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Abstract

Two individuals are involved in a conflict situation in which pref-
erences are ex-ante uncertain. While they eventually learn their own
preferences, they have to pay a small cost if they want to secretely
learn their opponent’s preferences. We show that there is an inter-
val with upper bound less than one and lower bound greater than
zero such that, for sufficiently small positive costs of information ac-
quisition, in any Bayesian Nash equilibrium of the resulting game of
incomplete information the probability of acquiring information about
the opponent’s preferences is within this interval.
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If you know the enemy and know yourself, you need not fear the
result of a hundred battles. If you know yourself but not the enemy,
for every victory gained you will also suffer a defeat. If you know
neither the enemy nor yourself, you will succumb in every battle.

— Sun Tzu, The Art of War, approximately 500BC, 1910 translation
by Lionel Giles

1 Introduction

We consider situations of strategic interaction in which players know their
own cardinal preferences but are ex-ante uncertain about their opponent’s
cardinal preferences.1 Players can, however, at some small positive cost,
secretely acquire full information about their opponent’s cardinal preferences.

The question we pose is this: Will players acquire this information about
their opponent’s preferences? Let us first survey cases in which this is cer-
tainly not, or at least not necessarily, the case.2 If it is common knowledge
that at least one player has a dominant strategy then players derive no benefit
from learning anything further about the intensity of each other’s preferences
and will not acquire this information for any level of cost. If it is common
knowledge that players have coordination preferences, then there is certainly
an equilibrium in which all individuals play one and the same action regard-
less of their precise cardinal preferences, in which case players again do not
benefit from learning their opponents exact cardinal preferences.3 But what
if the game is one of conflict? That is the game is such that there is no
pure strategy profile that both players would agree to be good. Consider
the archetypical such game of matching pennies (or one could very similarly
think of rock-scissors-paper) with slight payoff disturbances that make the
game not necessarily zero-sum, but that preserve the ordinal preferences.

1One wonders how both parties succumb in battle, following Sun Tzu’s quote, if both
know neither their enemy nor themselves.

2A trivial case is given by the case in which the cost of acquiring this information is
prohibitively high. Then players will certainly not acquire this information. In the paper
we, therefore, focus on the case of small costs.

3See Section 4.2 for a more detailed discussion of this case.
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In any such game with complete information there would only be one Nash
equilibrium and this one Nash equilibrium is in completely mixed strategies.
These mixed strategies are such that players randomize in such a way as to
make each other indifferent. But in order to do so a player would presum-
ably need to know her opponent’s payoffs. The refined question we, thus,
ask in this paper is: Will players in Bayesian conflict games with incomplete
information choose to secretely learn their opponent’s preferences?

There is a literature about the value of information that could be helpful
here. This literature, starting with Hirshleifer (1971) and including Kamien
et al. (1990), Bassan et al. (1997), Gossner and Mertens (2001), Bassan et al.
(2003), Lehrer and Rosenberg (2006, 2010), Peski (2008), and Gossner (2010),
investigates the value of information under the assumption that whenever a
player has additional information, this fact is known by the opponent. In
this case having information can be bad for a player.

We are here, however, interested in the case when the possible acquisition
of information is secret. The opponent knows that a player could acquire
information, but does not observe whether or not she did. More to the point
of our question here is Neyman (1991), who showed that any player who is
(by chance) given a more precise signal (about some aspect of the game, such
as for instance the opponent preferences) must at least weakly benefit. This
is true in all games. The intuition behind this result is simple. In such games
every player’s behavior is independent of the realized signal of her opponents.
Thus, given the opponents’ behavior is fixed, any player is facing essentially
a decision problem and cannot suffer from more precise information.

This brings us back to our question. Is it true that players in conflict
situations will always acquire information about their opponent’s preferences
if this comes at essentially no costs?

The result of Neyman (1991) would suggest this.4 Another, more techni-
cal, result also suggests that this would be the case. It is well known, see e.g.,
Harsanyi (1973b) and Kohlberg and Mertens (1986), that the Nash equilib-
rium correspondence in the space of games is upper hemi-continuous. Note

4Note, however, that the result of Neyman (1991) does not imply that more information
is necessarily strictly better.
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that the game in which costs of acquiring information about the opponent’s
preferences are zero has an equilibrium (provided we deal with finite normal
form games) in which all players acquire this information (see e.g., Proposi-
tion 1). If this is the only equilibrium of this game, the upper hemi-continuity
of the Nash equilibrium correspondence then implies that, if these costs are
positive but close to zero, there must be an equilibrium of this game in which
players acquire this information, at least with probability close to one.

We find, however, (in Theorem 1) that there is an upper bound less than
one and a lower bound greater than zero such that, for sufficiently small costs
of information acquisition, all equilibria of, what we call, Bayesian conflict
games have a probability of information acquisition that is between the lower
and upper bound.

Bayesian conflict games are such that if preferences were common knowl-
edge then every realization of preference pairs would lead to a complete
information game that has a unique Nash equilibrium and that unique Nash
equilibrium is in completely mixed strategies. Another way to characterize
these games is as follows. Players have common knowledge about the ordinal
preferences of both players, and these are in some well specifiable sense op-
posed to each other. The players are uncertain only about their opponent’s
cardinal preferences, i.e., the difference in intensity of their preferences for
the various outcomes.

1.1 An Overview of the Main Results and their Proofs

We actually provide three results of independent interest. First, we show in
Proposition 1 that for any positive costs of information acquisition, Bayesian
conflict games cannot have equilibria in which both players acquire this in-
formation with probability one. This result has a straightforward proof.
Suppose it were the case that both players acquire this information with
probability one. Then whenever two types realize, players have complete
information and, thus, any Nash equilibrium requires appropriate complete
mixing in all such cases. But this implies that both players are always com-
pletely indifferent between all actions. Then it does not pay to acquire in-

4



formation about the opponent’s preferences.
This argument does, however, not imply the main result that the equi-

librium probability of getting this information is bounded away from one as
costs diminish.

Our second result, Proposition 2, helps to reconcile the apparent contra-
diction in our main finding (that players’ probability of acquiring information
is bounded from one as costs tend to zero) and the fact that the Nash equi-
librium correspondence in the space of games is upper hemi-continuous. It
states that at zero costs the game not only has a Nash equilibrium in which
both players acquire information, but also infinitely many in which the prob-
ability of acquiring this information is strictly less than one for both players.
Any such equilibrium has the following property: If an outside observer can
identify all different preference types and then keeps track of the frequency
of play of the various actions conditional on any given preference pair, then
these probabilities are exactly the Nash equilibrium probabilities of the game
in which this preference pair is common knowledge. In other words, in any
matching of any two preference types the two types play the Nash equilib-
rium of the corresponding complete information game despite the fact that
they do not have complete mutual knowledge of their preferences! Thus,
the players manage to make each other indifferent (after all, this is what is
required for completely mixed Nash equilibrium play) without fully knowing
their opponents’ preferences!5

The third and main result, Theorem 1, then states that there is an up-
per bound less than one and a lower bound greater than zero such that, for
sufficiently small costs of information acquisition, all equilibria of Bayesian
conflict games have a probability of information acquisition that is between
the lower and upper bound. Both bounds can be proven by appealing to the
upper hemi-continuity of the Bayesian Nash equilibrium correspondence in

5We know, from Aumann and Brandenburger (1995), that a sufficient epistemic condi-
tion for player’s conjectures about opponent play to be a Nash equilibrium in two-player
games is the mutual knowledge of the payoff functions, of rationality, and of the conjec-
tures about opponent play. Proposition 2 then implies that even for Bayesian conflict
games the condition of mutual knowledge of the payoff functions is not a necessary one,
despite the fact that Nash equilibrium play in such games requires precise mixing and this
mixing only depends on the opponent’s preferences.
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the space of games (as the cost parameter c varies). It follows from Propo-
sition 2 that, if costs c are zero, it cannot be an equilibrium to not acquire
information about opponent preferences at all (as we assume that each player
has at least two distinct types). While the proof needs some care, the main
intuition behind this result is this: if nobody acquires information then all
types of one player face the same action distribution of the opponent. But
then, typically, these two types do not have the same best response actions
and would thus play different action distributions themselves. Typically, their
opponent would then prefer to know this to adapt her own play accordingly.

To identify the upper bound we need to realize (much as in the proof of
Proposition 1) that for small positive costs it cannot be true in any equilib-
rium that all types are indifferent between all actions. Thus, at least one type
of at least one player must be playing an action distribution that puts zero
weight on at least one action. But, because of the upper hemi-continuity
of the Bayesian Nash equilibrium correspondence, for small costs c, every
player type must still be almost indifferent between all actions. But as, by
the lower bound, there is a positive probability that a player is informed, and
given that she then plays (at least against some types) an action distribu-
tion that is far away from the action distribution that makes her opponent
type indifferent, she has to balance this action distribution when informed
by an appropriate action distribution when not informed and the latter has
to receive strictly positive weight. This weight is a function of the distance
between the action distribution that puts zero weight on some actions and
the by assumption completely mixed action distribution that makes the op-
ponent indifferent. As there is a non-zero distance between these two that
does not depend on the cost of information acquisition, the probability of
getting informed must be bounded away from one.

1.2 Additional Related Literature

We use the term acquiring “cognitive empathy” instead of the more general
term “acquiring information” for two reasons. First, we want to distinguish
the specific model of this paper in which information is exclusively about op-
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ponent preferences from models in the literature (see below) inspired perhaps
by oligopolistic competition in which the uncertainty is about some param-
eter that affects all players’ payoffs. Second, “cognitive empathy” is a term
from the psychological literature that fits our model exactly, and is defined
in psychology as the process of understanding another person’s perspective
(see e.g., Davis, 1983), which can be traced back to at least Köhler (1929),
Piaget (1932), and Mead (1934). This is in contrast to “affective empathy”
which is defined as a person’s emotional response to the emotional state of
others (see again Davis, 1983) and the two are not necessarily related.6 The
term “empathy” in everyday language typically refers to “affective empathy”.
We thus emphasize that we are here studying “cognitive empathy”.

There is a literature on information acquisition in oligopoly models as in
e.g., Li et al. (1987), Hwang (1993), Hauk and Hurkens (2001), Dimitrova
and Schlee (2003), and Jansen (2008), where firms can acquire information
about the uncertain market demand before engaging in oligopoly compe-
tition. Market demand enters all agents’ profit functions, whereas in our
model the information a player might acquire is exclusively about the oppo-
nent’s preferences. More general models in which players acquire information
about an uncertain parameter affecting all players’ preferences are given in
Hellwig and Veldkamp (2009), Myatt and Wallace (2012), and Amir and
Lazzati (2014), as well as in Persico (2000) and Bergemann et al. (2009) in
a mechanism design context.

Moreover, this paper is related to the literature on the evolution of pref-
erences for strategic interaction, initiated by the so-called “indirect evolu-
tionary approach” of Güth and Yaari (1992) and Güth (1995). Individuals
who are randomly matched to engage in a given form of strategic interaction
are first given a utility function by nature. Nature works on every player
separately and aims to maximize this player’s material preferences. Play-
ers evaluate outcomes of play with the preferences given to them by nature.
There are two kinds of results in this literature. Assuming that individu-

6Shamay-Tsoory et al. (2009) find that different areas of the human brain are respon-
sible for “cognitive” and “affective” empathy. Rogers et al. (2007) find that people with
Asperger syndrome lack “cognitive” but not “affective” empathy.
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als (automatically) observe their opponents’ preferences, in many settings
non-material preferences arise as nature’s optimal choice (see e.g., Koçkesen
et al., 2000a,b; Heifetz et al., 2007a,b; Dekel et al., 2007; Herold and Kuzmics,
2009). On the other hand, assuming that individuals cannot observe their op-
ponents’ preferences, essentially only allows material preferences as nature’s
optimal choice (see e.g., Ely and Yilankaya, 2001; Ok and Vega-Redondo,
2001). Robson and Samuelson (2010) argued that the potential observability
of preferences should also be subject to evolutionary forces.7 Some work in
that direction has recently been begun by Heller and Mohlin (2015a,b).8 Our
model can be seen as tackling the question of the evolution of observability
of preferences without modelling the evolution of preferences.

Another such model is given in Robalino and Robson (2012, 2015). In
their model, individuals are interacting in ever changing environments. An
individual with “theory of mind” is able to use past experiences of opponent
play to predict more quickly how her opponent will play. Thus, even if it is
somewhat costly, there is a strict benefit from having a “theory of mind.” One
could argue that the incomplete information (about opponents’ preferences)
in our model is somewhat akin to the ever changing environment in Robalino
and Robson (2015). Our model has no explicit learning. One could perhaps
argue it is implicit in our use of Bayesian Nash equilibrium. Our example of
a non-conflict game provides a similar result as that in Robalino and Robson
(2015) in that any Bayesian Nash equilibrium must exhibit “full” cognitive
empathy, i.e., with probability one. When we focus on conflict games alone,
we find a starkly contrasting result in that any Bayesian Nash equilibrium
must exhibit “partial” cognitive empathy, i.e., the probability of acquiring
empathy is bounded from below as well as from above, even when costs of

7Similarly (Samuelson, 2001, p. 228) states: “Together, these papers highlight the
dependence of indirect evolutionary models on observable preferences, posing a challenge
to the indirect evolutionary approach that can be met only by allowing the question of
preference observability to be endogenously determined within the model.”

8The former is a model in which, while individual preferences evolve, so do individuals’
abilities to deceive their opponents. The latter asks the question whether cooperation
can be a stable outcome of the evolution of preferences in the prisoners’ dilemma when
players can observe and condition their play on some of their opponent’s past actions (in
encounters with other people).
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acquiring empathy tend to zero.
This paper is also related to Aumann and Maschler (1972), who provide

an example of a complete information bimatrix game, due to John Harsanyi,
in order to discuss the relative normative appeal of maxmin and Nash equilib-
rium strategies. The game is a two-player two-action game and not quite zero
sum with a unique Nash equilibrium which is in completely mixed strategies.
In this game, Nash equilibrium strategies and maxmin strategies differ for
both players. Yet the expected payoff to a given player in the Nash equilib-
rium is the same as the expected payoff that this player can guarantee herself
by playing her maxmin strategy. Pruzhansky (2011) provides a large class
of complete information bimatrix games that have this feature. If this is the
case, would one not, for this class, recommend players to use their maxmin
strategies? In our model, in which players have uncertainty about their op-
ponent’s preferences, and therefore in some sense greater uncertainty about
their opponent’s strategy, one might think that the appeal of maxmin strate-
gies is even greater. Yet, in our model there may be a strict benefit from
deviating from maxmin strategies, which we show in Gauer and Kuzmics
(2016), an earlier working paper version of this paper.

The literature on level-k thinking (see e.g., Stahl and Wilson, 1994, 1995;
Nagel, 1995; Ho et al., 1998; Costa-Gomes et al., 2001; Crawford, 2003; Costa-
Gomes and Crawford, 2006; Crawford and Iriberri, 2007) typically finds that
individuals engaged in game theory experiments do not all reason in the same
way as individuals seem to have different “theories of mind”. In that sense,
our paper can be loosely interpreted as a model to understand why there
may be individuals of different levels of strategic thinking.

Solan and Yariv (2004) consider a sequential model of two-player two-
action interaction in which one player chooses a (possibly mixed) action
first, then a second player can buy, at some cost, information about the first
player’s (realized) action before finally then also choosing an action herself.
The second player can also choose the precision of the information purchased.
The structure of the game is common knowledge. In particular the first player
is fully aware that she might be spied upon. Thus “spying” in their model is
about the opponent’s already determined action with complete information
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regarding payoffs, whereas in our model “spying” (or cognitive empathy as
we call it) is about the opponent’s preferences and is simultaneous.

Closest is perhaps Mengel (2012), who studies a model in which indi-
viduals play many games and ex ante do not know which game they are
playing. Individuals can partition the set of games in any way they like,
with the understanding that any two games in the same partition element
cannot be distinguished. The individual can condition her action only on
the partition element. Adopting a partition comes at some cost, called rea-
soning costs, and finer partitions are more costly than coarser ones. One
difference between Mengel (2012) and what we do here is, therefore, that
in our model players always learn their own payoff type, while in Mengel
(2012) individuals do not necessarily even learn their own payoff type. An-
other difference is in the choice of solution concept, we study Bayesian Nash
equilibria while Mengel (2012) studies asymptotically stable strategy profiles
under some evolutionary process. Both these differences are probably only
superficial. The real difference between the two papers is the class of games
they study within their respective models. Our main results deal with the
case of conflict games. Mengel (2012) does not explicitly study this class.
Therefore, the nature of our results is also different.9

The rest of the paper is organized as follows. Section 2 states the model.
Section 3 provides the main results, and Section 4 provides some additional
discussion.

9The main results in Mengel (2012) are that strict Nash equilibria, while (evolutionar-
ily) stable if the game is commonly known, can be made unstable under learning across
games; that weakly dominated strategies, while unstable if the game is commonly known,
can be stable under learning across games; and that, if all games have distinct Nash equi-
librium supports, learning across games under small reasoning costs leads to individuals
holding the finest partition with probability one. Our paper is silent on all these results
as our conflict games do not have strict Nash equilibria, do not have weakly dominated
strategies, and are such that all (what we call realized type) games are such that their
Nash equilibria all have full support. All our results, thus, add to the results in Mengel
(2012). One could probably translate our main result into the language of Mengel (2012)
as follows. If having the finest partition in the model of Mengel (2012) is essentially the
same as acquiring cognitive empathy in our model, then our result, that in conflict games
we expect proper mixing between acquiring empathy and not acquiring it, suggests that,
in conflict games, learning across games as in Mengel (2012) would lead to individuals
properly mixing between different partitions, including the finest as well as the coarsest.
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2 The Model

There are two players, p ∈ {B,R}, “blue” and “red”. Each player p can
have one of a finite number np of possible (payoff) types θp ∈ Θp. There are
commonly known full support probability distributions over types given by
µp : Θp → (0, 1] for both players p ∈ {B,R}. The types of the two players are
then independently drawn from their respective distribution. Every type of
every player has the same finite set of possible actions at her disposal, given
by A = {a1, ..., am}.10 Let ∆(A) denote the set of all probability distributions
over A, let int(∆(A)) denote the set of all such probability distributions
over A with full support, and let bd(∆(A)) denote the set of all probability
distributions that place probability zero on at least one action.11 Payoffs to
player p ∈ {B,R} are then given by the utility function uθp : A × A → R,
where the first argument depicts the action taken by player p and the second
the one taken by her opponent −p. Note that different types have different
utility functions and that utility functions do only depend on the chosen
action pair and not directly on the opponent’s type.

Before players learn their own type, i.e., at the complete ex-ante stage,
each of them can independently and secretly invest a cost of c ≥ 0 in order
to acquire cognitive empathy. This cost is then simply subtracted from the
player’s payoff. A player who acquires empathy then, at the interim stage,
learns not only her own type but also the type of her opponent. These player
types are then called informed. Note, however, that an informed type is not
able to observe her opponent’s choice of empathy acquisition. We further
assume that there is only no empathy or full empathy. When we speak of a
player having partial empathy we mean that this player randomizes between
no and full empathy. A player who does not acquire empathy learns, at the
interim stage, only her own type. The corresponding player types are then

10In principle, one could consider action sets of different cardinality for both players.
The paper, however, focuses on what we call Bayesian conflict games. A crucial feature
of Bayesian conflict games is that its “realized type games” (defined below) have a unique
equilibrium and that equilibrium is in completely mixed strategies. One can verify that
this implies that the two players must have the same number of actions.

11A strategy in int(∆(A)) could also be called a completely mixed strategy or an interior
point of ∆(A). A strategy in bd(∆(A)) could also be called a boundary point of ∆(A).
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called uninformed.
A strategy of player p ∈ {B,R} is then given by a pair

(
ρp, (σθp)θp∈Θp

)
where ρp ∈ [0, 1] is the probability of empathy (or information) acquisition,
and σθ

p : Θ−p ∪ {∅} → ∆(A), the action strategy, is the (mixed) action to
be played by player p of type θp ∈ Θp against any opponent of known type
θ−p ∈ Θ−p, when informed, and of unknown type (which is indicated by the
player receiving the uninformative “signal” ∅), when uninformed.

Our solution concept is Bayesian Nash equilibrium. The paper almost
exclusively focusses on what we call Bayesian conflict games.12 For any pair
of types θB ∈ ΘB and θR ∈ ΘR we define the realized type game as the
complete information game that would result if it were common knowledge
among the two players that they are of exactly these two types. The Bayesian
game is then a Bayesian conflict game if every possible realized type game
has a unique Nash equilibrium and if this Nash equilibrium is in completely
mixed strategies.

3 Results

We first show that for positive costs of empathy acquisition there cannot be
an equilibrium of a Bayesian conflict game in which both players choose to
acquire empathy with probability one.

Proposition 1. Consider a Bayesian conflict game. If costs of empathy
acquisition are positive, then no strategy profile with full empathy, i.e., with
(ρB, ρR) = (1, 1), can be a Bayesian Nash equilibrium. On the contrary, if
costs are zero, there is such a full empathy equilibrium.

Proof of Proposition 1. Suppose a Bayesian conflict game has an equilibrium
with (ρB, ρR) = (1, 1). Then whenever two types θB ∈ ΘB and θR ∈ ΘR

meet, it is common knowledge that this is the case and, as this happens with
positive probability, they must play a Nash equilibrium of the correspond-
ing realized type game. Any realized type game by definition has a unique

12Section 4.1 provides an example of a non-conflict game and Section 4.2 provides a
discussion of empathy acquisition in all 2× 2 games.
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Nash equilibrium and this Nash equilibrium is in completely mixed strate-
gies. Thus, every type of every player is always indifferent between all her
pure actions. Hence, when costs are positive, any player would be better off
not acquiring empathy, thus saving c > 0, and playing any (mixed) action.
Arriving at a contradiction, we therefore have the proof for c > 0. Observe,
however, that this saving opportunity disappears for c = 0 meaning that in
this case the above strategy profile is indeed an equilibrium of the Bayesian
conflict game.

Proposition 1 leaves open the possibility that, as costs of empathy acqui-
sition tend to zero, the equilibrium probability of empathy acquisition tends
to one. To see that this is not true, we turn to the main result of this paper.
It establishes that in any equilibrium of a Bayesian conflict game for any of
the two players the probability of empathy acquisition is bounded away from
one for all sufficiently small positive costs.

In order to state this theorem we require one additional piece of notation.
In a Bayesian conflict game, for any player p ∈ {B,R} of any type θp ∈ Θp

denote by x(θp) ∈ ∆(A) the mixed action strategy that, if played by the
opponent, makes θp indifferent between all actions. One could call x(θp) the
indifference inducing mixed action of type θp. From the assumption of a
Bayesian conflict game it follows that for each type there is a unique such
indifference inducing mixed action. It also follows that x(θp) ∈ int(∆(A)) for
all θp ∈ Θp and p ∈ {B,R}. Furthermore we assume that for every player
p ∈ {B,R} there are two types θp, θ̃p ∈ Θp that are distinct, i.e., such that
x(θp) 6= x(θ̃p).

As we are able to express the bounds on empathy acquisition under small
costs as a function of the parameters of the Bayesian conflict game, a bit
more notation is useful. For any action a ∈ A and any player p ∈ {B,R} let
xa(θp) denote the a-th coordinate of x(θp), i.e., the probability attached to
action a in this type’s indifference inducing mixed action. Furthermore, let
xp,min
a := minθp∈Θp xa(θp) and xp,max

a := maxθp∈Θp xa(θp).

Theorem 1. Consider a Bayesian conflict game. For each cost c > 0 of
empathy acquisition let ρpc (for any player p ∈ {B,R}) denote the probability

13



of empathy acquisition in some Bayesian Nash equilibrium of this Bayesian
conflict game. Then

(i) lim infc→0 ρ
p
c ≥ maxa∈A {x−p,max

a − x−p,min
a } > 0 and

(ii) lim supc→0 ρ
p
c ≤ maxa∈A {1− x−p,min

a } < 1.

In order to prove this theorem we use a result that is of independent interest
as well. It characterizes all Bayesian Nash equilibria of the Bayesian conflict
game with costs of empathy acquisition c = 0.

Proposition 2. A strategy profile
(
ρp, (σθp)θp∈Θp

)
for both p ∈ {B,R} is a

Bayesian Nash equilibrium of a Bayesian conflict game with c = 0 if and
only if

ρpσθ
p(θ−p) + (1− ρp)σθp(∅) = x(θ−p)

for all p ∈ {B,R}, θp ∈ Θp, θ−p ∈ Θ−p.

Proof of Proposition 2. The “if” direction is immediate. If the stated con-
dition is satisfied then every player of every type is completely indifferent
between all actions, regardless of whether this player has or does not have
empathy, and is indifferent between acquiring empathy and not doing so.

To prove the “only if” direction we start by supposing that the strat-
egy profile is a Bayesian Nash equilibrium but does not satisfy the stated
condition and then show that this leads to a contradiction. Suppose, there-
fore, that there is a player p and that there are types θp and θ−p such that
ρpσθ

p(θ−p)+(1−ρp)σθp(∅) 6= x(θ−p). This implies that player −p of type θ−p

when observing that she faces opponent type θp is not indifferent between all
actions. Thus, we must have σθ−p(θp) ∈ bd(∆(A)). We need to distinguish
two cases.

Case 1: Suppose ρ−p = 1. But then player p of type θp, when she knows
she is facing type θ−p, is facing action strategy σθ−p(θp) ∈ bd(∆(A)). This
implies that her best response σθp(θ−p) must also be in bd(∆(A)) as she
cannot be indifferent between all actions. But then σθ

−p(θp) is not best
against σθp(θ−p) as the complete information game with types θp and θ−p

14



only has a completely mixed Nash equilibrium by the fact that the game is
a Bayesian conflict game. A contradiction.

Case 2: Suppose ρ−p < 1. But then, as there is a positive probability
that type θ−p is facing type θp when type θ−p is uninformed she must also
in this case be playing a best response to the behavior of type θp. Other-
wise she would acquire empathy with probability one. Thus, we must have
that ρ−pσθ−p(θp) + (1− ρ−p)σθ−p(∅) must also be in bd(∆(A) and the same
argument as in case 1 applies.

Two additional lemmas are helpful for the proof of Theorem 1. Their
proofs are given in the appendix.

Lemma 1. Let
(
ρp, (σθp)θp∈Θp

)
with p ∈ {B,R} be a Bayesian Nash

equilibrium of a Bayesian conflict game with c = 0. Then ρp ≥
maxa∈A {x−p,max

a − x−p,min
a }.

Lemma 2. Let
(
ρp, (σθp)θp∈Θp

)
with p ∈ {B,R} be a Bayesian Nash equi-

librium of a Bayesian conflict game with c = 0. Suppose that there is a p ∈
{B,R} and that there are types θp and θ−p such that σθp(θ−p) ∈ bd(∆(A)).
Then ρp ≤ maxa∈A {1− x−p,min

a }.

Proof of Theorem 1.i. By Lemma 1 in any Bayesian Nash equilibrium with
c = 0 we have ρp ≥ maxa∈A {x−p,max

a − x−p,min
a }. The result then follows from

the fact that the Nash equilibrium correspondence in the space of games (here
as c varies) is upper hemi-continuous, see e.g., Harsanyi (1973b) or Kohlberg
and Mertens (1986). That maxa∈A {x−p,max

a − x−p,min
a } > 0 follows from the

assumption that there are at least two distinct types for each player.

Proof of Theorem 1.ii. Consider an equilibrium of the Bayesian game with
c greater than but sufficiently close to zero, in which (by Theorem 1.i)
players acquire empathy with positive probability. Then there must be
a type θp of each player p and an opponent type θ−p such that when θp

knows she is facing θ−p she is not indifferent between all actions. Other-
wise she could improve her payoff by not acquiring empathy at all. This
implies that σθp(θ−p) ∈ bd(∆(A)). By the upper hemi-continuity of the

15



Nash equilibrium correspondence (as in the proof of Theorem 1.i) and by
Lemma 2 we have that ρp is less than a number that is arbitrarily close
(as c is close to zero) to maxa∈A {1−minθ−p∈Θ−p xa(θ−p)}. The result then
follows, as we do not know the identity of the relevant player type θ−p.
That maxa∈A {1−minθ−p∈Θ−p xa(θ−p)} < 1 follows from the definition of a
Bayesian conflict game.

4 Discussion

One could give our model at least two interpretations. The first interpretation
is that there are indeed two strategic opponents (a soccer player and goal-
keeper engaged in a penalty kick, two lawyers, two military generals, etc.)
who are involved in a conflict situation and who can acquire information
about their opponent’s ex-ante unknown preferences. Given this interpreta-
tion, we find that in equilibrium these strategic players do not fully acquire
information about their opponent’s preferences, even if the cost of doing so
is vanishingly small.

A second interpretation is that there are many individuals who are often
and randomly engaged in pairwise conflict situations and that nature can
endow these individuals (each individual separately) with cognitive empathy,
i.e., with the ability to understand opponents’ preferences, at some positive
cost (e.g., by providing an additional brain function). Under the assumption
that nature then guides play to an evolutionary stable state, which must be a
Bayesian Nash equilibrium of this game, our results imply that nature endows
some but not all of her subjects with cognitive empathy, even if the costs of
doing so are essentially zero. Similarly, one could appeal to an appropriate
version of the purification argument of Harsanyi (1973a), in which there is
(additional) uncertainty over individuals’ cost of empathy acquisition such
that in equilibrium individuals with costs below some equilibrium threshold
acquire empathy while those with costs above this threshold do not acquire
empathy.

In the following sections we explore the boundaries of our main result.
We Section 4.1 provide an example of a non-conflict game with an equilib-
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rium in which both players acquire cognitive empathy with probability one
even for moderate costs. In Section 4.2 we extend this analysis to consider
all two-player two-action games with ex-ante uncertain preferences and the
possibility of cognitive empathy acquisition. We find that, provided costs
for this are not prohibitive, that players always acquire ordinal empathy.
That is they will learn their opponent’s ordinal preferences. In many cases
they will then not want to learn their opponent’s cardinal preferences, even
if this could be done at almost no cost. Finally, coordination games have
both kinds of equilibria, some with no empathy acquisition and some with
full empathy acquisition. In Section 4.3 we briefly mention other models of
cognitive empathy acquisition one could pursue.

4.1 A Non-Conflict Example

In this subsection we provide, as a point of contrast to our main results, a
non-conflict example.

Example 1. Consider a symmetric setup in which both players p ∈ {B,R}
can have one of three types ΘB = ΘR = {θ1, θ2, θ3} chosen uniformly (i.e.,
µθ = 1

3 for all θ ∈ Θp) for the two players. Both players can choose between
two actions H and T . Type θ1 finds action H strictly dominant, type θ3 finds
action T strictly dominant, and type θ2 has pure coordination preferences.
These payoffs, in matrix form, are given in Figure 1.

H T

uθ1 : H 1 1
T 0 0

H T

uθ2 : H 1 0
T 0 1

H T

uθ3 : H 0 0
T 1 1

Figure 1: Payoffs of the non-conflict game in Example 1

For costs of empathy acquisition sufficiently low (c < 1
9) this game has

no equilibrium in which a player acquires empathy with probability less than
one. Suppose a player (say blue) attaches positive probability to not acquir-
ing empathy. Red makes her choice of action dependent on her own type
with dominant action types playing their dominant actions. Now consider
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the uninformed coordination type of blue. The best she can do is to play
a best response to the given (mixed) action of the coordination type of red.
W.l.o.g. let this best response action be H. The uninformed coordination
type of blue then receives a payoff of zero against the red type with domi-
nant action T . For blue switching to acquiring empathy with probability one
and playing T against the T dominant action type of red is then beneficial
if c < 1

9 .
13

4.2 Learning Ordinal before Cardinal Preferences

Consider the following two-player two-action Bayesian game. The action set
for both players is A = {L,R}. Any player p ∈ {B,R} can have one of finitely
many types, θp ∈ Θp with a full support distribution over these types denoted
by µp. In two-player two-action games (ordinal) preferences must be of one of
four kinds: L-dominant strategy preferences, coordination preferences (this
player wants to match her opponent’s action), mis-coordination preferences
(this player wants to mis-match her opponent’s action), and R-dominant
strategy preferences. Assume that Θp, for both players p, includes at least
two cardinally distinct preferences of each of these four ordinal preference
types.

Assume that each player, before playing the game and before learning her
own payoff, has two stages of empathy acquisition possibilities. First, each
player can simultaneously invest a small cost γ > 0. If a player does invest
this small amount of utility she learns her opponent’s ordinal type fully. That
is, she learns which of the four ordinal preference types her opponent has.
If she does not invest this small amount γ, she learns nothing about her
opponent’s preferences. Each player then learns her own ordinal type fully
regardless of her investment choice at the first stage.

Second, and only if she has acquired this ordinal empathy, each player
simultaneously can invest another small amount c > 0 to learn her opponent’s

13 Suppose individuals choose whether or not to acquire empathy after they learn their
own type. Then the two dominant action types do not acquire empathy, but for c small
enough (c < 1

3 ) coordination types acquire empathy with probability one in any equilib-
rium of this game.
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full cardinal preferences. If she does not pay this amount c she learns nothing
beyond what she learnt in the first stage. Players then learn their own
cardinal preference type and remain ignorant about their opponent’s choices
of empathy acquisition.

The analysis in the previous subsection makes clear that, provided costs
γ are small enough (for a given pair of prior beliefs µB, µR), both players will
acquire ordinal empathy. Each player could turn out to have coordination
preferences in which case she would benefit greatly if she could learn whether
her opponent is one of the two dominant strategy types.

Given this, will these players invest the small second cost c? This depends
on the realized ordinal type match. If any of the two players is known to
have a dominant strategy preference type, neither of the two players benefit
form learning the exact cardinal preferences of their opponent. This only
leaves three cases: they both have coordination preferences, they both have
mis-coordination preferences, or one has coordination and the other mis-
coordination preferences. The last case is the case dealt with in greater
generality in this paper. Let us turn to the other two cases. Note that they
are completely analogous to each other.

We can, thus, focus, on the last case, that both players have (and are
commonly known to have) coordination preferences. Will players want to
learn their opponent’s cardinal preferences at small costs c? It depends.
This subgame has multiple equilibria. There are two equilibria in which both
players simply play the same action regardless of their cardinal preference
types. As this is a coordination game, noone has an incentive to deviate from
this, and as the opponent’s choice of action is independent of her cardinal
preference type, it does not pay to invest c to learn the opponent’s cardinal
preference type. There are, however, other equilibria as well. If at least two
types of a player’s opponent play distinct actions, then, provided costs c are
sufficiently small, this player strictly benefits from learning her opponent’s
cardinal preference type.14

Putting these insights together we note two things. First, for small costs
14Among this class of equilibria is also the utilitarian-efficient one in which both players

choose the action that maximizes the sum of utilities.
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of empathy acquisition, in any equilibrium of the overall Bayesian two-player
two-action game, both players acquire cognitive ordinal empathy (i.e., learn
their opponent’s ordinal preference type). Second, this game has equilibria
(even if costs of empathy acquisition are negligible) in which no-one fully
acquires cognitive cardinal empathy.

This discussion suggests that cognitive empathy (a pre-requisite for a
well-calibrated affective empathy) provides potentially more benefit in co-
ordination problems, problems in which both parties essentially agree what
should be done, than in conflict problems, problems in which both parties
disagree what should be done.

4.3 Other Models of Empathy Acquisition

Another model one could consider is one in which the empathy acquisition
happens after players learn their own types. We conjecture that nothing
much changes in the results in such a model.

If we insist in considering a large set of possible situations, we believe
our model of full or no empathy acquisition is perhaps too simple. A more
appropriate model in this case would be one of “rational (in)attention” as
in the decision theoretic models of Sims (2003, 2006); Matêjka and McKay
(2012, 2015). Adapting these models to our strategic interaction setting could
be done by allowing players to buy signals about their opponent’s preferences
of any precision with costs increasing in the information content of these
signals. Another model would be to allow individuals to acquire multiple
signals of whatever precision, one after the other, about their opponent’s
preferences, before making their final action decision. While we do not think
that the main insight of our paper would change in such a model, especially of
the latter variety, such a model might nevertheless add substantial additional
insights.
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A Additional proofs

A.1 Proof of Lemma 1

Proof. By Proposition 2 we must have ρpσθp(θ−p) + (1− ρp)σθp(∅) = x(θ−p)
for all p ∈ {B,R}, θp ∈ Θp, θ−p ∈ Θ−p.

Let us fix one type θp. To simplify notation let us number the types of
player −p from 1 to K and let yk = σθ

p(θ−p), z = σθ
p(∅), and xk = x(θ−p)

with different k for different θ−p.
To find a lower bound for ρp we need to solve min(yk)K

k=1,z∈∆(A) ρ
p subject

to ρpyk + (1 − ρp)z = xk for all k = 1, ..., K. Note that each equation
ρpyk + (1− ρp)z = xk is really a system of equations, one for each coordinate
(i.e., for each action): ρpyka +(1−ρp)za = xka. We then need to find this lower
bound for all types θp and the maximum of all so found lower bounds is the
desired lower bound.

To solve this problem we can solve this problem for each coordinate (ac-
tion) first. That is, we first solve, for any a ∈ A, min(yk

a)K
k=1,za∈[0,1] ρ

p subject
to ρpyka +(1−ρp)za = xka for all k = 1, ..., K. We need to consider three cases.
Without loss of generality, for the given a ∈ A, let x1

a ≤ x2
a ≤ ... ≤ xKa .

Case 1: Suppose za ≤ x1
a. For the system of equations to hold we need

that y1
a ≤ y2

a ≤ ... ≤ yKa . The most constraining equation is then ρpyKa + (1−
ρp)za = xKa . As yKa ≤ 1 (as yK ∈ ∆(A)) we obtain that ρp ≥ xK

a −za

1−za
. This

bound is decreasing in za and as za is assumed to be less than or equal to x1
a

the lowest ρp consistent with this system of equations is given by xK
a −x1

a

1−x1
a
.

Case 2: Suppose za ≥ xKa . This case is analogous to the previous one and
yields ρp ≥ xK

a −x1
a

xK
a

.
Case 3: Neither of the above two cases, however, turn out to be the

relevant cases for our goal to identify the lowest ρp consistent with the system
of equations. This is achieved, as we now prove, by letting x1

a ≤ za ≤ xKa . As
in case 1 we need that y1

a ≤ y2
a ≤ ... ≤ yKa to satisfy the system of equations.

The ρp-minimizing choices of yka ’s are then to either set y1
a = 0 or to set

yKa = 1. In the first case we obtain that ρp ≥ za−x1
a

za
, in the second case we

obtain ρp ≥ xK
a −za

1−za
. One bound is increasing and the other decreasing in
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za. Thus, the ρp-minimizing choice of za is that which makes both bounds
equal. We, thus, need to solve za−x1

a

za
= xK

a −za

1−za
, which yields za = x1

a

(1−xK
a )+x1

a

and finally, ρp ≥ xKa − x1
a. This bound is lower than those derived in cases 1

and 2, and is, thus the solution to the problem for coordinate (action) a.
As ρp has to be chosen so as to satisfy this system of equations for each

coordinate (action) a, we obtain the result.

A.2 Proof of Lemma 2

Proof. By Proposition 2 we must have ρpσθp(θ−p) + (1− ρp)σθp(∅) = x(θ−p)
for all p ∈ {B,R}, θp ∈ Θp, θ−p ∈ Θ−p.

Consider type θp. To simplify notation, as in the proof of Lemma 1, let us
number the types of player −p from 1 to K and let yk = σθ

p(θ−p), z = σθ
p(∅),

and xk = x(θ−p). The assumption of this Lemma can thus be stated as there
is an action a and some j ∈ {1, ..., K} such that yja = 0. Without loss of
generality let x1

a ≤ x2
a ≤ ... ≤ xKa .

Using this notation we then must have ρpyka + (1 − ρp)za = xka for all
k = 1, ..., K. As yja = 0 we need za > xja. For the system of equations to be
satisfied we then need to have that y1

a ≤ y2
a ≤ ... ≤ yKa . We thus must have

that y1
a = 0. This implies that ρp ≥ za−x1

a

za
and as za−x1

a

za
is increasing in za we

must have ρp ≤ 1− x1
a, which provides the desired result.
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