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1 Introduction

Asynchronous dynamic models describe situations in which the agents choose actions in

a sequence with a single agent choosing in any one period. The well known Stackelberg

model is one example. Other examples of asynchronous dynamic models arise in nego-

tiations and bargaining where offers and counter-offers are made in successive rounds,

Auctions in which bidders bid one after another, as well as in dynamic oligopoly models

like the ones discussed by Maskin and Tirole in [15] and [16]. Principal Agent models

are also asynchronous dynamic models as the offer of a principal precedes the actions

taken by an agent. Some networks also have this feature. Thus there is a fairly large

class of dynamic models in economics that are Asynchronous.

Here we study asynchronous dynamic models within the general framework of

Asynchronous Stochastic games as these have a structure that is rich enough to allow

the modelling of uncertainty and noise. We address two interrelated questions; the first

is about the nature of the solution for these games and the second is about the conditions

under which a solution can be found and the characteristics of the solution. A resolution

of the first question can be had by suggesting that given the wide use of a noncooperative

solution like Nash equilibrium and/or subgame perfect equilibrium, a closely related

concept which is appropriate for this class of games, could be used as the equilibrium

concept. Therefore, we focus our attention on Markov perfect equilibrium strategies as

this seems to fit most closely the structure of the games that we want to discuss. The

second set of issues deal with the conditions under which such an equilibrium would exist

and the characteristics of these equilibrium.

A stochastic game is one in which players choose actions in each period, and these

actions then determine the distribution of the states next period. The single-period

payoffs depend on both the realized state and the actions of the players. The payoff

of a player in the entire game is the discounted sum of the single-period payoffs. The

distribution of next period’s states are given by a transition probability function which

depends on both the current state and the current actions. Therefore, in each period a

player has to choose an action that maximizes the sum of the single-period payoff and

the discounted expected future payoff. In a general stochastic game, the single-period

payoff depends on the actions taken by the player as well as the actions taken by the

other players in that period. In an Asynchronous stochastic game, the single-period
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payoff depends on the action taken by the player and the realized state. The strategic

interactions between the players therefore occur through the effect that a player has on

the payoffs of the players who choose in the subsequent periods, through the effect of

the player’s action on the future states.

As these are stochastic games with the single-period payoff depending on the real-

ized state and actions of that period, and in which the transition probability is a function

of only the current state and actions, it is useful to ask whether an equilibrium exists

in which the strategies of the players depend only on the current state. We therefore

look for Markov perfect equilibrium in which the strategies of the players are functions

of only the current state, but are nonetheless perfect equilibrium in the sense that the

equilibrium strategy of the player is a best response to the strategies of the other players,

and this is so for every realization of the state in each period. We find that if the single-

period payoffs are measurable in the state variable and continuous in the actions, and the

transition probability is measurable in the state variable is norm-continuous in actions,

then a finite horizon game has a pure strategy Markov perfect equilibrium. If the game

is an infinite horizon game then there ia a Markov perfect equilibrium in randomized

strategies. We also find that if the game has a finite number of players and the players

choose in a fixed cycle, then the game has a stationary Markov-perfect equilibrium. If

the state space is a non-atomic measure space and the transition probability has a de-

composable coarser transition kernel (a condition introduced in He and Sun [11]) then

the game has a Markov-perfect equilibrium in pure strategies.

Quite a large literature has examined the question of the existence of a stationary

Markov-perfect equilibrium for general stochastic games in which a number of players

simultaneously choose actions in each period. This is a natural starting point, as a

stationary Markov-perfect equilibrium is an attractive solution of a stochastic games as

it reflects the stationary nature of such a game as well as its Markovian structure, as the

transition probability is a function of only the current state and actions. However, the

examples in Levy [13] and Levy and McLennan [14] show that under the condition of just

norm-continuity and absolute continuity of the transition probability function, stationary

Markov equilibrium do not exist. These examples thus indicate that additional conditions

are needed to guarantee the existence of a stationary Markov equilibrium. He and

Sun [11] shows that a stationary Markov equilibrium exists if the transition probability

function satisfies the additional condition of coarser transition kernel. Duggan [7] also
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shows that a stationary Markov perfect equilibrium exists when the stochastic game is

“noisy,” that is the state space has a non-atomic component that is not directly affected

by the previous period’s state and actions. Although the condition in He and Sun [22]

implies the condition of “noise” in Duggan [7], the condition in Duggan [7] is itself

interesting as it provides a useful interpretation of the condition in He and Sun [11].

Given the results in the literature in stochastic games and given the fact that play-

ers choose actions simultaneously in each period, a natural question to raise is how the

results would be affected if the players chose actions in a sequence rather than simul-

taneously, and the implications for the application of these results. As Asynchronous

stochastic games have a different structure from general stochastic game since only a

single player chooses in each period, the results for general stochastic games do not ap-

ply directly. This is true in particular about the example of Levy [13] and of Levy and

McLennan [14]. The paper is laid out as follows. In section 2 we describe the general

model. In section 3 we discuss payoffs and strategies. In section 4 we discuss the results

on the existence of Markov-perfect equilibrium for the finite and infinite horizon games.

In section 5 we discuss the purification result under the condition that the state space is

a non-atomic measure space and the transition probability has a decomposable coarser

transition kernel. In each section we present an application to which the result can be

applied directly. In section 7 we conclude.

2 The Model

In an Asynchronous stochastic game in any period there is only one player who chooses

from an action set. Thus an Asynchronous stochastic game is the following tuple:

[(S,Σ, νt), (uit)
n
i=1, At, qt]t where

(i) (S,Σ, νt) is the State Space in period t. S is a complete, separable metric space, Σ is

the Borel sigma algebra and νt is a probability measure.

(ii) At is the action set in period t. It is a compact metric space.

(iii) uit : S × At → IR, is the single period payoff function of player i in period t. It

depends on the current state and the current action. We will assume that uit is

measurable on S, and continuous on At. Further, there is a K > 0 such that for

all i and t, uit(s, a) ≤ K for all (s, a).
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We will use the notation M(S) to denote the space of bounded measurable func-

tions and P(S) to denote the space of probability measures on S. We note that the

set M(S) can be viewed as a set of linear functionals on P(S) 1. The weak topology

on P(S) denoted by σ(P(S),M(S)) is the weakest topology which makes these linear

functionals continuous. We will denote this dual topology by σ∗
c . We will denote the

resulting topological space by (P(S), σ∗
c ). (Chapter 3 of Rudin [1973] has a detailed

discussion of the weak and the weak∗ topologies).

(iv) qt : S × A → (P(S), σ∗
c ) is the transition probability in period t. We will assume

that the transition probability is product measurable on S ×A and continuous on

A.

For every B ∈ Σ, the transition probability qt describes a function qt(B|., .) : S × A →
[0, 1] which gives the measure of B as a function of (s, a). The product measurability

condition implies that for every B ∈ Σ the function qt(B|., .) : S × A → [0, 1] is a

jointly measurable function. Notice that we described the transition probability on the

state space as depending only on the immediate past. Therefore, in the definition of

a transition probability we have implicitly assumed that the transition probability is

Markovian.

3 Payoffs and Strategies

A history up to period t is a sequence of actions (a1, · · · , at) chosen by the players from

periods 1 through t. We will denote such a history by ht and denote the set of histories

up to period t by Ht.

Definition 1 A behavior strategy of a player i is a sequence {fit}t such that for all t

fit : Ht−1 × S → P(At) is a measurable function for each t at which player i’s action set

is At
2, where P(At) has the topology of weak convergence of probability measures3 and

the measurable subsets of P(At) are the Borel sets.

1For any f ∈ M(S) one may define the functional Λf : P(S) → IR as Λf (ν) =
∫
S
f(s)ν(ds).

2We note that since the game is an Asynchronous stochastic game, at each period there is only one
player for whom the action set is At.

3The topology of weak convergence of probability measures is the σ(P(At), C(At)) dual topology on
P(At) where C(At) is the set of all continuous functions on At. For detailed discussions of this topology
one may refer to Billingsley [?] and Parthasarathy [17]
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We will focus on a special class of strategies, namely Markov strategies.

Definition 2 A Markov strategy bi is a sequence {bit} such that bit : S → P(At) is

measurable for every t. A Markov strategy combination b = (bi)i∈N is a combination

of Markov strategies.

Clearly, “Markov” strategies restrict players to make their choice of action in each period

as a function of only on the current state. This can be a fairly severe restriction on the

kind of strategies players can use. However, with the assumptions we have made about

the Markovian nature of the transition probability, a player can do just as well by using

a Markov strategy. This is so because the current and future payoff of a player is given

by

uit(s, a) + δ
∫
S
vi(t+1)(b)(s

′)qt+1(ds
′; s, a). (1)

Given a Markov strategy combination b = (b1, · · · , bn), the future expected payoff of

player i in period t is given by

vi(b)(s) =
∫
S

∫
At+1

ui(t+1)(st+1, a)bi(t+1)(st+1)(da))q(dst, at) +

δ
∫
S

∫
At+1

[
∫
S

∫
At+2

ui(t+2)(st+2, a)bi(t+2)(st+2)(da)q(dst+1, at+1)]bi(t+1)(st+1(da))q(dst, at) + · · ·

+δT−1
∫
S

∫
At+1

· · · [
∫
S

∫
AT

uiT (sT , a)biT (sT )(da)q(dsT−1, aT−1)] · · · bi(t+1)(st+1)(da)q(dst, at) +

∞∑
ℓ=T+1

δℓ−1
∫
S

∫
At+1

· · · [
∫
S

∫
Aℓ

uiℓ(sℓ, a)biℓ(sℓ)(da)q(dsℓ−1, aℓ−1)] · · · bi(t+1)(st+1)(da)q(dst, at).(2)

We note that since uit(s, a) ≤ K for all (s, a), for any ϵ > 0, there is a T sufficiently

large, such that, the sum of the terms from period T onwards satisfies

∞∑
ℓ=T+1

δℓ
∫
S

∫
At+1

· · · [
∫
S

∫
Aℓ

uiℓ(sℓ, a)biℓ(sℓ)(da)q(dsℓ−1, aℓ−1)] · · · bi(t+1)(st+1)(da)q(dst, at)

≤ δT−1K

1− δ
< ϵ

for 0 < δ < 1. Therefore, the expected future payoff given in (2) converges to a limit

for each s ∈ S. We further note that as b is a Markov strategy each bit : S → P(At) is

measurable. As the transition probability function q : S×At → P(S) is measurable on S,

each term in (2) is a measurable function of st. Therefore, the expected future payoff of
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player i from the behavior strategy combination b = (b1, · · · , bn), given by vi(b) : S → IR

is a measurable function on S.

The payoff of a player i in period t is then given by

uit(st, at) + δ
∫
S
vi(b)(s

′)q(ds′; st, at) (3)

where uit(st, at) is the single-period payoff and δ
∫
S Vi(b)(s

′)q(ds′; st, at) is the expected

future payoff from the Markov strategy combination b = (b1, · · · , bn). We now note

that if the players use a Markov strategy combination, the player who makes the choice

in period t can choose an action in At to maximize his payoff simply as a function of

the realized state st ∈ S. That is, the player cannot do any better by using a general

behavior strategy than the optimal Markov strategy. Therefore, if every other player uses

a Markov strategy, then an optimal Markov strategy of player i in period t is an optimal

strategy for period t. Hence an equilibrium in Markov strategies then is an equilibrium

of the game.

Definition 3 A Markov strategy combination b∗ is a Markov perfect equilibrium if

for any st in any period t and for every player i

vit(b
∗)(st) ≥ vit(b

∗
−i, bi)(ht−1, st)

for any behavior strategy bi (not necessarily Markovian).

It is of interest to note that when one considers deviations from the Markov perfect

equilibrium strategy one allows a deviation using a general behavior strategy.

4 Markov Perfect Equilibrium for Asynchronous Stochas-

tic Games

We present two results for Asynchronous stochastic games. In the first we show that

there exists a Markov-perfect equilibrium in pure strategies when the game has a finite

horizon. In the second result we show that there exists a Markov-perfect equilibrium for

an infinite horizon game.
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4.1 Finite Horizon Game

The proof will use a backward induction argument of the kind that is frequently used

in analyzing dynamic models. We have already observed that the expected payoff of a

player i in period t is given by

uit(s, at) + δ
∫
S
vi(t+1)(s

′)q(ds′; s, at)

where vi(t+1) : S → IR is the expected future payoff of player i from period t+1 onwards.

The next result shows that a pure strategy Markov-perfect equilibrium exists for

a finite horizon game. A finite horizon game is one which has a terminal period T .

Theorem 1 A finite horizon Asynchronous stochastic game has a pure strategy Markov-

perfect equilibrium.

Proof: The proof uses the familiar backward induction argument. In period T , the

player who chooses in period T , chooses at ∈ AT to maximize the single-period payoff

uT : S × AT → IR. Let mt : S → IR be given by

mT (s) = argmaxa∈AT
uT (s, a)

and the correspondence MT : S → AT be defined as

MT (s) = {âT ∈ AT | uT (s, âT ) = mT (s)}.

As uT : S × AT → IR is measurable on S and continuous on AT it is jointly measurable

on S×AT . Then, by the measurable maximum theorem (see for example Theorem 18.19

of Aliprantis and Border [1]), the correspondence MT : S → AT is measurable and has a

measurable selection f̂T : S → AT such that f̂T (s) ∈ MT (s) for all s ∈ S. That is, there

is an optimal choice function b⋆T : S → AT given by bT (s) = fT (s) for s ∈ S in period T .

Now in period T − 1, given the optimal choice function b⋆T : S → AT the payoff of

the player who chooses in period T − 1 is given by

uT−1(s, a) + δ
∫
S
vT−1,T (b

⋆
T )(s

′)q(ds′; s, a) (4)

where vT−1,T (b
⋆
T )(s

′) = uT−1,T (s
′, b⋆T (s

′)) and uT−1,T : S × AT → IR is the single-period

payoff in period T−1 of the player who chooses in period T−1. Since uT−1,T : S×AT → IR

is measurable on S and continuous on AT−1, it is jointly measurable on S×AT−1. Hence,,
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as b⋆T : S → AT is measurable, the function vT−1,T (b
⋆
T ) : S → IR is measurable. We now

claim that ∫
S
vT−1,T (b

⋆
T )(s

′)q(ds′; s, a)

is continuous on AT−1 and measurable on S. The first part of the claim follows from

noting that the transition probability q : S×AT−1 → P(S) is continuous on A in the σ⋆
c

topology on P(S). The second part of the claim follows from the fact that the transition

probability is measurable on S. Therefore, the payoff function of the player who chooses

in period T − 1 given by (4) is measurable on S and continuous on AT−1. Let

mT−1(s) = argmaxa∈AT
[uT−1(s, a) + δ

∫
S
vT−1,T (b

⋆
T )(s

′)q(ds′; s, a)]

and the correspondence MT−1 : S → AT−1 be defined as

MT−1(s) = {âT−1 ∈ AT−1 | [uT−1(s, ât−1)+ δ
∫
S
vT−1,T (b

⋆
T )(s

′)q(ds′; s, ât−1)] = mT−1(s)}.

This correspondence is a measurable correspondence and has a measurable selection

f̂T−1 : S → AT−1 such that f̂T−1(s) ∈ MT−1(s) for all s ∈ S. Define the optimal choice

function of the player who chooses in period T − 1 as b⋆T−1(s) = f̂T−1(s) for all s ∈ S.

One can now find b⋆T−2 : S → AT−2 which is optimal for the player who chooses in

period T − 2, given that the players who choose in periods T − 1 and T use the choice

functions b⋆T−1 and b⋆T respectively. Proceeding in this manner one can finally obtain the

function b⋆1, that gives the optimal choice function for period 1 given that the optimal

choice functions in the following periods are given by (b⋆2, · · · , b⋆T−1, b
⋆
T ).

It should be clear from the construction of the sequence of functions (b⋆1, · · · .b⋆T )
that in each period t, b⋆t is optimal given that in the following periods the choices are

given by the functions (b⋆t+1, · · · .b⋆T ). But this shows that (b⋆1, · · · .b⋆T ) is a Markov-perfect

equilibrium of the finite horizon Asynchronous stochastic game. We also note that the

strategies of the players are pure strategies.

4.2 The Generalized Stackelberg Model

As in the Stackelberg Model there are two firms that produce an output that are close

substitutes. The demand for firm 1 is given by p1 = f1(q1, q2) and the demand for firm 2

is given by p2 = f2(q1, q2). In period 1, firm 1 chooses an output q1 which then determines

the distribution of the prices p1(q1, .) and p2(q1, .) of the two firms. That is the demand
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functions in period 2 depend stochastically on the choice q1 of firm 1 in period 1. Given

the realizations of the demand functions in period 2, firm 2 chooses an output level q2.

The payoffs of the firms are then the profits of the firms in period 2. This leads to the

following two-period Asynchronous stochastic game.

(i)Let C denote the set of non-increasing continuous functions from [0, Q] → [0, P ]

endowed with the sup-norm topology. Then the state S in period 2 is C × C, the set

of possible demand functions of the two firms. Then S is a complete separable metric

space. Let µ be a probability measure on S which can be non-atomic.

(ii) Let q(.|q1) be the transition probability function. We will assume that it is norm-

continuous in q1 and absolutely continuous with respect to the measure µ on S.

(iii) u1(q1) = 0, u2(q1) = 0 as neither firm receives a payoff in period 1.

(iv) u1(s, q2) = p1(q1, q2)q1 − c1(q1) and u2(s, q2) = p2(q1, q2)q2 − c2(q2), are the profits of

the two firms respectively, given the realized state s = {pi(q1, q2)}i = 12 of firm i = 1, 2.

Here ci(qi) is the cost function of the firm i = 1, 2 which are continuous and increasing

in qi.

Proposition 1 The two-period Asynchronous game of the Generalized Stackelberg model

has a Markov-perfect equilibrium in pure strategies.

Proof: This follows from Theorem 1 as the two-period asynchronous stochastic game

satisfies all the conditions of theorem 1.

The Markov-perfect equilibrium here is a subgame perfect equilibrium although it

appears to be different from the usual subgame perfect equilibrium in the Stackelberg

model. The optimal choice of firm 2 does not depend on the output q1 directly. But firm

1 does control the payoff of firm 2 through the transition probability that determines

the realization of the demand function of firm 2 in period 2. In the usual Stackelberg

model this is determined precisely as the model is deterministic; here the actual demand

is determined stochastically. Because of that firm 2 does not respond directly to the

output of firm 2 but only to the actual demand that is realized.

4.3 The Infinite Horizon Game

We start this section with some preliminaries. Let

M := {f : S → IR | f is measurable and |f | ≤ K}. (5)
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Since L∞(S, νt) can be identified with L∗
1(S, νt), the dual space of L1(S, νt) (see Dunford

and Schwartz [1988] theorem 5, page 289) we can consider M as a subset of L∞(S, νt)

and topologise it with the relative σ(L∞(S, νt), L1(S, νt)) topology that it inherits as a

subset of L∞(S, νt). We will denote the topological space (M,σ(L∞(S, νt), L1(S, νt)) by

Mt and the dual topology σ(L∞(S, νt), L1(S, νt)) by σ∞
t .

Remark: The dual topology σ∞
t is the same as the weak∗ topology of L∞(S, νt) and

fn → f in this topology if and only if
∫
S fn(s)g(s)νt(ds) →

∫
S f(s)g(s)νt(ds) for every

g ∈ L1(S,Σ, νt).

The next result is important enough to state as a lemma.

Lemma 1 Mt is a compact metric space.

Proof: Since Mt is the K-ball in L∗
1(S, νt) by the Banach-Alaoglu theorem (see theorem

3.15, page 66 of Rudin [1973]) Mt is compact in the σ∞
t topology. Since S is a separable

metric space, Σ is the Borel sigma algebra and νt is a probability measure, therefore, the

metric space of measurable sets is a separable metric space (see theorem B page 168 of

Halmos [1974]). But this implies that L1(S, νt) is separable. Therefore, Mt is metrizable

(see theorem 3.16 page 68 of Rudin [1973]). Hence, Mt is a compact metric space.

In section 2 we had defined the σ∗
c topology on P(S). We now define a stronger

topology on P(S), the norm topology4 which we denote by ||.||. νn → ν in ||.|| if νn(E) →
ν(E) uniformly for every E ∈ Σ and we will write this as ||νn − ν|| → 0. The next

assumption is a strengthening of the assumption on transition probabilities. Compare

this with (iv) in section 2.

Assumption 1 The transition probability qt : S×A → (P(S), ||.||) is absolutely contin-

uous with respect to the probability measure νt and continuous on A.

4.4 Properties of the Payoff function in a period t and a Re-
cursion Result

In each period t, given the Markov strategy combination that is to be used in period

t + 1 onwards, there is an expected future payoff vi,t+1 : S → IR which is measurable on

S, (see for example (2)). The payoff function of a player i in period t, is then given by

the function Vi,t : S × A×Mt → IR defined as

4For µ ∈ P(S), ||µ|| = sup|f |≤1|
∫
S
fdµ| is a norm that yields the norm topology.
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Vi,t(s, a, vi,t+1) := ui(s, a) + δi

∫
S
vi,t+1(s

′)qt(ds
′; s, a). (6)

where vi,t+1 : S → IR is a measurable function that gives the future expected payoff of

player i.

Lemma 2 The function Vi,t : S × A×Mt → IR satisfies the following properties:

(i) For every f ∈ Mt, Vi,t(., ., f) : S ×A → IR is measurable on S and continuous on At.

(ii) For every s ∈ S, Vi,t(s, ., .) : A×Mt → IR is continuous.

Proof: The first conclusion follows directly from assumption 1 and the fact that f :

S → IR is measurable. To check that Vi,t is jointly continuous on A×Mt it is enough to

show that if we take a sequence (ak, fk) → (a, f) in the metric space A × Mt then

Vi,t(s, ak, fk) → Vi,t(s, a, f). Since ui is continuous on At, we need only show that∫
S fk(s

′)qt(ds
′; s, ak) →

∫
S f(s

′)qt(ds
′; s, a) as (ak, fk) → (a, f). We have,

|
∫
S
fk(s

′)qt(ds
′; s, ak)−

∫
S
f(s′)qt(ds

′; s, a)| ≤ |
∫
S
fk(s

′)qt(ds
′; s, ak)−

∫
S
fk(s

′)qt(ds
′; s, a)|

+ |
∫
S
fk(s

′)qt(ds
′; s, a)−

∫
S
f(s′)qt(ds

′; s, a)|.

(7)

Now the norm continuity of the transition probability qt (see assumption 1) implies the

following

|
∫
S
fk(s

′)qt(ds
′; s, aK)−

∫
S
fk(s

′)qt(ds
′; s, a)| ≤

∫
|fk|||qt(.|s, ak)− qt(.|s, a)|| ≤ Kϵ (8)

for every fk ∈ Mt and all k ≥ ko.

Also, if g ∈ L1(S, νt) is the Radon-Nikodym derivative of qt(.|s, a) with respect to

νt, then as fk → f in the σ∞
t topology, we have

|
∫
S
fk(s

′)qt(ds
′; s, a)−

∫
S
f(s′)qt(ds

′; s, a)| = |
∫
S
fk(s

′)g(s′)νt(ds
′)−

∫
S
f(s′)g(s′)νt(ds

′)|

≤ ϵ (9)

for all k ≥ k1. Therefore, for all k ≥ max{ko, k1},

|
∫
S
fk(s

′)qt(ds
′; s, ak)−

∫
S
f(s′)qt(ds

′; s, a)| ≤ (K + 1)ϵ.

11



This shows that |Vt(s, a, f)− Vt(s, ak, fk)| → 0 as k → ∞ and completes the proof.5

Let Mn
t denote the n-product space Mt × · · · × Mt endowed with the product

topology6. For f ∈ Mn
t+1, where f = (f1, · · · , fn) the payoff of the player who chooses in

period t maximizes the payoff function

Vt(s, at, ft) = ut(st, at) + δ
∫
S
ft(s

′)q(ds′(st, at).

As Vt is measurable on S and continuous on At, the correspondence Bt from S into At

that gives the optimal choice of the player has a measurable graph which is compact-

valued and admits a measurable selection (see for example Aliprantis and Border [1],

Theorem 18.19).

When mixed strategies are used, the action set in any period is given by the set

of probability distributions on At which we denote by P(At). The topology on this

set is the topology of weak convergence of probability measures so that P(At)
7. The

correspondence BC
t : S → P(At) given by

BC
t (s) = Co.Bt(s)

for s ∈ S, where Co.Bt(s) is the convex hull of Bt(s). As the correspondence Bt is a mea-

surable correspondence which is compact-valued and nonempty-valued, the correspon-

dence BC
t is a measurable correspondence that is nonempty-valued and compact-valued.

We now note that for each µt ∈ Co.Bt(s), the payoff of a player i (this would be any

player i not just the player who chooses in period t) is given by∫
At

Vi,t(s, at, fi)µt(dat).

As Vi,t(s, at, fi) is continuous on At, the function
∫
S Vi,t(s, at, fi)µt(dat) is continuous in

µt ∈ P(At). Therefore for any measurable selection bt : S → P(At), the payoff function

5The second part of the result here that the function Vt : S × At × Mt is jointly continuous on
At ×Mt is where the stronger condition that the transition probability is norm-continuous (assumption
1) is used.

6Actually for every player i = 1, · · · , n the set Mt is different as the K
′
is which are used as the uniform

bounds could be different. Since the rest of the discussion is unaffected by whether we take note of this
or not, for notational simplicity we will assume that the K ′

is are all equal.
7In the definition of a behavior strategy (see definition 1) we topologised P(At) with the topology of

weak convergence of probability measures. Since At is a compact metric space P(At) is also a compact
metric space in this topology see e.g. theorem 6.4 on page 45 of Parthasarathy [1967].
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∫
S Vi,t(s, at, fi)bt(s)(dat) is a measurable function of s ∈ S. For any f ∈ Mn

t+1 define the

correspondence Pt : S → IRn as

Pt(f)(s) = {[
∫
At

Vi,t(s, at, fi)bt(s)(dat)]
n
i=1 | bt : S → P(At) is measurable and bt(s) ∈ BC

t (s)}.

Thus, Pt(f)(s) therefore is the set of payoff vectors of the players in period t when

player t maximizes the payoff in period t, given that the future expected payoff vector is

f = (f1, · · · , fn).
We now define the correspondence Ψt : M

n
t+1 → Mn

t as

Ψt(f) := {g : S → IRn | gt(s) is in Pt(f)(s) a.e.νt}. (10)

This correspondence gives the set of payoff functions of the players in period t, when

the player choosing in period t chooses optimally, given the expected payoff from period

t+1 onwards. The argument we made above shows that the correspondence is nonempty-

valued. We show here that this correspondence is well behaved. Before we go into the

result we introduce some notation. For a correspondence P : S → IRn we will denote

the set of integrable a.e. selections of P by S̃(P ). Formally, if L1(S, IR
n) is the set of ν

integrable functions from S to IRn, then

S̃(P ) = {σ ∈ L1(S, IR
n) : σ(s) ∈ P (s) a.e. ν}.

The integral of a correspondence P will be written as
∫
S P (s)ν(ds) and is defined as∫

S
P (s)ν(ds) = {x ∈ IRn : x =

∫
S
σ(s)ν(ds), σ ∈ S̃(P )}.

This is the Aumann integral of the correspondence (see Klein and Thompson [1984],

page 185).

Lemma 3 Ψt : M
n
t+1 → Mn

t is nonempty-valued and upper semi-continuous.

Proof: Let fk → f in Mn
t+1. Let the sequence {gk} in Mn

t be such that gk ∈ Ψt(fk) for

every k ∈ IN and gk → g in Mn
t . We need to show that g ∈ Ψt(f).

From lemma 2, for every s ∈ S, the payoff function Vt(s, ., .) : A × Mn
t+1 → IR is

jointly continuous on A×Mn
t+1. Therefore, for every s ∈ S the correspondence Pt(.)(s),

which takes Mn
t+1 to the set of optimal payoffs of the player who chooses in period t, is

an upper semi-continuous correspondence. The upper semi-continuity of Pt(.)(s) implies

13



that as fk → f in Mn
t+1, for each s ∈ S, for any open set G where Pt(s) ⊂ G, there is

a k1 such that for all k ≥ k1, Pt(fk)(s) ⊂ G. As Mn
t has the weak⋆ topology gk → g

in the weak⋆ topology. Therefore, for almost every s ∈ S there is a convex combination

co.gk(s) of gk(s) such that co.gk(s) → g(s). Hence, for almost every s ∈ S,

g(s) ∈ Co.Pt(s) = Pt(s).

This shows that g ∈ Ψt(f).

We now go on to construct the main body of the proof. But before we do that we

make the following observation.

Lemma 4 If C ⊆ L∞(νt+1) is compact, then Ψt(C) is a compact subset of L∞(νt).

Proof: We will show that a sequence {ck} in Ψt(C) will have a convergent subsequence.

Since {ck} is a sequence in Ψt(C), therefore, there is a sequence {ak} in C such that

ck ∈ Ψt(ak) for every k. Because of the compactness of C and Mn
t , without loss of

generality we may assume that ak → a and ck → c via a subsequence. Then from lemma

3 it follows that c ∈ Ψt(a). But this implies that c ∈ Ψt(C) and completes the proof.

The idea of the proof of the main result, which establishes the existence of a

Markov perfect equilibrium, is to essentially ask what would happen if the infinite horizon

stochastic game was terminated at some period T . The set of possible payoffs at the end

of period T would then be the set Mn
T . Given this set of expected future payoffs, the

possible set of equilibrium payoffs in period T − 1 will be in the set ΨT−1(M
n
T ) and we

know that this set is nonempty and a compact subset of L∞(S, νT−1). In period T − 2,

the players knowing that they will play an equilibrium in period T − 1, given that the

expected future payoffs are in Mn
T will play assuming that the expected future payoffs are

in ΨT−1(M
n
T ). This will result in expected payoffs in the set ΨT−2ΨT−1(M

n
T )). In period

T − 3 players will play on the assumption that the future plays are in ΨT−2ΨT−1(M
n
T ).

This process continues till the initial period is reached when the players play on the

assumption that the future payoffs lie in the set Ψ1Ψ2 · · ·ΨT−1(M
n
T ). Now this is the set

of equilibrium expected payoffs that would result if the game was terminated in period T .

If, however, the game was terminated in period T + 1, then the set of possible expected

future payoffs when playing in period T will be in the set ΨT (M
n
T+1). Similarly, if the

game is terminated in period T + 2, then the set of possible future payoffs in period T

is the set ΨTΨT+1(M
n
T+2) ⊂ ΨT (M

n
T+1). Therefore, if the game is never terminated then

14



the set of possible equilibrium payoffs in period T is the set ∩∞
k=1ΨT+k−1(M

n
T+k). Since

ΨTΨT+1 · · ·ΨT+k(M
n
T+k+1) is a nonempty compact subset of ΨTΨT+1 · · ·ΨT+k(M

n
T+k−1)

the set ∩∞
k=1ΨT+k−1(M

n
T+k) is nonempty. A strategy combination that lead to these

payoffs can be shown to be a Markov perfect equilibrium.

The following fact about the correspondences Ψt is of some importance

Ψt(M
n
t+1) ⊂ Mn

t for every t ≥ 1. (11)

We will use the notation Ψk
t (Mt+k+1) to denote the set

ΨtΨt+1 · · ·Ψt+k(Mt+k+1).

Therefore the set Ψ∞
t = ∩∞

k=1Ψ
k
t (Mt+k) describes the set of expected future payoffs at

time t that is generated by playing an equilibrium at every period in the future on the

assumption that the players would continue to do the same.

Lemma 5 The set Ψ∞
t is nonempty for every t.

Proof: Notice that Ψ∞
t = ∩∞

k=1Ψ
k
t (M

n
t+k+1), where by lemma 6 Ψk

t (Mt+k+1) is a nonempty

compact subset of Mn
t+k which is a compact metric space. From (22) and the obvious

induction result, ∩∞
k=1Ψ

k
t (M

n
t+k+1) is the intersection of a nested sequence of nonempty

compact sets. Hence, by the finite intersection property for a collection of compact sets,

the set ∩∞
k=1Ψ

k
t (M

n
t+k+1) is nonempty. Since the argument can be made for any t ≥ 1,

we have the result.

Lemma 5 gives us the following important result. There is a sequence of functions

{x̂t}t∈IN such that x̂t : S → IRn satisfying the condition that

x̂t ∈ Ψt(x̂t+1). (12)

This is quickly seen by noting that since Ψ∞
1 is nonempty there is an x̂1 ∈ Ψ∞

1 . But this

means that there is an x̂2 ∈ Ψ∞
2 such that x̂1 ∈ Ψ1(x̂2), and so on. We now go on to

show that there is a Markov perfect equilibrium strategy combination which will have

payoffs in the set Ψ∞
t . We construct the equilibrium strategy combination in the result

that follows.

Theorem 2 An infinite horizon Asynchronous stochastic game that satisfies assumption

1 has a Markov perfect equilibrium strategy combination.
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Proof: Consider the correspondence γ1 : S → P(A1) given by

γ1(s) = {µ̂1(s) ∈ P(A1) |
∫
A1

V1(s, a1, x̂
1
2)µ1(s) = x̂1

1(s)}

where x̂1
1(s) is the payoff of player 1, the player who chooses in period 1. As V1(s, a1, x̂

1
2)

is continuous in a1 and P(A1) has the topology of weak convergence, V1(s, a1, x̂
1
2) is

a Caratheodory function. Therefore, since x̂1
1 : S → IR is measurable, by Filippov’s

Implicit Function Theorem (see theorem 18.17 of Aliprantis and Border [1]), the cor-

respondence γ1 is measurable and measurable selection g∗1 : S → P(A) such that∫
A Vi(s, a, x̂

1
2)g

∗
1(da1, s) = x̂1

1(s) for every s ∈ S. Thus g∗1 : S → P(A1) is an equilib-

rium strategy in period 1.

Similarly, for period 2, there is a strategy g∗2 : S → P(A2) such that g∗2(s) is

an equilibrium strategy for period 2. We construct the Markov strategy combination

g∗ = (g∗1, g
∗
2, · · ·) by the forward induction method outlined above. We claim that this is

a Markov perfect equilibrium strategy combination of the infinite horizon Asynchronous

stochastic game.

From the construction of g∗, for any T there is an x̂T+1 ∈ Mn
T+1 such that

VT (bT , g
∗
−T )(x̂T+1, s) ≤ VT (g

∗)(x̂T+1, s) (13)

where VT (bT , g
∗
−T )(x̂T,T+1, s) is as defined in equation (6) with x̂T,T+1 denoting the ex-

pected payoff of the player who chooses in period T from period T + 1 onwards. bT is

any behavior strategy used by the player who chooses in period T . Therefore, from (13)

it follows that, given an ϵ > 0 for all T sufficiently large

vT (bT , g
∗
−T )(s) ≤ ϵ+ VT (bT , g

∗
−T )(x̂T+1, s)

≤ ϵ+ VT (g
∗)(x̂T+1, s). (14)

But then taking the limit as T → ∞ we get

vT (bT , g
∗
−T )(s) ≤ ϵ+ lim

T→∞
VT (g

∗)(x̂T+1, s)

= ϵ+ vT (g
∗)(s). (15)

Since ϵ > 0 was arbitrary, equation (15) must hold for every ϵ > 0. Hence,

vT (bT , g
∗
−T )(s) ≤ vi(g

∗)(s). (16)

Since (16) holds for every behavior strategy bT of the player who chooses in period T ,

and for every period T , g∗ is a Markov perfect equilibrium.
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4.5 Stationary Markov-Perfect Equilibrium in Finite Player Games

Theorem 2 shows that a Markov-perfect equilibrium exists for an asynchronous stochastic

game but such an equilibrium need not be stationary. What we show here is that if there

are only a finite number of players then there is a Markov-perfect equilibrium that is

stationary in the sense that a player uses the same choice function in each period in

which the player chooses the action. Recall that the choice function of a player in a

period is the function that designates the choice of action as a function of the state.

Definition 4 A strategy of a player i is a stationary Markov strategy if the choice func-

tion fi,t : S → Ai is the same in every period t in which player i chooses the action.

We will say that an asynchronous stochastic game has a fixed cycle if players 1, · · · , n
choose actions in a sequence 1, 2, · · · , n followed again by the same sequence 1, 2, · · · , n.

Theorem 3 An asynchronous stochastic game with a finite number of players and a

fixed cycle has a stationary Markov-perfect equilibrium.

Proof: We will first prove this for the case when there are only two players and the

players alternate in choosing actions. Since the players alternate in choosing actions, the

game has a fixed cycle. As the game has two players, the set of possible payoff functions

is given by M2. As it is either player 1 or player 2 who choose in any period, we denote

by Ψ1 : M2 → M2, the correspondence Ψt : M
2 → M2 defined in (10) when player 1

chooses, and by Ψ2 : M2 → M2 when player 2 chooses. From lemma 3 we know that

the correspondences Ψ1 and Ψ2 are non-empty valued and upper semicontinuous. By

definition these correspondences are convex-valued.

Now define the correspondence Ψ12 : M
2 → M2 as follows.

Ψ12(u) = Ψ2(Ψ1)(u).

It should be clear that this correspondence is nonempty-valued, convex-valued and upper

semicontinuous. Therefore, by the Fan-Glicksberg theorem it has a fixed point u⋆ : S →
IR2. Since u⋆ is a fixed point of Ψ12, u

⋆ ∈ Ψ2(Ψ1)(u
⋆). Therefore, there must exist a

v⋆ ∈ Ψ1(u
⋆) such that u⋆ ∈ Ψ2(v

⋆).

Let γ1 : S → P(A1) be given by

γ1(s) = {µ⋆
1 ∈ P(A1) |

∫
A1

[u1(s, a) + δ
∫
S
u⋆
1(s

′)q(ds′ : s, a)]µ⋆
1 = v⋆1,∫

A1

[u2(s, a) + δ
∫
S
u⋆
2(s

′)q(ds′ : s, a)]µ⋆
1 = v⋆2}.
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From Filippov’s implicit function theorem and using arguments similar to those used in

the proof of theorem 2 it follows that there is a measurable selection b⋆1 : S → P(A1) of

the correspondence γ1 : S → P(A1).

Now let γ2 : S → P(A2) be given by

γ2(s) = {µ⋆
2 ∈ P(A2) |

∫
A2

[u2(s, a) + δ
∫
S
v⋆1(s

′)q(ds′ : s, a)]µ⋆
1 = u⋆

1,∫
A2

[u1(s, a) + δ
∫
S
v⋆1(s

′)q(ds′ : s, a)]µ⋆
1 = u⋆

1}.

Again from Filippov’s implicit function theorem there is a measurable selection b⋆2 : S →
P(A2) of the measurable correspondence γ2.

It now follows that the Markov strategy combination (b⋆1, b
⋆
2) is a stationary Markov-

perfect equilibrium of the asynchronous game in which players 1 and 2 alternate in

choosing actions.

The arguments made for the case of two players can now be extended to n players

with a fixed cycle by using the correspondence Ψ12···n : Mn → Mn defined as

Ψ12···n(u) = Ψn(Ψn−1(· · · (Ψ1)(u).

One can then show, using the same arguments as in the case of two players, that there

is a stationary Markov-perfect strategy combination (b⋆1, · · · , b⋆n).

4.6 Dynamic Oligopoly Games

The dynamic oligopoly models discussed in Maskin and Tirole [15] and [16] are examples

of asynchronous dynamic models. These analyze a class of alternating-move infinite-

horizon models of duopoly and analyze the properties of a Markov-perfect equilibrium

which require strategies to depend only on the actions to which the rival firm is currently

committed. In [15] a natural monopoly is analyzed in which fixed costs are so large that

only one firm can make a profit. In equilibrium only one firm is active and practices the

quantity analogue of limit pricing. In [16] the firms take turns choosing prices and the

equilibrium studied is a Markov-perfect equilibrium in which a firm’s choice of price in

any period depends only on the other firm’s current price. The Markov-perfect equilibria

indicate the presence of kinked demand curve equilibria as well as Edgeworth cycles.

The interesting phenomenon described by the Markov-perfect equilibria in the

models studied by Maskin and Tirole indicate that these kind of equilibria explain how
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firms behave in many instances, and especially when firms react mostly to each others

short-term behavior. In fact in many instances that is what firms would want to focus

on if the other firm is making decisions based on short-term reactions of its rival. If a

firm changes its price then it would require the firm to do that as soon as it can. The

dynamic models in Maskin and Tirole are deterministic and a firm needs to commit to

its decision over two periods.

Here we study the stochastic version of such models in which the action of a firm in

any period affects the payoff of the firm which chooses in the following period, through

the impact of the action of the firm on the realized demand functions in the next period.

The stochastic version has some advantages over a deterministic model in some respects.

First, a firm which chooses in a period reacts to the realized demand function and not

directly to the choice of the other firm so one does not need a firm to commit to its

action over two periods. Second, a firm using only the realized demand in the current

period to decide its optimal choice fits in more naturally as that is more relevant to a

firm’s payoff than the past history. In the stochastic version of the dynamic oligopoly

model the idea of a Markov-perfect equilibrium is seems very natural.

The action set of a firm i is a set Ai which is a compact subset of a metric space.

This could be the set of prices, quantities and investments from which the firm chooses.

The realized state variable s which is an element of the state space S is the state of

demand for the two firms and is an element of a complete, separable metric space.

There is a transition probability function q : S × Ai → P(S) that gives the probability

distribution on the next period’s states as a function of the realized state and actions of

the firm that chooses actions in the current period. The single-period payoff function of

firm i is given by the profit of the firm πi(s, a) in that period, where s is the realized state

variable and a is the action chosen in that period. It is important to observe here that

the realized state variable s contains all the relevant information about past actions that

affects the current payoff. Thus if the demand of a firm is a function of the output levels

chosen by the other firms as well as the output of the firm that chooses in the current

period, then that information about the output levels of chosen by the other firms in the

preceding period is embedded in the realized state variable s.8

8For example, in the simple setting where firms are involved in choosing the output in each period,
if firm 1 is the firm that set the output in the previous period, then the realized demand equation is
p = (A(λ) − q1) − q2 where A(λ) indicates the random realization of the intercept term of realized
demand equation. Note that the output chosen by firm 1 in the preceding period is part of the realized
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Proposition 2 Let ν be the fixed probability measure on the state space S¿ If the tran-

sition probability is absolutely continuous with respect to ν, and norm continuous in the

actions a and measurable in the state variable s, then the dynamic oligopoly model has

a stationary Markov perfect equilibrium.

Proof: The result follows from Theorem 3.

5 Pure Strategy Markov Equilibrium

The preceding result shows that a Markov perfect equilibrium exists for asynchronous

stochastic games under the condition of norm continuity of the transition probability.

Here we show that, if the measure ν is nonatomic and the transition probability satisfies

the condition of decomposable coarser transition probability of He and Sun [11], then there

is a Markov perfect equilibrium in pure strategies. The condition of coarser transition

probability allows one to purify the equilibrium strategies by replacing the payoffs in

the convex hull of the equilibrium payoffs by payoffs that are in the set of equilibrium

payoffs. The analyses here draws substantially on the insights from the results in He and

Sun [11].

In order to get to the result here we recall some concepts form the literature. Let

ν be a probability measure on (S,Σ). Let G be a sub-σ-algebra of Σ. A set D ∈ Σ of

positive measure is said to be a G atom if the restricted σ-algebras GD and ΣD satisfy

the condition that the strong completion of GD is ΣD. That is, the restricted σ-algebras

GD are essentially the same. Since σ algebras can be viewed as the information that one

has about the realizations of the states, if a set D ∈ Σ is a G atom, then the occurrence of

the event D gives the same information whether one has the σ-algebra Σ or the σ-algebra

G. Then

Definition 5 Let G be a sub-σ-algebra of Σ. A discounted stochastic game is said to have

a coarser transition kernel if Σ has no G-atom under ν and q(.; s, a) is G-measurable

on S for each s ∈ S and a ∈ At.

The condition implies that as the transition probability does not provide full information

demand equation. Here of course we are assuming that the stochastic element of the demand equation
is the intercept term. Typically the stochastic shock λ would depend on the output level chosen in the
preceding period.
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about the events in σ-algebra it provides less information about the realizations of the

states than is provided by the events in Σ.

The purification result here uses a result of Dynkin and Evstigneev [5] about reg-

ular conditional expectations of correspondences. Let C : S → IRn be a closed-valued,

measurable correspondence which is integrably bounded (that is, there is measurable

function ϕ : S → IRn such that ∥C(s)∥ ≤ ϕ(s) for ν-almost all s). For a Σ-measurable

selection f of C let IEν(f |G) denote the conditional expectation of g with respect to the

sub-σ-algebra G of Σ.9 We note that IEν(f |G) is G measurable, and is a measurable

selection of the correspondence C : S → IRn. Let

S̃(G,ν)(C) = {IEν(f |G) : f is a Σ-measurable selection of the correspondence C}.

Theorem 4 (Dynkin and Evstigneev) If Σ has no G-atom, then for any Σ-measurable

ν-integrably bounded, closed-valued correspondence C : S → IRn,

S̃(G,ν)(C) = S̃(G,ν)(Co.C).

If the transition probability satisfies the condition of coarser transition kernel, then

the set of conditional expectations of integrable selections of C are the same as set of

conditional expectations of integrable selections of the convex hull of C. As in He and

Sun [11] this allows one to replace future expected payoff functions that have values in

the convex hull of the set of equilibrium payoffs, with payoff functions that have values

in the actual set of equilibrium payoffs.

Theorem 5 An Asynchronous Stochastic Game with a non-atomic fixed measure ν has

a Markov equilibrium in pure strategies if it has a decomposable coarser transition

kernel. If the game has a finite number of players and a fixed cycle then there is a

stationary Markov-perfect equilibrium in pure strategies.

Proof: From lemma 5 and Theorem 2 it follows that the equilibrium payoffs are given

by the payoff vectors (x̂1, · · · , x̂t, · · ·), where x̂t : S → IRn satisfies the condition that

x̂t ∈ Pt(x̂t+1).

That is,

x̂t(s) = max
a∈At

{ut(s, a) +
∫
S
x̂t,t+1(s

′)q(ds′; s, a)ν(ds′))}. (17)

9For a discussion of conditional expectation one may refer to [4].
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Here, x̂t,t+1(s
′) is the expected payoff of player t (the player who makes the choice in

period t) in period t+1, and q(ds′; s, a is the Radon-Nikodym derivative of the transition

probability.

Recall that the correspondence Bt(x
′
t,t+1) : S → At gives the optimal choices of the

player who chooses in period t when the expected future payoff is given by x′
t,t+1 : S → IRn.

Let P̃ (x′
t,t+1)(s) denote the payoff set of the players when the choices are in Bt(x

′
t,t+1)(s).

P̃ (x′
t,t+1)(s) is thus set of payoffs when the player uses pure strategies. From the theorem

of Dynkin and Evstigneev (Theorem 4), we have S̃(G.ν)(Bt) = S̃(G.ν)(Co.Bt), so that there

exists a Σ-measurable selection x⋆
t+1 of P̃t+1(x̂t+2) such that IEν(x⋆

t+1|G) = IEν(x̂t+1|G).
Therefore, as q(. : s, a) is G-measurable on S for each s ∈ S∫

S
x̂t+1(s

′)q(ds′; s, a)ν(ds′) =
∫
S
IEν(x̂t+1q(.; s, a)|G)(s′)ν(ds′)

=
∫
S
IEν(x̂t+1|G)(s′)q(ds′; s, a)ν(ds′)

=
∫
S
x̂⋆
t+1(s

′)q(ds′; s, a)ν(ds′). (18)

Therefore, we have

x̂t(s) = max
a∈At

{ut(s, a) +
∫
S
x⋆
t,t+1(s

′)q(ds′; s, a)ν(ds′)}. (19)

As x⋆
t+1(s) ∈ P̃t+1(s) for all s ∈ S, there is measurable function f ⋆

t+1 : S → At+1

such that f ⋆
t+1(s) ∈ Bt+1(s) for all s ∈ S and∫

S
x̂t,t+1(s

′)q(ds′; s, a) =
∫
S
[ut+1(s, f

⋆
t+1(s)) + δ

∫
S
x̂t+1,t+2(s

′)q(ds′; s, f ⋆
t+1(s))]q(ds; st, at).(20)

Thus, there is a selection of nonrandomized actions in period t + 1 that gives the same

expected payoff to the players as the expected payoff from the payoff function (possibly

randomized) of x̂t+1. Since this can be done in each period t+1, for t ≥ 1, it follows that

the sequence of functions (f ⋆
1 , f

⋆
2 , · · · , f ⋆

t+1. · · ·) is a Markov equilibrium in pure strategies.

If there are a finite number of players and the game has a fixed cycle, then again

the arguments for the existence of a pure strategy stationary equilibrium can be made

first for the two-player as the extension to the general n-player case follows immediately.

The argument uses theorem 4 to show that the randomized strategies can be purified.

For the two player case we observe that the payoff function v⋆ : S → IR2 can be

replaced by v̂ : S → IR2 so that

u2(s, a) + δ
∫
S
v⋆2(s

′)q(ds′ : s, a) = u2(s, a) + δ
∫
S
v̂2(s

′)q(ds′ : s, a)
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u1(s, a) + δ
∫
S
v⋆1(s

′)q(ds′ : s, a) = u2(s, a) + δ
∫
S
v̂1(s

′)q(ds′ : s, a)

of players 2 and 1 where v̂ ∈ P̃1(u
⋆). Also the payoff function u⋆ : S → IR2 can be

replaced by û : S → IR2 so that

u1(s, a) + δ
∫
S
u⋆
1(s

′)q(ds′ : s, a) = u1(s, a) + δ
∫
S
û1(s

′)q(ds′ : s, a)

u2(s, a) + δ
∫
S
u⋆
2(s

′)q(ds′ : s, a) = u2(s, a) + δ
∫
S
û2(s

′)q(ds′ : s, a)

where û ∈ P̃2(v
⋆) = P̃2(û). Then if f ⋆

1 : S → B1(û) and f ⋆
2 : S → B2(v̂) are measurable

selections, then (f ⋆
1 , f

⋆
2 ) is a pure strategy stationary Markov-perfect equilibrium. A

similar argument will work for the case of n players in a game with a fixed cycle.

5.1 A Model of Resource Extraction with Noise

Here we provide an application of the result in Theorem 5 and show that a fairly general

model of resource extraction has a stationary pure strategy Markov perfect equilibrium

if the agents extract the resource in a given sequence.

Let the number of agents who extract the resource be some finite number n.

Without loss of generality assume that the agents extract the resource in the sequence

1, 2, · · · , n after which the agents extract the resource in the same sequence again. The

state at the beginning of a period is given by the stock of the resource s which is an

element of [0,M ]. The amount of the resource that an agent can extract if s is the stock

at the beginning of the period is [0, s− c]. The idea here is that agents can extract the

resource only until a small amount c of the resource is left because it is technologically

not feasible to extract the resource once it falls below c. The state space S can be

decomposed into two components so that S = X × Z, where X = Y = [0,M ] where

M is the maximum amount of the resource available even if there is no extraction of

the resource. The stock of the resource available for extraction at the beginning of a

period is given by a non-atomic distribution µ(.|s, a). Let µx(.|s, a) denote the marginal

of µ(.|s, a) on x ∈ X and that this is non-atomic. Here x ∈ X denotes the amount

of the resource available for regeneration after a amount of it has been extracted for

consumption from the stock s available at the beginning of the period.10 The amount of

10The idea here is that once a amount of the stock has been extracted from a beginning of period
stock of s, there is some random amount of the resource that is available for regeneration in the next
period. This could be due to the fact that some amount of the resource is wasted during the extraction
of the resource and is not consumed.
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the resource available for extraction at the beginning of the next period is then drawn

from the non-atomic distribution µZ(.|x) on Z which depends only on the realized value

x of the resource available for regeneration and is independent of the state and action

pair (s, a) of the previous period.11

Therefore, as in Duggan [7], the state space has two components X and Z, where

x ∈ X is the stock of the resource available for regeneration at the end of a period,

and z ∈ Z is the amount of the resource available at the beginning of the period. Each

component of the state space S = X × Z is given by [0,M ] with the Borel σ-algebra

and the Lebesgue measure. We note that here the state space is a compact metric space.

We assume that the measure µx(.|s, a) has a density function g(x|s, a) that is continuous
in x and a and measurable in s. Furthermore, assume that conditional on x ∈ X, the

distribution

muZ(.|x) of z ∈ Z is independent of the state and actions (s, a) of the preceding period

and that the mapping x → ν(.|x) is a regular conditional probability for z. The measure

µZ(.|x) is absolutely continuous with respect to the Lebesgue measure on [0,M ] and is

thus an atomless measure; and by the Radon-Nikodym theorem has a density p(.|x) and
this can be chosen so that p(z|x) is jointly measurable in (z, x).

The model of resource extraction is then an Asynchronous Stochastic game with

(i) State space S = X × Z where X = Z = [0,M ] is a non-atomic measure space with

the Borel σ-algebra and the non-atomic fixed measure λ.

(ii) A transition probability µ : S×A×S → [0, 1] which satisfies the conditions described

above

(iii) The action set A = [c,M ] which describes the amount of the resource that an agent

can feasibly extract.

(iv) The single period utility function ui : S × A → IR which describes the single-period

utility of agent i from extracting and consuming the resource. It is measurable in the

state variable s and continuous on the action set A.

Proposition 3 The Asynchronous Resource Extraction Model with Noise has a Markov-

perfect equilibrium in pure strategies.

Proof: We first observe the state space S is a compact metric space and the measure

11This describes the fact that the stock available for extraction at the beginning of a period is deter-
mined only by the stock available for regeneration and is independent of (s, a), and that there is some
“noise” involved in the process of regeneration.
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µX(.|s, a) has a density function g(x|s, a) that is continuous in x and a and measurable

in s. Further, the measure µZ(.|x) is independent of (s, a). Therefore the transition

probability µ : S×A×S → [0, 1] is norm continuous in (s, a) and absolutely continuous

with respect to the fixed nonatomic measure λ. Further, we note that the conditions on

the transition probability µ is the same as that of conditions (iv) and (v) in Duggan [7].

But this implies that it satisfies the conditions for a stochastic game with endogenous

shocks in He and Sun [11]. Therefore, by corollary 1 in He and Sun [11], it has a

decomposable coarser transition kernel. Therefore, the resource extraction model satisfies

the conditions of Theorem 5 and has a pure strategy Markov-perfect equilibrium.

6 Conclusion

Here we have shown that Markov-perfect equilibrium exists for Asynchronous Stochastic

games in which the single-period payoff is a measurable function of the state variable.

Theorem 1 shows that the a finite horizon game has a Markov-perfect equilibrium in pure

strategies. Theorem 2 shows a Markov-perfect equilibrium exists for infinite horizon

games but in randomized strategies. Given these results, it would be natural to ask

whether the result of Theorem 2 can be sharpened to one that showed the existence of

equilibrium in pure strategies. In an infinite horizon game the optimal choice of a player

who chooses in time period t, can change from one element to another in the action set,

as the terminal period from which the backward induction process starts, changes from

T to T+1, and then to T+2 and so on. Thus as the time period in the future from which

the players start to optimize, is pushed further into the future, the optimal choice of the

player who chooses in time period t, changes from one element to another in the action

set. These optimal choices may never converge to any element of the action set, or if the

sequence of optimal choices converge, the sequence converges to a convex combination of

the elements of the action set. The result of Theorem 2 should be seen in this context, as

should the result in Theorem 5. Viewed within this context the result in Theorem 5 is of

particular interest. One interpretation of the result of Theorem 5 shows that when there

is noise in the realization of the state variable (that is the measure µ is non-atomic, and

the transition probability does not give an exact indication of this noise (the condition

of decomposable coarser transition kernel), then there is a Markov-perfect equilibrium

in pure strategies.
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One may also ask how important is the condition of norm continuity for the tran-

sition probability and whether one may be able to relax this condition. The answer, as

in the case of general stochastic games, is perhaps not much can be done to relax this

condition. If the game is a finite horizon game, a condition like weak⋆ continuity may

work, which is the weakest topology that makes the future expected payoff continuous

in actions. In the infinite horizon game, however, something like the norm continuity

condition would be needed. This is most clearly seen in the result in lemma 3, where the

condition of norm continuity is needed for the value function to be jointly continuous in

actions and future expected payoff functions.

A final point perhaps should be addressed about Asynchronous stochastic games.

These games have a structure that, in many respects is similar to that of stochastic

dynamic programming, so one is quite naturally led to wonder if one may be able to

get existence results similar to those for stochastic dynamic programming. There is,

however, a big and very important difference between stochastic dynamic programming

and Asynchronous stochastic games, namely, that the single-period payoff functions in

the game differ from period to period, as these are the single-period payoff functions

of different players. Thus there is nothing like the optimal value function of stochastic

dynamic programming for asynchronous stochastic games. But this does not rule out

interesting possibilities when the asynchronous stochastic games are of a special kind,

like for example zero sum games.

While the main results use the framework of stochastic games it should be evident

that the results apply to a wide variety of asynchronous stochastic models. Some of this is

seen in the applications that have been discussed like the dynamic oligopoly models and

the model of resource extraction, but there are obviously many others. Principal-agent

models in which the principal makes an offer that is followed by an action of the agent,

which then leads to the next period where the principal again makes an offer to which

the agent responds also would be a model in which actions are taken in a sequence. It

is possible that some kinds of networks may also have a structure similar to the models

discussed here.
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