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Abstract

We study social learning with a “viral” feature: on a continuous time line,
a group of consumers need to each make a decision of whether to adopt a
product, where awareness of the product is transmitted from adopting con-
sumers to new ones. A consumer bases her action on the time she becomes
aware at as well as her private signal about product quality. We find a unique
equilibrium depicting the product’s life cycle: consumers start with herding
on adoption given high initial belief and being sensitive to signals given low
initial belief, then use mixed strategies which keep beliefs constant, followed
by a period of relying on signals, and finally reject the product once and for
all when beliefs fall below a threshold. For a strategic producer, viral social
learning always emerges as a profit-maximizing choice. As consumers’ prior
belief differs, a viral product campaign has opposite effects on a producer’s
incentive for quality improvement.
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1 Introduction

A successful product launch nowadays is often associated with a “viral” aspect in
marketing – early users of the product make others aware of it via word-of-mouth
communication, emails, and social networking websites such as Facebook, Twitter,
Instagram and Youtube. According to statistics from the Word of Mouth Marketing
Association and TalkTrack1, around 2.4 billion brand-related conversations take place
every day in the US alone, and the average consumer mentions specific brand names
60 times per week in conversations. Given the speed and effectiveness of this peer-
to-peer marketing approach, more and more producers begin to fund activities that
generate more product exposure through consumers’ social networks, for instance
inviting star bloggers to write product reviews.

From the perspective of information aggregation among consumers, a product
that “goes viral” presents a new problem. Different from the conventional setting
that existence of the product is taken as given, a consumer now only perceives the
product after she observe others using it, probably through random meeting within
her social circle. In addition, and perhaps more realistically, non-adoption of the
product does not spread awareness.

These features lead to at least two conceivable differences, in terms of epidemi-
ological dynamics among consumers, from classical social learning models. First,
the time that a consumer becomes aware of the product is endogenous, and the
consumer’s belief on quality hinges on it. Hearing about the product right after
its launch and only after several months of the launch, for example, can generate
very different even opposing beliefs. Second, due to such belief variation, contrasting
behavior – herding on adoption, herding on non-adoption, and being sensitive to
private information – may occur over time but may not persist forever. Therefore a
product is likely to go through a “life cycle” after launch, whose characteristics are
worth investigating. For instance, will a product with high initial belief manage to
maintain the reputation? Conversely, will a product with low initial belief always
remain unpopular? Furthermore, in a bigger picture where quality is endogenously
determined by strategic producers, what can we say about average quality in the
market and how is it affected by the market structure?

In this paper, we propose a first theoretical model that captures the essential
characteristics of viral social learning, and answer these questions by providing an
explicit characterization of equilibrium behavior. Our contribution to the literature is
two-fold. On the demand side, we reveal how information aggregation evolves among
consumers over time, and how it is determined by initial belief and precision of private

1Retrieved from: https://www.crewfire.com/50-peer-to-peer-marketing-statistics/.
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information. Our results explain how a product gains initial attention, accumulates
sales via peer-to-peer communication, gradually loses consumer trust, and finally
dies out. On the supply side, we identify producers’ choices of quality under different
market structures, and point out the welfare-maximizing market structure. Similar
to the traditional Cournot model, a producer’s strategic behavior exhibits a regular
and continuing pattern when its market power increases.

To model viral social learning, we adopt a framework that originally analyzes
biological viruses: the susceptible-infected-recovered model, henceforward referred to
as the SIR model. At time 0 on a continuous time line, a new product with unknown
quality is launched among a small fraction of consumers, who decide whether to adopt
it based on their private information. A consumer’s private information consists of
a noisy quality-dependent signal whose precision is higher than her initial belief or
prior about quality, as in the standard setting of Bayesian social learning. The non-
adopting consumers (the “recovered” or “immune”) make no further move. The
adopting consumers (the “infected”) meet new consumers (the “susceptible”) at the
next time instant and make them aware of the product’s existence; the new consumers
then take into account this information – the time of their awareness – followed by
their private signals, and decide whether to adopt the product. Afterwards, they
enter either the infected or the recovered group, and the dynamic process continues.
The game stops when every consumer has made their decision.

The consumers’ epidemiological dynamics reflect the joint effect of three forces:
precision of her private signal, time of awareness, and decisions by her predecessors.
The signal structure is exogenously given and invariant, while the other two factors
are endogenously determined. Predecessors’ different behavior has different impacts
on beliefs: neither type of herding provides new information on quality, while be-
ing sensitive to signals can be regarded per se as favorable to high quality because
awareness essentially reveals another good signal. As a result, the effect of time on
beliefs is not monotone. Although a good product spreads awareness faster than a
bad one, which seems to suggest that a consumer who becomes aware earlier should
hold a stronger belief that the product is good, it is also plausible that beliefs rise in
time at least for a period when predecessors’ actions rely on signals.

Our first main result, Theorem 1, depicts the counterbalance of these forces and
characterizes the unique equilibrium among consumers. Right after the product
launch, consumers will herd on adoption when their initial belief on quality is high,
and be sensitive to signals when the belief is low. In this period of time, consumers’
interim beliefs – that is, beliefs upon awareness but before private signals realize –
fall in the former case while rise in the latter. When the value of interim beliefs
reach 1

2
, consumers begin a period of using mixed strategies, during which beliefs
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remain unchanged. Afterwards, consumers become sensitive to private signals and
their beliefs fall from 1

2
. Finally, as beliefs drop to a certain level, no new consumer

will choose adoption and the product dies out. The product’s life cycle thus formed
can be readily computed numerically using simulation.

This result contributes to the understanding of social learning from two major
aspects. Qualitatively, it implies that for products with intrinsically uncertain qual-
ity, fads are always transient even if consumers start with high hopes, while products
that are initially not so popular may still enjoy a rising reputation and make con-
siderable sales. Such phenomena are widely observed in real-life markets such as
medicine and personal care, especially in the current information age where “viral”
spread of brand names are prevalent. Quantitatively, the equilibrium dynamics of
consumers’ actions and beliefs can be readily computed using numerical simulation,
in order to generate precise predictions.

Given the methodology for depicting consumers’ equilibrium behavior, we then
turn our focus to the supply side and analyze the producer’s strategic choices. We
first allow the producer to select between a viral product campaign and an advertising
campaign which makes all susceptible consumers aware of the product instantly. In
Proposition 2, we find that the producer will always launch a viral campaign: it can
attract some consumers with a bad signal to adopt the product, while an advertising
campaign only induces consumers to be sensitive to signals at best. Nevertheless, the
producer will usually replace the viral campaign with an advertising one before the
product’s life cycle ends through viral social learning. Since susceptible consumers
decrease at a faster rate for a good product, consumers’ interim belief facing an ad-
vertising campaign drops over time. Hence, the strategic producer will stop the viral
campaign just in time so that the product can still attract the remaining consumers
with a good signal.

Our analysis also provides a definite answer to how viral social learning affects
the producer’s incentive for quality improvement, and hence consumers’ welfare.
Proposition 3 shows that such incentive is determined by consumers’ prior belief.
When the prior is high, consumers start with herding in a viral product campaign,
which results in a lower difference between profits from a good product and a bad
one. Consequently, the longer the viral campaign persists, the less the producer is
willing to improve product quality. Conversely, when the prior is low and consumers
are initially sensitive to signals, a good product earns an increasingly higher profit
than a bad producer over time. The producer then becomes more incentivized for
quality improvement as the viral campaign lasts longer.

The rest of the paper is organized as follows. Section 2 reviews related literature.
Section 3 presents the model. Section 4 characterizes the unique equilibrium among
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consumers. Section 5 analyzes a strategic producer’s choice of product campaign and
quality improvement. Section 6 discusses other extensions of our framework. Section
7 concludes.

2 Literature Review

Early contributions to the literature of social learning by Bayesian agents include
seminal papers by Bikhchandani et al. [1992], Banerjee [1992] and Smith and Sorensen
[2000]. In these works, before an agent makes their own decision, he/she can observe
both a private signal and the entire previous decision history. Herding behavior oc-
curs when the “public” belief from the latter dominates the “private” belief from the
former.

Subsequent research on social learning differs by their way of extending the basic
model. One branch of literature, for instance Lee [1993], Banerjee [1993] and Celen
and Kariv [2004], focuses on more complicated history observation such that agents
may not observe the entire but only an independent subset of the history. A more
recent paper, Acemoglu et al. [2011], can be regarded as a conclusive generalization of
these works. It assumes that each agent observes (some of) their predecessors’ actions
according to a general stochastic process, and finds that when the private signal
structure features unbounded belief, asymptotic learning occurs in each equilibrium
if and only if agents always observe close predecessors. Lobel and Sadler [2015]
adopt this model to analyze the pattern of learning when agents’ observations are
correlated. Other recent research in this area include Banerjee and Fudenberg [2004],
Gale and Kariv [2003], Callander and Horner [2009] and Smith and Sorensen [2013],
which differ from Acemoglu et al. [2011] mainly in relaxing the assumption of known
decision order in observation, i.e. agents only observe the number of others taking
an action but not their positions in the decision sequence. Guarino et al. [2011],
Herrera and Horner [2013] and Monzon and Rapp [2014] consider the case where an
agent does not even know their own position in the decision sequence.

Another branch of literature endogenizes the information acquisition process in
different ways. On one hand, an agent may have access of direct information about
the true state, by paying to acquire an informative signal or to sample an available
option and know its value [Hendricks et al., 2012, Mueller-Frank and Pai, 2014, Ali,
2014, Board and Meyer-ter-Vehn, 2018]; on the the other hand, an agent may choose
from different sources of indirect information by selecting which part of the previous
history to observe [Kultti and Miettinen, 2006, 2007, Celen, 2008, Song, 2016].

Our paper contributes to the literature in two main aspects. First, an agent’s
awareness of decision, or the timing of him/her facing the choice between adoption
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and non-adoption, is endogenously determined via the “viral” nature of the model.
This stands in contrast to the previous literature which assumes that the timing
is exogenously given by a fixed sequence or a stochastic process, and allows us to
capture the understudied feature of observational learning that, when more agents
adopt a product, awareness of the product grows rapidly in time. We are then able
to depict a product’s typical life cycle in the unique equilibrium, the exact pattern
of which differs by the initial belief and exposure.

We base our analysis on the classical susceptible-infectious-recovered (SIR) model,
originated from Ross [1916] and Ross and Hudson [1917a,b] and developed by Ker-
mack and McKendrick [1927, 1932, 1933]. The model was first proposed to simulate
spread of contagious disease, and has been widely applied to study various epidemi-
ological problems, such as disease spread on networks [Newman, 2002], antibiotic
resistance [Laxminarayan and Brown, 2001, McAdams, 2017, McAdams et al., 2019],
and vaccine scares [Bauch and Bhattacharyya, 2012]. Our model provides the first
approach of adopting the SIR methodology in the context of observational learning
by Bayesian agents.

Second, while the social learning literature mainly focuses on the learning behav-
ior among consumers presented with a single product, our model provides a ready
framework to study competition and market structure among producers who seek to
maximize the proportion of consumers adopting their own product. Our approach
relates to algorithmic diffusion models for viral marketing problems [Kempe et al.,
2003, 2005, Mossel and Roch, 2010, Goyal et al., 2011, Borgs et al., 2014], in particular
the ones that analyze competitive contagion (for instance Goyal et al. [2014]). These
works focus on how the network effect – an agent’s choice being directly determined
by the choices of their neighbors – together with the network topology, determine
product adoption rates in equilibrium. In contrast, the economic force underlying
our results is the belief updating dynamics in a Bayesian framework; but similar
to these models, our results offer explicit characterization of an easily computable
equilibrium.

3 Model and preliminary analysis

Summary. A new product is launched at time t = 0. Consumers in a unit-mass
population become aware of the product over time and, when first encountering the
product, decide whether to adopt it. More widespread adoption speeds the viral dif-
fusion process by which product awareness spreads. The time at which a consumer
first encounters the product therefore conveys information about its quality, endoge-
nously determining a time-varying path of consumer adoption, product diffusion,
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and belief formation that we refer to as “viral social learning.” See Figure 1.

Figure 1: Illustration of viral social learning, whereby the dynamics of consumer
beliefs impact the dynamics of product adoption, which in turn impact the epidemi-
ological dynamics of product awareness and new-consumers’ beliefs about product
quality.

Consumer incentive to adopt. Each consumer i encounters a new product at
(random) time ti, at which point she observes the time, receives a private signal si
about the product’s unobservable quality, and decides whether or not to adopt.2 The
product may be “good” or “bad”. Consumers get payoff ug > 0 when adopting a
good product, −ub < 0 when adopting a bad product, or zero when not adopting,
and seek to maximize their own expected payoff. To simplify equations, suppose that
ug = ub so that each consumer strictly prefers to adopt if and only if they believe
that the product’s likelihood of being good exceeds 1/2.

Consumer belief formation. Let α ∈ (0, 1) be the ex ante likelihood that the
product is good, let p(ti) be the probability that the product is good conditional on
encountering the product at time ti, and let p(ti, si) denote its likelihood of being
good conditional on ti and private signal si. We refer to α = p(0) as consumers’
“ex ante belief,” p(ti) as consumer i’s “interim belief,” and p(ti, si) as their “ex post
belief”. Interim beliefs are determined according to Bayes’ Rule, with each consumer

2For the sake of tractability, we assume that consumers must make a once-and-for-all decision
whether to adopt when they first encounter the product. In future work, it would be valuable to
consider a richer context in which consumers can wait before adopting.
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i updating her belief to p(ti) = αf(ti|ω=g)
αf(ti|ω=g)+(1−α)f(ti|ω=b)

or equivalently

p(ti)

1− p(ti)
=

α

1− α
× f(ti|ω = g)

f(ti|ω = b)

where f(ti|ω) denotes the endogenous3 p.d.f. of ti conditional on the true state
ω ∈ {g, b}. Consumers’ private signals are i.i.d. conditional on the state, with
Pr(si = G|ω = g) = Pr(si = B|ω = b) = ρ ∈ (1/2, 1). Given private signal si,
consumer i updates her belief further to p(ti, si), defined by

p(ti, si)

1− p(ti, si)
=

p(ti)

1− p(ti)
× Pr(si|ω = g)

Pr(si|ω = b)

Among consumers who encounter the product at time t (“time-t consumers”), those

who get a good signal (“G consumers”) have updated belief p(t, G) = p(t)ρ
p(ti)ρ+(1−p(ti))(1−ρ)

while those who get a bad signal (“B consumers”) have updated belief p(t, B) =
p(t)(1−ρ)

p(ti)(1−ρ)+(1−p(ti))ρ .

Lemma 1 (Adoption patterns). (i) Herding on adoption: If p(t) > ρ, then all time-t
consumers strictly prefer to adopt. (ii) Herding on non-adoption: If p(t) < 1 − ρ,
then all time-t consumers strictly prefer not to adopt. (iii) Sensitive to signals: If
p(t) ∈ (1−ρ, ρ), then all time-t consumers strictly prefer to adopt after a good private
signal but not after a bad private signal.

Proof. Time-t consumers strictly prefer to adopt if and only if their ex post belief
p(t, si) > 1/2. The desired results follow immediately from the fact that p(t, B) > 1/2
if and only p(t) > ρ and p(t, G) > 1/2 if and only p(t) > 1− ρ.

Viral diffusion. Product awareness spreads through the consumer population
much as a virus spreads through a host population, according to a Susceptible-
Infected-Recovered (SIR) model. At each point in time, each consumer is in one of
three epidemiological states: susceptible, if the consumer has not yet been exposed
to the product; infected, if the consumer previously chose to adopt the product; or
recovered, if the consumer previously chose not to adopt. We assume that mass
∆ > 0 of consumers are exposed to the product at time t = 0 regardless of product
quality. Those who adopt then become infected and spread product awareness vi-
rally, meeting some randomly-selected other consumer at rate β > 0 and exposing

3We will characterize the equilibrium distribution of ti|ω, showing that f(ti|ω) exists and is
continuous in ti at all but finitely-many points.
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that other consumer to the product. If susceptible, that other consumer receives a
private signal and decides whether or not to adopt, at that point transitioning to
either the infected state (if adopting) or the recovered state (if not adopting).

Let Sω(t), Iω(t), and Rω(t) denote the mass of susceptible, infected, and recovered
consumers at time t conditional on the unobserved product-quality state ω ∈ {g, b}.
Since the population has unit mass, Rω(t) = 1 − Sω(t) − Iω(t) and the overall epi-
demiological process is described by (Sω(t), Iω(t) : t ≥ 0, ω = g, b). Let qω(t) denote
time-t consumers’ likelihood of adopting conditional on ω. Epidemiological dynamics
are characterized by the system of differential equations

S ′ω(t) = −βIω(t)Sω(t) (1)

I ′ω(t) = qω(t)βIω(t)Sω(t) (2)

Equation (1) follows from the fact that each infected consumer meets another con-
sumer at rate β > 0 and fraction Sω(t) of others remain suspectible, generating a
state-dependent flow βIω(t)Sω(t) of newly-exposed consumers who are then no longer
susceptible. Equation (2) follows immediately from the fact that fraction qω(t) of
these newly-exposed consumers choose to adopt. Note that epidemiological dynamics
are determined by the adoption process (qω(t) : t ≥ 0, ω = g, b).

Viral social learning. Since the consumer population has unit mass, the flow of
newly-exposed consumers can be interpreted as the density of the time-until-exposure
t, i.e., f(t|ω) = βSω(t)Iω(t). Thus, time-t consumers’ interim belief is given by

p(t)

1− p(t)
=

α

1− α
× Sg(t)Ig(t)

Sb(t)Ib(t)
(3)

Equilibrium. Our solution concept is perfect Bayesian equilibrium (PBE or simply
“equilibrium”). We will show by construction that a PBE exists and that this equi-
librium is essentially unique, in the sense that all PBE generate the same population-
wide epidemiological dynamics (Sω(t), Iω(t), Rω(t) : t ≥ 0;ω ∈ {g, b}).

Discussion: observability of time since launch. We assume that, when consumers
encounter the product, they are able to observe how much time has elapsed since
launch. However, our analysis can be easily extended to a setting in which fraction
γ ∈ [0, 1] of consumers are unable to observe the time. Since all consumers will
eventually be exposed to the product (so long as anyone adopts initially at launch),
a consumer who is unable to observe the time will not make any inference about
product quality and so will decide whether to adopt as if encountering the product
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at launch. The overall likelihood that a consumer exposed at time t > 0 will adopt
in product-quality state ω ∈ {g, b} is therefore q̃ω(t) = γqω(0) + (1− γ)qω(t), where
qω(0) and qω(t) are the likelihoods that consumers who can observe the time will
adopt, respectively, at time t and time 0. The rest of our analysis then carries over,
with more complex formulae but little additional insight.

4 Equilibrium Product Lifecycle

This section characterizes consumers’ equilibrium adoption behavior and the result-
ing epidemiological dynamics. In so doing, we characterize the endogenous lifecycle
of a new product subject to viral social learning. To keep the presentation as sim-
ple as possible, we will focus on the case in which the fraction of consumers who
encounter the product at launch is small, i.e., we will assume that ∆ ≈ 0.4

Figure 2: Visual summary of equilibrium adoption behavior and interim beliefs over
the product lifecycle, depending on the ex ante likelihood α = p(0) of product quality.

4Our analysis and key conclusions (including uniqueness of equilibrium dynamics) extend easily
to any ∆ ∈ (0, 1], but some qualitative features of equilibrium consumer behavior change when ∆
is sufficiently large. For instance, in the case when α ∈ (1 − ρ, 1/2), consumers’ interim beliefs
increase immediately after launch if ∆ ≈ 0 but decrease immediately after launch if ∆ > 1/2.
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Figure 2 illustrates the product’s equilibrium lifecycle in three main cases: when
the product is sufficiently likely to be good that α > ρ (top); when the product is
sufficiently likely to be bad that α < 1− ρ (bottom); and when the product has an
intermediate likelihood of being good so that α ∈ (1− ρ, ρ) (middle). Proposition 1
characterizes consumers’ equilibrium behavior in the first two cases.

Proposition 1. (i) When α > ρ, all consumers adopt the product in equilibrium.
(ii) When α < 1− ρ, no consumers adopt the product in equilibrium.

Proof. When α > ρ, consumers herd on adoption at time t = 0 and, with an equal
mass of “infected” consumers spreading awareness no matter whether the product
is good or bad, later-exposed consumers infer nothing about product quality from
their time of exposure and so also herd on adoption in the unique equilibrium. Since
all consumers eventually encounter the product, all consumers end up adopting. On
the other hand, when α < 1− ρ, consumers herd on non-adoption at time t = 0 and,
with no one “infected” to spread awareness virally, no one else is ever exposed in the
unique equilibrium.

The rest of our analysis focuses on the remaining case in which α ∈ (1 − ρ, ρ),
so that consumers who encounter the product at launch are sensitive to signals.5

Theorem 1 summarizes our main findings, that equilibrium epidemiological dynamics
are uniquely determined and that consumer behavior transitions through (up to) four
distinct phases during the product’s lifecycle. Behavior in Phase I immediately after
launch depends on whether α is greater or less than 1/2 but, no matter what, there
is always a period of partial herding (Phase II), a period in which consumers are
sensitive to signals (Phase III), and a final period with zero adoption (Phase IV,
referred to as “obsolescence”).

Theorem 1. Suppose that α ∈ (1−ρ, ρ) and ∆ ≈ 0. All equilibria generate the same
epidemiological dynamics (Sω(t), Iω(t), Rω(t) : t ≥ 0;ω ∈ {g, b}) and time-path of in-
terim beliefs p(t). Consumers’ post-launch equilibrium behavior transitions through
up to four distinct phases.

5We ignore the boundary cases in which α = ρ and α = 1 − ρ. These cases are more complex
because consumers have multiple best responses at launch, but this extra complexity does not lead
to any additional insight. For example, if α = 1− ρ, consumers exposed at launch will adopt with
some probability a0 ∈ [0, 1] after a good signal but not adopt after a bad signal, resulting in initial
infected mass Ig(0+) = a(0)ρ∆ when the product is good and Ib(0+) = a(0)(1 − ρ)∆ when it is
bad and initial belief p(0+) = 1/2. For any a0, subsequent equilibrium dynamics are then uniquely
determined by similar arguments as used here for the case when α ∈ (1− ρ, ρ).
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Phase I: (i) If α ∈ (1/2, ρ), then consumers herd on adoption and interim
belief p(t) > ρ decreases, until time t1 > 0 is reached at which p(t1) = ρ. (ii)
If α ∈ (1− ρ, 1/2), then consumers are sensitive to signals and p(t) ∈ (1/2, ρ)
increases until time t1 > 0 at which p(t1) = ρ. (iii) If α = 1/2, then p(0+) ≡
limε→0 p(ε) = ρ and Phase I does not occur, i.e., t1 = 0.

Phase II: Consumers partially herd on adoption, adopting always after a good
signal and with probability aB(t) ∈ (0, 1) after a bad signal, where aB(t) is
decreasing in t, until time t2 > t1 is reached at which aB(t2) = 0. Consumers’
interim belief p(t) = ρ for all t ∈ (t1, t2).

Phase III: Consumers are sensitive to signals and interim belief p(t) ∈ (1−ρ, ρ)
is decreasing in t, until time t3 > t2 is reached at which p(t3) = 1− ρ.

Phase IV: Consumers forevermore herd on non-adoption, what we refer to as
“product obsolescence,” and consumers’ interim belief p(t) < 1 − ρ continues
to decrease with limt→∞ p(t) = 0.

The rest of this section provides the proof of Theorem 1 through a series of
lemmas and propositions, characterizing consumers’ equilibrium behavior throughout
the product’s lifecycle, from launch to (endogenous) obsolescence.

4.1 Dynamics of consumer beliefs

Throughout the subsequent analysis, we make repeated use of the following two lem-
mas. Lemma 2 provides an easy-to-check condition to determine whether consumers’
interim beliefs are increasing (p′(t) > 0) or decreasing (p′(t) < 0) over time.

Lemma 2. p(t)
1−p(t) increases exponentially at rate βX(t), where

X(t) = (qg(t)Sg(t)− qb(t)Sb(t))− (Ig(t)− Ib(t)) . (4)

In particular: (i) Suppose that consumers herd on adoption at time t. p′(t) < 0 if
Ig(t) > Ib(t) and Sg(t) < Sb(t). (ii) Suppose that consumers are sensitive to signal
at time t. p′(t) > 0 if and only if the following inequality holds:

ρSg(t)− (1− ρ)Sb(t) > Ig(t)− Ib(t). (SS)

(We refer to this as “Condition SS,” mnemonic for “sensitive to signal”) (iii) Sup-
pose that consumers herd on non-adoption at time t. p′(t) < 0 if Ig(t) > Ib(t).

12



Proof. By equation (3), the likelihood ratio p(t)
1−p(t) = α

1−α ×
Sg(t)Ig(t)

Sb(t)Ib(t)
; so,

dlog
(

p(t)
1−p(t)

)
dt

=
S ′g(t)

Sg(t)
+
I ′g(t)

Ig(t)
− S ′b(t)

Sb(t)
− I ′b(t)

Ib(t)

= β (−Ig(t) + qg(t)Sg(t) + Ib(t)− qb(t)Sb(t))
= βX(t) (5)

where S′ω(t)
Sω(t)

= −βIω(t) and I′ω(t)
Iω(t)

= βqω(t)Sω(t) follow from equations (1-2). We

conclude that p(t)
1−p(t) grows exponentially at rate βX(t) and, in particular, that p′(t) ≷

0 iff X(t) ≷ 0.
Implications (i-iii) follow immediately. (i) When consumers find herd on adoption,

qg(t) = qb(t) = 1 and (4) simplifies to X(t) = (Sg(t) − Sb(t)) − (Ig(t) − Ib(t)),
which is negative whenever Sg(t) < Sb(t) and Ig(t) > Ib(t). (ii) When consumers
are sensitive to signal, qg(t) = ρ and qb(t) = 1 − ρ, and (4) simplifies to X(t) =
(ρSg(t)− (1− ρ)Sb(t))− (Ig(t)− Ib(t)), which is positive exactly when Condition SS
is satisfied. (iii) When consumers herd on non-adoption, qg(t) = qb(t) = 0 and (4)
simplifies to X(t) = −(Ig(t)−Ib(t)), which is negative exactly when Ig(t) > Ib(t).

Lemma 3 provides a useful connection between consumer beliefs and the rates at
which consumers encounter and adopt good versus bad products over time.

Lemma 3. Suppose that p(t) > α for all t ∈
(
0, t̂
)

for some t̂. Then Ig(t) > Ib(t),

I ′g(t) > I ′b(t), Sg(t) < Sb(t), and S ′g(t) < S ′b(t) for all t ∈
(
0, t̂
)
.

Proof. At launch, mass ∆ of consumers are exposed to the product, of whom fraction
qg(t) or qb(t) adopt when the product is good or bad, respectively; so, Sg(0) = Sb(0) =
1−∆, Ig(0) = qg(0)∆, and Ib(0) = qb(0)∆. By Lemma 1, each exposed consumer is
always at least as likely to adopt when the product is good than when it is bad. In
particular, it must be that qg(0) ≥ qb(0), implying that there are at least as many
consumers “infected” at launch when the product is good than when it is bad.

At each time t > 0 when the product is good, mass Ig(t) of infected consumers
each meet another consumer at rate β, and fraction Sg(t) of these meetings result
in a new exposure to the product. This creates a flow βSg(t)Ig(t) = −S ′g(t) of new
exposures to a good product. Similarly, when the product is bad, there is a flow
βSb(t)Ib(t) = −S ′b(t) of new exposures.

Suppose that p(t) > α. Since p(t)
1−p(t) = α

1−α×
Sg(t)Ig(t)

Sb(t)Ib(t)
, it must be that Sg(t)Ig(t)

Sb(t)Ib(t)
> 1

and hence that Sg(t)Ig(t) > Sb(t)Ib(t). Thus, −S ′g(t) > −S ′b(t) whenever p(t) > α.
Since I ′g(t) = −qg(t)S ′g(t), I ′b(t) = −qb(t)S ′b(t), and qg(t) ≥ qb(t), this implies further
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that I ′g(t) > I ′b(t) whenever p(t) > α. We conclude that, if p(t) > α for all t ∈ (0, t̂),

then Sg(t) < Sb(t), Ig(t) > Ib(t), S
′
g(t) < S ′b(t), and I ′g(t) > I ′b(t) for all t ∈ (0, t̂).

4.2 Beginning of product lifecycle (Launch and Phase I)

This section characterizes consumers’ equilibrium behavior at launch (Prop 2) and
after launch until time t1 is reached at which consumers’ interim belief equals ρ
(Props 3-4). We refer to the period of time from launch until t1 as “Phase I”.

Proposition 2. Suppose that α ∈ (1 − ρ, ρ). In any equilibrium, consumers are
sensitive to signals at time t = 0 and consumers exposed immediately after launch
have interim belief p(0+) = αρ

αρ+(1−α)(1−ρ)
> α.

Proof. Because α = p(0) ∈ (1−ρ, ρ), consumers exposed to the product at launch are
sensitive to signals (Lemma 1(iii)). Thus, fraction ρ of the ∆ > 0 mass of consumers
exposed at launch choose to adopt when the product is good, whereas only fraction
1− ρ of these consumers adopt when the product is bad. In particular, at any time
t ≈ 0 shortly after launch, there are more “infected” consumers when the product is
good than when it is bad: Ig(t) ≈ ρ∆ versus Ib(t) ≈ (1 − ρ)∆. On the other hand,
there are approximately the same number of still-unexposed “susceptible” consumers:
Ig(t) ≈ Ig(t) ≈ 1−∆.

Since more consumers adopt good products at launch, others are more likely to
encounter the product shortly after launch when it is good. Consumers exposed
to the product shortly after launch therefore interpret their quick awareness of the
product as good news about its quality. For any time t ≈ 0, consumers exposed to
the product at time t therefore hold interim belief p(t) = αSg(t)Ig(t)

αSg(t)Ig(t)+(1−α)Sb(t)Ib(t)
≈

p(0+) = αρ
αρ+(1−α)(1−ρ)

.

Being quickly exposed to the product is “good news,” causing quickly-exposed
consumers to update upward their beliefs about product quality. Whether this is
enough to prompt such consumers to herd on adoption, however, depends on the
ex ante likelihood α that the product is good. If α > 1/2, then p(0+) > ρ and
consumers will herd on adoption immediately after adoption (Prop 3). On the other
hand, if α < 1/2, then p(0+) ∈ (1/2, ρ) and consumers will continue to be sensitive
to signals immediately after adoption (Prop 4). Finally, if α = 1/2, then p(0+) = ρ
and Phase I does not occur, i.e., t1 = 0.

Proposition 3. Suppose that α ∈ (1/2, ρ). There exists t1 > 0 such that, in any
equilibrium at all times t ∈ (0, t1), consumers herd on adoption and consumers’
interim belief p(t) > ρ is decreasing over time with p(t1) = ρ.
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Proof. Since α > 1/2, a consumer exposed immediately after launch has interim
belief p(0+) > ρ (Prop 2) and so has an incentive to adopt no matter what her
private signal (Lemma 1(i)). So long as consumers continue to herd on adoption
(what we refer to as “Phase I”), the term X(t) in Lemma 2 simplifies to X(t) =
(Sg(t)− Sb(t)) − (Ig(t)− Ib(t)). Because consumers’ interim belief p(t) ≥ ρ during
Phase I and α < ρ, Lemma 3 implies that Ig(t) > Ib(t) and Sg(t) < Sb(t). We
conclude that X(t) < 0 throughout Phase I. Moreover, because all those who are
exposed to the product choose to adopt, the increase in infected consumers during
Phase I equals the decrease in susceptibles, i.e., Sω(0+) − Sω(t) = Iω(t) − Iω(0+)
for ω ∈ {g, b}; so, X(t) is constant and equal to X(0+) throughout Phase I. Finally,
because consumers are sensitive to signal at launch, Sg(0+) = Sb(0+) = 1 − ∆,

Ig(0+) = ρ∆, and Ib(0+) = (1−ρ)∆; so, X(0+) = −∆(2ρ−1). Because
dlog( p(t)

1−p(t))
dt

=

βX(t) by Lemma 2, we conclude that p(t)
1−p(t) decreases exponentially over time so long

as consumers continue herd on adoption. Let t1 be the first time at which consumers’
interim belief equals ρ, given that consumers are sensitive to signal at launch and
herd on adoption at times t ∈ (0, t1).

Proposition 4. Suppose that α ∈ (1− ρ, 1/2) and ∆ ≈ 0. There exists t1 > 0 such
that, in any equilibrium at all times t ∈ (0, t1), consumers are sensitive to signals
and consumers’ interim beliefs p(t) > ρ are increasing over time with p(t1) = ρ.

Proof. Since α ∈ (1 − ρ, 1/2), a consumer exposed immediately after launch has
interim belief p(0+) ∈ (1/2, ρ) (Prop 2) and so has an incentive to be sensitive to
signal, adopting only after a good private signal. Given that consumers are sensitive
to signal, interim belief is increasing while consumers are sensitive to signal so long
as Condition SS is satisfied, i.e., so long as

X(t) = (ρSg(t)− Ig(t))− ((1− ρ)Sb(t)− Ib(t)) > 0. (6)

Recall that, at times t ≈ 0, Sg(t) ≈ Sb(t) ≈ 1−∆, Ig(t) ≈ ρ∆, and Ib(t) ≈ (1− ρ)∆.
Thus, X(t) ≈ (2ρ − 1)(1 − 2∆) ≈ 2ρ − 1 > 0 and interim beliefs are increasing
immediately after launch.

Although interim beliefs are initially increasing, the rate at which p(t)
1−p(t) increases

itself decreases over time. To see why, recall that S ′g(t) = −βIg(t)Sg(t), S ′b(t) =
−βIb(t)Sb(t), I ′g(t) = βρIg(t)Sg(t), and I ′b(t) = β(1− ρ)Ib(t)Sb(t) by equations (1-2);
thus,

X ′(t) = −β (ρSg(t)Ig(t)− (1− ρ)Sb(t)Ib(t)) . (7)

Note that X ′(t) ≥ 0 iff Sg(t)Ig(t)

Sb(t)Ib(t)
≤ 1−ρ

ρ
. By equation (3), that is only possible at times
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when p(t)
1−p(t) ≤

α(1−ρ)
(1−α)ρ

which, since α < 1/2, implies that p(t) < 1 − ρ. We conclude

that, so long as p(t) > 1− ρ and consumers are sensitive to signal, X ′(t) < 0.
Because X ′(t) < 0, consumers’ interim beliefs may begin to decline if consumers

are sensitive to signal for long enough. However, because ∆ is small, this does
not happen for a long time. To see why, note that the total mass of consumers
exposed by any given time t̃ can be made arbitrarily small by beginning with a
sufficiently small initial mass ∆ of consumers exposed at launch. In particular,
for any time t̃ and any small ε > 0, we can find ∆ sufficiently small so that (i)
Sg(t), Sb(t) ∈ (1− ε, 1) for all t < t̃ and (ii) Ig(t), Ib(t) ∈ (0, ε) for all t < t̃, implying
that X(t) > (ρ(1 − ε) − ε) − (1 − ρ − 0) = 2ρ − 1 − ε(1 + ρ) > 0 for all t ∈ (0, t̃).

Recall by Lemma 2 that the likelihood ratio p(t)
1−p(t) rises exponentially at rate βX(t);

so, for small ∆, p(t)
1−p(t) rises exponentially at approximate rate β(2ρ− 1) until a time

t1 is reached at which consumers’ interim belief equals ρ.
We conclude that, in any equilibrium, consumers must be sensitive to signal at

all times t ∈ (0, t1) (since interim belief is in (1/2, ρ) at such times) and must not
continue to be sensitive to signal immediately after t1 (since then interim belief would
rise above ρ, a contradiction). This completes the proof and, in addition, uniquely
characterizes t1 as the first time at which p(t1) = ρ.

4.3 Middle of product lifecycle (Phase II)

This section characterizes equilibrium behavior immediately after time t1. We find
that, for a non-empty interval of time, consumers randomize whether to adopt after
a bad signal, what we call “partial herding.” Over that period of time, consumers’
interim belief remains equal to ρ and the likelihood aB(t) that consumers adopt after
a bad signal declines continuously until, at some time t2, aB(t) = 0 and consumers
become sensitive to signal. We refer to the partial-herding period from t1 until t2 as
“Phase II”.

Proposition 5. Suppose that α ∈ (1 − ρ, ρ) and ∆ ≈ 0. There exists t2 > t1
such that, in any equilibrium at all times t ∈ (t1, t2), consumers partially herd with
probability aB(t) ∈ (0, 1) of adoption after a bad signal and consumers’ interim belief
p(t) = ρ is constant. Moreover, aB(t) is decreasing over time with aB(t2) = 0.

Proof. By construction of the time t1 at which Phase I ends, p(t1) = ρ and consumers
exposed at time t1 are indifferent whether to adopt after a bad private signal. We
begin by showing that, immediately after time t1, consumers’ interim belief cannot
rise above ρ. If it did rise above ρ immediately after time t1, consumers would herd
on adoption. Since p(t) > α for all t ∈ (0, t1), Sg(t1) < Sb(t1) and Ig(t1) > Ib(t1)
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by Lemma 3; thus, Sg(t) − Ig(t) < Sb(t) − Ib(t) and consumers’ interim belief must
decline over time by Lemma 2(i), a contradiction.

Consumers’ interim belief also cannot fall below ρ immediately after time t1.
As discussed in the proof of Prop 4, the assumption here of a small launch (∆ ≈
0) implies that only a small mass of consumers are exposed to the product prior
to Phase II; in particular, Sg(t1), Sb(t1) ∈ (1 − ε, 1) and Ig(t1), Ib(t1) ∈ (0, ε) for
some small ε. Consequently, for all times t shortly after t1, Condition SS holds:
(ρSg(t)− Ig(t))− ((1− ρ)Sb(t)− Ib(t)) ≈ 2ρ− 1 > 0. Were consumers to be sensitive
to signal immediately after time t1, consumers’ interim belief would therefore increase
over time by Lemma 2(ii), a contradiction.

We conclude that, in any equilibrium, consumers’ interim belief must remain
p(t) = ρ for some period of time after t1. Let aB(t) denote the likelihood that
consumers exposed at time t adopt the product after getting a bad signal. We begin
by characterizing aB(t1+) and then show that aB(t) must decline over time after t1.

By equation (3), interim belief p(t) = ρ requires that ρ
1−ρ = αIg(t)Sg(t)

(1−α)Ib(t)Sb(t)
or,

equivalently, Ig(t)Sg(t)

Ib(t)Sb(t)
= (1−α)ρ

α(1−ρ)
. In order for this ratio not to change over time,

the ratio of derivatives (Ig(t)Sg(t))′

(Ib(t)Sb(t))′
must also equal (1−α)ρ

α(1−ρ)
. Taking derivatives, using

equations (1-2), and re-arranging yields

(1− α)ρ

α(1− ρ)
=
I ′g(t)Sg(t) + Ig(t)S

′
g(t)

I ′b(t)Sb(t) + Ib(t)S ′b(t)
=
βIg(t)S

2
g (t)qg(t)− βI2

g (t)Sg(t)

βIb(t)S2
b (t)qb(t)− βI2

b (t)Sb(t)

=
Ig(t)Sg(t)(Sg(t)qg(t)− Ig(t))
Ib(t)Sb(t)(Sb(t)qb(t)− Ib(t))

and so it must be that

Sg(t)qg(t)− Ig(t) = Sb(t)qb(t)− Ib(t). (8)

Given that consumers exposed at time t ∈ (t1, t2) always adopt after a good signal
and adopt with probability aB(t) after a bad signal, the overall likelihood that a
good product is adopted equals qg(t) = ρ+(1−ρ)aB(t); similarly, the likelihood that
a bad product is adopted equals qb(t) = 1− ρ + ρaB(t). Equation (8) can therefore
be re-written as

(ρSg(t)− (1− ρ)Sb(t))− (Ig(t)− Ib(t)) + aB(t) ((1− ρ)Sg(t)− ρSb(t)) = 0 (9)

or, equivalently,

aB(t) =
ρSg(t)− (1− ρ)Sb(t)− (Ig(t)− Ib(t))

ρSb(t)− (1− ρ)Sg(t)
(10)
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The analysis of Section 4.2 uniquely characterizes the time t1 at which Phase II begins
and the initial conditions (Ig(t1), Ib(t1), Sg(t1), Sb(t1)). Now, equation (10) uniquely
determines aB(t1+), consumers’ equilibrium likelihood of adopting after a bad signal
immediately after time t1. Note that, since Ig(t1) > Ib(t1) and Sb(t1) > Sg(t1) (by
Lemma 3), aB(t1+) < 1. Moreover, because Condition SS holds at time t1 (discussed
earlier), the numerator in (10) is positive; so, aB(t1+) > 0.

By Lemma 3, Sb(t) > Sg(t) so long as consumers’ interim beliefs continue to
exceed the initial belief α. Since p(t) > α throughout Phase I and ρ > α, we
conclude that Sb(t) > Sg(t) so long as consumers continue to partially herd, ensuring
that the denominator of (10) remains positive. Consumers therefore continue to
partially herd so long as the numerator remains positive, i.e., so long as Condition
SS continues to be satisfied. Next, note that

a′B(t) =

(ρS ′g(t)− (1− ρ)S ′b(t)− (I ′g(t)− I ′b(t))(ρSb(t)− (1− ρ)Sg(t))
−(ρSg(t)− (1− ρ)Sb(t)− (Ig(t)− Ib(t)))(ρS ′b(t)− (1− ρ)S ′g(t))

(ρSb(t)− (1− ρ)Sg(t))2
.

Rearranging and simplifying the numerator, we have

numerator =(ρ2 − (1− ρ)2)(S ′g(t)Sb(t)− S ′b(t)Sg(t))
− (I ′g(t)− I ′b(t))(ρSb(t)− (1− ρ)Sg(t))

+ (Ig(t)− Ib(t))(ρS ′b(t)− (1− ρ)S ′g(t)).

By (1-2), the second term above can be re-written as

− (I ′g(t)− I ′b(t))(ρSb(t)− (1− ρ)Sg(t))

=− β(Ig(t)Sg(t)(ρ+ (1− ρ)aB(t))− Ib(t)Sb(t)(1− ρ+ ρaB(t)))(ρSb(t)− (1− ρ)Sg(t))

=− βIb(t)(Ig(t)− Ib(t))(ρSb(t)− (1− ρ)Sg(t))

− β(Ig(t)− Ib(t))Sg(t)(ρ+ (1− ρ)aB(t))(ρSb(t)− (1− ρ)Sg(t)) (11)

Similarly, the third term above can be re-written is

(Ig(t)− Ib(t))(ρS ′b(t)− (1− ρ)S ′g(t))

=− β(Ig(t)− Ib(t))(ρIb(t)Sb(t)− (1− ρ)Ig(t)Sg(t))

=− βIb(t)(Ig(t)− Ib(t))(ρSb(t)− (1− ρ)Sg(t))

+ β(Ig(t)− Ib(t))Sg(t)(1− ρ)(Ig(t)− Ib(t)) (12)

We will show that the entire numerator is negative, by showing that the first term
is negative and that the sum of the second term (11) and third term (12) is negative.

18



To that end, recall by Lemma 3 that Ig(t) > Ib(t), I
′
g(t) > I ′b(t), Sg(t) < Sb(t), and

S ′g(t) < S ′b(t) so long as consumers continue to partially herd. The fact that the first
term is negative now follows immediately from (1-2), since S ′g(t)Sb(t)− S ′b(t)Sg(t) =
−βSg(t)Sb(t)(Ig(t)−Ib(t)) < 0. Moreover, ρSb(t) > (1−ρ)Sg(t) because Sb(t) > Sg(t)
and ρ > 1/2; so, the first part of (11) and the first part of (12) are negative. To
show that the sum of (11) and (12) is negative, it therefore suffices to show that
(ρ + (1 − ρ)aB(t))(ρSb(t) − (1 − ρ)Sg(t)) > (1 − ρ)(Ig(t) − Ib(t)). But this follows
immediately from the fact that ρSb(t)− (1− ρ)Sg(t) > Ig(t)− Ib(t) (since Condition
SS remains satisfied) and ρ+ (1− ρ)aB(t) > 1− ρ (since ρ > 1/2 and aB(t) ≥ 0).

Overall, we conclude that aB(t) > 0 but a′B(t) < 0 so long as the numerator
of equation (10) continues to be positive, i.e., so long as Condition SS continues to
be satisfied. Moreover, there is a finite time t2 at which partial herding ceases. To
see why, suppose for the sake of contradiction that consumers were to partially herd
forever. Because all consumers are eventually exposed to the product, limt→∞ Sg(t) =
limt→∞ Sb(t) = 0. On the other hand, because I ′g(t) > I ′b(t) so long as aB(t) > 0,
limt→∞(Ig(t)− Ib(t)) > Ig(t1)− Ig(t1) > 0. All together, then, the numerator of (10)
must eventually become negative, a contradiction.

The time t2 at which Phase II ends is the first time at which ρSg(t)−(1−ρ)Sb(t) =
Ig(t) − Ib(t); at that time, p(t2) = ρ but consumers are sensitive to signal because
aB(t2) = 0.

4.4 End of product lifecycle (Phase III and obsolescence)

This section characterizes equilibrium behavior after time t2. We have two main
findings. First, consumers remain sensitive to signal for a period of time but, even
though newly-exposed consumers are only adopting after a good private signal, con-
sumers’ interim belief falls until a time t3 is reached at which p(t3) = 1− ρ. Second,
consumers herd on non-adoption after time t3, what we refer to as “product obsoles-
cence” and, after obsolescence, interim beliefs continue to decline to zero. We refer to
the sensitive-to-signal period from t2 to t3 as “Phase III” and the obsolescent period
after t3 as “Phase IV”.

Proposition 6. Suppose that α ∈ (1 − ρ, ρ) and ∆ ≈ 0. There exists t3 > t2 such
that, in any equilibrium at all times t ∈ (t2, t3), consumers are sensitive to signal
and consumers’ interim belief p(t) declines over time from p(t2) = ρ to p(t3) = 1−ρ.
Moreover, at time t3, more consumers will have adopted the product if it is good than
if it is bad, i.e., Ig(t3) > Ib(t3).

Proof. For ease of exposition, we divide the proof into three main steps.
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Step 1: After time t2, p(t)
1−p(t) declines exponentially at an increasing rate until time t̃

is reached at which p(t̃) = max{1 − ρ, α}, where α ≡ (1−ρ)α
(1−ρ)α+ρ(1−α)

∈
(

(1−ρ)2

(1−ρ)2+ρ2
, 1

2

)
.

By Lemma 2, p(t)
1−p(t) declines exponentially at rate βX(t). So, it suffices to show that

X(t) < 0 and X ′(t) < 0 at all times t ∈ (t2, t̃), where t̃ is the first time at which
p(t̃) = max{1− ρ, α}.

By the proof of Prop 5: p(t2) = ρ; consumers are sensitive to signal at time t2
(because aB(t2) = 0), and X(t2) = (ρSg(t2)− Ig(t2)) − ((1− ρ)Sb(t2)− Ib(t2)) = 0.
So, it suffices to show that X ′(t) < 0 at all times t ∈ [t2, t̃).

So long as consumers are sensitive to signal, (ρSg(t) − Ig(t))′ = −2βρSg(t)Ig(t)
and (ρSb(t)− Ib(t))′ = −2β(1− ρ)Sb(t)Ib(t) by equations (1-2) and hence

X ′(t) = −2β (ρSg(t)Ig(t)− (1− ρ)Sb(t)Ib(t)) . (13)

We conclude that X ′(t) < 0, causing p(t)
1−p(t) to decline exponentially at an increasing

rate, so long as consumers are sensitive to signal and Sg(t2)Ig(t2)

Sb(t2)Ib(t2)
> 1−ρ

ρ
. By equation

(3), p(t)
1−p(t) = αSg(t2)Ig(t2)

(1−α)Sb(t2)Ib(t2)
; so, Sg(t2)Ig(t2)

Sb(t2)Ib(t2)
> 1−ρ

ρ
if and only if p(t)

1−p(t) >
α(1−ρ)
(1−α)ρ

= α
1−α .

Overall, then, X ′(t) < 0 at times t > t2 so long as (i) p(t) ∈ (1 − ρ, ρ) (so that
consumers continue to be sensitive to signal) and (ii) p(t) > α (so that the expression
in (13) remains negative).

There are two relevant cases. First, suppose that α ∈ (1 − ρ, 1/2]. In this case,
α ≤ 1− ρ and so p(t̃) = 1− ρ, i.e., t̃ = t3. Second, suppose that α ∈ (1/2, ρ) so that
α ∈ (1 − ρ, 1/2). In this more challenging case, α ∈ (1 − ρ, 1/2) and the argument

so far only shows that p(t)
1−p(t) declines until consumers’ interim belief hits α. Step

2 provides the additional arguments needed in this case, to establish further that
consumers’ interim belief continues falling all the way to 1− ρ.

Step 2: After time t̃ in the case when α ∈ (1/2, ρ), p(t)
1−p(t) declines exponentially at an

decreasing rate from time t̃ (described in Step 1) until a time t3 is reached at which
p(t3) = 1− ρ.

We have shown in Step 1 that X(t) < 0 and X ′(t) < 0 when t ≈ t̃+. In other

words, p(t)
1−p(t) declines exponentially at an decreasing rate right after t̃. Suppose that

it does not exhibit the same decreasing pattern until p(t) reaches 1−ρ, during which
time consumers continue to be sensitive to signals. There are now two possibilities:
(1) p(t)

1−p(t) stops decreasing, or increases, before p(t) reaches 1−ρ. In this case, X ′(t) ≥
0 at some finite t; (2) p(t)

1−p(t) keeps decreasing but p(t) never reaches 1−ρ in finite time.
The two possibilities can be unified, in view of Lemma 2, by the existence of some
t′ > 0 (t′ <∞ for possibility (1) and t′ =∞ for possibility (2)) at whichX(t′) = 0, i.e.
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ρSg(t
′)−Ig(t′) = (1−ρ)Sb(t

′)−Ib(t′) for the first time after t2. It means further that
there exists t′′ ∈ (t2, t

′) such that ((ρSg(t
′′)− Ig(t′′))− ((1− ρ)Sb(t

′′)− Ib(t′′)))′ = 0,

i.e. Ig(t′′)Sg(t′′)
Ib(t′′)Sb(t′′)

= 1−ρ
ρ

. As X(t) < 0 for t ∈ (t2, t
′) by assumption, we know that

Ig(t′)Sg(t′)
Ib(t′)Sb(t′)

< 1−ρ
ρ

.
Several equations that follow are quite complex, so we introduce the following

shorthand: a = Sg(t2); b = Sb(t2); c = ρSg(t2)− Ig(t2) = (1− ρ)Sb(t2)− Ib(t2); and
d = −(ρSg(t

′)− Ig(t′)) = −((1− ρ)Sb(t
′)− Ib(t′)).

We know that

c+ d = (ρSg(t2)− Ig(t2))− (ρSg(t
′)− Ig(t′))

=

∫ t′

t2

2βρIg(t)Sg(t)dt = 2(Ig(t
′)− Ig(t2)) = −2ρ(Sg(t

′)− Sg(t2))

=

∫ t′

t2

2β(1− ρ)Ib(t)Sb(t)dt = 2(Ib(t
′)− Ib(t2)) = −2(1− ρ)(Sb(t

′)− Sb(t2)),

which implies that

Ig(t
′)− Ig(t2) = Ib(t

′)− Ib(t2) =
c+ d

2

Sg(t
′)− Sg(t2) = −c+ d

2ρ

Sb(t
′)− Sb(t2) = − c+ d

2(1− ρ)
.

Therefore,

Ig(t
′)Sg(t

′)

Ib(t′)Sb(t′)
=

(Ig(t2) + Ig(t
′)− Ig(t2))(Sg(t2) + Sg(t

′)− Sg(t2))

(Ib(t2) + Ib(t′)− Ib(t2))(Sb(t2) + Sb(t′)− Sb(t2))

=
(a− c+d

2ρ
)((aρ− c) + c+d

2
)

(b− c+d
2(1−ρ))((b(1− ρ)− c) + c+d

2
)

=
a(aρ− c) + c2−d2

4ρ

b(b(1− ρ)− c) + c2−d2
4(1−ρ)

We already know that a(aρ−c)
b(b(1−ρ)−c) = (1−α)ρ

α(1−ρ)
> 1. Hence, no matter whether c2−d2 ≥ 0

or c2− d2 < 0, Ig(t′)Sg(t′)
Ib(t′)Sb(t′)

> 1−ρ
ρ

, a contradiction. This proves that interim beliefs will

keep decreasing until t3 such that q(t3; ∅) = 1− ρ.
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Step 3: At time t3, more consumers will have adopted the product if it is good than
if it is bad, i.e., Ig(t3) > Ib(t3). From the previous analysis, we know the following
claims are true:

(1) Ig(t2) > Ib(t2). It is clear that Ig(0) > Ib(0) initially. Moreover, we know that
αIg(t)Sg(t)

(1−α)Ib(t)Sb(t)
≥ ρ

1−ρ for t ≤ t2, which means that

I ′g(t)

I ′b(t)
≥ Sg(t)Ig(t)

Sb(t)Ib(t)
≥ (1− α)ρ

α(1− ρ)
≥ 1

for t ≤ t2. Therefore Ig(t2) > Ib(t2).
(2) Ig(t3)− Ib(t3) > Ig(t2)− Ib(t2). Since

X(t3) = (ρSg(t3)− Ig(t3))− ((1− ρ)Sb(t3)− Ib(t3))

< X(t2) = (ρSg(t2)− Ig(t2))− ((1− ρ)Sb(t2)− Ib(t2)) = 0,

we can apply the same way as characterizing c+ d to have

(ρSg(t3)− Ig(t3))− ((1− ρ)Sb(t3)− Ib(t3)) < (ρSg(t2)− Ig(t2))− ((1− ρ)Sb(t2)− Ib(t2))

(ρSg(t3)− Ig(t3))− (ρSg(t2)− Ig(t2)) < ((1− ρ)Sb(t3)− Ib(t3))− ((1− ρ)Sb(t2)− Ib(t2))∫ t3

t2

−2βρIg(t)Sg(t)dt <

∫ t3

t2

−2β(1− ρ)Ib(t)Sb(t)dt

Ig(t3)− Ig(t2) > Ib(t3)− Ib(t2).

Therefore Ig(t3)− Ib(t3) > Ig(t2)− Ib(t2).
Combining (1) and (2), we have Ig(t3) > Ib(t3).

Proposition 7. After time t3 in any equilibrium, consumers herd on non-adoption
and p(t) continues to decline with limt→∞ p(t) = 0.

Proof. Step 4: After time t3, p(t)
1−p(t) declines exponentially at a constant rate.

Consider time t3. In any equilibrium, consumers adopt after good signal with
probability aG(t3) ∈ [0, 1] and do not adopt after bad signal. X(t3) therefore takes
the form X(t3) = aG(t3) (ρSg(t3−)− (1− ρ)Sb(t3−))− (Ig(t3−)− Ib(t3−)).

By Step 2, X(t3−) = (ρSg(t3)− (1− ρ)Sb(t3))− (Ig(t3)− Ib(t3)) < 0.By Step 3,
Ig(t3) − Ib(t3) < 0. Together, these observations imply that X(t3) < 0. Therefore
interim belief falls at time t3.

After time t3, consumers herd on non-adoption; soX(t3+) = − (Ig(t3−)− Ib(t3−)),
which is less than zero by Step 3. We conclude that X(t) = X(t3+) for all t > t3,

with the implication that p(t)
1−p(t) declines exponentially at a constant rate.
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After t2, interim beliefs go down with time even though consumers use the most
informative strategy of being sensitive to signals. Hence when q(t; ∅) reaches 1− ρ,
which means that G consumers become indifferent, there will not be a second period
of mixed strategies, but consumers lose interest in the product once and for all.

Given the parameter set (α, ρ, β,∆), the unique equilibrium can be easily simu-
lated by numerical methods. The following figures illustrate how consumer behavior
and interim beliefs evolve over time for different initial beliefs6.

(a) Population of susceptible, infected and re-
covered consumers

(b) Probability of product adoption

(c) Interim beliefs

Figure 3: Simulation results when α ∈ (1
2
, ρ)

6In the simulation, we set (ρ, β,∆) = (0.65, 10, 0.001). α = 0.55 for Figure 1, 0.5 for Figure 2
and 0.45 for Figure 3.
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(a) Population of susceptible, infected and re-
covered consumers

(b) Probability of product adoption

(c) Interim beliefs

Figure 4: Simulation results when α = 1
2
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(a) Population of susceptible, infected and re-
covered consumers

(b) Probability of product adoption

(c) Interim beliefs

Figure 5: Simulation results when α ∈ (1− ρ, 1
2
)

4.5 Special Cases in Equilibrium Characterization

Our analysis so far, which establishes different time cutoffs t1 < t2 < t3, is based on
two assumptions: (1) a sufficiently small ∆, and (2) ρSg(t1)−Ig(t1) > (1−ρ)Sb(t1)−
Ib(t1). In this subsection, we illustrate the unique consumer equilibrium assuming
violation of either assumption.

As it turns out, the two conditions are inter-connected: when ∆ increases from
infinitesimal, it must cause ρSg(t) − Ig(t) < (1 − ρ)Sb(t) − Ib(t) to occur when
q(t; ∅) = ρ (if α ∈ [1

2
, ρ)) or before q(t; ∅) = ρ (if α ∈ (1− ρ, 1

2
)), before ∆ reaches its

maximum possible value 1. Alternatively, violation of (2) above may also occur if α
is very close to ρ, which makes both Sg(t) and Sb(t) relatively small when q(t; ∅) = ρ.

On one hand, the equilibrium now is characterized by only two cutoffs as mixed
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strategies on [t1, t2] in Theorem 1 have vanished. On the other hand, consumers’ be-
havior around the first cutoff differs by α. When α ∈ (1

2
, ρ), it means that consumers

start being sensitive to signals immediately after their interim beliefs reach ρ; when
α = 1

2
, it means that consumers start being sensitive to signals immediately after

t = 0; when α ∈ (1− ρ, 1
2
), it means that consumers start being sensitive to signals

as soon as ρSg(t)− Ig(t) < (1− ρ)Sb(t)− Ib(t), which is before interim beliefs reach
ρ. The following figures illustrate these three cases7.

7In the simulation, α = 0.55 for Figure 4, 0.5 for Figure 5 and 0.45 for Figure 6. We set
(ρ, β,∆) = (0.65, 10, 0.6) for Figures 4 and 5, and (ρ, β,∆) = (0.65, 10, 0.3) for Figure 6. The
difference in ∆ is because a larger ∆ is needed for consumers to start with being sensitive to
signals when α = 0.5, but the same ∆ would have made Figures 5 and 6 identical. Hence we
picked a smaller ∆ when α ∈ (1− ρ, 12 ) to show that q(t; ∅) may still increase initially even though
ρSg(t1)− Ig(t1) < (1− ρ)Sb(t1)− Ib(t1).
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(a) Population of susceptible, infected and re-
covered consumers

(b) Probability of product adoption

(c) Interim beliefs

Figure 6: Simulation results when α ∈ (1
2
, ρ)
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(a) Population of susceptible, infected and re-
covered consumers

(b) Probability of product adoption

(c) Interim beliefs

Figure 7: Simulation results when α = 1
2
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(a) Population of susceptible, infected and re-
covered consumers

(b) Probability of product adoption

(c) Interim beliefs

Figure 8: Simulation results when α ∈ (1− ρ, 1
2
)

4.6 General Cases in Equilibrium Characterization

So far we have assumed that P =
ū+

¯
u

2
, but our results can be easily generalized to

cases with an arbitrary P ∈ (
¯
u, ū). The key to extending the analysis is to determine

(1) an upper bound of prior belief ᾱ, above which herding on adoption always occurs;
(2) a lower bound of prior belief

¯
α, below which herding on non-adoption always

occurs; (3) a cutoff of prior belief α̂, at which B consumers always mix when t ≈ 0.
Analogous to our characterization for the range of α when P =

ū+
¯
u

2
, ᾱ,

¯
α and α̂
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must satisfy the following conditions:

ᾱ(1− ρ)

ᾱ(1− ρ) + (1− ᾱ)ρ
ū+

(1− ᾱ)ρ

ᾱ(1− ρ) + (1− ᾱ)ρ¯
u = P

¯
αρ

¯
αρ+ (1−

¯
α)(1− ρ)

ū+
(1−

¯
α)(1− ρ)

¯
αρ+ (1−

¯
α)(1− ρ)¯

u = P

α̂ū+ (1− α̂)
¯
u = P,

which implies that

ᾱ =
ρ(P −

¯
u)

(1− ρ)(ū− P ) + ρ(P −
¯
u)

¯
α =

(1− ρ)(P −
¯
u)

ρ(ū− P ) + (1− ρ)(P −
¯
u)

α̂ =
P −

¯
u

ū−
¯
u
.

Respectively, the conditions characterizing t1, t2 and t3, become

q(t1; ∅) = ᾱ

ρSg(t2)− Ig(t2) = (1− ρ)Sb(t2)− Ib(t2)

q(t3; ∅) =
¯
α.

Note that the second condition has not changed because the prior belief does not
play a role in determining the mixing probability of B consumers to keep the current
belief constant.

Therefore, Theorem 1 can be generalized as follows.

Corollary 1. Suppose that P ∈ (
¯
u, ū) and α ∈ (

(1−ρ)(P−
¯
u)

ρ(ū−P )+(1−ρ)(P−
¯
u)
,

ρ(P−
¯
u)

(1−ρ)(ū−P )+ρ(P−
¯
u)

).

The equilibrium is generically unique: at t = 0, consumers are sensitive to signals.
Afterwards, there exist time cutoffs t1, t2, t3 such that:

1. For all t ∈ (0, t1): when α ∈ (
P−

¯
u

ū−
¯
u
,

ρ(P−
¯
u)

(1−ρ)(ū−P )+ρ(P−
¯
u)

), consumers herd

on adoption; when α ∈ (
(1−ρ)(P−

¯
u)

ρ(ū−P )+(1−ρ)(P−
¯
u)
,
P−

¯
u

ū−
¯
u

), consumers are sensitive to

signals; t1 is characterized by q(t1; ∅) =
ρ(P−

¯
u)

(1−ρ)(ū−P )+ρ(P−
¯
u)

. At t = t1 > 0, G

consumers always adopt while B consumers adopt with an arbitrary probability.
When α =

P−
¯
u

ū−
¯
u

, t1 = 0.
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2. For all t ∈ (t1, t2): G consumers always adopt while B consumers adopt with

probability x(t) = ρSg(t)−(1−ρ)Sb(t)−(Ig(t)−Ib(t))

ρSb(t)−(1−ρ)Sg(t)
; t2 is characterized by ρSg(t2) −

Ig(t2) = (1 − ρ)Sb(t2) − Ib(t2). At t = t2, G consumers always adopt while B
consumers adopt with an arbitrary probability.

3. For all t ∈ (t2, t3): consumers are sensitive to signals; t3 is characterized by

q(t3; ∅) =
(1−ρ)(P−

¯
u)

ρ(ū−P )+(1−ρ)(P−
¯
u)

. At t = t3, G consumers adopt with an arbitrary

probability while B consumers never adopt.

4. For all t > t3, consumers herd on non-adoption.

5 Learning Dynamics with Strategic Producer

As we have fully characterized the consumers’ equilibrium behavior under viral social
learning, a natural and important question is how the availability of a viral campaign
affects the supply side. We answer this question from two distinct but relate perspec-
tives. In Section 5.1, we examine whether viral social learning will indeed emerge
as the result of a strategic choice. By allowing the producer to select from viral
and advertising campaigns, we show that it will always carry out a viral one with
positive length at optimum. In Section 5.2, we focus on how viral social learning
can impact quality. We show that a viral campaign works in opposite directions,
with high and low prior beliefs respectively, in affecting the producer’s incentive for
quality improvement.

5.1 Viral versus Advertising Campaign

Nature draws the producer’s type ω ∈ {g, b} according to distribution (α, 1 − α)
where α ∈ (1− ρ, ρ). The producer knows ω privately, and α is common knowledge.
The producer then chooses a time t∗ ∈ R+. t∗ is a time cutoff before which the
producer runs a viral campaign and after which it runs an advertising campaign, i.e.
make all currently susceptible consumers aware of the product. Upon awareness at
t∗, consumers choose once and for all whether to adopt the product. Without loss of
generality, the product’s price P ∈ (

¯
u, ū) is fixed at

ū+
¯
u

2
over time.

Note that the only possible producer equilibrium is pooling, i.e. the two types
choose the same t∗ (or the same support of t∗, in the case of a mixed-strategy equi-
librium). Otherwise, a producer with bad quality always has incentives to mimic one
with good quality.
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We assume a sufficiently small ∆ to focus on generic cases. The following result
characterizes the producer’s optimal choice of campaign. As there may be a plethora
of Bayesian Nash equilibria depending on how off-path beliefs are defined, we focus
on equilibria that maximizes the producer’s (ex ante) expected profit, calculated by
π(t∗) = απg(t

∗) + (1 − α)πb(t
∗), where πω(t∗) is the profit of producer with quality

ω ∈ {g, b}.

Proposition 8. Suppose that consumers adopt when indifferent. An equilibrium t∗

exists and is always positive. When the producer has a lexicographic preference, i.e.
it always prefers a higher profit while prefers earning the same profit earlier, t∗ is
generically unique8.

Proof. Given the producer’s choice of t∗, consumers start with prior α on ω = g, and
update at time t∗ facing an advertising campaign using the Bayes’ rule, i.e. their
ratio of interim beliefs is equal to αSg(t)

(1−α)Sb(t)
.

Maintaining our previous notations, let t1, t2 and t3 denote the equilibrium time
cutoffs in Theorem 1. We know that

(
αSg(t)

(1− α)Sb(t)
)′ =

(−Ig(t) + Ib(t))αSg(t)

(1− α)Sb(t)
< 0

for all t such that Sg(t), Sb(t) > 0. Therefore, there is a unique t∗∗ ∈ (0, t3] such that
αSg(t)

(1−α)Sb(t)
≥ 1−ρ

ρ
if and only if t ≤ t∗∗. When α ∈ (1

2
, ρ), αSg(t)

(1−α)Sb(t)
= ρIb(t)

(1−ρ)Ig(t)
> 1 at

t = t1; when α ∈ (1− ρ, 1
2
), in the proof of Theorem 1 we have shown that when ∆

is sufficiently small, Sg(t1)

Sb(t1)
is still close to 1. Hence, we can conclude that t∗∗ > t1.

It is clear that π(t) is strictly increasing on [t1,min{t∗∗, t2}] and a constant on
(max{t∗∗, t2},∞). When t∗∗ ≥ t2, π(t) is the same on [t2, t

∗∗], and π(t) < π(t∗∗)
for all t > t∗∗. Thus arg maxt π(t) = [t2, t

∗∗]. When t∗∗ < t2, arg maxt π(t) = {t∗∗}
([t3,∞), {t∗∗} ∪ [t3,∞)) if π(t∗∗) > (<,=)π(t3).

In particular, suppose that α ∈ [1
2
, ρ). At t∗∗, we have αSg(t∗∗)

(1−α)Sb(t∗∗)
= (1−ρ)

ρ
, which

implies that Sg(t
∗∗) ≤ 1−ρ

ρ
Sb(t

∗∗). Hence ρSg(t
∗∗) − (1 − ρ)Sb(t

∗∗) ≤ 0 < Ig(t
∗∗) −

8Alternatively, one can think of the producer having a small discount rate. t∗ will still be unique
for almost every parameter configuration, but multiple equilibria – more than one pure strategy
equilibrium, or coexistence of pure and mixed strategy equilibria – might occur in very special cases.
For instance, when t∗∗ ≥ t2, a producer might be indifferent between stopping the viral campaign
shortly before t2 and exactly at t2. The reason is that aB(t), the probability that a consumer with
a bad signal adopting the product at t ∈ [t1, t2], which marks the marginal benefit of continuing
the viral campaign, is continuous in t and equals 0 at t = t2. Of course, when the discount rate
goes to zero, the possible multiple equilibria converge to a unique one after all.
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Ib(t
∗∗), from which we can conclude that t∗∗ > t2 by Theorem 1. In other words, the

equilibrium t∗ takes an arbitrary value on [t2, t
∗∗].

When the producer has a lexicographic preference, the equilibrium t∗ is equal to
t2 when t∗∗ ≥ t2, and is equal to either t∗∗ or t3 when t∗∗ < t2. When α ∈ [1

2
, ρ), t∗

is equal to t2.

While consumers are always sensitive to signals in an instant advertising cam-
paign, a fraction of B consumers in a viral campaign adopt with positive probability.
Therefore running a viral campaign for at least some time is beneficial for both types
of producers per se. However, a strategic producer will not always continue the viral
campaign until adoption ceases.

Consider a viral campaign that stops at time t and a consumer who becomes aware
of the product via a subsequent advertising campaign. She updates her belief about
quality based on the fact that she has not heard about the product previously. Note
that this updating is different from that of becoming aware via the viral campaign
at approximately t, which is conditional on hearing about the product at the very
instant in the viral social learning process. As the measure of susceptible consumers
decreases faster for a good product than a bad one, the longer the producer runs
the viral campaign, the lower consumers’ interim belief is under the advertising
campaign. Hence, unless the viral campaign is so profitable that it is worthwhile to
give up all other possible revenue, the producer will choose a stopping time at which
consumers are still sensitive to signals afterwards.

Figure 9 below illustrates a typical case for both high and low initial beliefs. The
producer’s profit consists of two parts: profit from the viral campaign, and profit
from the advertising campaign. The first part is increasing in t until t3 regardless of
quality. The second part is equal to ρSg(t) + (1 − ρ)Sb(t) for a good product and
(1 − ρ)Sg(t) + ρSb(t) for a bad product, if t ≤ t∗∗ and 0 otherwise; this is because
the consumers who become exposed after t∗∗ from an advertising campaign will form
an interim belief of < 1 − ρ, making the advertising campaign obsolete. Hence the
graph drops suddenly at t∗∗ because the producer loses the profit from advertising
campaign if the viral campaign lasts for longer than t∗∗. As a result, the producer’s
expected profit is maximized when the viral campaign stops between t2 and t∗∗.
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(a) α ∈ ( 1
2 , ρ) (b) α ∈ (1− ρ, 12 )

Figure 9: Producer’s expected profit, as a function of viral campaign’s stopping time

5.2 Quality Improvement

Now we further allow the producer to choose its quality at the beginning of the
game, on top of selecting the length of a viral campaign. In particular, the producer
starts with bad quality and has a private cost c ∈ [0, c̄], with which it can upgrade
the product to be of good quality. The prior distribution of c, denoted F (c), is
continuous and strictly increasing in c and is common knowledge.

A market equilibrium in this environment is defined as follows: (1) the producer
chooses good quality if and only if c ≤ c∗ for some c∗ ∈ [0, c̄]; (2) the consumers’
prior belief upon being aware is α∗ = F (c∗); (3) the producer, regardless of quality,
runs a viral campaign whose length is determined by Proposition 8.

Suppose that no viral campaign takes place, which means that the product is
advertised at t = 0. We assume that the market equilibrium in this benchmark case
induces a prior belief on quality that lies on (1− ρ, ρ). That is, the cost distribution
F and the difference in producer’s profit by quality when all consumers are sensitive
to signals, 2ρ− 1, are such that F (2ρ− 1) ∈ (1− ρ, ρ). Let α̂ = F (2ρ− 1).

Proposition 9. Suppose that α̂ ∈ [1
2
, ρ). A market equilibrium always exists, and in

every market equilibrium, α∗ ≤ α̂. The inequality is strict if α̂ > 1
2
.

Proof. Consider a prior belief α ∈ [1
2
, ρ). We have shown in Proposition 8 that

t∗ ≤ t∗∗. The difference between the profits of a good and a bad producer is then
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Ig(t
∗) + ρSg(t

∗)− (Ib(t
∗) + (1− ρ)Sb(t

∗)). Consider

I ′g(t) + ρS ′g(t)− (I ′b(t) + (1− ρ)S ′b(t))

=(ρ+ (1− ρ)z(t)− ρ)Ig(t)Sg(t)− (1− ρ+ ρz(t)− (1− ρ))Ib(t)Sb(t)

=z(t)((1− ρ)Ig(t)Sg(t)− ρIb(t)Sb(t)),

where z(t) = pg(t)−ρ
1−ρ = pb(t)−(1−ρ)

ρ
is a consumer’s probability of adoption given a bad

signal.
We already know that Ig(t)Sg(t)

Ib(t)Sb(t)
starts from Ig(0)Sg(0)

Ib(0)Sb(0)
= ρ

1−ρ for every α on the

interval (1− ρ, ρ). When α ∈ (1
2
, ρ), Ig(t)Sg(t)

Ib(t)Sb(t)
decreases on [0, t1) and stays constant

on [t1, t2]. In addition, z(t) = 0 for t ≥ t2. Hence, the above difference between
profits is strictly decreasing on [0,min{t2, t∗∗}] and constant on [t2, t

∗∗]. Similarly,
when α = 1

2
, the difference is constant on [0, t∗∗].

Now consider the difference as a function of α, denoted G(α). In every market
equilibrium, α∗ must be characterized by G(α∗) = F−1(α∗). We know that G(α)
is continuous on [1

2
, ρ), G(1

2
) = 2ρ − 1 and that G(α) < 2ρ − 1 on (1

2
, ρ). On the

other hand, F−1(α) is strictly increasing in α, and α̂ ≥ 1
2

implies that F−1(1
2
) ≤

2ρ − 1 = F−1(α̂) and that G(α̂) ≤ 2ρ − 1 (both inequalities become strict when
α̂ > 1

2
). Therefore, G(α∗) = F−1(α∗) is never satisfied for any α∗ > α̂, is satisfied

for α∗ = 1
2

when α̂ = 1
2
, and is satisfied for some α∗ ∈ (1

2
, α̂) when α̂ ∈ (1

2
, ρ). This

completes the proof. Figure 10 illustrates our argument.

Proposition 10. Suppose that α̂ ∈ (1 − ρ, 1
2
). In every market equilibrium where

t∗ = t∗∗, α∗ > α̂.

Proof. The proof follows that of Proposition 9. When the prior belief α ∈ (1− ρ, 1
2
),

Ig(t)Sg(t)

Ib(t)Sb(t)
increases on [0, t1) and stays constant on [t1, t2]. In addition, z(t) = 0 for

t ≤ t1 and t ≥ t2. Hence, the difference between profits as a function of the length
of viral campaign, is constant on [0, t1] ∪ [t2,max{t2, t∗∗}] and strictly increasing on
(t1,min{t2, t∗∗}).

Again letting G(α) denote the difference in profits between a good and a bad
product, given that the length of viral campaign is t∗∗. We have G(1

2
) = 2ρ− 1 and

that G(α) > 2ρ − 1 on (1 − ρ, 1
2
). On the other hand, F−1(α) is strictly increasing

in α, and α̂ < 1
2

implies that F−1(1
2
) > 2ρ − 1 = F−1(α̂) and that G(α̂) > 2ρ − 1.

As we have shown in Proposition 9 that G and F−1 cannot intersect when α > 1
2
,

G(α∗) = F−1(α∗) is and can only be satisfied at some α∗ ∈ (α̂, 1
2
). This means that

if a market equilibrium is characterized by t∗ = t∗∗, then we have α∗ > α̂. Figure 11
illustrates our argument.
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Figure 10: Illustration of equilibrium α∗ when α̂ ∈ (1
2
, ρ).

Figure 12 below illustrates the difference in profits between a good product and
a bad one under high and low prior beliefs. When α ∈ (1

2
, ρ), consumers start with

herding on adoption in a viral campaign. As private signals no longer matter in
this phase, the difference in profits shrinks over time on [0, t1]. It continues to drop
on [t1, t2] but not as steeply due to mixed strategies of B consumers, and becomes
constant after t2 when consumers become sensitive to signals. As a result, a bad
producer is less willing to improve its quality when the viral campaign lasts longer,
which in turn leads to a smaller α in the market equilibrium.

When α ∈ (1 − ρ, 1
2
), the difference in profits does not change when consumers

are sensitive to signals on [0, t1] and after t2. However, since the measure of adopting
consumers grows nearly exponentially faster for a good product than a bad one on
[0, t1], a good product has a much larger coverage on [t1, t2], which means that more
B consumers in this phase adopt the product due to their mixed strategies. Therefore
the difference in profits enlarges and a bad producer is more willing to improve its
quality. Consequently, a market equilibrium features a larger α.

36



Figure 11: Illustration of equilibrium α∗ when α̂ ∈ (1− ρ, 1
2
).

(a) α ∈ ( 1
2 , ρ) (b) α ∈ (1− ρ, 12 )

Figure 12: Profit difference between good and bad product, as a function of viral
campaign’s stopping time
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6 Conclusion

In this paper, we have built a continuous-time social learning model to study the
epidemiological dynamics among consumers when information about a product is
spread via viral marketing. Our results depict a unique equilibrium life cycle of the
product, in which various types of consumer behavior – herding on adoption, being
sensitive to signals, and mix strategies – occur and switch from one to another when
beliefs evolve over time. We also take strategic producers into account and illustrate
how their decisions may affect the length of viral social learning, product quality,
and welfare.

We hope that our work can lay a foundation for the study of richer strategic behav-
ior in the social learning process. Possible future directions that extend the current
model include active acquisition of information by consumers, different topologies of
consumers’ social network, time-varying quality improvement by producers, etc.
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A Appendix: omitted proofs

A.1 Proof of Prop 1

Suppose first that α = p(0) > ρ. Consumers exposed to the product at launch herd
on adoption (Lemma 1(i)); so, Ig(0+) = Ib(0+) = ∆ and Sg(0+) = Sb(0+) = 1−∆,
where we use shorthand h(x+) to refer to a function’s right-limit, i.e., h(x+) =
limε→0 h(x+ε). By equation (3), consumers’ interim belief right after launch p(0+) is

determined by p(0+)
1−p(0+)

= α
1−α

Sg(0+)Ig(0+)

Sb(0+)Ib(0+)
; so, p(0+) = α and consumers who encounter

the product right after launch also herd on adoption. Note that, so long as consumers
have herded on adoption up to time t, Ig(t) = Ib(t) and Sg(t) = Sb(t), implying that
interim belief p(t) = α. But then consumers must strictly prefer to continue herding
on adoption. We conclude that consumers must herd on adoption at all times t > 0
and that doing so constitutes an equilibrium. This completes the proof of part (i).

Suppose next that α = p(0) < 1 − ρ. Consumers exposed to the product at
launch herd on non-adoption (Lemma 1(ii)); so, Ig(0+) = Ib(0+) = 0 and Sg(0+) =
Sb(0+) = 1 − ∆ in any equilibrium. With no one infected, no one is subsequently
exposed to the product; so, Ig(t) = Ib(t) = 0 and Sg(t) = Sb(t) = 1 − ∆ for all
t > 0. Consumers’ off-equilibrium beliefs (should they encounter someone who has
previously adopted) are indeterminate, and many equilibria exist with different off-
equilibrium beliefs. However, all such equilibria are outcome equivalent and exhibit
zero adoption.
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