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Abstract

We study a financial market populated by heterogeneous agents, whose decisions are driven by
“animal spirits”. Each agent may have either optimistic or pessimistic beliefs about the fundamental
value, that can be changed from time to time on the basis of an evolutionary mechanism, or he/she
may eventually rely on technical analysis. The evolutionary selection of beliefs depends on a
weighted evaluation of the general market sentiment perceived by the agents and on a profitability
measure of the existent strategies. The market sentiment, being crucial for the decisions of investors,
is included within the set of the driving forces for the performance of the financial market. In fact,
as the relevance given to the sentiment index increases, a herding phenomenon in agents behavior
may take place and the animal spirits can drive the market toward polarized economic regimes,
which coexist and are characterized by persistent high or low levels of optimism and pessimism.
This conduct is detectable from agents polarized shares and beliefs, which in turn influence the price
level. Such polarized economic regimes can consist in stable steady states or can be characterized by
endogenous complex dynamics, generating persistent alternating waves of optimism and pessimism,
as well as return distributions displaying the typical features of financial time series, such as fat
tails, excess of volatility and multifractality. Moreover, we show that if the sentiment has no or low
relevance on the selection of beliefs, those stylized facts are abated or are missing at all from the
simulated time series.
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dynamics.
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1 Introduction

Representing agents as heterogeneous and boundedly rational actors has become a quite common
modeling assumption in several economic contexts. Such an assumption relies on the evidence that
the complexity of the economic environment restricts the agents actual capability to have a complete
knowledge about it, so that agents take decisions that are unavoidably cursed by uncertainty (see
e.g. [56]). In the past years, the analysis of models involving heterogeneous interacting agents (see
e.g. [36]) has considerably improved the understanding of financial markets functioning. Moreover,
the psychological investigation about humans, and hence about economic agents, shows that most of
the decisions are taken on the basis of simple heuristics (see e.g. [27], [32] and [61] among others).
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Individuals, being affected by psychological and emotional factors, rely more on impressions and
common feelings than on a precise knowledge and evaluation of the environment they live in. In
fact, even before the behavioral paradigm came to the front of the stage in finance and economics,
the role of investor sentiment was perceived as a common phenomenon by financial analysts and
market participants. The previous statement finds its foundation in the work by De Grauwe (see
[18]) who straightly claims that “the notions of animal spirits and rational expectations do not mix
well”. In fact, mainstream economic models tend to assume that agents are rational, markets are
complete, and information disseminates widely and freely. If, on one hand, these assumptions are
convenient for analytical tractability, on the other hand, they leave no room for sentiments or animal
spirits, contradicting the observed behavior of investors in the real-world financial markets. And,
while conventional wisdom largely supports the idea that bounded rationality and investor sentiment
may overwhelm the rationality hypothesis in trading behavior, the sentiment analysis has only started
gaining recognition in financial academic research in the past two decades (see e.g. [44], [52] and [58]).

Nowadays, the approach based on boundedly rational agents is widely applied in the modeling of
financial markets (see e.g. [6], [16], [33] and [41]), which are intrinsically characterized by a high degree
of complexity and in which the behavior of the agents can not be neglected in order to understand
and replicate the dynamics exhibited by the real-world economic variables. The literature that stems
from these ideas is burgeoning and widespread (see, just to cite a few, [10], [11], [15], [46], [47]).
Concerning the research strand that is closer to the present contribution, we mention: the work by
Brock and Hommes [11] where when the intensity of choice to switch predictors is high, asset price
fluctuations are characterized by an irregular alternation between phases where prices are close to the
fundamental, phases of optimism, where traders become excited and extrapolate upward trends, and
phases of pessimism, where traders become nervous causing a sharp decline in asset prices; the paper
by De Grauwe and Rovira Kaltwasser [19], in which the emergence of waves of optimism/pessimism
is explained in terms of an evolutionary selection between optimistic/pessimistic exogenous beliefs
about the fundamental value; the work by Naimzada and Pireddu [51], that studies the evolution of
agents beliefs with endogenously varying levels of optimism/pessimism; the paper by Cavalli et al.
[13], in which endogenously changing optimistic/pessimistic beliefs can not be disentangled from their
evolutionary selection in view of understanding the emergence of waves of optimism/pessimism. In all
the above mentioned works, the main mechanisms (imitation and evolutionary selection) ground on
precise evaluations of economic indicators (like profits or forecasting errors), which are assumed to be
correctly estimated by agents and on which agents base their choices.

However, the previous bunch of works deserves two remarks. The first one concerns the modeling
side. Although being in line with a general idea of bounded rationality, such a literature systemat-
ically disregards the Keynes’ insights “that a large proportion of our positive activities depend on
spontaneous optimism rather than on a mathematical expectation, whether moral or hedonistic or
economic”, and that “there is the instability due to the characteristic of human nature”, namely that
economic agents can act as “animal spirits” (see [39]). In fact, in the aforementioned contributions,
the role of animal spirits behaviors is relegated to a qualitative outcome (in terms of waves of op-
timism/pessimism), because agents divert from a rational expectation assumption and have biased
beliefs. However, agents still take decisions “rationally”, measuring precise economic quantities. In
this sense, animal spirits are not among the endogenous drivers of the economic decisions. The sec-
ond remark concerns the lack of a relevant result: when the agents decisions are driven by animal
spirits and rely on a general perceived opinion, optimism and pessimism should be able to self-sustain
themselves, polarizing the majority of agents toward one or the other feeling and leading them to
“herd” in persistent groups where almost all members behave as optimists or as pessimists. Thus
a natural question arises, which constitutes the motivation of the present research: “What happens
when decisions (in the present case, strategies in a financial market) are driven by animal spirits?”.

We try to tackle both previous concerns, without losing the undebatably positive qualities of the
results arising in the existing literature, in terms of relevant endogenous dynamics and qualitatively
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good properties in the behavior of the economic variables. Therefore, the present contribution aims
at providing a rigorous formal modeling of animal spirits as one of the drivers of the agents and,
subsequently, of the market behavior. Our modeling of animal spirits is significantly affected by
behavioral features, that are encompassed in the market sentiment, which is undoubtedly a relevant
feature to take into account when including elements of market psychology in the design of a financial
market.

A further motivation of this approach is the content of a recent survey by Franke and Westerhoff
(see [25]), in which a similar viewpoint is expressed. Using their words, the above mentioned literature
provides a “weak form” of animal spirits, in the sense that the “model is able to generate waves of,
say, an optimistic and pessimistic attitude, or waves of applying a forecast rule 1 as opposed to a
forecast rule 2.” (p. 3). Conversely a “strong form” of animal spirits modeling approaches “exists
if agents also rush toward an attitude, strategy, or so on, simply because it is being applied at the
time by the majority of agents.” (p. 3). In the present work, agents may rush toward optimism
and pessimism depending on what they observe or feel about the behavior of the majority of the
other agents, which is what we call the “general sentiment”. Hence, differently from the work in
[19] that adopts the “weak” idea of animal spirits, the present model provides a “strong” form of
animal spirits modeling in order to retrieve the Keynesian seminal idea. This choice is supported
by the fact that investing in stock markets is a social activity. Financial operators devote a sub-
stantial amount of their activity on reading and discussing about investments, without disregarding
others’ successes or failures in investing. It is thus reasonable that investors’ behavior, as well as stock
prices, are influenced by social interaction. Moreover, it is evident that attitudes on investments may
change in reaction to some events, and thus it seems plain to include also social facets while analyzing
the behavior of stock prices (see [57]). Since boundedly rational investors lack any clear objective
evidence regarding prices of speculative assets, the process by which their expectations are formed
may be social in nature. Therefore, it is crucial to provide an alternative to the exclusive focus on
the expectations about specific stock prices. Since the long-term decisions of the agents are based
also on a form of market mood derived from their social activity, what would be needed is actually a
setup in which the concept of market sentiment is coupled with the individual evaluation of the market.

Keeping this in mind, some recent approaches that base their arguments on the notion of market
sentiments incorporate some kind of informational constraints that limits agents’ full access to the
market (see e.g. [2], [8] and [45]). These constraints generate sentiment oscillations that give rise
to self-fulfilling oscillations, whose source is a mix of psychological and sociological drivers that take
the form of sentiment shocks. Hence, although emphasizing the role of interaction and coordination,
in the aforementioned contributions fluctuations occur as a consequence of exogenous disturbances.
Instead, it is precisely on the endogenous origins of such oscillations that we will focus our attention
by dealing with a framework where the sentiment is modeled as the outcome of social contacts, similar
to the approach in, e.g., [22] and [29].

It is against this background that we consider a baseline financial market model populated by het-
erogeneous agents, namely optimists and pessimists who respectively overestimate and underestimate
the true fundamental value, as in [13], and can change their belief from time to time on the basis of
an evolutionary mechanism. The evolutionary mechanism is based on a combination of the average
mood about the status of the market (i.e., the sentiment index ) and of a measure of profitability of the
existent strategies. The sentiment index depends on how many optimists and pessimists populate the
market and on how much their beliefs about the fundamental value are optimistically/pessimistically
biased. In this way, the psychological and emotional components become a constitutive part of the
decision process.

The results emerging from our analysis are interesting under several perspectives. Starting from
a static analysis, in addition to the fundamental steady state, we find the existence of sentiment-
connected non-fundamental steady states characterized by a either high or low price level. But the
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analysis proceeds further. Moving from a modeling approach which relies on a weak form of animal
spirits to a different one which relies on a strong form, if the final outcomes were the same in both
approaches, there would not be much difference between the two forms of animal spirits. But this is
not the case. We shall show the emergence of herding phenomena which occurs “because individual
agents believe that the majority will probably be better informed and smarter than they themselves”
(see [25]), and thus agents can pay more attention to the general sentiment than to the comparison
of realizable profits. Herding drives the occurrence of long lasting waves of optimism and pessimism,
which are a consequence of the (strong form of) animal spirits behavior of the agents. Furthermore,
the emergence of coexisting economic regimes (consisting of stable steady states or of more complex
attractors), that did not emerge in the above mentioned literature and that are characterized by persis-
tently polarized levels of optimism and pessimism, mirrors the eventuality of such herding behaviors.
When agents “endeavor to conform with the behavior of the majority or the average” [40], it is more
likely that animal spirits generate outcomes which can be seen as the result of a herding phenomenon
around a polarized situation. The present setting does not rule out the possibility of endogenous
dynamics with neat and persistent periods of optimism alternating with periods of pessimism, and the
resulting dynamics provide a clear representation of the stylized facts occurring in real-world financial
markets.

Whether fundamentalists have beliefs which are affected by the same or by a different bias is also
an issue that one may wonder about in order to check if our findings, which highlight the role played
by the market sentiment in the emergence of the optimistic/pessimistic steady states, are robust.
Considering beliefs which are not symmetrically balanced around the fundamental value confirms the
relevance of the role of the sentiment in the selection of the strategies, as two new steady states can
still arise. The ex-ante exogenous asymmetry in the agents beliefs reflects on that of the steady states
thanks to the joint role of the sentiment weight, of the evolutionary pressure to switch between biases
and of the heterogeneity degree of the biases.
The role of the market sentiment in a setting with simple belief types in deviations from fundamentals
may also be analyzed in an even larger market setup, in which the investors’ attention is posed on
charts, price, volume, money flow and other market information. This is the strategy of technical
traders, who seek to identify price patterns and market trends in financial markets and who attempt
to exploit these patterns. Such class of agents can be considered as a constant presence in the market
due to the peculiar feature that characterizes its behavior. They believe that stock prices tend to
move in trends which persist for an appreciable length of time and that changes in trend are caused by
shifts in demand and supply. Those shifts, no matter why they occur, can be detected sooner or later
in the action of the market itself. Accordingly, a thorough investigation of our financial market may
benefit by the consideration of such class of agents in order to understand how the price dynamics
are influenced by a different type of activity. In agreement with the exiting literature (see e.g. [4],
[26] and [28]), the introduction of technical traders is certainly able to spread instabilities within
our market setup, but still maintaining the polarization of the sentiment-connected non-fundamental
steady states. It is the intrinsic nature of technical traders, that look at turbulent market phases as
an opportunity to realize more gains, which may lead the price to divert from the polarized steady
states with the emergence of consequent bubbles and crashes in the price dynamics.

As a unifying conclusion, we can certainly state that our outcomes may be ascribed on one hand
to the role played by the market sentiment and on the other hand to the agents’ heterogeneity: when
agents operate in opposite directions, whether they are all fundamentalists or in part technical traders,
a considerable heterogeneity degree is embedded into our model. Accordingly, if one aims at explaining
the high trading volume and the high volatility observed in many real-world financial markets, it turns
out to be necessary the development of a model in which agents are truly heterogeneous.

The remainder of the paper is organized as follows. In Section 2 we outline the baseline model with
symmetrically biased optimistic and pessimistic fundamentalists. In Section 3 we deviate from the
baseline model considering asymmetric belief biases, while in Section 4 we introduce technical traders
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to the baseline model. Finally, Section 5 concludes. All the proofs of our analytical results can be
found in the Appendix.

2 The baseline model with biased fundamentalists

The baseline evolutive financial model we study takes inspiration from [19] and grounds on a market
in which, at each discrete time period t, a normalized population of size 1 is composed by boundedly
rational fundamentalists1.
Agents are divided into optimists and pessimists2, whose shares are respectively described by ωt ∈ (0, 1)
and 1 − ωt. Fundamentalists buy/sell stocks in undervalued/overvalued markets. In particular, pes-
simistic and optimistic agents, who systematically underestimate and overestimate the true funda-
mental value F, have biased beliefs respectively equal to X = F −∆/2 and Y = F + ∆/2 = X + ∆,
where ∆ > 0 is the belief bias and assesses the degree of heterogeneity among the agents.3

The fraction of each kind of agents varies according to an evolutionary selection of the best perform-
ing optimistic/pessimistic heuristic. The stock price Pt is adjusted by a market maker by means of a
nonlinear mechanism.
As in [19], the demand functions of pessimistic and optimistic agents are respectively given by
dt,pes = α(X − Pt) and dt,opt = α(Y − Pt), where Pt is the asset price at time t and α > 0 is a
demand reactivity parameter, which we can assume to be the same for the two kinds of agents, being
them both fundamentalists. If at time t the share of pessimists (resp. optimists) is ωt ∈ [0, 1] (resp.
1 − ωt), the total excess demand is Dt = ωtα(X − Pt) + (1 − ωt)α(Y − Pt), which, recalling that
Y = X + ∆, can be rewritten as Dt = α(F − Pt + ∆(1/2− ωt)). We assume that the price variation
is described by the nonlinear, bounded mechanism

Pt+1 − Pt = f(γDt) = f(γα(F − Pt + ∆(1/2− ωt))), (1)

where γ > 0 represents the price adjustment reactivity and f : R → (−a2, a1), with −a2 < 0 < a1,
is a twice differentiable sigmoidal function, i.e., an increasing function, satisfying f(0) = 0, f ′(0) =
1, f ′′(z) > 0 on (−∞, 0) and f ′′(z) < 0 on (0,+∞). Moreover, as it is evident from (1), without loss
of generality we can set α = 1, encompassing both the demand and the price adjustment reactivities
in the parameter γ.
The nonlinear mechanism introduces a cautious price adjustment, as from t to t + 1 prices can only
increase or decrease by a bounded quantity, respectively given by a1 or a2. Namely, the mechanism
in (1) encompasses a conservative behavior for the market maker, induced by a central authority

1There exist several papers in which agents are endowed with biased beliefs about the fundamental (or target) value
of a certain economic variable, such as the price, the inflation, output gap or exchange rate target (see, just to cite a
few, Brock and Hommes (1998), Rovira Kaltwasser (2010), Anufriev et al. (2013), Agliari et al. (2017) and Hommes
and Lustenhouwer (2017)). Moreover, due to the findings of our work, there is also a deeper reason to consider at first
only fundamentalist agents in the model. Namely, in this way, even if a major role is played by the negative feedback
of investors on prices (as the behavior of fundamentalists refers to buying and selling decisions that are made with a
view to the underlying value of the asset, and tend to push prices back toward fundamentals), we find the emergence of
herding phenomena, which are instead usually triggered by a positive feedback, typical of the technical traders behavior.
Therefore, including technical traders in our model could conceal the effect of the sentiment index on herding. For
a classical work in the herding literature we refer the interested reader to Kirman (1993), which proposes a model of
stochastic recruitment to explain both herding and epidemics phenomena observed in financial markets.

2A clear explanation of the empirical basis for the assumption that fundamentalists are either optimistic or pessimistic
can be found in the introduction of [19]. Indeed, authors recall, e.g., that in the past decade two sets of beliefs emerged
about the fundamental value of the US dollar, according to which the large account deficits of the US observed since the
second half of the 1990s were unsustainable (see [53] and [54]) or perfectly sustainable (see [31]).

3As in [19], we deal with a symmetric framework in order to focus on the most significant form of heterogeneity,
i.e. the maximum possible degree of polarization, represented by ∆, between different attitudes of agents toward the
reference value F. This also allows us to keep the model analytically tractable and to provide a neater interpretation of
the results.

5



that, trying to limit overreaction phenomena with the consequent occurrence of an excessive stock
volatility, imposes limits to price variations (see [23], [30] and [43]). As a consequence, the market
maker prudently adjusts prices in the presence of extreme excess demand, while when excess demand
is small the price adjustment is nearly proportional to it. In particular, the price variation limiter
mechanism can be modeled by a sigmoidal adjustment rule that determines a bounded price variation
in every time period, thanks to the presence of two asymptotes that limit the price changes. We
recall that, in the literature on behavioral financial markets, nonlinear price adjustment mechanisms
have been already considered, among others, by [60, 63]. More precisely, thanks to the previous
assumptions on f, from (1) we have that the stock price respectively increases or decreases when the
excess demand is positive or negative, and that the variation rate increases as the excess demand
vanishes, since the derivative of the right-hand side of (1) with respect to Dt is given by γf ′(γDt),
and attains its maximum value γ when Dt = 0.

The last part of the model to be described concerns the evolution of the shares of optimists/pessimists,
based on an evolutionary competition between the two behavioral rules. Differently from [13, 19], where
the fitness measure in the switching mechanism relied only on the comparison between the profits that
could be realized by the two groups of agents, in the present contribution the evolutionary selection
of beliefs depends also on the general feeling perceived by the agents about the market status. Such
a feeling is described by the sentiment index

It = ωtX + (1− ωt)Y − F = X + (1− ωt)∆− F, (2)

which measures the difference between the average belief about the fundamental value, represented
by ωtX + (1 − ωt)Y, and the true fundamental value F. The average belief about fundamental value
depends on both the beliefs and the shares, whose effects can not be completely disentangled. The
sign of It gives information about the general degree of optimism or pessimism in the market, as It is
positive (negative), portraying the underlying optimistic (pessimistic) perceived market mood, when
ωtX + (1− ωt)Y is larger (smaller) than F. In particular, since X = F −∆/2, we find that

It = ∆(1/2− ωt). (3)

Hence, It is positive (negative) when the share of pessimists is below (above) 1/2.
Then, the population fraction composed by pessimists evolves depending on a convex combination of
the general market sentiment and of the profits realized by the two kinds of agents, according to the
following updating rule

ωt+1 =
eβ(σ(−It)+(1−σ)πX,t+1)

eβ(σ(−It)+(1−σ)πX,t+1) + eβ(σIt+(1−σ)πY,t+1)
=

1

1 + eβ(2σIt+(1−σ)(πY,t+1−πX,t+1))
, (4)

where β is a positive parameter representing the intensity of choice of the switching mechanism and
σ ∈ [0, 1] is the sentiment weight.
Equation (4) describes the probability that agents will be pessimistic in their belief. Such a probability
depends on two factors: the general market sentiment at time t and a measure of profitability of the
existent strategies.4 The latter is given by the most recent profit

πj,t+1 = (Pt+1 − Pt)(j − Pt), j ∈ {X,Y }, (5)

that would have been realized adopting a pessimistic belief (corresponding to j = X) or an optimistic
one (corresponding to j = Y ).5 When σ = 0, the evolutionary mechanism in (4) is exactly the same

4We stress that the opposite signs preceding It in the argument of the exponential functions in (4) are a consequence
of the different attitude of optimists and pessimists toward positive or negative values of the sentiment index.

5We would like to point out that more refined fitness measures could encompass portfolio balances and wealth, as the
literature on market microstructure deals with (see e.g. [21] and [36]). But this is beyond the scope of this paper and
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as in [19], while, as σ increases, the relevance assigned by the agents to the general perceived mood
increases, raising the impact of the crowd psychology and of the herd instinct. If σ = 1, the profitability
measure is no more influencing the switching mechanism, which only depends on the sentiment index
(2), and the share of pessimists will increase (decrease) when It is negative (positive), i.e., when the
average belief about fundamental value is smaller (larger) than F.We note that in [13] the average belief
about the fundamental value (and its generalization over a window of n > 1 preceding periods) was
introduced and used to study the possible emergence of waves of optimism and pessimism. However,
in [13], the index It only helped in describing the dynamics without affecting them, being not taken
into account by the agents in their decisions. Finally, we stress that β in (4) measures how much
relevance agents assign to the forecasting rules. If β is small, agents are quite indifferent to the signals
coming from the two heuristics (in terms of general sentiment and/or profitability), and they tend to
equally distribute themselves between optimism and pessimism. Conversely, if more relevance is given
to the perceived market mood and/or to the eventual profitability, a larger share of agents will switch
to the most performing attitude toward the reference value.

Our model is obtained collecting the price adjustment mechanism (1) and the evolutionary mecha-
nism (4), being described by the two-dimensional map G = (G1, G2) : (0,+∞)×(0, 1)→ R2, (Pt, ωt) 7→
(G1(Pt, ωt), G2(Pt, ωt)), defined as:

Pt+1 = G1(Pt, ωt) = Pt + f (αγ(F − Pt + ∆(1/2− ωt))) ,

ωt+1 = G2(Pt, ωt) =
1

1 + eβ(σ∆(1−2ωt)+(1−σ)∆f(αγ(F−Pt+∆(1/2−ωt))))
,

(6)

where, in the last equation, we replaced It with its expression provided in (3) and we employed the
identity πY,t+1 − πX,t+1 = (Y −X)(Pt+1 − Pt) = ∆f(γDt).

6

We stress that for σ = 0 the model in (6) reduces to that studied in [13] when µ = 0 or in [19] for
a linear price adjustment mechanism. Therefore, in what follows we investigate what happens when
σ > 0, focusing in particular on the extreme case σ = 1 (see Subsection 2.2). It is worth noticing
that the present framework significantly diverts from [19] under several aspects. As explained above,
the key economic element to be considered here is that the choice between optimism and pessimism
is not only driven by a rational computation of the profitability of the existent strategies, but, as
σ increases, the psychological and emotional aspects increasingly assume a central role, being the
unique impulse when σ = 1. This reinforces the behavior of agents as “animal spirits”, which is
partially encompassed in [13, 19] in the optimistically /pessimistically biased beliefs, but which, as
σ → 1, becomes the main motivational driver of the agents choice about the forecasting rule in the
present model. However, the significance of the considered framework is not limited to the economic
interpretation of the model, but, as it will become evident from the analytical results in Subsection 2.1
and the numerical simulations in Subsection 2.2, the possible dynamical outcomes arising when the
sentiment index drives the stock market significantly differ from those found in the existing literature,
so that the proposed approach provides a “strong form” ([25]) of animal spirits modeling, differently
from the “weak form” of [13, 19].

2.1 Analytical results on steady states and local stability

In this subsection we determine the possible steady states of the model outlined above and we provide
analytical conditions for the local stability of the fundamental steady state. Moreover, we also present
some results on how the additional steady states vary when the relevant parameters change.

we leave the investigation of such measures for future research.
6In the present work we only consider the case of exogenous biased beliefs, to better focus on the role of the market

sentiment on the results. The generalization to the case in which the belief biases depend on the relative ability to
guess the actual realized price is considered in [14], from which it is possible to see that the results we shall present in
Subsections 2.1 and 2.2 are robust with respect to the endogenization of the beliefs.
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We start by investigating the existence of the steady states of (6).

Proposition 1. System (6) has

a) a unique steady state S∗ = (P ∗, ω∗) = (F, 1/2) if σ ∈ [0, 1] and

σ ≤ 2

β∆
; (7)

b) three steady states S∗, So = (P o, ωo) and Sp = (P p, ωp) if 2
β∆ < σ ≤ 1. In particular, So and Sp

are symmetric w.r.t. S∗, with P p < P ∗ < P o and ωo < ω∗ < ωp.

Proposition 1 bears relevance for our analysis. In fact, differently from what is found in the existing
literature (see e.g. [13, 19, 51]), where the unique steady state is given by the fundamental steady
state S∗, when animal spirits affect economic decisions the system can be driven toward a steady
state characterized by either greater (P o) or smaller (P p) prices than the fundamental value. In these
steady states, the population consists of a larger share of optimists (ωo < 1/2) or pessimists (ωp > 1/2),
respectively. We then have two more steady economic regimes that can be identified as “pessimistic”
(Sp) and “optimistic” (So), coexisting with S∗. This eventuality occurs if agents give a sufficiently large
relevance to the perceived market mood, as the additional steady regimes can emerge only for suitably
large sentiment weight values. If agents only rely on a “rational” comparison of the performance
of pessimism and optimism in terms of profits (as in [13]), the equilibrium configuration can solely
consist in an even distribution of pessimists/optimists, with the stock price corresponding to the true
fundamental value. However, as the sentiment weight approaches 1, the switching mechanism is more
and more influenced by the sentiment index, whose size is not only determined by the population share
of pessimists, but also by the distance ∆ between optimistic and pessimistic beliefs. More precisely, if
the relevance given by the agents to the perceived mood is small (i.e., β is low), agents will more likely
choose indifferently one of the two heuristics, so that deviations from a uniform distribution have a
little consequence and shares will settle back to a uniform distribution. Conversely, if the relevance
is large (i.e., β is high), even a small excess of pessimistic agents (ωt > 1/2) triggers a diffusion of
pessimism, that leads the majority of agents to become pessimists (ωp > 1/2). We will come back
to this aspect after Proposition 4 with the help of the stability analysis and of some simulated time
series. Moreover, as the factors characterizing the agents behaviors become more extreme (i.e., as
the intensity of choice and/or the polarization of the beliefs increase), the effect of animal spirits
is bolstered and a progressively reduced sentiment weight is enough to trigger the emergence of the
polarized steady states. In this respect, we stress that both the relevance given to the evolutionary
selection of heuristics (β > 0) and the heterogeneity degree of beliefs (∆ > 0) are essential, as otherwise
only the intermediate steady state is possible (as (7) is fulfilled).

Following what suggested by the previous considerations, we introduce the aggregate index s =
βσ∆, which encompasses the effect of the sentiment weight enhanced by the evolutionary pressure β
and by the heterogeneity degree ∆. From now on, we refer to s as the sentiment strength. We stress
that this non-negative aggregate parameter regulates the threshold value at which two extra steady
states emerge in the symmetric biases framework, when S∗ loses stability. Namely, (7) can be simply
rewritten as s ≤ 2. As we shall see in Propositions 5 and 7, the parameter s similarly regulates the
threshold value at which the number of steady states increases from one to three when agents’ biases
are asymmetric and when we deal with technical traders, as well.

However, in the symmetric bias framework, the agents features encompassed in s do not only foster
the emergence of the steady states So and Sp, but also significantly affect their position, as well as the
values of the sentiment index Io and Ip at So and Sp, as shown in the next result (see also Proposition
6 for the symmetric bias framework and Proposition 7 in the presence of technical traders).

Proposition 2. Let s > 2, with σ ∈ (0, 1]. Then, on increasing σ, β and ∆ we have that ωo decreases,
while P o and Io increase, and that ωp increases, while P p and Ip decrease.
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This result reinforces that in Proposition 1. Firstly, the more the psychological and emotional
components are determinant for the choice of optimistic/pessimistic heuristics, the more the polarized
steady states divert from the intermediate one. Indeed, increasing the relevance of the perceived
market mood leads to final outcomes that are more strongly characterized (both in terms of prices
and shares) by optimism and pessimism. Such a feature reflects on the resulting sentiment index at
the polarized steady states, which is not “neutral” (I = 0) as at S∗, but consistently portrays the
pessimistic (Ip < 0) and optimistic (Io > 0) mood perceived in the market. Psychological factors can
then strengthen the role of the market sentiment in determining the prices and the shares.

The next level of investigations concerns how the stability of S∗ is affected by the sentiment weight
and, more generally, we analyze the effects of the sentiment index on the resulting dynamics.7 Before
presenting such results, we compare the roles of β,∆ and γ on the stability of S∗, when the evolutionary
mechanism is only driven either by the profitability measure8 (σ = 0) or by the perceived sentiment
(σ = 1). To this end we recall that, if we consider homogeneous beliefs (∆ = 0) and we consequently
neglect the evolutionary switching mechanism (β = 0), it is easy to see that dynamics only consist in
the price adjustment mechanism and that S∗ is stable when γ < 2.

Proposition 3. When σ = 0, the steady state S∗ is locally asymptotically stable provided that 2(γ −
2)/γ < ∆2β < 4/γ. When σ = 1, the steady state S∗ is locally asymptotically stable provided that
γ < 2 and β∆ < 2.

When the price mechanism does not introduce instabilities (γ < 2), increasing the intensity of
choice and the heterogeneity degree has a destabilizing effect for both extremal choices of fitness
measures (i.e., σ = 0 and σ = 1). Conversely, when the price mechanism introduces instability
(γ > 2), suitable intermediate values of β and ∆ can stabilize S∗ (as discussed in [19]) when agents
choose their strategy on the basis of the profitability measure. Such stabilization does not occur when
the fitness measure is given by the sentiment index, as the steady state S∗ is unstable regardless of ∆
and β.
Proposition 3 shows that the same degree of beliefs heterogeneity has a different effect when the
fitness criterion is represented by the profitability measure or by the sentiment index. In the latter
case, the role of the parameters affecting the selection mechanism (β) and the agents heterogeneity
(∆) is essentially the same, as the stability of S∗ depends on ∆β: therefore, increasing either β or ∆
by the same amount has an identical effect. Conversely, beliefs heterogeneity has a more intense effect
when the strategy choice depends only on profits, as in that case the stability of S∗ is affected by β∆2.
Such dissimilarity can be easily understood in terms of the effect of beliefs polarization on the fitness
measure: the degree of heterogeneity affects the sentiment index through beliefs only “once” while it
affects the profits twice, both directly, through the excess demand, and through prices, resulting in a
“squared” influence. This may occur since agents assign more emphasis to the possibility of realizing a
profit evaluating their own strategy rather than considering the general mood perceived by the market,
which can manifest in a sluggish manner due to some form of slowness in the news diffusion about the
market status.
As a consequence, a large (resp. small) belief polarization has a greater (resp. reduced) effect on the
stability of the fundamental steady state when the sentiment has no relevance, compared to the case
when it drives the choice of strategies. It is then predictable that, ceteris paribus, as σ increases, the
effect of ∆ on the stability of S∗ can increase or decrease. This will help to understand what happens
as the relevance of the sentiment index increases, an issue which is studied in the next proposition. In

7In what follows, we say that an unconditionally stable/unstable scenario is realized when the steady state is locally
asymptotically stable/unstable independently of the parameter values; a stabilizing/destabilizing scenario occurs when
the steady state is locally asymptotically stable only above/below a certain threshold and unstable otherwise; a mixed
scenario arises when the steady state is locally asymptotically stable only for intermediate parameter values, between
two stability thresholds, and unstable otherwise.

8Indeed, this case corresponds to that studied in [19, Proposition 1].
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Figure 1: For each couple of β and ∆, different colors correspond to different stability scenarios on increasing σ.
Red color denotes values (∆, β) for which a stabilizing scenario (S) occurs (i.e., according to Proposition 4, S∗

is stable for σ ∈ (σns, 1]), green color denotes values for which a destabilizing scenario through a flip bifurcation
(DF) occurs (i.e. S∗ is stable for σ ∈ [0, σfl)), yellow color denotes values for which a destabilizing scenario
through a pitchfork bifurcation (DPF) occurs (i.e. S∗ is stable for σ ∈ [0, σpf )), cyan color denotes values for
which a mixed scenario in which instability occurs through a flip bifurcation (MF) occurs (i.e. S∗ is stable for
σ ∈ (σns, σfl)), magenta color denotes values for which a mixed scenario in which instability occurs through a
pitchfork bifurcation (MPF) occurs (i.e. S∗ is stable for σ ∈ (σns, σpf )). White and blue colors respectively
denote values (∆, β) for which S∗ is either stable (US) or unstable (UU) independently of σ.

particular, in order to better focus on the role of σ on varying β and ∆, we make explicit the stability
conditions considering two distinct frameworks in relation to the price dynamics. Namely, we study
the stability of S∗ for System (6) considering two regimes, represented by γ = 1 and γ = 3, for which
the price mechanism respectively is/is not a source of instability.

Proposition 4. On varying σ ∈ [0, 1], we have that the sentiment weight can have a destabilizing,
stabilizing, mixed or neutral effect on the stability of S∗. In particular, condition (7) is necessary for
the stability of S∗. If γ = 1, then S∗ is stable for

σ ∈ [0, 1] if β < min
{

4
∆2 ,

2
∆

}
σ ∈ (σns, σpf) =

(
∆2β−4

∆2β
, 2
β∆

)
if max

{
4

∆2 ,
2
∆

}
< β < 2∆+4

∆2

σ ∈ [0, σpf) =
[
0, 2

β∆

)
if 2

∆ < β < 4
∆2 (possible only if ∆ < 2)

σ ∈ (σns, 1] =
(

∆2β−4
∆2β

, 1
]

if 4
∆2 < β < 2

∆ (possible only if ∆ > 2)

and it is unstable for any σ if β > 2∆+4
∆2 .

Conversely, if γ = 3, we have that S∗ is stable for

σ ∈ [0, σfl) =
[
0, 3∆2β−2

∆β(3∆+1)

)
if 2

3∆2 < β < 4
3∆2

σ ∈ (σns, σfl) =
(

3∆2β−4
∆β(3∆+4) ,

3∆2β−2
∆β(3∆+1)

)
if 4

3∆2 < β < 6∆+4
3∆2

σ ∈ (σns, σpf) =
(

3∆2β−4
∆β(3∆+4) ,

2
∆β

)
if 6∆+4

3∆2 < β < 2∆+4
∆2

and it is unstable for any σ if β > 2∆+4
∆2 or if β < 2/(3∆2).

Finally, crossing the threshold values σfl, σns and σpf a flip, Neimark-Sacker and pitchfork bifurcation
respectively occurs.

We start by analyzing the case γ = 1, making reference to the left panel in Figure 1. In this case,
the occurrence of instability only depends on the switching mechanism, and, according to Proposition
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Figure 2: The left and middle panels represent time series when fitness measure coincides with the profitability
measure (left panel) with the sentiment index (middle panel). Prices (solid black line, referred to the left axis),
shares of pessimists (dotted black line, referred to the right axis) and fitness measure (red line, referred to the
right axis) are represented. The right panel represents the evolution of the optimistic (black), pessimistic (red),
intermediate (blue) steady states on varying σ. Solid line: P ; dotted line: ω; dash-dotted line: I. Parameter
values used in all the simulations are F = 10, β = 1, γ = 0.1 and ∆ = 3.

3, in the two extremal frameworks corresponding to σ = 0 and σ = 1 we have that S∗ is stable for
∆2β < 4 and ∆β < 2, respectively.

If β and ∆ are suitably small, the increasing relevance given to the perceived sentiment has no effect
on stability. Either if the context is affected by a very reduced heterogeneity so that the evolutionary
pressure is not enough to induce agents to change strategy or if the beliefs are polarized but the agents
do not rely very much on them, we have that S∗ is stable regardless of the adopted fitness measure
(white region).

If the beliefs polarization is sufficiently large (∆ > 2) and we increase the intensity of choice, since
in this case the effect of heterogeneity plays a major role on the profitability measure than on the
general sentiment, we have a situation in which S∗ is unstable for σ = 0 and stable for σ = 1 (see
the comments after Proposition 3) and thus the sentiment index has a stabilizing effect on S∗ (red
region).

Conversely, if the beliefs polarization is small (∆ < 2) and we increase the intensity of choice,
since in this case the effect of heterogeneity on the profitability measure is weaker than before, we
have a situation in which S∗ is stable for σ = 0 and unstable for σ = 1. The consequence is that,
as the relevance of the sentiment index increases, S∗ can lose stability (yellow region). However,
such instability does not mean that dynamics become erratic, but that agents rather start herding
toward the same strategy, and this drives the evolution of prices toward either the optimistically or
the pessimistically biased new steady state. That mechanism can be better understood looking at
the left and middle panels in Figure 2, where the parameter setting as well as the initial conditions
are essentially the same as in Figure 1.9 If the fitness measure of the evolutionary process is the
profitability measure (σ = 0, left panel), since initial conditions depict a slightly optimistic state
in which P0 = 10.1 > F = 10 and ω0 = 0.4, there is a positive excess demand (D0 = 0.2) that
induces a slight increase in prices at t = 1 (P1 = 10.12). However, profits of optimistic agents
are only a little larger than those of pessimists, so that the updated share of pessimists is actually
larger (ω1 = 0.485) than the initial one. That is where the typically negative feedback about the
market prices of fundamentalists comes in: if prices are too large, pessimists have a more pronounced
propensity to sell than optimistic agents have to buy, so that the price increase slows down and a
larger share of agents believe that a change is about to occur. This leads prices to decrease at t = 2,
so that the profits of pessimists are larger than those of optimists and most agents switch to the

9We stress that, with respect to the situation reported in Figure 1, in the simulations reported in Figure 2 we have
reduced the value of γ, which now is 0.1. This has been done to avoid an uninteresting oscillating convergence toward
the steady state and to provide a neater interpretation, which is still valid for any value of γ < 2.
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pessimistic strategy (ω2 > 0.5). The next trajectories lead prices to monotonically decrease toward
the fundamental value, as well as agents choices to evenly distribute between the two strategies.
Conversely, if the fitness measure is the sentiment index (σ = 1, central panel), since at t = 1 the price
increases, the overall sentiment increases, too. Thus, if the evolutionary tendency to adopt the most
fitting strategy is suitably strong and strategies are heterogeneous enough, this leads to a decrease in
the share of pessimists. In such a case, the switching mechanism and the heterogeneity strengthen
the optimistic mood, which gets a positive feedback by the agents. Indeed, if pessimism is initially
quite pronounced, we then observe the opposite effect, and what actually happens on the steady state
values as σ increases is reported in the right panel of Figure 2, with the emergence of increasingly
polarized prices, shares and general sentiment.

Going back to the role of σ, if we further suitably increase β, for any degree of beliefs heterogeneity
∆ > 2 we have that the fundamental steady state is unstable in both the two extremal frameworks
identified by σ = 0 and σ = 1. However, for intermediate values of σ the negative feedback of the
profitability measure is offset by the positive feedback of the sentiment index, and their effects cancel
out, giving rise to stable dynamics (magenta region). Finally, for extreme values of β and ∆ both
mechanisms are very strong and stability can be not recovered (blue region).

Concerning the case of γ = 3 (right panel in Figure 1), the main difference with respect to the
framework with γ = 1 is that the price mechanism can introduce or bolster instabilities and that,
as discussed in [19], an intermediate joint effect of evolutionary pressure and heterogeneity has a
stabilizing effect. Hence, when β and ∆ are small, the price mechanism introduces instability for
σ = 0 that can not be recovered by increasing the role of the sentiment, due to the reduced relevance
and polarization of the beliefs (bottom left blue region). If β∆2 assumes an intermediate value, the
price dynamics are stabilized by the joint effect of evolutionary pressure and heterogeneity when the
fitness measure is the profitability measure. However, as the relevance of the sentiment increases, the
actual effect of heterogeneity is reduced, and S∗ becomes unstable due to the price mechanism when
σ becomes suitably large (green region). Since β and ∆ are not sufficiently relevant, no herding effect
can take place. If β and ∆ further increase, the joint effect of evolutionary pressure and heterogeneity
now introduces new instability, which can be recovered by appeasing their influence as the sentiment
index increases. In this case, we may have again that, if σ is sufficiently large, increasing polarization
of the economic variables takes place and dynamics still converge toward a steady state10 (magenta
region).
Finally, when endogenous dynamics induce price fluctuations, agents erratically switch between the
optimistic and the pessimistic behaviors.

2.2 Numerical analysis

In the present subsection we complement with numerical simulations the analytical results on the
steady states obtained in Subsection 2.1, in order to deepen the understanding of the economic rel-
evance of the arising dynamics in model (6) and to investigate the qualitative properties of the time
series when exogenous non-deterministic effects are taken into account.

Deterministic simulations

We consider two sets of simulations, characterized by different values of the heterogeneity degree
parameter, in order to provide a portrait of the possible dynamic scenarios that may occur in our
model economy and to highlight the influence of the behavioral parameters on the financial market.

10We stress that, when the stability of S∗ is not recovered, we are in the unconditionally unstable case again, but now
dynamics can converge to the polarized steady states at least for intermediate values of σ.
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Figure 3: Two-dimensional bifurcation diagram (left plot). The solid and dashed curves represent the bifurca-
tion curves σ = σpf and σ = σns, respectively, with σpf and σns introduced in Proposition 4. Central and right
panels depict two possible scenarios about P on varying σ for different values of β.

To run the simulations, we specify the sigmoid function as

f(z) =

{
a1 tanh (z/a1) if z ≥ 0,

a2 tanh (z/a2) if z < 0,
(8)

setting F = 10, a1 = 2, a2 = 1, while we let β, σ, γ and ∆ vary from time to time. In the reported
two-dimensional bifurcation diagrams we use different colors to identify the degree of complexity of
the attractor corresponding to the parameters coupling: white color refers to parameter pairs for
which convergence is toward a steady state (either S∗, So or Sp), while other colors refer to attrac-
tors consisting of more than one point (in particular cyan color identifies cycles of high periodicity,
quasi-periodic or complex attractors). The initial datum for the left simulations in Figures 3-4 is
(X0, P0, ω0) = (X∗+ 0.01, P ∗+ 0.01, ω∗+ 0.01). Moreover, the stability threshold curves of the steady
state S∗ are drawn in black. In particular, the solid line refers to the bifurcation curve σ = σpf ,
whose crossing can give rise to a pitchfork bifurcation, while the dashed and dash-dotted lines refer
to the bifurcation curves σ = σns and σ = σfl, whose crossing can give rise to a Neimark-Sacker or to
a flip bifurcation, respectively, where the threshold values σpf , σns and σfl have been introduced in
Proposition 4. In the two- and one-dimensional bifurcation diagrams in Figures 3-4 the values of X
and ω are related to the price variable, recalling that, when prices are large/small due to the pitchfork
bifurcation, shares and beliefs move accordingly. The initial datum in the central plots of Figures 3-4,
as well as in the right plots of Figures 3 and 4, is (X0, P0, ω0) = (X∗ + 0.01, P ∗ + 0.01, ω∗ + 0.01) in
black bifurcation diagrams and (X0, P0, ω0) = (X∗ − 0.01, P ∗ − 0.01, ω∗ − 0.01) in red ones.

The first group of simulations (see Figures 3 and 4) deals with a case in which beliefs are strongly
polarized, that is, agents heterogeneity about the fundamental value is high (∆ = 3). We start by
considering a moderate (γ = 1) reactivity to price variation. Looking at the vertical sections of the
two-dimensional bifurcation diagram reported in the left plot of Figure 3, we can see examples of
unconditionally stable (e.g. for β = 0.1), stabilizing (β = 0.6) and mixed (β = 1) scenarios on varying
σ. We stress that in the white region below the black solid line, convergence is toward S∗, while in
that above the black solid line, convergence is toward So. As shown in the one-dimensional bifurcation
diagram in the middle plot of Figure 3, if we keep the value of the intensity of choice fixed at β = 0.6
and we let σ vary, we observe a stabilizing effect played by the sentiment index on price dynamics.
When the sentiment index has no relevance (σ = 0), the occurring quasi-periodic dynamics are a
consequence of the switching mechanism and of a suitably large intensity of choice (in fact, from the
left panel in Figure 3 we note that, if we decrease β, we have stable dynamics), and they are transferred
to the price mechanism, which would be otherwise stable.11 In this setting, the evolutionary selection

11Indeed, the derivative of the price at the steady states is given by 1− γ.
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Figure 4: Two-dimensional bifurcation diagram (left panel). The solid, dashed and dash-dotted curves refer to
the bifurcation curves σ = σpf , σ = σns and σ = σfl, whose crossing can give rise to a pitchfork, to a Neimark-
Sacker or to a flip bifurcation, respectively, where the threshold values σpf , σns and σfl have been introduced
in Proposition 4. The one-dimensional bifurcation diagram on the central panel refers to the parameter setting
used in the left two-dimensional bifurcation diagram. The right panel depicts the basin of attraction of the
optimistic (yellow region) and pessimistic (blue region) attractors, from which the polarization of beliefs is
clearly visible.

only depends on the profitability measure, which in turn is affected by excess demand and agents
heterogeneity. As σ increases, the strength of the interplay between prices and shares decreases, as
the switching mechanism is more affected by the sentiment index and less by the profits, which are
in this setting the source of instability. The result is that endogenous oscillations firstly decrease and
disappear, so that agents evenly distribute among beliefs and the stock price converges toward the
fundamental value. On the other hand, if we slightly increase the intensity of choice up to β = 1
(see the right plot of Figure 3), we again have the initial stabilizing effect of animal spirits, which
then gives rise to a polarization in the shares due to an increased relevance assigned to the utility of
being either pessimistic or optimistic, as remarked in the comments after Proposition 1. Depending
on an initial deviation in shares toward optimism or pessimism, we have that most of the agents
herd around pessimism (red bifurcation diagram) or optimism (black bifurcation diagram). Again,
dynamics become convergent toward a stable steady state (either S∗ or So/Sp) as σ increases.
If we raise γ, we obtain the two-dimensional bifurcation diagram reported in the left plot of Figure 4.
In this case, the unconditionally unstable scenario for small values of β is due to the price mechanism.
Considering β = 1 as in the previous simulation, we observe in the central plot of Figure 4 the
occurrence of a mixed scenario, similar to the one described in Figure 3, but now the polarized prices
undergo a period-doubling cascade of bifurcations that leads to chaotic dynamics. We stress that we
still observe a herding phenomenon as σ increases, which now, according to the initial conditions, gives
rise to price dynamics that endogenously fluctuate around large or small values. To conclude, in the
right plot of Figure 4 we report the basin of attraction obtained when σ = 1 and β = 1. We stress that
we have checked through simulations that the shape of the basin for σ = 1 is robust with respect to
the considered parameters setting. It is evident that a sufficiently high initial degree of optimism or
pessimism uniquely determines the convergence toward an attractor that reflects the same polarized
optimism or pessimism. The final state to which the economic variables converge is then affected by
the sentiment perceived by the agents in a very neat way, self-sustaining and reinforcing the emergence
of more extreme levels of optimism/pessimism. This last aspect, together with the static and local
stability analysis of Subsection 2.1, will allow to understand the behavior of economic observables
when a non-deterministic effect is introduced.
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Stochastic simulations

The analysis performed in the previous subsection showed how animal spirits can drive the market
toward economic regimes characterized by either optimism or pessimism. We now consider a stochas-
tically perturbed version of the baseline model in order to see if the model is able to reproduce the
qualitative properties of time series of real-world financial markets. For a survey about stylized facts
in financial time series we refer to [9, 17, 38, 48]. With respect to those works, we focus on differ-
ent, increasingly refined, peculiar characteristics of the time series of the economic observables. A
first class of stylized facts consists in some qualitative properties of prices and returns time series
Rt = 100((Pt+1 − Pt)/Pt), such as the emergence of bubbles and crashes of stock prices and volatility
clustering. A second class includes indicators that aim at estimating the deviation from normality and
the persistence of autocorrelation in returns distribution. Such two families of stylized facts are those
usually considered in the existing literature. Additionally, we also take into account a third element
of investigation, i.e. multifractality, which is observed in stock markets time series and that is iden-
tified as a constitutive element of complexity of those markets. More precisely, multifractality is an
index to identify the presence of different long-range temporal correlations of observables. A detailed
description of what multifractality is can be found in [37]. Understanding the origin of multifractality
in financial markets is an issue that has been being addressed, e.g. in [7], and that in many real cases
stemmed from the large fluctuations of prices [62].

We recall (see for instance [12]) that a stochastic process {X(t)} is named multifractal if it has
stationary increments and if

E(|X(t)|q) = c(q)tτ(q)+1

where t ∈ [0, T ] ⊂ R and q ∈ [−q0, q0] are constants, while c : [−q0, q0] → R and τ : [−q0, q0] → R
are functions of q. The latter, called scaling function, is useful to discriminate between a monofractal
process (where τ linearly depends on q) and a multifractal one (for which τ is a concave function of
q). To estimate τ(q), in what follows we perform the Multi-Fractal Detrended Fluctuation Analysis
(MFDFA) introduced in [37]. In agreement with the above mentioned literature about multifractality
analysis of time series, to detect multifractality we adopt the following strategy. We evaluate the
strength of the multifractality process, which is defined by ∆α = αmax − αmin, where αmax and αmin

are respectively the maximum and the minimum values of α(q) = τ ′(q). This is an index of the
concavity (and, hence, multifractality) degree of τ(q). Moreover, we study the behavior of ∆α on
increasing the length N of the considered time series, which has to be monotonically increasing for
multifractality to be present. Finally, to rule out the possibility that multifractality is due to a broad
probability density function of the time series rather than due to long time correlations, we repeat the
evaluation of ∆α considering randomly shuffled time series.

As a reference example, in Figure 5 we report the time series of the returns, the autocorrelogram,
the plots of ∆α depending on N for the actual time series and the shuffled one. The last panel in
Figure 5 represents an estimation of the sentiment perceived by the agents, obtained removing the
trend from the price series and plotting the resulting zero mean detrended time series (blue line),
which actually provides an estimation of the market sentiment. We identify optimistic and pessimistic
periods by simply observing its sign and we highlight them through the orange lines. As we can see,
we have the alternation of long lasting periods of optimism and pessimism.

We stress that the example reported in Figure 5 is just a qualitative portrait of the prototypical
aspects characterizing the time series of economic variables in financial markets. From the quantitative
point of view, we may indeed have different values characterizing different stock indexes. However,
the common features are the presence of spikes and perceptible volatility clustering in the returns
time series (top left panel in Figure 5), slowly decreasing autocorrelation coefficients with significant
positive coefficients for large lags (top right panel in Figure 5), multifractality due to a long range
correlation of returns (middle row panels in Figure 5), polarization of consecutive periods of optimistic
and pessimistic behavior (bottom panel in Figure 5). Consistently with the literature on financial
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Figure 5: SP500 index stylized facts. The plots in the first row show the time series and the autocorrelation of
returns; in the second row we report the multifractality strength ∆α on increasing the length N of the sample
for the original time series (left) and the shuffled one (right); the third row highlights the emergence of optimistic
and pessimistic waves.

markets, in what follows we perform a model evaluation in order to check whether the model can
qualitatively replicate the above mentioned aspects.

To such aim, we now move to the description of the stochastically perturbed version of model (6).
In particular, we assume that the true fundamental value follows the random walk

Ft+1 = Ft + εF,tFt , (9)

where {εF,t} are normally distributed random variables with standard deviation s1 > 0 and zero mean.
Recalling that in the deterministic version of the model it holds that X = F −∆/2 and Y = F + ∆/2,
we now consider Xt = Ft−∆/2 and Yt = Ft + ∆/2, so that the condition Yt−Xt = ∆ is still fulfilled.
We stress that also in [19] the bias about the fundamental remains unchanged, while the fundamental
may vary. Moreover, as in [24], we introduce a random perturbation of beliefs, proportional to the
price, i.e.,

Xt+1 = Ft −∆/2 + εX,tPt, Yt+1 = Ft + ∆/2 + εY,tPt, (10)

where {εX,t} and {εY,t} are normally distributed random variables with standard deviation s2 > 0
and zero mean, which describe a temporary perturbation of the agents heterogeneity level.12

The shock on F is an improvement of that considered in [19], as in (9) the random component
structurally depends on the size of the fundamental.13 The resulting stochastic model is then obtained
by replacing F, X = F−∆/2 and Y = F+∆/2 with Ft, Xt = Ft−∆/2 and Yt = Ft+∆/2, respectively,
in the construction of the model in Section 2. This allows to get the stochastic version of System (6),

12Being both groups of agents fundamentalists, it is more economically reasonable to consider the same standard
deviation for both beliefs perturbations. In any case, we have checked that the results we present are robust with respect
to the introduction of a suitable asymmetry in the standard deviations of {εX,t} and {εY,t}.

13As noted in [24], an approach like that adopted in [19] is able to replicate only a first family of stylized facts,
like bubbles, crashes and persistent price deviation from fundamental. However, in order to mimic fat tails, volatility
clustering and long memory effects, a structural element has to be introduced in the description of random components.
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Figure 6: The plots in the first row show the time series of prices and returns; in the second row we show the
autocorrelation of returns when σ = 1 and the kurtosis of returns distribution as σ increases; the third row
highlights the emergence of optimistic and pessimistic waves in the market sentiment index for different values
of the sentiment weight (σ = 0 in the left panel and σ = 1 in the right panel, respectively); the fourth row
portrays the behavior of multifractality strength ∆α as N increases for different values of the sentiment weight
(σ = 0 in the left panel and σ = 1 in the right panel, respectively).

with F replaced by Ft, to which equations (9) and (10) have to be added. In particular, we note that
the shock εF,t enters the expression of Xt+1 and Yt+1 through Ft, together with εX,t and εY,t.

We report some possible outcomes of our stochastic model in Figure 6, where we consider the
parameter setting used for the simulation reported in the left panel of Figure 3, with the exception of
γ that is set equal14 to 0.02.
In the presence of exogenous shocks on the fundamental value, periods of high volatility in the price
course may alternate with periods in which prices do not depart too much from the fundamental
value. Such a behavior can arise when the parameter setting is located near the pitchfork bifurcation
boundary and exogenous noise can occasionally spark long-lasting endogenous fluctuations around the
new occurring steady states.
More precisely, the top left panel in Figure 6 displays a typical plot for the price time series obtained for
s1 = 0.003 and s2 = 0.035, which highlights the very erratic price course with alternating bubbles and
crashes. The corresponding time series of returns is reported in the top right panel of Figure 6, which
still reflects the alternating periods with high and low volatility, and exhibits volatility clustering,
highlighted by the strongly positive, slowly decreasing autocorrelation coefficients of absolute returns
(left plot in the second row of Figure 6). Moreover, deviation from normality in the returns distribution
only occurs as the herding phenomenon takes place, i.e., as the sentiment index plays an increasing

14This is agreement with [24], in which, when structural volatility is considered for the first model taken into account,
parameter are changed so that “the price converges monotonically ... though only (very) slowly so”. This also enforces
the random walk nature of the asset prices. We stress that results are qualitatively robust with respect to parameters
modifications in suitable ranges.
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relevant role in determining agents’ choices, as shown in the right plot in the second row of Figure
6. The presence of fat tails implies that, when the sentiment index drives the market, large returns
often occur, corresponding to strong movements in prices, and thus to more volatility in the financial
market, in agreement with the well-known stylized facts empirically observed. The panels in the third
row of Figure 6 compare the time series of the sentiment index It when σ = 0 and σ = 1 (respectively
in the left and right plots). When σ = 0, it is possible to observe the emergence of periods of prevailing
optimism or pessimism only if we consider a moving average Īt of It on a suitable number of periods
(in the reported simulation Īt is computed considering, at each time period t, the last 5 values assumed
by the sentiment index). This means that there is indeed alternation of periods characterized by the
prevalence of a certain sentiment, but such phenomenon is quite weak and can be perceived only
considering an average behavior over a suitable amount of periods. Conversely, when agents choose
strategies on the basis of the sentiment index, there exist waves of optimism and pessimism that
are much more long-lasting than when the influence from behavioral aspects is neglected in agents
choices. Namely, in such latter case optimism and pessimism quickly alternate due to a continuous and
recurrent evaluation of market beliefs based only on the market performance. The rationale for the
occurrence of the waves of optimism and pessimism can be explained as follows: suppose that agents
have the choice of using biased beliefs about the fundamental value of the asset, and that they seek to
opt for the one that provides them a higher profitability. When the price volatility is low, the biases
would not diverge too much from the fundamental and agents act more or less independently (some of
them being optimists and the others pessimists). Accordingly, the market maker price adjustment will
not be too strong and the price volatility remains low. In other words, the negative feedback induced
by the traders compounds the one of the market maker, and prices may converge, with alternating
periods of optimism and pessimism. On the other hand, when the price dynamics is more turbulent,
agents may prefer to observe other agents’ choices more closely and possibly imitate them. The
resulting herding behavior implies that agents’ choices become increasingly aligned (i.e. they behave
less independently), eventually on values that differ from the fundamental steady state. This may be
the case in which the optimistic and pessimistic steady states emerge. In such an eventuality, agents
orders are less balanced around the fundamental value and the market maker is no longer able to
mediate among them. Therefore, the market maker’s price adjustments over/under react to those
misalignments and the volatility remains high.
The emergence of long-lasting alternating periods of optimism and pessimism can be understood in
the light of the stability analysis reported in Subsection 2.1. As we have shown, the most economically
relevant phenomenon occurring when the market is driven by the general mood is that polarized states
emerge, in terms of both possible steady states, attractors and basins of attractions. In the simulation
reported in Figure 6, for σ = 1 the fundamental steady state is unstable and deterministic trajectories
can converge toward the polarized steady states. Since the stock price is affected by shocks, thanks
to the “polarized” structure of the basins of attractions, the trajectories persist in the basin of the
same attractor (e.g. of the optimistic one) for several periods, until a random deviation moves them
into the basin of the other attractor (e.g. of the pessimistic one), in which trajectories wander until
a similar phenomenon drives them into the basin of the former attractor. In this process, prices are
close to a random walk, with optimistic and pessimistic agents frequently switching between the two
strategies.

Finally, in the last row of Figure 6 we compare the multifractality of the time series when agents
choose their strategy on the basis of the profit evaluation only (σ = 0) or just on the basis of the sen-
timent perception (σ = 1). The results are obtained considering the average values derived from 1000
simulations. As we can see, in the former case ∆α is decreasing, in contrast with a typical multifractal
pattern. For such reason, we do not report the plot of ∆α obtained with shuffled time series, which
is similar to the original one and does not provide further relevant information. Conversely, in the
latter case ∆α is increasing (right panel of Figure 6, solid line), providing evidence for multifractality
with a significant strength when N = 16000. The result is corroborated by the decreasing behavior
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of the shuffled time series (right panel of Figure 6, dashed line), which confirms that the source of
multifractality is the long time correlation of the observables.

All the previous considerations suggest that the more refined modeling of animal spirits behavior
allows for a better agreement between simulated and real time series.

3 Introducing asymmetry in the belief biases

We here extend the baseline setting considered in Section 2 by assuming that the belief biases may
differ between optimists and pessimists. In particular, we will suppose that the belief of pessimists is
given by X = F −∆X and that the belief of optimists is given by Y = F + ∆Y , with ∆X , ∆Y > 0
possibly not coinciding, so that we obtain the baseline framework when ∆X = ∆Y = ∆/2. We still
denote the distance between the two biases by ∆ = ∆X + ∆Y , but we remark that when biases are
symmetric, as in Section 2, it is enough to specify ∆ to characterize ∆X and ∆Y , while the present
setting can be described providing both ∆ and the ratio between the two biases. Moreover, the
scenarios arising for ∆X < ∆Y and ∆X > ∆Y provide specular results. Hence, in what follows we
just consider the former one, i.e., we assume that

∆X < ∆Y ⇔ r =
∆Y

∆X
> 1, (11)

adding some comments to describe how results can be rephrased when we instead consider ∆X > ∆Y .
We note that r represents the degree of asymmetry between biases and that the farther r is from 1,
the more asymmetric the biases are.

In the new setting, the total excess demand15 reads as

Dt = ωtα(F −∆X − Pt) + (1− ωt)α(F + ∆Y − Pt),

where α > 0 is the demand reactivity parameter. Thus the price variation with asymmetric biases is
described by

Pt+1 − Pt = f(γDt) = f(γα(ωt(F −∆X − Pt) + (1− ωt)(F + ∆Y − Pt))),

with γ > 0 representing the price adjustment reactivity and f : R → (−a2, a1), with −a2 < 0 < a1,
satisfying the conditions described in Section 2. The share updating rule is still based both on
a comparison between the profits of the two groups of agents and on the sentiment index, whose
expression reads as

It = ωt(F −∆X) + (1− ωt)(F + ∆Y )− F = (1− ωt)∆Y − ωt∆X . (12)

We observe that It > 0 when ωt < ∆Y /(∆X + ∆Y ) = r/(1 + r), where r is the bias ratio16. Hence, as
expected, optimism prevails when the share of pessimists is low enough.
The evolutionary mechanism is still represented by (4), i.e.,

ωt+1 =
eβ(σ(−It)+(1−σ)πX,t+1)

eβ(σ(−It)+(1−σ)πX,t+1) + eβ(σIt+(1−σ)πY,t+1)
=

1

1 + eβ(2σIt+(1−σ)(πY,t+1−πX,t+1))
, (13)

15In order not to overburden notation, we will use the same symbols introduced in Section 2 to denote analogous
objects.

16As we shall see in the proof of Proposition 5, ω = r
r+1

is the inflection point of the map associated to the right-hand
side in (A8). We stress that for r = 1, i.e., in the absence of asymmetry, we find that the inflection point coincides
with ω = 1

2
, in agreement with the results obtained in Section 2. In this respect, we also remark that when r → 1,

the left-hand side in (15) tends to 2, making the similarity between the statements of Propositions 1 and 5 even more
apparent.
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with β > 0 representing the intensity of choice, σ ∈ [0, 1] describing the sentiment weight and with
the profits defined as in (5), so that

πY,t+1 − πX,t+1 = (Pt+1 − Pt)(∆X + ∆Y ).

The model with asymmetric biases is then
Pt+1 = Pt + f(γα(ωt(F −∆X − Pt) + (1− ωt)(F + ∆Y − Pt))),

ωt+1 =
1

1 + eβ(2σ((1−ωt)∆Y −ωt∆X)+(1−σ)(∆X+∆Y )f(γα(ωt(F−∆X−Pt)+(1−ωt)(F+∆Y −Pt))))

(14)

3.1 Steady states analysis

We investigate how the main analytical results on steady states and local stability derived in Subsection
2.1 get modified by the introduction of asymmetric belief biases.

In particular, although most of the conclusions of Proposition 5 still hold true without the biases
symmetry assumption, in the present case it is possible to obtain explicit analytical expressions neither
for any steady state, nor for the threshold identifying the occurrence of different scenarios. We have
the following proposition.

Proposition 5. Let ϕ : [2,+∞) → R be the strictly increasing function whose graph is reported in
Figure 7 and let s = βσ∆ be the sentiment strength with σ ∈ [0, 1]. System (14) has

a) a unique steady state S0 = (P 0, ω0), with ω0 ∈ (0, 1/2) and P 0 > F, provided that s ≤ 2 or

ϕ(s) ≤ 1 + r ; (15)

b) three steady states S0, S1 = (P 1, ω1) and S2 = (P 2, ω2), with r/(1 + r) < ω1 < ω2, provided that
s > 2 and ϕ(s) > 1+r. At 1+r = ϕ(s) the two coincident steady states ω1 = ω2 emerge through
a fold bifurcation.

2 3 4 5 6 7

1.5

2

2.5

3

3.5

4

Figure 7: Graph of function ϕ as defined in Proposition 5.

The main novelty in Proposition 5 concerns the role played by the value of the new parameter r,
namely the ratio of the belief biases, which measures their asymmetry, on the emergence of S1 and
S2. We note that if r decreases but ∆ is kept constant (so that the effect of the asymmetry is less
relevant than the effect of the degree of heterogeneity), from the inequality 1 + r < ϕ(s) we infer that
the emergence of the polarized steady states is facilitated, while it is hindered in when r increases.
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More generally, comparing Propositions 1 and 5, we can highlight several similarities and differences
in the results concerning the existence of equilibria in the frameworks with symmetric and asymmetric
biases. The key common feature is that in both cases, as the relevance of the role of the sentiment in
the selection of strategies increases, two new steady states can arise. If σ = 0 or if it is too small, both
frameworks are characterized by a unique steady state, confirming the role of an animal spirit behavior
on the emergence of a multiplicity of steady states. Moreover, after that the three steady states have
emerged, their position depend on the aggregate parameter s = σβ∆, i.e., on the sentiment strength,
both for symmetric and asymmetric biases (see Propositions 2 and 6, respectively).

However, going into details, both the scenarios characterized by a unique steady state and that
characterized by multiplicity present some own peculiarities. When ∆X = ∆Y , among the non-
fundamental steady states we always have the fundamental one S∗, at which the price corresponds
to the fundamental value and the population consists in identical shares of optimists and pessimists.
Conversely, if ∆X < ∆Y we have unbalanced biases in favor of optimism. When the sentiment
strength is suitably small and only one steady state exists, this does not coincide any more with
the fundamental one. Instead, due to a prevalent share of optimistic agents (ω0 < 1/2), the steady
state is characterized by a price above the fundamental and hence by an overall resulting sentiment
characterized by optimism (I0 > 0). From the economic viewpoint, the rationale is very evident: the
asymmetry in the biases reflects on the steady state features.

Concerning the couple of steady states emerging when the sentiment strength increases, we stress
that, as a consequence of the proof of Proposition 1, in the symmetric framework ωo and ωp emerge
through a pitchfork bifurcation when σ exceeds the threshold value 2/(β∆). Conversely, as it is
evident from Proposition 5, with asymmetric belief biases, the condition σ > 2/(β∆) is necessary,
but no more sufficient to guarantee the emergence of two further steady states, which now lie on the
same side with respect to r/(1 + r). In addition, it is indeed necessary that the asymmetry ratio r
between the two biases is not too large with respect to their heterogeneity degree ∆. If the optimistic
bias strongly dominates the pessimistic one, there is room for only one optimistically biased steady
state. Conversely, if the sentiment strength is large enough and the two biases are suitably balanced,
in the asymmetric framework the emergence of the two additional steady states occurs through a fold
bifurcation, whose threshold value bears a strong resemblance to that of the pitchfork bifurcation in
Proposition 1 (see also Footnote 16).
We illustrate the possible scenarios in Figure 8, where we plot the graph of function k fixing β = 3,
and in (A)–(D) we let σ increase, setting also ∆X = 1 and ∆Y = 3, so that ω0 ∈ (0, r/(1 + r)). Indeed
ω0 = 0.06 < 0.5. More precisely, in (A) we consider σ = 0.167 = 2/(β∆) and we observe that, under
such condition, the tangent line at the graph of k in correspondence to the inflection point r/(1 + r)
is parallel to the 45-degree line. Since, differently from the symmetric biases scenario, the inflection
point is not a steady state, that value for σ is not large enough to let two further steady states emerge,
in addition to ω0. Indeed, as illustrated in Figure 8 (B), the fold bifurcation through which ω1 = ω2

emerge in (r/(1 + r), 1) occurs for σ = 0.6. Increasing further σ to 0.9 in (C) we witness two distinct
values for ω1 and ω2 in (r/(1 + r), 1). The birth of a pessimistic steady state may be ascribed to
the fact that, even if the optimistic bias dominates the pessimistic one, when the role of the market
sentiment is sufficiently strong and the initial fraction of pessimistic agents ω is large enough, the role
of the asymmetry in the biases (in particular the strength of the optimistic bias), being offset by the
role of the market sentiment, is not able to lead the agents towards an optimistic majority. Instead
they remain stuck to the pessimistic steady state. However this does not occur if the initial fraction
of agents is more balanced and, in this case, we observe a convergence to the optimistic steady state,
as the graph of Figure 8 (C) and the basin of attraction in Figure 8 (D) portray.

We stress that if we consider the case of a dominating pessimistic bias, namely opposite to (11), we
have ∆X > ∆Y and the asymmetry degree is better described by the ratio r = ∆X/∆Y . In this case,
similar results to those reported in Proposition 5 still hold true. The threshold discerning between
the existence of a unique/multiple steady states is exactly the same (being now r the reciprocal of
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Figure 8: Panels (A), (B) and (C): the graph of map k for β = 3, ∆X = 1, ∆Y = 3, and σ = 0.167 in (A),
σ = 0.6 in (B) and σ = 0.9 in (C). Panel (D): basin of attraction of the optimistic (yellow region) and pessimistic
(blue region) attractors with asymmetric belief biases.

what defined in (11)), and the always existing steady state is now pessimistically biased, the share of
pessimistic agents being larger than 1/2 and the price being smaller than the fundamental.

We now investigate how Proposition 2 is modified by the consideration of possibly not coinciding
belief biases. Namely, in the following result we study how the position of the three steady states
varies when the value of the main model parameters changes. In Proposition 6 we also analyze the
variations in the values of the sentiment index I0, I1 and I2 at S0, S1 and S2, respectively.

Proposition 6. Let σ ∈ [0, 1] and the parameters configuration be such that s > 2 and ϕ(s) =
ϕ(βσ∆) > 1 + r holds true and steady states S1 = (P 1, ω1) and S2 = (P 2, ω2) have already emerged.
Then, on increasing σ or β we have that ω1, P 2 and I2 decrease, while ω2, P 1 and I1 increase for all
values of ∆X 6= ∆Y . As concerns ω0, on increasing σ or β it decreases when ∆X < ∆Y , and it also
decreases if the asymmetry in the bias increases, keeping the heterogeneity level fixed. Finally, P 0 and
I0 always have an opposite behavior with respect to ω0 when raising σ or β.

We stress that the proof of Proposition 6 allows us to draw some conclusions about the effect
produced by an increase in σ or β on the position of ω0, even when S1 and S2 have not emerged yet.
Namely, since the map k with respect to σ or β is still decreasing for ω ∈ (0, r/(r+ 1)) and increasing
for ω ∈ (r/(r + 1), 1), also in this case ω0 decreases. That same feature of k allows concluding that,
since S1 and S2 emerge in (r/(r+ 1), 1) and k is increasing on (r/(r+ 1), 1), then an increase in σ or
β facilitates the emergence of S1 and S2. We remark that it is possible to show that such finding still
holds when ∆X > ∆Y .
In regard to the effects produced by variations in the value of ∆X and ∆Y , we focus on the case in
which ∆ = ∆X + ∆Y is constant, while r > 1 changes. From a geometric argument similar to that
employed in the proof of Proposition 6, we can conclude that, since the inflection point moves towards
the 45-degree line when the difference in absolute value between ∆X and ∆Y decreases, i.e., when r
falls, the stationary value for ω closer to r/(r + 1), that is ω1 since ∆X < ∆Y , moves in the same
direction as ω = r/(r + 1).

Also concerning the comparative statics of the steady states in the symmetric and asymmetric
frameworks, we can highlight some similarities and differences. The main difference is that in the
symmetric framework, being the fundamental steady state S∗ independent from the considered pa-
rameter configuration, when a unique steady state exists, that is not influenced by β, σ and ∆. On
the other hand, in the asymmetric framework we have that S0 becomes “more polarized” as the pa-
rameters describing the behavior of the agents become more extreme. We stress that the economic
rationale of this last behavior is completely in line with the big picture of the results: the param-
eters describing the behavioral aspects of the agents tend to enhance any existent deviation from a
perfectly symmetric and self-balanced situation. When ∆X = ∆Y , the two population groups are

22



completely symmetric, and there is always a steady state reflecting the lack of any ex-ante exogenous
asymmetry in the agents. However, as s increases, any small deviation from such symmetric steady
state can lead, through the previously described herding phenomenon, to the emergence of ex-post
endogenously polarized steady states. Namely, in the asymmetric framework, there is an ex-ante ex-
ogenous asymmetry in the agents’ beliefs, which, as already noted, reflects on the intrinsic asymmetry
embedded in S0 and which is further polarized by an increase in s. Moreover, when the two addi-
tional steady states emerge, the polarization of the two extreme steady states S0 and S2 increases
as s increases, like it happened to Sp and So in the symmetric framework. The difference is that in
the symmetric framework the intermediate steady state is the fundamental one, namely the always
existing equilibrium S∗, while in the asymmetric framework the intermediate steady state is S1, that
is one of the two steady states arisen through the fold bifurcation. However, despite such dissimilarity,
the two frameworks share a common picture, in which an intermediate steady state separates the two
increasingly polarized ones as the sentiment strength increases. This result is further confirmed by
analyzing the basins of attraction of the two polarized steady states. We have already shown that if
the beliefs of optimists and pessimists are respectively F −∆/2 and F + ∆/2 (see the right panel in
Figure 4) the symmetry of the underlying framework reflects on a “symmetric” path dependency with
respect to the initial distribution of agents’ shares. If we gradually introduce asymmetry in the biases
by increasing the ratio r, we have that the basin of attraction of the optimistically polarized attractor
increases. Figure 8 (D) is obtained using the same parameter setting used for that reported in Figure
4, but introducing asymmetry in the biases. As a consequence, most of the long run dynamics settle
down to the optimistic attractor. We stress that, if we further increase the value of r used for the
simulation reported in, as the ratio r between the optimistic and pessimistic biases raises the two
attractors become more polarized and most of the long run dynamics settle down to the optimistic
attractor, while the pessimistic attractor disappears.

In regard to the comparative statics, we remark that the previous considerations are consistent
with the case of ∆X > ∆Y , too.

3.2 Stochastic simulations

We consider the same parameters setting as in the model with symmetric optimistic/pessimistic biases,
with the unique difference that we now set ∆X = 1.5 and ∆Y = 1.2. We omit the price and return
time series, as well as the behavior of kurtosis, as they essentially agree with those reported in Figure
6 for the symmetric biases framework. Moreover, we only focus on the case of σ = 1, since all the
considerations we have made in Subsection 2.2 about the stochastic simulations for the case of σ = 0
with symmetric biases still hold true for the simulations we collected in the asymmetric biases case. As
we can see from a comparison between the plots reported in Figures 6 and 9, the essential features of the
stylized facts are still portrayed. However, a significant asymmetry in the biases leads to an asymmetric
relevance of the optimistically and pessimistically polarized steady states in the deterministic model,
which reflects also on the stochastically perturbed one. In the reported simulations, the stronger
bias for the pessimistic agents leads to a pessimistic steady state that attracts more trajectories than
the optimistic one, with a generally increased robustness of the pessimistic scenario. Such feature
is evident also from the top right panel in Figure 9, from which we can see that even if periods of
persistent pessimism and optimism alternate, those characterized by pessimism are more persistent
and frequent. This also results in an increase in the autocorrelation effect, as it is clear comparing the
top left panel in Figure 9 with the autocorrelation diagram for the symmetric bias case reported in
Figure 6. Finally, even if multifractality still emerges from the simulation reported in the second row
of Figure 9, the increasing trend of ∆α is less evident than in Figure 6, as highlighted by the change
in monotonicity when N is large enough. We stress that we checked that, if we further increased the
asymmetry of bias, the previous phenomena would become much more relevant, while they would
attenuate as ∆X ≈ ∆Y . All these considerations seem to suggest that a strong asymmetry in the bias
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Figure 9: The plots in the first row show the autocorrelation of returns when σ = 1 and the alternation
of optimistic and pessimistic waves in the market sentiment index; the second row shows the behavior of
multifractality strength ∆α for the original (solid line) and shuffled (dashed line) time series.

is not supported by the stochastic simulations and that the model with more balanced biased agents
is able to provide more realistic results.

4 A model with technical traders

We shall now study the effects of enriching the set of agents types in order to account also for the
presence of technical traders. It is well known (see e.g. [11] and [47]) that agents can choose their
strategies not only on the basis of an evaluation of the fundamental value - being called fundamentalists
-, but also on the basis of the market trend - being called technical traders -, and that the nonlinear
interactions between technical traders and fundamentalists may cause complex price dynamics. In fact,
the laboratory evidence (cf. [5] and [34]) and questionnaire studies (see e.g. [49], [50], [59]) indicate
that market participants rely on technical or on fundamental trading rules to set their orders. The
behavior of technical traders is usually characterized by a positive feedback about price movements,
buying and selling when prices respectively increase and decrease, that is, when they observe significant
price changes, thus putting greater trust in their technical trading signals. Since technical traders rely
on extrapolative rules to forecast future prices and to take their position in the market, they tend to
sustain and reinforce current price trends and to possibly amplify the deviations from the fundamental
price. Accordingly, forming expectations considering not only fundamental but also technical analysis
is consistent with short-run momentum and long-run reversal behavior in financial markets. Hence,
because of such a positive feedback, the presence of technical traders can give rise to spontaneous
herding phenomena, even when the agents switching choices only depend on profits. This is also a
reason for they have not been taken into account in the model analyzed in Sections 2 and 3. We will
show below that the results obtained for the model in (6) are robust with respect to the introduction of
technical traders. In order to do so, while keeping the model simple and close to (6), we assume that the
technical traders share ωc ∈ [0, 1) is exogenously given17, whereas the share of optimistic/pessimistic
agents depends as in (6) on a fitness measure corresponding to a weighted average of a sentiment index
and of profits. Namely, we still assume that the beliefs of fundamentalists18 are optimistically (so that

17Such class of agents can be considered as a constant presence in the market due to the peculiar feature that char-
acterizes its behavior. Namely, technical traders believe that stock prices tend to move in trends which persist for an
appreciable length of time and that changes in trend are caused by shifts in demand and supply. Those shifts, no matter
why they occur, can be detected sooner or later in the action of the market itself.

18We stress that the beliefs of fundamentalists regard the fundamental value, not the price. However, in this section, in
order to keep the notation more homogeneous to that used for technical traders, we denote the beliefs of fundamentalists
by P e, as well.
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they are P eo,t+1 = Y = F + ∆/2) or pessimistically (so that they are P ep,t+1 = X = F −∆/2) biased,
while the beliefs of technical traders are P ec,t+1 = Pt−1 + δ(Pt−1 −Pt−2), with δ > 0 representing their
reactivity. The demand of each kind of agent is Di,t = αi(P

e
i,t+1−Pt), with i ∈ {o, p, c}, where αi > 0

are demand parameters and we assume αp = αo = αF . The excess demand is then

EDt =
∑

i∈{o,p,c}

αiωi,t(P
e
i,t+1−Pt) = αFωp,t(X−Pt)+αF (1−ωp,t−ωc)(Y−Pt)+αcωc(Pt−1+δ(Pt−1−Pt−2)−Pt).

The sentiment It perceived at time t by fundamentalists about the market is given by the difference
between the beliefs of each agent and the fundamental, weighted by the share of each group. Now the
sentiment index takes into account also the choices of technical traders, i.e.

It =
∑

i∈{o,p,c} ωi,t(P
e
i,t+1 − F ) = ωp,t(X − F ) + (1− ωp,t − ωc)(Y − F ) + ωc(Pt−1 + δ(Pt−1 − Pt−2)− F )

= ωp,tX + (1− ωp,t − ωc)Y + ωc(Pt−1 + δ(Pt−1 − Pt−2))− F.

The model is then given by{
Pt+1 = Pt + f(γEDt)

ωp,t+1 = (1− ωc) e−σβIt+(1−σ)βπo,t+1

e−σβIt+(1−σ)βπp,t+1+eσβIt+(1−σ)βπo,t+1

(16)

We stress that, due to the presence of technical traders, the joint share of optimists and pessimists
satisfies ωp,t+ωo,t = 1−ωc, and thus ωp,t, ωo,t ∈ (0, 1−ωc). Moreover, system (16) can be rewritten as
a four-dimensional first order dynamical system by introducing the new variables Ct+1 = Pt+δ(Pt−Zt)
and Zt+1 = Pt, obtaining

Pt+1 = Pt + f(γEDt)

ωp,t+1 = (1− ωc) e−σβIt+(1−σ)βπo,t+1

e−σβIt+(1−σ)βπp,t+1+eσβIt+(1−σ)βπo,t+1

Ct+1 = Pt + δ(Pt − Zt)
Zt+1 = Pt

(17)

where
EDt = αFωp,t(X − Pt) + αF (1− ωp,t − ωc)(Y − Pt) + αcωc(Ct − Pt)

and
It = ωp,tX + (1− ωp,t − ωc)Y + ωcCt − F.

4.1 Analytical Results

We now show that the introduction of technical traders does not affect the results of Section 2.1 about
the possible steady states scenarios and their comparative statics. We summarize the generalization
of the results encompassed in Propositions 1 and 2 in the following:

Proposition 7. System (17) has

a) a unique steady state S∗ = (P ∗, ω∗p, C
∗, Z∗) =

(
F,

1− ωc
2

, F, F

)
if σ ∈ [0, 1] and

s = βσ∆ ≤ 2;

b) three steady states S∗, So = (P o, ωo, P o, P o) and Sp = (P p, ωp, P p, P p) if 2
β∆ < σ ≤ 1. In

particular, So and Sp are symmetric w.r.t. S∗, with P p < P ∗ < P o and ωo < ω∗ < ωp. In this
case, on increasing σ, β and ∆ we have that ωo decreases, while P o and Io increase, and that ωp

increases, while P p and Ip decrease.
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Figure 10: Bifurcation diagrams on varying σ for different values of the intensity of choice β. The parameter
values not reported in the plots are: αF = 3.5, αc = 0.4, δ = 0.6. With a stable price mechanism, even a large
share of technical traders does not amplify the dynamics, which may settle down to the fundamental steady
state S∗ (left panel) or to the optimistic/pessimistic steady states So, Sp (in black and red, respectively, in the
right panel).

The previous proposition shows that the results about the possible steady state scenarios are essen-
tially unaffected by the introduction of technical traders. We again have that a herding phenomenon
can take place only when a (whatever small) share of agents takes into account the market sentiment
in choosing the strategy to adopt. The economic interpretation for this result is the same of that in
Section 2.1, which is valid for the model with technical traders as well.

Concerning the dynamics, due to the high dimensionality of the model, we limit our analysis to
present some possible scenarios, to show that also with technical traders all the conclusions drawn in
Section 2.1 still hold. If we consider a stable price mechanism (i.e., if γ < 2 according to Footnote
11), the bifurcation diagrams with respect to γ are basically unaffected by the introduction of an even
large share of technical traders, as highlighted by a comparison between Figures 3 and 10.
Conversely, when the price mechanism is unstable, the introduction of technical traders can spread
instabilities in the market, as shown in Figure 11, although the polarization of attractors still occurs.
This may be due to the fact that a turbulent market is considered as more attractive by the technical
traders with higher chances of realizing gains. In turn, if technical traders act aggressively, they may
lead the price to divert even from the optimistic or pessimistic steady states, with consequent possible
oscillations around them, along trajectories where prices may trace out bubble or crash paths from
time to time.

4.2 Stochastic simulations

We calibrate the model considering the same setting used for the simulations of the model with
fundamentalist agents and symmetric bias, with the only exceptions of β, which is now set equal to 1,
and of the standard deviations of the stochastic terms, which are now s1 = 0.075 and s2 = 0.039. The
parameters related to the new components of the model with technical traders agents are ωc = 0.9, δ =
0.1, αF = 3.5 and αc = 3.5. In agreement with the literature on financial markets (see e.g. [59]), we
consider a large fraction of technical trader agents. We have thoroughly checked that all the results
and considerations we are going to present are still valid when smaller fractions of technical traders are
considered, with a possibly different parameters calibration. As we can see from Figure 12, the results
obtained therein for σ = 1 are in very good agreement with those reported in Figure 5. Enriching the
original model in (6) with the presence of technical traders, further improves the quality of the results
reported in Figure 6, in particular with respect to the autocorrelation and the persistence of consecutive
periods of optimistic and pessimistic behaviors, maintaining the same deviation from normality and
the multifractal behavior. Nonetheless, although the model in (16) with σ = 0 performs better than
the model in (6) with σ = 0 and provides a time series description that is qualitatively consistent with
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Figure 11: Bifurcation diagrams on varying σ for different values of the share of technical traders ωc. The
parameter values not reported in the plots are: αF = 1.25, αc = 0.6, δ = 0.4. When the price mechanism
is unstable, the introduction of technical traders may amplify the resulting dynamics in a way that, after the
occurrence of the pitchfork bifurcation, adds further complexity issues, with the occurrence of periodic dynamics
due to a period-doubling bifurcation (left panel) or of endogenous oscillations around the polarized regimes as
the effect of a secondary Neimark-Sacker bifurcation (central and right panels).

that of SP500, when σ = 0 we have larger autocorrelation coefficients that decrease faster than those
obtained for σ = 1, as well as a reduced deviation from normality. Finally, the dissimilarity between
the time series of the sentiment index in Figures 5-6 and Figure 12 is highly significant: when σ = 0
in the latter we have very nervous consecutive variations of optimistic and pessimistic behaviors, that
differ a lot from those of the real index (even when compared to those obtained from the simulation
of the model with fundamentalist agents only reported in the right panel of the third row of Figure
6). The introduction of technical traders seems to amplify the tendency of agents to randomly switch
between optimistic and pessimistic behaviors when the choice of the strategy depends on the profit
evaluation. Conversely, when the role of the market sentiment dominate the expectation selection
mechanism, its polarizing effect is reinforced by technical traders and results in long lasting periods of
optimistic/pessimistic perception of the market. We do not report a plot about multifractality when
σ = 0 since in this case the behavior is quite similar to that obtained in Figure 12 for σ = 1, the
unique difference being a less steep increasing/decreasing behavior of ∆α in the former case.

5 Concluding remarks

In the economic literature there exist several contributions (e.g. [13, 19, 51]) showing that, diverting
from the perfect rationality assumption on the agents behavior, the waves of optimism and pessimism
observed in financial markets can be explained in terms of endogenous fluctuations originated by the
evolutionary selection of simple heterogeneous heuristics and/or by imitation mechanisms in forming
beliefs about the fundamental. However, changes in the psychological and emotional perception of
the market are not only consequences of the agents’ choices, being also part of the process on which
decisions are taken. When the mechanism which regulates the evolutionary selection of forecasting
rules is based on a combination of the average mood perceived by the agents about the status of
the market and a precise evaluation of the profits, new economic regimes arise, different from those
occurring when agents decisions are not driven by “animal spirits”. Such regimes are characterized
by persistently polarized levels of optimism and pessimism, highlighted by high/small beliefs and
prices, as well as by a large share of optimists or pessimists. An excess of optimism and pessimism,
or an overconfidence placed on technical analysis, may endogenously generate outcomes which can be
seen as the result of a self-sustaining herding phenomenon. On the other hand, endogenous waves
of optimism and pessimism are not ruled out by animal spirits, especially when decision mechanisms
are based on both market sentiment and profits evaluation. Moreover, as the role of the sentiment
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Figure 12: The plots in the first row show the autocorrelation of returns when σ = 0 and σ = 1; the plots in
the second row show the alternation of optimistic and pessimistic waves in the market sentiment index when
σ = 0 and σ = 1; in the last row, the left plot shows the kurtosis on varying σ, while the right plot reports the
behavior of multifractality strength ∆α for the original (solid line) and shuffled (dashed line) time series when
σ = 1.

index becomes predominant, those waves are reinforced by possible endogenous dynamics around
self-fulfilling economic regimes and, when non-deterministic effects are taken into account, give rise
to alternating long-lasting periods of polarized economic regimes. Our future researches will aim at
deepening the study of the role of animal spirits as the drivers of economic decisions, extending the
pursued approach to other macroeconomic frameworks, also involving the real market side.
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Appendix

A Proof of the analytical results

Proof of Proposition 1. A straightforward check shows that (P ∗, ω∗) = (F, 1/2) is always a steady
state. However, in general, it is not the only one. Indeed, setting Pt+1 = Pt = P and ωt+1 = ωt = ω
in (6), we obtain F − P + ∆(1/2− ω) = 0, from which, recalling (3), it follows that

P = F + ∆(1/2− ω) = F + I (A1)

and

ω =
1

1 + eβ∆σ(1−2ω)
. (A2)

Equation (A2) is indeed solved by ω∗ = 1/2, so that by (A1) we obtain P ∗ = F.
Let us introduce function h : (0, 1) → R whose expression is given by the right-hand side of

(A2). We have that h(1/2) = 1/2 and, when extending the domain of h to R, limω→−∞ h(ω) = 0
and limω→+∞ h(ω) = 1. A straightforward check shows that h′(ω) > 0 and that h′ (1/2) = β∆σ/2.
Moreover, h is convex (resp. concave) for ω < 1/2 (resp. ω > 1/2) with h′′(1/2) = 0.

From the previous considerations, recalling that the left-hand side of (A2) is ω, we can conclude
that if h′(1/2) ≤ 1 there is exactly one solution to (A2), that is, ω∗ = 1/2, while if h′(1/2) > 1 there
are three distinct solutions to (A2). Indeed, it is easy to show that h is symmetric w.r.t. ω = 1/2, i.e.,
that h(1/2 + ε) − h(1/2) = h(1/2) − h(1/2 − ε) for every ε > 0, which, recalling that h(1/2) = 1/2,
reduces to h(1/2 + ε) = 1− h(1/2− ε).
Noting that h′(1/2) ≤ 1 corresponds to (7) allows concluding that, when (7) is violated, (A2) is solved
by some ωo < 1/2 < ωp, which satisfy ωo = 1− ωp, and for which, by (A1), there is a correspondence
to P p < F < P o, respectively. Moreover, replacing in (A1) ω with 1−ω we obtain F −I, which means
that P o and P p are symmetric with respect to F.

Proof of Proposition 2. We consider (A2), in which we put in evidence the dependence on the param-
eter we study of its right-hand side, that we still call h as in the proof of Proposition 1. We start
noting that h is greater (resp. smaller) than 1/2 for ω > 1/2 (resp. ω < 1/2) and we recall that it
is continuous on (0, 1). Since the roles of σ and ∆ in the expression of h is exactly the same as that
of β we can just deal with this last parameter. We have that if β1 < β2 then hβ2(ω) > hβ1(ω) (resp.
hβ2(ω) < hβ1(ω)) for ω > 1/2 (resp. ω < 1/2). A simple geometrical consideration allows concluding
that ωo (resp. ωp) is strictly decreasing (resp. increasing) with respect to β.

Finally, from the result about ωo, by (A1) we have that P o = F + ∆(1/2 − ωo) increases as β, σ
or ∆ increase and Io increases, too.

Proof of Proposition 3. The local asymptotic stability of S∗ is guaranteed if

1 + det(J∗) + tr(J∗) > 0⇔ −∆βσ (γ + ∆γ − 2) + γ(∆2β − 2) + 4 > 0
1− det(J∗) > 0⇔∆βσ (γ(2 + ∆)− 2)−∆2βγ + 4 > 0
1 + det(J∗)− tr(J∗) > 0⇔ 2−∆βσ > 0

(A3)

where

J∗ =

 1− γ −∆γ
∆βγ (1− σ)

4

β∆ (2σ + ∆γ (1− σ))

4


is the Jacobian matrix of System (6) evaluated at S∗. We recall that when stability is lost due to a
violation of the first (resp. second) condition of (A3), steady state S∗ incurs a flip (resp. Neimark-
Sacker) bifurcation. Conversely, also recalling Proposition 1, the third condition of (A3) is the same
as (7), so when it is violated a pitchfork bifurcation occurs.
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If σ = 0, conditions (A3) become {
−2γ + ∆2βγ + 4 > 0
−∆2βγ + 4 > 0

which easily provides 2(γ − 2) < ∆2βγ < 4, while if σ = 1 we have
(∆β + 2)(γ − 2) < 0
∆β − 2 < 0
∆β − 2−∆βγ < 0

which, after noting that the third condition is implied by the second one, leads to the assertion.

Proof of Proposition 4. Let us set γ = 1. The conditions in (A3) become

∆βσ(1−∆) + ∆2β + 2 > 0
∆2σβ −∆2β + 4 > 0
2−∆βσ > 0

(A4)

As it is easy to check, the first condition in (A4) is satisfied for any σ ∈ [0, 1], both when ∆ ≤ 1 and
when ∆ > 1. If fact, if ∆ ≤ 1 the left-hand side is clearly strictly positive, while if ∆ > 1 we have
∆βσ(1 − ∆) + ∆2β + 2 > −∆2βσ + ∆2β + 2 = ∆2β(1 − σ) + 2, which is indeed positive for any
σ ∈ [0, 1].
The third condition of (A4) is always satisfied if β < 2/∆ while if β > 2/∆ it holds true provided that

σ <
2

∆β
.

The second condition of (A4) is fulfilled for any σ ∈ [0, 1] if β < 4/∆2, otherwise it is fulfilled for

σ ∈
(

∆2β−4
∆2β

, 1
]

if β > 4/∆2.

Stability is then unconditional if

β < min

{
4

∆2
,

2

∆

}
while a pitchfork bifurcation occurs for σ = 2/∆β if

2

∆
< β <

4

∆2
.

To have a mixed scenario, we need {
∆2β > 4
∆β > 2

and
∆2β − 4

∆2β
<

2

∆β

which requires ∆2β < 2∆ + 4, i.e

max

{
4

∆2
,

2

∆

}
< β <

2∆ + 4

∆2
,
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otherwise S∗ is unconditionally unstable, i.e. for

β >
2∆ + 4

∆2
.

Finally, we have a stabilizing scenario if

4

∆2
< β <

2

∆
.

If we set γ = 3, stability is guaranteed for

−∆βσ(3∆ + 1) + 3∆2β − 2 > 0
∆βσ(3∆ + 4)− 3∆2β + 4 > 0
2−∆βσ > 0

(A5)

The first condition of (A5) is satisfied by

σ <
3∆2β − 2

∆β(3∆ + 1)
< 1

which requires ∆2β > 2/3 (since the rightmost condition is always fulfilled), otherwise it is never
fulfilled for σ ∈ [0, 1].
The second condition of (A5) is always satisfied if ∆2β < 4/3, while if ∆2β > 4/3 it can be rewritten
as

σ >
3∆2β − 4

∆β(3∆ + 4)
< 1

where the rightmost inequality holds true independently of ∆ and β.
The third condition in (A5) is the same as that in (A4).
If β < 2/(3∆2) then the steady state is unconditionally unstable.
If 2/(3∆2) < β < 4/(3∆2), then the steady state is stable on

σ ∈
[
0,min

{
3∆2β − 2

∆β(3∆ + 1)
,

2

∆β

})
. (A6)

However
3∆2β − 2

∆β(3∆ + 1)
<

2

∆β

is equivalent to

β <
6∆ + 4

3∆2

so it is granted if β < 4/(3∆2). Then (A6) reduces to

σ ∈
[
0,

3∆2β − 2

∆β(3∆ + 1)

)
.

If β > 4/(3∆2), then S∗ is stable on

σ ∈
(

3∆2β − 4

∆β(3∆ + 4)
,min

{
3∆2β − 2

∆β(3∆ + 1)
,

2

∆β

})
.

We start noting that
3∆2β − 4

∆β(3∆ + 4)
<

2

∆β
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if

β <
2∆ + 4

∆2
.

From the previous considerations we have that if

4

3∆2
< β <

6∆ + 4

3∆2

(
<

2∆ + 4

∆2

)
then S∗ is stable on

σ ∈
(

3∆2β − 4

∆β(3∆ + 4)
,

3∆2β − 2

∆β(3∆ + 1)

)
and on decreasing σ we have a Neimark-Sacker bifurcation at 3∆2β−4

∆β(3∆+4) , while on increasing it we have

a flip bifurcation at 3∆2β−2
∆β(3∆+1) .

If
6∆ + 4

3∆2
< β <

2∆ + 4

∆2

S∗ is stable on

σ ∈
(

3∆2β − 4

∆β(3∆ + 4)
,

2

∆β

)
and on decreasing σ we have a Neimark-Sacker bifurcation at 3∆2β−4

∆β(3∆+4) , while on increasing it we have

a pitchfork bifurcation at 2/(∆β).
Finally, if β > 2∆+4

∆2 the steady state is unconditionally unstable.

Proof of Proposition 5. Similarly to the proof of Proposition 1, setting Pt+1 = Pt = P and ωt+1 =
ωt = ω in (14), we obtain ω(F −∆X − P ) + (1− ω)(F + ∆Y − P ) = 0, from which, recalling (12), it
follows that

P = F − ω∆X + (1− ω)∆Y = F + I (A7)

and

ω =
1

1 + e2βσ((1−ω)∆Y −ω∆X)
=

1

1 + e2βσ∆X((1−ω)r−ω)
, (A8)

where we recall that r = ∆Y /∆X is the bias ratio.
Introducing the function k : (0, 1) → R, ω 7→ 1

1+e2βσ∆X ((1−ω)r−ω) = 1
1+e2βσ∆X (r−ω(1+r)) , when extending

the domain of k to R, we have that limω→−∞ k(ω) = 0 and limω→+∞ k(ω) = 1, and a straightforward
check shows that k is strictly increasing and that it is convex (resp. concave) for ω < r/(1 + r) (resp.
ω > r/(1+r)) with k(r/(1+r)) = 1/2, k′(r/(1+r)) = βσ∆X((1+r)/2) and k′′(r/(1+r)) = 0. Hence,
ω = r/(1 + r) is a fixed point for k only when ∆X = ∆Y . Nonetheless, extending the domain of k to
[0, 1], since k(0) = 1/(1 + e2βσr∆Y ) > 0 and k(1) = 1/(1 + e−2βσ∆X ) < 1, Bolzano’s theorem applied
to the map k(ω) − ω guarantees the existence of a steady state value ω0 ∈ (0, 1), to which a steady
state value P 0 is associated by (A7). In particular, it holds that r/(1 + r) > 1/2 as ∆X < ∆Y . Hence,
k(r/(1 + r)) = 1/2 < r/(1 + r) and, as already observed, k(0) > 0 guarantee that ω0 ∈ (0, r/(1 + r))
and it is the unique equilibrium therein.
More precisely, since when r > 1 we have that k(1/2) = 1

1+eβσ∆X (r−1) < 1/2, we can actually conclude

that ω0 ∈ (0, 1/2). A direct computation using (A7) shows that the corresponding value P 0 of the
price is larger than the fundamental value, since the sentiment index I0 is positive.
In the remainder of the proof we show that a new couple of steady states ω1 < ω2 emerges in
(r/(1 + r), 1) if and only if condition (15) is violated.
We stress that from the previous considerations, if the maximum slope of k, which is βσ∆X((1+r)/2) =
βσ∆/2 = s/2 and that is attained at the inflection point ω = r/(1 + r), is smaller than 1, the function
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k on (r/(1 + r), 1) lies strictly below the 45-degree line and no other equilibria emerge.
This means that steady states ω1 and ω2 could emerge only if s/2 > 1 provided that function k

becomes tangent to the 45-degree line, i.e. when a fold bifurcation occurs. The necessary and sufficient
condition for this is that at some ωf ∈ (r/(1 + r), 1) we have

{
k′(ωf ) = 1
k(ωf ) = ωf

⇔


2sxf

(1+xf )2 = 1

1
1+xf

= ωf

(A9)

where we set
xf = e2βσ∆X(r−ωf (1+r)).

Solving for xf the latter equation in (A9) and using the resulting expression in the former one, we
find

2sωf (ωf − 1) + 1 = 0

which, solved for ωf , provides the unique solution larger than 1/2

ωf =
s +

√
s(s− 2)

2s
.

Replacing such expression for ωf in the latter equation in (A9) we find

1

1 + e−
s+
√

s(s−2)−rs+r
√

s(s−2)

r+1

=
s +

√
s(s− 2)

2s

which solved for r provides

r + 1 =
2s

s−
√

s(s− 2)− ln

(
s−
√

s(s−2)

s+
√

s(s−2)

) = ϕ(s) (A10)

where in the previous expression we have introduced the function ϕ : [2,+∞) → R, s 7→ ϕ(s). It is
easy to check that ϕ strictly increasing.

Since k is convex on (0, r/(1 + r)) and k(r/(1 + r)) < r/(1 + r), the tangency point ωf between
the graph of k and the 45-degree line can lie in (r/(1 + r), 1) only. Hence, if the ratio between the two
biases and the sentiment strength s = βσ∆ are such that condition (A10) is satisfied, we have two new
coincident solutions of (A8) in (r/(1 + r), 1) corresponding to ω1 = ω2 = ωf , and a fold bifurcation
occurs.

If, for a given s > 2 and considering the corresponding r defined by (A10), we take r̃ < r
(keeping constant s = βσ∆, which means that βσ∆X increases while βσ∆Y decreases), we have that
kr(ω) < kr̃(ω), which guarantees in particular that kr̃(ωf ) > kr(ωf ) = ωf . Namely, k is decreasing in
r. Applying Bolzano’s Theorem to the map kr̃(ω) − ω we have that there exists ω1 ∈ (r/(1 + r), ωf )
and ω2 ∈ (ωf , 1), which guarantee that ωi, i = 1, 2, exist when 1 + r < ϕ(s). The corresponding price
values P 1 and P 2 can again be found from (A7).

Let us now consider a given r > 1 and the corresponding s defined by (A10), which is unique since
ϕ is strictly increasing. If ŝ > s (keeping fixed the ratio corresponding to the new value ŝ), proceeding
as before and using that ϕ is strictly increasing, we again have 1 + r < ϕ(ŝ), so that ωi, i = 1, 2, exist.
We stress that in the opposite situations we have just one solution, namely when we consider, for a
given s > 2 and the corresponding r defined by (A10), r̂ > r (keeping constant s) or, for a given r > 1
and the corresponding s defined by (A10), s̃ < s (keeping fixed the ratio corresponding to the new
value s̃).
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Proof of Proposition 6. Let us consider (A8), in which we put in evidence the dependence on the
parameter that we study of its right-hand side, that we still call k as in the proof of Proposition 5.
We start recalling that k is continuous on (0, 1). Since the role of σ in the expression of k is exactly
the same as that of β, we can just deal with the latter parameter. We have that if β1 < β2 then
kβ2(ω) > kβ1(ω) (resp. kβ2(ω) < kβ1(ω)) for ω > r/(r + 1) (resp. ω < r/(r + 1)), where r = ∆Y /∆X

is the bias ratio. Recalling that ω0 ∈ (0, r/(r + 1)) and ω1, ω2 ∈ (r/(r + 1), 1), a simple geometrical
argument allows concluding that ω0 and ω1 decrease, while ω2 increases when raising β. Since by (12)
it holds that

Ij = (1− ωj)∆Y − ωj∆X = ∆X(r − ωj(1 + r)), j ∈ {1, 2, 3},

we can immediately infer that the behavior of Ij on increasing β is opposite with respect to that
derived for ωj , j ∈ {1, 2, 3}. If we keep ∆ fixed and we raise r, we have that ∆X decreases and ∆Y

increases. Hence, the exponent of e in the denominator of (A8) increases, namely function k is strictly
decreasing with respect to r. This guarantees that ω0 decreases.

Finally, recalling (A7), the results about P j , j ∈ {1, 2, 3}, directly follow by those on Ij , j ∈
{1, 2, 3}. This completes the proof.

Proof of Proposition 7. In order to detect the model steady states we set ξt+1 = ξt = ξ∗ for ξ ∈
{P, ωp, C, Z} in (17), from which we obtain Z∗ = P ∗ = C∗. Moreover, we have ED∗ = 0, where
ED∗ = αF ω

∗
p(X − P ∗) + αF (1 − ω∗p − ωc)(Y − P ∗), from which, recalling that X = F − ∆/2 and

Y = F + ∆/2, we find

P ∗ =
2F −∆ωc + ∆− 2∆ω∗p − 2Fωc

2(1− ωc)
(A11)

which, used in the equation of ωp, provides

ω∗p =
1− ωc

e
∆βσ(1−ωc−2ω∗p)

1−ωc + 1

⇔
ω∗p

1− ωc
=

1

e
∆βσ

(
1− 2ω∗p

1−ωc

)
+ 1

.

Setting ω =
ω∗p

1−ωc , we find

ω =
1

e∆βσ(1−2ω) + 1

which is exactly (A2). The previous implicit equation is studied in the proofs of Propositions 1
and 2. The results we have found for ω in those propositions can be easily rephrased in relation to
ω∗p = (1 − ωc)ω, from which we have the existence of either one or three steady states depending on
s = σβ∆, as well as their comparative static results. Indeed, when ω∗p = (1 − ωc)/2, from (A11) we
find P ∗ = F . Moreover, the symmetry of (A2) with respect to ω = 1/2 provides the symmetry of ωp
with respect to (1− ωc)/2 = ω∗p, which reflects also on the other variables.
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