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Abstract

Inspired by the ride-sharing market in New Zealand, with Uber and Zoomy
offering respectively a fixed price and an estimated price range per ride, we ask our-
selves if competitors in the digital economy could deliberately offer distinct pricing
schemes aimed at serving consumers with different levels of ambiguity tolerance to
gain market shares. Our results suggest that in spite of the realistic asymmetric dis-
tribution of ambiguity-loving versus ambiguity-averse consumers - calibrated with
the distribution of the attitudes toward ambiguity obtained in a suitable preliminary
laboratory experiment - in equilibrium both platforms offering respectively a fixed
price and an estimated price range per ride can coexist in the market: Ambiguity-
loving consumers are attracted toward the price range offers, whereas ambiguity
averse consumers shy away from them.
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1 Introduction

The past decade has seen the rise of ride-sharing platforms in the point-to-point transport
industry. In 2018, the global uptake of ride-sharing services was around 11.8%, which
translates to 858 million riders worldwide (Statista, 2019). The ride-sharing market has
also contributed to the global digital economy, generating a total revenue of USD 153
billion in the same year. The user penetration rate is projected to reach 20% or 1,500
million riders in 2023, raking in an estimated revenue of USD 319 billion.

Ride-sharing platforms are known as digital platforms — two or multisided
markets — that facilitate transactions between riders and drivers. In the ride-sharing
context, consumers or riders could install ride-sharing apps on their phones for free; they
could easily multihome with low switching costs. Through free-to-install apps, consumers
could compare the prices of ride-sharing services across different platforms before request-
ing a ride on their chosen platform in any instance.

As ride-sharing services are relatively homogeneous in nature, pricing becomes
an important factor in the consumers’ decision-making process when they choose between
competing platforms. Platform operators could segment the market by offering different
pricing schemes to appeal to consumers with heterogeneous preferences. Rochet and Tirole
(2003) explored asymmetric pricing between competing platforms to attract users from
different sides of the market, whereas Belleflamme and Peitz (2019) looked into pricing
mechanisms to overcome competitive bottlenecks, when users from one side of the market
(but not the other) could multi-home. Note, however, that the latter is less relevant in
the ride-sharing market, as both riders and drivers could multihome1.

Ambiguity attitudes have been known to influence individual decision-making
under unknown scenarios. Put simply, ambiguity can be defined as uncertainty that
cannot be measured in an objective manner. For instance, a situation in which the
probability distribution of events related to an agent's decision-making process is unknown
could be a source of ambiguity. Faced with ambiguous information about an event, the
decision-maker forms certain beliefs about the probabilities of the outcomes and chooses
the associated action that maximises their expected utility. Based on a decision-maker’s
action, that individual could be categorised as an ambiguity averse, ambiguity neutral or
ambiguity seeking agent in decision theory.

A platform could improve its competitiveness by implementing a pricing scheme
which appeals to consumers with different ambiguity preferences. This strategy is not
new. There is some anecdotal evidence on the exploitation of heterogeneity in consumer
ambiguity attitudes in the marketplace. For instance, it is not uncommon for operators
in the hospitality industry to adopt strategies to cater to ambiguity seeking consumers,
ranging from Expedia's Secret Saver Hotels2 to Air New Zealand's Mystery BreaksTM. For
the latter, the mystery destination is unknown to the consumer at the time of booking
and is revealed to the buyer on the day prior to travelling. Here, the principal (seller)

1In many jurisdictions, drivers are recognised as independent contractors (not employees) of ride-
sharing platforms. While the independent contract classification remains a contentious issue in labour
law, it offers flexibility for drivers to work for multiple platforms simultaneously – a common feature in
the gig economy.

2Currently discontinued.
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capitalises on incomplete information, given that the exact characteristics of the good are
known to the principal, but not fully known to the agent (buyer); this is known as the
informed principal problem. Balestrieri and Izmalkov (2014) explored how buyers could
be price discriminated based on their valuation for the seller’s private information about
the characteristics of the product.

In New Zealand, competing ride-sharing platforms — Uber and Zoomy —
implement different pricing schemes that can attract consumers with varying levels of
ambiguity tolerance. Uber offers upfront pricing for each ride, whereas rival platform
Zoomy offers a price range estimate for the same ride to a consumer. Uber's upfront
pricing provides certainty to the consumer on the final amount they would be charged
for a ride, while Zoomy's price range estimate introduces ambiguity to the consumer's
decision-making process, as the final price of the same ride is not explicitly determined
beforehand.

As part of our research, we recreated the experience of a multihoming consumer
in the New Zealand ride-sharing market. At 3:48pm on the 28th of August, 2019, we
logged onto Uber and Zoomy to check the real-time prices of a ride on either platform
– with a 30-second lapse – from the University of Auckland to Ponsonby Central. We
received a fixed quote of NZD 10.54 from Uber and a price range estimate of NZD 10
– NZD 13 from Zoomy. Our anecdotal evidence suggests that Uber and Zoomy could
be performing market segmentation based on the consumers’ ambiguity attitudes to gain
market share. In this context, a consumer who uses Zoomy's service does not know a
priori the exact price of a ride, as the cost would vary according to factors such as real-
time traffic conditions and the final route taken by the driver for the given trip. Faced
with different pricing schemes, a consumer's ambiguity attitude could influence whether
they choose to accept the service from Uber or Zoomy. Interestingly, Uber may be able to
offer a fixed quote that is close to the maximum price of Zoomy's price range estimate. If
Uber were to exercise this strategy, it could hint at the practise of imposing an ambiguity
premium for each ride, as consumers who opt for Uber are more willing to pay a higher
price for certainty in the final cost of a ride.

Drawing on Savage’s (1954) Subjective Expected Utility (SEU) model, the sure-
thing principle states that uncertainty should not change an agent's choice between two
acts, if that uncertainty does not affect their preference over those two acts. A classic
counterexample of the sure-thing principle is Ellsberg paradox (1961): a person prefers
to bet in situations for which they know specific odds, rather than in situations with
ambiguous odds. Ellsberg demonstrated the violation of sure-thing principle through
the well-known two-colour urn thought experiment, and concluded that individuals may
face situations where they do not obey the usual probability rules as described in the
SEU model. Despite the shortcomings of Savage's SEU model, it could be adapted to
represent the behaviour of ambiguity neutral agents, who act as if they attach subjective
probabilities to the set of possible outcomes.

Other notable examples on utility representations under ambiguity in the lit-
erature include: MaxMin EU model (Gilboa & Schmeidler, 1989), MaxMax EU model
(Gilboa & Schmeidler, 1989) and α-MaxMin EU model (Hurwicz, 1951). MaxMin EU
model could be used to represent ambiguity aversion: the agent places a weight of one
to the minimum expected utility and zero to the maximum expected utility. Under the

4



MaxMin EU model, we have an extremely pessimistic agent, who perceives Nature to be
malevolent and maximises their expected utility from the worst case scenario. Next, we
have the MaxMax EU model which illustrates the behaviour of ambiguity loving indi-
viduals: the agent places a weight of zero to the minimum expected utility and one to
the maximum expected utility. Here, the MaxMax EU model represents the behaviour of
an extremely optimistic agent, who assumes that Nature is benevolent and proceeds to
maximise their expected utility from the best case scenario.

The convex combination of the former two — α-MaxMin EU model — is
based on the Hurwicz Criterion (Hurwicz, 1951). The α-MaxMin EU model allows us to
model an agent who selects the option that maximises their expected utility, based on
the weighted average of the best and worst outcome for any given event. The parameter
α ∈ [0, 1] denotes the relative degree of optimism and pessimism of the agent regarding the
possible outcomes of an event. Our motivation to include the aforementioned models is
supported by Hey, Lotito and Maffioletti (2010), who, in their study, found that relatively
simple models, such as the MaxMin EU model, may offer better predictive power than
more elegant theoretical frameworks in modelling decision-making under ambiguity.

Finally, we draw on Prospect Theory (Kahneman & Tversky, 1979) to model
individual decision-making under pricing-related ambiguity. Specifically, we hypothesise
that reference dependence and loss aversion may distort how an individual respond to
ambiguity. The agent may perceive Uber’s fixed price option as a reference point and
form their decision based on the expected gains or losses with respect to the reference
point, thus justifying Zoomy's pricing mechanism as a strategy to compete more effectively
with Uber, in order to improve Zoomy's position in the ride-sharing market. In addition,
assuming that an agent chooses between competing platforms to minimise the cost of
a ride, the agent’s ambiguity attitude in the loss domain could influence their decision-
making process. In particular, we hypothesise that loss aversion, the over-weighing of
certainty and status quo bias could be relevant to the decision-maker in the ride-sharing
context. In fact, we may be able to draw parallels between decision-making under risk
and ambiguity: an agent could be more ambiguity seeking in the domain of losses.

While many studies3 have explored decision-making under ambiguity, little dis-
cussion has been around how individuals respond to ambiguity in competing pricing
schemes. To the best of our knowledge, we are the first to look at the role of ambiguity
attitudes in user multihoming, as well as competition between ride-sharing platforms. In
our research, we aim to study: (i) how individuals form decisions when they face distinct
pricing schemes from competing ride-sharing platforms; and (ii) whether platforms could
offer distinct pricing schemes to serve consumers with different ambiguity attitudes and
improve their position in the market.

We conduct a laboratory experiment to investigate how ambiguity attitudes
and different types of utility representations affect individual decision-making under am-
biguous pricing information. In particular, our objective is to test our theoretical model
in a laboratory setting, to assess the degree to which our theoretical predictions align with

3Grant, Rich, and Stecher (2019) offer a generalisation of expected utility representations for decision-
making under ambiguity which mirrors ordinal utility functions over commodities. Fabrizi, Lippert, Pan,
and Ryan (2019) provide a theoretical and experimental approach to model collective decision-making in
a voting game among ambiguity averse voters.
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experimental evidence. The experimental data from our study can support firms in opti-
mising their pricing models and improving their competitiveness in the digital economy.
With our study, we could also gain insights on consumer welfare, and how it is affected
by the offering of competing pricing schemes – both fixed price and price range options –
that are offered to prospective consumers before they purchase ride-sharing services.

2 The Model

2.1 Model Setup

We represent our market via a modified Hotelling (1929) model. Suppose we have two
ambiguity neutral platforms – Uber and Zoomy – operating in the same market. For
simplicity, we normalise the mass of consumers in the market to 1. A consumer’s valuation
of a ride from either Zoomy or Uber is the same and equal to V. Each consumer perceives
the price of a Zoomy ride as p̃z ∈ [ p , p ].

We consider the ambiguity attitudes of consumers as locations along the Hotelling
unit line and denote the parameter for the relative degree of optimism and pessimism of
a consumer as α ∈ [0, 1], which is drawn from a continuous distribution f(α). Following
the α-MaxMin EU rule, each consumer places a weight of α on the best case scenario, p
and (1 − α) on the worst case scenario, p . This gives us what each consumer perceives
the price of a Zoomy ride to be, based on their ambiguity tolerance level, such that

p̃z = [ αp̄ + (1− α)p ]

Note that the degenerate cases p̃z = p̄ and p̃z = p correspond to the MaxMin
EU rule (α= 0) and MaxMax EU rule (α= 1) respectively. Since Uber offers a fixed price
pu and Zoomy offers a price range [ p , p ] for the same ride, we place Uber on the right
end of the Hotelling line. This is because Uber’s fixed price offer would attract consumers
who are more ambiguity averse. Following the same logic, we place Zoomy at the left
extreme end, since Zoomy's pricing scheme would appeal to the more ambiguity loving
consumers. We denote α̃ as the ambiguity attitude of the indifferent consumer, as shown
below

0

Zoomy

α̃ 1

Uber

The indifferent consumer will derive the same surplus from accepting a ride
from either Uber or Zoomy. This is given by

V − p̃z = V − pu

Plugging in the perceived price of a Zoomy ride by the indifferent consumer, we
obtain
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V − [ α̃p̄ + (1− α̃)p ] = V − pu

⇒ α̃ =
pu − p

p̄ − p
=
pu − p

4p
(1)

Therefore, the conditional expected price Zoomy can charge consumers is equiv-
alent to the conditional mean of the perceived price of those consumers who would be
accepting a ride with Zoomy, that is those with ambiguity attitudes up to α̃:

E[p̃z|α ≤ α̃] =
1∫ α̃

0
f(α) dα

∫ α̃

0

[ αp̄ + (1− α)p ] f(α) dα (2)

Assumption 1 The consumers’ attitudes toward ambiguity follow a Beta distribution
respectively with probability and cumulative density distributions satisfying

f(α; a = 4, b = 2) = 20αa−1 (1− α)b−1 = 20α3 (1− α)

and

F (α; a = 4, b = 2) = 20

(
α4

4
− α5

5

)

Graphically:
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Figure 1: Beta distributions for the density, f(α; a = 4, b = 2), and cumulative, F (α; a =
4, b = 2), functions of consumers’ attitudes toward ambiguity, α, with 0 ≤ α ≤ 1.

These are plausible distributions of consumers’ attitudes toward ambiguity.
They account for a minority of ambiguity-loving types relative to SEU/Neutral and am-
biguity averse types in any given groups of individuals. This asymmetry closely captures
typical distributions of attitudes toward ambiguity, and it is also consistent with the ob-
served attitudes which were recently elicited in a series of experiments conducted in the
DECIDE Lab at the University of Auckland. One of these experiments was conducted as
a preliminary calibration exercise for this project, and another one as part of a related
project on decision-making under ambiguity.4 From those experiments, it emerged that

4See more on the experimental design used to elicit subjects’ attitudes toward ambiguity in Section
3.2 of this study, and Fabrizi, Lippert, Pan and Ryan (2019) for a related experiment.
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the proportion of ambiguity loving types, characterised by α < 1/2, consistently ranged
between 10% and 20%. Accordingly, the associated cumulative distribution function for
this Beta distribution allows for a minority of ambiguity-loving types, totalling 18.75% of
the entire population, which is well within the empirically observed range.5

Consequently, by using this Beta distribution the conditional expected price
Zoomy can charge consumers can be rewritten as follows

E[p̃z|α ≤ α̃] =
1∫ α̃

0
20α3 (1− α)dα

∫ α̃

0

[ αp̄ + (1− α)p ] 20α3 (1− α) dα (3)

We can next compute the corresponding profits for Zoomy and Uber respec-
tively, and also based on their respective market shares – which are F(α̃) for Zoomy and
1 − F (α̃) for Uber – before solving for their profit-maximising problems, next, to finally
characterise the equilibrium fixed price and price range that would allow both ride-sharing
services to eventually co-exist.

2.2 Analysis

Profit maximisation

Without loss of generality, we normalise the marginal costs of providing a ride
for both Zoomy and Uber to zero.

Zoomy Let us start with deriving Zoomy’s profit, which is obtained by the product of
the conditional expected price Zoomy can charge consumers for a ride and the mass of
consumers served by Zoomy. This leads to

πz = E[p̃z|α ≤ α̃]F (α̃)

By Assumption 1 Zoomy’s profit can be rewritten as follows

πz = 1∫ α̃
0 20α3 (1−α)dα

∫ α̃
0

[ αp̄ + (1− α)p ] 20α3 (1− α) dα
∫ α̃

0
20α3 (1− α)dα

Or, simply:

πz =
∫ α̃

0
[ αp̄ + (1− α)p ] 20α3 (1− α) dα

When solving for this integral, Zoomy’s profit can also be written as:

πz = 20

(
α̃5

5
p̄− α̃6

6
p̄+

α̃4

4
p− 2α̃5

5
p+

α̃6

6
p

)
5It is easy to derive F (α = 1/2; a = 4, b = 2)) =

∫ 1/2

0
20α3 (1− α)dα = 20

[
α4

4 −
α5

5

]1/2
0

= 0.1875.
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Finally, plugging the value of α̃ as per Eq. (1) into this profit, we obtain

πz = 20

( (
pu − p
p̄− p

)5
1

5
p̄−

(
pu − p
p̄− p

)6
1

6
p̄+

(
pu − p
p̄− p

)4
1

4
p−

(
pu − p
p̄− p

)5
2

5
p+

(
pu − p
p̄− p

)6
1

6
p

)
(4)

We will use Eq. (A) to obtain the first order conditions for Zoomy’s profit with
respect to its strategic variables p and p̄, which are part of the conditions needed to derive
the equilibrium in this ride-sharing market.

Uber Before doing so, we also need to determine how Uber’s profit depends on the fixed
price it charges and the mass of consumers it serves, which, in turn, is the result of the
interplay of all prices set in this ride-sharing market.

Uber’s profit function can be easily obtained by the product of the fixed price
Uber offers to each consumer for a ride and the mass of consumers it serves. This leads
to

πu = pu [ 1 − F (α̃) ] (5)

By Assumption 1, we can rewrite Uber’s profit as

πu = pu

(
1−

∫ α̃
0

20α3 (1− α)dα
)

Solving for the integral, this simplifies to

πu = pu
(
1− 5α̃4 + 4α̃5

)
By plugging the value of α̃ as per Eq. (1) into this profit, we obtain

πu = pu

(
1− 5

(
pu − p
p̄− p

)4

+ 4

(
pu − p
p̄− p

)5
)

(6)

Eq. (6) can be used to derive the first order condition for Uber’s profit-
maximisation problem, which together with the other two first order conditions for the
profit-maximisation for Zoomy, and the non-negativity constraints for the respective mar-
ket shares of Zoomy and Uber, provide us with a system of equations the solution to which
characterises the equilibrium pricing in the ride-sharing market.

We summarise those profit-maximisation problems and related conditions in
the table below.
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Zoomy Uber

max
p , p̄

[E[p̃z|α ≤ α̃]F (α̃) ] s.t. α̃ , p , p̄ > 0 max
pu

[ pu ( 1 − F (α̃)] s.t. α̃ , pu > 0

∂πz
∂p

> 0 and ∂πz
∂p̄

> 0 ∂πu
∂pu

> 0

The profit-maximising conditions, when taken together as a system, translate
into the following relationship, which needs to hold for the system to provide a solution
that is compatible with the co-existence of Zoomy and Uber in the ride-sharing market.
This requires the solution to be consistent with p∗ < p∗u < p̄∗.6

1−
(
p∗u − p∗

p̄∗ − p∗

)4

+ 20p∗u

(
1

p̄∗ − p∗

)(
p∗u − p∗

p̄∗ − p∗

)3((p∗u − p∗
p̄∗ − p∗

)
− 1

)
= 0 (7)

As evidenced from Tables 1-3 below, the relationship highlighted by Eq. (7)
gives us infinitely many combinations of p∗, p̄∗ and p∗u consistent with p∗ < p∗u < p̄∗ where
Uber and Zoomy coexist. However, depending for any exogenously set spread between p∗

and p̄∗, the induced cut-off for the ambiguity types accepting a ride from Zoomy decreases
as the absolute level of the prices increases, as Tables 1 and 2 are demonstrating. The
only combinations of p∗ and p̄∗ which consistently guarantee that all ambiguity loving

types are captured by Zoomy, is for Zoomy to set them such that p∗ = 1
5
p̄∗.

p∗u p∗ p̄∗ α̃∗

0.95 0.5 1.5 0.45

1.38 1 2 0.38

1.84 1.5 2.5 0.34

2.31 2 3 0.31

2.79 2.5 3.5 0.29

Table 1: Equilibrium cut-off for ambiguity loving types and associated optimal pricing in
the ride-sharing market for p̄∗ − p∗ = 1

It appears that although there are infinitely many combinations for the prices
Zoomy and Uber could set that are compatible with p∗ < p∗u < p̄∗ and that satisfy Eq. (7),

it is only when p∗ = 1
5
p̄∗ that the equilibrium cut-off for α̃∗ equals 1

2
, which corresponds

with the threshold for ambiguity loving types in the market, which in turn guarantees the
largest proportion of consumers susceptible to be attracted toward Zoomy.

Proposition 1 Under Assumption 1 competing ride-sharing services exploiting heteroge-
neous ambiguity attitudes of consumers, could set their respective prices such that p∗ <

p∗u < p̄∗ and α̃∗ = 1
2
, which always holds for 1

5
p̄∗ = p∗ < p∗u = 1

2
p∗ + 1

2
p̄∗ < p̄∗ = 5p∗.

6For a complete derivation of this condition, see Appendix A.
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p∗u p∗ p̄∗ α̃∗

1.5 0.5 2.5 0.50

1.90 1 3 0.45

2.33 1.5 3.5 0.415

2.77 2 4 0.385

3.23 2.5 4.5 0.365

Table 2: Optimal pricing in the ride-sharing market for p̄∗ − p∗ = 2

p∗u p∗ p̄∗ α̃∗

3 1 5 0.50

4.5 1.5 7.5 0.50

6 2 10 0.50

7.5 2.5 12.5 0.50

9 3 15 0.50

Table 3: Optimal pricing in the ride-sharing market for p∗ = 1
5
p̄∗

Next, we can use Proposition 1 to derive the induced optimal conditional ex-
pected price offered by Zoomy, as follows

E

[
p̃∗z|α ≤ α̃∗ =

1

2

]
=

1∫ 1
2

0
20α3 (1− α)dα

∫ 1
2

0

[ αp̄∗ + (1− α)p∗ ] 20α3 (1− α) dα

Given that whenever α̃∗ = 1
2
, we also have that p̄∗ = 5

3
p∗u and p∗ = 1

3
p∗u, we can

rewrite the optimal conditional expected price offered by Zoomy, as follows

E

[
p̃∗z|α ≤ α̃ =

1

2

]
=

1∫ 1
2

0
20α3 (1− α)dα

∫ 1
2

0

[
5

3
p∗uα +

1

3
p∗u(1− α)

]
20α3 (1− α) dα

This simplifies to

E

[
p̃∗z|α ≤ α̃ =

1

2

]
= p∗u

23

27

Corollary 1 Under Assumption 1, for α̃∗ = 1
2

the optimal prices in the ride-sharing
market lead to p̃∗z ∈

[
1
3
p∗u,

5
3
p∗u
]
, with E

[
p̃∗z|α ≤ α̃∗ = 1

2

]
= p∗u

23
27

.

Corollary 2 Under Assumption 1, for α̃∗ = 1
2

the corresponding market shares of compet-
ing ride-sharing services are respectively equal to F (α̃) = 0.1875 and (1−F (α̃)) = 0.8125.
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We draw on Proposition 1 and Corollaries 1–2 to inform our experimental cal-
ibrations. This is elaborated in Section 3 The Experiment.

Consumer surplus

Using the optimal conditional expected perceived price that Zoomy could charge
the mass of consumers they serve, the aggregate expected consumer surplus for the mass
of consumers served by Zoomy can be computed as follows

CSz = (V − E[p̃∗z|α ≤ α̃∗])F (α̃∗) (8)

Conversely, the consumer surplus for the mass of consumers served by Uber
consists of

CSu = (V − p∗u)(1− F (α̃∗)) (9)

In the market for homogeneous ride-sharing services, fierce competition between
platforms would benefit consumers but not the firms; a platform would undercut their
rival’s pricing, driving profits down to zero. By introducing pricing schemes that would
attract consumers with different ambiguity attitudes, each platform could separate the
market by ambiguity types to maintain their market share at a positive profit. Price
discrimination by ambiguity attitudes provides a channel that allows competing platforms
to coexist in the market and extract rents from consumers to maximise profits. In this
context, Zoomy could attract consumers who are more ambiguity loving by offering a
price range estimate for each ride, whereas Uber would appeal to those who are more
ambiguity averse through their fixed price offer.

Our model offers a glimpse into how ride-sharing platforms could implement
different pricing schemes to compete in the market more effectively. In the era of big data,
the growing adoption of Artificial Intelligence and learning algorithms could enhance price
discrimination strategies. Through repeated data collection, a platform may be able to
fine tune their pricing algorithms to devise prices that appeal to a consumer’s ambiguity
tolerance level, so that the platform could extract more rents from each consumer. In
our static model, we do not preclude the possibility of personalised pricing, which, in its
extreme form, would depict the best case scenario for Zoomy and Uber (and worst case
scenario for consumers), where both platforms could extract all of the consumer surplus
to maximise profits.

3 The Experiment

3.1 Price Calibrations

Based on our model, we calibrated the experimental parameters to assess the validity of
our theoretical predictions. Proposition 1 and Corollaries 1–2 provide us with the unique
relationship between the three strategic variables, p∗, p̄∗ and p∗u, that sustain α̃∗ = 1

2
. As

such, we can readily obtain infinitely many prices that satisfy this relationship. Given
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the multiplicity of equilibria, we calibrated the experimental parameters based on two
criteria: we have chosen what we perceived to be reasonable fares of a ride in the ride-
sharing market; but we have also selected the prices such that the total payoffs to subjects
would meet our research budget constraint.

We selected twenty-one combinations of p, p̄ and pu for our experiment, as
shown in Table 3.1. In the experiment, all subjects are presented with these scenarios,
each characterised by two pricing options: the fixed price option pu and the price range
option [p, p̄]. The realised price, when chosing the price range, is not revealed to the
subjects during the experiment. Subjects are informed about the price that applies to the
computer-chosen round that contributes to their final payoff – be it the fixed price or the
price range, depending on their choice in that round – only at the end of the experiment.

Table 3.1: Experimental calibrations
Scenarios p∗u p∗ p̄∗ E

[
p̃∗z|α ≤ α̃ = 1

2

]
= p∗u

23
27

1 3 1 5 3(23
27

)

2 3.30 1.10 5.50 3.30(23
27

)

3 3.60 1.20 6 3.60(23
27

)

4 3.90 1.30 6.5 3.90(23
27

)

5 4.20 1.40 7 4.20(23
27

)

6 4.50 1.50 7.5 4.50(23
27

)

7 4.80 1.60 8 4.80(23
27

)

8 5.10 1.70 8.5 5.10(23
27

)

9 5.40 1.80 9 5.40(23
27

)

10 5.70 1.90 9.5 5.70(23
27

)

11 6 2 10 6(23
27

)

12 6.30 2.10 10.5 6.30(23
27

)

13 6.60 2.20 11 6.60(23
27

)

14 6.90 2.30 11.5 6.90(23
27

)

15 7.20 2.40 12 7.20(23
27

)

16 7.50 2.50 12.5 7.50(23
27

)

17 7.80 2.60 13 7.80(23
27

)

18 8.10 2.70 13.5 8.10(23
27

)

19 8.40 2.80 14 8.40(23
27

)

20 8.70 2.90 14.5 8.70(23
27

)

21 9 3 15 9(23
27

)

Furthermore, notice that as a result of the unique relationship between the
three strategic variables, the bandwidth of the price range option increases with prices
- this is analogous to the increase in stakes as prices increase. For instance, scenario 1
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involves low-stake options, where the bandwidth of the price range option is also relatively
narrow. On the flip side, scenario 21 depicts high-stake options, as illustrated by the wide
bandwidth of the price range option.

3.2 Experimental Design

Our experiment involves three stages of individual decision-making tasks that were imple-
mented via Zurich Toolbox for Ready-made Economic Experiments (z-Tree). In Stage 1,
we employ a variation of the Ellsberg urn routine to elicit a subject’s ambiguity attitude.
In Stage 2 and 3, we ask subjects to choose between two options: a fixed price and a
price range. In both stages, subjects are presented with different prices which are cali-
brated based on the theoretical predictions of our model. Our design allows us to observe
how subjects choose between the two options as the stakes increase in both stages. In
contrast, the difference between Stage 2 and 3 is the representation of the price range
option. Specifically, the price range option in each round is displayed in its numerical
form in Stage 2, whereas it is presented in a written form in Stage 3. This allows us to as-
sess whether numerical and verbal framing could influence the subjects’ decision-making
process.

We implement a within-subject design to assess the effects of: (i) the size of the
stakes; (ii) the pricing representations on individual decision-making; and (iii) the salience
of fixed price versus price range offers, depending on whether they are presented in dollar
amounts or verbally. A within-subject design allows us to control for heterogeneity in
individual preferences and thus achieve greater statistical power. The details of each
stage are as follows.

In Stage 1, we implement a computerised version of the modified Ellsberg three-
colour urn game à la Cohen, Gilboa, Jaffray, and Schmeidler (2000) with real financial
incentives. Subjects are asked to place three consecutive bets on the colours of a randomly
selected ball from a standard three-colour Ellsberg urn, which is aimed at eliciting each
participant’s ambiguity attitude. Subjects are informed about the composition of the
balls in the urn; of the 90 balls in the urn, 30 are white, and the remainder 60 are either
black or yellow balls. The true composition of the Ellsberg urn is randomly selected by
the computer and not revealed to the subjects. Then, the computer randomly chooses a
ball from the urn with replacement until a white or black ball is chosen. This chosen ball
is not revealed to the subjects until the end of the experiment. Subjects are then invited
to place three bets. There are four options in each bet.

For Bet 1, subjects could choose (i) to bet that the selected ball is white; (ii) to
bet that the selected ball is black; (iii) to be indifferent between betting on either white or
black, and delegating the betting task to the computer, which would choose either white
or black with equal probabilities; or (iv) to not bet at all, thus foregoing the opportunity
to receive a positive payoff from a correct bet. For Bet 2, subjects could choose (i) to
bet that the selected ball is white or yellow; (ii) to bet that the selected ball is black or
yellow; (iii) to be indifferent between betting on either of the former two options, and
delegating the betting task to the computer, which would then select one of the first two
options with equal probabilities; or (iv) to not bet at all, thus foregoing the opportunity
to receive a positive payoff from a correct bet. Bets 1 and 2 are modified versions of the
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Ellsberg three-colour urn experiment, given that they have included the two additional
options (iii) and (iv), where subjects could choose to be indifferent between the first two
options or renounce the opportunity to bet. After Bet 2, subjects would be informed that
the ball selected for Bets 1 and 2 was not yellow and that it was returned to the urn.
Finally, the computer draws another ball, where the colour of the ball is not disclosed to
the subjects until the end of the experiment. Then, subjects are offered the same options
as in Bet 1 and have to select an option for Bet 3.

Subjects receive NZD 2.00 for each correct bet. They do not receive any prize for
making the wrong bet or choosing not to bet. Also, subjects do not receive any feedback
about the outcome of their bets until the end of the experiment; this is implemented to
control for wealth effects.

In Stage 2, subjects choose between binary pricing options for twenty-one sub-
sequent rounds. This design emulates the decision-making process of a multihoming indi-
vidual in the ride-sharing market. Subjects are given an endowment of NZD 15.00 for each
round and are faced with different scenarios, which all have in common the choice they
need to make between two pricing options: (a) a fixed price; and (b) a price range. The op-
tions in each of the twenty-one rounds can be found under Section 3 .1 Price Calibrations .
To address order effects, we shuffle the sequence in which the scenarios are presented to
the subjects for each experimental session. Subjects are required to select one of the two
options presented to them. If a subject were to select the fixed price option, their earnings
for that round would be NZD 15.00 minus the fixed price. On the other hand, if a subject
were to select the price range option, the corresponding charged price would correspond
to its associated optimal conditional expected price as predicted on our theoretical model.
Then, their earnings in that round would be NZD 15.00 minus the associated conditional
expected price for that round. At the end of the experiment, one of the twenty-one rounds
is randomly and independently selected by the computer to count towards the subjects’
final payoff. Subjects are informed about their decision in the selected round and the
realised price for the price range option (if they selected the price range) at the end of
the experiment.

In Stage 3, five scenarios that are drawn from Table 3 are proposed to subjects
to assess the effects of framing on the individual’s decision-making under pricing-related
ambiguity. In particular, we selected scenarios 1, 6, 11, 16 and 21, listed in Table 3.1,
which consist of the fixed price options NZD 3, NZD 4.50, NZD 6, NZD 7.50 and NZD 9,
respectively, so that we could directly compare the subjects’ choices in this stage – when
they are offered price range options in written form – with their decisions in Stage 2, in
which they are presented with numerical alternatives. These five decision-making rounds
also count towards the subjects’ payoffs. In each round, subjects are given an endowment
of NZD 15.00 and they have to choose between two pricing options: (a) a fixed price; and
(b) written description of a price range, expressed as the maximum value of a potential
discount and the corresponding price cap, namely “up to 2/3 cheaper and at most 2/3
more expensive than the fixed price”. Only one of those five scenarios is then selected at
random at the end of Stage 3 to determine subjects’ payoffs in this stage.

At the end of the experiment, subjects receive feedback about their choices in
each stage in the form of an overall summary, with the breakdown of their earnings, stage
by stage, based on which round in each of Stages 2 and 3 were chosen at random for such
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payments. Each subject is paid a show-up fee of NZD 10.00, as well as NZD 2.00 for each
correct bet, for a maximum of NZD 6.00 in Stage 1. In Stage 2, a subject could earn up
to approximately NZD 12, similarly to the maximum amount they could earn in Stage 3.
Overall, the minimum and maximum payments each subject can receive in a session are
NZD 10.00 and approximately NZD 40 respectively.

3.3 Ambiguity Types

Table 3.3: Ambiguity attitudes

Bet 1
White Black Indifferent Do not bet

White or yellow SEU α < 1/2 Inconsistent Inconsistent
Black or yellow α > 1/2 SEU Inconsistent Inconsistent

B
e
t
2

Indifferent Inconsistent Inconsistent SEU or α = 1/2 Inconsistent

Do not bet Inconsistent Inconsistent Inconsistent Inconsistent

Table 3.3 summarises all possible combinations of the eight options for Bet
1 and 2 in Stage 1, and the corresponding ambiguity attitudes that could be revealed
through a subject’s choices. Below we demonstrate how each subject’s choices relate to
their ambiguity attitudes7.

Let us begin with a subject who adheres to the sure-thing principle. The subject
would display either of the two preferences: they would select (i) the “white” option in
Bet 1 and “white or yellow” in Bet 2; or (ii) the “black” option in Bet 1 and “black
or yellow” in Bet 2. The subject’s choices across the two bets align with the sure-thing
principle, because the introduction of uncertainty in the betting options – the opportunity
to bet on the yellow ball with unknown distribution in the urn – has not changed their
preference for white (or black) balls across the two bets. Both preferences are consistent
with the SEU model. We identify subjects who exhibit such preferences as ambiguity
neutral individuals.

However, if a subject were to change the preference ordering for the white
and black balls when they moved from Bet 1 to Bet 2, the subject’s preference could be
represented by the α-MaxMin model. This model allows us to capture ambiguity attitudes
as a continuum from 0 to 1, consistent with the Hurwicz Criterion. For a subject who
chooses the “white” option in Bet 1 and “black or yellow” in Bet 2, their behaviour
suggests a violation of the sure-thing principle: they prefer “white” over “black” in the
first bet but prefer “black or yellow” to “white or yellow” in the second bet. Subjects
who display such preferences are known to be ambiguity averse, which is associated with
the relative degree of pessimism α > 1/2. Conversely, a subject who chooses the “black”
option in Bet 1 and “white or yellow” in the second bet is known to be ambiguity loving,
with the corresponding degree of optimism α < 1/2.

7Bet 3 relates to Bayesian Updating. As it does not relate to the objectives of our study, we shall take
the liberty to skip this segment in our discussion.
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Lastly, for a subject who is indifferent between betting on the white and black
balls, regardless of whether pricing uncertainty is present, their preferences could be
represented by either SEU or α = 1/2. The remaining combinations across the two
bets indicate preference patterns that are inconsistent. As such, we cannot classify the
ambiguity attitudes of subjects who exhibit such behaviour.

3.4 Experimental Data

We conducted a preliminary experiment at the University of Auckland Laboratory for
Business Decision Making (DECIDE) from the 12th to 27th of August 2019 to elicit a
typical distribution of subjects’ attitudes toward ambiguity, for us to then use to cali-
brate our model. We then conducted some initial sessions for our full fledged experiments
using the predictions so obtained and as described in the previous sessions, by repeating
Stages 1–3 with more subjects, recruited starting from January 2020. For all experimental
sessions, we recruited subjects via the Online Recruitment Software for Economic Experi-
ments (ORSEE). Overall, a total of 113 subjects took part across six experimental sessions
in the first wave of our experiment (in 2019). We then continued with our experiment,
by recruiting further subjects to the lab and we are currently still conducting additional
experimental sessions, to complete this project (we will have collected all necessary data
by May 2020). We consistently provide detailed instructions to subjects at the beginning
of each session and at the start of each stage, as described in Section 3.2 Experimental
Design. Each subject’s total earnings is composed of the show-up fee and the payoffs they
had received from Stage 1 and 2.

3.4.1 Descriptive Statistics and Data Analysis

With the data from Stage 1, from the experimental sessions conducted in 2019, we were
able to identify the ambiguity attitudes of 110 out of 113 subjects. For three subjects who
did not bet in Stage 1, we were unable to identify for certain their ambiguity types, given
their inconsistent preferences. Hence, we excluded their observations in our subsequent
analysis.

Based on the subjects’ choices in Stage 1, they are categorised into one of three
groups: either ambiguity averse, Subjective Expected Utility (SEU), or ambiguity loving
individuals. We find that 41.8% of the subjects are ambiguity averse, another 41.8%
display SEU preferences, and the remaining 16.4% are ambiguity loving individuals.

As already discussed, we use this stylised evidence to calibrate our model and
predict behaviour of consumers whose attitudes toward ambiguity is skewed toward am-
biguity aversion.

When repeating our experiment, to include also Stages 2 and 3, and letting
subjects choose between a fixed price and a price range option, the experimental data
inform us as to the average probability of selecting the price range option, relative to the
fixed price option. We can label these incidences of choosing a price range over a fixed price
as “Choices”, which we use as our continuous dependent variable. As the value of this
mean probability approaches 0, subjects are more likely to select the fixed price option.

17



On the other end of the spectrum, subjects are more inclined to select the price range
option as the value of the mean probability approaches 1. When the mean probability
is exactly 0.5, the subjects are indifferent between the two options. Our experiment will
allow us to present our findings for the subject population and three ambiguity types.

TO BE COMPLETED—————–

4 Analysis of Experimental Data

TO BE COMPLETED—————–

5 Limitations and Future Directions

First of all, similar to other attempts to model complex human behaviour, ours require
a number of simplifying assumptions for pragmatic reasons, one of which is to calibrate
the experimental parameters. The price calibrations in the experiment are based on the
theoretical assumptions that the consumers’ ambiguity types in the market follow a Beta
distribution, skewed towards ambiguity-averse types. This is a convenient, yet realistic,
assumption to impose on our model.

Secondly, the statistical power of our data will depend on the number of ob-
servations we will be able to gather from the subject population. In particular, based
on Stage 1 findings, a substantially smaller proportion of our subjects were identified as
ambiguity loving individuals, compared to the other two ambiguity types. This restricts
our ability to infer results from the available data, particularly for the ambiguity loving
subjects, when having an overall population for the second wave of subjects who will
participate in our experiment below a certain threshold (we aim at having at least 100
subjects taking part in the second wave of experimentation – so far, we have collected data
from a little more than 30 subjects and we plan to run extra experimental sessions in the
coming weeks and months, to complement this number to reach a satisfactory sample size
for us to perform our desired econometric analysis of our data).

As an extension of this study, we could direct our attention to the other side of
the ride-sharing platform, by modelling the behaviour of multihoming drivers. This area
is worthy of further exploration, given that in reality, drivers are independent contractors
who could legally work for multiple platforms simultaneously. Moreover, platforms rely
heavily on having a large user base, not solely in the rider side of the market, but also the
driver side to cement their position in the market. Retaining a huge driver pool would
allow the platform to attract more riders to their networks, otherwise known as cross-
side network effects. Similar to market segmentation in the rider side of the platform by
ambiguity types, an operator could replicate this strategy in the driver side of the market,
by separating the drivers according to the same classification to improve the platform's
market share.

Altering our existing theoretical model to accommodate this context could be a

18



worthwhile exercise. This would require some adjustments to the model and also tweaks
with the derivation of consumer surplus. To portray the aforementioned scenario, we could
obtain the expected driver surplus for the mass of drivers served by Zoomy, by taking the
product of the conditional expected price that Zoomy would pay drivers and the mass
of drivers served by Zoomy. Similar logic applies for the analysis of Uber drivers. Aside
from driver surplus, the theoretical predictions of our model should remain the same for
identical distributions of ambiguity types.

The adaptation of the driver scenario to suit the experiment, however, could
lead to less trivial differences in the experimental design and outcome. This is because
our experiment was designed to study individual decision-making in the loss domain.
To emulate the decision of a driver in the ride-sharing market, we have to modify the
experimental design such that it reflects decision-making in the gain domain. In addition,
if we were to draw on Prospect Theory, which posits that losses and gains are valued
differently, this distinction could affect attitudes towards uncertainty. Therefore, results
may vary between the two experiments.

6 Conclusion

We explore individual decision-making under ambiguous pricing information in the ride-
sharing market from a theoretical and experimental approach. To pursue our investi-
gation, we extract the predictions from our model to calibrate the parameters in our
experiment and we also use preliminary experimental data to help us in our modelling
choice related to the distribution of consumers’ attitudes toward ambiguity. In turn, by
introducing explicit ambiguity in the laboratory, we obtain experimental evidence to as-
sess the predictions of our theoretical model, on how ambiguity attitudes and different
types of utility representations over ambiguous outcomes affect individual decision-making
under ambiguity.

Our model tells us that Uber and Zoomy could co-exist in the market, with Uber
serving a higher fraction of the market compared to Zoomy, and that the pricing strategies
adopted by both platforms should be each platform’s best response to their rival’s prices.
On the other hand, our experimental design could still accommodate scenarios in which
subjects randomise their choices between the two pricing options over multiple scenarios,
regardless of their ambiguity types; this may be analogous to user multihoming in the ride-
sharing market. However, on average, we expect subjects to be more likely to select the
fixed price over the price range option when stakes are higher. Moreover, the introduction
of verbal framing for the price range option could counteract the negative effects of an
increase in stakes on the average probability of selecting the price range. And, we expect
these findings to be most pronounced among ambiguity averse subjects.

With our work, we contribute to filling the gap in the study of how individuals
form decisions when they are faced with ambiguity in competing pricing schemes. Further-
more, we add to the literature by analysing the implications of pricing-related ambiguity
on user multihoming, and the subsequent impact of pricing strategies on competition in
the digital economy.
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A Mathematical derivations

Profit maximisation for Zoomy

πz = E[p̃z|α ≤ α̃]F (α̃) s.t. α̃, p, p̄ > 0

πz = 1∫ α̃
0 20α3(1−α)dα

∫ α̃
0

[αp̄+ (1− α)p]20α3(1− α)dα
∫ α̃

0
20α3(1− α)dα

πz =
∫ α̃

0
[αp̄+ (1− α)p]20α3(1− α)dα

πz = 20
∫ α̃

0
[α4p̄− α5p̄+ α3p− 2α4p+ α5p]dα

πz = 20

(
α̃5

5
p̄− α̃6

6
p̄+

α̃4

4
p− 2α̃5

5
p+

α̃6

6
p

)

By substituting α̃ =
pu−p
p̄−p as per Eq. (1) into this profit, we obtain

πz = 20

((
pu − p
p̄− p

)5
1

5
p̄−

(
pu − p
p̄− p

)6
1

6
p̄+
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pu − p
p̄− p

)4
1

4
p−

(
pu − p
p̄− p

)5
2

5
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p̄− p

)6
1

6
p

)

First order conditions

∂πz
∂p̄
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(
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p̄− p
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Profit maximisation for Uber

πu = pu [ 1 − F (α̃) ] s.t. α̃, pu > 0

πu = [1− 20
∫ α̃

0
20α3(1− α)dα]

πu = [1− 5α̃4 + 4α̃5]

Plugging in α̃ =
pu−p
p̄−p as per Eq. (1) into this profit, we obtain

πu = [1− 5
(
pu−p
p̄−p

)4

+ 4
(
pu−p
p̄−p

)5

]

First order condition

∂πu
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)
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1
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)]
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The resulting equilibrium conditions for both Uber and Zoomy to coexist in the market
are as follows

20α̃4

[(
1

p̄− p

)(
−p̄α̃ + p̄α̃2 − p+ 2pα̃− pα̃2

)
+

1

5
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20α̃3
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)
(−1)
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6
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]
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3

(
1
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)
(α̃− 1) > 0

Let W = −p̄α̃ + p̄α̃2 − p+ 2pα̃− pα̃2

Zoomy's first order conditions can be rewritten as
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Plugging in W =
(
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Solving the resulting equilibrium conditions for both Uber and Zoomy to coexist in the
market simultaneously, we obtain

1− α̃4 + 20puα̃
3

(
1

p̄− p

)
(α̃− 1) = 0

B Experiment user interface

Figure 2: Modified Ellsberg three-colour urn game in Stage 1.

23



Figure 3: Example of choices faced by subjects in Stage 2.

Figure 4: Example of choices faced by subjects in Stage 3.
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Figure 5: Display of a subject’s final payoffs at the end of the experiment.
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