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Abstract

We study the continuity and robustness of the Bayesian equilibria of Tullock
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correspondence is upper semicontinuous. We identify conditions under which

the Bayesian equilibrium correspondence of Tullock contests with a unique

equilibrium is also lower semicontinous. Furthermore, when the Bayesian equi-

librium is unique, it is robust to small perturbations of the contest�s attributes
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1 Introduction

In a contest, a group of individuals compete for a prize by exerting e¤ort. In a Tullock

contest the probability that an individual wins the prize is a non-decreasing function

of the e¤ort he exerts (see Tullock 1980). In many economic environments, Tullock

contests arise either naturally or by design. Baye and Hoppe (2003), for example,

have identi�ed conditions under which a variety of rent-seeking contests, innovation

tournaments, and patent-race games are strategically equivalent to a Tullock contest.

Most of the extensive literature studying the outcomes generated by Tullock contests

focuses on the complete information case �see, for example, Nitzan (1994), Skaperdas

(1996), Clark and Riis (1998), Konrad (2008), Fu and Lu (2012), and Fu et al.

(2015). Recently, however, the literature has turned to study the equilibria of Tullock

contests with incomplete information, as well as the impact of changes in the players�

information endowments on equilibrium outcomes �see, for example, Wasser (2013),

Einy, Moreno, and Shitovitz (2017), and Aiche et al. (2018 and 2019).

A Tullock contest is identi�ed by the players�value for the prize, their cost of

e¤ort, and the impact of e¤ort on the probability of winning the prize. When play-

ers have complete information about these attributes, a Tullock contests de�nes a

complete information game. The Nash equilibria of this game are the equilibria of

the contest. Szidarovszky and Okuguchi (1997), Cornes and Hartley (2005), Ya-

mazaki (2008) and Chowdhury and Sheremeta (2009) have studied the existence and

uniqueness of equilibria in Tullock contests with complete information. When players

are uncertain about either of these attributes, a Tullock contests de�nes a Bayesian

game. The Bayesian(-Nash) equilibria of this game are the Bayesian equilibria of the

contest. Einy et al. (2015), Einy, Moreno, and Shitovitz (2017), and Ewerhart and

Quartieri (2018) have studied the existence and uniqueness of Bayesian equilibrium in

Tullock contests with incomplete information. The purpose of this paper is to study

the continuity and robustness of the equilibrium correspondence of Tullock contests.
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Following this literature, we restrict attention to pure strategy equilibria.

In a Tullock contests with incomplete information, we describe players�uncertainty

by a probability space and represent the information of each player about the state

by a �-sub�eld of the �eld describing players�uncertainty. We study the behavior of

the Bayesian equilibrium correspondence in response to perturbations on the players�

information endowments, as well as their state-dependent values, costs of e¤ort, and

probabilities of winning the prize. We use the Boylan pseudometric to measure the

distance between information �elds. Einy et al. (2005 and 2008) have followed this

approach to study the continuity properties of the core of an economy with di¤erential

information, and those of the value of zero-sum games under incomplete information,

respectively.

It is well known that for general games with incomplete information the Bayesian

equilibrium correspondence is usually not continuous. For example, Milgrom and

Weber (1985) and Cotter (1991) have shown that it is not upper semicontinuous,

whereas Monderer and Samet (1985) have shown that it is not lower semicontinuous.

Moreover, even a strict Nash equilibrium of a game with complete information may

not be approachable by equilibria of variations of the game in which the players have

only minimal incomplete information �see Carlsson and Van Damme (1993). Further,

Kaji and Morris (1997) have shown that even the unique strict Nash equilibrium of

a complete information game may not be robust to incomplete information.

We show that the Bayesian equilibrium correspondence of Tullock contests is well

behaved. Speci�cally, if a sequence of Tullock contests converges to another Tullock

contest, then any limit point of a sequence formed by equilibria of this sequence of

contests must be an equilibrium of the limiting contest, i.e., that the Bayesian equilib-

rium correspondence of Tullock contests is upper semicontinous. When the limiting

contest has a unique equilibrium, we identify conditions that assure the existence of

subsequences of equilibria of the sequence of contests converging to the unique equi-

librium of the limiting contest, i.e., that the Bayesian equilibrium correspondence of
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Tullock contests with a unique equilibrium is lower semicontinous. Finally, we demon-

strate that if a Tullock contests has a unique Bayesian equilibrium, then any Tullock

contest su¢ ciently close (i.e, whose attributes as su¢ ciently similar) must have a

Bayesian equilibrium close to this unique equilibrium. In other words, we show that

the unique Bayesian equilibrium in Tullock contests with incomplete information is

necessarily robust.

2 Tullock Contests with Incomplete Information

In a Tullock contest, a group of players N = f1; :::; ng, with n � 2; compete for a

prize by simultaneously choosing the e¤ort they exert. Players are uncertain about

the realized state of nature. This uncertainty is described by a probability space

(
;F ; �), where 
 is a countable set of states of nature, F is a �-�eld of subsets

of 
; and � is a probability measure on (
;F) representing the players� common

prior belief. The private information of each player i 2 N is described by a �-

sub�eld of F , which we denote by Fi. Since 
 is countable, every �-sub�eld of F

is generated by the atoms of a countable partition of 
: Thus, player i observes the

atom containing the realized state of nature of the partition of 
 that generates Fi.

The value for the prize of each player i 2 N is an F-measurable random variable

Vi : 
 ! R++: The cost of e¤ort of each player i 2 N is given by a state-dependent

function ci : 
 � R+ ! R+, such that for each x 2 R+ the function ci(�; x) is F-

measurable. The prize is awarded to the players in a probabilistic fashion, using a

contest success function � : 
 � Rn+ ! 4n, where 4n is the n-simplex, such that

for each x 2 Rn+ the function �(�; x) is F-measurable. Thus, a Tullock contest with

incomplete information is formally represented by a collection

T = (N; (
;F ; �); fFigi2N ; fVigi2N ; fcigi2N ; �):
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A Tullock contest T de�nes a Bayesian game in which the set of actions of each player

i 2 N is R+ and his payo¤ for each ! 2 
 and x 2 Rn+ is

ui(!; x) = �i(!; x)Vi(!)� ci(!; xi):

In this game, a pure strategy for player i 2 N is an Fi-measurable and integrable

function Xi : 
 ! R+ which describes i�s choice of e¤ort in each state of nature.

(The measurability restriction implies that player i can condition his e¤ort only on

his private information.) We denote by Si the set of strategies of player i, and by

S = �ni=1Si the set of strategy pro�les. Given a strategy pro�le X = (X1; :::; Xn) 2 S

we denote by X�i the pro�le obtained from X by suppressing the strategy of player

i.

If Y is an F-measurable random variable and G is a �-sub�eld of F , we denote by

E[Y j G] a random variable which is (a version of) the conditional expectation of Y

with respect to G �see, e.g., Borkar (1995) for a formal de�nition. Also, for any two

random variables Y and Z; we write Y = Z; Y > Z; or Y � Z when each of these

relations hold almost everywhere on 
.

A pure strategy Bayesian equilibrium of a Tullock contest T is a Bayesian Nash

equilibrium of the Bayesian game de�ned by the contest; that is, it is a strategy

pro�le X = (X1; :::; Xn) such that for every i 2 N and every X 0
i 2 Si;

E[ui(�; X (�))] � E[ui(�; X�i (�) ; X 0
i (�))]; (1)

or equivalently,

E[ui(�; X (�)) j Fi] � E[ui(�; X�i (�) ; X 0
i (�)) j Fi] (2)

almost everywhere on 
: We restrict attention to pure strategies.

Throughout the paper we consider Tullock contests satisfying the following as-

sumptions:

(A.1) For each i 2 N; Vi 2 L1(
;F ; �).
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(A.2) For each i 2 N and ! 2 
; ci(!; �) is continuous, strictly increasing and

convex on R+, and satis�es ci(!; 0) = 0. Moreover, for each x 2 R+; the functions

ci(�; x) and c�1i (�; x) are integrable on (
;F ; �):

(A.3) For every ! 2 
; �(!; �) is continuous on Rn+nf0g, and for each i 2 N and

x 2 Rn+; �i(!; x�i; �) is non-decreasing and concave, and satis�es �i(!; 0; xi) = 1

whenever xi > 0:

The assumptions on the players�cost of e¤ort introduced in (A:2) are standard.

The properties of the function � assumed in (A:3) are satis�ed by the contest success

functions studied in the literature on Tullock contests (see Skaperdas 1996, and Clark

and Riis 1998). The following result which establishes the existence of equilibrium in

every Tullock contest satisfying assumptions (A:1)-(A:3) follows from the existence

theorem of Einy et al. (2015).

Remark 1. Every Tullock contest satisfying (A.1)-(A.3) has a Bayesian equilibrium.

In order to precisely de�ne convergence of contests with incomplete information,

we use Boylan�s (1971)�s pseudometric on the family F� of �-sub�elds of F , given for

G;H 2 F� by

D(G;H) = sup
A2G

inf
B2H

�(A4B) + sup
B2H

inf
A2G

�(A4B);

where A4B = (AnB) [ (BnA) is the symmetric di¤erence of A and B. This metric

has been studied and used extensively in the literature.

De�nition 1. We say that the sequence of Tullock contests

f(N; (
;F ; �); fFk
i gi2N ; fV ki gi2N ; fcki gi2N ; �k)g1k=1

converges to the Tullock contest (N; (
;F ; �); fFigi2N ; fVigi2N ; fcigi2N ; �) if:

(C:1) For all i 2 N; fFk
i g1k=1 converges to Fi in the Boylan metric.

(C:2) For all i 2 N; fV ki g1k=1 converges uniformly to Vi on 
.

(C:3) For all i 2 N and ! 2 
; fcki (!; �)g1k=1 converges uniformly to ci(!; �) on every

compact subset of R+.
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(C:4) For all ! 2 
; f�k(!; �)g1k=1 converges uniformly to �(!; �) on every compact

subset of Rn+nf0g:

Theorem 1 establishes that the Bayesian equilibrium correspondence is upper

semicontinuous on the class Tullock contests satisfying assumptions (A:1)-(A:3).

Theorem 1. For each positive integer k; let

T k = (N; (
;F ; �); fFk
i gi2N ; fV ki gi2N ; fcki gi2N ; �k)

be a Tullock contest, and let Xk be a Bayesian equilibrium of T k. If fT kg1k=1 con-

verges to a Tullock contest

T = (N; (
;F ; �); fFigi2N ; fVigi2N ; fcigi2N ; �);

and fXkg1k=1 converges to X pointwise on 
; then X is a Bayesian equilibrium of

T .

Proof. First we show that for all i 2 N , Xi is Fi-measurable. Since V ki ; Vi 2

L1(
; F; �) for all (i; k);

0 < Mk
i := sup

!2

V ki (!) <1;

and

0 < Mi := sup
!2


Vi(!) <1:

We now show that for all (i; k),

cki (�; Xk
i (�)) �Mk

i :

almost everywhere in 
: Suppose, by way of contradiction, that there is (i; k) and an

atom A of F such that

cki (!;X
k
i (!)) > M

k
i � V ki (!) (3)
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holds for every ! 2 A. Since Fk
i � F there exists an atom Aki of Fk

i such that

A � Aki : Since Xk
i is Fk

i -measurable, X
k
i is constant on A

k
i . Thus, (3) holds on A

k
i ,

and therefore

ui(!;X
k(!)) � V ki (!)� ci(!;Xk

i (!)) < 0

for all ! 2 Aki : De�ne Y ki = 0 � 1Aki +X
k
i � 1
nAki : Then Y

k
i is Fk

i -measurable, and

ui(!; Y
k
i (!); X

k
�i(!)) = V

k
i (!) > ui(!;X

k(!))

for all ! 2 Aki ; whereas

ui(!; Y
k
i (!); X

k
�i(!)) = ui(!;X

k(!))

for all ! 2 
nAki : Therefore

E[ui(�; Y ki (�); Xk
�i(�))] > E[ui(�; Xk(�))];

which contradicts that Xk is a Bayesian equilibrium of T k:

Now, for all ! 2 
;

cki (!;X
k
i (!)) �Mk

i

implies

Xk
i (!) �

�
cki
��1

(!;Mk
i ):

By (C:2); for k su¢ ciently large Mk
i � 1 +Mi. Then

Xk
i (!) �

�
cki
��1

(!; 1 +Mi)

for su¢ ciently large k and all ! 2 
. Also,
�
cki (!; �)

	1
k=1

converges uniformly to

ci(!; �) on every compact interval of R+ by (C:3), and since cki (!; �) is continuous

and increasing, by Theorem 1 in Barbinek et al. (1991),
�
(cki )

�1(!; �)
	1
k=1

con-

verges uniformly to (ci)�1(!; �) on every compact interval of R+. In particular,�
(cki )

�1(!; 1 +Mi)
	1
k=1

converges to (ci)�1(!; 1 +Mi): Since for all ! 2 
;

Xk
i (!) � (cki )�1(!; 1 +Mi);
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for su¢ ciently large k;

Xk
i (!) � 1 + (ci)�1(!; 1 +Mi) (4)

Moreover, since the function c�1i (�; 1+Mi) is integrable and fXk
i g1k=1 converges point-

wise to Xi on 
, by the dominated convergence theorem fXk
i g1k=1 converges to Xi

in the L1(
;F ; �) norm �see, e.g., Theorem 12.2 of Schilling (2005). Hence, since

Xk
i is Fk

i -measurable, and fFk
i g1k=1 converges to Fi in the Boylan pseudometric, by

Lemma 1 in Einy et al. (2005), Xi is Fi-measurable.

We now show that X is a Bayesian equilibrium of T by distinguishing between

two cases:

Case I. Assume that X(!) 6= 0 almost everywhere in 
:

In this case �(!; �) is continuous at X(!) for almost all ! 2 
 by (A:3): Now, for

all ! 2 
 and for su¢ ciently large k

�ki (!;X
k (!))V ki (!) � V ki (!) �Mk

i � 1 +Mi; (5)

and

cki (!;X
k
i (!)) �Mk

i � 1 +Mi: (6)

Assume, by way of contradiction, that X is not a Bayesian equilibrium of T: In that

case, there is i 2 N , a Fi-measurable and integrable random variable Yi > 0; and an

atom A of F such that

E[ui(�; Yi (�) ; X�i (�)) j A] > E[ui(�; X (�)) j A]:

For all k, let Y ki = E[Yi j Fk
i ]: Then Y

k
i � 0 is a Fk

i -measurable and Y
k
i 2 L1(
;F ; �).

Since fFk
i g1k=1 converges to Fi, by Theorem 4 in Boylan (1971), fY ki g1k=1 converges

in measure to E[Yi j Fi] = Yi: Therefore, the sequence fY ki g1k=1 has a subsequence

that converges pointwise to Yi on 
:

Without loss of generality, assume that fY ki g1k=1 converges to Yi on 
. Now,

(C:2) � (C:4); the inequalities (5) and (6), and the dominated convergence theorem
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together imply that

lim
k!1

E[�ki (�; Xk (�))V ki (�) j A] = E[�i(�; X (�))Vi(�) j A];

and

lim
k!1

E[cki (�; Xk
i (�)) j A] = E[ci(�; Xi (�)) j A]:

Hence

lim
k!1

E[uki (�; Xk (�)) j A] = E[ui(�; X (�)) j A]:

Since Yi is constant on A (because Yi is F-measurable), i.e., Yi = ŷi 2 R+ for all

! 2 A; and fY ki g1k=1 converges pointwise to Yi on 
; for su¢ ciently large k we have

Y ki (!) < 1 + ŷi

for all ! 2 A: And since fcki (!; �)g1k=1 converges uniformly to ci(!; �) on every compact

subset of R+ by (C:3), for su¢ ciently large k we have

cki (!; Y
k
i (!)) � cki (!; 1 + ŷi) � 1 + ci(!; 1 + ŷi):

for all ! 2 A: Since ci(�; 1+ŷi) is integrable on
, (C:3) and the dominated convergence

theorem imply that

lim
k!1

E[cki (�; Y ki (�)) j A] = E[ci(�; Yi (�)) j A]:

Now,

�ki (!; Y
k
i (!) ; X

k
�i (!))V

k
i (!) � 1 +Mi

for all k and all ! 2 
: As Yi > 0, then (A:3); (C:2); (C:3); the last inequality, and

the dominated convergence theorem imply that

lim
k!1

E[�ki (�; Y ki (�) ; Xk
�i (�))V ki (�) j A] = E[�i(�; Yi (�) ; X�i (�))Vi(�) j A]:

Hence

lim
k!1

E[uki (�; Y ki (�) ; Xk
�i (�)) j A] = E[ui(�; Yi (�) ; X�i (�)) j A]

> E[ui(�; X (�)) j A]

= lim
k!1

E[uki (�; Xk (�)) j A];
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which implies that there exists k such that

E[uki (�; Y ki (�) ; Xk
�i (�)) j A] > E[uki (�; Xk (�)) j A];

contradicting that Xk is a Bayesian equilibrium of T k:

Case II. Let A := f! 2 
 j X(!) = 0g, and assume that �(A) > 0.

We show that this case contradicts the assumption that Xk is a Bayesian equi-

librium of T k for all k; and thus cannot be satis�ed. Since f�k(�; Xk(�))g � (4n)


for all k; and (4n)
 is a compact and metrizable space with respect to the product

topology (because 
 is countable), the sequence f�k(�; Xk(�))g1k=1 has a subsequence

that converges pointwise to an F-measurable random variable p 2 (4n)
: Without

loss of generality, assume that f�k(�; Xk(�))g1k=1 itself converges to p: For all i 2 N

and ! 2 
 let

�i(!) = pi(!)Vi(!)� ci(!;Xi(!)):

As in case I, the dominated convergence theorem implies that

lim
k!1

E[uki (�; Xk (�))] = E[�i]:

Let !� 2 A: Since
P

j2N pj(!
�) = 1; there exists i 2 N such that pi(!�) < 1: For every

" > 0; let Y "i := maxf";Xig: Then Y "i is Fi-measurable. Since fXk
i g1k=1 converges

pointwise to Xi on 
; the inequality (4) established above implies that

Y "i (!) � maxf"; 1 + c�1i (!; 1 +Mi)g (7)

for all ! 2 
: For all " > 0 and ! 2 
; (Y "i (�); X�i(�)) 2 Rn+nf0g; and since �(!; �) is

continuous at X(!) for all ! 2 
nA, we have

lim
"!0+

�i(!; (Y
"
i (!); X�i(!))) = �i(!; (X(!))) = lim

k!1
�ki (!;

�
Xk(!)

�
) = pi(!);

and thus

lim
"!0+

[�i(!; (Y
"
i (!); X�i(!)))Vi(!)� ci(!; Y "i (!))] = pi(!)Vi(!)� ci(!;Xi(!))

= �i(!):
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For all ! 2 A; since X(!) = 0; the assumption (A:3) implies that

�i(!; (Y
"
i (!); X�i(!))) = �i(!; (Y

"
i (!); 0)) = 1

for every " > 0; and therefore

lim
"!0+

[�i(!; (Y
"
i (!); X�i(!)))Vi(!)� ci(!; Y "i (!))] = Vi(!)� ci(!; 0)

= Vi(!)

� �i(!):

Let A(!�) be the atom of F containing !�: Since X is F-measurable and X(!�) =

0; A(!�) � A: Since for all z 2 Rn+nf0g, both �i(�; z) and Y "i are F-measurable,

�i(�; (Y "i (�); 0)) is constant on A(!�). As p is F-measurable, for all ! 2 A(!�) we

have

pi(!) = pi(!
�) < 1;

and hence Vi > 0 implies that

lim
"!0+

[�i (!; (Y
"
i (!) ; X�i (!)))Vi(!)� ci(!; Y "i (!))] = Vi(!) > pi(!)Vi(!) = �i(!)

for all ! 2 A(!�): Therefore, the dominated convergence theorem implies that

lim
"!0+

E[ui(�; (Y "i (�); X�i(�)))] > E[�i(�)] = lim
k!1

E[uki (�; Xk(�))]:

Hence, there exists �" > 0 su¢ ciently small such that

E[ui(�; (Y �"i (�); X�i(�)))] > lim
k!1

E[uki (�; Xk(�))]

Let �Y ki = E[Y
�"
i j Fk

i ]: Then �Y
k
i is Fk

i -measurable and, as in case I we may assume

that f �Y ki g1k=1 converges pointwise to E[Y �"i j Fi] = Y �"i on 
: The inequality (7) above,

(C:2)� (C:4); and the dominated convergence theorem imply that

lim
k!1

E[uki (�;
�
�Y ki (�); Xk

�i(�)
�
)] = E[ui (�; (Y �"i (�)X�i(�)))] > lim

k!1
E[uki (�; Xk(�))]:

Hence, there exists k such that

E[uki (�;
�
�Y ki (�); Xk

�i(�)
�
)] > E[uki (�; Xk(�))];
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contradicting that Xk is a Bayesian equilibrium of T k: �

Theorem 1 shows that the Bayesian equilibrium correspondence of Tullock con-

tests with incomplete information is upper semicontinuous. The following proposi-

tion shows that if the players�costs of e¤ort are state independent, then the Bayesian

equilibrium correspondence is also lower semicontinuous at contests with a unique

Bayesian equilibrium. Recall that by Remark 1, every Tullock contest has a Bayesian

equilibrium.

Proposition 1. For every positive integer k; let

T k = (N; (
;F ; �); fFk
i gi2N ; fV ki gi2N ; fcki gi2N ; �k)

be a Tullock contest in which the players�costs of e¤ort are independent on the state of

nature (i.e., for all i 2 N and x 2 R+; cki (�; x) is constant). If the sequence fT kg1k=1
converges to a Tullock contest

T = (N; (
;F ; �); fFigi2N ; fVigi2N ; fcigi2N ; �)

with a unique equilibrium X, then there exists a sequence fXkrg1r=1 such that for all

r; Xkr is a Bayesian equilibrium of T kr , and fXkrg1r=1 converges pointwise to X on


.

Proof. Assume that fT kg1k=1 converges to a Tullock contest T with a unique equilib-

rium X; and let fXkg1k=1 be a sequence such that each Xk is a Bayesian equilibrium

of T k: As shown in the proof of Theorem 1, for all ! 2 
 we have

Xk
i (!) � c�1i (1 +Mi);

where Mi = sup!2
 Vi(!): (Since ci is state-independent, we omit ! from its ar-

gument.) Therefore for su¢ ciently large k; the sequence fXkg1
k=�k

is contained in

�S = �ni=1[0; c�1i (1 +Mi)]

, which is a compact and metrizable space in the product

topology because 
 is countable. Consequently, fXkg1k=1 has a subsequence fXkrg1r=1
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that converges pointwise in 
 to some point in �S. By Theorem 1, this point is a

Bayesian equilibrium of T , and therefore can only be X. �

The proof of Proposition 1 applies without change to Tullock contests in which

the players�costs of e¤ort are state dependent, but the e¤ort that each individual

can exert is uniformly bounded. We state this result in Proposition 2.

Proposition 2. For every positive integer k; let

T k = (N; (
;F ; �); fFk
i gi2N ; fV ki gi2N ; fcki gi2N ; �k)

be a Tullock contest in which the set of pure strategies of each player is contained in

[0;M ]
 for some M > 0: If the sequence fT kg1k=1 converges to a Tullock contest

T = (N; (
;F ; �); fFigi2N ; fVigi2N ; fcigi2N ; �)

with a unique equilibrium X, then there exists a sequence fXkrg1r=1 such that for all

r; Xkr is a Bayesian equilibrium of T kr , and fXkrg1r=1 converges pointwise to X on


.

Next we show that when a Tullock contest has a unique equilibrium, the equilib-

rium is robust to small changes in the players�information, values, and costs of e¤ort,

as well as in the contest success function.

De�nition 2. The Tullock contests T = (N; (
;F ; �); fFigi2N ; fVigi2N ; fcigi2N ; �)

and T̂ = (N; (
;F ; �); fF̂igi2N ; fV̂igi2N ; fĉigi2N ; �̂) are �-neighbors, where � > 0; if

for all i 2 N :

(2:1) D(Fi; F̂i) < �; where D is the Boylan pseudometric;

(2:2) sup!2


���Vi(!)� V̂i(!)��� < �;
(2:3) For all ! 2 
, and every compact subset C of R+; supt2C jci(!; t)� ĉi(!; t)j <

�; and

(2:4) For all ! 2 
, and every compact subset C of Rn+nf0g; supt2C j�i(!; t)� �̂i(!; t)j <

�:
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In a Tullock contest, the set of (pure) strategy pro�les S is a subset of the space

(Rn+)
: Given an enumeration f!1; !2; :::g of 
; the metric d de�ned for all X; Y 2

(Rn+)
 by

d(X; Y ) =
1X
j=1

1

2j
kX(!j)� Y (!j)k

1 + kX(!j)� Y (!j)k
;

where k�k is the Euclidian norm on Rn+; induces the product topology on (Rn+)
:

Proposition 3. Let T = (N; (
;F ; �); fFigi2N ; fVigi2N ; fcigi2N ; �) be a Tullock

contest with a unique equilibrium X. If the players�costs of e¤ort are independent

on the state of nature, then for every " > 0 there exists � > 0 such that if X̂

is a Bayesian equilibrium of a Tullock contest T̂ that is a �-neighbor of T , then

d(X̂;X) < ".

Proof. If Proposition 3 does not hold, then there exists "0 > 0 such that for each

positive integer k there is a Tullock contest T k that is a (1=k)-neighbor of T , and

a Bayesian equilibrium Xk of T k with d(Xk; X) � "0: Since the sequence fT kg1k=1
converges to T , and since fcigi2N do not depend on the state of nature, as in the

proof of Proposition 1, the sequence fXkg1k=1 is bounded. Therefore, the sequence

fXkg1k=1 has a subsequence fXkrg1r=1 converging pointwise to X on 
. Hence there

is �r such that for all r > �r; d(Xkr ; X) < "0. However, by assumption d(Xkr ; X) � "0

for all r; which is a contradiction. �

The following proposition follows from Proposition 2.

Proposition 4. Let T = (N; (
;F ; �); fFigi2N ; fVigi2N ; fcigi2N ; �) be a Tullock

contest with a unique equilibrium X. Then for every " > 0 there exists � > 0 such

that for every Tullock contest T̂ that is a �-neighbor of T and in which the set of

pure strategies of every player is contained in [0;M ]
 for some M > 0 we have

d(X̂;X) < " for every Bayesian equilibrium X̂ of T̂ .

Szidarovszky and Okuguchi (1997), Einy, Moreno, and Shitovitz (2017), and Ew-

erhart and Quartieri (2018) provide conditions implying the uniqueness of equilibrium

15



in large classes of Tullock contests (see also Chowdhury and Sheremeta 2011). Propo-

sitions 1 to 3 imply that the unique Bayesian equilibrium of the Tullock contests in

these classes are robust.
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