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Abstract

Objects of different quality are to be assigned to agents. Agents can be

assigned at most one object and there are not enough high-quality objects for

every agent. The social planner is unable to use transfers to give incentives for

agents to convey their private information; instead, she is able to imperfectly

verify their reports. We characterize a mechanism that maximizes welfare, where

agents face different lotteries over the various objects, depending on their report.

We then apply our main result to the case of college admissions. We find that

optimal mechanisms are, in general, ex-post inefficient and do strictly better than

the standard mechanisms that are typically studied in the matching literature.
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1 Introduction

We consider an object assignment problem, where objects of high and low quality are

assigned to agents. Each agent can be assigned at most one object and there are less

high-quality objects than agents. The value to a social planner from giving certain

objects to any given agent depends on that agent’s private information (his type).

We consider a setting without transfers and assume that the social planner is able to

imperfectly verify the agents’ private information. We characterize allocation rules that

maximize the social planner’s expected payoff, who is assumed to prefer to assign the

high-quality objects to the high-type agents, so that, in the social planner’s preferred

allocation, there would be assortative matching.

There are several important applications that fit this description. Throughout the

paper, we make references to the college admissions’ problem (Balinski and Sonmez,

1999), where seats at various universities are assigned to students. Students have a

common ranking of the universities (universities have different quality) and differ in

“talent”. The social planner prefers to assign the “more talented” students to the

higher quality universities, but does not observe talent.1 Instead, she observes a signal

of talent, which may include the grade of some exam, letters of recommendation, etc.

Other examples include the housing assignment problem, where the social planner

assigns houses to those who cannot afford one; the school choice problem, where seats

at public schools are assigned to students, etc.

In the optimal mechanism, agents are initially asked to choose one of many “tracks”.

After that, signals, which are correlated with the agents’ types, are realized. The object

the agent is awarded, if any, depends on the track he chose and on the signal that is

realized. Specifically, each track is characterized by two thresholds for the signal:

an upper threshold and a lower threshold. If the agent’s signal exceeds the upper

threshold, the agent is assigned a high-quality object; if his signal is in-between the

two thresholds, he is assigned a low-quality object; finally, if his signal is below the

lower threshold, he is not assigned any object. Different tracks have different pairs of

thresholds; for some tracks, the two thresholds are very close, while for some others,

they are very far apart. Figure 1 illustrates.2

In the framework of the college admissions’ problem, tracks can be thought of as

different thresholds for each university, and signals as the realized scores in some cen-

1The word “talent” does not have a latent meaning; it is simply an indicator of how the social
planner ranks students.

2Not being assigned any object can alternatively be interpreted as receiving an object with even
lesser quality, provided there is enough supply of that object.
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Figure 1: The optimal mechanism when there are only three types. In equilibrium, if
the agent’s type is the highest one, he chooses the track on the right; if it is second
highest one, he chooses the middle track; if it is smallest one, he chooses the track on
the left. Once a track has been chosen, the agent is assigned the high-quality object if
his signal s lands in the green area, a low-quality object if it lands in the yellow area
and no object if it lands in the red area.

tralized exam. If the score is above the upper threshold of the chosen track, the student

is assigned a high-quality university; if it is in-between the two, he is assigned a low-

quality university; if it is below both thresholds he is not assigned any university. The

optimal mechanism induces the more talented students to choose tracks which involve

lower upper thresholds and higher lower thresholds. Thus, it is easier for them to get

assigned to a high-quality university, but also to end up unassigned. More talented

students are more willing to choose these tracks because they are more confident that

their scores will be high. As a result, this self-selection leads to larger types effectively

facing lower upper thresholds than lower types. Therefore, in the optimal mechanism,

some of the lower types who would have been assigned the high-quality objects if there

was only a single track (because they would have been lucky enough to have had a high

score) are being replaced by some of the larger types who would have been unlucky

to have had a lower score. Given that the goal of the social planner is to match the

quality of the universities with the students’ talent, this ends up being beneficial.

In addition to its theoretical interest, the optimal mechanism we propose rational-

izes some real-life assignment rules. For example, in Hungary, the centralized matching

scheme that assigns students to public universities and colleges has some of the same

features as our optimal mechanism. Before being asked to take a final exam, which, in
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conjunction with the student’s secondary school’s grades, determines his ranking, each

student is asked to choose between a normal and a high-level track. In the high-level

track, the exam is more difficult to pass but it may receive an extra score (10% of

the maximum score of the normal track). As in our optimal mechanism, students in

the high-level track have a higher probability of getting one of their most preferred

programs, but also a higher probability of being unassigned.3

Object assignment problems have been studied by a literature on mechanism design

and a literature on matching.

Related literature on mechanism design. In mechanism design, the closest ref-

erences to our work are Ben-Porath, Dekel and Lipman (2014), Mylovanov and Za-

pechelnyuk (2017), Li (2019b) and Chua, Hu and Liu (2019). These papers consider

the problem of assigning homogeneous objects to agents in settings without transfers.

The social planner, who prefers to assign the objects to the agents with the largest

types, is able to verify at least some of them. All of these papers either assume that

verifying the agents’ types is costly or that the social planner is unable to destroy

(some of) the objects. If, instead, one assumes that verification is costless and that the

objects can be fully destroyed, the optimal mechanism in all of these papers would be

the following: ask every agent to report their type and assign the objects to the largest

reports after verifying they are truthful; if some report is false, destroy all objects.

Notice that every agent has an incentive to report truthfully because any false report

has no chance of being awarded any object. Moreover, not only is this mechanism

optimal; it is a first best mechanism.

In this paper, we depart from this literature in two fundamental ways. First, we

assume that the type verification is costless and that objects can be completely de-

stroyed. We do this not only because we want to focus on different aspects of the

problem but also because there are several applications where the trade-offs explored

in this literature do not seem to be of first order importance. For example, if we again

consider the college admissions’ problem, the verification costs do not seem to be a

factor when determining which mechanism to use, as students are asked to do a variety

of tests in virtually every college assignment mechanism that has been used worldwide.

The second and main difference is that we assume that the type verification is

imperfect, i.e., the social planner is able to obtain signals that are only imperfectly

correlated with the agents’ types, like the exam grades or the letters of recommendation

3See Biro (2011) for more details about the Hungarian system.
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in the college admissions’ problem.4 This assumption is crucial because the previous

first best mechanism is no longer incentive compatible. In particular, an agent with

the lowest of types, who, when reporting truthfully, would be given the lowest quality

object assigned, if any, would prefer to claim to having the largest type, because there

would be a perhaps small but positive chance that his report would be considered

truthful. As a result, there is no first best mechanism that is incentive compatible if

the social planner only has imperfect evidence about the agents’ private information.

A plausible alternative to assigning the objects to the agents with the largest types

would be to simply assign the objects to the agents with the largest signals, i.e., a

one-track mechanism. In a model with a continuum of agents, we find that such a

mechanism is only optimal when all objects being assigned have the same quality. If

objects can be of high or low quality, the optimal mechanism asks agents to self-select

into different tracks as described above.5

Related literature on matching. In the matching literature that studies object

assignment problems (for example, Abdulkadiroglu and Sonmez, 2003, or Balinski and

Sonmez, 1999), the focus is on characterizing mechanisms that have certain desirable

properties like strategy-proofness (incentive compatibility), efficiency, and the elimi-

nation of “justified envy”. This last concept is closely related to stability, and, in

the college admissions’ problem, it implies that a student with a larger score does not

prefer the assignment of a student with a lower score. The key difference between our

approach and the one followed by the matching literature is that the latter (implicitly)

assumes that scores are perfectly correlated with talent.6 Under this assumption, one of

the most famous mechanisms that is widely used in practice, the Deferred Acceptance

(DA) mechanism by Gale and Shapley (1962), would be optimal in our model.7 This

mechanism is effectively a one-track mechanism, because it considers only the scores;

it assigns students with the largest scores to the best universities. The DA mecha-

nism is strategy-proof, (ex-post) efficient, and eliminates justified envy. However, we

4Here we also depart from Li (2019a) and Etritopou and Vohra (2019), who consider perfect
verification models (the former paper considers bidimensional types, while the latter assumes that
agents arrive sequentially).

5There is also a literature on the design of allocation rules without transfers that differs from our
approach in that it allows agents to send costly messages (McAfee and McMillan 1992, Hartline and
Roughgarden 2008, Yoon 2011, Condorelli 2012 and Chakravarty and Kaplan 2013).

6The only exception is Lien, Zheng and Zhong (2017). However, they do not study optimal
mechanisms.

7In our model, where all universities can be interpreted as having the same ranking of students,
the DA mechanism is equivalent to the Top Trading Cycles of Gale and Scarf (1974).
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show that, when scores and talent are only imperfectly correlated, not only is the DA

mechanism no longer optimal, but also that, in general, the optimal mechanism is nei-

ther (ex-post) efficient nor does it eliminate justified envy. The optimal mechanism is

not efficient, because there might be students who are not assigned to any university

despite there being vacancies at low-quality universities. It also does not eliminate

justified envy because, as can be seen in Figure 1, a student with a low type may have

a higher score than a student with a higher type and, nevertheless, be assigned to a

lower quality university. These findings suggest that the focus on mechanisms that are

efficient and eliminate justified envy might be detrimental for the social planner when

signals are imperfect.

Related literature on imperfect evidence: Finally, the paper is also related to

the recent literature on mechanism design with imperfect evidence, which generally

focuses on single agent problems (Silva, 2019a, and Siegel and Strulovici, 2019). Silva

(2019b) does consider multiple agents but each agent’s problem ends up being inde-

pendent from one another, unlike what happens in this paper, because the measure of

high-quality objects is smaller than the measure of agents.

In the next section, we discuss a very simple example based on the college admis-

sions’ application discussed above. In section 3, we present the general model. In

section 4, we characterize the optimal mechanism. In section 5, we discuss the case of

college admissions, while in section 6 we conclude. In the appendix, we briefly discuss

the model with a finite number of agents. In particular, we show that we can construct

a mechanism that converges to the optimal mechanism characterized in the main text

as the number of agents grows. All the proofs are in the online appendix.

2 An illustrative example

The purpose of this example is to illustrate some of the intuitions behind our results in

the context of the college admissions’ application. Assume that there is a continuum of

students of measure 1 and two types of universities; those with high quality (denoted

as h) and those with low quality (denoted as l). There is only enough space for 50%

of the students at the high-quality universities, but unlimited space at the low-quality

universities (this is generalized in the text).
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Each student privately observes his “talent” level θ. For the purposes of this exam-

ple, let us say that each student’s talent is either “high” (θ = θH) or “low” (θ = θL) with

equal probability. Each student’s payoff depends on his talent and on the university

he is assigned to in the following way:

u(θH , h) = 4, u(θH , l) = 2, u(θL, h) = 2, u(θL, l) = 1,

where u(θi, j) is the payoff when his type is θi ∈ {H,L} and he is assigned to university

j ∈ {h, l}. If the agent is not assigned to any university, his payoff is normalized to

0. Notice that the marginal gain from increasing the university’s quality is increasing

with the student’s talent.8 Therefore, if one conceives of a social planner who wants

to maximize the ex-ante expected utility of an arbitrary student, she should prefer

an assortative matching; i.e., to assign the 50% more talented students to high-quality

universities and the 50% less talented students to low-quality universities. In that case,

each agents’ ex-ante expected utility would be of 2.5.

The problem the social planner faces, however, is that she cannot observe talent.

Instead, the social planner observes the score s ∈ [0, 1] of an exam that students take

(like the SAT or the GRE), which is imperfectly correlated with the students’ talent.

In particular, assume that the probability density function of s is:

p(s|θ) =

2s if θ = θH

2(1− s) if θ = θL
.

This means that, while more talented students are more likely to obtain better

scores than less talented students (p(·|θH) first order stochastically dominates p(·|θL)),

there is no perfect correlation between talent and score.

Most mechanisms that have been used to assign students to universities ignore this

imperfect correlation. Let us take as an example the deferred acceptance (DA) mech-

anism. In most countries where the DA mechanism is used it works as follows: after

students have reported on their preferences over universities, an algorithm determines

which university they are assigned to. The algorithm works in stages. In the first stage,

it only considers for each university those students who have ranked it as their first

option. It then tentatively assigns its seats to the students one at a time following the

8Indeed, going from being unassigned to being assigned to a low-quality university increases the
more talented students’ payoff by 2 but only increases the less talented students’ payoff by 1; the same
happens when going from being assigned to a low-quality university to being assigned to a high-quality
university.
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score of the exam. Any remaining students are rejected. In the second stage, for each

university the algorithm compares the students who were conditionally accepted in the

first stage with those who have ranked it second and have not been conditionally as-

signed to any other university. The process continues in this way until every candidate

has either been conditionally accepted to a university or rejected by all universities in

his list, at which point all conditional acceptances become real acceptances.

In our setting, where all students have the same preferences over universities, this

algorithm would be completed in two stages: in the first stage, the students with the

50% highest scores would be accepted by the high-quality universities, while, in the

second stage, everyone else would be accepted by the low-quality universities. Clearly,

if talent and score were perfect correlated, this system would be optimal as it would

implement the social planner’s preferred outcome. However, because they are not,

regardless of their talent level, students are assigned to a high-quality university only

if their score exceeds threshold s̄DA = 0.5 and are assigned to a low-quality university

otherwise. This means that the more talented students only have a 75% chance of

being assigned a high-quality university, while less talented students have a 25% chance.

Therefore, the ex-ante expected payoff of any given student is

1

2
∗
(

3

4
∗ 4 +

1

4
∗ 2

)
+

1

2
∗
(

1

4
∗ 2 +

3

4
∗ 1

)
=

19

8
.

As we show in the text, the DA mechanism is not optimal (Proposition 1).9

Moreover, in the main result we characterize the optimal mechanism (Theorem

1), which we have described in the introduction. In this example, it has the following

form.

Optimal mechanism. Before completing their exams, students are asked to choose

between tracks A and B. If they choose track A, they are assigned to a high-quality

university if their score s is above sA ' 0.36, to a low-quality university if s is between

sA and sA ' 0.15, but will not be assigned any university if their score s is below

sA. If instead, they choose track B they are guaranteed to be assigned at least to

a low-quality university, and are assigned to a high-quality university if their score is

above sB ' 0.64.

In the next sections, we discuss in detail why this is an optimal mechanism. How-

ever, this example is sufficient to understand why it is preferred to the DA mechanism.

9There is another popular mechanism called the Boston mechanism (also known as the Immediate
Acceptance mechanism), which induces the same allocation as the one induced by the DA mechanism
and is also not optimal.
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Figure 2: In the DA mechanism, students are assigned a high-quality university (the
green area) if their score is above the threshold at 0.5, and are assigned to a low-quality
university (the yellow area) otherwise.

The new mechanism we present induces students to self-select; those who are more

talented prefer track A, while those who are less talented prefer track B. As a result,

whether a student is assigned to a university depends not only on his score but also on

his actual talent level.

Figure 2 presents how students are assigned in the DA mechanism, and the arrows

represent what changes in the new mechanism. Two things happen. On the one hand,

the threshold to access high-quality universities goes up for the students who are less

talented (from 0.5 to 0.64) and down for those who are more talented (from 0.5 to

0.36). The social planner is made better off by this change because she prefers to

assign those who are more talented to the universities with more quality. On the

other hand, the threshold to access low-quality universities goes up (from 0 to 0.15)

for the more talented students, which means that more talented students are no longer

guaranteed to be assigned a university. While this second effect is necessary to prevent

the less talented students from mimicking the more talented students and choosing

track A, it makes the social planner worse off. In the text, we show that under certain

(quite general) conditions that are satisfied in this example, the first effect dominates.

Indeed, a more talented student has an 87% chance of being assigned to a high-quality

university, an 11% chance of being assigned to a low-quality university and only a

2% chance of being unassigned, while those numbers for a less talented student are

13%, 87% and 0%, respectively. Therefore, the ex-ante expected payoff of a student is
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2.415 > 19
8

.

Finally, this example also illustrates that, in contrast to the majority of mechanisms

studied in the literature or used in practice, the optimal mechanism has justified

envy (proposition 3) - for example, a more talented student who ends up with a score

of 0.5 will be assigned to a high-quality university while a less talented student with a

score of 0.6 will be assigned to a low-quality university - and, in general, is ex-post

inefficient (proposition 4) - the more talented students who have a score lower than

0.15 will not be assigned even though there is enough space for them in the low-quality

universities.

3 Model

3.1 Fundamentals

There is a continuum of agents of mass 1 and a continuum of objects to be assigned

to the agents. Each object can be of high (h) or low (l) quality. There is a measure

αh ∈ (0, 1) of high-quality objects and a measure αl ∈ (0, 1) of low-quality objects.

Each agent has a private type θ ∈ Θ, where Θ = {θ1, .., θJ} ⊂ R. Each θ is independent

and identically distributed across agents and the prior probability of each type θ ∈ Θ is

denoted by q (θ) ∈ (0, 1).10 Without loss of generality, we assume that θj+1 > θj for all

j = 1, ..., J−1. Each agent generates a public signal s ∈ [0, 1], which is only correlated

with that agent’s type θ. Denote the conditional density of s given θ by p (s|θ) and

assume that it is continuous. We also assume that p(s′|θ)
p(s|θ) is strictly increasing with

θ for all s′ > s, i.e., densities {p(·, θ) : θ ∈ Θ} have the strict monotone likelihood

ratio property. This guarantees that larger types are the ones that are more likely to

generate larger signals.

Each agent’s payoff depends on his type and on the quality of the object he is

assigned. When an agent of type θ is assigned the high-quality object, his payoff is

denoted by u (θ, h); if he is assigned the low-quality object it is u (θ, l). If the agent is

not assigned any object, his payoff is normalized to 0. We assume that all agents have

the same ordinal preferences over objects - u (θ, h) > u (θ, l) > 0 for all θ ∈ Θ - and

10We also interpret q(θ) as the fraction of agents of type θ. We rely on the argument of Judd (1985)
in order to identify probabilities with fractions when the population is a continuum.
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that type and quality are complements.11 Formally, we assume that i) the marginal

benefit of quality is strictly increasing with θ, i.e., u (θ, l) and (u (θ, h)− u (θ, l)) are

both strictly increasing in θ, and ii) u(θ,h)
u(θ,l)

is weakly increasing with θ. To understand

the meaning of condition ii), notice that the expected payoff of an agent is given by

u (θ, h) Pr {receiving the h object}+ u (θ, l) Pr {receiving the l object} ,

which is proportional to

u (θ, h)

u (θ, l)
Pr {receiving the h object}+ Pr {receiving the l object} .

Therefore, condition ii) implies that larger types value receiving the high-quality object

relative to receiving the low-quality object weakly more than lower types.12 A simple

example that the reader might want to keep in mind is the following: u (θ, h) = θh and

u (θ, l) = θl, with θ > 0 for all θ ∈ Θ and h > l > 0.13

To summarize, our setting is basically an auction setting with products of different

quality but where there are no transfers; instead incentives are given through the

agents’ signals.

3.2 Definitions

Our goal is to find the optimal mechanism for the social planner. By the revelation

principle, it is enough to consider only revelation mechanisms, i.e., allocations that

are incentive compatible. We focus on symmetric allocations. A symmetric allocation

(henceforth, simply allocation) is a mapping x = (xh, xl) : Θ× [0, 1]→ [0, 1]2 such that

xh (θ, s) + xl (θ, s) ≤ 1

11In the school choice context, there is evidence that students’ preferences are highly correlated
(Abdulkadiroglu, Che, Yasuda, 2011) and that parents value similar things (Bosetti, 2004). A similar
assumption was made in Akin (2019) and in Lien, Zheng and Zhong (2017) for example.

12Notice that if u (θ, l) is strictly increasing and u(θ,h)
u(θ,l) is weakly increasing, (u (θ, h)− u (θ, l)) is

strictly increasing, so we only really need to assume the first two.
13For example, in a college admissions’ setting, one can think of θ ∈ (0, 1) as the probability that the

student completes his studies and h and l as the discounted sum of future earnings after completing
a degree in high and low-quality universities respectively.
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for all θ ∈ Θ and s ∈ [0, 1], where xh (θ, s) and xl (θ, s) represent the probability that

an agent with type θ and signal s is assigned object h and l respectively.14

An allocation x is feasible if the measure of assigned objects does not exceed the

measure of available objects, i.e., if

∑
θ∈Θ

q (θ)

1∫
0

p (s|θ)xh (θ, s) ds ≤ αh

and ∑
θ∈Θ

q (θ)

1∫
0

p (s|θ)xl (θ, s) ds ≤ αl.

An allocation x is incentive compatible (IC) if each agent prefers to report truthfully,

i.e., for all θ ∈ Θ,

θ ∈ arg max
θ′∈Θ

U (θ, x (θ′)) ,15

where

U (θ, z) ≡
1∫

0

p (s|θ) (zh (s)u (θ, h) + zl (s)u (θ, l)) ds

for any z = (zh, zl) : [0, 1] → [0, 1]2. Notice that each agent reports his type before

observing his signal. That is how incentives are given to the agents; different types

have different beliefs about signal s.

An allocation x is ordered if, for all θ ∈ Θ, there is sθ, sθ such that 0 ≤ sθ ≤ sθ ≤ 1

and

xh (θ, s) =

{
1 if s ≥ sθ

0 if s < sθ
and xl (θ, s) =

{
1 if s ∈ [sθ, sθ]

0 if s /∈ [sθ, sθ]
.

In an ordered allocation, the only randomness an agent of some type θ faces comes

from the signal s, i.e., conditional on his type and on the signal, there is no random-

14The assumption that there is a continuum of agents implies that the probability of being assigned
either object only depends on the agent’s type and signal and not on everyone else’s type and signal.
By assuming there is a continuum of agents, we are assuming that each agent is only uncertain about
whether their signal will reflect their type; they are not uncertain about how large their type is relative
to others. It is a relatively standard assumption that is also made in Li (2019a), Avery and Levin
(2010) and Chade, Lewis and Smith (2014) for example. Nevertheless, in the appendix, we discuss
the case with finite agents and construct an allocation that approximates the optimal allocation that
we characterize in the main text when the number of agents is sufficiently large.

15In order to make the notation lighter we write x(θ) ≡ x(θ, ·) : [0, 1]→ [0, 1]2. That is, for a fixed
type θ, x(θ) gives the probability that an agent of type θ is assigned object h and l as a function of
the signal.
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Figure 3: An example of an ordered allocation. This particular ordered allocation is
not IC because type θ1 would prefer to report to being type θ2.

ization. Furthermore, the agent always prefers to have a larger signal than a lower

signal; the rewards are at the top. Figure 3 presents an example of an ordered allo-

cation. Notice that an ordered allocation is completely characterized by its thresholds

{(sθ, sθ)}θ∈Θ.

Finally, we assume that the social planner wants to maximize the ex-ante expected

utility of each agent. Let W (x) denote the welfare of allocation x and define it as

W (x) ≡
∑
θ∈Θ

q (θ)U (θ, x (θ)) .

We say that an allocation x is optimal if it maximizes W .

4 Optimal allocations

In this section, we characterize an optimal feasible IC allocation.

Theorem. There is an ordered allocation {(sθ, sθ)}θ∈Θ that is an optimal feasible IC

allocation. It has the following properties: i) sθ is weakly decreasing; ii) sθ is weakly

increasing; iii) type θj is indifferent to reporting to being type θj+1 for all j < J .

Figure 1 of the introduction displays the optimal allocation when there are three
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types. Below, we guide the reader through the argument. All the more technical details

are left for the online appendix.

4.1 The single-crossing problem

At first glance, the problem of finding optimal feasible IC allocations might appear

relatively standard. Recall that the agent’s expected utility is given by

u (θ, h) Pr {receiving the h object}+ u (θ, l) Pr {receiving the l object} ,

where the two goods - the probability of being assigned the high-quality object and the

probability of being assigned the low-quality object - enter linearly. Furthermore, the

condition that u(θ,h)
u(θ,l)

is increasing (we only assume it is weakly increasing, but, for the

sake of argument, say it is strictly increasing) looks a lot like the typical single crossing

condition that is standard in mechanism design. So, the problem appears to be a

variation of Myerson and Satterthwaite (1983).16 However, unlike what is standard in

mechanism design, the fact that there is “evidence” in the problem makes it so that the

probability of receiving each good depends not only on the agent’s report but also on

his true type (the probability that an agent receives the high-quality object for example

might depend on the signal that is realized, whose distribution depends on the agent’s

true type). As it turns out, this complicates matters considerably, because incentive

compatibility no longer implies that types that are closer together receive distributions

of goods that are also closer. For example, in Myerson and Satterthwaite (1983), who

study bilateral trade, and in much of the literature that followed, larger types are more

likely to receive the object that is being traded than lower types in every incentive

compatible allocation. By contrast, as we illustrate below, in our setting, there are

incentive compatible allocations where the probability of receiving the high quality

object is not monotone with the agent’s type.

Consider the following example. Say that θ belongs to {θ1, θ2, θ3} with θi = i for

i = 1, 2, 3, u(θ, h) = 2θ and u(θ, l) = θ, and:

p(s|θ) =


2s if θ = θ3

1 if θ = θ2

2(1− s) if θ = θ1

Consider the following allocation, illustrated in Figure 4:

16Indeed, a similar version of this model without evidence is studied by Hafalir and Miralles (2015).
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Figure 4: Example of an incentive compatible allocation where types θ1 and θ3 have the
same probability of being assigned the high-quality object and the same probability of
being assigned the low-quality object, while type θ2 is assigned the low-quality object
with certainty.

xh (θ1, s) =

{
1 if s ≤ 0.4

0 if s > 0.4
and xl (θ1, s) =

{
1 if 0.4 ≤ s ≤ 0.6

0 if s > 0.6
.

xl (θ2, s) = 1 for all s ∈ [0, 1].

xh (θ3, s) =

{
1 if s ≥ 0.6

0 if s < 0.6
and xl (θ3, s) =

{
1 if 0.4 ≤ s ≤ 0.6

0 if s < 0.4
.

It is straightforward to check that, not only is this allocation incentive compatible,

but also that the distribution of objects that are assigned to type θ1 is exactly the same

as type θ3 (both types have a 64% probability of being assigned the high-quality object

and a 20% probability of being assigned the low-quality object) but very different than

type θ2 (type θ2 is assigned the low-quality object with certainty).

In order to overcome this difficulty, we first show that we would not have this

problem if we were to restrict attention to the class of ordered allocations and then

show that there are ordered allocations which are optimal.
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4.2 Single crossing and ordered allocations

In ordered allocations, we can reinterpret the problem by thinking of the two goods

as being the two thresholds s and s (instead of the probability of receiving the high

quality object and the low quality object, respectively). The advantage of framing the

problem in this manner is that the thresholds s and s the agent is assigned depend

only on his report and not on his true type. Specifically, in any ordered allocation, we

can write the expected utility of any given agent of type θ when reporting θ′ as

Û (θ, sθ′ , sθ′) ≡ u (θ, h)

1∫
sθ′

p (s|θ) dθ + u (θ, l)

sθ′∫
sθ′

p (s|θ) dθ.

Notice that Û (θ, s, s) is decreasing with both s and s, so if we were to draw indiffer-

ence curves of the different types on the space (s, s) they would be downward sloping.

Using the property that p(s′|θ)
p(s|θ) is strictly increasing with θ for all s′ > s, we are able

to show that those indifference curves cross at most once as figure 5 illustrates. The

intuition is that larger types are more confident that their signals will be above the

upper thresholds. So, if a lower type is indifferent between any two tracks, a larger

type will prefer the track with the lower upper threshold. In the case of figure 1, this

implies for example that if some type prefers the third (second) track over the second

(third) track, all larger (lower) types will also prefer the third (second) track over the

second (third) track.

Formally, we have the following lemma:

Lemma 1. Take any ordered allocation x and any two types θ′ ∈ Θ and θ′′ ∈ Θ such

that such that sθ′ > sθ′′ ≥ sθ′′ > sθ′. It follows that for all θ ∈ Θ,

U (θ, x (θ′)) ≥ U (θ, x (θ′′))⇒ U
(
θ̂, x (θ′)

)
> U

(
θ̂, x (θ′′)

)
for all θ̂ < θ and

U (θ, x (θ′′)) ≥ U (θ, x (θ′))⇒ U
(
θ̂, x (θ′′)

)
> U

(
θ̂, x (θ′)

)
for all θ̂ > θ.

The previous lemma makes it much easier to deal with ordered allocations (as com-

pared to general allocations) because it implies that one only needs to be concerned
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Figure 5: Indifference curves for three types which only cross once. Note that pairs
nearer the origin are preferred to pairs away from the origin.

with “local” incentive constraints. Indeed, the way to find the optimal ordered alloca-

tion is precisely through a series of arguments of a local nature. Of course, one still has

to show that ordered allocations are optimal, which we do in the following sections.

4.3 The relaxed problem

The optimal allocation maximizes W (x) subject to the i) feasibility conditions, ii)

upper incentive constraints, i.e., for all θ,

U (θ, x (θ)) ≥ U (θ, x (θ′)) for all θ′ > θ,

and iii) lower incentive constraints, i.e., for all θ,

U (θ, x (θ)) ≥ U (θ, x (θ′)) for all θ′ < θ.

We define the relaxed problem as maximizing W (x) subject only to i) and ii). We

start by showing that there is an ordered allocation that solves the relaxed problem.

Lemma 2. Let x be any allocation that satisfies all the incentive constraints of the
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relaxed problem. Let x̂ be an ordered allocation with thresholds {(sθ, sθ)}θ∈Θ such that

1∫
sθ

p (s|θ) ds =

1∫
0

xh (θ, s) p (s|θ) ds

and
sθ∫
sθ

p (s|θ) ds =

1∫
0

xl (θ, s) p (s|θ) ds

for all θ ∈ Θ. It follows that x̂ satisfies all the incentive constraints of the relaxed

problem.

Allocation x̂ in lemma 2 is such that the probability that each type is assigned

each object is the same as in allocation x. The only difference is that the rewards

are all ”brought up to the top”. Therefore, by definition, W (x) = W (x̂). To see

why allocation x̂ satisfies all upper incentive constraints, it might be convenient to go

through the finite steps of transforming allocation x into allocation x̂. Take allocation

x and reorder only type θ1’s track as described in the lemma; call that allocation

x1. It follows that allocation x1 satisfies all incentive constraints because the only

incentive constraints considered that involve type θ1 are the ones that prevent him from

mimicking higher types. Seeing as his expected utility is the same under allocations x1

and x, those incentive constraints are satisfied.

Now, do the same reordering with type θ2 and call the corresponding allocation x2.

Once again, by the same reason, type θ2 does not want to mimic any larger type under

allocation x2, so we only need to show that type θ1 does not want to mimic type θ2.

That is the case because lower types are less likely to draw large signals; therefore,

if type θ2 is made indifferent by bringing all his rewards up, lower types would be

made worse off as a result. By continuing with this logic for all the J types, we get to

allocation x̂.

To find the optimal allocation, we solve for the optimal ordered allocation of the

relaxed problem. We are able to completely characterize it because of the single crossing

property that ordered allocations have; in particular, our arguments are all of a “local”

nature as we describe next. The final part of the argument is to show that the optimal

ordered allocation of the relaxed problem satisfies the lower incentive constraints.
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4.4 The optimal ordered allocation of the relaxed problem

Lemma 3. Any ordered allocation x that solves the relaxed problem is such that i) sθ

is weakly decreasing; ii) sθ is weakly increasing; iii) type θj is indifferent to reporting

to being type θj+1 for all j < J .

To prove the statement, we use an argument by induction: take any two consecutive

types θj and θj+1 and, for ease of exposition, assume that
(
sj+1, sj+1

)
6=
(
sj+2, sj+2

)
.

By induction, assume that sj+k is weakly decreasing with k for k ≥ 1, that sj+k is

weakly increasing with k for k ≥ 1 and that U (θj+k, x (θj+k)) = U (θj+k, x (θj+k+1)) for

all k ≥ 1. We show that sj ≥ sj+1, sj ≤ sj+1 and U (θj, x (θj)) = U (θj, x (θj+1)). We

do so in two steps (the details are in the online appendix).

The first step is to show that if sj ≤ sj+1, then U (θj, x (θj)) = U (θj, x (θj+1)). The

argument is as follows: Suppose that sj ≤ sj+1 and that U (θj, x (θj)) > U (θj, x (θj+1)).

By lemma 1, it follows that U (θ, x (θj)) > U (θ, x (θj+1)) for all θ < θj, so that no type

mimics type θj+1. In that case, it is always possible to transfer some objects from type

θj to type θj+1 in a way that satisfies the considered incentive constraints, which, by

the way our welfare function is constructed, increases welfare. Specifically, if sj+1 > 0,

one could raise sj by some small ε > 0 and lower sj+1 by some δ (ε) > 0, where δ (ε)

is such that the measure of low-quality objects used remains the same. If, instead,

sj+1 = 0, one could do a similar ε-transfer but with the high-quality objects.

The second step is to show that it must be that sj ≤ sj+1. Suppose not, so that

sj > sj+1 and, as a consequence, sj < sj+1. By a similar argument from before, we can

show that some type θ̂ ≤ θj must be indifferent to mimicking type θj+1; otherwise, we

could just do the ε-transfers of objects from lower types to type θj+1 of the previous

paragraph. The contradiction is found by perturbing allocation x as follows: raise sj

by a small ε > 0, lower sj+1 by δ (ε), raise sj+1 by γ (ε) and lower sj by β (ε). Choose

δ (ε), γ (ε) and β (ε) such that the measure of objects being assigned remains constant

and type θ̂ is made indifferent between reporting θj and θj+1 if θ̂ = θj; if not, make

type θ̂ be indifferent to reporting θj+1 before and after the perturbation. Notice that

this perturbation leaves us with a feasible allocation and improves welfare, because,

essentially, one is just shifting the objects of better quality to the larger types at the

expense of the lower types. The argument is completed in the online appendix, where

we show that the perturbed allocation satisfies all considered incentive constraints

because of lemma 1.
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The final step of the proof is to show that the ordered allocation that solves the

relaxed problem satisfies the relaxed incentive constraints.

Lemma 4. Let x be an ordered allocation that solves the relaxed problem. Then x is

also an optimal feasible IC allocation.

Lemma 4 directly follows from lemmas 1 and 3 as can be seen by considering figure

1. If type θ1 is indifferent to mimicking type θ2, it follows by lemma 1 that type θ2,

who is more confident that he can land in the green zone, strictly prefers to report θ2

over mimicking type θ1. By the same reasons, type θ3 strictly prefers to report θ3 over

reporting θ2 and strictly prefers that over reporting θ1.

5 The case of college admissions

The college admissions’ problem has been studied for decades by the matching liter-

ature. The basic problem is how to assign a set of students to a set of universities

such that each student is assigned at most one university and each university does

not exceed its maximum capacity. The goal is to design a mechanism to be run by

a central clearinghouse that assigns students based on their reported preferences and

on each university’s priorities. Priorities are assumed to be based almost exclusively

on the students’ scores on centralized exams. A student with a higher score is said to

have priority over another student who is ranked lower.

The approach that the matching literature has followed has been to propose mech-

anisms that have certain desirable properties like stability, efficiency or incentive com-

patibility (usually referred to as strategy proofness). In the college admissions’ liter-

ature, the most used stability concept is that of the elimination of justified envy; a

mechanism eliminates justified envy if there is no student with a higher priority who

prefers the assignment of another student with a lower priority. Some of the most

well-known mechanisms that have been proposed are: the deferred acceptance (DA)

mechanism, the immediate acceptance or Boston mechanism, and the top trading cy-

cles mechanism.17 Our approach is different: we specify an objective function and look

17The DA mechanims was first introduced by Gale and Shapley (1962) and then adapted to the
college admissions’ problem by Balinski and Sonmez (1999), and to the school choice problem by
Abdulkadiroglu and Sonmez (2003). The immediate acceptance mechanism was used for some years
in the city of Boston, and is described in Abdulkadiroglu and Sonmez (2003). Finally, the top trading
cycles was introduced by Shapley and Scarf (1974) and is also discussed by Abdulkadiroglu and Sonmez
(2003).
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for the optimal incentive compatible allocation, which we have characterized previ-

ously. In this section, we discuss it in the context of the matching literature on college

admissions.

5.1 The suboptimality of the DA mechanism

Our first result is that the optimal mechanism is not the DA mechanism or any of the

other mechanisms discussed before in the matching literature. At first glance, this find-

ing might unsettle the reader; one could argue that while the matching literature does

not attempt to maximize the same objective function we do per se, classical mecha-

nisms like the DA mechanism should perform fairly well under any reasonable criterion.

Indeed, as discussed in the example of section 2, what makes the DA mechanism and

others sub-optimal in our setting is that we explicitly model the imperfect correlation

between the students’ talent and the publicly available signals of talent.

Since we assume that all students have the same preferences over schools, the DA

mechanism can simply be defined as follows:18

Definition 1. The DA mechanism is such that there is a single track with thresholds

s̄DA and sDA, where s̄DA is such that

∑
θ∈Θ

q(θ)

∫ 1

s̄DA

p(s|θ)ds = αh,

and sDA is such that

∑
θ∈Θ

q(θ)

∫ s̄DA

sDA

p(s|θ)ds = min{αl, 1− αh}.

The DA mechanism induces the DA allocation described below.19

Definition 2. The DA allocation is an ordered allocation {(sθ, s̄θ)}θ∈Θ such that sθ =

sDA, and s̄θ = s̄DA, for all θ ∈ Θ.

In the following proposition, we show that the DA mechanism is not optimal because

it does not induce students to self-select.

Proposition 1. (DA is not optimal) The DA allocation is not an optimal feasible IC

allocation if

18See the example of section 2 for a more thorough description of the DA mechanism.
19The same allocation is also induced by the top trading cycles’ mechanism and the Boston mech-

anism.
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Figure 6: Comparison between the DA allocation and the optimal allocation

i) αl + αh < 1, or

ii) αl + αh ≥ 1, and p (0|θ1) > p (0|θj) = 0 for all j > 1.

To see why that the DA allocation is not optimal, let us assume that Θ = {θ1, θ2}.
When the DA mechanism is applied, all types face the same track with the same two

thresholds as displayed in figure 6. The optimal allocation characterized in the previous

section transfers some of the seats at the high-quality university from the less talented

students (type θ1) to the more talented students (type θ2). This is done by raising

the upper threshold of the track of the less talented students and lowering the upper

threshold of the more talented students. That is, some of the less talented students who

would have been lucky enough to have had a score above the upper threshold in the DA

mechanism get replaced by some of the more talented students who would have been

unlucky to have had a score below that threshold. Naturally, by changing the allocation

in this manner, one induces less talented students to mimic the more talented students.

To prevent that, one must lower the lower threshold of the less talented students and

raise the lower threshold of the more talented students just enough to make the less

talented students indifferent. As a result, we end up with an allocation where the same

measure of objects is being assigned as in the DA allocation; the difference is that more

seats at the high-quality university are assigned to the more talented students, which

improves welfare.

When αl +αh ≥ 1, the DA allocation is such that every agent is assigned an object

just like in the example (see figure 2). In that case, the same exact argument does not
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follow because one cannot lower the lower threshold of the less talented students; the

increase of the lower threshold of the more talented students must be enough to prevent

the less talented students from mimicking. Therefore, altering the allocation in this

manner generates an inefficiency: some agents will not be assigned any object. The

condition of part ii) of proposition 1 (which holds for the case of the example) ensures

that this inefficiency is small enough to make the DA allocation suboptimal; effectively,

it guarantees that raising the lower threshold of the more talented students has a very

large dissuading effect on the incentives of the less talented students to mimic and a

very small impact on the more talented student’s expected payoff (we revisit the issue

of ex-post inefficiency below).

5.2 The optimality of the DA mechanism when the objects

have the same quality

While in general the DA mechanism is not optimal, we show in this section that there

are circumstances in which it is. In particular, we show that when all universities have

the same quality the DA mechanism is optimal. To that end, we define what we call full

allocations as allocations where every agent is assigned a university (which naturally

requires that αl + αh ≥ 1).

Definition 3. An allocation x is called full if it is feasible and every student is assigned

to a university, i.e., xh (θ, s) + xl (θ, s) = 1 for all (θ, s) ∈ Θ× [0, 1].

Notice that if one considers only the set of full allocations, one essentially considers a

problem with homogeneous objects: each agent is either assigned a high-quality object

or he is not (and is assigned a low-quality object). In the college admissions’ problem,

we can reinterpret the model by saying that being assigned the high-quality object is

equivalent to being assigned to a university, while not being assigned the high-quality

object is equivalent to not being assigned to any university. This problem is then the

natural extension to imperfect evidence of the mechanism design literature described

in the introduction, which focuses on homogeneous objects (for example, Ben-Porath,

Dekel and Lipman, 2014).

Proposition 2. The DA allocation is optimal among all full IC allocations.

Recall from proposition 1 that the DA allocation is not optimal even when there is

enough capacity to assign every student (αl +αh ≥ 1); in the proof of proposition 1 we

build another allocation that does better. However, that alternative allocation is not
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Figure 7: Example of an ordered allocation that does not solve the considered relaxed
problem

full; there are some students who are left unassigned. Indeed, as proposition 2 shows,

the DA allocation is optimal if one is obliged to assign every student.

In order to prove the result, we consider a relaxed problem where the only incentive

constraints that are considered are the upper incentive constraints. Just like in the

proof of the theorem, one can reorder every type’s track by pushing all the rewards

to the top and still satisfy all the incentive constraints considered. Call the optimal

ordered allocation x1 and notice that, because those incentive constraints are still

satisfied, it must be that the corresponding thresholds sθ are weakly increasing with θ.

The argument is completed by showing that sθ is in fact constant with θ, because in

that case, allocation x1 is just the DA allocation.

Suppose sθ was not constant with θ, so that it was something like what is displayed

in figure 7. Because type θ1 is not indifferent to choosing type θ2’s track, the social

planner could raise s1 by ε > 0 and lower s2 by δ (ε), where δ (ε) is such that the

measure of high-quality objects that is assigned remains the same. Provided ε is small,

this change would increase welfare and satisfy all considered incentive constraints, a

contradiction to the optimality of x1.

5.3 Elimination of justified envy

There are two properties of mechanisms that are often considered desirable by the

matching literature: the elimination of justified envy and (ex-post) efficiency. As a

consequence, not much attention has been devoted to mechanisms that do not ful-
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fil at least one of these two properties. Moreover, in our context, all the standard

mechanisms (like the DA mechanism, the Boston mechanism or the top trading cycles

mechanism) eliminate justified envy and are ex-post efficient. In light of this, we find

it interesting that, in general, the optimal mechanism has justified envy and might be

ex-post inefficient.

In the case of ordered allocations, the elimination of justified envy would imply that

all thresholds be constant.

Definition 4. An ordered allocation {(sθ, s̄θ)}θ∈Θ eliminates justified envy if, and only

if, sθ and s̄θ are constant with θ.

Proposition 3. The optimal feasible IC ordered allocation does not eliminate justified

envy if αl + αh < 1, or if αl + αh ≥ 1 and p (0|θ1) > p (0|θj) = 0 for all j > 1.

It is straightforward to see why the optimal mechanism does not eliminate justified

envy: students of different talent self-select into tracks of different thresholds; as a

result, it is possible that a less talented student with a larger score is assigned to the

low-quality university, while a more talented student with a lower score is assigned to

a high-quality university. The condition of the proposition simply ensures that the DA

allocation, which does eliminate justified envy, is not optimal.

5.4 The trade-off between ex-post efficiency and optimality

When agents have the same preferences over objects (as in our case), ex-post efficiency

is equivalent to non-wastefulness.

Definition 5. An allocation x is called non-wasteful if

∑
θ∈Θ

q (θ)

1∫
0

p (s|θ)xh (θ, s) ds = αh

and ∑
θ∈Θ

q (θ)

1∫
0

p (s|θ)xl (θ, s) ds = min{αl, 1− αh}.

In words, an allocation is non-wasteful if the high-quality university is at capacity

and either the low-quality university is also at capacity or no student is left unassigned.

If the measure of low-quality objects is sufficiently large, we find that any optimal allo-

cation is wasteful. In particular, we find that even though the high-quality university
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is always at capacity, the low-quality university will not be completely filled up despite

there being students who are left unassigned.

Proposition 4. Assume p (0|θ1) > p (0|θj) = 0 for all j > 1. Then, for every αh ∈
(0, 1), there is some threshold αl ∈ (0, 1− αh) such that,

i) for all αl ≤ αl, the optimal feasible IC allocation is non-wasteful,

ii) for all αl > αl, the optimal feasible IC allocation is wasteful, because, even though

all high-quality university are at capacity, there are both unassigned students and free

space at the low quality universities.

The argument is as follows. Consider the problem when αh + αl ≥ 1, i.e., the

problem when there are enough vacancies for every student. In that case, we have seen

that the optimal full allocation is the DA allocation (proposition 2) which, however, is

not optimal (proposition 1). Seeing as non-wasteful allocations must be full whenever

αh + αl ≥ 1, it follows that the optimal allocation is wasteful. In particular, one

can show that, while the high-quality university is always at capacity, there are some

students who are not assigned to any university despite there being vacancies at the

low-quality university. As a result, the statement follows by letting αl denote the

measure of students assigned to the low-quality university when αh +αl ≥ 1 under the

optimal allocation (characterized in the theorem).

The fact that all optimal mechanisms are ex-post inefficient if the measure of low-

quality universities is large suggests that the focus on efficient mechanisms might harm

welfare. In particular, requiring ex-post efficiency limits the mechanism when it comes

to providing incentives for students to self-select, a key feature of any optimal mecha-

nism when there is imperfect correlation between types and signals.

5.5 The binary mechanism

One last concern we want to address is a practical one; the reader might worry that the

optimal mechanism is too hard to implement, particularly in the college admissions’

application. Recall that, in the optimal mechanism, before doing their exams, students

are asked to choose one of many tracks, each with different standards of admission to

the various universities. In principle, one could have as many tracks as there are types,

so that number could be enormous.

In this section, we introduce a simpler class of mechanisms where agents can also

self-select but only between two tracks. We call them binary mechanisms. Allocations

that are implemented by binary mechanisms are called binary allocations.
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Definition 6. A binary allocation is an ordered allocation {(sθ, s̄θ)}θ∈Θ such that there

exist (s′θ, s̄
′
θ) and (s′′θ, s̄

′′
θ) such that, for all θ,

(sθ, s̄θ) = (s′θ, s̄
′
θ) or (sθ, s̄θ) = (s′′θ, s̄

′′
θ).

In any binary mechanism, students self-select between one track with lower stan-

dards of admission to the better university and another with lower standards of ad-

mission to the lower quality university. Binary mechanisms seem eminently feasible -

as we mentioned in the introduction, they are very similar to the college assignment

mechanism that is used in Hungary - and, as stated below, generate allocations with a

larger welfare than that generated by the DA mechanism, where students face a single

track.

Proposition 5. (Binary mechanisms dominate DA) There is a feasible and IC binary

allocation that generates a larger welfare than the DA allocation if αl + αh < 1, or if

αl + αh ≥ 1 and p (0|θ1) > p (0|θj) = 0 for all j > 1.

6 Conclusion

In this paper, we have considered a basic auction setting with heterogeneous objects,

but where transfers are replaced by evidence. We have shown how (imperfect) evidence

can be used to elicit the private information held by the agents: agents have different

incentives because they have different beliefs about what the evidence will be. In

the college admissions’ setting, the optimal mechanism we characterize generates a

larger welfare than the standard mechanisms discussed in the matching literature (like

the deferred acceptance mechanism), which depend only on the agents’ signals (mostly

exam scores and recommendation letters). Moreover, we show that optimal mechanisms

do not eliminate justified envy and might not be (ex-post) efficient, which suggests that

the focus on efficient mechanisms that eliminate justified envy might be misguided.

The fact that optimal mechanisms need not be efficient is also interesting in and

of itself. While one could argue that mechanisms that are efficient could be imple-

mented through decentralized systems, where each university decides independently

what students to accept, it is much harder to see how an inefficient mechanism could

be implemented in such a manner. In general (if the measure of low-quality universi-

ties is sufficiently large in the model), there will be students who are unassigned and

universities with room in any optimal mechanism. It is hard to see how this could
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be the outcome of a decentralized system; surely, the university with unassigned va-

cancies would contact the unassigned students to have them attend the university. In

that sense, our results contribute to the debate over the decentralization of colleges’

admissions markets by demonstrating that there is a cost to decentralization.20

Finally, the reader might be concerned that the optimal mechanism gives an unfair

advantage to risk loving agents. Indeed, all else the same, a more risk loving agent

is more likely to be assigned the high-quality object (and also more likely of being

unassigned). However, we believe that there is no problem with risk loving agents

having an advantage in getting the high-quality object per se; the problem is that

risk aversion might be correlated with other agents’ characteristics. For example,

there is suggestive evidence that low income students tend to be more risk averse

(see, for example, Calsamiglia and Guell, 2018; and also Calsamiglia, Martinez-Mora

and Miralles, 2020, for a theoretical analysis), so a reasonable concern is that the

optimal mechanism further increases income inequality. One option to mitigate that

negative effect (that is not considered by the social planner of our model) would be to

add discriminatory clauses to the mechanism, so that the set of tracks an agent has

available depends on his socioeconomic status. In the simpler case where all agents are

either high or low income, and all high income (low income) agents have the same risk

aversion level, that would actually be optimal, as it is easy to see that one could find

the optimal mechanism by treating each set of agents independently.

7 Appendix

7.1 The case with finite agents

Let us rewrite the model for the case when there are N agents. Each agent i = 1, ..., N

has a private type θi ∈ Θ and generates a signal si ∈ [0, 1] with the same distributions of

the text. There is a total number of τH and τL high and low-quality objects respectively.

An allocation is x =
(
x1, ..., xN

)
, where

xi =
(
xih, x

i
l

)
: ΘN × [0, 1]N → [0, 1]× [0, 1]

20Decentralized school choice systems have been studied by Avery and Levin (2010) and Chade,
Lewis and Smith (2014). In the latter paper, the low-quality school might end up with vacancies
in equilibrium, but that is a product of assuming that schools are able to commit to an acceptance
threshold before students choose whether to accept their offers. If schools were unable to commit,
there would be no student left unassigned.

28



such that

xih (θ, s) + xil (θ, s) ≤ 1

for all vectors θ ∈ ΘN and s ∈ [0, 1]N and for all i = 1, ..., N . An allocation x is feasible

if
N∑
i=1

xih (θ, s) ≤ τH

and
N∑
i=1

xil (θ, s) ≤ τL

for all θ ∈ ΘN and s ∈ [0, 1]N . An allocation x is incentive compatible if

Eθ−i,s
(
u (θi, h)xih ((θi, θ−i) , s) + u (θi, l)x

i
l ((θi, θ−i) , s)

)
≥ Eθ−i,s

(
u (θi, h)xih ((θ′i, θ−i) , s) + u (θi, l)x

i
l ((θ

′
i, θ−i) , s)

)
for all θ′i ∈ Θ, θi ∈ Θ and i = 1, ..., N . Finally, the value for the social planner of

allocation x is given by

W (x) =
1

N

N∑
i=1

E
(
u (θi, h)xih (θ, s) + u (θi, l)x

i
l (θ, s)

)
.

Let us momentarily go back to the main model with a continuum of agents. Let us

fix any parameters α = (αH , αL) ∈ (0, 1)2 and define the value for the social planner of

implementing the optimal feasible IC allocation to be W ∗. We show that it is possible

to construct feasible IC allocations in the finite version of the model whose value for the

social planner converges to W ∗ as N goes to infinity when the availability of objects is

the same in both versions of the model. In order to do that, consider the floor function

b c : R → Z, such that bxc denotes the largest integer smaller than or equal to x.

Assume that τH = bNαHc and τL = bNαLc.

Proposition 6. For every δ > 0, there is an allocation x =
(
x1, ..., xN

)
such that

lim
J→∞

W (x) ≥ W ∗ − δ.

Proof. In order to construct allocation x, let us first go back to the model with a

continuum of agents and consider the optimal ordered feasible IC allocation when the

parameters of the model are α = (αH − ε, αL − ε) for some ε ∈ (0,min {αL, αH}).
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Let the thresholds of that allocation be denoted by {sθ (ε) , sθ (ε)}θ∈Θ and denote the

value for the social planner of implementing it by Wε. Notice that by continuity of the

objective function of the social planner and of all the incentive constraints considered,

it follows that limε→0 Wε = W ∗. As a result, in order to prove the proposition, it is

enough to construct an allocation x such that limN→∞ W (x) = Wε and then, for each

δ > 0, select a small enough ε.

Construct each xi : ΘN × [0, 1]N → [0, 1] × [0, 1] of allocation x =
(
x1, ..., xN

)
as

follows: i) for all θ ∈ ΘN and s ∈ [0, 1]N such that either∑
j 6=i

1
{

(θj, sj) : sj ≥ sθj (ε)
}
≥ bNαHc

or ∑
j 6=i

1
{

(θj, sj) : sj ∈
(
sθj (ε) , sθj (ε)

)}
≥ bNαLc

then xih (θ, s) = xil (θ, s) = 0; if not, then

xih (θ, s) =

{
1 if si ≥ sθi (ε)

0 if not

and

xil (θ, s) =

{
1 if si ∈

(
sθi (ε) , sθi (ε)

)
0 if not

.

In words, agent i receives the exact same lottery of rewards as if we were in the

model with a continuum of agents provided all other agents do not already exhaust the

availability of each object.

By construction, it follows that allocation x is feasible and incentive compatible for

any N ≥ 1. In addition, the law of large numbers implies that the probability that

condition i) is realized converges to 0 as N → ∞ because ε > 0. Therefore, it follows

that each agent is assigned the same lottery of rewards as in the case of the ordered

allocation {sθ (ε) , sθ (ε)}θ∈Θ of the model with a continuum of agents with probability

1, which implies that limN→∞ W (x) = Wε.
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Online Appendix

1 Proof of the theorem

The theorem follows by combining lemmas 1-4. Below, we show lemmas 1-3. Lemma

4 directly follows from lemmas 1 and 3 as described in the text.

1.1 Proof of Lemma 1

Proof. Take any θ ∈ Θ and notice that

U (θ, x (θ′)) ≥ U (θ, x (θ′′))⇔

sθ′′∫
sθ′

p (s|θ) ds

sθ′∫
sθ′′

p (s|θ) ds

≥ u (θ, h)

u (θ, l)
− 1.

The statement of the lemma follows because u(θ,h)
u(θ,l)

is (weakly) increasing with θ

and, as we prove in the following paragraph, the left hand side of the final inequality

is strictly decreasing with θ.

Consider any two types θ and θ̂, with θ > θ̂. We will show that:

sθ′′∫
sθ′

p (s|θ) ds

sθ′∫
sθ′′

p (s|θ) ds

<

sθ′′∫
sθ′

p(s|θ̂)ds

sθ′∫
sθ′′

p(s|θ̂)ds

.

We know that densities {p( · |θ) : θ ∈ Θ} have the MLRP. Then, by Proposition 4

in Milgrom (1981), it follows that signal {s ∈ [s̄θ′′ , s̄θ′ ]} is ”more favorable” than signal

{s ∈ [sθ′ , sθ′′ ]}. By definition, this implies that for every nondegenerate prior distri-

bution G for θ, the posterior distribution G( · |{s ∈ [s̄θ′′ , s̄θ′ ]}) first order stochastic

dominates G( · |{s ∈ [sθ′ , sθ′′ ]}).
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Consider G such that it assigns positive and equal probability only to θ and θ̂. First

order stochastic dominance implies:21

P (θ|s ∈ {s ∈ [s̄θ′′ , s̄θ′ ]}) > P (θ|s ∈ {s ∈ [sθ′ , sθ′′ ]}), and

P (θ̂|s ∈ {s ∈ [s̄θ′′ , s̄θ′ ]}) < P (θ̂|s ∈ {s ∈ [sθ′ , sθ′′ ]}).

Then,

P (θ|s ∈ {s ∈ [s̄θ′′ , s̄θ′ ]})
P (θ|s ∈ {s ∈ [sθ′ , sθ′′ ]})

>
P (θ̂|s ∈ {s ∈ [s̄θ′′ , s̄θ′ ]})
P (θ̂|s ∈ {s ∈ [sθ′ , sθ′′ ]})

or equivalently,

P (θ|s ∈ {s ∈ [s̄θ′′ , s̄θ′ ]})
P (θ̂|s ∈ {s ∈ [s̄θ′′ , s̄θ′ ]})

>
P (θ|s ∈ {s ∈ [sθ′ , sθ′′ ]})
P (θ̂|s ∈ {s ∈ [sθ′ , sθ′′ ]})

By Bayes’ theorem:

P (s ∈ {s ∈ [s̄θ′′ , s̄θ′ ]}|θ)
P (s ∈ {s ∈ [s̄θ′′ , s̄θ′ ]}|θ̂)

>
P (s ∈ {s ∈ [sθ′ , sθ′′ ]}|θ)
P (s ∈ {s ∈ [sθ′ , sθ′′ ]}|θ̂)

.

Then we have:

P (s ∈ {s ∈ [sθ′ , sθ′′ ]}|θ̂)
P (s ∈ {s ∈ [s̄θ′′ , s̄θ′ ]}|θ̂)

>
P (s ∈ {s ∈ [sθ′ , sθ′′ ]}|θ)
P (s ∈ {s ∈ [s̄θ′′ , s̄θ′ ]}|θ)

.

Finally, the last relation implies:∫ s
θ
′′

s
θ
′

p(s|θ̂)ds∫ s̄
θ
′

s̄
θ
′′

p(s|θ̂)ds
>

∫ s
θ
′′

s
θ
′

p(s|θ)ds∫ s̄
θ
′

s̄
θ
′′

p(s|θ)ds
.

1.2 Proof of Lemma 2

Proof. Take any θ, θ′ ∈ Θ such that θ′ > θ. We want to show that:

21Given G, there are only two types which have positive probability; as a result, first order stochastic
dominance implies that G( · |{s ∈ [s̄θ′′ , s̄θ′ ]}) should put more probability than G( · |{s ∈ [sθ′ , sθ′′ ]})
on the high type, and vice-versa with respect to the low type.
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U (θ, x̂ (θ′)) ≤ U (θ, x̂ (θ)) .

Allocation x satisfies the upper incentives constraints, so we know that U (θ, x (θ′)) ≤
U (θ, x (θ)). Also, by the definition of x̂ we have that U (θ, x̂ (θ)) = U (θ, x (θ)). So it

is enough to prove that:

U (θ, x̂ (θ′)) ≤ U (θ, x (θ′)) .

Therefore, it is sufficient to show that x̂ (θ′) solves the following program:

min
(fh,fl):[0,1]→[0,1]2

U (θ, f)

s.t.
1∫

0

fh (s) p (s|θ′) ds =

1∫
sθ′

p (s|θ′) ds, (1)

1∫
0

fl (s) p (s|θ′) ds =

sθ′∫
sθ′

p (s|θ′) ds, (2)

0 ≤ fh (s) ≤ 1 for all s ∈ [0, 1] , (3)

and

0 ≤ fl (s) ≤ 1− fh (s) for all s ∈ [0, 1] . (4)

In words, the mapping (fh, fl) that solves this problem minimizes the deviation

payoff of type θ, while keeping the payoff of type θ′ constant. Notice that the statement

follows trivially if sθ′ = 1; if sθ′ = 0 and sθ′ = 1; and if sθ′ = 0. We focus on the

remaining cases.

We do pointwise optimization. Let the solution be denoted by f ∗ and consider the

following Lagrangian function:

L = −
∫ 1

0

[u(θ, h)fh(s)p(s|θ)+u(θ, l)fl(s)p(s|θ)]ds+λh

(∫ 1

0

fh(s)p (s|θ′) ds−
∫ 1

s̄θ′

p(s|θ′)ds

)
+

λl

(∫ 1

0

fl(s)p (s|θ′) ds−
∫ s̄θ′

sθ′

p(s|θ′)ds

)
+
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µh (s) fh(s) + µ
h

(s) (1− fh(s)) + µl (s) fl(s) + µ
l
(s) (1− fh(s)− fl(s)),

where λh ∈ R, λl ∈ R , and for all s ∈ [0, 1], µh (s) ≥ 0, µ
h

(s) ≥ 0, µl (s) ≥ 0 and

µ
l
(s) ≥ 0.

The first order conditions are given by{
−u (θ, h) p (s|θ) + λhp (s|θ′)− µ

l
(s) + µh (s)− µ

h
(s) = 0

−u (θ, l) p (s|θ) + λlp (s|θ′) + µl (s)− µl (s) = 0
.

Case 1: For all s ∈ [0, 1],

−u (θ, l) p (s|θ) + λlp (s|θ′) ≤ 0.

In that case, it follows that f ∗l (s) =a.e. 0, which is only possible if sθ′ = sθ′ ∈ (0, 1).

Using the first order conditions, it follows that

f ∗h (s) =a.e. 1

{
λh
p (s|θ′)
p (s|θ)

> u (θ, h)

}
.

Because sθ′ < 1, it must be that λh > 0 so that the statement holds because p(s|θ′)
p(s|θ) is

strictly increasing with s.

Case 2: For all s ∈ [0, 1],

−u (θ, l) p (s|θ) + λlp (s|θ′) ≥ 0.

In that case, it follows that f ∗l (s) =a.e. 1 − f ∗h (s), which is only possible if sθ′ = 0.

Using the first order conditions, it follows that

f ∗h (s) = 1

{
(λh − λl)

p (s|θ′)
p (s|θ)

≥ u (θ, h)− u (θ, l)

}
.

Because sθ′ < 1, it must be that λh > λl, so that the statement holds because p(s|θ′)
p(s|θ) is

strictly increasing with s.

Case 3: There is some s ∈ (0, 1) such that

λl
p (s|θ′)
p (s|θ)

= u (θ, l) .
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In that case, it follows that

f ∗l (s) =a.e.

{
1− f ∗h (s) if s > s

0 if s < s
,

because p(s|θ′)
p(s|θ) is strictly increasing with s and λl > 0. Using the other first order

condition, we get that:

f ∗h (s) =


1 if s < s and λh

p(s|θ′)
p(s|θ) > u (θ, h)

1 if s > s and (λh − λl) p(s|θ′)
p(s|θ) ≥ u (θ, h)− u (θ, l)

0 otherwise

.

We consider three cases.

Case 3.1: Suppose there is some s ∈ (0, s] such that

λh
p (s|θ′)
p (s|θ)

= u (θ, h) .

Then, for all s < s̄, f ∗h(s) = f ∗l (s) = 0; for all s̄ < s < s, f ∗l (s) = 0 and f ∗h(s) = 1.

For s > s, we have that λh
p(s|θ′)
p(s|θ) > u (θ, h), and λl

p(s|θ′)
p(s|θ) > u (θ, l). These two conditions

imply that (λh − λl)
p(s|θ′)
p(s|θ) > u (θ, h) − u(θ, l), so f ∗h(s) = 1 for all s ≥ s. In sum,

f ∗l (s) = 0 for all s, f ∗h(s) = 0 if s ≤ s̄, and f ∗h(s) = 1 if s > s̄. Then, it must be that

sθ′ = sθ′ ∈ (0, 1), in which case the statement follows with sθ′ = sθ′ = s.

Case 3.2 Suppose not. And assume there is some signal s ∈ [s, 1] such that

(λh − λl)
p (s|θ′)
p (s|θ)

= u (θ, h)− u (θ, l) .

In this case, f ∗l (s) = 0, and f ∗h(s) = 1 for s ≥ s̄; f ∗l (s) = 1, and f ∗h(s) = 0 for

s̄ < s < s. For s ≤ s we have that:

(λh − λl)
p (s|θ′)
p (s|θ)

< u (θ, h)− u (θ, l) ⇐⇒ λh
p (s|θ′)
p (s|θ)

− u (θ, h) < λl
p (s|θ′)
p (s|θ)

− u (θ, l) .

Given that λl
p(s|θ′)
p(s|θ) − u (θ, l) < 0 for all s < s, λh

p(s|θ′)
p(s|θ) − u (θ, h) < 0. Thus,

f ∗h(s) = f ∗l (s) = 0 for all s < s, and the statement follows with sθ′ = s and sθ′ = s.

Case 3.3: Finally, assume that for all s > s,

(λh − λl)
p (s|θ′)
p (s|θ)

< u (θ, h)− u (θ, l) ,
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.

Then, we have that f ∗h(s) = 0, and f ∗l (s) = 1 for all s > s. Moreover, as the same

inequality holds for s ≤ s, we have as before that λh
p(s|θ′)
p(s|θ) − u (θ, h) < 0. And then,

f ∗h(s) = f ∗l (s) = 0 for all s < s. Then, we must have sθ′ = 1 and the statement follows

with sθ′ = s.

1.3 Proof of Lemma 3

Consider any ordered allocation x̂ that solves the relaxed problem. Let the associated

thresholds be denoted by
(
sj, sj

)J
j=1

. Consider any type θj ∈ Θ. We proceed by

induction. Assume that, for all k > 0,

sj+k ≥ sj+k+1 ≥ sj+k+1 ≥ sj+k

and

U (θj+k, x̂ (θj+k)) = U (θj+k, x̂ (θj+k+1)) .

We complete the proof by showing that22

sj ≥ sj+1 ≥ sj+1 ≥ sj

and

U (θj, x̂ (θj)) = U (θj, x̂ (θj+1)) .

Let j′ ≥ j + 1 be such that θj′ ∈ Θ is the largest type such that sj+1 = sj′ . Then,

between θj+1 and θj′ , all upper thresholds are equal. This, in turn, implies that the

lower thresholds are also equal (otherwise the corresponding upper incentive constraints

do not hold).

Let

q̂ (θj+1) ≡
j′∑

i=j+1

q (θi)

and

p̂ (s|θj+1) ≡
j′∑

i=j+1

q (θi)

q̂ (θj+1)
p (s|θi) .

Notice that for any s′ > s,

22Notice that the proof also applies to the case where j = J − 1.
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p (s′|θ′)
p (s|θ′)

>
p (s′|θj′)
p (s|θj′)

>
p̂ (s′|θj+1)

p̂ (s|θj+1)
>
p (s′|θj+1)

p (s|θj+1)
>
p (s′|θ′′)
p (s|θ′′)

(5)

for any θ′ > θj′ ≥ θj+1 > θ′′.

Indeed,

p̂ (s′|θj+1)

p̂ (s|θj+1)
=

j′∑
i=j+1

q (θi) p (s′|θi)

j′∑
i=j+1

q (θi) p (s|θi)
.

We know that p(s′|θi)
p(s|θi) <

p(s′|θj′)
p(s|θj′)

for every i = j + 1, . . . , j′. Then:

p̂ (s′|θj+1)

p̂ (s|θj+1)
<

j′∑
i=j+1

q (θi)
p(s′|θj′)
p(s|θj′)

p (s|θi)

j′∑
i=j+1

q (θi) p (s|θi)
=
p (s′|θj′)
p (s|θj′)

.

By the same reasoning we show
p̂(s′|θj+1)

p̂(s|θj+1)
>

p(s′|θj+1)

p(s|θj+1)
.

We divide the argument into four claims.

Claim 1: If sj ≤ sj+1, then i) sj ≥ sj+1 and ii) U (θj, x̂ (θj)) = U (θj, x̂ (θj+1)).

Proof. i) follows because of ii), so it is enough to show ii).

Case 1: sj+1 > 0 and sj < sj.

Suppose not, so that U (θj, x̂ (θj)) > U (θj, x̂ (θj+1)). By lemma 1, this implies that

U (θ, x̂ (θj)) > U (θ, x̂ (θj+1)) for all θ < θj. Consider a new ordered allocation x′, where

x′ = x̂ except that s′j = sj + ε, while s′
ĵ

= sĵ − γ (ε), where

q (θj)

sj+ε∫
sj

p (s|θj) ds = q̂ (θj+1)

sj+1∫
sj+1−γ(ε)

p̂ (s|θj+1) ds

and ε > 0, for all ĵ such that j + 1 ≤ ĵ ≤ j′. Notice that, provided ε is sufficiently

small, allocation x′ is feasible and satisfies all the incentive constraints of the relaxed

problem, because any type θĵ with j + 1 ≤ ĵ ≤ j′ is made better off. It is also the

7



case that W (x′) > W (x̂), because u (θ, l) is increasing with θ (allocation x′ just shifts

low-quality objects from type θj to larger types), which is a contradiction.

Case 2: sj+1 = 0 or sj = sj

Suppose not, so that U (θj, x̂ (θj)) > U (θj, x̂ (θj+1)). Consider a new ordered allo-

cation x′, where x′ = x except that s′j = sj + ε, while s′
ĵ

= sĵ − γ (ε), where

q (θj)

sj+ε∫
sj

p (s|θj) ds = q̂ (θj+1)

sj+1∫
sj+1−γ(ε)

p̂ (s|θj+1) ds

and ε > 0, for all ĵ such that j + 1 ≤ ĵ ≤ j′. By the same argument as in case i),

if ε is sufficiently small, allocation x′ is feasible, satisfies all the incentive constraints

of the relaxed problem and is such that W (x′) > W (x̂), because (u (θ, h)− u (θ, l))

is increasing with θ (allocation x′ is such that type θj trades low-quality objects for

high-quality objects with the larger types), which is a contradiction.

Claim 2: If sj > sj+1, then there is some type θj̃ ≤ θj such that U
(
θj̃, x̂

(
θj̃

))
=

U
(
θj̃, x̂ (θj+1)

)
.

Proof. Suppose not, so that U (θj′′ , x̂ (θj′′)) > U (θj′′ , x̂ (θj+1)) for all j′′ ≤ j. Then, we

can proceed in the same manner of before. In particular, by considering the allocation

of case 2 of the proof of the previous claim, an allocation that is feasible, satisfies the

considered incentive constraints and attains a larger welfare, we find a contradiction.

Claim 3: If sj > sj+1, then U (θj, x̂ (θj)) > U (θj, x̂ (θj+1)).

Proof. Suppose not, so that U (θj, x̂ (θj)) = U (θj, x̂ (θj+1)). Consider the following

ordered allocation x′, where x′ = x̂ except that s′j = sj + ε, s′
ĵ

= sj+1 − δ (ε), s′j =

sj − β (ε) and s′
ĵ

= sj+1 + γ (ε), where

q̂ (θj+1)

sj+1∫
sj+1−δ(ε)

p̂ (s|θj+1) = q (θj)

sj+ε∫
sj

p (s|θj) ds,
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q̂ (θj+1)

sj+1+γ(ε)∫
sj+1

p̂ (s|θj+1) ds = q (θj)

sj∫
sj−β(ε)

p (s|θj) ds

and

u (θj, l)

sj∫
sj−β(ε)

p (s|θj) ds− (u (θj, h)− u (θj, l))

sj+ε∫
sj

p (s|θj) ds

= (u (θj, h)− u (θj, l))

sj+1∫
sj+1−δ(ε)

p (s|θj) ds− u (θj, l)

sj+1+γ(ε)∫
sj+1

p (s|θj) ds

In words, we are perturbing allocation x̂ by increasing the measure of h objects

and reducing the measure of l objects assigned to types θĵ with j + 1 ≤ ĵ ≤ j′, while

keeping the total measures constant and type θj indifferent between reporting to being

θj and θj+1. Once again, if ε is sufficiently small, allocation x′ is feasible, functions δ,

β and γ are all differentiable and all converge to 0 when ε = 0. After some algebra,

we have that

δ′ (0) =
q (θj)

q̂ (θj+1)

p (sj|θj)
p̂ (sj+1|θj+1)

, (6)

γ′ (0) =
q (θj)

q̂ (θj+1)

p
(
sj|θj

)
p̂
(
sj+1|θj+1

)β′ (0) (7)

and

u (θj, l) p
(
sj|θj

)
β′ (0)− (u (θj, h)− u (θj, l)) p (sj|θj) (8)

= (u (θj, h)− u (θj, l)) p (sj+1|θj) δ′ (0)− u (θj, l) p
(
sj+1|θj

)
γ′ (0) .

We start by showing if ε is sufficiently small, W (x′) > W (x̂). Let V (ε) denote the

increase in welfare from allocation x̂ to allocation x′ as a function of ε, i.e.,

V (ε) =



j′∑
ĵ=j+1

q
(
θĵ
)

(
u
(
θĵ, h

)
− u

(
θĵ, l
)) sj+1∫

sj+1−δ(ε)
p
(
s|θĵ
)
ds

−u
(
θĵ, l
) sj+1+γ(ε)∫

sj+1

p
(
s|θĵ
)
ds

+

q (θj)

(
u (θj, l)

sj∫
sj−β(ε)

p (s|θj) ds− (u (θj, h)− u (θj, l))
sj+ε∫
sj

p (s|θj) ds

)


.
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Notice that V (ε) ≥ V̂ (ε) for all ε > 0, where

V̂ (ε) =



q̂ (θj+1)


(u (θj+1, h)− u (θj+1, l))

sj+1∫
sj+1−δ(ε)

p̂ (s|θj+1) ds

−u (θj+1, l)
sj+1+γ(ε)∫
sj+1

p̂ (s|θj+1) ds

+

q (θj)

(
u (θj, l)

sj∫
sj−β(ε)

p (s|θj) ds− (u (θj, h)− u (θj, l))
sj+ε∫
sj

p (s|θj) ds

)


,

because u (θ, l) and u(θ,h)
u(θ,l)

are increasing with θ. After replacing (6), (7) and (8), we

that V̂ ′ (0) > 0 if and only if

u (θj+1, h)− u (θj+1, l)− u (θj, h) + u (θj, l)

>
(u (θj, h)− u (θj, l))

u (θj, l)
(u (θj+1, l)− u (θj, l))

(
1 +

q(θj)

q̂(θj+1)

p(sj+1|θj)
p̂(sj+1|θj+1)

)
(

1 +
q(θj)

q̂(θj+1)

p(sj+1|θj)
p̂(sj+1|θj+1)

) .

Notice that (
1 +

q(θj)

q̂(θj+1)

p(sj+1|θj)
p̂(sj+1|θj+1)

)
(

1 +
q(θj)

q̂(θj+1)

p(sj+1|θj)
p̂(sj+1|θj+1)

) < 1

because, because by equation (5),

p (sj+1|θj)
p
(
sj+1|θj

) < p̂ (sj+1|θj+1)

p̂
(
sj+1|θj+1

) .

Therefore, it is sufficient to show that

u (θj+1, h)−u (θj+1, l)−u (θj, h)+u (θj, l) ≥
(u (θj, h)− u (θj, l))

u (θj, l)
(u (θj+1, l)− u (θj, l)) ,

which is equivalent to
u (θj+1, h)

u (θj+1, l)
≥ u (θj, h)

u (θj, l)
,

which is true. Therefore, if ε is sufficiently small, W (x′) > W (x̂).

We find a contradiction by showing that all incentive constraints of the relaxed

problem are satisfied if ε is sufficiently small. First, type θj, by definition, does not

want to deviate to mimicking any type θĵ for ĵ ≤ j′. Furthermore, by lemma 1, it also

follows that U (θj, x
′ (θj)) > U (θj, x̂ (θj′′)) for any j′′ > j′, so that he does not deviate
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under x′ provided ε is sufficiently small.

As for any type θj′′ < θj, by lemma 1, it follows that U (θj′′ , x̂ (θj+1)) > U (θj′′ , x̂ (θj)),

so that one only has to verify that type θj′′ does not mimic type θj+1, provided ε is

sufficiently small. We start by showing that U (θj, x
′ (θj)) < U (θj, x̂ (θj)).

Let B (ε) denote the payoff change in the expected utility of type θj, i.e.,

B (ε) = u (θj, l)

sj∫
sj−β(ε)

p (s|θj) ds− (u (θj, h)− u (θj, l))

sj+ε∫
sj

p (s|θj) ds.

Notice that

B′ (0) = u (θj, l) p
(
sj|θj

)
β′ (0)− (u (θj, h)− u (θj, l)) p (sj|θj) .

After replacing β′ (0), we get that B′ (0) < 0 if and only if(
1 +

q(θj)

q̂(θj+1)

p(sj+1|θj)
p̂(sj+1|θj+1)

)
(

1 +
q(θj)

q̂(θj+1)

p(sj+1|θj)
p̂(sj+1|θj+1)

) < 1,

which is true as established above. Therefore, if ε is sufficiently small, we have that

U (θj, x
′ (θj+1)) = U (θj, x

′ (θj)) < U (θj, x̂ (θj)) = U (θj, x̂ (θj+1)) .

By lemma 1, we have that U (θj′′ , x
′ (θj+1)) < U (θj′′ , x̂ (θj+1)) for all θj′′ < θj, so type

θj′′ does not deviate under x′.

Finally, notice that U (θj′ , x
′ (θj′)) > U (θj′ , x̂ (θj′)) because W (x′) > W (x̂). There-

fore, type θj′ does not want to deviate, which, by lemma 1, implies that types θj′′ such

that j + 1 ≤ j′′ ≤ j′ do not want to deviate either.

Claim 4: If sj > sj+1, then U (θj′′ , x̂ (θj′′)) > U (θj′′ , x̂ (θj+1)) for all j′′ < j.

Proof. Suppose not and let θj̃ < θj denote the largest type such that U
(
θj̃, x̂

(
θj̃

))
=

U
(
θj̃, x̂ (θj+1)

)
. Consider ordered allocation x′, where x′ = x̂ except that s′j = sj + ε,

s′j+1 = sj+1 − δ (ε), s′j = sj − β (ε) and s′j+1 = sj+1 + γ (ε), where

q (θj+1)

sj+1∫
sj+1−δ(ε)

p (s|θj+1) ds = q (θj)

sj+ε∫
sj

p (s|θj) ds,
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q (θj+1)

sj+1+γ(ε)∫
sj+1

p (s|θj+1) ds = q (θj)

sj∫
sj−β(ε)

p (s|θj) ds

and

(
u
(
θj̃, h

)
− u

(
θj̃, l
)) sj+1∫

sj+1−δ(ε)

p
(
s|θj̃
)
ds = u

(
θj̃, l
) sj+1+γ(ε)∫

sj+1

p
(
s|θj̃
)
ds.

In words, we are perturbing allocation x̂ by increasing the measure of h objects and

reducing the measure of l objects assigned to type θj+1, while keeping the total measures

constant and type θj̃ indifferent to mimicking type θj+1.

Notice that

δ′ (0) =
q (θj)

q (θj+1)

p (sj|θj)
p (sj+1|θj+1)

,

β′ (0) =

(
u
(
θj̃, h

)
− u

(
θj̃, l
))

u
(
θj̃, l
) p

(
sj+1|θj+1

)
p (sj+1|θj+1)

p
(
sj+1|θj̃

)
p
(
sj+1|θj̃

) p (sj|θj)
p
(
sj|θj

)
and

γ′ (0) =
q (θj)

q (θj+1)

(
u
(
θj̃, h

)
− u

(
θj̃, l
))

u
(
θj̃, l
) p

(
sj+1|θj̃

)
p
(
sj+1|θj̃

) p (sj|θj)
p (sj+1|θj+1)

.

We start by showing that if ε is sufficiently small, W (x′) > W (x̂) by showing that

V ′ (0) > 0, where function V is as in the previous proof. Notice that V ′ (0) > 0 if and

only if

u (θj+1, h)− u (θj+1, l)− u (θj, h) + u (θj, l)

> (u (θj+1, l)− u (θj, l))

(
u
(
θj̃, h

)
− u

(
θj̃, l
))

u
(
θj̃, l
) p

(
sj+1|θj+1

)
p (sj+1|θj+1)

p
(
sj+1|θj̃

)
p
(
sj+1|θj̃

) .

From equation (5), notice that

p
(
sj+1|θj̃

)
p
(
sj+1|θj̃

) < p (sj+1|θj+1)

p
(
sj+1|θj+1

) ,
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so it is enough to show that

u (θj+1, h)−u (θj+1, l)−u (θj, h)+u (θj, l) ≥ (u (θj+1, l)− u (θj, l))

(
u
(
θj̃, h

)
− u

(
θj̃, l
))

u
(
θj̃, l
)

in order to show that V ′ (0) > 0, which can be written as

u (θj+1, l)

u (θj, l)

u (θj+1, h)

u (θj+1, l)
−
u
(
θj̃, h

)
u
(
θj̃, l
)
 ≥ u (θj, h)

u (θj, l)
−
u
(
θj̃, h

)
u
(
θj̃, l
) ,

which is true, because
u(θj+1,l)

u(θj ,l)
> 1 and u(θ,h)

u(θ,l)
is increasing with θ.

By definition, allocation x′ is feasible if ε is small. Let us now turn to the incentive

constraints. Consider type θj̃, who,, by definition, does not want to mimic type θj+1.

Let C (ε) denote the increase in the expected utility of type θj̃ when mimicking type

θj as a function of ε, i.e.,

C (ε) = u
(
θj̃, l
) sj∫
sj−β(ε)

p
(
s|θj̃
)
ds−

(
u
(
θj̃, h

)
− u

(
θj̃, l
)) sj+ε∫

sj

p
(
s|θj̃
)
ds.

Notice that C ′ (0) < 0 if and only if

p(sj |θj)
p(sj |θj)
p(sj |θj̃)
p(sj |θj̃)

<

p(sj+1|θj+1)

p(sj+1|θj+1)
p(sj+1|θj̃)
p(sj+1|θj̃)

,

which is true, because

p(sj+1|θj+1)

p(sj+1|θj+1)
p(sj+1|θj̃)
p(sj+1|θj̃)

=

p(sj |θj+1)

p(sj |θj+1)
p(sj |θj̃)
p(sj |θj̃)

p(sj+1|θj+1)

p(sj |θj+1)

p(sj+1|θj̃)
p(sj |θj̃)

p(sj |θj+1)
p(sj+1|θj+1)
p(sj |θj̃)
p(sj+1|θj̃)

>

p(sj |θj+1)

p(sj |θj+1)
p(sj |θj̃)
p(sj |θj̃)

>

p(sj |θj)
p(sj |θj)
p(sj |θj̃)
p(sj |θj̃)

.

Therefore, we have that

U
(
θj̃, x

′ (θj)
)
< U

(
θj̃, x̂ (θj)

)
,
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so that type θj̃ does not deviate.

Now, consider any type θj′′ with j̃ < j′′ ≤ j. Type θj was not indifferent to mim-

icking type θj+1 under allocation x̂, so that still carries over to allocation x′ provided

ε is sufficiently small. Moreover, notice that

U
(
θj̃, x

′ (θj)
)
< U

(
θj̃, x̂ (θj)

)
⇒ U (θj′′ , x

′ (θj)) < U (θj′′ , x̂ (θj))

by lemma 1, which implies that type θj′′ does not prefer to mimic type θj under

allocation x′. Any other deviation by type θj is ruled out if ε is sufficiently small.

Now, consider any type θj′′ with j′′ < j̃. Recall that

U
(
θj̃, x̂

(
θj̃

))
= U

(
θj̃, x̂ (θj+1)

)
≥ U

(
θj̃, x̂ (θj)

)
,

which, by lemma 1, implies that

U (θj′′ , x̂ (θj′′)) ≥ U (θj′′ , x̂ (θj+1)) > U (θj′′ , x̂ (θj))

for all j′′ < j̃. Therefore, if ε is small enough, for any j′′ < j̃, type θj′′ does not want

to mimic type θj under allocation x′. Notice also that

U
(
θj̃, x̂ (θj+1)

)
= U

(
θj̃, x

′ (θj+1)
)
⇒ U (θj′′ , x̂ (θj+1)) ≥ U (θj′′ , x

′ (θj+1))

for all j′′ < j̃ by lemma 1. Therefore, we can conclude that, for any j′′ < j̃, type θj′′

does not want to deviate.

Finally, type θj+1 does not want to deviate because U (θj+1, x
′ (θj+1)) > U (θj+1, x̂ (θj+1))

because welfare went up with allocation x′. As a result, all considered incentive con-

straints are satisfied, the new allocation is feasible and it increases welfare, which is a

contradiction.

Claims 2, 3 and 4 are inconsistent, so it must be that sj ≤ sj+1, which implies the

statement of lemma 3 by claim 1.
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1.4 Proof of Proposition 1

Proof of i). Let x∗ denote the DA allocation and notice that it is an ordered allocation

where, for all θj ∈ Θ, sj = s∗ and sj = s∗, where 0 < s∗ < s∗ < 1. Let

q̂ (θ2) =
J∑
j=2

q (θj)

and

p̂ (s|θ2) =
J∑
j=2

q (θj) p (s|θj)
q̂ (θ2)

.

Notice that for any s′ > s,

p (s′|θJ)

p (s|θJ)
>
p̂ (s′|θ2)

p̂ (s|θ2)
≥ p (s′|θ2)

p (s|θ2)
>
p (s′|θ1)

p (s|θ1)
.

Consider the following alternative ordered allocation x′, where s1 = s∗ + ε, s′j =

s∗ − δ (ε) for all j > 1, s′1 = s∗ − β (ε) and s′j = s∗ + γ (ε) for all j > 1, where

q (θ1)

s∗+ε∫
s∗

p (s|θ1) ds = q̂ (θ2)

s∗∫
s∗−δ(ε)

p̂ (s|θ2) ds,

q (θ1)

s∗∫
s∗−β(ε)

p (s|θ1) ds = q̂ (θ2)

s∗+γ(ε)∫
s∗

p̂ (s|θ2) ds

and

u (θ1, l)

s∗∫
s∗−β(ε)

p (s|θ1) ds− (u (θ1, h)− u (θ1, l))

s∗+ε∫
s∗

p (s|θ1) ds

= (u (θ1, h)− u (θ1, l))

s∗∫
s∗−δ(ε)

p (s|θ1) ds− u (θ1, l)

s∗+γ(ε)∫
s∗

p (s|θ1) ds.

In words, we are perturbing allocation x∗ by shifting some of the h objects from type

θ1 to larger types, while keeping type θ1 indifferent and assigning the same measure of

h and l objects.
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Notice that

δ′ (0) =
q (θ1)

q̂ (θ2)

p (s∗|θ1)

p̂ (s∗|θ2)
,

γ′ (0) =
q (θ1)

q̂ (θ2)

p (s∗|θ1)

p̂ (s∗|θ2)

(u (θ1, h)− u (θ1, l))

u (θ1, l)

p (s∗|θ1)

p (s∗|θ1)

(
1 + q(θ1)

q̂(θ2)
p(s∗|θ1)
p̂(s∗|θ2)

)
(

1 + q(θ1)
q̂(θ2)

p(s∗|θ1)
p̂(s∗|θ2)

)
and

β′ (0) =
(u (θ1, h)− u (θ1, l))

u (θ1, l)

p (s∗|θ1)

p (s∗|θ1)

(
1 + q(θ1)

q̂(θ2)
p(s∗|θ1)
p̂(s∗|θ2)

)
(

1 + q(θ1)
q̂(θ2)

p(s∗|θ1)
p̂(s∗|θ2)

) .

Let V (ε) denote the increase in welfare as a function of ε, i.e.,

V (ε) =


q (θ1)

(
u (θ1, l)

s∗∫
s∗−β(ε)

p (s|θ1) ds− (u (θ1, h)− u (θ1, l))
s∗+ε∫
s∗

p (s|θ1) ds

)
+

J∑
j=2

q (θ2)

(
(u (θj, h)− u (θj, l))

s∗∫
s∗−δ(ε)

p (s|θj) ds− u (θj, l)
s∗+γ(ε)∫
s∗

p (s|θj) ds

)


and notice that V (ε) ≥ V̂ (ε), where

V̂ (ε) =


q (θ1)

(
u (θ1, l)

s∗∫
s∗−β(ε)

p (s|θ1) ds− (u (θ1, h)− u (θ1, l))
s∗+ε∫
s∗

p (s|θ1) ds

)
+

q̂ (θ2)

(
(u (θ2, h)− u (θ2, l))

s∗∫
s∗−δ(ε)

p̂ (s|θ2) ds− u (θ2, l)
s∗+γ(ε)∫
s∗

p̂ (s|θ2) ds

)
 .

Notice also that V̂ ′ (0) > 0 if and only if

u (θ2, h)− u (θ2, l)− u (θ1, h) + u (θ1, l)

>
(u (θ1, h)− u (θ1, l))

u (θ1, l)
(u (θ2, l)− u (θ1, l))

(
1 + q(θ1)

q̂(θ2)
p(s∗|θ1)
p̂(s∗|θ2)

)
(

1 + q(θ1)
q̂(θ2)

p(s∗|θ1)
p̂(s∗|θ2)

)
Given that (

1 + q(θ1)
q̂(θ2)

p(s∗|θ1)
p̂(s∗|θ2)

)
(

1 + q(θ1)
q̂(θ2)

p(s∗|θ1)
p̂(s∗|θ2)

) < 1

because
p (s∗|θ1)

p (s∗|θ1)
<
p̂ (s∗|θ2)

p̂ (s∗|θ2)
,
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it follows that V̂ ′ (0) > 0 if

u (θ2, h)− u (θ2, l)− u (θ1, h) + u (θ1, l) >
(u (θ1, h)− u (θ1, l))

u (θ1, l)
(u (θ2, l)− u (θ1, l)) ,

which is equivalent to
u (θ2, h)

u (θ2, l)
>
u (θ1, h)

u (θ1, l)
,

which is true. Therefore, it follows that W (x′) > W (x∗) if ε is sufficiently small.

Furthermore, notice that type θ1 is indifferent as to what to report, which, by lemma

1, implies that for every j > 1, type θj does not want to misreport. As a result,

allocation x′ is not only feasible but also incentive compatible. Therefore, the DA

mechanism is not optimal.

Proof of ii). If αl + αh ≥ 1, then the DA allocation x∗, which is an ordered allocation,

is such that for all θj ∈ Θ, sj = s∗ and sj = 0, where 0 < s∗ < 1. Consider the

following alternative ordered allocation x′, where s1 = s∗ + ε, s′j = s∗ − δ (ε) for all

j > 1 and s′j = γ (ε) for all j > 1, where

q (θ1)

s∗+ε∫
s∗

p (s|θ1) ds = q̂ (θ2)

s∗∫
s∗−δ(ε)

p̂ (s|θ2) ds,

and

− (u (θ1, h)− u (θ1, l))

s∗+ε∫
s∗

p (s|θ1) ds

= (u (θ1, h)− u (θ1, l))

s∗∫
s∗−δ(ε)

p (s|θ1) ds− u (θ1, l)

γ(ε)∫
0

p (s|θ1) ds.

In words, we are perturbing allocation x∗ by shifting some of the high-quality objects

from type θ1 to the higher types. Unlike the previous proof, we are only keeping constant

the measure of high-quality objects being assigned; there will less low-quality objects

assigned in order to create enough incentives for type θ1 not to deviate.

Notice that

δ′ (0) =
q (θ1)

q̂ (θ2)

p (s∗|θ1)

p̂ (s∗|θ2)
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and

γ′ (0) =
(u (θ1, h)− u (θ1, l))

u (θ1, l)

p (s∗|θ1)

p (0|θ1)

(
q (θ1)

q̂ (θ2)

p (s∗|θ1)

p̂ (s∗|θ2)
+ 1

)
.

Once again, let V (ε) denote the increase in welfare as a function of ε, i.e.,

V (ε) =


−q (θ1) (u (θ1, h)− u (θ1, l))

s∗+ε∫
s∗

p (s|θ1) ds+

J∑
j=2

q (θj)

(
(u (θj, h)− u (θj, l))

s∗∫
s∗−δ(ε)

p (s|θj) ds− u (θj, l)
γ(ε)∫
0

p (s|θj) ds

)


and notice that V (ε) ≥ V̂ (ε) for all ε > 0, where

V̂ (ε) =


−q (θ1) (u (θ1, h)− u (θ1, l))

s∗+ε∫
s∗

p (s|θ1) ds+

q̂ (θ2)

(
(u (θ2, h)− u (θ2, l))

s∗∫
s∗−δ(ε)

p̂ (s|θ2) ds− u (θ2, l)
γ(ε)∫
0

p̂ (s|θ2) ds

)
 .

Notice that V̂ ′ (0) > 0 if and only if

u (θ2, h)− u (θ2, l)− u (θ1, h) + u (θ1, l)

>
q̂ (θ2)

q (θ1)
u (θ2, l)

(u (θ1, h)− u (θ1, l))

u (θ1, l)

p̂ (0|θ2)

p (0|θ1)

(
q (θ1)

q̂ (θ2)

p (s∗|θ1)

p̂ (s∗|θ2)
+ 1

)
,

which holds whenever p̂(0|θ2)
p(0|θ1)

= 0.

Given that type θ1 is indifferent, by lemma 1, it follows that if ε > 0 is sufficiently

small, allocation x′ generates a larger welfare than the DA allocation, is incentive

compatible and is feasible.

1.5 Proof of Proposition 2

Proof. Consider the same relaxed problem as in the proof of the Theorem, where the

only incentive constraints considered are the upward ones, and add to it an additional

constraint that states that every agent must be assigned an object. By lemma 2, it

follows that there is an ordered allocation x1 that solves the relaxed problem with

thresholds {sθ, sθ}. It also follows that sθ = 0, because all considered allocations are

full, and that sθ is weakly increasing with θ, in order for the incentive constraints that
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are considered to hold. The proof is completed by showing that sθ must be constant

with θ.

Suppose not, so that there is some j such that sθj < sθj+1
. Consider alternative

allocation x′ that is equal to allocation x1 except that

s′θj = sθj + ε and s′θj+1
= sθj − δ (ε)

for some small enough ε > 0, where δ (ε) is such that the total proportion of students

attending the h school is the same as under allocation x1. It follows that allocation x′

would generate a strictly larger value welfare because

u (θj+1, h)− u (θj+1, l) > u (θj, h)− u (θj, l) .

Furthermore, provided ε > 0 is small enough, no type ĵ < j + 1 would like to mimic

type j + 1, because

U
(
θĵ, x

1 (θj)
)
> U

(
θĵ, x

1 (θj+1)
)

for all ĵ < j + 1, which is a contradiction.

1.6 Proof of Proposition 4

Consider the optimal ordered allocation when αh+αl ≥ 1 and let αl denote the measure

of low-quality objects assigned in that optimal allocation. By combining propositions

1 and 2, we get that αl < αl, which implies that the l-feasibility constraint does not

bind. Because the optimization problem is linear, it follows that the allocation that

is the solution of a relaxed problem where the l-feasibility constraint is ignored is an

optimal allocation whenever αl ≥ αl. That proves ii) (h quality objects are all assigned

because, if not, the h-feasibility constraint would not bind either, which cannot be). If

αl < αl, then the l-feasibility constraints binds, which implies i).

1.7 Proof of Proposition 5

When proving that the DA allocation is not optimal (proof of proposition 1), we in-

troduce a binary allocation and show that it generates a larger welfare than the DA

allocation.
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