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Abstract

We introduce and study a new property for social choice functions, called PC-strategy-proofness,
which is weaker than strategy-proofness. A social choice function is PC-strategy-proof if it
cannot be manipulated by an individual whose information about the preferences of the other
members of the society is limited to the knowledge, for every pair of alternatives, of the number
of individuals preferring the first alternative to the second one. We prove that, when at least
three alternatives are considered, there is no Pareto optimal, anonymous and PC-strategy-proof
social choice function.
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1 Introduction

Consider a society whose purpose is to select a unique alternative among the ones in a given set.
Assume that such a selection must be based only on individuals’ preferences, expressed via rankings
of the alternatives. Any procedure associating an alternative with each preference profile, namely a
complete list of individuals’ preferences, is called social choice function (scf). Gibbard-Satterthwaite
Theorem (Gibbard, 1973, Satterthwaite, 1975) is definitely one of the most celebrated results about
scfs. It states that, when at least three alternatives are considered, any strategy-proof and surjective
scf is dictatorial. Thus, even though highly desirable, strategy-proofness is a strong requirement, as
dictatorships are the only (surjective) scfs fulfilling it.

Efforts were made by several authors to weaken that property in interesting directions. Guided by
the intuition that if a rule does not allow large enough gains from manipulating then individuals may
decide not to support the cost for gathering the needed information about the others’ preferences,
Campbell and Kelly (2009) focus on the size of the potential gains an individual can achieve from
manipulating Condorcet and scoring scfs. Reffgen (2011) considers those manipulations which
allow individuals to get a very good result and proves that every non-dictatorial and surjective scf
can be manipulated by an individual who can obtain her best or second best alternative via the
manipulation. Sato (2013), in line with Kelly (1988), studies the implications of limiting the options
for misrepresenting. He introduces the concept of AM-proofness, a condition weaker than strategy-
proofness which imposes that individuals are reluctant to tell big lies, and proves an impossibility

∗The author wishes to thank Daniela Bubboloni and Domenico Menicucci for helpful comments and suggestions.
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result on the universal domain (see also Carroll, 2012). Muto and Sato (2017) introduce the concept
of bounded response which states that a switch between two alternatives in the preference order of
an individual does not change the outcome or leads to select an alternative which is consecutively
ranked to the original outcome in the (not modified) preference order of the considered individual.
The authors prove that bounded response is strictly weaker than strategy-proofness but, along with
Pareto optimality, still implies dictatorship. Following the ideas of Sato (2013), they also introduce a
property weaker than AM-proofness mentioned above and prove that it still implies dictatorship when
joined with Pareto Optimality. Campbell et al. (2018) introduce a concept of stability which refers
to the idea that a small change in one of the individual preferences should have a small impact in the
outcome. Their concept of stability is strictly weaker than strategy-proofness (indeed, it is weaker
than bounded response). They prove that the plurality, the Condorcet, the Maximin and the Borda
social choice correspondences1 are stable when restricted to the set of preference profiles where they
are resolute but none of these restrictions can be extended to the whole domain preserving stability.
They also prove that if a scf satisfies stability, Pareto optimality, monotonicity and tops-only, then
it is dictatorial.

The mentioned results basically explore the effects of restricting the possible choice of false pref-
erences for the individuals. This line of research seems to be unable to easily escape dictatorship.2

Nurmi (1987) suggests another possible viewpoint, a viewpoint that we adopt in this paper and that,
at the best of our knowledge, has not been deepened yet in the literature.

First of all, recall that a scf fails strategy-proofness if there is an individual who exactly knows (or
thinks to know) the preferences which the others decide to report and, on the basis of this information,
she realizes that it is profitable to misreport her own preferences. The failure of strategy-proofness
requires then the presence of an individual who has (or thinks to have) a complete knowledge of
the others’ preferences. Of course, it is possible to conceive situations where that might happen.
For instance, when the members of a small committee discuss a lot about the candidates before
voting, their preferences can get precisely revealed to the others. However, in most circumstances,
individuals cannot draw a clear picture of the preferences of the others. In particular, when the
number of alternatives or individuals is large, the level of knowledge of private information which
an individual can expect to get is in general limited. In these cases violating strategy-proofness is
not that serious since nobody can really decide to deviate on the basis of the exact knowledge of
the others’ preferences, since nobody can get that knowledge. Nurmi (1987) interestingly observes
however that an individual might decide to deviate on the basis of a smaller amount of information
about the others’ preferences. Thus, if the information needed to make an individual realize that it
is profitable for her to report false preferences is small enough and easy to get, then manipulability
issues become much more significant.

In the framework of social choice correspondences, Nurmi introduces a concept of degree of
vulnerability “which is intended to reflect the type of knowledge one typically needs in order to
benefit from preference misrepresentation. The more detailed the knowledge of the preference profile
one needs, the less vulnerable is the procedure to misrepresentation” (Nurmi, 1987, p.119). We have
to say that such a concept is not rigorously defined and, as stressed by Kelly (1993), no precise
measure of the amount of knowledge is given. Anyway, on the basis of a number of examples
and observations, he proposes a misrepresentation hierarchy. In particular, Nurmi states that the
plurality social choice correspondence has the highest level of manipulability as only the distribution
of the first ranked alternatives is needed for successful misrepresentation while the Coombs, the
Alternative Voting (Hare) and the plurality with runoff social choice correspondences typically need
the knowledge of the entire preference profile. The author concludes then that “there are marked
differences between procedures and that therefore is not of much consequence to discover that all

1A social choice correspondence is a procedure which associates a nonempty set of alternatives with each preference
profile.

2There are other lines of research which try to overcome impossibility results of the Gibbard-Satterthwaite type
without looking for weak versions of strategy-proofness. Among them it is worth mentioning the analysis of the
so-called dictatorial domains (Aswal et al., 2003, Pramanik, 2015) as well as the study of the informatively richer
framework where voters not only rank alternatives but also evaluate them as acceptable or inacceptable (Erdamar et
al., 2017).
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of them are manipulable. This finding conceals many important differences between the procedures
and has thus very little practical bearing” (Nurmi, 1987, p.125).

As a consequence of Nurmi’s observations, we believe it is very important in practical situations
to carefully evaluate the type of information which individuals are expected to get and then design
scfs which cannot be manipulated by individuals having that type of information. Thus, we think
it is crucial to deeply study the weak versions of strategy-proofness obtained by establishing

(a) the information each individual is supposed to be able to get about the others’ preferences,

(b) the conditions under which an individual really has an incentive to misrepresent her preferences,

and then by imposing that, for every individual having the type of information described in (a),
conditions described in (b) never occur. About the role of (b), note that an individual may realize that
there are several combinations of preferences which the other individuals can report and which are
consistent with the available information. When such an uncertain situation occurs, it is important to
know the conditions which really cause the individual to misrepresent her preferences. Establishing
(b) just serves to clarify this point. We finally stress that if a scf satisfies a weak version of strategy-
proofness associated with suitable (a) and (b), we cannot rule out that people are lying. However, if
someone misreports her preferences, we are certain that it is due to the fact that she has obtained
further information than the one described in (a).

Among the numerous possibilities to explore, in this paper we start focusing on the weak version
of strategy-proofness which refers to the following qualifications of (a) and (b):

(a′) each individual is supposed to be able to know, for every pair of alternatives, the number of
individuals preferring the first alternative to the second one;

(b′) an individual decides to report false preferences if, for every combination of preferences of the
others consistent with her information, false preferences cannot make her worse off and, for at
least one combination, make her better off.

Since individuals are assumed to have complete information about pairwise comparisons among
alternatives, later on we refer to such a weak version of strategy-proofness as PC-strategy-proofness,
where PC stands for pairwise comparison. Notice that Nurmi (1987) also focuses on this type of
information. Assumption (a′) is certainly weaker than the one of complete knowledge of individuals’
preferences implicitly used in the definition of strategy-proofness3. In fact, the possibility to have
precise information about what people think of any pair of alternatives is definitely easier to get and,
in our opinion, more natural to emerge during a debate than the whole preferences of individuals.
Assumption (b′) refers instead to a sort of totally risk averse behaviour of individuals. If there is one
single possibility that false preferences can make an individual worse off, the individual will report
sincere preferences.

Let us explain better the concept of PC-strategy-proofness via an example. Assume that five
individuals, denoted by i1, i2, i3, i4 and i5, have to collectively select an alternative among the alter-
natives a, b and c using the Alternative Vote (AV)4. Assume that individual i1 has preferences5 abc
and that, considering the other four individuals, she knows that there are two individuals preferring
a to b, there is one individual preferring a to c and there are two individuals preferring b to c. On
the basis of this information, individual i1 can deduce that the preferences of the other individuals
are described by one of the following three lists6

`1 : acb, bca, bca, cab
`2 : abc, bca, cab, cba
`3 : bac, bca, cab, cab

3We observe that if individuals are two, PC-strategy-proofness implies strategy-proofness. Moreover, every PC-
strategy-proof scf which is C2 in the sense of Fishburn (1977) is strategy-proof.

4As shown by Moulin (1983, pp.23-25), when five individuals and three alternatives are considered, AV is really a
social choice function, that is, it always selects a unique outcome.

5The writing xyz denotes the ranking where x is preferred to y and y is preferred to z.
6Since AV is anonymous, we are not associating individual names to preferences. We also stress that the determi-

nation of such a set of lists (as well as all the other sets of lists presented in this introduction) from the information
available by individual i1 requires a bit of work but no sophisticated argument.
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Observe now that if individual i1 reported acb, cab or cba, then, for any possible list, AV would select
an alternative which is indifferent or worse for individual i1 than the one obtained reporting her true
preferences abc. Reporting bca or bac would certainly be profitable to individual i1 if `2 occurred,
since in that case the outcome would be b instead of c. However, if `1 occurred, bac and bca would
lead to b while the true preferences would lead to the better outcome a. Thus, assumption (b′) on the
behaviour of the individual allows to conclude that in this situation individual i1 has no incentive to
misreport her preferences.

Assume now that individual i1 has preferences abc and that, considering the other members of
the society, she knows that there is one individual preferring a to b, there is one individual preferring
a to c and there are two individuals preferring b to c. On the basis of this information, individual i1
can deduce that the preferences of the other individuals are described by one of the following three
lists

`1 : acb, bca, bca, cba
`2 : abc, bca, cba, cba
`3 : bac, bca, cab, cba

It is easy to verify that reporting bca cannot damage individual i1 and, if `2 occurs, it makes her
better off. Then, individual i1 has an incentive to report bca instead of abc. That shows that, at least
when five individuals and three alternatives are considered, AV does not fulfil PC-strategy-proofness.
Thus, an individual can manipulate AV without having a perfect knowledge of the others’ preferences
but only knowing, for every pair of alternatives, how many individuals prefer the first alternative to
the second one.

The fact that AV fails to be PC-strategy-proof is not a special situation. Indeed, the main result
of the paper states that there is no PC-strategy-proof, Pareto optimal and anonymous scf, provided
there are at least three alternatives (Theorem 3). Thus, every anonymous and Pareto optimal scf
can be manipulated by an individual who knows, for every pair of alternatives, how many individuals
prefer the first alternative to the second one (and possibly has some information more). In particular,
that happens to any scf which is obtained by a classical social choice correspondence, like the Borda,
the Copeland, the Kemeny and the Simpson, endowed with an agenda (that is, an exogenously given
ranking of the alternatives) for breaking the possible ties. It is also worth noticing that, according to
assumption (b′), the conditions leading an individual to report false preferences are definitely very
strict. Thus, different and reasonable qualifications of those conditions determine weak versions of
strategy-proofness which certainly imply PC-strategy-proofness and then are still inconsistent with
Pareto optimality and anonymity.

The proof of the main theorem is based on an induction argument on the number of voters and it
is strongly inspired to the short proof of Gibbard-Satterthwaite theorem proposed by Lars-Gunnar
and Reffgen (2014). As an intermediate step of the proof, we also prove that, when three alternatives
are considered, every Pareto optimal and strategy-proof scf defined on a special set of preference
profiles is dictatorial (Proposition 10). Such a proposition does not seem to be a consequence of one
of the known results about dictatorial domains (Aswal et al., 2003, Pramanik, 2015). We finally
stress that we do not know yet whether every surjective and PC-strategy-proof scf is dictatorial.

The last part of the paper is devoted to a description of a general framework for dealing with
further weak versions of strategy-proofness, still based on the principle of limiting the amount of
information individuals can get. In particular, we focus on the case where individuals only know
that the number of individuals preferring an alternative to another belongs to a set of consecutive
numbers having a given size t. Of course, if t = 1 we obtain again the PC-strategy-proofness and
the larger is t the weaker is the corresponding version of strategy-proofness. Interestingly, despite
of further lack of information, manipulability may still hold true for t ≥ 2. Indeed, consider again
five individuals, denoted by i1, i2, i3, i4 and i5, whose purpose is to collectively select an alternative
among the alternatives a, b and c using AV. Assume that individual i1 has preferences abc and
assume that she knows that the number of individuals preferring a to b belongs to the set {3, 4}, the
number of individuals preferring a to c belongs to the set {0, 1}, the number of individuals preferring
b to c belongs to the set {1, 2}7. On the basis of this information, individual i1 can deduce that the

7For consistency reasons, we also assume that she knows that the number of individuals preferring b to a belongs to
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preferences of the other individuals are described by one of the following six lists

`1 : bca, cab, cab, cab
`2 : bac, cab, cab, cab
`3 : acb, bca, cab, cab
`4 : abc, cab, cab, cba
`5 : abc, bca, cab, cab
`6 : abc, cba, cba, cba

A simple computation shows that reporting bca never damages individual i1 and, if `5 occurs, it
makes her better off. Then, individual i1 has an incentive to report bca instead of abc. That shows
that, when five individuals and three alternatives are considered, an individual might realize that it
is profitable to manipulate AV even if, for every pair of alternatives, she only knows that the number
of individuals preferring the first alternative to the second one belongs to a set of two consecutive
numbers.

Using the above described weak versions of strategy-proofness depending on the parameter t,
we finally propose a special index for measuring the degree of manipulability of scfs. Some simple
remarks about that index complete the paper. We believe that its detailed analysis is an interesting
topic of further research.

2 Preliminary definitions and notation

Given a finite set X, we denote by |X| the size of X, by P0(X) the set of the nonempty subsets of
X and by X2

∗ the set {(x, y) ∈ X2 : x 6= y}.
Let A be a finite set with |A| ≥ 2. We denote by L(A) the set of complete, transitive and

antisymmetric binary relations on A. Consider q ∈ L(A). If x, y ∈ A, we write x �q y when
(x, y) ∈ q and we write x �q y when (x, y) ∈ q and (y, x) 6∈ q. For every k ∈ {1, . . . , |A|}, we write
rk(q) to denote the element of q which is ranked k-th in q. We denote by qr the element of L(A)
such that, for every x, y ∈ A, x �qr y if and only if y �q x. If q is such that x1 �q . . . �q x|A|,
where A = {x1, . . . , x|A|}, we identify q with the writing x1 · · ·x|A|. Note that if q = x1 · · ·x|A|, then
qr = x|A| · · ·x1 and that q 6= qr.

Let I, J and K be nonempty and finite sets. The set of functions from I to L(A) is denoted
by L(A)I and its elements are usually denoted by the letter p, possibly with suitable subscripts or
superscripts. If I and J are disjoint, p ∈ L(A)I and p′ ∈ L(A)J , we denote by (p, p′) the element of
L(A)I∪J defined, for every i ∈ I ∪ J , by

(p, p′)(i) =

{
p(i) if i ∈ I
p′(i) if i ∈ J

If I, J and K are pairwise disjoint, p ∈ L(A)I , p′ ∈ L(A)J and p′′ ∈ L(A)K , we denote by (p, p′, p′′)
the element of L(A)I∪J∪K defined, for every i ∈ I ∪ J ∪K, by

(p, p′, p′′)(i) =

 p(i) if i ∈ I
p′(i) if i ∈ J
p′′(i) if i ∈ K

If p ∈ L(A)I and J ⊆ I, we denote by p|J the restriction of p to J , that is, the element of L(A)J

defined, for every i ∈ J , by p|J(i) = p(i). Moreover, if i ∈ I and q ∈ L(A), we denote by q[i] the
function from {i} to L(A) such that q[i](i) = q. Thus, assuming |I| ≥ 2 and i ∈ I, we have that,
for every q ∈ L(A) and p ∈ L(A)I\{i}, the writing (q[i], p) represents the element of L(A)I such that
(q[i], p)(i) = q and (q[i], p)(j) = p(j) for all j ∈ I \ {i}.

the set {0, 1}, the number of individuals preferring c to a belongs to the set {3, 4}, the number of individuals preferring
c to b belongs to the set {2, 3}.
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If p ∈ L(A)I and (x, y) ∈ A2
∗, we set

cp(x, y) = |{i ∈ I : x �p(i) y}|.

We also consider the equivalence relation ∼ on L(A)I defined as follows: for every p, p′ ∈ L(A)I ,
p ∼ p′ if, for every (x, y) ∈ A2

∗, cp(x, y) = cp′(x, y). Of course, ∼ depends on A and I but those
symbols are omitted in the writing as they will be always clear from the context. Note that if |I| = 1
and p, p′ ∈ L(A)I , then p ∼ p′ if and only if p = p′. Given p ∈ L(A)I and8 ϕ ∈ Sym(I), we denote
by pϕ the element of L(A)I defined, for every i ∈ I, as pϕ(i) = p(ϕ−1(i)).

3 Main result

From now on, let A and I be finite sets such that |A| ≥ 2 and |I| ≥ 2. We interpret A as the set
of alternatives and I as the set of individuals. Each q ∈ L(A) is interpreted as one of the possible
individual preferences. Each element p in L(A)I is called preference profile and represents the
complete description of individual preferences: for every i ∈ I, p(i) is interpreted as the preferences
of individual i.

A social choice function (scf) is a function from L(A)I to A. Given a scf F : L(A)I → A, we
say that F is Pareto optimal if, for every p ∈ L(A)I and x, y ∈ A, if x �p(i) y for all i ∈ I, then
F (p) 6= y; F is dictatorial with dictator i ∈ I if, for every p ∈ L(A)I , F (p) = r1(p(i)); F is dictatorial
if there exists i ∈ I such that F is dictatorial with dictator i; F is anonymous if, for every p ∈ L(A)I

and ϕ ∈ Sym(I), we have that F (pϕ) = F (p); individual i ∈ I is able to manipulate F at p ∈ L(A)I

via q ∈ L(A) if F (q[i], p|I\{i}) �p(i) F (p); F is strategy-proof if, for every i ∈ I, p ∈ L(A)I\{i} and
q, q′ ∈ L(A), F (q[i], p) �q F (q′[i], p).

Of course, a scf F is strategy-proof if and only if, for every i ∈ I, p ∈ L(A)I and q ∈ L(A), i
is not able to manipulate F at p via q. Moreover, Pareto optimality implies surjectivity as well as
anonymity implies non-dictatorship. The next fundamental result holds true.

Theorem 1 (Gibbard-Satterthwaite). Assume that |A| ≥ 3 and let F : L(A)I → A. If F is surjective
and strategy-proof, then F is dictatorial.

Recall that under the assumption |A| = 2 the simple majority with ties broken via an agenda
is Pareto optimal, strategy-proof and anonymous (see Moulin, 1983, pp.62-65) so that Theorem 1
cannot be extended to the case of two alternatives. Let us introduce now the definition of PC-
strategy-proofness9.

Definition 2. Let F : L(A)I → A. We say that F is PC-strategy-proof if, for every i ∈ I, p ∈
L(A)I\{i} and q, q′ ∈ L(A), F (q′[i], p) �q F (q[i], p) implies that there exists p′ ∈ L(A)I\{i} with
p′ ∼ p such that F (q[i], p′) �q F (q′[i], p′).

Thus, a scf is PC-strategy-proof if, every time an individual realizes that it is profitable for her
to report false preferences when a certain combination of preferences of the others occurs, it can be
found another combination of preferences of the others such that, for every pair of alternatives, the
number of individuals preferring the first alternative to the second one is the same as before and
such that the previously considered false preferences makes now the deviating individual worse off.
As a consequence, if the information about the others’ preferences is limited to the knowledge of
the pairwise comparison among the alternatives, no individual in the society will have incentive to
deviate when a PC-strategy-proof scf is utilized.

It is immediate to verify that strategy-proofness implies PC-strategy-proofness and that the two
concepts agree when |I| = 2 or when they are applied to C2 scfs10. As a consequence, if |A| ≥ 3
and |I| = 2, we have that, by Theorem 1, PC-strategy-proofness and surjectivity imply dictatorship.

8Given a nonempty set I, we denote by Sym(I) the set of bijective functions from I to I.
9Equivalent definitions of PC-strategy-proofness are proposed in Sections 4 and 5.

10A scf F : L(A)I → A is C2 in the sense of Fishburn (1977) if, for every p, p′ ∈ L(A)I with p ∼ p′, F (p) = F (p′).
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We stress that, at the moment, proving the existence of a PC-strategy-proof, surjective and non-
dictatorial social choice function when |A| ≥ 3 and |I| ≥ 3 is an open problem. However, the next
result shows that Pareto optimality, anonymity and PC-strategy-proofness are surely inconsistent
with each other when at least three alternatives are considered.

Theorem 3. Assume that |A| ≥ 3 and let F : L(A)I → A. If F is Pareto optimal and PC-strategy-
proof, then F is not anonymous.

Theorem 3 is the main result of this paper. Its technical proof is presented in the appendix.
Note that, still considering the simple majority with ties broken via an agenda, Theorem 3 cannot
be extended to the case of two alternatives.

4 A more general framework

In this section we propose a more general framework for dealing with further weak versions of
strategy-proofness. Consider the set

Ω =
∏
i∈I
P0

(
P0

(
L(A)I\{i}

))
.

Given Ω ∈ Ω, we denote the i-th component of Ω by Ωi. Note that Ωi is simply a nonempty set
whose elements are nonempty subsets of L(A)I\{i}. Thus, if i ∈ I and ω ∈ Ωi, then ω is a nonempty
subset of L(A)I\{i}. In what follows, we are going to interpret Ω ∈ Ω as a complete description of
the type of information individuals are allowed to get. More precisely, for every i ∈ I, individual i is
supposed to have the capability to know that the preferences of the others, described by an element
of L(A)I\{i}, belong to a suitable ω ∈ Ωi.

The next definition adapts the concept of strategy-proofness to those situations where individuals’
information about the preferences of the other members of the society can be described by an element
of Ω.

Definition 4. Let F : L(A)I → A and Ω ∈ Ω. We say that F is Ω-strategy-proof if, for every i ∈ I,
ω ∈ Ωi, p ∈ ω and q, q′ ∈ L(A), F (q′[i], p) �q F (q[i], p) implies that there exists p′ ∈ ω such that
F (q[i], p′) �q F (q′[i], p′).

Note that F : L(A)I → A is not Ω-strategy-proof if there exists i∗ ∈ I, ω∗ ∈ Ωi∗ , p
∗ ∈ ω∗ and

q, q′ ∈ L(A) such that F (q′[i∗], p∗) �q F (q[i∗], p∗) and, for every p ∈ ω∗, F (q′[i∗], p) �q F (q[i∗], p).
That implies that if individuals i∗ knows that the preferences of the others can be identified with an
element of ω∗, then she has an incentive to report q′ instead of her true preferences q.

It is immediate to show that if a scf is strategy-proof, then it is Ω-strategy-proof for all Ω ∈
Ω. Moreover, strategy-proofness can be seen as a special case of Ω-strategy-proofness. Indeed,
considering Ωsp ∈ Ω defined, for every i ∈ I, by

Ωspi =
{
{p} : p ∈ L(A)I\{i}

}
,

we have that a scf is Ωsp-strategy-proof if and only if it is strategy-proof. Of course, by Gibbard-
Satterthwaite theorem, there is no surjective, non-dictatorial and Ωsp-strategy-proof scf.

PC-strategy-proofness can be seen as a special case of Ω-strategy-proofness, as well. Indeed, for
every i ∈ I, let Ci be the set of functions c from A2

∗ to {0, . . . , |I| − 1} having the property that there
exists p ∈ L(A)I\{i} such that, for every (x, y) ∈ A2

∗, cp(x, y) = c(x, y). Considering then Ωpc ∈ Ω
defined, for every i ∈ I, by

Ωpci =
{{
p ∈ L(A)I\{i} : ∀(x, y) ∈ A2

∗, cp(x, y) = c(x, y)
}

: c ∈ Ci
}
,

we have that a scf is Ωpc-strategy-proof if and only if it is PC-strategy-proof. By Theorem 3, we
know that there is no Pareto optimal, anonymous and Ωpc-strategy-proof scf.
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Another interesting example is given by Ωw ∈ Ω defined, for every i ∈ I, by

Ωwi =
{
L(A)I\{i}

}
.

The set Ωw describes the extreme case where all individuals cannot get any information about the
preferences of the others.

The next simple result shows that, in some cases, it is possible to compare different types of Ω-
strategy-proofness. In particular, it implies that Ωw-strategy-proofness is weaker than Ωpc-strategy-
proofness.

Proposition 5. Let F : L(A)I → A and Ω, Ω̂ ∈ Ω. Assume that, for every i ∈ I and ω ∈ Ωi, there

exist k ∈ N and ω̂1, . . . , ω̂k ∈ Ω̂i such that ω = ω̂1 ∪ . . . ∪ ω̂k. If F is Ω̂-strategy-proof, then it is
Ω-strategy-proof.

Proof. Assume that F is not Ω-strategy-proof and prove that F is not Ω̂-strategy-proof. Indeed, we
know that there exist i∗ ∈ I, ω∗ ∈ Ωi∗ , p

∗ ∈ ω∗ and q, q′ ∈ L(A) such that F (q′[i∗], p∗) �q F (q[i∗], p∗)

and, for every p ∈ ω∗, F (q′[i∗], p) �q F (q[i∗], p). Consider then k ∈ N and ω̂∗1 , . . . , ω̂
∗
k ∈ Ω̂i such that

ω∗ = ω̂∗1 ∪ . . . ∪ ω̂∗k. Then there exists r ∈ {1, . . . , k} such that p∗ ∈ ω̂∗r . Thus, in particular, we have
that F (q′[i∗], p∗) �q F (q[i∗], p∗) and, for every p ∈ ω̂∗r , F (q′[i∗], p) �q F (q[i∗], p). As a consequence,

F is not Ω̂-strategy-proof.

5 An index for measuring the degree of manipulability

The evaluation of the degree of manipulability of social choice functions and correspondences is
definitely an interesting problem and several indexes for measuring the degree of manipulability were
proposed and studied. We only mention here the contributions by Nitzan (1985), Kelly (1988, 1993),
Aleskerov and Kurbanov (1999) and Aleskerov et al. (2012). In this section we define a new index
and propose some very preliminary observations about it.

Let us introduce first a special family of elements of Ω. For every t ∈ {1, . . . , |I|}, let S(t) be the
set whose elements are the sets of t consecutive numbers taken in {0, . . . , |I|−1}. Thus, for instance,
if |I| = 5 we have that

S(1) = {{0}, {1}, {2}, {3}, {4}}
S(2) = {{0, 1}, {1, 2}, {2, 3}, {3, 4}}
S(3) = {{0, 1, 2}, {1, 2, 3}, {2, 3, 4}}
S(4) = {{0, 1, 2, 3}, {1, 2, 3, 4}}
S(5) = {{0, 1, 2, 3, 4}}

For every i ∈ I and t ∈ {1, . . . , |I|}, let Vi(t) be the set of functions v from A2
∗ to S(t) such that

(a) for every (x, y) ∈ A2
∗, v(y, x) =

{
|I| − 1− k : k ∈ v(x, y)

}
,

(b) there exists p ∈ L(A)I\{i} such that, for every (x, y) ∈ A2
∗, cp(x, y) ∈ v(x, y).

For every t ∈ {1, . . . , |I|}, let Ωt ∈ Ω be such that, for every i ∈ I,

Ωti =
{{
p ∈ L(A)I\{i} : ∀(x, y) ∈ A2

∗, cp(x, y) ∈ v(x, y)
}

: v ∈ Vi(t)
}
.

The set Ωt describes a situation where each individual is able to establish, for every pair of distinct
alternatives, that the number of the other members of the society preferring the first alternative to
the second one belongs to a suitable set of consecutive numbers having size t. In other words, for
every i ∈ I, individual i is able to determine a suitable function v ∈ Vi(t) having the property that, for
every (x, y) ∈ A2

∗, the number of the other members of the society preferring x to y belongs to v(x, y).
We stress that condition (a) requires that v is consistent with the fact that individual preferences
are linear orders so that if an individual does not prefer x to y then she prefers y to x; condition
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(b) assures instead that v is consistent with at least one combination of preferences of the others.
It is immediate to show that PC-strategy-proofness is equivalent to Ω1-strategy-proofness as well as
Ωw-strategy-proofness is equivalent to Ω|I|-strategy-proofness. Moreover, applying Proposition 5, we
get that, for every t ∈ {1, . . . , |I| − 1}, Ωt-strategy-proofness implies Ωt+1-strategy-proofness.

Given now a scf F , let us associate with F the number

τ(F ) = max {0} ∪
{
t ∈ {1, . . . , |I|} : F is not Ωt-strategy-proof

}
.

Observe first that F is Ω1-strategy-proof if and only if τ(F ) = 0. Moreover, given F1 and F2 with
τ(F1) > τ(F2), we have that if F1 is Ωt-strategy-proof for a certain t, then F2 is Ωt-strategy-proof
for the same t, and that F2 is Ωτ(F1)-strategy-proof while F2 is not. Thus, individuals can poten-
tially manipulate F1 more easily than F2, namely using less information about pairwise comparison
among the alternatives. As a consequence, τ(F ) can be seen as an index which measures the degree
of manipulability of F with respect to the information related to the pairwise comparison among
alternatives: the larger is τ(F ), the easier is manipulating F . We stress that Theorem 3 implies that
if F is Pareto optimal and anonymous, then τ(F ) ≥ 1.

Assume now that |I| = 5 and A = {a, b, c} and consider the five scfs given by the Alternative Vote
(AV), the Borda (BOR), the Plurality (PLU), the Negative Plurality (NEG) and the Simpson (SIM)
social choice correspondences11 with ties alphabetically broken. With the help of a computer12, it
can be shown that

τ(AV) = 2, τ(BOR) = 3, τ(PLU) = 2, τ(NEG) = 2, τ(SIM) = 3.

Thus, when five individuals and three alternatives are considered, BOR and SIM can be manipulated
more easily then the other three scfs. In particular, the index τ turns out to be able to discriminate
among classical scfs. Moreover, the fact that BOR and SIM are not Ω3-strategy-proof seems to us a
strong and quite unexpected result as well as the fact that none of the considered scfs is Ω2-strategy-
proof. Those simple observations suggest interesting open problems about the index τ which, in our
opinion, deserve to be investigated.

A Proof of Theorem 3

A.1 The three alternatives case

In this section we assume |A| = 3 and A = {a, b, c}. Thus, we have that

L(A) = {abc, acb, bac, bca, cab, cba}.

Proposition 6. Let p, p′ ∈ L(A)I . Then the following conditions are equivalent:

(a) there exists ϕ ∈ Sym(I) such that, p′ = pϕ,

(b) for every q ∈ L(A), |{i ∈ I : p(i) = q}| = |{i ∈ I : p′(i) = q}|.

Proof. (a)⇒ (b) Assume that there exists ϕ ∈ Sym(I) such that, p′ = pϕ and fix q ∈ L(A). Then

{i ∈ I : p′(i) = q} = {i ∈ I : pϕ(i) = q} = {i ∈ I : p(ϕ−1(i)) = q} = ϕ({i ∈ I : p(i) = q}).

Since ϕ is bijective, we get |{i ∈ I : p′(i) = q}| = |{i ∈ I : p(i) = q}|.

(b) ⇒ (a) Assume now that, for every q ∈ L(A), |{i ∈ I : p(i) = q}| = |{i ∈ I : p′(i) = q}|. For
every q ∈ L(A), let us define I(q) = {i ∈ I : p(i) = q} and I ′(q) = {i ∈ I : p′(i) = q}. Observe that

I =
⋃

q∈L(A)

I(q) =
⋃

q∈L(A)

I ′(q)

11The Simpson social choice correspondence is also known as the Maximin or the Condorcet social choice correspon-
dence.

12The results are obtained using the CAS Maxima. The program is available upon request.
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and that, for every q, q′ ∈ L(A) with q 6= q′, I(q) ∩ I(q′) = ∅ and I ′(q) ∩ I ′(q′) = ∅. Moreover,
for every q ∈ L(A), |I(q)| = |I ′(q)|, so that there exists a bijective function ϕq : I(q) → I ′(q). Let
now consider ϕ : I → I be defined, for every i ∈ I, by ϕ(i) = ϕq(i) if i ∈ I(q). The function ϕ
is well-defined since, for every i ∈ I, there exists a unique q ∈ L(A), namely q = p(i), such that
i ∈ I(q).

Let us prove that ϕ ∈ Sym(I). Since I is finite it is sufficient to prove that ϕ is injective. Consider
(i, j) ∈ I2∗ . Assume first that there exists q ∈ L(A) such that i, j ∈ I(q). Then ϕ(i) = ϕq(i) and
ϕ(j) = ϕq(j). Since ϕq : I(q) → I ′(q) is bijective, we get ϕq(i) 6= ϕq(j) and then ϕ(i) 6= ϕ(j).
Assume now that there exist q, q′ ∈ L(A) with q 6= q′ such that i ∈ I(q) and j ∈ I(q′). Then
ϕ(i) = ϕq(i) ∈ I ′(q) and ϕ(j) = ϕq′(j) ∈ I ′(q′). Since I ′(q) ∩ I ′(q′) = ∅ we get ϕq(i) 6= ϕq(j) and
then ϕ(i) 6= ϕ(j).

We complete the proof showing that p′ = pϕ. Consider i ∈ I and note that i ∈ I(p(i)). Since
ϕ(i) ∈ I ′(p(i)), we have that p′(ϕ(i)) = p(i). As a consequence, for every i ∈ I, p′(i) = p(ϕ−1(i)) =
pϕ(i), that is, p′ = pϕ.

Proposition 7. Let p ∈ L(A)I . Then {pϕ ∈ L(A)I : ϕ ∈ Sym(I)} ⊆ {p′ ∈ L(A)I : p′ ∼ p}.

Proof. Let ϕ ∈ Sym(I) and show that pϕ ∼ p. Consider (x, y) ∈ A2
∗. Using the definition of pϕ and

the fact that ϕ is bijective, we have that

cpϕ(x, y) = |{i ∈ I : x �(pϕ)(i) y}| = |{i ∈ I : x �p(ϕ−1(i)) y}|

= |ϕ({i ∈ I : x �p(i) y})| = |{i ∈ I : x �p(i) y}| = cp(x, y).

Since the argument above does not depend on x and y, we get that pϕ ∼ p, as desired.

Theorem 8. Let p ∈ L(A)I . Then the following conditions are equivalent:

(a) {pϕ ∈ L(A)I : ϕ ∈ Sym(I)} = {p′ ∈ L(A)I : p′ ∼ p},

(b) for every i, j ∈ I, p(i) 6= p(j)r.

Proof. (a) ⇒ (b) Assume that {pϕ ∈ L(A)I : ϕ ∈ Sym(I)} = {p′ ∈ L(A)I : p′ ∼ p} and suppose by
contradiction that there are i∗, j∗ ∈ I such that p(i∗) = p(j∗)r. Thus, p(i∗) 6= p(j∗) and, in particular,
i∗ 6= j∗. Since |L(A)| = 6, there exists q ∈ L(A) such that q 6∈ {p(i∗), p(j∗)}. As a consequence,
{q, qr} ∩ {p(i∗), p(j∗)} = ∅, since qr = p(i∗) leads to the contradiction q = p(i∗)r = p(j∗) and
qr = p(j∗) leads to the contradiction q = p(j∗)r = p(i∗).

Consider now p′ ∈ L(A)I defined, for every i ∈ I, by

p′(i) =

 p(i) if i 6= i∗ and i 6= j∗

q if i = i∗

qr if i = j∗

We claim that p′ ∼ p. Indeed, consider (x, y) ∈ A2
∗. Then

cp(x, y) = |{i ∈ I : x �p(i) y}| = |{i ∈ I \ {i∗, j∗} : x �p(i) y}|+ |{i ∈ {i∗, j∗} : x �p(i) y}|

and

cp′(x, y) = |{i ∈ I : x �p′(i) y}| = |{i ∈ I \ {i∗, j∗} : x �p′(i) y}|+ |{i ∈ {i∗, j∗} : x �p′(i) y}|.

Since, for every i ∈ I \ {i∗, j∗}, p(i) = p′(i), we have that

|{i ∈ I \ {i∗, j∗} : x �p(i) y}| = |{i ∈ I \ {i∗, j∗} : x �p′(i) y}|.

Moreover, since p(i∗) = p(j∗)r and p′(i∗) = p′(j∗)r, we have that

|{i ∈ {i∗, j∗} : x �p(i) y}| = |{i ∈ {i∗, j∗} : x �p′(i) y}| = 1.
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Then we conclude that cp(x, y) = cp′(x, y). As the argument does not depend on x and y we deduce
that p ∼ p′.

Observe now that |{i ∈ I : p′(i) = q}| = |{i ∈ I : p(i) = q}| + 1 so that, in particular,
|{i ∈ I : p′(i) = q}| 6= |{i ∈ I : p(i) = q}|. Thus, by Proposition 6, we get that p′ 6∈ {pϕ ∈ L(A)I :
ϕ ∈ Sym(I)} and this fact contradicts (a).

(b)⇒ (a) Assume now that, for every i, j ∈ I, p(i) 6= p(j)r and suppose by contradiction that (a)
does not hold true. Thus, by Proposition 7, there exists p′ ∈ L(A)I such that p′ ∼ p and such that
p′ 6∈ {pϕ ∈ L(A)I : ϕ ∈ Sym(I)}. Let us define

I = {K ⊆ I : ∃ρ : K → I injective such that p′(ρ(i)) = p(i) for all i ∈ K}.

Note that ∅ ∈ I, since ρ : ∅ → I satisfies the required properties, and that I 6∈ I, since otherwise
we would have p′ = pρ for a suitable ρ ∈ Sym(I). Consider now K∗ ∈ I such that |K∗| ≥ |K| for all
K ∈ I and let ρ∗ : K∗ → I be injective and such that p′(ρ∗(i)) = p(i) for all i ∈ K∗. Since K∗ 6= I,
we have that I \K∗ 6= ∅ as well as I \ ρ∗(K∗) 6= ∅.

We claim now that, for every i ∈ I \ K∗ and j ∈ I \ ρ∗(K∗), p(i) 6= p′(j). Indeed, if by
contradiction there were i∗ ∈ I \K∗ and j∗ ∈ I \ ρ∗(K∗) such that p(i∗) = p′(j∗), we could consider
ρ′ : K∗ ∪ {i∗} → I defined, for every i ∈ K∗ ∪ {i∗}, as

ρ′(i) =

{
ρ∗(i) if i ∈ K∗
j∗ if i = i∗

This function is clearly injective and p′(ρ′(i)) = p(i) for all i ∈ K∗ ∪ {i∗}. Thus, K∗ ∪ {i∗} ∈ I and
since |K∗ ∪ {i∗}| > |K∗| the contradiction is found.

Consider then the nonempty sets

U = {p(i) ∈ L(A) : i ∈ I \K∗}, V = {p′(j) ∈ L(A) : j ∈ I \ ρ∗(K∗)}.

By the previous claim we have that U ∩ V = ∅. By (b) we also know that if q ∈ U , then qr 6∈ U so
that |U | ≤ 1

2 |L(A)| = 3. Define now, for every (x, y) ∈ A2
∗,

cUp (x, y) = |{i ∈ I \K∗ : x �p(i) y}|, cVp′(x, y) = |{j ∈ I \ ρ∗(K∗) : x �p′(j) y}|.

We claim that cUp (x, y) = cVp′(x, y). Indeed, since p′ ∼ p, we know that cp(x, y) = cp′(x, y). Moreover

cp(x, y) = |{i ∈ K∗ : x �p(i) y}|+ cUp (x, y),

and
cp′(x, y) = |{j ∈ ρ∗(K∗) : x �p′(j) y}|+ cVp′(x, y).

Since ρ∗ is a bijection from K∗ to ρ∗(K∗), denoting by (ρ∗)−1 : ρ∗(K∗) → K∗ its inverse, we also
have that

{i ∈ K∗ : x �p(i) y} = {i ∈ K∗ : x �p′(ρ∗(i)) y} = (ρ∗)−1
(
{j ∈ ρ∗(K∗) : x �p′(j) y}

)
and then

|{i ∈ K∗ : x �p(i) y}| = |{j ∈ ρ∗(K∗) : x �p′(j) y}|

which leads to cUp (x, y) = cVp′(x, y).
Taking now into account the possible sizes of U , there are three cases to discuss. In what follows,

we set τ = |I \K∗| = |I \ ρ∗(K∗)| > 0.

(i) Assume first that |U | = 1 and let xyz be its unique element. Then, cUp (x, y) = cUp (y, z) = τ .

Thus, cVp′(x, y) = cVp′(y, z) = τ . Consider now j ∈ I \ ρ∗(K∗). Then we necessarily have that
x �p′(j) y, y �p′(j) z so that p′(j) = xyz ∈ U . Since p′(j) ∈ V and U ∩ V = ∅, a contradiction
is found.
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(ii) Assume now that |U | = 2 and let xyz be one of its elements. Then the other element of U is
one among xzy, yxz, yzx, zxy since the reversal of xyz, that is zyx, cannot belong to U . Let
us consider then all the possible cases.

(ii.1) Assume that U = {xyz, xzy}. We have cUp (x, y) = cUp (x, z) = τ and then cVp′(x, y) =

cVp′(x, z) = τ . Considering now j ∈ I \ ρ∗(K∗), we necessarily have that x �p′(j) y and
x �p′(j) z, so that p′(j) ∈ U . Since p′(j) ∈ V and U ∩ V = ∅, a contradiction is found.

(ii.2) Assume that U = {xyz, yxz}. We have cUp (x, z) = cUp (y, z) = τ and then cVp′(x, z) =

cVp′(y, z) = τ . Considering now j ∈ I \ ρ∗(K∗), we necessarily have that x �p′(j) z and
y �p′(j) z, so that p′(j) ∈ U . Since p′(j) ∈ V and U ∩ V = ∅, a contradiction is found.

(ii.3) Assume that U = {xyz, yzx}. Let

|{i ∈ I \K∗ : p(i) = xyz}| = s, |{i ∈ I \K∗ : p(i) = yzx}| = s′.

Of course, s, s′ ≥ 1 and s+ s′ = τ . We have cUp (y, z) = τ and then cVp′(y, z) = τ . Consid-
ering j ∈ I \ ρ∗(K∗), we necessarily have that y �p′(j) z, so that p′(j) ∈ {xyz, yxz, yzx}.
Thus, since p′(j) 6∈ U , p′(j) = yxz. As a consequence, cVp′(y, x) = τ while cUp (y, x) = s′ < τ

since s ≥ 1 and s + s′ = τ . In particular, cUp (y, x) 6= cVp′(y, x) and the contradiction is
found.

(ii.4) Assume that U = {xyz, zxy} and that

|{i ∈ I \K∗ : p(i) = xyz}| = s, |{i ∈ I \K∗ : p(i) = zxy}| = s′.

Of course, s, s′ ≥ 1 and s+ s′ = τ . We have cUp (x, y) = τ and then cVp′(x, y) = τ . Consid-
ering j ∈ I \ ρ∗(K∗), we necessarily have that x �p′(j) y, so that p′(j) ∈ {xyz, xzy, zxy}.
Thus, since p′(j) 6∈ U , p′(j) = xzy. As a consequence, cVp′(x, z) = τ while cUp (x, z) = s < τ

since s′ ≥ 1 and s + s′ = τ . In particular, cUp (x, z) 6= cVp′(x, z) and the contradiction is
found.

(iii) Assume finally that |U | = 3 and that one of the elements of U is xyz. Then the other two
elements of U are among xzy, yxz, yzx, zxy since the reversal of xyz, that is zyx, cannot
belong to U . Moreover, U \ {xyz} 6= {xzy, yzx} and U \ {xyz} 6= {yxz, zxy}, since U cannot
contain a linear order and its reversal. There are then four cases to discuss.

(iii.1) Assume that U = {xyz, xzy, yxz}. Since U ∩ V = ∅, we have that V ⊆ {yzx, zxy, zyx}.
Since cUp (x, z) = τ , cVp′(x, z) = 0 and cUp (x, z) = cVp′(x, z), we get the contradiction τ = 0.

(iii.2) Assume that U = {xyz, xzy, zxy}. Since U ∩ V = ∅, we have that V ⊆ {yxz, yzx, zyx}.
Since cUp (x, y) = τ , cVp′(x, y) = 0 and cUp (x, y) = cVp′(x, y), we get the contradiction τ = 0.

(iii.3) Assume that U = {xyz, yxz, yzx}. Since U ∩ V = ∅, we have that V ⊆ {xzy, zxy, zyx}.
Since cUp (y, z) = τ , cVp′(y, z) = 0 and cUp (y, z) = cVp′(y, z) = 0, we get the contradiction
τ = 0.

(iii.4) Assume that U = {xyz, yzx, zxy}. Since U ∩ V = ∅, we have that V ⊆ {xzy, yxz, zyx}.
Let us set

|{i ∈ I \K∗ : p(i) = xyz}| = s,

|{i ∈ I \K∗ : p(i) = yzx}| = s′,

|{i ∈ I \K∗ : p(i) = zxy}| = s′′

and
|{j ∈ I \ ρ∗(K∗) : p′(j) = zyx}| = t,

|{j ∈ I \ ρ∗(K∗) : p′(j) = xzy}| = t′,

|{j ∈ I \ ρ∗(K∗) : p′(j) = yxz}| = t′′,

12



where s + s′ + s′′ = t + t′ + t′′ = τ and s, s′, s′′ ≥ 1. A simple computation shows that
cUp (x, y) = s + s′′, cUp (y, z) = s + s′, cUp (z, x) = s′ + s′′, cVp′(x, y) = t′, cVp′(y, z) = t′′,

cVp′(z, x) = t. Since cUp (x, y) = cVp′(x, y), cUp (y, z) = cVp′(y, z) and cUp (z, x) = cVp′(z, x), we
get s+ s′′ = t′, s+ s′ = t′′ and s′+ s′′ = t. It follows then that 2(s+ s′+ s′′) = t+ t′+ t′′,
that is 2τ = τ . That leads to the contradiction τ = 0.

Define the set
QI = {p ∈ L(A)I : ∀i, j ∈ I, p(i) 6= p(j)r}.

Note that if p ∈ QI and ϕ ∈ Sym(I), then pϕ ∈ QI . Consider now F : QI → A. We say that F is
Pareto optimal if, for every p ∈ QI and x, y ∈ A, if x �p(i) y for all i ∈ I, then F (p) 6= y; dictatorial
with dictator i ∈ I if, for every p ∈ QI , F (p) = r1(p(i)); dictatorial if there exists i ∈ I such that F
is dictatorial with dictator i; strategy-proof if, for every i ∈ I, p ∈ L(A)I\{i} and q, q′ ∈ L(A) with
(q[i], p) ∈ QI and (q′[i], p) ∈ QI , F (q[i], p) �q F (q′[i], p). Moreover, we say that individual i ∈ I is
able to manipulate F at p ∈ QI via q ∈ L(A) if (q[i], p|I\{i}) ∈ QI and F (q[i], p|I\{i}) �p(i) F (p). Of
course, F is strategy-proof if and only if, for every i ∈ I, p ∈ QI and q ∈ L(A), individual i is not
able to manipulate F at p via q, that is, if (q[i], p|I\{i}) ∈ QI then F (p) �p(i) F (q[i], p|I\{i}).

The next proposition is inspired to Theorem 1 in Lars-Gunnar and Reffgen (2014).

Proposition 9. Let |I| = 2 and let F : QI → A. If F is Pareto optimal and strategy-proof, then F
is dictatorial.

Proof. Assume that I = {i1, i2} and, given p ∈ QI , identify p with the vector (p(i1), p(i2)). Define
then the sets

A1 = {x ∈ A : ∀p ∈ QI such that r1(p(i1)) = x, F (p) = x},

A2 = {x ∈ A : ∀p ∈ QI such that r1(p(i2)) = x, F (p) = x}.

Consider distinct x, y, z ∈ A and (xyz, yxz) ∈ QI and note that, by Pareto optimality F (xyz, yxz) 6=
z. We claim that

F (xyz, yxz) = x implies x ∈ A1, (1)

F (xyz, yxz) = y implies y ∈ A2. (2)

Let us first prove (1). Set p1 = (xyz, yxz) and assume F (p1) = x. Consider then the following
elements of QI

p2 = (xyz, yzx), p3 = (xyz, zxy), p4 = (xyz, xyz), p5 = (xyz, xzy), p6 = (xzy, xyz)

p7 = (xzy, xzy), p8 = (xzy, yxz), p9 = (xzy, zxy), p10 = (xzy, zyx),

and note that {p ∈ QI : r1(p(i1)) = x} = {p1, p2, . . . , , p10}. Thus, we get x ∈ A1 proving that,
for every i ∈ {2, . . . , 10}, F (pi) = x. We proceed by a case-by-case analysis. By Pareto optimality
F (p2) 6= z. If F (p2) = y then individual i2 would be able to manipulate F at p1 via yzx. As
a consequence, F (p2) = x. By Pareto optimality F (p3) 6= y. If F (p3) = z then individual i2
would be able to manipulate F at p2 via zxy. As a consequence, F (p3) = x. By Pareto optimality,
F (p4) = F (p5) = F (p6) = F (p7) = x. F (p8) = x otherwise individual i1 would be able to manipulate
F at p8 via xyz. F (p9) = x otherwise individual i1 would be able to manipulate F at p9 via xyz.
By Pareto optimality, F (p10) 6= y. If F (p10) = z then individual i2 would be able to manipulate F
at p9 via zyx. As a consequence, F (p10) = x and the proof of (1) is completed. The proof of (2) is
similar and then omitted.

Consider now p∗ = (abc, bac) ∈ QI and note that, by Pareto optimality, F (p∗) 6= c so that
F (p∗) ∈ {a, b}. We complete the proof of the theorem showing that F (p∗) = a implies A1 = A, that
is, F is dictatorial with dictator i1, and that F (p∗) = b implies that A2 = A, that is, F is dictatorial
with dictator i2.
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Assume first that F (p∗) = a. By (1), we have that a ∈ A1. Considering now (bca, cba) ∈ QI , by
(1) and (2), we get that b ∈ A1 or c ∈ A2. However, c 6∈ A2, otherwise, given (acb, cab) ∈ QI , we
would have both F (acb, cab) = a and F (acb, cab) = c, a contradiction. Then we get b ∈ A1. Since
{a, b} ⊆ A1, we also have that a 6∈ A2. Indeed, if a ∈ A2, then considering (bac, abc) ∈ QI we should
have both F (bac, abc) = b and F (bac, abc) = a, a contradiction. Let us finally prove that c ∈ A1.
Indeed, consider (cab, acb) ∈ QI . By (1) and (2), we have that c ∈ A1 or a ∈ A2. Since we know
that a 6∈ A2, we get c ∈ A1.

The proof that F (p∗) = b implies A2 = A is analogous and then omitted.

The next result shows that any scf which is Pareto optimal and strategy-proof on QI is dictato-
rial. It is inspired to Lemma 3 and Theorem 2 in Lars-Gunnar and Reffgen (2014). We stress that,
at the best of our knowledge, it is not a consequence of any of the known results within the theory
of dictatorial domains (Aswal et al., 2003, Pramanik, 2015).

Theorem 10. Let F : QI → A. If F is Pareto optimal and strategy-proof, then F is dictatorial.

Proof. Let us first rephrase the theorem as follows: for every h ∈ N with h ≥ 2,

if I is a finite set with |I| = h and F : QI → A is Pareto optimal and strategy-proof,
then F is dictatorial.

(3)

We are going to prove the above result working by induction on h. By Proposition 9 we know that
(3) is true when h = 2. In order to complete the proof of the theorem, assume then that (3) is true
for h ≥ 2 and show that (3) is true for h+ 1 too.

Consider then I such that |I| = h+ 1 ≥ 3 and F : QI → A which is Pareto optimal and strategy-
proof. For every (i, j) ∈ I2∗ , let us consider the function γ(i,j) : QI\{j} → QI such that, for every
p ∈ QI\{j},

γ(i,j)(p) = (p, p(i)[j]).

Note that γ(i,j) is well defined, that is, if p ∈ QI\{j}, then γ(i,j)(p) is an element of QI .
For every (i, j) ∈ I2∗ , let G(i,j) : QI\{j} → A be defined, for every p ∈ QI\{j}, as

G(i,j)(p) = F (γ(i,j)(p)).

We are going to show that, for every (i, j) ∈ I2∗ , G(i,j) is dictatorial. Since G(i,j) refers to the set of
individuals I \ {j} whose size is h, we can get such a result by applying the inductive assumption,
provided that G(i,j) is Pareto optimal and strategy proof.

Let us prove then that G(i,j) is Pareto optimal. Indeed, consider p ∈ QI\{j} and x, y ∈ A such
that, for every k ∈ I \ {j}, x �p(k) y. Then, for every k ∈ I, x �(γ(i,j)(p))(k) y. Since F is Pareto
optimal we get that y 6∈ F (γ(i,j)(p)) = G(i,j)(p), and the Pareto optimality of G(i,j) is proved.

Let us prove now that G(i,j) is strategy-proof. Fix then t ∈ I\{j}, q, q̂ ∈ L(A) and p ∈ L(A)I\{j,t}

such that (q[t], p), (q̂[t], p) ∈ QI\{j} and show that G(i,j)(q[t], p) �q G(i,j)(q̂[t], p). Assume first that
t 6= i. Using the fact that F is strategy-proof, we get

G(i,j)(q[t], p) = F (γ(i,j)(q[t], p)) = F (q[t], p, p(i)[j])

�q F (q̂[t], p, p(i)[j]) = F (γ(i,j)(q̂[t], p)) = G(i,j)(q̂[t], p),

as desired. Assume now that t = i. Using the fact that F is strategy-proof, we get

G(i,j)(q[i], p) = F (γ(i,j)(q[i], p)) = F (q[i], p, q[j])

�q F (q̂[i], p, q[j]) �q F (q̂[i], p, q̂[j]) = F (γ(i,j)(q̂[i], p)) = G(i,j)(q̂[i], p),

as desired. Thus, we conclude that G(i,j) is strategy-proof.
Let us prove now that F is dictatorial. Assume first that there exist (i∗, j∗) ∈ I2∗ and t∗ ∈ I \{j∗}

with t∗ 6= i∗ such that G(i∗,j∗) is dictatorial with dictator t∗ and prove that F is dictatorial with
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dictator t∗. Consider p ∈ QI and assume that r1(p(t∗)) = x and F (p) = y. Our purpose is then to
show that x = y. Since F is strategy-proof and since

F
(
p|I\{i∗,j∗}, p(i

∗)[i∗], p(j∗)[j∗]
)

= F (p) = y (4)

and13

F
(
p|I\{i∗,j∗}, p(j

∗)[i∗], p(j∗)[j∗]
)

= G(i∗,j∗)

(
p|I\{i∗,j∗}, p(j

∗)[i∗]
)

= r1(p(t∗)) = x,

we get y �p(i∗) x. Moreover, since F is strategy-proof,

F
(
p|I\{i∗,j∗}, p(i

∗)[i∗], p(i∗)[j∗]
)

= G(i∗,j∗)

(
p|I\{i∗,j∗}, p(i

∗)[i∗]
)

= r1(p(t∗)) = x

and (4), we also get x �p(i∗) y. Since p(i∗) is a linear order, from y �p(i∗) x and x �p(i∗) y we finally
obtain x = y.

We complete the proof of the theorem showing that it cannot happen that, for every (i, j) ∈ I2∗ ,
G(i,j) is dictatorial with dictator i. Indeed, assume by contradiction otherwise. Then, for every
p ∈ QI such p(i) = p(j) for some (i, j) ∈ I2∗ , we have F (p) = r1(p(i)) since

F (p) = F (p|I\{i,j}, p(i)[i], p(i)[j]) = G(i,j)(p|I\{i,j}, p(i)[i]) = r1(p(i)).

Thus, if |I| = h + 1 = 3 and I = {i1, i2, i3}, consider p ∈ QI such that p(i1) = abc, p(i2) = bca,
p(i3) = cab. Note that if F (p) = a, then individual i2 is able to manipulate F at p via cab; if
F (p) = b, then individual i3 is able to manipulate F at p via abc; if F (p) = c, then individual i1 is
able to manipulate F at p via bca14. Since F is strategy-proof we get then a contradiction. If |I| =
h+ 1 ≥ 4, consider p ∈ QI such that there are distinct i1, i2, i3, i4 ∈ I such that p(i1) = p(i2) = abc,
p(i3) = p(i4) = bac. Then both F (p) = a and F (p) = b, a contradiction.

Theorem 11. Let F : L(A)I → A. If F is Pareto optimal and PC-strategy-proof, then F is not
anonymous.

Proof. Assume by contradiction that there exists F : L(A)I → A which is Pareto optimal, PC-
strategy-proof and anonymous. Let G be the restriction of F to the set QI . We are going to prove
that G is dictatorial proving that it is Pareto optimal and strategy-proof and applying Theorem 10.

Let us first prove that G is Pareto optimal. Consider p ∈ QI and x, y ∈ A such that, for every
i ∈ I, x �p(i) y. Then F (p) 6= y and since G(p) = F (p) we also get G(p) 6= y.

Let us now prove that G is strategy-proof. Consider i ∈ I, p ∈ L(A)I\{i} and q, q′ ∈ L(A) with
(q[i], p), (q′[i], p) ∈ QI and assume by contradiction that G(q′[i], p) �q G(q[i], p), that is,

F (q′[i], p) �q F (q[i], p). (5)

Since F is PC-strategy-proof there exists p′ ∈ L(A)I\{i} with p′ ∼ p such that

F (q[i], p′) �q F (q′[i], p′). (6)

Observe now that since (q[i], p) ∈ QI , we have that p ∈ QI\{i}. Then, by Theorem 8, there exists
ϕ ∈ Sym(I \ {i}), such that p′ = pϕ. Consider now ϕ̂ ∈ Sym(I) such that, for every j ∈ I \ {i},
ϕ̂(j) = ϕ(j) and ϕ̂(i) = i. It is easily checked that

(q[i], p′) = (q[i], p)ϕ̂ and (q′[i], p′) = (q′[i], p)ϕ̂ (7)

so that, in particular, both (q[i], p′) and (q′[i], p′) belong to QI . By (7) and the fact that F is
anonymous we have that

F (q[i], p′) = F
(
(q[i], p)ϕ̂

)
= F (q[i], p) (8)

13Note that p ∈ QI implies
(
p|I\{i∗,j∗}, p(j∗)[i∗], p(j∗)[j∗]

)
∈ QI and

(
p|I\{i∗,j∗}, p(i∗)[i∗], p(i∗)[j∗]

)
∈ QI .

14Observe that in each of the three considered cases, the preference profile obtained after manipulating F are in QI .
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and
F (q′[i], p′) = F

(
(q′[i], p)ϕ̂

)
= F (q′[i], p). (9)

By (6), (8) and (9), we get F (q[i], p) �q F (q′[i], p) which contradicts (5).
We deduce then that G is dictatorial, so that there exists i∗ ∈ I such that, for every p ∈ QI ,

G(p) = r1(p(i∗)). Consider now j∗ ∈ I \ {i∗}, p ∈ QI such that p(i∗) = abc and p(j∗) = bac and
ϕ ∈ Sym(I) such that ϕ(i∗) = j∗, ϕ(j∗) = i∗ and ϕ(i) = i for all i ∈ I \ {i∗, j∗}. Then, we have that

F (p) = G(p) = r1(p(i∗)) = r1(abc) = a

and, since also pϕ ∈ QI ,

F (pϕ) = G(pϕ) = r1(pϕ(i∗)) = r1(p(ϕ−1(i∗))) = r1(p(j∗)) = r1(bac) = b.

However, since F is anonymous, we also have F (p) = F (pϕ), a contradiction.

A.2 The general case

By Theorem 11, we know that the result is true when |A| = 3. Consider now |A| = m ≥ 4 and assume
by contradiction that there exists F : L(A)I → A which is Pareto optimal, PC-strategy-proof and
anonymous.

Let us fix an ordering x1, . . . , xm of the elements of A and let Â = {x1, x2, x3} and

U = {(xr, xt) ∈ A2 : r, t ≥ 4, r ≤ t}.

Of course, Â ⊆ A, |Â| = 3 and U ⊆ (A \ Â)2. Let us consider now ω : L(Â)→ L(A) associating with
every q̂ ∈ L(Â) the element of L(A) given by

ω(q̂) = q̂ ∪
(
Â× (A \ Â)

)
∪ U.

In other words, if q̂ = xyz, where x, y, z ∈ Â, then ω(q̂) = xyzx4 · · ·xm. Given now J ⊆ I with J
nonempty and p̂ ∈ L(Â)J , we denote by ω(p̂) the the element of L(A)J such that, for every i ∈ J ,
ω(p̂)(i) = ω(p̂(i)). Finally let G : L(Â)I → Â be defined, for every p̂ ∈ L(Â)I , by G(p̂) = F (ω(p̂)).
Note that G is well-defined, that is, for every p̂ ∈ L(Â)I , F (ω(p̂)) ∈ Â. Indeed, let p̂ ∈ L(Â)I and
y ∈ A \ Â. Picking any x ∈ Â, we have that x �ω(p̂)(i) y for all i ∈ I and then, since F is Pareto
optimal, we get F (ω(p̂)) 6= y. We complete the proof of the theorem showing that G is Pareto
optimal, PC-strategy-proof and anonymous. Indeed, since |Â| = 3, that contradicts Theorem 11.

Let us first prove that G is Pareto optimal. Consider p̂ ∈ L(Â)I and x, y ∈ Â and assume that,
for every i ∈ I, x �p̂(i) y. Then, for every i ∈ I, x �ω(p̂(i)) y, that is, x �ω(p̂)(i) y. Since F is Pareto
optimal, G(p̂) = F (ω(p̂)) 6= y.

Let us now prove that G is PC-strategy-proof. Consider i ∈ I, p̂ ∈ L(Â)I\{i} and q̂, q̂′ ∈ L(Â)
and assume that G(q̂′[i], p̂) �q̂ G(q̂[i], p̂). We have to show that there exists p̂′ ∈ L(Â)I\{i} with

p̂′ ∼ p̂ such that G(q̂[i], p̂′) �q̂ G(q̂′[i], p̂′). Since G(q̂[i], p̂) = F (ω(q̂)[i], ω(p̂)) ∈ Â and G(q̂′[i], p̂) =

F (ω(q̂′)[i], ω(p̂)) ∈ Â, we get F (ω(q̂′)[i], ω(p̂)) �q̂ F (ω(q̂)[i], ω(p̂)), so that F (ω(q̂′)[i], ω(p̂)) �ω(q̂)
F (ω(q̂)[i], ω(p̂)). By PC-strategy-proofness of F , there exists p′ ∈ L(A)I\{i} such that p′ ∼ ω(p̂) and

F (ω(q̂)[i], p′) �ω(q̂) F (ω(q̂′)[i], p′). (10)

Consider now p̂′ ∈ L(Â)I\{i} defined, for every j ∈ I \ {i}, by

p̂′(j) = {(x, y) ∈ Â2 : (x, y) ∈ p′(j)}. (11)

We claim that
ω(p̂′) = p′. (12)
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In order to prove (12) it is sufficient to prove that, for every j ∈ I \ {i}, ω(p̂′(j)) ⊆ p′(j). Indeed,
since ω(p̂′(j)), p′(j) ∈ L(A), ω(p̂′(j)) ⊆ p′(j) implies ω(p̂′(j)) = p′(j). Fix then j ∈ I \ {i} and

(x∗, y∗) ∈ ω(p̂′(j)) = p̂′(j) ∪
(
Â× (A \ Â)

)
∪ U.

If (x∗, y∗) ∈ p̂′(j), then by (11), (x∗, y∗) ∈ p′(j). Assume now that (x∗, y∗) ∈ Â× (A\ Â). Note that,
in particular, x∗ 6= y∗and that cω(p̂)(x

∗, y∗) = |I| − 1. Since p′ ∼ ω(p̂), we know that cp′(x
∗, y∗) =

cω(p̂)(x
∗, y∗) = |I| − 1 so that necessarily (x∗, y∗) ∈ p′(j). Assume finally that (x∗, y∗) ∈ U . Then

there exist r, t ≥ 4 with r ≤ t such that x∗ = xr and y∗ = xt. If r = t, then x∗ = y∗ and (x∗, y∗) ∈
p′(j) since p′(j) ∈ L(A) and so it is reflexive. If r < t then x∗ 6= y∗ and cω(p̂)(x

∗, y∗) = |I| − 1. Since
p′ ∼ ω(p̂), we know that cp′(x

∗, y∗) = cω(p̂)(x
∗, y∗) = |I| − 1 so that necessarily (x∗, y∗) ∈ p′(j). The

claim is then proved.
From (10) and (12), we get F (ω(q̂)[i], ω(p̂′)) �ω(q̂) F (ω(q̂′)[i], ω(p̂′)), that is, G(q̂[i], p̂′) �ω(q̂)

G(q̂′[i], p̂′). Thus, since G(q̂[i], p̂′) ∈ Â and G(q̂′[i], p̂′) ∈ Â, we deduce G(q̂[i], p̂′) �q̂ G(q̂′[i], p̂′). We
then conclude the proof of the PC-strategy-proofness of G simply noticing that, by (12) and since
p′ ∼ ω(p̂), for every (x, y) ∈ Â2

∗,

cp̂′(x, y) = cω(p̂′)(x, y) = cp′(x, y) = cω(p̂)(x, y) = cp̂(x, y),

so that p̂′ ∼ p̂.
We are finally left with proving the anonymity of G. Consider p̂ ∈ L(Â)I and ϕ ∈ Sym(I). Then

ω(p̂ϕ) = ω(p̂)ϕ. Indeed, for every i ∈ I

ω(p̂ϕ)(i) = ω(p̂ϕ(i)) = ω(p̂(ϕ−1(i))) = ω(p̂)(ϕ−1(i)) = ω(p̂)ϕ(i).

Then, using the definition of G the the fact that F is anonymous, we get

G(p̂ϕ) = F (ω(p̂ϕ)) = F (ω(p̂)ϕ) = F (ω(p̂)) = G(p̂).

Thus, the anonymity of G is proved.
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