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Abstract

We demonstrate equivalence between the mechanism-design problem of
finding the optimal arbitration mechanism and an information-design prob-
lem of managing disputing parties’ beliefs in case arbitration fails to settle.
We impose five axioms on our environment: ordered types, (ex-post) de-
sirable settlement, unilateral veto rights to arbitration, exogenous rules of
conflict, and ex-ante budget balance. Under these axioms any information
structure in conflict maps to a unique candidate mechanism. Optimal arbi-
tration is among these candidates. We derive an information-design problem
equivalent to the arbitration problem. Its solution determines the optimal
information structure for a range of objectives.

1 Introduction

Resolving conflicts through an open fight often implies high costs. Thus, attempt-
ing to resolve conflicts before they escalate to a fight is common. One of the most
powerful resolution attempts is third-party arbitration. Once parties agree on arbi-
tration, an arbitrator controls the outcome of arbitration. Still arbitrators seldom
guarantee settlement and often operate in the shadow of the fight.

In this paper, we propose a general framework to answer the question: How
should we design arbitration? In particular, we address how the details of the
fighting stage affect optimal arbitration. This question is relevant once the arbi-
trator cannot guarantee settlement. If information affects equilibrium outcomes in
the fighting stage, the arbitration problem is sensitive to information revelation.
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We show that it is necessary and sufficient to determine the optimal information
structure in the fighting stage to determine optimal arbitration.

Our results apply to a large set of environments. We include settings in which
information revealed in arbitration has strategic relevance in the fighting stage.
Allowing for these cases complicates the problem. Players are aware of the strategic
value of information. They have an increased privacy concern and an incentive to
manipulate the information structure. Optimal arbitration takes both effects into
account. Our results suggest that the information revelation in arbitration is of
first-order importance.

In the first part of the paper we develop a conceptual framework for arbitration.
We set up a canonical mechanism-design problem of arbitration. We derive it from
5 axioms. We impose: (i) private information about strength in the fight that can
be ordered; (ii) efficient settlement; (iii) unilateral veto rights; (iv) exogenous rules
of the fighting stage; and (v) arbitration without a structural deficit.

Our framework nests existing models of arbitration, but generalizes beyond these
settings.1 Conceptually, the arbitrator solves two interdependent problems simul-
taneously. A mechanism-design problem to set the arbitration protocol and an
information-design problem to manage beliefs in the fight.

The problem emerges naturally when designing optimal arbitration and fits well
in the existing literature. We use it as the basis to derive an alternative formulation
of the problem.

Our alternative formulation aims to overcome a drawback of the mechanism-
design approach: classic techniques are often impractical (i) to disentangle the
mechanism-design part from the information-design part, (ii) to isolate the arbitra-
tor’s trade-off, and (iii) to compute the solution.

In the second part of the paper we construct an equivalent formulation of the
problem: the belief-management problem. It is an information-design problem
directly defined on the fighting stage. Its solution implies the solution to the arbi-
tration problem. Belief management determines the optimal information structure
in the fighting stage. We construct a one-to-one mapping from implementable in-
formation structures to the candidates for the optimal mechanism. Optimal belief
management is necessary and sufficient for optimal arbitration. Belief management
allows us (i) to disentangle the mechanism-design part from the information-design
part, (ii) to isolate and interpret the arbitrator’s trade-off, (iii) and to reduce the
computational complexity.

1Most models in the literature assume either no or only non-strategic effects of information
revelation on players’ behavior in the fighting stage.
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We exploit homogeneity of Bayes’ rule and the resulting linearity of the problem
net of the induced information structure. This linearity is the key step to estab-
lish a mapping from any given information structure to a candidate mechanism.
That relation holds for any objective in which the arbitrator’s budget constraint
binds. The precise formulation of the belief-management problem depends on the
arbitrator’s particular objective. We formulate it for the objectives common in the
literature.

Under these objectives, belief-management problems have a clear economic in-
terpretation. The arbitrator seeks to implement fights with a high level of fun-
damental discrimination and a low level of inefficiency. Fights fundamentally dis-
criminate more if a ceteris paribus change in payoff types has a large effect on
expected outcomes. Fights have less inefficiencies if the expected aggregate utility
is high. The corresponding objective function of the belief-management problem
has an economic intuition. It combines direct measures for both goals.

Finally, we apply our results to a set of examples. We cover much of the existing
literature as well as more complex settings in which fights are sensitive to the
information structure.

Related Literature. The literature on arbitration is extensive. We follow Brown
and Ayres (1994) and assume that the main obstacle to settlement is asymmetric
information.

One strand of the literature ignores participation constraints and concentrates
on a particular class of bargaining protocols (see Armstrong and Hurley, 2002; Ol-
szewski, 2011, and references therein). Mylovanov and Zapechelnyuk (2013) revisit
that literature and provide a mechanism-design perspective to it. Our framework
nests (a discretized version of) Mylovanov and Zapechelnyuk (2013), but also covers
cases in which participation constraints are relevant.

Another, perhaps closer related, strand of the arbitration literature considers
cases in which veto constraints are binding. Both the law and economics literature
(Bebchuk, 1984; Schweizer, 1989; Spier, 1994, and the literature following), and the
literature on international conflicts (Bester and Wärneryd, 2006; Fey and Ramsay,
2011; Jackson and Morelli, 2011; Hörner, Morelli, and Squintani, 2015, and the lit-
erature following) consider arbitration mechanisms. A common feature is that the
information obtained during arbitration has no effect on players’ decisions once set-
tlement fails. Our framework nests these models. In addition, we allow information
to affect continuation play.

Models on arbitration where information revelation and continuation play inter-
act are rare. Our own work on alternative dispute resolution (Balzer and Schneider,
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2017) considers an all-pay auction as the alternative to arbitration. We fully char-
acterize the optimal arbitration mechanism applying some of the tools developed
here to that special case.2

Conceptually, our starting point is a mechanism-design problem with interde-
pendent values (Jehiel and Moldovanu, 2001) that includes unilateral veto rights
as in Compte and Jehiel (2009). Our mechanism, too, has an information exter-
nality, but contrary to these papers we allow for an effect on subsequent behavior.
Moreover, our primary goal is not to investigate if an efficient mechanism exists.
Instead, we take potential inefficiencies as given and describe the problem of finding
the second-best mechanism.

Similar to us, models on common agency by Calzolari and Pavan (2006a,b) and
Pavan and Calzolari (2009) emphasize that the design choices within a mechanism
affect action choices outside that mechanism. The common theme in the large lit-
erature on resale (e.g. Gupta and Lebrun, 1999; Zheng, 2002; Goeree, 2003; Carroll
and Segal, 2018) is that information revelation affects the outcome of an auction.
The literature on aftermarkets (Lauermann and Virág, 2012; Atakan and Ekmekci,
2014; Zhang, 2014; Dworczak, 2017) follows Calzolari and Pavan (2006a) by looking
at the interaction between the design of the mechanism and action choices in the
aftermarket. However, almost all of that literature makes detailed assumptions on
either the mechanism or the disclosure rule. An exception is Dworczak (2017), the
paper closest to ours in that literature.

Conceptually, there are two major difference between arbitration and aftermar-
kets: First, in arbitration the fighting stage serves as the main screening instrument,
while the potential to resell an object is often an obstacle to screening. Second, in
arbitration the set of players is identical inside and outside the mechanism. As a
consequence, in our model all players learn from arbitration about their opponents’
type and interpret the information in light of their own history of play. In contrast,
in the aftermarket literature players can only learn about those opponents that
participated in the mechanism. This restricts the potential information structure
under which the aftermarket is played.

The arbitration problem is a mechanism-design problem with adverse selection
and moral hazard a la Myerson (1982). Our belief-management representation
transforms it into an information-design problem a la Bergemann and Morris (2016).

2Zheng and Kamranzadeh (2018) consider a model identical to the baseline in Balzer and
Schneider (2017), but restrict attention to take-it-or-leave-it settlement offers. This arbitration
protocol is outperformed by the optimal mechanism characterized in Balzer and Schneider (2017).
Zheng (2018) addresses the question when a full settlement mechanism exists given an all-pay
auction as fighting game. He finds results in line with Compte and Jehiel (2009).
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Recent techniques proposed by Mathevet, Perego, and Taneva (2017), Dworczak
and Martini (2018), Galperti and Perego (2018), Kolotilin (2018), and Kolotilin and
Zapechelnyuk (2019) can be applied to address the belief-management problem.

We relate to these models in another dimension too. Like us, they determine
the price of implementing an information structure. However, and different to us,
they treat the prior distribution as the designer’s initial, exogenous endowment. In
our model, the designer endogenously “produces” that endowment. The relation
between the mechanism-design part and the information-design part determines the
cost of producing the “prior” of the fighting stage.3 The arbitrator has a hybrid
task: acquire information and disseminate it.

In the above sense closer is recent work by Georgiadis and Szentes (2018) that
considers optimal monitoring rules. While different from our model in many dimen-
sions, they, too, obtain an information-design formulation that adds tractability by
separating the contract-design part from the information-design part.

Roadmap. In Section 2 we set up a basic model and state our five axioms. In
Section 3 we derive a canonical arbitration problem from these axioms. We connect
it to existing approaches and document several modifications. In Section 4 we de-
velop our main result. We construct a belief-management problem equivalent to the
arbitration problem. We review examples and modifications from Section 3 under
belief management. In Section 5 we address difficulties in and solution approaches
to the belief-management problem.

2 Model

There are two ex-ante symmetric, risk-neutral players, A and B. Each player i has
a privately known type θi ∈ Θ ≡ {1, 2, ..., K}. Types are independently distributed
according to a distribution p : Θ→ [0, 1] with

K∑
θ=1

p(θ) = 1.
The final outcome depends on which of the following disjoint events realizes:

veto, V , escalation, E , or settlement Z. We define outcomes separately.

Veto. In the event V player i receives (exogenous) payoff Vi(θi) ∈ (−∞, 1].4

Escalation. In the event E , players play a non-cooperative game. Its rules are a
finite set of action profiles A and a mapping (uA, uB) : Θ2 × A → (−∞, 1]2. We
refer to the triple (A, u,Θ2) as the escalation game.

3Dworczak (2017) determines a similar object (the “no-communication posterior”) for the case
of single-agent mechanisms with aftermarkets.

4We show later that this includes cases in which payoffs in V are determined endogenously.
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Settlement. Settlement, Z, is an allocation (xA, xB) ∈ [0, 1]2 with xA + xB ≤ 1.
In addition, player i receives a utility transfer ti ∈ R.

Payoffs and a First Pair of Axioms. Player i type θi’s ex-post payoff is equal
to Vi, ui, or xi + ti, depending on whether the final outcome is determined through
veto, escalation, or settlement. We impose two axioms on the payoffs.

Axiom 1 (Types are ordered). The functions ui and Vi are increasing in θi.

Axiom 2 (Settlement is ex-post efficient). The joint payoff in the event E never
exceeds 1, that is, for all type and action profiles in Θ2×A it holds that uA+uB ≤ 1.

Axiom 1 implies that types are ordered. It allows us to interpret θi as a player’s
strength in the fight.

Axiom 2 implies that a settlement solution can replicate any (ex-post) outcome
of the fight. Conditional on knowing the outcome of fighting, a settlement solution
exists that is (weakly) preferred by both players to the fighting outcome. Axiom 2
only concerns the relationship between E and Z. Axiom 2 ignores V because Vi is
an ex-interim, reduced-form representation. Thus, an ex-post notion is not well-
defined. Later we impose Assumption 1 (page 9) which implies that V is undesirable
ex-post. In Section 3.4 we explicitly model V (Modification 1). Using this model
we can apply Axiom 2 analogously to V .

Jointly Axiom 1 and 2 capture the idea of private information as the main driver
of conflict. Strong players need to receive a beneficial allocation xi to be willing to
forgo the fight. A weak player may mimic a strong player to have access to these
beneficial allocations but faces higher cost when ending up in the fight. Absent
adverse selection there is a settlement solution that both parties ex-post prefer over
fighting. We now introduce arbitration to the model.

Arbitration and a Second Set of Axioms. Arbitration is a mechanism that
players can use to select among the events V , E , and Z. In addition, arbitration
can specify direct utility transfers between players. We assume full commitment on
all sides once arbitration is accepted by both players.5 We impose three axioms on
the set of potential arbitration mechanisms.

Axiom 3 (Unilateral Veto Rights). An arbitration mechanism involves unilateral
veto rights at the interim stage, that is, each player can (publicly) veto the arbitra-
tion mechanism. A single veto triggers event V .

5Recent literature (Goltsman et al., 2009; Hörner, Morelli, and Squintani, 2015) has explored
the role of commitment in models of dispute resolution. While not the focus of our paper our
general framework is flexible enough to address these points.
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Axiom 4 (Exogenous Rules of Conflict). An arbitration mechanism treats A, ui,
and Vi as exogenously given. Players can select any ai ∈ Ai in event E .

Axiom 5 (Budget Balance). Arbitration cannot run a structural deficit, that is,
any mechanism is budget balanced in expectation, ∑i

∑
θi p(θi)ti(θi) ≤ 0.

Axiom 3 implies that each player can veto the proposed arbitration mechanism.
In that case both parties move directly to event V .

Axiom 4 implies that arbitration can induce a fight, but cannot control a player’s
action choice, nor the implied outcome of a fight. We emphasize that Axiom 4
does not necessarily imply that the designer has no influence on the rules of the
fighting stage. The arbitrator’s choice among different potential games can easily
be incorporated in the formulation of ui and A. Instead, Axiom 4 allows also for
the possibility that only a very specific game ui is available to the designer. Most
of the literature on arbitration assumes a specific escalation game.

Jointly Axiom 3 and 4 capture the idea that arbitration can only control part of
the environment. While arbitration has full control over settlement, it has limited
control over the fight.

Finally, Axiom 5 implies that the expected increase in joint surplus through
arbitration is bounded by 1. We allow the arbitrator to increase the joint surplus
beyond that in some cases, but not on average.

Solution Concept. We focus on perfect Bayesian equilibria using the definition
of Fudenberg and Tirole (1988).

3 A Canonical Arbitration Problem

In this section we set up a canonical arbitration problem. Formally, the arbitration
problem is a mechanism-design problem. It is constrained by the surrounding envi-
ronment. The arbitrator proposes a gameM that implements either of the events
V , E , or Z. While the arbitrator has full control over the event Z, she ceases control
once events V and E occur.

We start by defining what we call the primitives to the arbitrator’s problem.
While primitives to the design problem, these terms are derived from our model
primitives. Imposing some mild assumptions, we then state and prove the version
of the revelation principle that is applicable to our problem.
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3.1 Primitives to the Arbitrator

In a perfect Bayesian equilibrium a player best responds to her current information
set at any decision node. In particular, suppose we are at a terminal node of the
arbitration mechanism. A player’s information set consists of a private part and a
public part. Player i’s private part, (σi, θi), is her exogenous private information,
θi, and all further information privately acquired previously, σi. The public part,
the information structure B, contains all elements that are public knowledge at the
decision node.

Under the notion of perfect Bayesian equilibrium, player i uses her information
set to form beliefs. She computes a probability mass function over the opponent’s
payoff type, βi : Θ→ [0, 1]—her belief about the opponent’s type. In addition, the
player forms a set of conditional probability mass functions fθ−i : A−i → [0, 1]—her
belief about θ−i’s continuation strategies. Given her beliefs, the player picks an
action that constitutes a best response to these beliefs. These considerations are
relevant in the event of escalation. On the equilibrium path players’ (conditional)
beliefs are correct. The expected continuation value for the (on-path) event E is

Ui(σi, θi,B) := max
ai∈Ai

∑
θ−i

βi(θ−i|σi,B)
∑
A−i

fθ−i(a−i|σi,B)ui(θi, θ−i, ai, a−i), (U)

and the function βi(θi|·), fθ−i(a−i|·) correspond to the correct (on-path) beliefs
about the opponent’s type and her associated action choices.6

From the arbitrator’s perspective, the function Ui is a primitive to her prob-
lem. Since the rules of conflict are exogenous, the arbitrator can at most influence
information sets, but not the shape of the continuation-utility functions.

Treating the function Ui as a primitive we make one of the following two implicit
assumptions. Either (i) the equilibrium selection in the continuation game is exoge-
nous and known to the arbitrator or (ii) the arbitrator can control the equilibrium
selection and picks the “best” equilibrium given her objective.

Either of these assumptions implies that we focus on implementability of the op-
timal mechanism. Approaches in which the arbitrator is unaware of the equilibrium-
selection rule are beyond the scope of the paper.

The set {Θ, p, Ui, Vi} constitutes the primitives to the arbitrator.
6The commonly known B includes the belief closed subset under which the game is played.

Players have (some) common prior and there is common certainty of rationality (see Bergemann
and Morris, 2016, for further details).
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3.2 Basic Assumptions

We make two basic assumptions on the functional forms of the arbitrator’s primi-
tives. These assumption ensure that there is room for arbitration.

Assumption 1. Ui(σ̌i, θi, B̌) ≥ Vi(θi) for {σ̌A, σ̌B, B̌} such that βi(θ−i|σ̌i, B̌) =
p(θ−i) and σi = ∅ for each player.

Assumption 1 implies that an arbitration mechanism with full participation in
equilibrium exists. The arbitrator escalates all cases and players’ receive at least
their veto payoffs. Assumption 1 excludes cases in which parties are exogenously
punished for participation.

Assumption 1 captures cases in which participation in arbitration is neutral
or beneficial even if it fails to settle. Benefits may come through psychological
components or institutional features such as penalties for not agreeing to arbitration.
Examples can be found both in legal systems through explicit sanctions imposed
by the court and in international relations where participation in peace talks often
implies a temporary lift of imposed sanctions.

We make a second assumption on the arbitrator’s set of potential objectives.
We assume that the arbitrator’s preferences are (weakly) monotone in cases settled
and the players’ ex-ante expected payoffs.

Assumption 2. Suppose the following is true for two mechanismsM andM′.
1. M′ settles at least as many cases asM;
2. the (ex-ante) expected payoff of either player in mechanismM′ is at least as

large as her payoff in mechanismM.
Then the arbitrator (weakly) prefersM′ toM.

Potential objective functions under Assumption 2 include minimize the ex-ante
probability of conflict and maximize the player’s ex-ante expected utilities, the ob-
jectives mainly used in the literature. Assumption 1 and 2 together with Axiom 1
to 5 define a canonical arbitration problem.

Definition 1 (Canonical Arbitration Problem). A canonical arbitration problem
is a mechanism-design problem under Axiom 1 to 5 and Assumption 1 and 2.

We discuss examples of the canonical arbitration problem at the end of the
section. Before that, we discuss and state the version of the revelation principle
applicable to our environment.
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3.3 A Revelation Principle for Optimal Arbitration

To state the revelation principle we define a direct revelation mechanism. A direct
revelation mechanism maps the profile of type reports into four objects: (i) a prob-
ability, γ, that the conflict escalates to event E , (ii) a sharing rule, X, determining
the allocation when the settlement is achieved, (iii) a direct utility transfer t, and
(iv) an additional signal, random variable Σ, with realization (σA, σB).

Definition 2 (Direct Revelation Mechanism). A direct revelation mechanism (DRM)
is a mapping

M(·) = (γ(·), X(·), t(·),Σ(·)) : Θ2 → [0, 1]× [0, 1]2 × R2 ×∆(S ), (M)

where ∆(S ) is the set of distributions over a signal space. For technical reasons
that will become clear later we assume without loss that S ⊇ Θ2×A, and S finite.
Again, without loss assume that each realization σi consists of a tuple, (si,mi), that
returns the player’s (own) type report, mi, and recommends an action choice, si.7

The mechanismM is played as follows: Players report their type privately to the
mechanism. With probability γ(θA, θB) the event E follows and signal realization σi
is privately communicated to player i. With the remaining probability 1−γ(θA, θB)
the event Z follows and the allocation (xA, xB) is implemented. In addition, players
receive the utility transfers t in the event Z. Parties are risk neutral and it does
not matter if transfer t is paid only in one event or in all of them. To simplify the
exposition we assume it is paid only in event Z.

Conditional on participation and truthful reporting by −i, the expected payoff
in a given DRM depends on the type report mi and the actual type θi. It is

Πi(mi; θi) =
∑
θ−i

p(θ−i)(1− γi(mi, θ−i))(xi(mi, θ−i) + ti(mi, θ−i))︸ ︷︷ ︸
=:zi(mi)(settlement value)

+
(∑
θ−i

p(θ−i)γi(mi, θ−i)
)∑

σi

Pr(σi|mi)Ui(σi; θi,B),
︸ ︷︷ ︸

=:yi(mi;θi)(escalation value)

(1)

with Pr(σi|mi) the (conditional) probability that a signal σi realizes. The first part,
the settlement value, is the expected payoff from event Z. It depends only on the
type report mi. The second part, the escalation value, is the expected payoff from
event E . It depends on the type report mi and the actual type θi.

7The feedback of mi simplifies notation at a later point.
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A DRM is incentive compatible if

∀mi, θi ∈ Θ : Πi(θi; θi) ≥ Πi(mi; θi).

A DRM is incentive feasible if it is incentive compatible and all types want to
participate, that is,

∀θi ∈ Θ : Πi(θi; θi) ≥ Vi(θi).

A DRM is implementable if it is incentive feasible and satisfies the arbitrator’s
budget constraint, that is,

∑
i

∑
θi

p(θi)
∑
θ−i

p(θ−i)(1− γi(θi, θ−i))ti(θi, θ−i) ≤ 0.

Using the formulation in (1) it is possible to simplify the description of a DRM
such that the arbitrator directly picks a function determining the settlement share
z. We refer to this as the reduced-form DRM.

Definition 3 (Reduced-Form Direct Revelation Mechanism). A reduced-form DRM
is a collection of mappings

M = (γ, z,Σ), (M)

where γ and Σ are defined as above and z = (zA, zB) with each zi : Θ→ R.

We first state that DRMs and reduced-form DRMs are equivalent by reformulat-
ing the arbitrator’s budget constraint. We use that result to state the appropriate
revelation principle.

Lemma 1. A reduced-form DRM (γ, z,Σ) is implementable if and only if an in-
centive feasible DRM (γ,X, t,Σ) exists that satisfies

∑
i

∑
θi

p(θi)zi(θi) ≤ 1−
∑

(θA,θB)
p(θA)p(θB)γ(θA, θB). (BB)

Proposition 1 (Revelation Principle). It is without loss of generality to focus on
implementable reduced-form DRMs.

Our setting is dynamic in that a continuation game outside the arbitrator’s
control interacts with the arbitrator’s choices. While it is not straightforward in
such settings to use the revelation principle it applies in our framework.8

An immediate corollary to Proposition 1 is reminiscent of the findings of Compte
and Jehiel (2009) and Zheng (2018).

Corollary 1. Full settlement is implementable if and only if VA(K) + VB(K) ≤ 1.
8Sugaya and Wolitzky (2018) discuss the revelation principle for multistage games in general.
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3.4 Alternative Environments and Examples

We address the “canonical” claim of the arbitration problem by showing it is robust
to modifications and nests a wide range of models as special cases.
Alternative Environments. We state three modification to our environment and
highlight how they influence the description of the problem.
Modification 1 (Veto Leads to Play of a Game). In our model we assume that a
veto implies a (possibly type-dependent) exogenous outside option. Here, instead,
a veto implies the play of a game (AV , vi,Θ2) defined analogously to the game in
the escalation event; (va, vb) : Θ2 ×AV → (−∞, 1]2. Likewise, we define Vi(θi,Bj),
where Bj is the public information structure after a veto by j ∈ {i,−i}.9

Proposition 2. If Vi(θi,B) is convex in B, the arbitration problem is isomorphic
to the canonical arbitration problem.10

The modification includes parties playing the escalation game (A, u,Θ2) in case
of a veto as a special case. That special case is often assumed in the literature
(e.g. Schweizer, 1989; Bester and Wärneryd, 2006; Hörner, Morelli, and Squintani,
2015).
Modification 2 (No Transfers). In our model we assume that the arbitrator can
impose direct utility transfers between players subject to her budget constraint.
Here, instead, we do not allow for direct transfers, that is, t ≡ 0.

Without transfers, a reduced-form mechanism (γ, z,Σ) may not be implementable
because there is no X that can implement z given γ. To state a necessary and suf-
ficient condition for implementability we follow Border (2007). We define the fol-
lowing terms. For any Q ⊂ Θ2 let Qi:={θi|∃θ−i : (θi, θ−i) ∈ Q} and Q̃:={(θA, θB) ∈
Θ2|θi /∈ Qi for i={A,B}}. Moreover, let P (E) := ∑

(θi,θj) p(θi)p(θj)γ(θi, θj). We
have the following general implementation condition. For all Q ⊆ Θ2

∑
i

∑
θi∈Qi

zi(θi)p(θi) ≤ 1− Pr(E)−
∑

(θA,θB)∈Q̃

(1− γ(θA, θB))p(θA)p(θB). (GI)

Equations (GI) mirror the general implementation condition from Border (2007).

Proposition 3. Suppose the mechanism cannot impose direct utility transfers.
Then a DRM exists that implements a given reduced-form DRM (γ, z,Σ) if and
only if the reduced-form DRM satisfies (GI).

9Private information beyond the distribution of types is irrelevant here.
10The convexity assumption on Vi is sufficient, but not necessary. A weaker, yet involved

assumption is to concentrate on information structures (p, ρ−i), s.t. ρ−i is the belief player −i
holds about i after a veto. With abuse of notation we can replace the convexity assumption by
“Vi(·, (p, ·)) is on the convex closure of Vi’s graph with respect to p”.
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In the absence of transfers our model is also isomorphic to a model in which a
player’s type affects her valuation of the share, xi.

Proposition 4. Suppose the value of share xi is ϕ(θi)xi, ϕ(θi) is increasing, and
transfers are not allowed. The arbitration problem is isomorphic to the canonical
arbitration problem.

If transfers are allowed and a player’s valuation for share xi is ϕ(θi)xi, then the
arbitrator does not need the event E for screening. Instead, she can screen within
Z. The problem collapses to the standard quasi-linear, independent-private-value
case.

Modification 3 (Confidential Arbitration). In our model we assume that the ar-
bitrator can send private signals to the players. In particular, she can privately
communicate with one party about her communication with the other party. In
some settings such communications may be prohibited. Any message a third-party
releases to player −i about information previously received from player i has to be
available to player i as well.

The following corollary to Proposition 1 describes that case.

Corollary 2 (Public Signals). Suppose that arbitration is confidential. Then it
is without loss of generality that all signals are public, that is in any realization
(σA, σB), sA ≡ sB.

Other assumptions we can relax without changing results include the following:
players’ commitment to obey the arbitrator, symmetry, and type independence.
However, the relaxations are notationally inconvenient. Our model is identical to
one in which budget balance holds on an ex-post level as players are risk neutral
(see the arguments in Börgers and Norman, 2009).

While ui allows interdependencies, we exclude correlation between the players’
type distributions. Correlation would—provided a full-rank condition—free the
arbitrator entirely from incentive constraints precisely as in Crémer and McLean
(1988). For the case without transfers, correlations would lead to binding (GI)
constraints at an otherwise unchanged problem.

Examples. We provide examples of environments captured by our setting.

Example 1 (Exogenous Cost of Conflict). Our first example covers classic settings
such as (a discretized version of) the bilateral trade environment of Myerson and
Satterthwaite (1983).11 If settlement fails, parties consume an exogenously given
outside option which is type-dependent. Thus, ui is constant in all arguments but θi.

11Compte and Jehiel (2009), section IIB., provides the necessary relabeling of terms.
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Consequently, also Ui is constant in all arguments except θi. In turn, the beliefs βi
and fθ−i are irrelevant. In line with Myerson and Satterthwaite (1983) and Compte
and Jehiel (2009), combining Axiom 2, Assumption 1, and Corollary 1 implies that
full settlement is guaranteed. The result is intuitive: settlement is ex-post efficient.

Example 2 (Conflict as Type-Dependent Lottery). Our second example covers a
superset of Example 1. Conflict is a type-dependent lottery, capturing all environ-
ments where players’ continuation strategies are invariant in the belief βi(θ−i). A
player’s best response depends on her own type only.12 The modeling approach is
equivalent to e.g. Jehiel and Moldovanu (2001) and Compte and Jehiel (2009). Ar-
bitration problems of that kind can be found in international relations (e.g. Bester
and Wärneryd, 2006; Hörner, Morelli, and Squintani, 2015; Meirowitz et al., 2017)
and settlement bargaining (e.g. Bebchuk, 1984; Schweizer, 1989).

Formally, type-dependent lotteries imply that fθ−i(a−i|σ,B) = fθ−i(a−i) and
that equilibrium action a∗i (θ−i,mi, σi,B) is invariant in (σi,B). Abusing notation
we can re-write

Ui(σi, θi,B) =
∑
θ−i

βi(θ−i|σi,B)ui(θi, θ−i).

Example 3 (Private Cost of Conflict). The third example is a superset of Example 1
too. Yet, it extends Example 1 along a different dimension by only assuming that
ui is constant in θ−i. That setting covers all cases in which the ex-post payoff of
player i depends on the action profile and thus on the opponent’s choices, but not
on the opponent’s type. The literature on this type of arbitration is small. In a
related paper (Balzer and Schneider, 2017) we analyze optimal arbitration in such
an environment.13 Moreover, the resale literature (e.g. Gupta and Lebrun, 1999;
Calzolari and Pavan, 2006a) considers such an environment.

Formally, let f(a−i|σ,B) := ∑
θ−i βi(θ−i|σi,B)fθ−i(a−i|σ,B). Abusing notation

again, we can re-write

Ui(σi, θi,B) = max
ai∈Ai

∑
A−i

ui(θi, ai, a−i)f(a−i|σi,B).

4 Belief Management

In this section derive an information-design problem conditional on the escalation
game. Solving that problem is necessary and sufficient to find optimal arbitration
if full settlement cannot be guaranteed. The necessary part follows from Axiom 4.

12The literature refers to these as games with ex-post equilibria (Crémer and McLean, 1985).
13Zheng and Kamranzadeh (2018) use a bargaining approach in an otherwise identical model.

14



We show that finding the optimal information structure is sufficient to determine
the optimal mechanism too. We focus on cases in which a mechanism implementing
full settlement does not exist.14

Assumption 3 (No full settlement). VA(K) + VB(K) > 1.

We derive the result in steps. First, we establish our notion of an information
structure. Second, we characterize a mapping from implementable information
structures to a unique candidate for the optimal mechanism. Third, we apply
this result to a range of objectives of the arbitrator. We obtain the corresponding
information-design problem. Finally, we revisit the examples from Section 3.4.

Our results simplify the arbitration problem. Obtaining the optimal informa-
tion structure in E is sufficient to determine the optimal mechanism. That is, for
a given canonical arbitration problem we can disentangle the mechanism-design
part of eliciting information from the information-design part of distributing that
information. The transformation reduces complexity and improves clarity of the
arbitrator’s (economic) problem. The information-design problem is economically
intuitive, highlights the arbitrator’s main trade-off, and aides tractability.

4.1 Preliminaries: Information Sets and Notation

The information set at the beginning of the escalation stage consists of a private
part and a public part. The private part, (σi, θi), contains the realization of the
signal, a players’ own private history of play, and the exogenous private type. The
public part contains everything commonly known, in particular, the arbitrator’s
choiceM, the information that the conflict escalated, and the common prior.

A player uses all publicly available information to compute her own beliefs about
the opponent’s potential beliefs and higher-order beliefs. On the equilibrium path
these computations are correct. In addition, a player uses her privately obtained
information to determine the likelihood that her opponent holds a specific belief
(and higher-order beliefs).

Recall that any realization (σA, σB) provides player i with a private signal σi =
(si,mi). In equilibrium, player i forms a belief about the message σ−i which her
opponent receives. That belief itself can be decomposed into two parts. A belief
about m−i and one about s−i. We address them in turns.

14Assumption 3 is useful to rule out the trivial full-settlement solution when considering a
symmetric (i.e., anonymous) objective. For the sake of simplicity, we build our argument ignoring
cases in which full settlement is implementable but not optimal. However, nothing changes qual-
itatively when including those cases expect that the last step of the proof of Theorem 1 becomes
slightly more involved.
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The belief about m−i coincides with the belief about the payoff type θ−i be-
causeM is incentive compatible. We represent the players’ updating procedure as
a sequence of two updates. First, the player uses her knowledge of the arbitrator’s
choice of γ and the observation of event E . Applying Bayes’ rule using the prior
p leads to a probability mass function βi(θ−i|mi). Second, she uses the realiza-
tion si that may contain additional information about θ−i. Applying Bayes’ rule
again—using βi(θ−i|mi) as the prior—leads to a (refined) belief β(θ−i|mi, si).

We proceed with the belief about s−i. Conditional on report profile (mA,mB),
the belief s−i is entirely determined through the known structure of the signal Σ. We
represent it by a cumulative distribution function Si(s−i|mi, si, θ−i) : A−i → [0, 1].

We determine the public information structure before the realization of the sig-
nal, but after the event E is announced. In that case, each player has sent her type
report but has not yet obtained σi. The player therefore knows her belief about the
opponent’s payoff type βi(θ−i|mi), a (conditional) distribution over realizations of
her own signal Si(si|mi, θ−i) : Ai → [0, 1], and a set of (conditional) distributions
over her opponent’s signal Si(s−i|mi, si, θ−i). We abuse notation to shorten the
description of the latter two to Si(θ−i|mi) := (Si(s−i|mi, si, θ−i), Si(si|mi, θ−i)).

The public information structure contains (βi(θ−i|θi), Si(θ−i|θi)) for all types
and players. The matrix B with element bij := βi(θ−i|θi) describes the belief about
the state, (θA, θB), up to second order. The matrix S with element sij := Si(θj|θi)
describes the belief about (expected) realizations of the private signals up to second
order. The public information structure at this point is the tuple B := (B, S).

We determine a set of properties of B.

Definition 4. A mechanismM induces information structure B if B is the public
information structure in some on-path continuation game of event E .

Definition 5 (Consistency). A set of beliefs over the type space, B, is consistent
with respect to the prior, p, if there is a mechanismM and a set of beliefs about
realizations S such thatM induces (B, S).

The next two results further qualify consistency.

Lemma 2. B is consistent if and only if there is a γ such that B follows from
applying Bayes’ rule under γ.

Lemma 3. Take a set of arbitrary probability mass functions each with full support
over Θ, {βA(·|j)}j∈Θ ∪ βB(·|1). There is a unique set {βB(·|j)}j∈Θ\{1} such B =
{βi(·|j)}j∈Θ,i∈{A,B} is consistent.

We combine the two lemmas above to state a result that allows us to connect
our notion of a public information structure to the information-design literature.
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Lemma 4. Any information structure can be represented by a tuple (B,Σ). More-
over, information structure B = (B,Σ) is consistent if and only if B is consistent.

The last result can be interpreted as follows. The continuation game in the event
E is an incomplete information game in the sense of Bergemann and Morris (2016).
Using their terminology, a basic game consist of four elements. An action set, A,
a payoff function, u, a type space, Θ2, and a common prior, B. An incomplete
information game is a basic game augmented by a random variable, Σ, determining
further, privately held, information.

The first-order and second-order beliefs about the state that players hold when
observing the mechanism’s outcome are entirely determined by the escalation rule
γ as the next corollary to Lemma 2 and 4 shows.

Corollary 3. A reduced-form DRM, (z, γ,Σ), induces information structure, (B,Σ)
if and only if B follows from applying Bayes’ rule under γ.

Public Signals. A private signal, Σ, may contain a public component. We have
seen above that the realization σi can contain a public component that reveals more
information about the state and the distribution of signals to all players and types
simultaneously. For a given information structure, (B,Σ), the public component
induces a spread over B. A corollary to Lemma 4 states that any realization of the
signal can be directly induced by some mechanism.

Corollary 4. Take any distribution over a set of consistent information structures,
F(B). There exists a consistent information structure B = (B,Σ) that induces this
distribution.

The special case of public signals implies that Σ contains only a public com-
ponent. An example is confidential arbitration. In that case it is without loss to
describe a signal realization by some s, and the players’ private signal σi = (mi, s).
The public information structure after s is B(s). Moreover, Σ describes a map-
ping from Θ2 onto a lottery over the set of potential realizations {s}. Finally, the
(expected) common knowledge distribution over types conditional on E is B. Each
element is ∑k∈{s} Pr(k|θi)βi(θ−i|θi, k). Any B(s) is consistent, and so is B.

4.2 Belief Management

In the previous part we have shown that γ provides the “prior” B to the incomplete
information game (A, u,Θ2, B,Σ). In this part we show that (B,Σ) is sufficient
to determine a unique candidate mechanism (z, γ,Σ) in a canonical arbitration
problem. We construct a mapping MΣ(B) 7→ (z, γ). It determines the arbitrator’s
least-costly option to induce (B,Σ) by a reduced-form DRM.
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Definition 6. An information structures is implementable if an implementable
reduced-form DRM induces it.

Theorem 1. Consider a canonical arbitration problem. The set of implementable
information structures (B,Σ) is compact. Moreover, for any implementable (B,Σ)
the optimal reduced-form mechanism, (z, γ,Σ), is unique.

Theorem 1 is our main result. The proof is constructive. We organize our
discussion of the intuition using a set of observations that correspond to the steps
in the formal proof. Recall that B is formed immediately after event E realized but
before the signal realizations (σA, σB) have been communicated.

Observation 1. Both the belief about the state, B, and the continuation payoffs,
Ui, are homogeneous of degree 0 in the escalation rule. The escalation value, yi, is
homogeneous of degree 1 in the escalation rule.

Suppose player i submits a report mi and learns about the event E . Before
receiving any additional signal, the probability of facing a particular type θ̃−i is

βi(θ̃−i|mi) = p(θ̃−i)γ(mi, θ̃−i)∑
θ−i p(θ−i)γ(mi, θ−i)

.

That probability is determined by the relative likelihood of escalation only. Thus,
if γ implies B so does αγ. The effect of γ on the continuation payoff in E is
entirely expressed via B. Thus, any Ui is invariant to any scaling of γ. Finally,
the (interim) probability of reaching escalation and hence the escalation value are
linear in γ, realizations σ are constant in γ.

Observation 2. The most-costly escalation rule inducing B is unique.

Take any γ that induces B and pick the largest scalar α such that αγ(θA, θB) ≤ 1
for all (θA, θB). Then, the rule gB := αγ minimizes the right-hand side of the budget
constraint (BB). It is the most-costly rule for the arbitrator. Identifying the most-
costly escalation rule is sufficient to characterize all escalation rules that induce B.
The set of all γ inducing B is {αgB : α ∈ (0, 1]}. Given B, the problem reduces to
finding the lowest α such that (B,Σ) is implementable.

Our next observation contains the main step towards the result.

Observation 3. It is without loss to assume that any type θi has either a bind-
ing incentive constraint or a binding participation constraint. Given (B,Σ), all
constraints are linear in α and z.

Assumption 2 and 3 ensure that some constraint binds for any type. Otherwise
a Pareto improving mechanism with less escalation exists. The second part follows
by combining players’ expected payoffs with Observation 2.
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Observation 3 implies that (B,Σ) captures the entire non-linear part of the
constraints. Given (B,Σ) each type has some binding constraint and the set of
constraints consists of 2K independent linear equations. We have 2K+1 unknowns,
the 2K settlement values and the scalar α. To close the problem we need one more
equation. We use the arbitrator’s budget constraint (BB).

Observation 4. It is without loss to assume that (BB) holds with equality.

By Observation 3, zi is linear in α, and thus ∑i

∑
θi p(θi)zi(θi) is linear too. The

right-hand side is independent of z and linear in α. Solving for α delivers a unique
tuple (z∗Σ, α∗ΣgB) satisfying the binding constraints with equality for any (B,Σ).

Via Observation 1 and 2, an implementable escalation rule inducing B exists if
and only if the corresponding α∗Σ ≤ 1.

We construct a function MΣ : B 7→ (z, γ) that (given Σ) identifies a unique
candidate (z, γ) for any implementable B that can be induced by an implementable
M. It points to the origin otherwise. The function is given by

MΣ(B) := 1α∗Σ≤1

(
z∗Σ, α

∗
ΣgB

)
,

and continuous in the interior of its support.

Discussion of Theorem 1. The canonical arbitration problem contains a mechanism-
design part and an information-design part. The arbitrator has full control over the
settlement environment, yet under escalation her power ceases and players are free
to take decisions.

The informational content of sending players to escalation is endogenous. More-
over, the arbitrator has to evaluate the effects of information revelation on escala-
tion. Thus, it is necessary that the arbitrator solves an information-design problem
for that event.

Theorem 1 implies that solving that information-design problem is sufficient too.
Given a “prior”, B, and a signal structure, Σ, the optimal mechanism is pinned down
by a set of linear equations.

We want to highlight that the arbitrator has more power in the information-
design problem implied by Theorem 1 than in Bergemann and Morris (2016). Un-
der Theorem 1, the arbitrator can produce the “prior” to her information-design
problem at a cost. The literature on information design assumes that the prior is
exogenously given. The reason for that difference is precisely that the arbitrator
can control the strategic environment prior to escalation.

The main implication of Theorem 1 is that we can formulate the entire problem
focusing only on the event E . That is, all constraints and the objective are a function
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of the information structure (B,Σ) only. The set of functionsMΣ determines if such
an information structure is implementable and how it is best implemented.

We want to emphasize that the (re-)formulation simplifies the analysis in several
ways. Keep in mind that for given “prior”, B, the information-design part of finding
the optimal Σ is necessary for any formulation of the arbitration problem. We leave
it unchanged in our formulation.

Before this stage our formulation simplifies the problem. On the level of finding
a solution, Theorem 1 not only characterizes the set of implementable B that some
implementable M can induce, but also limits it to a single candidate mechanism
for any B.

Our simplification is independent of the objective itself. The only requirement
we impose is the ‘quasi-Pareto’ criterion defined in Assumption 2. Theorem 1
implies that B is a sufficient statistics for a candidate mechanism for any objective
satisfying Assumption 2. To guarantee feasibility we construct a function MΣ(B)
that is continuous on the interior of its support. It provides an intuitive mapping
from implementable Bs to mechanisms, driven by the expected settlement shares
necessary to support B.

Focusing on the event E simplifies the interpretation of both the problem and
its results. Using Theorem 1 we can link the properties of the optimal mechanism
directly to the information it induces. That is, we can interpret how optimal ar-
bitration manages the information flow between players. The information-design
approach allows us to make predictions on the information arbitration reveals.

Our next step is to specify the information-design problem for a class of objective
functions of the arbitrator. We argue that the reformulation provides an intuitive
description of the main trade-offs and delivers insights even without specifying the
escalation game. We then revisit the examples and modifications from Section 3.

4.3 Optimal Belief Management

In this part we apply Theorem 1 to a class of objective functions of the arbitrator.
Our formulation covers a range of social welfare functions. It includes all cases in
which social welfare is players’ aggregate utility minus some additional cost that
escalating the conflict imposes on society. Our result states a well-defined problem
of selecting an information structure B.

We refer to the problem of finding B as the belief-management problem. It is
an economically intuitive, compact representation of the arbitration problem, and
entirely based on the escalation game (A, u,Θ2).

We start by stating a class of objective functions. Take any ξ ∈ [0, 1], and
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assume the arbitrator chooses an implementable mechanism (γ, z,Σ) that solves

max
(γ,z,Σ)

(1− ξ)
∑

i

E[zi(θ) +
(∑
θ−i

p(θ−i)γi(θ, θ−i)
)
Ûi(θ; θ,B)]


︸ ︷︷ ︸

expected joint surplus

−ξ Pr(E)
︸ ︷︷ ︸

prob. of E

, (PM)

with
Û(mi; θi,B) :=

∑
σi

Pr(σi|mi)Ui(σi; θi,B).

Problem (PM) covers any convex combination between conflict minimization (ξ = 1)
and joint surplus maximization (ξ = 0).

Constraints. A mechanism is implementable if it satisfies participation con-
straints, incentive constraints and is budget balanced. Theorem 1 states that instead
of an implementable mechanism we can directly choose an information structure,
B = (B,Σ), such that B is consistent and in the support of MΣ(B). What is left is
to determine how to find the optimal B.

To facilitate intuition, think of Σ as (optimally) chosen given prior B. If Σ is
optimal conditional on B, the arbitrator’s problem is to implement B. However,
B not only influences the choice of Σ, but also determines the marginal type dis-
tributions conditional on E , denoted by (ρA(·), ρB(·)). They are the solution to the
following system of equations completely identified by B15

ρi(θi) =
∑
θ−i

β−i(θi|θ−i)ρ−i(θ−i) ∀θi, θ−i. (2)

Theorem 1 incorporates the binding participation constraints and budget balance
inMΣ(B). What remains is to state the incentive constraints in light of Theorem 1.
Take any i and θ, θ′ ∈ Θ. Incentive compatibility holds if and only if16

ρi(θ′)
p(θ′)

(
Ûi(θ′; θ′,B)− Ûi(θ′; θ,B)

)
− ρ(θ)
p(θ)

(
Ûi(θ; θ′,B)− Ûi(θ; θ,B)

)
≥ 0. (IC)

Objective. To facilitate the exposition we impose more structure on the problem.
We impose that apart from the strongest type all types have a (pre-arbitration)
incentive to seek settlement.

Assumption 4 (Close Conflicts). ∑
i

∑
θi∈Q̂

p(θi)Vi(θi) <
∑
θi∈Q̂

p(θi), for any Q̂ ⊆ Θ

15The proof of Lemma 3 provides the relevant arguments.
16For details, see proof of Theorem 1 in particular step 3 an the Lagrangian in appendix B.
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and Q̂ 6= {K}.

Assumption 4 imposes structure on the set of relevant constraints.17

Lemma 5. Under Assumption 1 to 4 the strongest type’s participation constraint
holds with equality. All other participation constraints are redundant.

Jointly, Observation 3 and Lemma 5 imply that we can identify a path, ιi :
Θ \ K → Θ, such that Πi(ιi(θi), θi) = Πi(θi; θi), and ιi(θ) 6= θ. The function ιi

determines a binding incentive constraint for each type but the strongest for whom
the participation constraint binds by Assumption 3. For the special case that local
constraints are sufficient for incentive compatibility ιi(θi) = θi+1. Given ιi(θi) we
can define Dι

i(mi; θi,B) := Ûi(mi; ιi(θi),B)− Ûi(mi; θi,B). We refer to Dι
i(mi, θi,B)

as θi’s type disadvantage as it describes θi’s loss in utility compared to the “next
best” type from θi’s perspective.

We can use Dι
i to determine a type’s virtual loss. Let Θι(θ) := {k ∈ Θ|∃n ≥

0 s.t. ι◦n(k) = θ} be the set of types on path ι that lead to θ after some iteration
ι◦n. Define

wιi(θi):=
∑

k∈Θι(θ)

p(k)
p(ι(θi))

.

For the special case ι(θ) = θ + 1 ωι describes the hazard rate.

Definition 7 (Virtual Loss). Player θi’s virtual loss of pretending

Ψ̂ι
i(θi,B):=

w
ι
i(θi)Dι

i(ιi(θi); θi,B) if θi 6= K

0 otherwise.

We state the objective as a function of two objects, each defined within E .

E[Ψ̂|B] :=
∑
i

K−1∑
θi=1

ρi(ιi(θi))Ψ̂i(θi,B) (expected virtual loss)

E[Û |B] :=
∑
i

K∑
θi=1

ρi(θi)Ûi(θi; θi,B) (expected utility)
(3)

In principle, multiple incentive constraints could bind. Let (IC)A be the set of
all incentive constraints as defined in equation (IC) which are not governed by ιi.

17We derive a general version absent Assumption 4 in the appendix to the paper. The main
difference is that it complicates identifying the set of binding constraint.
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Define the optimization problem18

min
B

ξ + (1− ξ)
(
1− E[Û |B]

)
E[Ψ̂|B] + E[Û |B]− 1

, s.t. (IC)A and MΣ(B) 6= 0. (PB)

Proposition 5 (Duality). Take a canonical arbitration problem under Assump-
tion 3 and 4. A mechanism solves (PM) if and only if (γ, z) = MΣ∗(B∗) and
(B∗,Σ∗) solves (PB).

Proposition 5 follows from using the function MΣ(B) to replace z and γ in the
arbitrator’s objective and rearranging terms. Recall that a consistent B follows
from any arbitrary {βA(·|j)}j∈Θ ∪ βB(·|1) under Lemma 3.

Proposition 5 provides an intuitive belief-management problem which is equiva-
lent to the canonical arbitration problem. Before discussing the general formulation
it is useful to consider the two polar cases. First, if the arbitrator maximizes joint
surplus (ξ = 0), she seeks to maximize

E[Ψ̂|B]
1− E[Û |B]

.

Second, if the arbitrator minimizes escalation (ξ = 1), she seeks to maximize

E[Ψ̂|B] + E[Û |B].

The case ξ = 1 has an analogue in revenue-maximizing auction design (Myer-
son, 1981). The main difference is that—although types are ordered—the term
E[Ψ̂|B] + E[Û |B] is non-linear in the arbitrator’s choice. These non-linearities in-
crease complexity. However, conceptually an arbitrator minimizes the likelihood of
the conflict by maximizing the expected virtual valuation of the escalation game
over the information structure.

More generally, the arbitrator wants to decrease the numerator of the objective
in (PB). That term captures the cost of escalation to the arbitrator. They consist of
a fixed component, ξ, and a variable component, (1− ξ)E(1− [Û |B]), that captures
the (joint) surplus loss of escalation. The cost of escalation are, however, only
conditional on the event E . Therefore, we have to multiply the cost by (E[Ψ̂|B] +
E[Û |B]− 1)−1. The lower the likelihood of escalation, the lower the expected cost.
Thus, the arbitrator wants to maximize the denominator to ensure settlement as
often as possible.

We now address the two terms separately. The intuition for the numerator’s
18Note that E[Ψ̂|B]+E[Û |B] > 1 for any information structure withMΣ(B) 6= 0 by Theorem 1.
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form is straight-forward. The higher the welfare losses from escalation, and the
more intense the arbitrator’s preferences about it, the more costly is escalation.

The intuition for the denominator’s form is more subtle. To minimize the like-
lihood of escalation, the arbitrator increases the (expected) virtual loss and utility
for players in the event E . Consider a player in event E . Increasing her virtual
loss contributes to satisfying incentive constraints. The higher E[Ψ̂|B], the lower
the information rent the arbitrator has to pay to ensure incentive compatibility.
Increasing players’ utility, in turn, incentivizes players to agree to participate in
arbitration in the first place. It relaxes participation constraints.

Proposition 5 characterizes the economic forces. It provides an intuition how
continuation play affects the arbitrator’s choices.

Complexity increases when optimizing the choice of the signal Σ. Nevertheless,
combining Proposition 5 and Theorem 1 implies that any remaining complexity is
a direct consequence of the associated information-design problem in arbitration.
That is, if we restrict—as most of the literature—complexity such that the scope for
information design in the game (A, u,Θ2) is tractable, so is the arbitration problem.

We discuss some avenues of such restrictions in Section 5 and conclude this sec-
tion by relating the results to the alternative environments and examples discussed
in Section 3.4.

4.4 Alternative Environments and Examples

Alternative Environments. We revisit the alternatives from Section 3.

Modification 1 (Veto Leads to Play of a Game). The problems are isomorphic net
of the convexity assumption. If convexity is violated, full participation may not be
optimal. In our paper Balzer and Schneider (2018) we discuss one way to overcome
the participation problem absent the convexity assumption.

Modification 2 (No Transfers). If the arbitrator has no access to additional transfers,
she faces the constraints (GI). Net of these constraints the problems are isomorphic
by Proposition 3. We recommend the following proceeding when facing a problem
in which utility transfers are not possible. When constructing the function MΣ(B)
include an additional non-negativity constraint for the settlement values, z.

Unfortunately, and common in the literature on reduced-form mechanism design,
it is hard to economically interpret the constraints (GI). We recommend a guess
and verify approach. Ignore the constraints (GI) and compute the optimum. If any
constraint in (GI) fails, include it and re-optimize.

Modification 3 (Confidential Arbitration). Confidential arbitration reduces the com-
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plexity of the signaling space and thus adds structure. It helps us to make state-
ments on the choice, Σ.

Confidential arbitration reduces the set of implementable post-signal informa-
tion structures to the set of implementable B. As we saw in Section 4.1, Σ reduces
to a (potentially type-dependent) lottery over such B’s.

Under confidential arbitration we can apply results from the Bayesian Persuasion
literature following Kamenica and Gentzkow (2011). Plain concavification (Aumann
and Maschler, 1995) does not apply since lotteries may be type-dependent. However,
“Lagrange-Concavification” (Doval and Skreta, 2018) does apply. In Appendix B
we state the Lagrangian function of the corresponding constrained maximization
problem. We show that the optimal Σ is obtained from the Lagrangian’s concave
closure.

Finally, there is an intuitive sufficient condition that determines whether sig-
nals are needed at all. Fix the signal to be uninformative, that is, Σ(mA,mB) :
(mA,mB) 7→ ((mA, ∅), (mB, ∅)). Suppressing the uninformative signal in the nota-
tion, we state the following auxiliary problem

min
B

ξ + (1− ξ) (1− E[U |B])
E[Ψ|B] + E[U |B]− 1 , (PB)

with B consistent. Problem (PB) describes problem (PB) prohibiting signals and
ignoring (IC)A and M(B) 6= 0.

Proposition 6 (No Signals Needed). Take a canonical confidential arbitration prob-
lem under Assumption 3 and 4. If the solution to (PB) does not violate any con-
straint (IC)A and M(B) 6= 0 then it is also the solution to (PB)

Proposition 6 follows because any consistent B can directly be implemented. If
no constraint outside the objective binds, the optimal B is on the convex closure
of the objective and the Lagrangian. There is no room for signals to exploit the
curvature further.

Examples. We now turn to the examples from Section 3.

Example 1 (Exogenous Cost of Conflict). Recall from the discussion in Section 3
that full settlement is guaranteed in an environment with exogenous cost of conflict
through Axiom 2. The belief-management formulation provides another reason for
that result. The information channel is entirely shut down. Players consume a
given value in case of escalation.

The induced information structure influences neither screening nor welfare in
the event E . Any information structure is thus optimal, but escalation bears some
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cost. Therefor, full settlement has to be guaranteed. Put differently, Axiom 2 is
incompatible with Assumption 3 if ui is a function of θi only.

Example 2 (Conflict as Type-Dependent Lottery). Our second example includes the
class of games in which the outcome of E is determined by a type-dependent lottery.
Recall that such environments cover all cases with ex-post equilibria. Different from
Example 1, the information structure is relevant. There is an informational exter-
nality (Jehiel and Moldovanu, 2001). However, the externality affects continuation
utilities linearly because continuation strategies are invariant to the externality.
The expected utility Ui is a linear function of B. Thus, constraints and expected
values are linear in βi(θ−i|θi)/ρi(θi) =: ρ(θi, θ−i), the joint distribution of type pairs.

Consider escalation minimization (ξ = 1). The arbitrator’s problem reduces to
a linear program of choosing ρ(θi, θ−i). Conditional on the set of binding incen-
tive constraints, any ρ(θi, θ−i) is associated with two constant terms. One captures
marginal screening effects, the other captures marginal welfare effects of increasing
the likelihood of a particular profile (θA, θB) entering E . Ignoring her budget con-
straint, the arbitrator puts the entire mass on the the type-profile with the highest
combined value. The associated B is degenerate. We can directly verify whether
ρ(θA, θB) = 1 is implementable by inserting it into a formulation of the budget
constraints. If they are not satisfied, we reduce ρ(θA, θB) and the arbitrator assigns
the remaining mass in a similar fashion among the remaining type pairs.

Linearity implies symmetry without loss and additional signals never improve
upon the no-signal case. In the appendix we formulate an algorithmic solution to
the problem under a standard monotonicity assumption. For ξ < 1 the general
problem becomes equivalent to a quadratic program. It is thus harder to solve.

Yet, most of the literature focuses on escalation minimization. The belief-
management approach identifies a condition assumed in most models implying that
escalation minimization is equal to joint surplus maximization: The escalation of
conflict leads to a constant surplus reduction (see Bester and Wärneryd, 2006;
Doornik, 2014; Hörner, Morelli, and Squintani, 2015, among others). That is, the
surplus in the event E is a fixed, type-independent amount E < 1. The type-profile
determines only how E is distributed. In light of Problem (PB) the consequences
are immediate. The objective collapses to maxE[Ψ|B] and welfare maximization
and escalation minimization are equivalent by construction.

Finally, our belief-management formulation provides an alternative take on the
solutions of these problems. For example, the binary case of Hörner, Morelli, and
Squintani (2015) yields E[Ψ|B] = (ρA(K)+ρB(K))ψ, with constant ψ. The problem
reduces to find the highest ρi(K) that satisfies the budget constraint.

26



Example 3 (Private Cost of Conflict). We conclude this section by revisiting our
third example. In that example, players’ actions are determined by their cost func-
tions and by the opponent’s expected action. As the belief about the opponent’s
type changes so does the expected distribution over actions. This, in turn, may
trigger a chain of events. Player A adjusts her strategy accordingly, player B re-
sponds to that, and so on until a new fixed point is found. Deviations are complex
in that setting. Best responses depend on information also off the equilibrium path.
In particular, a deviating player can gain herself an information advantage.

To see the information advantage, suppose θA deviates by reporting θ′A 6= θA and
the game moves to event E . Then θA, aware of her deviation, holds belief βA(·|θ′A).
However, the public information structure remains at its equilibrium value. The
opponent, unaware of the deviation, has the same belief as on the equilibrium path.
In addition, the opponent’s second-order belief is that θA holds on-path beliefs as
well, and so on. Thus, player B does not best respond to player A’s action choice
after player A misreported her type. Instead she best responds to A’s equilibrium
action. That reasoning provides an information advantage to a deviator. The
function Ψ governs how costly (in terms of z) it is to avoid such double deviations.
The lower Ψ, the more costly it is.

Equilibrium action choices influence the level of inefficiency in the event E too.
Depending on the information structure, players may choose a costly fight as their
continuation path. Alternatively they may choose to concede right away. From the
arbitrator’s point of view these choices are relevant for two reasons. The discussion
of Proposition 5 shows that welfare maximization and minimizing the event E differ
in how much emphasis is put on the efficiency loss, 1− E[U |B].

Analyzing Example 3 is considerably harder than Example 1 and 2 and the
literature on such problems is sparse. Indeed, analyzing these cases using classic
techniques requires to solve a mechanism-design problem with a complex informa-
tion externality.

Using our results, the problem reduces to an information-design problem. The
economic trade-off in that information-design problem is immediate. Although
solving that problem cannot be avoided, our results provide guidance towards its
solution. In light of our results the mechanism is a simple derivative of that solution.

5 Discussion

Our discussion centers around the issue on how to identify the binding constraints.
The formulation in Section 4 provides a problem conditional on knowing the binding
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constraints. The expected utility, Ui, can be a highly non-linear function of the
information structure. As a result, it is not easy to identify which constraints bind
at the optimum and whether local constraints are sufficient for global constraints.

We provide several results and conditions that help overcoming that tractability
issue. We want to emphasize once more that tractability is not a problem of our
formulation. To the contrary, our formulation can help to overcome the tractability
issues. The difficulty rather stems from the information-design part of the problem.
In fact, although information design is conceptually an old question, progress in
solving information-design problems on a general level has only been made recently.
See, e.g. Mathevet, Perego, and Taneva (2017) and Galperti and Perego (2018) for
promising attempts to non-cooperative games.

The difficulty in solving the information-design problem influences the identi-
fication of the binding constraints. Thus, at this level of generality we can only
provide sufficient conditions. First, we provide a sufficient condition for when local
incentive constraints are sufficient. Let D+

i (m, θ,B) be the ability disadvantage if
ιi(θ) = θ + 1 for all θ.

Proposition 7. Local upward incentive constraints imply incentive compatibility if
the following holds at the unconstrained optimum

ρi(mi)
p(mi)

D+
i (mi; θi,B) is non-decreasing in mi. (4)

Even if condition (4) is not satisfied we provide a sufficient condition for local
upward incentive compatibility.

Definition 8 (MDR). The game (A, u,Θ2,B) satisfies the monotone difference
ratio condition (MDR) if D+

i (m; θi,B)/D+
i (m− 1; θi,B) is non-decreasing in θi.

Proposition 8. Suppose (MDR) holds at the optimum. Local incentive constraints
imply (global) upward incentive compatibility.

Consider the following algorithmic guess and verify approach. First, solve prob-
lem (PB) assuming ι(θ) = θ+ 1. If the solution satisfies (MDR), check if additional
downward incentive constraints in (IC)A are violated. If so, use these constraints
to replace one belief in B and solve over the constraint set. Do so until you have
found an optimum. Given that (MDR) holds, the algorithm provides a solution.

Independently of whether (MDR) is satisfied, if the optimal solution assuming
ι(θ) = θ+ 1 is monotone in the sense of condition (4), ignored incentive constraints
are redundant. While monotone solutions appear intuitive, they cannot be guaran-
teed for all games. We provide two conditions on the primitives of the escalation
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game implying monotone solutions. Each condition assumes a type-separable esca-
lation game. The payoff function of such a game takes the following form

u(ai; a−i, θi) = φ(ai, a−i)− ζ(θi)c(ai, a−i),

with ζ > 0 decreasing, φ, c positive, and strictly increasing in ai. Moreover,
we assume that φ is decreasing in a−i and u is concave in ai. For the sake of
the argument, we consider the limiting case of a convex action space. Further we
assume that φ, c are twice differentiable.19

Constant Difference Ratio. Condition (4) holds if the ratioD+(mi; θi,B)/D+(mi−
1; θi,B) is constant in θi. Incentive compatibility is satisfied if and only if the ex-
pected escalation probability γi(mi) is non-decreasing in mi, which follows from a
monotone hazard rate given a constant difference ratio.

Proposition 9. The difference ratio is constant if, for given distribution of the op-
ponent’s action, the (expected) cost function of a player’s best response is separable,
that is, E[c(ai(mi; θi,B), a−i)|mi,B] = h(mi;B)g̃(θi).

A simple example of such a game is to assume an action space A = [0, 1]2,
φ(ai, a−i)=1/2+ai(1−a−i)−a−i, and c(ai, a−i)=a2

i . Moreover, let ζ(θ)=1/θ. For
given distribution of her opponent’s action, a player’s best response is ai(mi; θi,B) =
(1−E[a−i|mi,B])θi/2 which is separable, and so is c.
Non-Constant Difference Ratios. If the difference ratio is non-constant we
can specify sufficient conditions. For simplicity we assume that ξ = 1 and ∆θ :=
ζ(θ− 1)− ζ(θ) sufficiently small. The main ingredients to the model to guarantee a
monotone solution is that actions are strategic complements. Suppose further that
the function φ provides a division of the pie, that is, φ(ai, a−i)+φ(a−i, ai) = 1, best
responses are continuous, and the hazard rate, ω(θi) := ∑θi

k=1 p(k)/p(θi), is non-
decreasing. An algorithm close to the one solving Example 2 yields the optimal
solution. In in appendix D we sketch that algorithm. A simple parameterization is
φ(ai, a−i) = 1/2(1 + ai − a−i), and c(ai, a−i) = (ai)2 + 2Kai(1− a−i).

19Formally, we use our model and assume the distance between any two actions approaches 0.
The limit result allows us to exploit envelope arguments and a representation in compact notation.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Proof. From the definition of z it follows that (γ, z,Σ) is incentive feasible if and
only if (γ,X, t,Σ) is incentive feasible, where (γ,X, t) implies z.

Necessity. The ex-ante expectations of settlement values,

∑
i

∑
θi

p(θi)
∑
θ−i

p(θ−i)(1− γi(θi, θ−i))xi(θi, θ−i),

cannot exceed the ex-ante probability of settlement

1−
∑

(θA,θB)
p(θA)p(θB)γ(θA, θB).

Implementability implies

∑
i

∑
θi

p(θi)
∑
θ−i

p(θ−i)(1− γi(θi, θ−i))ti(θi, θ−i) ≤ 0.

Together that implies (BB).
Sufficiency. Suppose (z, γ,Σ) is incentive feasible and satisfies (BB). Let

xA(θi, θ−i) = 1 and pick tA such that

zA(θA) =
∑
θB

p(θB)(1− γA(θA, θB))xA(θA, θB) + tA(θA).

Further, pick tB(θB) = zB(θB). Then,

∑
i

∑
θi

p(θi)
∑
θ−i

p(θ−i)(1− γi(θi, θ−i))ti(θi, θ−i) ≤ 0

and (z, γ,Σ) is implementable.
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A.2 Proof of Proposition 1

Proof. Take an arbitrary arbitration mechanism. At a terminal node of this game
outcome Z or E realizes and this information is common knowledge among players.
Moreover, if outcome E realized a player uses her private history of play and the
public history to draw inference about her opponent’s private type and her private
history (e.g., higher order beliefs). Then, players use this information to play E .
That is, the information structure induced by the play of the arbitration mechanism
influences players’ utility from outcome E .

From an ex-ante perspective, equilibrium play in the arbitration mechanism im-
plies a type-dependent distribution over outcomes Z or E together with a realized
private and public history. Each type of a player has access to another types’ distri-
bution by imitating her equilibrium strategy. In equilibrium, this is not beneficial.
Thus, this distribution can be directly implemented by an incentive feasible DRM.
Depending on the report profile, the arbitrator decides which event occurs and sends
a potentially random private signal to each player. Players use the signals together
with the knowledge about their report, the design of γ, and the function that maps
reports into private signals to update the information structure.

Restricting attention to reduced-form mechanisms is without further loss by
Lemma 1. Full participation is optimal by Assumption 1. Any on-path veto outcome
V (θA) + V (θB) can be replicated inside a reduced-form DRM.

A.3 Proof of Corollary 1

Proof. Full settlement implies pooling. A full settlement solution is incentive fea-
sible iff zi constant and weakly larger than maxθ∈Θ Vi(θ). Vi is decreasing and a
solution exists iff VA(1) + VB(1) ≤ 1 by (BB).

A.4 Proof of Proposition 2

Proof. Axiom 3 implies that the identity of the vetoing players becomes common
knowledge before players play the veto game.

Fix M and an equilibrium that implies full participation. Then, B is relevant
only off path. In addition, B is such that the vetoing player holds his prior beliefs
about the non-vetoing player by the don’t-signal-what-you-don’t-know condition of
PBE.

On path vetoes are only relevant if they facilitate participation by others. Par-
ticipation of i is facilitated if −i’s vetoes lower i’s expected V (θi,B). By Jensen’s
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inequality that can only happen if V is non-convex in B (for formal arguments see
Celik and Peters, 2011; Balzer and Schneider, 2018, in particular Proposition 2 in
the former and Section 3 in the latter).

A.5 Proof of Proposition 3

Proof. The proof directly follows from Border, 2007, Theorem 3.

A.6 Proof of Proposition 4

Proof. Assume that players value the share according to ϕ(θi). We show that the
model is identical to the main model.

An Auxiliary Model. Assume valuations are reversely ordered, that is, θ1 > θ2 >

... > θK . Define Ǔi(mi; θi,B) := Ui(mi; θi,B)/ϕ(θi), where U is the (continuation)
payoff from the escalation game. Similarly, transform the outside options V̌i(θi) :=
Vi(θi)/ϕ(θi) and the values from participating in the mechanism

Π̌i(mi; θi) := Π(mi; θi)/ϕ(θi) = zi(mi) +
∑
θ−i

p(θ−i)γi(θ, θ−i)
 Ǔi(mi; θi,B).

Using the transformed terms only the model is identical to that in the main text.
We call it the auxiliary model. What remains to show is that the auxiliary model’s
solution implies the correct model’s solution.

Participation Constraints. If the auxiliary model implies full participation, so
does the correct model because

Π̌i(θi; θi) ≥ V̌i(θi)⇔ θi · Π̌i(θi; θi) ≥ Vi(θi)⇔ Πi(θi; θi) ≥ Vi(θi).

Full-settlement in the auxiliary model implies

Π̌i(1; 1) ≥ V̌i(1)⇔ zi(1) ≥ V̌i(1)⇔ θ1 · zi(1) ≥ Vi(1).

Resource feasibility requires ∑i V̌i(1) ≤ 1. Hence full-settlement in the correct
model is implementable if and only if it is implementable in the auxiliary model.

Incentive Constraints. Incentive compatibility in the auxiliary model implies
incentive compatibility in the correct model because

Π̌i(θi; θi)−Π̌i(mi; θi) ≥ 0 ⇔ θi

(
Πi(θi; θi)−Πi(mi; θi)

)
≥ 0⇔ Πi(θi; θi)−Πi(mi; θi) ≥ 0.
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Budget balance holds because all z are identical in both models.

A.7 Proof of Lemma 2

Proof. Take a consistent B. Then, there is a mechanism that implements (B, S) for
some S. Thus, there is γ such that B follows from Bayes’ rule given γ. Moreover,
take any B that follows from Bayes’ rule given γ. Then, let σi = (θi, ∅). The
mechanism implements (B, S) with S = 1.

A.8 Proof of Lemma 3

Proof. If all beliefs in {βA(·|j)}j∈Θ ∪ βB(·|1) have full support the proof is a direct
application of Bayes’ rule.

Assuming full support, Bayes’ rule implies that

βi(θ−i|θi) = p(θi)p(θ−i)γ(θi, θ−i)
Pr(E)ρi(θi)

, (5)

with ρi(θi) := Pr(θi|E) the likelihood that player i has type θi conditional the
event E . Consistency implies that

ρi(θi) =
∑
θ−i

β−i(θi|θ−i)ρ−i(θ−i). (6)

Now fix a set of probability mass functions {βA(·|j)}j∈Θ ∪ βB(·|1) each with full
support over the entire type space Θ, but otherwise arbitrary.

Using equation (6) and {βA(θB|j)}j∈Θ we can express any ρB(θB) as a (lin-
ear) function of the vector (ρA(j))j∈Θ. Applying equation (5) to βB(θA|θB) and
βA(θB|θA) implies that

ρB(θB)βB(θA|θB) = βA(θB|θA)ρA(θA). (7)

Applying equation (7) for θB = 1 and any θA ∈ Θ, and substituting for ρB(1)
as a function of (ρA(j))j∈Θ determines (ρA(j))j∈Θ, and thus ρB(θB).

Finally, using equation (5) once more determines the remaining functions βB(θA|βB 6=
1) uniquely.

We want to stress that the proof requires that the initial set of beliefs has full
support. Yet, we discuss in the proof of Theorem 1 that restricting ourselves to
(limits of) sets with full support is sufficient for the analysis.
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A.9 Proof of Lemma 4

Proof. Given the explanation in the main text directly below Lemma 4, the proof
follows from Bergemann and Morris (2016).

A.10 Proof of Theorem 1

We prove Theorem 1 in steps. Steps 1–4 correspond to Observations 1–4 in the main
text. Step 5 proves compactness of the choice set. By Corollary 3, it is sufficient
to show that for any Σ there is a one-to-one mapping between the reduced-form
mechanism and the “prior" B.
Step 1: Homogeneity. We show that B is homogeneous of degree 0 w.r.t. γ via
the following claim.
Claim. γ implements B iff every escalation rule ĝB = αγ implements B where α
is a scalar.

Proof. Suppose γ implements B. Homogeneity of Bayes’ rule implies that any
escalation rule ĝB = αγ implements B. For the reverse suppose αγ implements B
and set α = 1. If γ is an escalation rule it implements B.

If B is homogeneous of degree 0 w.r.t. γ so is Ui; γ is homogeneous of degree 1
by definition and so is yi.
Step 2: Most-Costly Escalation Rule. We show that B, for fixed Σ, determines
Pr(E). That is, the set of all escalation rules implementing a given information
structure, (B,Σ), is defined up to the real numbers {α}. The escalation probability
is linear in any α.

Fix a consistent B and take some escalation rule γ̂ that implements B. Step 1
implies that each escalation rules that implements B satisfies

Pr(E) =
∑

(θA,θB)
p(θA)p(θB)αγ̂(θA, θB).

Let {α} be the set of all α such that ∀(θA, θB), αγ̂(θA, θB) ≤ 1 and γ̂(θA, θB) =
αγ̂(θA, θB) ≤ 1. The set {α} determines all escalation rules implementing B. Its
largest element determines the most-costly escalation rule uniquely.
Step 3a: Set of binding Constraints and Linearity in {α}. Consider the
optimal mechanism.
Claim. For any θi the participation constraint or an incentive constraint is satisfied
with equality.
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Proof. To the contrary, suppose neither the participation constraint nor an incentive
constraint holds with equality. Then, we can reduce zi(θi) until one of the above
constraints holds with equality, and all constraints remain satisfied.

Let ΘIC be the set of types with at least one binding incentive constraint and let
ΘPC be the set of types with a binding participation constraint. By the previous
claim ΘIC∪ΘPC = Θ. Further, let ΘI(θi) be the set of types such that θi’s incentive
constraints w.r.t to any θ ∈ ΘI(θi) hold with equality. We say Θ̂i ⊂ ΘIC

i describes
a cycle if for any θi ∈ Θ̂i, it holds that θi /∈ ΘPC

i and ΘI
i (θi) ⊂ Θ̂i.

Claim. It is without loss of generality to assume no cycles exist.

Proof. Suppose Θ̂i describes a cycle. Reducing zi(θi) for all θi ∈ Θ̂i under condition
zi(θi)− z(θ′i) = yi(θ′i; θi)− yi(θi; θi) for any θ′ ∈ ΘI(θi) is possible without violating
any other constraint since ΘI

i (θi) ∩ {ΘPC
i ∪ {ΘI

i (k)}
k/∈Θ̂i
} = ∅.

Claim. zi is linear in α given B.

Proof. Consider θi ∈ ΘPC
i . Then, zi(θi) = Vi(θi) − yi(θi; θi). The first term of the

RHS is a constant, the second is linear in α by step 1. For any θi ∈ ΘIC
i , the

incentive constraint is zi(θi) = zi(θ′i) + yi(θ′i; θi) − yi(θi; θi) if θ′i ∈ ΘI
i (θi). Given

zi(θ′i), linearity holds because yi is linear in α by step 1. Now, either θ′i ∈ ΘPC
i , or,

zi(θ′i) is linear given some zi(θ
′′
i ) with θ′′i ∈ ΘI

i (θi). No cycles exist so that recursively
applying the last step yields the desired result.

Step 3b: Homogeneity of the expected Shares. Using the results from step
3a, let Pi(Θ) describe the finest partition of Θ into subsets Θp

i such that for every
θi ∈ Θp

i ∈ Pi(Θ) every ΘI(θi) ⊆ Θp
i . Let Θp

i (θ) := {Θp
i ∈ Pi(Θ) : θ ∈ Θp

i } identify
the element of the partition to which θ belongs. Finally, let θ̂i(k) := {max θ ∈
Θp
i (k) : θ ∈ ΘPC

i }. By the first two claims of step 3a it is without loss to assume
that all objects are well-defined and thus θ̂i is non-empty for any θi ∈ Θ. Using the
last claim in Step 3a, we can find a set of functions Hi(γ) solving

∑
θi

p(θi)zi(θi) = −Hi(γ) +
∑

θi∈ΘPCi

p(θi)Vi(θi) +
∑

θi∈ΘICi

p(θi)Vi(θ̂i(θi)). (8)

Straightforward algebra implies Hi(αγ) = αHi(γ). Thus, Hi(αγ) is homogeneous
of degree 1 in γ.
Step 4: Determining α via constraint (BB) An arbitration outcome is only
implementable if the ex-ante expected settlement values are weakly lower than the
probability of settlement, (BB). That is, ∑i

∑
θi p(θi)zi(θi) ≤ 1− Pr(E), where the

RHS is strictly lower than 1 by Assumption 3. By step 1 any escalation rule αγ
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implements the same B. If each αγ is implementable then αγ satisfies (BB). By
step 3b we can rewrite (BB) as

∑
θi∈ΘPCi

p(θi)Vi(θi) +
∑

θi∈ΘICi

p(θi)Vi(θ̂i(θi))− 1 ≤
∑
i

αHi(γ)−Pr(E). (BB’)

Given ΘPC
i , ΘIC

i , and {ΘI
i (θi)}θi the LHS is independent of the arbitrator’s choice.

Moreover, the LHS must be positive at the optimum because α→ 0 implies conver-
gence to full settlement which is ruled out by Assumption 3. An immediate result
of that is that ∑i αHi(γ) > 0.

If the arbitrator lowers α all constraints continue to hold, but Pr(E) decreases.
Redistributing these resources equally among all player types improves upon the
proposed mechanism in all three dimensions imposed on the arbitrator’s objective
by Assumption 2. Thus, such a mechanism cannot be optimal. Equation (BB’) and
thus equation (BB) hold with equality at the optimal mechanism.
Step 5: Compactness of (B,Σ).

Any signal, s, can be implemented and since the signal space is finite, the set
of signals is closed and bounded. For B, the proof of Lemma 3 provides the main
argument. The set of full support distributions {βA(·|j)}j∈Θ∪βB(·|1) is convex, and
so is the set of Bs having full support. The next step is to show that the closure of
that set can be attained as well. We show this by using the fact that any B on the
closure of the set of (full support) Bs can be attained by a sequence of full support
Bs , {Bn}n∈N. The following two lemmas provide that result and thus compactness
of (B,Σ). Moreover, all constraints are weak inequality constraints, such that the
set of implementable (B,Σ) is compact.

Lemma 6. Any B is consistent if and only if it can be approximated by a convergent
sequence of consistent B with full support.

Proof. Take a sequence of consistent Bn → B. Bn is consistent, that is, it implies
some function f : B → [0, 1]K×K , such that f(Bn) = γn with γn implementing Bn.
Since f is continuous, lim

n→∞
f(Bn) = f( lim

n→∞
Bn) = γ. Consistency implies

gL(B) = gR(B), (9)

where both gL and gR are continuous functions B → R. We can conclude that
gL(B)−gR(B) = lim

n→∞
[gL(Bn)−gR(Bn)] = 0 and B satisfies consistency. This holds

because gL(Bn)− gH(Bn) = 0.
Conversely, take any B that is implemented by some γ. We show that we can

find a sequence of interior B that are consistent and converge to B: Let γ̂ be
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the escalation rule that implements B. Choose a sequence of escalation rules in
the interior that converges to γ̂. By Bayes’ rule every element of the sequence,
γn, corresponds to some Bn. Moreover, consistency implies that there exists a
continuous function, say f−1 : [0, 1]K×K → [0, 1]K×K , such that f−1(γn) = Bn and
Bn satisfies consistency. Note that f−1 is continuous which implies that lim

n→∞
Bn =

lim
n→∞

f−1(γn) = f−1(γ̂) = B.

Lemma 7. Let O be a continuous function defined on the domain of γ ∈ [0, 1]∩C
where C consists of those γ’s that satisfy a given set of weak inequality constraints,
each of which is continuous in γ. Then, arg max

γ∈[0,1]|γ∈C
O(γ) = arg sup

γ∈(0,1)|γ∈C
O(γ).

Proof. Without loss of generality suppose the argument that maximizes O, γ∗, gives
rise to a non-interior B, B∗. Then, Lemma 6 implies that we can approximate B∗

by a convergent sequence of consistent interior Bs. It follows that limn→∞O(Bn) =
O(B∗) because O is continuous in γ (and through Observation 1 continuous in B).
Moreover, because the constraints are inequality constraints and continuous in γ

(and B), there is n′ such that every element Bn with n > n′ satisfies the constraints.
Therefore, maxγ∈[0,1]|γ∈C O(γ) = supγ∈(0,1)|γ∈C O(γ) and B∗ = limn→∞Bn. Using
Lemma 6 we note that for every Bn there is γn so that limn→∞ γn = γ∗.

A.11 Proof of Lemma 5

Proof. Consider the resource constraint. Focus on the formulation (BB’) in the
proof of Theorem 1, step 4. Assume by contradiction that the set of types with bind-
ing participation constraint ΘPC

i 6= {K}. The LHS of (BB’) is∑θi∈ΘPCi
p(θi)Vi(θi)+∑

θi∈ΘICi
p(θi)Vi(θ̂i(θi)) − 1. By Assumption 4 this is negative if ΘPC

i 6= {K}, con-
tradicting Assumption 3.

A.12 Proof of Proposition 5

Proof. All references to steps refer to those in the proof of Theorem 1. The rule
gB is defined in step 2, Hi and θ̂(θ) are defined in step 3. Further define γi(mi) :=∑
θ−i p(θ−i)γi(mi, θ−i).
At the optimum (BB’) holds with equality (step 4). Substituting for∑θi p(θi)zi(θi) =

(1− Pr(E)) in problem (PM) implies objective

(1− ξ)
(

1 +
∑
i

∑
θ

p(θ)γi(θ)Ûi(θ; θ,B)
)
− ξPr(E). (10)
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Bayes’ rule implies that p(θ)γ(θ) = ρ(θ)Pr(E). Factoring out −Pr(E) yields

−Pr(E)
(
ξ − (1− ξ)

∑
i

∑
θ

ρi(θ)Ûi(θ; θ,B)
)

= −Pr(E)
(
ξ − (1− ξ)E[Û |B]

)
.

For a given B step 1 and 2 imply γ(θA, θB) = αgB(θA, θB) ⇒ Pr(E) = αR(B)
with R(B) := ∑

θA×θB
p(θA)p(θB)gB(θA, θB). (BB’) is binding, thus (step 4)

α = Pr(E) + C∑
iHi(γ) (11)

with constant C = ∑
θi∈ΘPCi

p(θi)Vi(θi) + ∑
θi∈ΘICi

p(θi)Vi(θ̂i(θi)) − 1. Substituting
for α in Pr(E) = αR(B) using equation (11) and rearranging implies

1 + C

P (E) =
∑
iHi(γ)
R(B) ,

and the right hand side is (by step 3 and 4)

∑
i

Hi(γ)/R(B) =
∑
i

(
K−1∑
θ=1

ρi(ιi(θ))wιi(θi)Dι
i(ιi(θ); θ,B) +

K∑
θ=1

ρi(θ)Ûi(θ; θ,B)
)
,

which is equivalent to E[Ψ̂|B] + E[Û |B]. Thus

Pr(E) = C

E[Ψ̂|B] + E[Û |B]− 1
.

Substituting into (10) and dividing by C implies

min ξ − (1− ξ)E[Û |B]
E[Ψ̂|B] + E[Û |B]− 1

.

The remaining constraints follow from plugging in for zi using Theorem 1. Alter-
natively, we derive them from the Lagrangian in Appendix B.

A.13 Proof of Proposition 6

Proof. Applying Corollary 4, confidential arbitration means that the arbitrator can
choose any distribution over consistent information structures. Each consistent in-
formation structure induces the belief system B(s) which itself is consistent. Follow-
ing much the same steps from the proof of Proposition 5 the arbitrator’s objective
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becomes ∑s Pr(s)O(s), where

O(B(s)) :=
ξ + (1− ξ)

(
1− E[Ũ |B(s), s]

)
E[Ψ̃|B(s), s] + E[Ũ |B(s), s]− 1

, with

ρi(θi|s) := Pr(θi|E , s),

E[Ψ̃|B(s), s] :=
∑
i

∑
θ∈Θ

ρi(ιi(θi)|s)Ψ̂i(θi, B(s)), and

E[Ũ |B(s), s] :=
∑
i

∑
θ∈Θ

ρi(θ|s)U(θ; θ, B(s)).

She minimizes this objective subject to the constraints stated in Problem (PB) and
subject to downward incentive constraints (IC)−. If these additional constraints do
not bind, it is easy to see that the optimal signal structure puts full mass on the
belief system with the lowest value of O, which proves the proposition.

If an additional constraint binds, the optimal signal can be found by setting
up the Lagrangian function of the problem (see Lemma 10 in Appendix B) and
choosing the signal distribution that concavifies the inverse of that function.

A.14 Proof of Proposition 7

Proof. Recall that γi(mi) = Pr(E)ρi(mi)/p(mi) = ∑
θ−i p(θ−i)γi(θ, θ−i) is the ex-

pected probability of escalation given reportmi. We prove Proposition 7 as a special
case of Lemma 8.

Lemma 8. If γi(m)D+
i (m; k,B) is non-decreasing in m on some interval [m,m]

and k ∈ [m,m], then local incentive compatibility for type k implies incentive com-
patibility for any report in that interval.

Proof. Take k and m. Incentive compatibility holds iff

zi(k) + γi(k)Ui(k; k,B) ≥ zi(m) + γi(m)Ui(m; k,B)

⇔ −γi(m)Ui(m; k,B) ≥ zi(m)− zi(k)− γi(k)Ui(k; k,B). (12)

Assume first that m > k. Adding and subtracting
m∑

θ=k+1
γi(m)Ui(m; θ,B) to the

LHS of (12) turns it into

γi(m)
(
m−1∑
θ=k

D+
i (m; θ,B)− Ui(m;m,B)

)
.

Adding and subtracting
m−1∑
θ=k+1

zi(θ) to the RHS of (12) and using local downward
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incentive compatibility, i.e., zi(θ)− zi(θ−1) ≤ yi(θ−1, θ−1)− yi(θ − 1, θ), implies

m∑
θ=k+1

(zi(θ)−zi(θ−1))−γi(k)Ui(k; k,B) ≤
m−1∑
θ=k

γi(θ−1)D+
i (θ−1; θ,B)−γi(mi)Ui(m;m,B).

The RHS of the above equation is an upper bound on the RHS of (12). Thus, (12)
holds if

m−1∑
θ=k

γi(m)D+
i (m; θ,B) ≥

m−1∑
θ=k

γi(θ − 1)D+
i (θ − 1; θ,B), (13)

which holds since γi(m)D+
i (m; θ,B) is non-decreasing in m.

For m < k, take equation (12), add and subtract
k−1∑

θ=m+1
γi(m)Ui(m; θ,B) from

the LHS. Iteratively applying local downward incentive compatibility to zi(m) and
simplify to

k−1∑
θ=m

γi(θ)D+
i (θ; θ,B) ≥

k−1∑
θ=m+1

γi(m)D+
i (m; θ,B),

which again holds since γi(m)D+
i (m; θ,B) is non-decreasing in m.

The special case of Lemma 8 with m = 1 and m = K for any k concludes the
proof of Proposition 7.

A.15 Proof of Proposition 8

We prove Proposition 8 as a special case of Lemma 9

Lemma 9. Local incentive constraints and (MDR) imply that γi(m)D+
i (m, k;B) is

non-decreasing in m for any m > k.

Proof. Take i and any m and m−1. Local incentive compatibility implies that

yi(m,m)−yi(m,m−1) ≥ zi(m−1)−z(m) ≥ yi(m−1,m)−yi(m−1,m−1), thus,

γi(m)D+
i (m;m,B) ≥ γi(m−1)D+

i (m− 1;m,B)⇔ γi(m)
γi(m−1) ≥

D+
i (m−1;m,B)
D+
i (m;m,B) .(14)

The term γi(m)D+
i (m; k,B) increases in m if

γi(m)D+
i (m; k,B) ≥ γi(m−1)D+

i (m−1; k,B)⇔ γi(m)
γi(m−1) ≥

D+
i (m−1, k;B)
D+
i (m, k;B) (15)

which holds by (MDR) and (14) if m > k.
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A.16 Proof of Proposition 9

Proof. Assume without loss that ζ(θi) = 1/θi. A player’s best-response to her op-
ponent’s action, a(mi; θi,B), satisfies first-order conditions. The envelope theorem
implies

U(mi; θi,B) = U(mi; 1,B) +
∫ θi

1
c(ai(mi; s,B))/s2ds

= U(mi; 1,B) + h(mi;B)
∫ θi

1
g(s)ds,

where g(s) := g̃(s)/s2 and where we used that c(ai(mi; θi,B)) = h(mi;B)g(θi).
Thus, D+

i (mi; θi,B) = hi(mi;B)
∫ θi+1
θi

g(s)ds. Moreover, for any mi and m′i we have
that

D+
i (mi; θi,B)

D+
i (m′i; θi,B) =

hi(mi;B)
∫ θi+1
θi

g(s)ds
hi(m′i;B)

∫ θi+1
θi

g(s)ds
= hi(mi;B)
hi(m′i;B) ,

which is independent of θi.

B Lagrangian Problem

Remark. Our argument throughout this section assumes that gB(K,K) = 1. This
normalization is without loss. For cases in which 0 < gB(K,K) < 1 relabeling
provides the missing step. The remaining cases with γ(K,K) = 0 are covered by
continuity of B in γ. Lemma 7 in the proof of Theorem 1 provides the corresponding
formal argument.

The designer’s choice is cs = (z, γ). The choice set is CS.
Lemma 10. The Lagrangian approach yields the global optimum.

Proof. We use Theorem 1 in Luenberger (1969) to show that the Lagrangian ap-
proach is sufficient. Let t be the vector of Lagrangian multiplier. Further, let
G(·) be the set of inequality constraints. Define w(t) := inf{−Obj|cs = (γ, z) ∈
CS,G(cs) ≤ t}, where Obj is the objective the designer wants to maximize. The
Lagrangian is sufficient for a global optimum if w(t) is convex.

Assume for a contradiction that w(t0) is not convex at t0. Then, there is t1, t2

and x ∈ (0, 1) such that xt1 +(1−x)t2 = t0 and xw(t1)+(1−x)w(t2) < w(t0). For
j ∈ {1, 2} let csj = (γ[j], z[j]) describe the optimal solution, such that −Obj(csj) =
w(tj). Note that γ[j] induces B[j] = (B[j], S[j]). Then, consider the choice cs0 such
that z[0] = λz[1] + (1 − x)z[2], γ[0] = xγ[1] + (1 − x)γ[2] and Σ[0] = {Σ[1],Σ[2]},
with Pr(Σ[1]) = x. The choice cs0 corresponds to a belief system B[0] induced by
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some γ[0], Moreover, it is common knowledge that Σ[0] induces B where realization
B[1] occurs with probability x and B[2] with probability 1− x. By construction all
constraints are satisfied and the solution value equals that of the convex combination

w(t0) = −Obj(cs0) =
∑

j∈{1,2}
Pr(Σ[j])−Obj(Σ[j]) = xw(t1) + (1− x)w(t1).

A contradiction.

For any i, θ, the constraints to the minimization problem are

∀θ 6= θ′ − (zi(θ)− zi(θ′))− yi(θ; θ) + yi(θ′; θ) ≤ 0, (IC)

−zi(θ)− yi(θ; θ) + Vi(θ) ≤ 0, (PCi)

−1 +
∑

i

∑
K
θ=1p(θ)zi(θ) + Pr(E) ≤ 0, (RC)

γ(θA, θB)− 1 ≤ 0. (F )

We now derive the Lagrangian representation of the optimization problem. First,
we state the complementary slackness conditions and the respective Lagrangian
multipliers

[zi(θ)− zi(θ′) + yi(θ; θ)− yi(θ′; θ)]νiθ,θ′ = 0, νiθ,θ′ ≥ 0;

[zi(θ) + yi(θ; θ)− Vi(θ)]λiθ = 0, λiθ ≥ 0;[
1−

∑
i

∑
θ

p(θ)zi(θ)− Pr(E)
]
δ = 0, δ ≥ 0;

[1− γ(θA, θB)]µθA,θB = 0, µθA,θB ≥ 0.

For any Lagrangian multiplier, say t, we introduce the following notation t̃ ≡ t
δ
.

Define
Λ̃i(θ) :=

θ∑
k=1

λ̃ik. (16)

Next, we characterize the solution in terms of the Lagrangian objective.

Lemma 11. B is an optimal solution to the designers problem if and only if there
are Lagrangian multipliers that satisfy complementary slackness and B maximizes

(1− ξ)E[Û |B]− 1
L̂(B)− 1

,
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where L̂(B) :=T (B) +
∑
i

 K∑
θ=1

ρi(θ)Ûi(θ; θ,B)

+
K−1∑
θ=1

K∑
θ′=θ+1

ν̃iθ,θ′ + Mi(θ)− ν̃i(θ, θ′)
p(θ) ρi(θ){Ûi(θ; θ,B)− Ûi(θ; θ′,B)}

−
K−1∑
θ=1

K∑
θ′=θ+1

ν̃iθ,θ′

p(θ′)ρi(θ
′)
{
Ûi(θ′; θ,B)− Ûi(θ′; θ′,B)

},
(17)

where Mi(θ) := Λ̃i(θ) − ∑k=θ
k=1 p(k), and ν̃i(θ, θ′) := (∑θ

k=1
∑K
θ̃>θ

(ν̃i
θ̃,k
− ν̃i

k,θ̃
)) −

(ν̃iθ′,θ − ν̃iθ,θ′).

T (B) := −
∑

θA×θB

ρA(θA)βA(θB|θA)
p(θA)p(θB) µ̃θA,θB . (18)

Moreover, the following is true at the optimum:
• Constraint (BB) is always binding, i.e., δ > 0.
• Mi(θ) = ν̃i(θ, θ′) + ν̃iθ′,θ − ν̃iθ,θ′ for any θ′.
• If Λ̃i(θ) −∑j=θ

j=1 p(j) > 0, then there is at least one type k ≤ θ such that this
type’s downward incentive constraint is binding. If in addition the upward
incentive constraints are redundant, then ν̃iθ,θ′ = 0 for all θ′ ≥ θ.
• If Λ̃i(θ) −∑j=θ

j=1 p(j) < 0, then there is at least one type k ≤ θ such that this
type’s upward incentive constraint is binding. If in addition the downward
incentive constraints are redundant, then ν̃iθ,θ′ = 0 for all θ′ < θ.
• If local incentive constraints are sufficient, then ν̃iθ,θ′ = 0 for any θ such that
θ′ > θ+1 or θ′ < θ−1. Moreover, ν̃i(θ, θ′) = Mi(θ) for any θ, θ′ such that
θ′ 6= {θ−1, θ+1}.

Proof. We manipulate the Lagrangian, L, and derive a more tractable dual problem.
We want to minimize ξPr(E)+(1−ξ)

(
−∑i

∑K
θ=1 p(θ)[zi(θ)+γi(θ)Ûi(θ; θ,B)]

)
. We

first relax the problem by replacing∑i

∑K
θ=1 p(θ)zi(θ) with 1−Pr(E). Factoring out

Pr(E) from the objective and applying Bayes rule, the objective becomes Pr(E)(ξ−
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(1− ξ)E[Û |B])− (1− ξ). Dropping the constant (1− ξ), the Lagrangian reads

L = Pr(E)
(

1− (1− ξ)E[Û |B]
)

+ δ[−1 +
∑
i

K∑
θ=1

p(θ)zi(θ) + Pr(E)]

+
∑
i

K∑
θ=1

[−zi(θ)− yi(θ; θ) + Vi(θ)]λiθ

+
∑
i

K∑
θ=1

K∑
θ′∈Θ\θ

[−zi(θ) + zi(θ′)− yi(θ; θ) + yi(θ′; θ)]νiθ,θ′

+
∑

θA×θB
[γ(θA, θB)− 1]µθA,θB .

(19)

Using Theorem 1 and Lemma 3 we optimize over {zi(·), γ(K,K), {βA(·|j)}j∈Θ∪
βB(·|1) , with γ(K,K):=Pr(E|θA=K, θB=K).
Step 1: Eliminating zi(·) using First-order Conditions. Define νiK+1,K :=
0 =: νi1,0 = νi0,1 for ease of notation. The FOC w.r.t. zi(θ) are

p(θ)δ − λiθ +
∑

θ̃∈Θi\θ

(νiθ̃,θ − ν
i
θ,θ̃) = 0. (20)

Summing over all K conditions in (20) and recalling definition (16) yields

1 = Λ̃i(K). (21)

(20) holds for all θ if and only if

θ∑
k=1

K∑
θ̃>θ

(ν̃iθ̃,k − ν̃
i
k,θ̃) = −

θ∑
k=1

p(k) + Λ̃i(θ). (22)

Thus, ∑θ
k=1

∑K
θ̃>θ

ν̃i
θ̃,k

> 0 if Mi(θ) > 0 and vice versa for ∑θ
k=1

∑K
θ̃>θ

ν̃i
k,θ̃
. We solve

(20) for λ̃iθ and substitute into (19). We also substitute ν̃iθ′,θ = Mi(θ)+ ν̃i(θ, θ′)− ν̃iθ′,θ
for all θ′ > θ into (19) and sort terms. Moreover, all terms involving zi(·) cancel
out from (19) via (20).
Step 2: Reformulating the Lagrangian Objective. Given the above necessary
conditions, we manipulate the Lagrangian objective to derive a more tractable max-
imization problem. Using Bayes’ rule together with the homogeneity established
in the proof of Theorem 1 (step 1), applying algebra and using the first-order con-
ditions it is straightforward to show that (19) admits the following representation

L = Pr(E)(δ + ξ − (1− ξ)E[Û |B])− δC − δ
∑
σ

Pr(E)L̂(B), (23)
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where C is a constant that is independent of the choice variables and reads

C:=1−
∑
i

∑
θ

λ̃iθVi(θ) +
∑

θA×θB
µ̃θA,θB < 0.

Define γ(θA, θB) := Pr(E|θA, θB). From the proof of Theorem 1 (step 1) with
α = γ(K,K) it follows that γ(θA, θB) = f(B, θA, θB)γ(K,K), where f(B, θA, θB) is a
positive real number. Thus, Pr(E) = γ(K,K)R(B) withR(B) := ∑

θA×θB
p(θA)p(θB)f(B, θA, θB).

Plugging into (23) yields

L = γ(K,K)R(B)(δ − (1− ξ)E[Û |B])− δC − δγ(K,K)R(B)L̂(B). (24)

The FOC of (24) w.r.t. γ(K,K) is

R(B)
(
δ + 1− (1− ξ)E[Û |B]− δL̂(B)

)
= 0. (25)

By Assumption 3 R(B) > 0 and thus, L̂(B) − 1 > 0 if γ(K,K) > 0. Therefore,
δ = (1− (1− ξ)E[Û |B])(L̂(B)− 1)−1. Substituting into (24) and simplifying yields

L = (−C)(1− (1− ξ)E[Û |B])
L̂(B)− 1

, (26)

which is minimized if and only if (1−ξ)E[Û |B]−1
L̂(B)−1

is maximized.20

C Example: Type-Dependent Lotteries

In this section we provide an algorithm for the conflict minimization in Example 2.
We restrict the environment to be monotone and focus on constant surplus reduction
in case of conflict. That makes ξ irrelevant for our problem. This setting nests the
solutions from the literature such as Fey and Ramsay (2011), Hörner, Morelli, and
Squintani (2015), and the monotone cases in Bester and Wärneryd (2006). We
comment on changes when relaxing these assumptions at the end.

Definition 9 (Lottery). E is a lottery if Ui(θi; θi,B|θ−i) is constant in B. The
lottery is 0-sum if u(θi, θ−i) + u(θ−i, θi) is constant for all (θi, θ−i).

The problem is linear in the joint distribution over type-pairs in the event E , ρ.
20The Lagrangian multipliers are such that C is negative at the optimum. Otherwise (19) and

(26) imply that Pr(E) is negative, a contradiction to Assumption 3 or to existence of the following
mechanism. Take a degenerate signal distribution and set γ(θA, θB) = 1 for all type profiles.
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There is a one-to-one relationship to (consistent) B. Due to the linearity we can
ignore signals. We abuse notation and replace B by the function ρ. To simplify, we
assume Vi(θi) = ∑

i p(θ−i)u(θi, θ−i) and impose monotonicity.

Definition 10 (Monotone Lottery). A lottery is monotone if
• u(θi, θ−i)− u(θi − 1, θ−i) is weakly increasing in θi and θ−i, and
• the prior p induces a weakly increasing inverse hazard rate ω(θi) :=

∑θi
k=1 p(k)
p(θi) .

In monotone lotteries ιi(θi) = θi+1, i.e., local (upward) incentive constraints
imply incentive compatibility. Define

Υ(θA, θB) := ω(θA) (u(θA, θB)− u(θA − 1, θB)) + ω(θB) (u(θB, θA)− u(θB − 1, θA)) .

Restricting attention (without loss) to the ξ = 1 case and plugging into the objective
yields

2u(K,K) +
∑

Θ2\(1,1)
ρ(θA, θB)Υ(θA, θB) =: O(ρ),

the objective the arbitrator wishes to maximize. Identifying the highest Υ and
setting the corresponding ρ equal to 1 achieves that. If M(ρ) 6= 0 for that ρ the
problem is solved. Otherwise the optimal solution is not feasible. Instead, the
arbitrator has to increase available funds by putting some weight on the second
highest Υ as well. For monotone 0-sum lotteries there is a simple algorithm to
construct optimal arbitration.

Definition 11 (Top-Down Algorithm). Let Θ2
+ be the set of type pairs (θA, θB)

such that ρ(θA, θB) > 0. Begin by setting Θ2
+ = ∅.

1. Set ρ(K,K) = 1 and check if ρ(K,K) ≤ (p(K))2(O(ρ)−1)
2V (K)−1 . If it holds, terminate.

Otherwise continue at 2.
2. Identify the set Θ2

N = {(θA, θB)|(θA, θB) = arg maxΘ2\Θ2
+

Υ(θA, θB)} .
(a) Set ρ(K,K) to the solution of

∑
(θA,θB)∈
Θ2

+∪Θ2
N

p(θA)p(θB)
(p(K))2 ρ(K,K) = 1. (27)

(b) Replace ρ(θA, θB) = p(θA)p(θB)
(p(K))2 ρ(K,K) ∀(θA, θB) ∈ Θ2

+ ∪Θ2
N .

(c) Check whether the condition in 1 holds. If it holds, decrease all ρ for
the set Θ2

N at the expense ρ(K,K) keeping the relation of 2(b) until the
condition holds with equality. Then, terminate. If it is violated, repeat
step 2.
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Proposition 10. Suppose the escalation game is a monotone 0-sum lottery. Opti-
mal arbitration is the solution to the top-down algorithm.

Proof. Jointly conditions from step 1 and equation (27) are necessary and sufficient
for (BB).21

By construction the top-down algorithm point-wise maximizes O(ρ) subject to
(BB). What remains is to show that all ignored constraints are satisfied. We
show this using monotonicity, i.e., γ(θi+1, θ−i) ≥ γ(θi, θ−i) ⇔ p(θi)ρ(θi+1, θ−i) ≥
p(θi+1)ρ(θi, θ−i) for all θi, θ−i.

Monotonicity trivially holds if γ(K,K) 6= 1 because it implies ρ(K,K) = 1.
Thus, assume γ(K,K) = 1. By Bayes’ rule

γ(θA, θB) =
(
ρ(θA, θB)

)
/
(
p(θA)p(θB)

)
Pr(E).

When γ(θA, θB) > 0, then γ(θA+1, θB) = 1 and

Pr(E)ρ(θA+1, θA) = p(θA+1)p(θB), P r(E)ρ(θA, θA) ≤ p(θA)p(θB).

Monotonicity holds since p(θA)ρ(θA+1, θA) ≥ p(θA+1)ρ(θA, θA), and all but the
local upward incentive constraints are redundant because

K∑
θ−i=1

(p(θ′i)ρ(θi, θ−i)− p(θi)ρ(θ′i, θ−i)) [u(θi, θ−i)− u(θ′i, θ−i)] ≥ 0. (28)

Finally, we verify that only the highest type’s participation constraint binds at the
optimum. It implies that upward local incentive constraints hold with equality. We
verify the claim by induction. We first show that Πi(K−1;K−1) ≥ V (K−1). By
local incentive compatibility and Πi(K;K) ≥ V (K),22 we know that Πi(K−1;K−
1) ≥ Πi(K,K)− yi(K;K) + yi(K;K − 1). Thus, to show that Πi(K − 1;K − 1)−
V (K−1) ≥ 0 it suffices to show that Πi(K,K)−V (K−1) ≥ yi(K;K)−yi(K;K−1).
The game is a lottery, and we need

∑
θ−i

(p(θ−i)− γi(K)βi(θ−i|K)) (u(K, θ−i)− u(K − 1, θ−i)) ≥ 0.

The last bracket is positive by monotonicity. The first is (p(θ−i)− γi(K)βi(θ−i|K)) =
(Pr(K, θ−i)− Pr(K, θ−i, E)) /p(K) ≥ 0.

21Substitute γ(θA, θB)p(θA)p(θB)(Pr(E))−1 for ρ(θA, θB) in the RHS of (BB) and substitute
in the LHS accordingly using the path ι.

22In the optimal mechanism it holds that Πi(K;K) = V (K).
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None of the above argument depends on the specifics of K, thus the induction
step to verify Πi(θi; θi) ≥ V (θi) for all θi follows analogously.

If we give up the 0-sum element of the lottery, welfare maximization is no longer
isomorphic to escalation minimization. Let W (θA, θB) = u(θA, θB) + u(θA, θB) be
joint surplus of a type pair (θA, θB). Define

O′(ρ) := 2u(K,K) +
∑

Θ2\(1,1)
ρ(θA, θB)(Υ(θA, θB) +W (θA, θB)−W (1, 1))

The general problem becomes

min
ρ

ξ + (1− ξ)∑Θ2 ρ(θA, θB)W (θA, θB)
O′(p)− 1 ,

s.t. ρ(K,K) ≤ (p(K))2(O′(ρ)−1)
2V (K)−1 and ∑(θA,θB)∈

Θ2
+∪Θ2

N

p(θA)p(θB)
(p(K))2 ρ(K,K) = 1.

Without 0-sum and ξ < 1 the objective is not linear and thus harder to solve.
Yet, it remains that signals are of no help because U remains linear in the informa-
tion structure leaving no room to exploit the curvature.

D Solution Algorithm for Monotone Mechanisms

Here we provide details behind the results obtained for type-separable escalation
games at the end of Section 5. Recall that these escalation games feature the
following payoff structure.

u(ai; a−i, θi) = φ(ai, a−i)− ζ(θi)c(ai, a−i). (29)

Let a∗−i be the equilibrium action of player −i and define c(ai) := E[c(ai, a∗−i)|mi,B].
First, we derive the designer’s objective if φ only distributes the pie without

destroying any surplus.
The envelope theorem implies

Ui(mi; θi,B) = E[φ(ai(mi; 1,B), a∗−i)|mi,B]− C(mi, θi;B), where (30)

where C(mi; θi,B) :=
∫ ζ(θi)
ζ(1) c(mi; s,B)d(−ζ(s)) +ζ(1)c(mi; 1,B) and let c(mi; s,B) :=

c(a∗i (mi; θi,B)) be θi’s expected cost from his optimal action a∗i (mi; θi,B). If ξ = 1,
optimal arbitration maximizes∑i (E[Ui|B] + E[Ψi|B]). Since φ(ai, a−i)+φ(a−i, ai) =
1,∑i E[Ui|B] = 1−∑i ρi(θi)ζ(θi)c(θi; θi,B). Moreover, (30) implies thatD+

i (mi; θi−1,B) =
−C(mi; θi,B) + C(mi; θi−1,B) .
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As we will show below, in the optimum upward adjacent incentive constraints
imply incentive compatibility. Thus, ιi(θ) = θ + 1, wιi(θ) = ∑θ+1

k=1 p(k)/p(θ+1) =:
ω(θ+1), and Dι

i = D+
i . Let

S̃(θi, θ−i;B) :=
∑
i

ω(θi)D+
i (θi; θi − 1,B)− ζ(θi)c(θi; θi,B).

The objective becomes O(ρ(·, ·)) := ∑
ρ(θ1, θ2)S̃(θ1, θ2;B). If the type space is

sufficiently dense, we can set up an auxiliary problem. We replace S̃ with S being
defined as

S(θi, θ−i;B) := (ω(θi)∆θ − ζ(θi))c(θi; θi,B) + (ω(θ−i)− ζ(θ−i))c−i(θ−i; θ−i,B).

Sufficiency of the Auxiliary Problem. We show that the solution to the aux-
iliary problem solves the original problem if ∆θ, for any two adjacent types, is
sufficiently small. By the intermediate value theorem we have that

S̃(θi, θ−i;B) =
∑
i

ω(θi)∆θc(θi; θ̃i,B)− ζ(θi)c(θi; θi,B)

for some θ̃i ∈ [θi−1, θi]. The objective becomes ∑i ω̃(θi)c(θi; θ̃i,B) − θic(θi; θi,B),
where ω̃ := ω∆θ. If ∆ → 0, then c(θi; θ̃,B) → c(θi; θi,B) and the scores of the
auxiliary problem and the original problem coincide. Hence the solutions coincide.
Results. Suppose ω is non-decreasing in θ. Moreover, assume the distance between
any two adjacent types, ∆θ := ζ(θ−1)−ζ(θ), is sufficiently small. We will show that,
if the game features strategic complements, upward adjacent incentive constraints
are necessary and sufficient for all other constraints. In particular, (4) is satisfied.
Now, we state an algorithm that solves the problem.

We use the general Lagrangian approach from appendix B to develop a solution
algorithm for our class of games. We apply it to the the auxiliary problem. We
first relax that problem by ignoring all global incentive constraints. Then, the
Lagrangian of the reduced-form problem becomes

∑
θi×θ−i

ρ(θi, θ−i)
( ∑

j∈{i,−i}
(ω̃(θj)− ζ(θj))cj(θj, θj;B)

− µ(θi, θ−i)
p(θi)p(θ−i)

)
, (31)

where µ(θi, θ−i) is the Lagrangian multiplier on the feasibility constraints, i.e.,

2V (1)ρ(K,K) ≤ (p(K))2 (O(ρ(·, ·))) . (32)
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If that constraint does not bind, then the optimal solution features ρ(K,K) = 1.
This follows from the complementary nature of the conflict, together with the non-
decreasing virtual valuations.

Assume that ρ(K,K) = 1 is not feasible, that is, µ(K,K) > 0. Then, the
least-constrained solution is not feasible and signals may improve.

We state an algorithm, a top-down version with information revelation, and
then argue that this algorithm is optimal.
Algorithm. Define the score of a type profile the following way:

Ŝ(θi, θ−i) = (ω(θi)− ζ(θi))ci(θi; θi,Bθi,θ−i) + (ω(θ−i)− ζ(θ−i))c−i(θ−i; θ−i,Bθi,θ−i),

where Bθi,θ−i is the belief system that results if each match receives full information.
We order type profiles according to their score. If the highest type profile is (θi, θ−i),
then the next highest type profile is either (θi−1, θ−i) or (θi, θ−i−1) by complements.

Signals might improve because the least-constrained problem is not feasible.
Hence given active type profiles, implement the optimal information revelation pol-
icy, i.e., that which maximizes the objective given the active type profiles. Check
whether the objective satisfies constraint (32). If not, continue to the next highest
type profile and repeat the maximization.
Optimality of the Algorithm. The increasing hazard rate and strategic com-
plements imply that higher type profiles have a higher score. Moreover, strategic
complements imply that, given the optimal information disclosure policy, type pro-
files with the highest ex-post scores are the most beneficial ones.
Optimal Information Revelation. To construct the concave hull of the La-
grangian objective, (31), we have to distinguish two cases. Define c(a∗i (a−i)) as that
part of the cost that is independent of −i’s action. If that function is concave, then
we disclose no information. In contrast, if that function is convex, then we disclose
full information.

Secondly, observe that the form of the Lagrangian objective (31) implies that
given ρ(·, ·) the information disclosure that maximizes the least-constrained objec-
tive is optimal.
Incentive Constraints. We need to verify that this algorithm satisfies the in-
centive constraints. That is, γi(mi)D+

i (mi; θi,B) is weakly increasing in mi. Both
D+
i (mi; θi,B) = ci(θi, θi;B) and γi(θi) are weakly increasing in mi by complemen-

tarities and the structure of the optimal solution.
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