, it is strictly decreasing for all s1 2 [s0; bs). Hence, the
equilibrium condition (s1) = 0 can be satis�ed for at most one value of s1 < bs.
Step 5. We prove by contradiction that any equilibrium is a simple disclosure

equilibrium. Assume thus an equilibrium which is not an SDE. By Lemma V.B,

35



the set of non-disclosed signals has a positive measure. Upon non-disclosure, let the

perceived disagreement be denoted by C > 0. Conditional on obtaining a signal, S

wants to disclose if and only if the resulting disagreement �(s) is smaller than C.

Recall now that �(s) is single peaked at bs by Lemma V.A(ii). Hence, given that a
positive measure of signals is not disclosed, we must have C < �(bs). Then, there are
s1; s2 satisfying s < s1 < s2 < s such that the actual disagreement is strictly higher

than C after disclosing s 2 (s1; s2) and strictly lower than C after disclosing s < s1

and s > s2: In other words, this implies that for any putative equilibrium, there are

s1; s2 satisfying s < s1 < s2 < s such that S would strictly prefer not to disclose for

� 2 (s1; s2) and strictly prefer to disclose if � < s1 and � > s2: A putative equilibrium

which is not an SDE thus gives rise to strict deviation incentives for S. �

Lemma V.D

a) Assume that �S > �R. If �R < 1� �S, i.e. R is more con�dent than S, then

the equilibrium features es < s1 < s2, i.e. all signals congruent with R0s prior bias

are disclosed. If �R > 1 � �S, i.e. R is less con�dent than S, then the equilibrium

features s1 < s2 < es, i.e. all signals congruent with S 0s prior bias are disclosed.
b) Assume that �S < �R. If �R > 1� �S, i.e. R is more con�dent than S, then

the equilibrium features s1 < s2 < es, i.e. all signals congruent with R0s prior bias
are disclosed. If �R < 1 � �S, i.e. R is less con�dent than S, then the equilibrium

features es < s1 < s2, i.e. all signals congruent with S 0s prior bias are disclosed.
Proof.

We use the de�nitions of (s1), s01 and s
�
2(s1) used in the proof of Lemma V.C

(see Steps 2 and 3 there). By (56), (bs) < 0. At the same time, by (55) we have that
(s01) > 0. Consequently, by the uniqueness of the SDE

s01 < s1: (58)
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Given that �(s) is single-peaked and the de�nition of s�2, this further implies

s2 = s
�
2(s1) < s

�
2(s

0
1): (59)

Now note that by construction s01 = es if es < bs, and s�2(s01) = es if es > bs. Then, the
claims a) and b) follow by Lemma V.A(ii) together with (58) and (59). �

Appendix VII: Propositions 7 and 8

Proof of Proposition 7

Step 0. We prove Point 1 in what follows. By assumption, it holds true that

s1 < s2 < es: By Lemmas V.C and V.D it follows that �R > 1 � �S. We focus on

proving that S would strictly prefer to commit to full disclosure if �S > �R. Note

that combining �R > 1��S and �S > �R implies �S > 1
2
and �R 2 (1��S; �S): The

proof that S instead prefers equilibrium disclosure given �S < �R and s1 < s2 < es
is brie�y outlined in our �nal step. The proof of Point 2 is conceptually identical to

that of Point 1 and thus entirely omitted.

Step 1. Assume that �S > �R. From S�s perspective, the ex ante perceived

disagreement in the SDE featuring thresholds fs1; s2g is given by:

(1� ')
h
ER[e�s1;s2S j?]� e�s1;s2R (?)

i
+'

Z s2

s1

(�Sf(sj1) + (1� �S) f(sj0))ds
h
ER[e�s1;s2S j?]� e�s1;s2R (?)

i
+'

Z s2

s1

(�Sf(sj1) + (1� �S) f(sj0))�(s)ds:

Recall also that we know from Step 1 in the proof of Lemma V.C that

ER[e�s1;s2S j?]� e�s1;s2R (?) =
'

(1� ') + 'PrR(s 2 (s1; s2))

�
Z s2

s1

(�Rf(sj1) + (1� �R) f(sj0))�(s)ds

+
(1� ')

(1� ') + 'PrR(s 2 (s1; s2))
(�S � �R) :
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Step 2. We here consider a putative full disclosure equilibrium. From S�s per-

spective, the ex ante perceived disagreement in an equilibrium with full disclosure is

simply

'

Z s2

s1

(�Sf(sj1) + (1� �S) f(sj0))�(s)ds

+'

Z s2

s1

(�Sf(sj1) + (1� �S) f(sj0))�(s)ds

+(1� ') [�S � �R] :

Step 3. We introduce two expressions which we shall call �(Partial) and �(Full):

These describe the expected perceived disagreement in S�s eyes under each of the two

disclosure rules, when restricting ourselves to those events where either s 2 [s1; s2] or

S holds no signal (as otherwise the perceived disagreement is identical under the two

regimes). We have:

�(Partial)

= ['PrS(s 2 (s1; s2)) + (1� ')]
h
ER[e�s1;s2S j?]� e�s1;s2R (?)

i
= ['PrS(s 2 (s1; s2)) + (1� ')]

�

24 '
(1�')+'Pr

R
(s2(s1;s2))

R s2
s1
(�Rf(sj1) + (1� �R) f(sj0))�(s)ds

+ (1�')
(1�')+'Pr

R
(s2(s1;s2)) (�S � �R)

35
and

�(Full) = '
Z s2

s1

[�Sf(sj1) + (1� �S) f(sj0)]�(s)ds+ (1� ') (�S � �R) :

Our objective is to identify conditions under which �(Partial) > �(Full); i.e.

['PrS(s 2 (s1; s2)) + (1� ')]
h
ER[e�s1;s2S j?]� e�s1;s2R (?)

i
> '

Z s2

s1

[�Sf(sj1) + (1� �S) f(sj0)]�(s)ds+ (1� ') (�S � �R) :

Step 4. De�ne Prb�R(s 2 (s1; s2)) as the ex ante probability assigned s 2 [s1; s2],
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when using the prior b�R: I.e. let:
Prb�R(s 2 (s1; s2)) =

Z s2

s1

(b�Rf(sj1) + �1� b�R� f(sj0))ds:
We de�ne�(s1;s2)

�
?; b�R� as a slightly modi�ed version of ER[e�s1;s2S j?]�e�s1;s2R (?),

with the only di¤erence that the distribution of signals is calculated based on the priorb�R. We let
�(s1;s2)

�
?; b�R�

=
'

(1� ') + 'Prb�R(s 2 (s1; s2))
�
Z s2

s1

(b�Rf(sj1) + �1� b�R� f(sj0))�(s)ds
+

(1� ')
(1� ') + 'Prb�R(s 2 (s1; s2)) (�S � �R) :

Let us �nally de�ne

b�(Partial,b�R) = ['PrS(s 2 (s1; s2)) + (1� ')] h�(s1;s2)
�
?; b�R�i

and note that b�(Partial,�R) = �(Partial):
In what follows, we shall consider the value of the above function for b�R = �S and

for b�R 2 (1� �S; �S) : We show in step 5 that b�(Partial,�S) = �(Full). We show in
step 6 that for any b�R 2 (1� �S; �S), we have b�(Partial,b�R) > �(Full): Given that
by assumption �R 2 (1� �S; �S) ; this implies that in particular b�(Partial,�R) =
�(Partial) > �(Full).

Step 5. Note that when setting b�R = �S; we have:
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b�(Partial,�S)
= ['PrS(s 2 (s1; s2)) + (1� ')]

�
�(s1;s2) (?; �S)

�
= ['PrS(s 2 (s1; s2)) + (1� ')]

�

24 '
(1�')+'PrS(s2(s1;s2))

R s2
s1
(�Sf(sj1) + (1� �S) f(sj0))�(s)ds

+ (1�')
(1�')+'PrS(s2(s1;s2)) (�S � �R)

35
= '

Z s2

s1

[�Sf(sj1) + (1� �S) f(sj0)]�(s)ds+ (1� ') (�S � �R)

= �(Full):

Step 6. Here, we show that �(s1;s2)
�
?; b�R� increases (resp. decreases) as b�R

decreases (resp. increases), for b�R � �S. Note that we can rewrite �(s1;s2)
�
?; b�R�

as follows:

�(s1;s2)
�
?; b�R�

=

264 'Prb�R (s2(s1;s2))
(1�')+'Prb�R (s2(s1;s2))

R s2
s1

(b�Rf(sj1)+(1�b�R)f(sj0))
Prb�R (s2(s1;s2)) �(s)ds

+ (1�')
(1�')+'Prb�R (s2(s1;s2)) (�S � �R)

375 :
From the above expression, note that �(s1;s2)

�
?; b�R� is thus a weighted average of

the expressions

Eb�R
he�S(s)� e�R(s) js 2 [s1; s2]i

=

Z s2

s1

(b�Rf(sj1) + �1� b�R� f(sj0))
Prb�R(s 2 (s1; s2)) �(s)ds

and (�S � �R). The �rst expression is weighted by
'Prb�R (s2(s1;s2))

(1�')+'Prb�R (s2(s1;s2)) and the second
is weighted by (1�')

(1�')+'Prb�R (s2(s1;s2)) : In other words, �
(s1;s2)

�
?; b�R� can be written

as:

�(s1;s2)
�
?; b�R� = p(b�R)A(b�R) + (1� p(b�R))(�S � �R);
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where we let

p(b�R) = 'Prb�R(s 2 (s1; s2))
(1� ') + 'Prb�R(s 2 (s1; s2))

and we let

A(b�R) = Eb�R he�S(s)� e�R(s) js 2 [s1; s2]i :
The derivative of �(s1;s2)

�
?; b�R� w.r.t. b�R is thus given by

@�(s1;s2)
�
?; b�R�

@b�R =
@p(b�R)
@b�R A(b�R) + p(b�R)@A(b�R)

@b�R � @p(
b�R)

@b�R (�S � �R)

= p(b�R)@A(b�R)
@b�R +

@p(b�R)
@b�R

h
A(b�R)� (�S � �R)i :

In order to prove that
@�(s1;s2)(?;b�R)

@b�R < 0 for b�R 2 (1� �S; �S); it thus su¢ ces to
show that @A(

b�R)
@b�R < 0, h

A(b�R)� (�S � �R)i > 0
and @p(b�R)

@b�R < 0:We show in what follows that these properties are indeed satis�ed forb�R 2 (1� �S; �S).
Note �rst that

@ Prb�R (s2(s1;s2))
@b�R =

R s2
s1
(f(sj1) � f(sj0))ds; which is strictly negative

given that we know that f(sj0) > f(sj1) for any s 2 [s1; s2] ; recalling that s1 < s2 < es
by assumption. It follows immediately that (1�')

(1�')+'Prb�R (s2(s1;s2)) = 1�p(
b�R) increases

in b�R and that 'Prb�R (s2(s1;s2))
(1�')+'Prb�R (s2(s1;s2)) = p(

b�R) decreases in b�R. Second, to show that
A(b�R)� (�S � �R) > 0 note that by the facts that s1 < s2 < es, that �(s1) = �(s2)
in SDE and that �(s) is hum shaped in s; we obtain

�S � �R = �(es) < �(s1) < �(s)js 2 (s1; s2):
Third, we now show that A(b�R) = Eb�R

h�e�S(s)� e�R(s)� js 2 [s1; s2]i decreases asb�R increases.
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Note that:

@

�R s2
s1

(b�Rf(sj1)+(1�b�R)f(sj0))
Prb�R (s2(s1;s2)) �(s)ds

�
@b�R

=

Z s2

s1

0@ (f(sj1)� f(sj0))
hR s2
s1
b�Rf(sj1) + �1� b�R� f(sj0)dsi

�
hb�Rf(sj1) + �1� b�R� f(sj0)i hR s2s1 (f(sj1)� f(sj0))dsi

1A
h
Prb�R(s 2 (s1; s2))

i2 �(s)ds

=

0@ hR s2
s1
b�Rf(sj1) + �1� b�R� f(sj0)dsi hR s2s1 (f(sj1)� f(sj0))�(s)dsi

�
hR s2
s1
(f(sj1)� f(sj0))ds

i hR s2
s1

�b�Rf(sj1) + �1� b�R� f(sj0)��(s)dsi
1A

h
Prb�R(s 2 (s1; s2)

i2

=

0@ �
hR s2
s1
(f(sj1)� f(sj0))ds

i hR s2
s1

�b�Rf(sj1) + �1� b�R� f(sj0)��(s)dsi
+
hR s2
s1
b�Rf(sj1) + �1� b�R� f(sj0)dsi hR s2s1 (f(sj1)� f(sj0))�(s)dsi

1A
h
Prb�R(s 2 (s1; s2))

i2

<

0@ �
hR s2
s1
(f(sj1)� f(sj0))ds

i hR s2
s1

�b�Rf(sj1) + �1� b�R� f(sj0)��(s)dsi
+
hR s2
s1
b�Rf(sj1) + �1� b�R� f(sj0)dsi hR s2s1 (f(sj1)� f(sj0))i hR s2s1 �(s)dsi

1A
h
Prb�R(s 2 (s1; s2))

i2

=

�
hR s2
s1
(f(sj1)� f(sj0))ds

i0@ hR s2
s1

�b�Rf(sj1) + �1� b�R� f(sj0)��(s)dsi
�
hR s2
s1
b�Rf(sj1) + �1� b�R� f(sj0)dsi hR s2s1 �(s)dsi

1A
h
Prb�R(s 2 (s1; s2))

i2
< 0:

Above, the �rst equality follows from the application of Leibniz�rule. The �rst and

the second inequality follow from applying Hölder�s inequality.

Thus, we have shown that
@�(s1;s2)(?;b�R)

@b�R < 0. This implies that

@b�(Partial,b�R)
@b�R < 0:
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In sum, we obtain that for �S > �R and s1 < s2 < es it holds
�(Partial) = b�(Partial,�R) > b�(Partial,�S) = �(Full): (60)

Here, the inequality follows from the previous inequality, while the second equality is

by Step 5.

Step 7. Suppose now instead that �S < �R and s1 < s2 < es: Note that
combining the assumptions �S < �R and s1 < s2 < es implies that �R 2 (�S; 1)

by Lemma V.D. The argument follows the same logic as above. It still holds trueb�(Partial,�S) = �(Full) and that b�(Partial,�R) = �(Partial): It also still holds true
that �(Partial,b�R) is decreasing in b�R: It follows that

�(Partial) = b�(Partial,�R) < b�(Partial,�S) = �(Full):
�

Proof of Proposition 8

The argument here is exactly identical to the proof of the counterpart of this result

for the case of binary signals (Proposition 4). �

Appendix VIII: Proposition 9

For convenience, we prove �rst point 3, then 2 and �nally 1.

Proof of Proposition 9.3.a).

Step 1. We here prove that there are �nite �0 < �00 such that � increases disagreement

if and only if � =2 [�0; �00]. Recall that the perceived disagreement is given by

�(d; �S; �R) = jER[ES[!j�] jd ]� ER[!jd]j : (61)
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Note that

Ei [! j� ] =
�i

1
2i
+ � 1

2"
1
2i
+ 1

2"

:

Hence,

�(�) = jES [! j� ]� ER [! j� ]j = jD(�)j ; (62)

where

D(�)

=
�S

1
2S
+ � 1

2"
1
2S
+ 1

2"

�
�R

1
2R
+ � 1

2"
1
2R
+ 1

2"

= � 2"
(2R + 

2
") (

2
S + 

2
")
[�
�
2R � 2S

�
� 2R�S + 2S�R + (�R � �S) 2"]: (63)

Note that D(�) is a linear function, so that it has a unique root in <. Consequently,

jD(�)j is V-shaped in �, with the minimum value of 0. It follows immediately that

there exist �0 < �00 such that jD(�)j > j�S � �Rj (i.e. � increases disagreement) if

and only if � =2 [�0; �00] :

Step 2. Let us show that any equilibrium under S 6= R and �S 6= �R features

a disclosure interval [�; �] such that � is disclosed if and only if � 2 [�; �].

First, note that FD never exists under S 6= R by Step 1, since otherwise S would

have an incentive to deviate by concealing any signal � such that jD(�)j > j�S � �Rj.

Second, note that an equilibrium with disclosure rule eD must feature a positive

and �nite value of perceived disagreement conditional on no disclosure � eD(?). The
fact that � eD(?) should be �nite can be shown by contradiction. Suppose indeed
that � eD(?) is not �nite: Then there would exist an FD-equilibrium, as S would
always favour disclosing over not disclosing. But we know that there exists no FD-

equilibrium, as stated above. The fact that � eD(?) must be positive can also be
shown by contradiction. If this is not the case, then in equilibrium all signals must

be concealed other than the unique signal e� such that D(e�) = 0: Then, R�s posterior
belief distribution will not change after no disclosure, while R would expect that S�s
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posterior mean will be strictly between �R and �S.
32 Hence, � eD(?) > 0 which is a

contradiction.

Consider thus an equilibrium with disclosure rule eD featuring a positive and �nite
�
eD(?): In this case, every signal � such that �(�) � � eD(?) will be disclosed, and

every signal such that �(�) > �
eD(?) will not be disclosed. Given that � eD(�) is

V-shaped in �, the claim follows. Next, by (62) and linearity of D(�) it follows that

�(�) is symmetric around e�, where
�(e�) = 0,

D(e�) = 0,

e� =
�S(

2
R + 

2
")� �R(2S + 2")
2R � 2S

: (64)

Consequently, the disclosure interval (characterized by f� : �(�) � �
eD(?)g for a

given equilibrium �
eD(?)) is also symmetric around e�.

Step 3. This shows existence of an equilibrium of the type characterized in Step

2. Denote R�s perceived disagreement conditional on disclosure in an equilibrium

featuring disclosure interval (�; �) as �(�;�)(?). We have

�(�;�)(?)

=

��������S + (1� �)
24 R

��� ES[!j�] ef(� jd = ?; �; � )d�
+
R
��� ES[!j�] ef(� jd = ?; �; � )d�

35
���R � (1� �)

24 R
��� ER[!j�] ef(� jd = ?; �; � )d�

+
R
��� ER[!j�] ef(� jd = ?; �; � )d�

35������
=

�������(�S � �R) + (1� �)
24 R

���(ES[!j�]� ER[!j�]) ef(� jd = ?; �; � )d�
+
R
���(ES[!j�]� ER[!j�]) ef(� jd = ?; �; � )d�

35������ ;
where � = P (� = ? jd = ?; �; � ), and ef(� jd = ?; �; � ) is the conditional distribution
of � given d = ? from the perspective of R; in an equilibrium featuring disclosure

32See Chapter 10 of Technical Appendix in Vives (2010).
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interval [�; �] :

Given the V-shape of �(�), a pro�le �; � constitutes an equilibrium if and only

if:

�(�;�)(?) = �(�) = �(�): (65)

For any given x > 0, let �(x); �(x) denote the unique pair of signals satisfying

�(�(x)) = �(�(x)) = x;

which exists for any x > 0 given that (63) is unbounded. Hence, the equilibrium

condition (65) is equivalent to

�(�(x);�(x))(?) = x: (66)

Note that for x = 0, i.e. if all signals are concealed, then it must be true that

�(�(0);�(0))(?) > 0 (67)

(see Step 2).

Next, let us show that

lim
x!1

�(�(x);�(x))(?) = j�S � �Rj < x:

Note that

�(�(x);�(x))(?) = jP (� = ? jd = ?; �(x); �(x))(�S � �R) + &(�(x); �(x))j ;

where

&(�(x); �(x))

= P (� 6= ? jd = ?; �(x); �(x))

24 R
���(x)D(�)

ef(� jd = ?; �(x); �(x))d�
+
R
���(x)D(�)

ef(� jd = ?; �(x); �(x))d�
35 :
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Let us show that lim
x!1

&(�(x); �(x)) = 0. We have

&(�(x); �(x)) =
'P (� =2 [�(x); ��(x)])

'P (� =2 [�(x); ��(x)]) + (1� ')

�

24 R
���(x)D(�)

ef(� jd = ?; �(x); �(x))d�
+
R
���(x)D(�)

ef(� jd = ?; �(x); �(x))d�
35

=
'P (� =2 [�(x); ��(x)])

'P (� =2 [�(x); ��(x)]) + (1� ')

24 R
���(x)D(�)

f(�)
P (�=2[�(x);��(x)])d�

+
R
���(x)D(�)

f(�)
P (�=2[�(x);��(x)])d�

35
=

'

'P (� =2 [�(x); ��(x)]) + (1� ')

24 R
���(x)D(�)f(�)d�

+
R
���(x)D(�)f(�)d�

35 : (68)

Note that

lim
x!1

'

'P (� =2 [�(x); ��(x)]) + (1� ') =
'

1� �: (69)

At the same time, given that E[D(�)] must be �nite (since � is normally distributed

and D(�) is linear in �), we have

lim
x!1

Z
���(x)

D(�)f(�)d�

= lim
x!1

�
E[D(�)]�

Z
�>�(x)

D(�)f(�)d�

�
= E[D(�)]� lim

x!1

Z 1

�(x)

D(�)f(�)d�

= E[D(�)]� E[D(�)] = 0: (70)

where the third equality is due to the fact that �(x) must be linear in x (since its

inverse function �(�) is linear in �). By the same argument,

lim
x!1

Z
���(x)

D(�)f(�)d� = 0: (71)

(68), (69), (70) and (71) together imply

lim
x!1

&(�(x); �(x)) = 0: (72)
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We may conclude that

lim
x!1

�(�(x);�(x))(?) = j�S � �Rj < x: (73)

Given the continuity of

�(�(x);�(x))(?)

in x, it follows from (67) and (73) that as x increases from x = 0 to +1; there is

some x 2 (0;+1) such that the equilibrium condition (66) is satis�ed. �

Proof of Proposition 9.3.b).

Assume �R > �S (the proof for �R < �S proceeds symmetrically). We obtain

�S � e� =
(�R � �S)(2S + 2")

2R � 2S
;

�R � e� =
(�R � �S)(2R + 2")

2R � 2S
:

Hence, if R > S we get e� < �S < �R, while if R < S we get e� > �R > �S. Thus,e� =2 [�S; �R] while e� is closer to the mean of the more con�dent player.
Finally, note that the Hausdor¤ distance between the disclosure interval D =

[e� � �; e� + �] and a mean �i is given by the largest distance between a point in D
and �i. In case if R > S so that e� < �S < �R, the furthest point from either �S or

�R is e�� �, which is then closer to the prior of the more con�dent player �S. In case
if R < S so that e� > �R > �S, the furthest point from either �S or �R is e� + �,
which is then closer to the prior of the more con�dent player �R. �

Proof of Proposition 9.2.

Let 2S 6= 2R and �S = �R = �. Recall from Step 1 in the proof of Proposition 9.1.b)

that�(�) is symmetrically V-shaped around e� while�(e�) = 0. This immediately im-
plies that any signal weakly increases disagreement relative to the prior disagreement

(of 0).
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We �rst show that there exists an equilibrium eD where all signals besides e� = �
are not disclosed, while e� is disclosed with an arbitrary probability in [0; 1]. Indeed,
in this case the posterior disagreement conditional on no disclosure � eD(?) is equal to
0, since the posterior means of both S�s and R�s belief distributions in the eyes of R

are then equal to the prior mean �. Hence, given the shape of �(�), S indeed strictly

prefers non-disclosure over disclosure for any � except for e�, where he is indi¤erent.
Let us show that no other equilibrium exists. Assume by contradiction that there

exists an equilibrium disclosure rule D0 such that some other signals besides e� are
disclosed with positive probability. Then, �D0

(?) must be strictly positive as other-

wise S would strictly prefer to conceal all signals other than e�. But if �D0
(?) > 0;

then every signal � such that �(�) � �D0
(?) will be disclosed and every signal such

that �(�) > �D0
(?) will not be disclosed. Given the symmetric V-shape of �(�),

S must disclose signals belonging to an interval [�; �] which is symmetric around e�.
Then,

�D0
(?) =

�������(�S � �R) + (1� �)
24 R

���D(�)
ef(� jd = ?; �; � )d�

+
R
���D(�)

ef(� jd = ?; �; � )d�
35������ ;

where D(�) is given by (63), � = P (� = ? jd = ?; �; � ), and ef(� jd = ?; �; � ) is the
conditional distribution of � given d = ? from the perspective of R. Given �S = �R

this further simpli�es to

�D0
(?) =

����(1� �) �Z
���

Q(�)d� +

Z
���

Q(�)d�

����� ; (74)

where Q(�) = D(�) f(�)
P (�=2[�(x);��(x)]) . Note furthermore that given linearity of D(�), we

have D(e� + z) = �D(e� � z). Besides, by (64), we have e� = � and hence f(e� + z) =
f(e�� z). Thus, Q(e�+ z) = �Q(e�� z), which by the symmetry of disclosure interval
around e� yields Z

���
Q(�)d� +

Z
���

Q(�)d� = 0.
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This together with (74) implies �D0
(?) = 0, which is a contradiction. Thus, there

exists no equilibrium where any signal besides for e� is disclosed. �
Proof of Proposition 9.1.

Step 1. If 2S = 
2
R and �S 6= �R; then

�(�) = jES [! j� ]� ER [! j� ]j =
���� 2"
2R + 

2
"

(�S � �R)
����

< j�S � �Rj : (75)

Consequently, there exists an equilibrium with full disclosure. Let us show that no

other equilibrium exists. Assume by contradiction that there exists an equilibrium

featuring a non-empty disclosure interval eI. Then,
�
eI(?)

=

������ P (� = ? jd = ?; �; � )(�S � �R)

+P (� 6= ? jd = ?; �; � )
R
�2eI D(�) ef(� jd = ?)d�

������
=

������ P (� = ? jd = ?; �; � )(�S � �R)

+P (� 6= ? jd = ?; �; � )
�

2"
2R+

2
"
(�S � �R)

�
������

>

���� 2"
2R + 

2
"

(�S � �R)
���� = �(�)

for any �. Hence, S would have incentive to deviate to disclosure for any � 2 eI.
Step 2. Let 2S = 

2
R and �S = �R; then by (63) D(�) = �(�) = 0 for any �: It

follows immediately that any disclosure rule is an equilibrium disclosure rule. �
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Appendix IX: Propositions 10 and 11

Proof of Proposition 10

Step 1. Consider the disclosure choice of the agent (S) in a putative FD-equilibrium

if he holds a signal � 2 f0; 1g. Recall that S prefers a higher �FD(d), since he

maximizes the probability of being hired. Hence, in an FD-equilibrium, S has no

strict incentive to deviate when holding a �-signal if and only if �(�; �S; �R) � 0 for

� 2 f0; 1g. We have

�(1; �S; �R) = �FD(1)� �FD(?)

= e�R(1)e�S(1) + (1� e�R(1))(1� e�S(1))
��R�S � (1� �R)(1� �S)

=
(�S + �R � 2�R�S)(2p� 1)

(1� p+ �R(2p� 1))(1� p+ �S(2p� 1))
�((�R + �S � 1)(1� p) + �R�S(2p� 1)):

It is easy to show that the fraction on the right-hand side is always positive. Hence,

�(1; �S; �R) � 0

, (�R + �S � 1)(1� p) + �R�S(2p� 1) � 0

, �S �
(1� p)(1� �R)
1� p+ �R(2p� 1)

:

Similarly,

�(0; �S; �R) = �FD(0)� �FD(?)

= e�R(0)e�S(0) + (1� e�R(0))(1� e�S(0))
��R�S � (1� �R)(1� �S)

=
(�S + �R � 2�R�S)(2p� 1)

(p� �R(2p� 1))(p� �S(2p� 1))
�(p(1� �R � �S) + �R�S(2p� 1)):
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Hence,

�(0; �S; �R) � 0

, (p(1� �R � �S) + �R�S(2p� 1)) � 0

, �S �
p(1� �R)

�R + p(1� 2�R)
:

Thus, �(0; �S; �R) and �(1; p; �S; �R) are both positive if and only if

�S 2
�
(1� p)(1� �R)
1� p+ �R(2p� 1)

;
p(1� �R)

�R + p(1� 2�R)

�
:

This condition is identical to the one for FD appearing in Proposition 1.

Step 2. In a putative D1-equilibrium, S must �nd it optimal to conceal 0-signals

and disclose 1-signals. This requires

�FD(0) � �D1(?);

�FD(1) � �D1(?);

where �D1(?) is the value of � after no disclosure in a putative equilibrium where

only 1-signals are disclosed. Note that

�D1(?) = Pr[� = 0j?]�FD(0) + (1� Pr[� = 0j?])�FD(?):

Consequently,

�FD(0) � �D1(?) i¤ �FD(0) � �FD(?):

Hence, by Step 1,

�FD(0) � �D1(?) i¤ �S �
p(1� �R)

�R + p(1� 2�R)
:

Next, �FD(0) � �D1(?) immediately implies the remaining condition �FD(1) �

�D1(?). Indeed,
p(1� �R)

�R + p(1� 2�R)
>

(1� p)(1� �R)
1� p+ �R(2p� 1)

:
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Consequently,

�S � p(1� �R)
�R + p(1� 2�R)

) �S >
(1� p)(1� �R)
1� p+ �R(2p� 1)

, �FD(1) > �FD(?);

where the last step is by Step 1. Thus, a D1-equilibrium exists if and only if �S �
p(1��R)

�R+p(1�2�R)
, which is equivalent to the corresponding condition in Proposition 1.

Step 3. The proof for the D0-equilibrium proceeds analogously to Step 2. �

Proof of Proposition 11

Preliminary step. Steps 1 and 2 establish preliminary results that are used in

the remaining steps. Step 1 pins down equilibrium e¤orts in the Tullock contest

with known disagreement. Step 2 proves conditions under which full disclosure is an

equilibrium outcome in the one shot disclosure game if the utility function of S and

R is �(! � a)2. Step 3 and 4 prove respectively points a) and b).

Step 1. Consider the Tullock contest with known beliefs b�i and b�j: Denote byWi

and Li the expected payo¤ of i if authority is assigned to respectively i and j. Given

that the optimal action of i conditional on having authority in stage 3 is a = b�i, and
there is no belief uncertainty by assumption, we have

Wi = �
�
(1� b�i)(b�i)2 + b�i(1� b�i)2� = b�i �b�i � 1�

and

Li = �
�
(1� b�i)(b�j)2 + b�i(1� b�j)2� :

It is easily checked that

Wi � Li = Wj � Lj =
�b�i � b�j�2 : (76)

At the Tullock contest stage, given belief pro�le fb�i; b�jg; the objective function
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of agent i is: �
ei

ei + ej

�
Wi +

�
1� ei

ei + ej

�
Li � �ei

=

�
ei

ei + ej

�
(Wi � Li) + Li � �ei:

Given ej; the FOC w.r.t. e¤ort ei for agent i reads:

(ei + ej)� ei
(ei + ej)

2 (Wi � Li)� � = 0:

Letting � =Wi � Li; this rewrites as ej�i

(ei+ej)
2 = �;which yields the unique solution

e�i = �ej +
1
p
�

p
�i
p
ej:

At the Tullock contest stage, given �i = �j = � by (76), equilibrium e¤orts ei and

ej are obtained by solving the following system of two equations and two unknowns:

ei = �ej +
1
p
�

p
�
p
ej

ej = �ei +
1
p
�

p
�
p
ei:

The above yields the following unique solution:

e�i (�; �) = e
�
j(�; �) =

�

4�
=

�b�i � b�j�2
4�

: (77)

Step 2. Consider the following simple disclosure game. S holds a signal which

she may disclose or not. Then R, after observing S�s disclosure, chooses an action.

Both players�utility function is given by �(a � !)2: In this simple disclosure game,

there exists an FD-equilibrium if and only if �S 2 [Ioutcome] ; i.e. if and only if �S is

close enough to �R: To see this, assume such a putative equilibrium. Suppose that S
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holds a 0-signal. Then S is willing to disclose if and only if�
1� e�S(0)��e�R(0)�2 + e�S(0)�1� e�R(0)�2

< (1� e�S(0)) (�R)2 + e�S(0)(1� �R)2:
This is equivalent to

�S < b���S (�R; p) = �Rp(1� �R(2p� 1))
�R(1� �R)(1� 2p)2 + 2(1� p)p

:

Suppose that S holds a 1-signal. Then S is willing to disclose if and only if�
1� e�S(1)��e�R(1)�2 + e�S(1)�1� e�R(1)�2

< (1� e�S(1)) (�R)2 + e�S(1)(1� �R)2:
This is equivalent to

�S > b��S(�R; p) = �R(1� p)(1 + �R(2p� 1))
�R(1� �R)(1� 2p)2 + 2(1� p)p

:

Step 3. This proves point a). Suppose by contradiction that �S does not be-

long to Idisagreement and that equilibrium features full disclosure in stage 1. Given

�S =2 Idisagreement, there is some signal realization � such that disclosing (as opposed

to not disclosing) strictly increases R�s perception of disagreement in stage 1 from

j�S � �Rj to
���e�S(�)� e�R(�)��� > j�S � �Rj. For such �, by Step 1 disclosing yields

opponent�s e¤ort (
e�S(�)�e�R(�))2

4�
whereas not disclosing yields the strictly lower op-

ponent�s e¤ort (�S��R)2
4�

: Note that a strictly smaller e¤ort of R in stage 2 is always

strictly advantageous for S, as this strictly increases S�s probability of advantageously

being assigned authority for any given eS. Note also that if not disclosing in stage 1,

S retains the option of disclosing the omitted signal in stage 3, thereby achieving the

same �nal belief of R in stage 3 as if she had disclosed in stage 1. It follows imme-

diately that for � such that
���e�S(�)� e�R(�)��� > j�S � �Rj ; S has a strict incentive to

deviate to non-disclosure.
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Step 4. This proves point b). Under the assumed constraints on parameter

values, we now show that we can construct a putative equilibrium featuring FD by

S in stage 1. The equilibrium features the following strategy pro�le. In stage 4, R

and S pick respectively a = e�R(d) and a = e�S(�) if assigned authority. In stage 3
(second round of disclosure), if S did not disclose his signal then she discloses it. In

stage 2, given disclosure d in stage 1, R chooses e¤ort level eeR(d) = �e�S(d)�e�FDR (d)
�2

4�
,

where e�FDR (?) = �R and e�S(?) = �S: S instead picks
e�S(�; d) = �eeR(d) + 1

p
�

r�e�S(�)� e�FDR (�)
�2peeR(d); � 2

Note that
�e�S(�)� e�FDR (�)

�2
represents the expected payo¤ di¤erence, for S, be-

tween being assigned authority and not being assigned authority, anticipating future

behavior of players as de�ned by players�equilibrium strategies. Consider �nally stage

1. Here, S always discloses. Note that given anticipated future behavior, deviating

from disclosing in stage 1 leaves the stage 4 action una¤ected whatever the �nal allo-

cation of authority. The only e¤ect of not disclosing in stage 1 is a weak increase in

R�s e¤ort in stage 2 (since �S 2 Idisagreement by assumption), which is unambiguously

payo¤ decreasing for S given anticipated future behavior. Deviating from disclosing

in period 1 thus cannot be strictly advantageous. The strategies in stages 2 and 4

are optimal given beliefs and subsequent behavior. The strategy in stage 3 is optimal

since �S 2 [Ioutcome] by assumption. �
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Appendix X: Propositions 12 and 13

Proof of Proposition 12

Step 1. This proves Point 1 of the proposition. Assume without loss of generality

that x � y. Given the de�nitions in section 3.4 we have

�x(x; y; p)

= P (� = 1 jx)D1(x; y; p) + P (� = 0 jx)D0(x; y; p)

= (xp+ (1� x)(1� p))
�

xp

xp+ (1� x)(1� p) �
yp

yp+ (1� y)(1� p)

�
+(1� (xp+ (1� x)(1� p)))

�
x(1� p)

x(1� p) + (1� x)p �
y(1� p)

y(1� p) + (1� y)p

�
.

At the same time,

�x(x; y;
1

2
) = x� y:

The di¤erence V x(x; y; p) = �x(x; y; 1
2
)� �x(x; y; p) further simpli�es to

V x(x; y; p) =
(1� 2p)2(x� y)(1� y)y

(y + p� 2py)(2py + 1� (p+ y)) : (78)

It can be trivially shown that this expression is always positive no matter the values

of x; y and p, where V x equals to 0 if and only if y 2 f0; x; 1g, which proves Point 1

of the proposition.

Step 2. Let us show that the derivative of V x(x; y; p) with respect to y is convex

in y if x > y and concave in y if y > x. Consider x > y. Taking the third derivative

of V x(x; y; p) and simplifying we obtain

@3V x(x; y; p)

@y3
=

6(1� 2p)2(1� p)p
(1� y � p(1� 2y))4(y + p(1� 2y))4M; (79)
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where

M = y4(1� 2p)4 � 4y3x(1� 2p)4 + p� 4p2 + 6p3 � 3p4 + 6y2(x(1� 2p)4

+(1� 2p)2(1� p)p) + x(1� 2p)2(1� 2p+ 2p2)

�4y(1� 2p)2(x+ p� 3xp� p2 + 3xp2):

Let us show that M > 0. Note that M is linear in x. Hence, to prove that M as

a function of x is positive on (y; 1) it is su¢ cient to show that it is positive at the

boundaries of this interval. We have that at x = y

Mjx=y = 6y3(1� 2p)4 � 3y4(1� 2p)4 + p� 4p2 + 6p3 � 3p4

+y(1� 2p)2(1� 6p+ 6p2)� 2y2(1� 2p)2(2� 9p+ 9p2):

One can verify that this function of y has no roots on [0,1]. Besides at y = 0 this

expression turns to p(1� 4p) + 6p3(1� 0:5p) > 0. Hence,

Mjx=y > 0. (80)

Next,

Mjx=1 = 1� 4y3(1� 2p)4 + y4(1� 2p)4 � 5p+ 10p2 � 10p3 + 5p4

�4y(1� 2p)2(1� 2p+ 2p2) + 6y2(1� 2p)2(1� 3p+ 3p2):

One can verify that this function of y has no roots on [0,1]. Besides at y = 0 this

expression turns to 1� 5p(1� 2p)� 10p3(1� 0:5p) > 0. Hence,

Mjx=1 > 0.

This together with (80) and the fact that M is linear in x implies that M > 0.

Consequently, by (79)

@3V x(x; y; p)

@y3
> 0;
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i.e. the derivative of V x with respect to y is convex in y if x > y.

The claim that the derivative of V x with respect to y is concave in y if y > x

follows analogously.

Step 3. Now we can prove Point 2 of the proposition. From Step 1 and the

continuity of V x(x; y; p) in y it follows that

@V x(x; y; p)

@y jy=0
> 0,

@V x(x; y; p)

@y jy!x�
< 0,

Since further @V x(x;y;p)
@y

is convex in y by Step 2, it follows that it has a unique root

on (0; x). This implies that V x(x; y; p) is single-peaked in y for y 2 [0; x]. The claim

for x < y follows analogously given that

@V x(x; y; p)

@y jy=x+
> 0,

@V x(x; y; p)

@y jy=1�
< 0

by Step 1, and @V x(x;y;p)
@y

is concave in y for x < y by Step 2.

Step 4. Now we can prove Point 3 of the proposition. Let us show that for

x < 1=2 the maximum of V x(x; y; p) is reached for y > 1=2 (the reverse argument

then immediately follows by symmetry considerations). First, note that for x = 1=2

we should have that the left and the right peaks (see Step 3) yield the same value of

V x(x; y; p) by symmetry considerations. Next, we have that

y > x :
@V x(x; y; p)

@x
=

(1� y)y(1� 2p)2
(y � 1 + p� 2yp)(y + p� 2yp) < 0; (81)

y < x :
@V x(x; y; p)

@x
= � (1� y)y(1� 2p)2

(y � 1 + p� 2yp)(y + p� 2yp) > 0; (82)

This implies that as x decreases,maxy V x(x; y; pjy > x) is increasing andmaxy V x(x; y; pjy <

x) is decreasing. Hence, overall maxy V x(x; y; p) is reached at by > x. To show that
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by > 1=2 we use the fact that
@V x(x; y; p)

@y jy=1=2

=
4(1� 2p)2(� 3

16
(1� 2p)2 � x(1� p)p+ (1 + x)(1� p)p+ 1

4
(1� 7(1� p)p))

(1� p+ 1
2
(2p� 1))2

> 0.

Hence, the right peak (maximizing V x(x; y; p)) is reached to the right of y = 1=2. �

Proof of Proposition 13

We further denote

�(x; y) = minfV x(x; y); V y(x; y)g:

Given that both players should agree to participate, the probability of signal

acquisition is maximized if and only if �(x; y) is maximized.

Step 1. Note that �(x; y) should reach its maximum at some values fx�; y�g

where x�; y� 6= f0; 1g since minfV x(x; y); V y(x; y)g = 0 if either x or y are at the

boundaries while there exists some fx; yg where �(x; y) > 0 (by Proposition 12.1).

Step 2. By (81) and (82) we have that V x(x; y) is linearly increasing (decreasing)

in x for x > y (x < y). Analogously, V y(x; y) is linearly increasing (decreasing) in y

for y > x (y < x).

Step 3. Let us show that �(x; y) must reach its maximum at some fx�; y�g where

V x(x�; y�) = V y(x�; y�). Assume by contradiction that this is not the case so that

for instance, V x(x�; y�) < V y(x�; y�). Then, by Steps 1 and 2 one can slightly change

x to raise the value of V x(x; y) so that �(x; y) = V x(x; y) < V y(x; y) continues to

hold. In other words, one can raise �(x; y) at least by a slight perturbation of x

which proves that fx�; y�g is not the optimum. The symmetric argument excludes

V x(x�; y�) > V y(x�; y�).

Step 4. We have shown that V x(x�; y�) = V y(x�; y�). Given (78) (and the

symmetrical expression for V y(x; y; p)), this condition holds if and only if either x� =
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y� or D0(x
�; y�) = D1(x

�; y�) (in which case a di¤erence in the probability weights

on D0(x
�; y�) and D1(x

�; y�) does not matter). One can in turn verify that the latter

condition is true if and only if either x� = y� or x� = 1�y�. In the �rst case, we have

�(x; x) = 0 by Proposition 12.1 so it cannot be optimal. Hence, at the optimum it

must hold x� = 1� y�.

Step 5. Let us �nally show that there is unique x� 2 (0; 1=2) where �(x�; 1� x�)

is maximized (in which case �(x; y) is also maximized by Step 4). Let us show

that �(x; 1 � x) is concave. Note that by symmetry considerations V x(x; 1 � x) =

V 1�x(x; 1� x). Hence,

@2�(x; 1� x)
@x2

=
@2V x(x; 1� x)

@x2

= 2(1� p)p(2p� 1)
�

1

(p(1� 2x) + x� 1)3 +
1

(p(1� 2x) + x)3

�
< 0:

Given that �(x; 1 � x) is concave in x and is equal to 0 at x = 0 and x = 1=2 by

Proposition 12.1, we obtain that there is unique x� 2 (0; 1=2) maximizing �(x; 1�x).

�
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