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Abstract

The paper introduces coalition structures to study belief-free full implementation.

When the mechanism designer does not know which coalitions can be formed, we

provide necessary and almost sufficient conditions on when a social choice function

is robustly coalitionally implementable, i.e., implementable regardless of the coalition

pattern and the belief structure. Robust coalitional implementation is a strong re-

quirement that imposes stringent conditions on implementable social choice functions.

However, when the mechanism designer has additional information on which coalitions

can be formed, we show that allowing for coalitional manipulations may help a mecha-

nism designer to implement social choice functions that are not robustly implementable

in the sense of Bergemann and Morris (2009, 2011). As different social choice func-

tions are implementable under different coalition patterns, the paper provides insights

on when agents should be allowed to play cooperatively.
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1 Introduction

In Bayesian implementation problems (see, for example, Jackson (1991)), agents’ private

information is canonically modeled by a type space that is common knowledge between the

mechanism designer (assumed to be female) and all agents (assumed to be male). Inspired

by the Wilson doctrine, Bergemann and Morris (2009, 2011) among others relax the common

knowledge assumption and introduce a belief-free approach to study when a social choice

function is fully implementable under all type spaces. This is the robust (full) implementation

problem. The existing literature on robust implementation has been assuming that agents

behave non-cooperatively without considering potential coalitional manipulations. However,

the needs to make a mechanism robust to agents’ belief structures and to make it immune

from collusion may coexist. The current paper thus introduces coalition structures into the

research program of robust implementation.

In our paper, the coalition pattern, i.e., the collection of coalitions that can be formed,

is exogenously given by S. When a coalition is formed, members of this coalition are al-

lowed to jointly coordinate on a deviating strategy such that every member is better off.

The equilibrium played by agents is called the interim S equilibrium, which is immune from

deviations of any coalition in S. In one extreme case where only singleton coalitions are

permissible in S, interim S equilibrium reduces to the interim equilibrium (also called the

Bayesian equilibrium). In the other extreme case where S includes all coalitions, the cor-

responding interim S equilibrium generalizes the strong equilibrium of Aumann (1959) to

an incomplete information setting. Although the coalition pattern S is common knowledge

among agents, the mechanism designer may or may not have access to this information.

Depending on whether the mechanism designer knows the coalition pattern, we study two

problems: robust coalitional implementation and robust S implementation.

The first problem we examine is robust coalitional implementation, in which the mecha-

nism designer has no information on which coalitions can be formed. In this case, she wishes

to construct a mechanism such that the social choice function coincides with the interim

S equilibrium outcomes regardless of the coalition pattern S and the belief structure. We

provide a group of sufficient conditions on robust coalitional implementation: a social choice
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function is robustly coalitionally implementable if it satisfies the robust coalitional incentive

compatibility condition, the robust coalitional monotonicity condition, and the interior coali-

tional reward property. Among these conditions, robust coalitional incentive compatibility

and robust coalitional monotonicity are also necessary. The two necessary and almost suffi-

cient conditions are stronger than those of Bergemann and Morris (2011), because we want

to make sure that the mechanism is invulnerable to the additional uncertainty facing the

designer, i.e., agents’ coalition pattern, beyond her uncertainty on agents’ belief structure.

As the set of robustly coalitionally implementable social choice functions shrinks compared

to the one under non-cooperative robust implementation, not knowing the coalition pattern

is costly to the mechanism designer. Example 1 in the paper presents a social choice function

that is robustly implementable in the sense of Bergemann and Morris (2009) but is neither

robustly coalitionally implementable nor robustly S̄ implementable.

When the mechanism designer has information on the coalition pattern S, she knows

the equilibrium played by agents. Our robust S implementation question requires the so-

cial choice function to coincide with the interim S equilibrium regardless of agents’ belief

structures. Due to the additional information on the coalition pattern compared to robust

coalitional implementation, we establish weaker sufficient conditions for robust S implemen-

tation: robust S incentive compatibility, robust S monotonicity, and the interior S reward

property. When only singleton coalitions are permissible, our sufficiency result implies that

of Bergemann and Morris (2011) on robust implementation under the non-cooperative frame-

work. When the coalition pattern is richer, our robust S incentive compatibility condition

becomes more demanding, but the robust S monotonicity condition may be weaker. Hence,

introducing non-trivial coalition structures may give the mechanism designer leeway to imple-

ment social choice functions that are not robustly implementable in the sense of Bergemann

and Morris (2011). Intuitively, allowing for coalitional manipulations makes the existence of

a good equilibrium more difficult, but can potentially make it easier to dissolve bad equilib-

ria. When the second effect dominates, the mechanism designer can benefit from non-trivial

coalitions. Example 2 in the paper presents a social choice function that violates the robust

monotonicity condition and thus is not implementable in the sense of Bergemann and Morris

(2011). However, we demonstrate its implementability under the richest coalition pattern,
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implying that robust monotonicity is not necessary for robust S implementation under a

non-trivial coalition pattern.

Our study of robust coalitional implementation and robust S implementation demon-

strates the importance of mechanism designer’s knowledge on coalition patterns in robust

implementation problems. In addition, the comparison between robust S implementation

under different coalition patterns highlights the value of having different coalition patterns

for robust implementation problems. In particular, introducing coalition patterns may help

to implement social choice functions that are non-implementable under the non-cooperative

framework.

The paper proceeds as follows. Section 1.1 discusses related literature. Section 2 presents

the primitives of the environment. We then motivate the study of robust coalitional imple-

mentation and robust S implementation with two examples in Section 3. The main results

of our paper, sufficient conditions for robust coalitional implementation and robust S imple-

mentation, are introduced in Sections 4 and 5. We then conclude in Section 6.

1.1 Literature Review

The paper fits into the literature on robust full implementation. In a single crossing environ-

ment, Bergemann and Morris (2009) characterize social choice functions that are robustly

fully implementable under direct mechanisms. In a general environment, Bergemann and

Morris (2011) propose necessary and almost sufficient conditions for robust implementation

under general mechanisms. Saijo et al. (2007) and Adachi (2014) focus on private value

environments and establish necessary and sufficient conditions for secure implementation

(in dominant strategy equilibrium and in Nash equilibrium) and for robust implementation.

Oury and Tercieux (2012) propose a robust partial implementation concept called contin-

uous implementation and explore its connection with full implementation in rationalizable

strategies. Penta (2015) and Müller (2016) further extend the belief-free mechanisms to dy-

namic ones. Instead of assuming that the mechanism designer knows nothing about agents’

belief structures, Ollár and Penta (2017) allow the mechanism designer to have partial in-

formation on beliefs and to design transfers. All the above works have been assuming that

agents behave non-cooperatively without considering coalitional manipulations. The current
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paper extends the literature on robust implementation by taking into account coalitional

manipulations and exploring the value of cooperation to robust implementation problems.

Besides, the paper is closely related to the literature on full implementation with coali-

tion structures. To the best of our knowledge, only two papers look into the problem of

Bayesian implementation with coalitions. One is Hahn and Yannelis (2001). In exchange

economies with general preferences, they generalize the strong equilibrium concept into the

incomplete information setting and provide conditions for full implementation under this

equilibrium. The other is Safronov (2018), where the expected externality mechanism is re-

designed. Essentially, the newly designed mechanism can fully implement the set of efficient

social choice functions under the independent private value environment regardless of the

coalition pattern. The most important difference between the current paper and the above

two is that we adopt a belief-free approach but their results rely on the assumption that the

belief structure is common knowledge between the mechanism designer and all agents.

Under complete information settings where agents do not possess private information,

more papers have studied Nash implementation problems with coalitional manipulations.

Maskin (1978) initiates the concept of fully implementing a social choice correspondence

in strong equilibrium. Subsequently, Maskin (1979) studies when full implementation can

be guaranteed under all coalition patterns, which he calls a double implementation prob-

lem.1 Then, a few papers, including but not limited to Maskin et al. (1985), Dutta and Sen

(1991), Suh (1996, 1997), Pasin (2009), and Korpela (2013), further explore the problem of

implementation in strong equilibrium or the problem of double implementation, and provide

various characterizations or sufficient conditions. The Maskin monotonicity condition, which

is necessary for Nash implementation, is also necessary for implementation in strong equi-

librium (and for double implementation). This contrasts with our finding that the robust

monotonicity condition is not necessary for robust S implementation for non-trivial coalition

patterns.

Recently, under the complete information setting, Koray and Yildiz (2018) and Korpela

1The term double implementation has been used to refer to other implementation concepts unrelated to

coalitions. To highlight our focus on coalition manipulations, we call the robust implementation problem

under all coalition patterns the robust coalitional implementation problem.

5



et al. (2020) bring to the literature the idea of designing a rights structure or a code of rights,

which specifies the collection of coalitions having the right to act cooperatively. We differ

in our incomplete information setup and in our exogenous coalition structures. However,

we find that there are social choice functions not robustly implementable under the non-

cooperative framework but robustly implementable under certain coalition pattern. Our

finding shares a similar implication with theirs in that non-trivial coalitions can bring value

to institution design.

Instead of concerning coalitional manipulations, the recent full implementation literature

has also explored how other non-standard assumptions affect the result of full implemen-

tation. For example, under the complete information setting, Dutta and Sen (2012) and

Lombardi and Yoshihara (2018, 2020) extend the Nash implementation literature by as-

suming that agents only misreport when they can strictly profit from doing so. Velez and

Brown (2020) follow a behavioral approach to refine Nash equilibrium and to characterize

implementable social choice functions under the alternative equilibrium concept. Under an

incomplete information setting, Guo and Yannelis (2020) assume that agents hold maxmin

expected utility with respect to each other’s private information and show that the set of

efficient and individually rational social choice functions becomes fully implementable.

2 Asymmetric Information Environment

We first consider an asymmetric information environment without any specification on be-

liefs, namely a payoff environment, given by E = {I, A, (Θi, ui)
n
i=1}, where

• I = {1, ..., n} is the set of agents;

• A is the set of feasible outcomes, i.e., the set of all lotteries over a deterministic

feasible outcome set X;

• Θ = Θ1 × ...×Θn is a finite payoff type set, and θi ∈ Θi is agent i’s payoff type;

• ui : X × Θ→ R, agent i’s utility function, represents agent i’s utility of consuming

a deterministic outcome a ∈ X, when the realized payoff type profile is θ = (θi)i∈I ;

then extend the domain of ui to A × Θ so that for any a ∈ A = ∆(X) with measure
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µ, ui(a, θ) =
∫
x∈X ui(x, θ)dµ.2

A social choice function f : Θ → A is an exogenous rule to assign feasible outcomes

contingent on agents’ payoff types. Notice that the outcome prescribed by a social choice

function does not depend on agents’ belief assessments of each other’s private information.

Given a sequence of outcomes (ak ∈ A)k=1,2,... and a sequence of weights (ρk ≥ 0)k=1,2,...

such that
∑

k=1,2,... ρ
k = 1, i.e., (ρk ≥ 0)k=1,2,... ∈ ∆, we let notation

∑
k=1,2,... ρ

kak denote

a compound lottery whose realization is ak with probability ρk. Similarly, for a sequence

of social choice functions (fk : Θ → A)k=1,2,...,
∑

k=1,2,... ρ
kfk denotes a new social choice

function so that at each θ ∈ Θ,
∑

k=1,2,... ρ
kfk(θ) is the outcome.

In this paper, we assume that the payoff environment E is common knowledge between

the mechanism designer and all agents. However, the following belief structure, including

the type space and the belief revising rule, is not known to the mechanism designer.

Agents’ beliefs are ex-post payoff-irrelevant, but they affect the strategic interaction

between agents in the interim stage. A type space is a collection T = (Ti, θ̂i, πi)i∈I , where

• ti ∈ Ti is a type of agent i, which represents agent i’s private information; the set of all

type profiles is denoted by T =
∏

i∈I Ti and a generic element is denoted by t = (ti)i∈I ;

to avoid technicality, we assume that each Ti is a countable set;

• agent i with type ti has a payoff type θ̂i(ti), which is defined by an onto mapping

θ̂i : Ti → Θi;

• agent i with type ti has a belief type πi(ti), which is a probability distribution over

T−i =
∏

j 6=i Tj, assigning probability πi(ti)[t−i] to the event that others have type profile

t−i = (tj)j 6=i.

A key feature of this paper is that coalitions can be formed. A coalition is a non-empty

subset of I and an agent in the subset is called a member. A coalition pattern, denoted by

S, is the set of all coalitions that can be formed. We assume that all singletons are included in

S, i.e., agents can always choose not to communicate with others. One example of a coalition

pattern is the minimal (or trivial) coalition pattern, which we denote by S = {{i} : i ∈ I}.

Another example is the maximal coalition pattern, denoted by S̄ = 2I\{∅}, which has the

richest coalition possibility. In applications, one may be interested in other patterns formed

2The integral form of the utility function is used when we construct lotteries in Theorems 1 and 2.
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by partisanship, cultural differences, geographic isolation, etc.

When a coalition is formed, each member acquires new information on other members’

private information, which may surprise him.3 Hence, we have to consider how agents revise

beliefs under zero probability events. For each distribution πi(t
∗
i ) ∈ ∆(T−i) and non-singleton

S 3 i, let the notation πi(t
∗
i )[t
∗
S\{i}] represent the marginal probability that coalition S\{i}

has type profile t∗S\{i} = (t∗j)j∈S\{i}. Whenever πi(t
∗
i )[t
∗
S\{i}] = 0, a belief revising rule

specifies a posterior belief (πi(t
∗
i )[t−i|t∗S\{i}])t−i∈T−i over T−i whose marginal probability on

the event that coalition S\{i} has type profile t∗S\{i} is 1. The posterior belief is defined by

the Bayes rule whenever πi(t
∗
i )[t
∗
S\{i}] > 0.

A mechanism is a pair (M, g) = (
∏

i∈IMi, g), where Mi is the message space of agent

i, i.e., the set of all messages that agent i can submit, and g : M → A is an outcome

function, which assigns to each message profile m = (mi)i∈I a feasible outcome. Agent

i’s strategy σi : Ti → Mi is a private information contingent plan of submitting messages.

We focus on pure strategies in this paper for simplicity. Denote by σS the strategy profile

(σi)i∈S, by σ−S the profile (σi)i 6∈S, and by σ the profile (σi)i∈I .

When the coalition pattern is S, this paper assumes that agents play an interim S

equilibrium. The equilibrium requires that there does not exist an admissible coalition and

a type profile, such that under coalition members’ pooled information, a deviating strategy

profile makes every member strictly better off.

Definition 1: Given a type space and a belief revising rule, the strategy profile σ∗ is an

interim S equilibrium of the mechanism (M, g) if there does not exist S ∈ S, t∗S ∈ TS,

and strategy profile σ′S, such that for all i ∈ S,

∑
t−i∈T−i

ui

(
g
(
σ′S(t∗S), σ∗−S(t−S)

)
, θ̂(t∗S, t−S)

)
πi(t

∗
i )[t−i|t∗S\{i}]

>
∑

t−i∈T−i

ui

(
g
(
σ∗(t∗S, t−S)

)
, θ̂(t∗S, t−S)

)
πi(t

∗
i )[t−i|t∗S\{i}].

We allow the coalition to pool members’ information and adopt the most profitable

deviating strategy. This is consistent with the coalition-proofness notions of Bennett and

3A related question shows up in dynamic environments, where Penta (2015) and Müller (2016) have

explored how belief revising rule under zero probability events affects robust dynamic implementation.
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Conn (1977), Green and Laffont (1979), Chen and Micali (2012), Safronov (2018), etc. An

underlying assumption is that agents within a coalition act as a utility-maximizing pseudo

agent without encountering within-coalition interactions. This assumption simplifies our

analysis by helping us focus on the interaction between a coalition and all others out of the

coalition. Although there are alternative models on coalition formation that can undermine

the power of coalitional manipulations, when a mechanism designer does not know exactly

the way coalitions are formed, our definition of interim S equilibrium imposes a strong

stability requirement and serves as a benchmark to study robust coalitional implementation.

Under the maximal coalition pattern S̄, the interim S̄ equilibrium can be viewed as a

variant of Aumann (1959)’s strong equilibrium under asymmetric information. Hence, we

also call an interim S̄ equilibrium an interim strong equilibrium. Similarly, under the

minimal coalition pattern S, the interim S equilibrium becomes the widely adopted interim

equilibrium (or Bayesian equilibrium) in the mechanism design literature.

When the mechanism designer does not know the coalition pattern and wishes to robustly

S implement a social choice function under all coalition patterns, it is of interest to study

the following implementation concept.

Definition 2: A social choice function f is said to be robustly coalitionally imple-

mentable if there is a mechanism (M, g) such that under all type spaces and all belief

revising rules,

(i) there exists an interim strong equilibrium σ of the mechanism (M, g) such that g
(
σ(t)

)
=

f(θ̂(t)) for all t ∈ T ;

(ii) if σ is an interim equilibrium of the mechanism (M, g), then g
(
σ(t)

)
= f(θ̂(t)) for all

t ∈ T .

Notice that an interim strong equilibrium is an interim S equilibrium, and an interim

S equilibrium is an interim equilibrium. Condition (i) of the definition above guarantees

the existence of a “good” interim S equilibrium no matter what the coalition pattern S

is. Condition (ii) implies that every “bad” interim S equilibrium can be dissolved by a

singleton’s deviation.

9



When the coalition pattern S is known to the mechanism designer, we present the defi-

nition of robust S implementation. It requires the set of interim S equilibrium outcomes to

coincide with the social choice function under all type spaces and belief revising rules.

Definition 3: A social choice function f is said to be robustly S implementable if there

is a mechanism (M, g) such that under all type spaces and all belief revising rules,

(i) there exists an interim S equilibrium σ of the mechanism (M, g) such that g
(
σ(t)

)
=

f(θ̂(t)) for all t ∈ T ;

(ii) if σ is an interim S equilibrium of the mechanism (M, g), then g
(
σ(t)

)
= f(θ̂(t)) for

all t ∈ T .

Specifically, under the minimal coalition pattern, Definition 3 becomes the robust im-

plementation notion of Bergemann and Morris (2011). To differentiate all implementation

concepts mentioned in the current paper, the term robust implementation refers to the one

of Bergemann and Morris (2011) exclusively henceforth.

If we require the two conditions in Definition 2 (resp. Definition 3) to hold under a

given type space and belief revising rule only, we say the social choice function f is interim

coalitionally implementable (resp. interim S implementable).

3 Motivating Examples

We present two examples to motivate the study of coalitional manipulations in implementa-

tion problems. The first one is a variant of the public good example of Bergemann and Morris

(2009): we have discrete types and allow the use of indirect mechanisms. The example shows

that robustly implementable social choice functions may be vulnerable to coalitional manip-

ulations. Thus they may not be robustly S implementable for some coalition pattern S 6= S,

and a fortiori may not be robustly coalitionally implementable. The example also shows

that robustly coalitionally implementable social choice functions that are non-dictatorial

exist, although the requirement of robust coalitional implementation is demanding.
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Example 1: Consider an environment with two agents, where each agent’s payoff type set

Θi is {0, 0.5, 1}. The social planner can construct a public good, towards which agents have

private valuation. To finance the costly good, the social planner can charge both agents. The

utility of agent i is denoted by ui(x, θ) = θix0 + xi, when x0 units of public good are provided

and i receives a monetary transfer of xi (equivalently, i is charged a payment of −xi).

A deterministic social choice function f is given by f(θ) = (f0(θ), f1(θ), f2(θ)) for all θ ∈

Θ, where the public good provision level is f0(θ) = θ1 + θ2 and the transfer is fi(θ) = −0.5θi
2

for all i ∈ I. We assume for simplicity that the set of deterministic feasible outcomes is

given by X = {x ∈ R3 : x ≤ f(θ) for some θ ∈ Θ}. Notice that free disposal is allowed.

Bergemann and Morris (2009) have shown that f is robustly implementable (or equiv-

alently, robustly S implementable) by the direct mechanism which requires agents to report

their payoff types. However, the truth-telling interim equilibrium is vulnerable to group ma-

nipulations. For example, when the grand coalition has payoff types θ∗ = (0.5, 0.5), the group

can jointly misreport payoff types θ′ = (1, 1) so that each agent i ∈ I earns a payoff of

ui(f(θ′), θ∗) = 0.5 > ui(f(θ∗), θ∗) = 0.375.

In fact, f is neither robustly S̄ implementable nor robustly coalitionally implementable

because one cannot guarantee the existence of a good interim strong equilibrium under all

belief structures.4 To see this, we can fix any type space T with type set T and any belief

revising rule. Suppose by way of contradiction that there is a mechanism (M, g) admitting a

good interim strong equilibrium σ. Then g(σ(t)) = f(θ̂(t)) for all t ∈ T . Now, fix any type

profile t∗ ∈ T with payoff types θ∗ = (0.5, 0.5) and another type profile t′ ∈ T with payoff types

θ′ = (1, 1). By jointly deviating from playing σ to the alternative strategy profile σ′ defined

by σ′i(ti) = σi(t
′
i) for all i ∈ I and ti ∈ Ti, each agent i ∈ I in the grand coalition earns

a payoff of ui(g(σ′(t∗)), θ∗) = ui(g(σ(t′)), θ∗) = ui(f(θ′), θ∗) = 0.5 > ui(f(θ∗), θ∗) = 0.375.

This contradicts the supposition that σ is an interim strong equilibrium. Hence, f is not

robustly S̄ implementable, and a fortiori not robustly coalitionally implementable.

However, if we shrink the payoff type set to Θi = {0, 1} for all i ∈ I, then it is easy

to see that the direct mechanism robustly coalitionally implements f (and thus robustly S̄
4Essentially, this is because f violates the robust coalitional incentive compatibility condition which will

be introduced later.
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implements f). In particular, no coalition can profitably deviate from truthfully reporting.

Besides, every bad interim equilibrium can be dissolved by a singleton’s deviation. Hence,

robustly coalitionally implementable social choice functions that are non-dictatorial exist al-

though stringent conditions are imposed on them.

Example 2 presents a social choice function that is only robustly implementable under

the maximal coalition pattern. It shows that having a non-trivial coalition pattern may

help a mechanism designer to implement social choice functions that are non-implementable

under the non-cooperative framework. It also implicitly shows that the robust monotonicity

condition (defined in Bergemann and Morris (2011) and proved to be necessary for robust

implementation) is not necessary for robust S implementation in general.

Example 2: Consider the same two-agent public good example as the one in Example 1

except that (i) Θi is {0, 1} for both agents, and (ii) agents have common valuation: the

utility of agent i is denoted by ui(x, θ) = (θ1 + θ2)x0 + xi when agents have payoff types θ1

and θ2, x0 units of public good are provided, and agent i receives a monetary transfer of xi.

Suppose the three deterministic feasible outcomes that do not involve free disposal are

given by: x1 = (x1
0, x

1
1, x

1
2) = (0, 0, 0), x2 = (x2

0, x
2
1, x

2
2) = (2,−1,−1), and x3 = (x3

0, x
3
1, x

3
2) =

(4,−4,−4), which represent low, middle, and high levels of public good provision respectively.

Free disposal is allowed and thus X = {x ∈ R3 : x ≤ x1, x2, orx3}.

Define f by f(0, 0) = x1, f(0, 1) = f(1, 0) = x2, and f(1, 1) = x3. Notice that f is the

only ex-post efficient social choice function. Also, agents have common interest under f .

We claim that f is not robustly implementable in the sense of Bergemann and Morris

(2011).5 Suppose by way of contradiction that a mechanism (M, g) robustly implements f .

Then there exists an interim equilibrium σ such that g(σ(t)) = f(θ̂(t)) for all t ∈ T in the

common prior type space defined below. For each i ∈ {1, 2}, the type set of agent i is given

by Ti = {t0i , t1i }, where type t0i has payoff type 0, and type t1i has payoff type 1. Agents’ beliefs

are updated from the prior in the table below, where ε is a sufficiently small positive number.

5This is essentially because f violates the robust monotonicity condition.

12



t02 t12

t01 ε2 ε

t11 1− ε− 2ε2 ε2

Table 3.1: Common Prior

Consider the strategy profile σ′ defined by σ′1(t1) = σ1(t01) for all t1 ∈ T1 and σ′2(t2) =

σ2(t12) for all t2 ∈ T2. The strategy profile σ′ leads to unwanted outcomes: for example,

g(σ′(t1, t2)) = g(σ(t01, t
1
2)) = f(θ̂(t01, t

1
2)) = f(0, 1) = x2 for all t ∈ T , but f(θ̂(t11, t

1
2)) =

f(1, 1) = x3. We now show that σ′ is an interim equilibrium for ε > 0 sufficiently small,

contradicting the supposition that (M, g) robustly implements f . By the definition of strategy

profile σ′, the interim payoff for type t01 agent 1 under σ′ is equal to

ε

1 + ε
u1(g(σ′1(t01), σ′2(t02)), (0, 0)) +

1

1 + ε
u1(g(σ′1(t01), σ′2(t12)), (0, 1))

=
ε

1 + ε
u1(g(σ1(t01), σ2(t12)), (0, 0)) +

1

1 + ε
u1(g(σ1(t01), σ2(t12)), (0, 1))

=
ε

1 + ε
u1(x2, (0, 0)) +

1

1 + ε
u1(x2, (0, 1)),

which is close to u1(x2, (0, 1)) when ε is sufficiently small. In this case, since x2 is the unique

utility maximizing feasible outcome in the above expression, type-t01 agent 1 is playing best

response under σ′. Similarly, we can verify that each type of each agent plays best response

under σ′, which implies that σ′ is an interim equilibrium. This contradicts the supposition

that (M, g) robustly implements f .

However, f is robustly S̄ implementable under all type spaces and all belief revising rules.

In fact, the direct mechanism that requires both agents to report their payoff types can robustly

S̄ implement f . Truthfully reporting of both agents constitutes a “good” interim strong

equilibrium. To see this, notice that under each θ ∈ Θ, f(θ) assigns the unique optimal

outcome to both agents, and thus neither unilateral deviation nor coalitional deviation is

profitable. Also, the mechanism does not admit any “bad” interim strong equilibrium. To

see this, whenever a strategy profile σ′′ and a type profile t ∈ T are such that g(σ′′(t)) 6=

f(θ̂(t)), both agents receive a sub-optimal outcome at t ∈ T . When the type-t grand coalition

coordinately deviates from σ′′ to truthfully reporting members’ payoff types, both players will

strictly improve their utility levels at t. Hence, σ′′ cannot be an interim strong equilibrium.
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4 Robust Coalitional Implementation

We begin by assuming that the mechanism designer does not know the coalition pattern

and thus does not know which equilibrium agents are playing. We will introduce three

conditions that are jointly sufficient for robust coalitional implementation, and then construct

a mechanism to establish the sufficiency of these conditions.

4.1 Sufficient Conditions

The first condition we introduce is the robust coalitional incentive compatibility condition.

Definition 4: A social choice function f satisfies the robust coalitional incentive com-

patibility condition if for any coalition S and payoff type profiles θ′S 6= θ∗S, there exists i ∈ S

such that

ui
(
f(θ∗S, θ−S), (θ∗S, θ−S)

)
≥ ui

(
f(θ′S, θ−S), (θ∗S, θ−S)

)
for all θ−S ∈ Θ−S.

The condition guarantees the existence of a “good” interim strong equilibrium under all

type spaces and belief revising rules. Similar to the coalition-proofness notions of Bennett and

Conn (1977), Green and Laffont (1979), Chen and Micali (2012), and Safronov (2018), our

condition disincentives any coalition from jointly misreporting members’ payoff type profile

in a direct mechanism. A difference is that within a coalition, our model neither assumes

transferable utility nor common belief towards agents out of the coalition. Notice that when

coalition S = I, robust coalitional incentive compatibility excludes the existence of θ∗, θ′ ∈ Θ

such that f(θ′) is preferred to f(θ∗) for all agents under true payoff types θ∗. Namely, f

should be ex-post weakly Pareto efficient within f(Θ). As we focus on implementation of

a social choice function, a global version of Pareto efficiency is unnecessary: for example, a

constant inefficient social choice function is robustly coalitionally implementable.

The robust coalitional incentive compatibility condition is in general a strong condition.

Allowing all coalitions to be formed imposes a stronger stability requirement than the fa-

miliar ex-post incentive compatibility condition. In addition, we do not introduce strategic

interactions within a coalition that potentially undermine the power of coalitions. However,
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there are environments in which robust coalitional incentive compatibility is implied by fa-

miliar conditions. For example, in private value environments, if a social choice function is

obviously strategy-proof (see Li (2017)), then it satisfies robust coalitional incentive compat-

ibility. Besides, in two-agent environments, robust coalitional incentive compatibility can be

guaranteed by ex-post incentive compatibility and ex-post weak Pareto efficiency.

The following proposition shows that the robust coalitional incentive compatibility condi-

tion is necessary for robust coalitional implementation. We leave the proof to the Appendix.

Proposition 1: If a social choice function f is robustly coalitionally implementable, then f

satisfies the robust coalitional incentive compatibility condition.

To prevent the existence of “bad” interim equilibria, we introduce the robust coalitional

monotonicity condition. Define a deception of agent i’s payoff type as a set-valued mapping

βi : Θi → 2Θi\{∅}. The symbol β = (βi)i∈I denotes a profile of deceptions. For any

coalition S ⊆ I and payoff type profile θS, denote βS(θS) = (βi(θi))i∈S. We adopt the

notation θ′S ∈ βS(θS) when θ′i ∈ βi(θi) for each i ∈ S. The deception profile is acceptable

if f(θ) = f(θ′) for all θ ∈ Θ and θ′ ∈ β(θ). Otherwise, we say the deception profile is

unacceptable. The coalitional reward set of agent i, denoted by Yi, is the collection of

coalitional reward functions y : Θ−i → A satisfying the following conditions: for each

S 3 i, θ′′S ∈ ΘS, and θ′S\{i} ∈ ΘS\{i}, there exists j ∈ S such that

uj
(
f(θ′′S, θ−S), (θ′′S, θ−S)

)
≥ uj

(
y(θ′S\{i}, θ−S), (θ′′S, θ−S)

)
, ∀θ−S ∈ Θ−S.

We remark that when f satisfies the robust coalitional incentive compatibility condition, the

set Yi is non-empty. This is because we can fix any θi and let y : Θ−i → A be defined by

y(θ−i) = f(θ) for all θ−i ∈ Θ−i. By the robust coalitional incentive compatibility condition,

when some coalition S 3 i with payoff type profile θ′′S misreports (θi, θ
′
S\{i}), there should

exist j ∈ S such that j is worse-off under all θ−S.

Definition 5: A social choice function f is said to satisfy the robust coalitional mono-

tonicity condition if whenever a deception profile β is unacceptable, there exists i ∈ I,

θi ∈ Θi, and θ′i ∈ βi(θi) such that for any conjecture ψi ∈ ∆({(θ−i, θ′−i)|θ−i ∈ Θ−i, θ
′
−i ∈
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β−i(θ−i)}), there exists y ∈ Yi such that

∑
θ−i∈Θ−i,θ′−i∈β−i(θ−i)

ui
(
y(θ′−i), (θi, θ−i)

)
ψi(θ−i, θ

′
−i)

>
∑

θ−i∈Θ−i,θ′−i∈β−i(θ−i)

ui
(
f(θ′i, θ

′
−i), (θi, θ−i)

)
ψi(θ−i, θ

′
−i).

We call the agent i above a “whistle-blower” and the function y ∈ Yi a “successful” coali-

tional reward function. The robust coalitional monotonicity condition conveys the following

meaning: when agents are assigned f but follow an unacceptable deception profile β, there

exists a whistle-blower i who can signal that a bad equilibrium is reached and profitably

deviate by proposing a successful coalitional reward function y regardless of his conjecture

of other agents’ true and reported payoff types.

Robust coalitional monotonicity is stronger than robust monotonicity of Bergemann and

Morris (2011) because our coalitional reward set imposes a stronger requirement than their

reward set. To see this, notice that a coalitional reward function proposed by the whistle-

blower i cannot serve as a profitable deviation from truthfully consuming f for any coalition

S 3 i with payoff types θS. But in their paper, an element in the reward set merely should not

serve as a profitable deviation for agent i with any payoff type θi. However, when agents have

quasilinear utility functions (or under some other weak conditions), robust monotonicity im-

plies robust coalitional monotonicity and the two conditions become equivalent. Intuitively,

when i proposes a successful reward in the robust monotonicity condition, we can lower the

transfers to all j 6= i sufficiently but keep other parts of the reward unchanged. In this way,

we can construct a successful coalitional reward function.

The proposition below shows that the robust coalitional monotonicity condition is nec-

essary for robust coalitional implementation. Its proof is relegated to the Appendix.

Proposition 2: If a social choice function f is robustly coalitionally implementable, then f

satisfies the robust coalitional monotonicity condition.

We then introduce the interior coalitional reward property to complete the group of

sufficient conditions. This condition is not necessary for robust coalitional implementation.
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Definition 6: A social choice function f satisfies the interior coalitional reward prop-

erty, if for any agent i ∈ I, there exists a countable set Ŷi ⊆ Yi, such that:

(i) for all θi ∈ Θi and ψi ∈ ∆({(θ−i, θ′−i)|θ−i ∈ Θ−i, θ
′
−i ∈ β−i(θ−i)}), there exists y, ȳ ∈ Ŷi

such that∑
θ−i∈Θ−i,θ′−i∈β−i(θ−i)

ui(ȳ(θ′−i), θ)ψi(θ−i, θ
′
−i) >

∑
θ−i∈Θ−i,θ′−i∈β−i(θ−i)

ui(y(θ′−i), θ)ψi(θ−i, θ
′
−i);

(ii) for any function y ∈ Yi, sequence (yk ∈ Ŷi)k=1,2,..., and vector (ρk)k=0,1,2,... ∈ ∆, the

function ρ0y +
∑

k=1,2,... ρ
kyk ∈ Yi.

The above property implies that for each agent i, there is a countable subset Ŷi ⊆ Yi, such

that for each type of him, there always exist at least two rankable functions in Ŷi. Besides,

it is required that every lottery over Ŷi and some y ∈ Yi is still a coalitional reward function.

The interior coalitional reward property is a weak condition when agents have monotone

preferences and free disposal. For example, for social choice function f and agent i ∈ I, we

can consider two functions ȳ, y ∈ Yi, which always offer sufficiently low consumption to every

agent. Let agents’ consumption under ȳ to be slightly higher than that under y. Then the

set Ŷi ≡ {ȳ, y} can satisfy the two requirements in the interior coalitional reward property.

The fact that there are two rankable functions in Ŷi is used to dissolve bad equilibria

in our mechanism in the next session. We use the rankable functions to create an open set

of outcomes from which a consumer cannot find an optimal one. The idea is similar to the

conditional no total indifference condition of Bergemann and Morris (2011).

4.2 Mechanism

To establish the following sufficiency theorem on robust coalitional implementation, we will

construct a new mechanism explicitly. Then we will explain why the existing mechanism of

Bergemann and Morris (2011) cannot fulfill the goal of robust coalitional implementation.

Theorem 1: If a social choice function f satisfies the robust coalitional incentive compatibil-

ity condition, the robust coalitional monotonicity condition, and the interior reward property,

then f is robustly coalitionally implementable.
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Consider a mechanism where each agent i reports a message mi = (m1
i ,m

2
i ,m

3
i ,m

4
i ) ∈

M1
i × M2

i × M3
i × M4

i . The first component m1
i ∈ M1

i ≡ Θi reports a payoff type, the

second one m2
i ∈M2

i ≡ {B,NB} means to blow a whistle or not, m3
i ∈M3

i ≡ Yi proposes a

coalitional reward function, and m4
i ∈M4

i ≡ N+ is a non-negative integer.

We partition the message space into subsets M̄ and M̂ as follows:

M̄ = {m|mi = (·, NB, ·, ·)∀i ∈ I},

M̂(S) = {m|mi = (·, B, ·, ·)∀i ∈ S;mj = (·, NB, ·, ·)∀j 6∈ S},

M̂ =
⋃
S∈2I\{∅} M̂(S).

Rule 1. If m ∈ M̄ , let the outcome allocation be g(m) = f(m1).

Rule 2. If m ∈ M̂ , there exists a unique coalition S ⊆ I such that m ∈ M̂(S). We define

i∗ ≡ minS, i.e., i∗ is the agent with the smallest index among those who blow a whistle.

By the interior coalitional reward property, there exists a countable set Ŷi∗ ⊆ Yi∗ . List the

elements of Ŷi∗ by y1, y2,... When the cardinality of Ŷi∗ , denoted by K, is finite, then we

define yk ≡ yK for all k > K. Let the outcome g(m) be a lottery of realization m3
i∗(m

1
−i∗)

with probability
m4
i∗

m4
i∗+1

and of realization yk(m1
−i∗) with probability 0.5k

m4
i∗+1

for k = 1, 2, ...

In the Appendix, we prove that (M, g) robustly coalitionally implements f . Now we

only provide a sketch of the proof. For convenience of notation, we decompose a strategy

σi : Ti →Mi into σi = (σ1
i , σ

2
i , σ

3
i , σ

4
i ) so that σki (ti) ∈Mk

i for each k = 1, 2, 3, 4.

Claim 1 in the Appendix establishes that regardless of the type space and belief revising

rule, it is an interim strong equilibrium for each agent to truthfully report his payoff type

and to not blow a whistle. This strategy profile always triggers Rule 1. By robust coalitional

incentive compatibility, no coalition can profit from staying with Rule 1 but misreporting

payoff types. In addition, no coalition can benefit from triggering Rule 2 because deviating

to a coalitional reward function is not profitable.

Claim 2 demonstrates that in any interim equilibrium under all type spaces and belief

revising rules, agents do not blow a whistle. Suppose that there is an interim equilibrium σ

in which some agent blows a whistle. Then, we can find an agent-type pair denoted by j and

t∗j such that regardless of t−j ∈ T−j, type-t∗j agent j is always the agent with the smallest

index who blows a whistle under σ(t∗j , t−j). From t∗j ’s point of view, by playing σj(t
∗
j), the

outcome is assigned according to the coalitional reward function y ≡ σ3
j (t
∗
j) with probability
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σ4
j (t∗j )

1+σ4
j (t∗j )

and according to a full-support lottery over Ŷj with probability 1
1+σ4

j (t∗j )
. However,

we can show that t∗j can be better off by proposing a better coalitional reward function ŷ or

decreasing the probability that the full-support lottery is realized.

Claim 3 further shows that in any interim equilibrium, agents follow an acceptable de-

ception to report payoff types. Otherwise, there exists a whistle-blower who can profitably

deviate by proposing a “successful” coalitional reward function and submitting a large integer

so that the outcome approximates that under the coalitional reward function.

The three claims jointly establish that (M, g) robustly coalitionally implements f .

We remark that our mechanism mainly differs from the one of Bergemann and Morris

(2011) in the allocation when m ∈ M̂(S) for some non-singleton S. In our mechanism, we

let the agent with the smallest index among those who blow a whistle propose a coalitional

reward function. However, their mechanism lets each agent propose an unrestricted outcome

of his choice, and the outcome is realized with positive probability. As the unrestricted out-

come might lead to a profitable coalitional deviation from the good strategy profile described

in our Claim 1, we cannot follow their mechanism for robust coalitional implementation.

5 Robust S Implementation

In this section, we assume that the mechanism designer knows the coalition pattern S and

thus knows that agents are playing an interim S equilibrium. We will provide a group

of sufficient conditions for robust S implementation and construct a mechanism explicitly.

The sufficient conditions are weaker than the ones for robust coalitional implementation.

Furthermore, when a coalition pattern S is richer than S, the sufficient conditions for robust

S implementation do not imply those for robust implementation, and vice versa. This leaves

leeway for the mechanism designer to robustly S implement some social choice functions

that are not robustly implementable in the non-cooperative framework.

5.1 Sufficient Conditions

The first condition is the robust S incentive compatibility condition, which prevents any

admissible coalition from misreporting in a direct mechanism.
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Definition 7: A social choice function f is said to satisfy the robust S incentive com-

patibility condition if for all S ∈ S and θ′S 6= θ∗S, there exists i ∈ S such that

ui
(
f(θ∗S, θ−S), (θ∗S, θ−S)

)
≥ ui

(
f(θ′S, θ−S), (θ∗S, θ−S)

)
for all θ−S ∈ Θ−S.

The smaller the coalition pattern is, the weaker the robust S incentive compatibility

condition is. In particular, robust S incentive compatibility is equivalent to the ex-post

incentive compatibility condition in the literature.

Then we define the S reward set and the robust S monotonicity condition. For each

S ∈ S, the S reward set, YS[S], is the collection of all S reward functions y : Θ−S → A

subject to the following restriction: for each S̄ such that S ⊆ S̄ ∈ S, payoff type profile

θ′
S̄\S ∈ ΘS̄\S, and payoff type profile θ′′

S̄
∈ ΘS̄, there exists i ∈ S̄ such that

ui
(
f(θ′′S̄, θ−S̄), (θ′′S̄, θ−S̄)

)
≥ ui

(
y
(
θ′S̄\S, θ−S̄

)
, (θ′′S̄, θ−S̄)

)
, ∀θ−S̄ ∈ Θ−S̄.

To unify the notation, we remark that in the special case S = I, the set Θ−S degenerates and

each y : Θ−S → A is viewed as a constant function with range in A. When f satisfies robust

S incentive compatibility, the set YS[S] is non-empty for all coalition S. To see this, when

there does not exist S̄ such that S ⊆ S̄ ∈ S, YS[S] is the collection of all mappings from

Θ−S to A and thus is non-empty. When there exists S̄ such that S ⊆ S̄ ∈ S, we can fix any

θS ∈ ΘS and define y(θ−S) = f(θ) for all θ−S ∈ Θ−S. By robust S incentive compatibility,

for all S̄ satisfying S ⊆ S̄ ∈ S, θ′
S̄\S ∈ ΘS̄\S, and θ′′

S̄
∈ ΘS̄, there exists i ∈ S̄ such that

ui
(
f(θ′′S̄, θ−S̄), (θ′′S̄, θ−S̄)

)
≥ ui

(
f(θS, θ

′
S̄\S, θ−S̄), (θ′′S̄, θ−S̄)

)
= ui

(
y
(
θ′S̄\S, θ−S̄

)
, (θ′′S̄, θ−S̄)

)
for all θ−S̄ ∈ Θ−S̄. Since y ∈ YS[S], YS[S] is non-empty again.

Definition 8: A social choice function f satisfies the robust S monotonicity condition if

whenever a deception profile β is unacceptable, there exists S ∈ S, θS ∈ ΘS, and θ′S ∈ βS(θS)

such that for any conjectures (ψi ∈ ∆({(θ−S, θ′−S)|θ−S ∈ Θ−S, θ
′
−S ∈ β−S(θ−S)}))i∈S, there

exists y ∈ YS[S] such that for all i ∈ S,∑
θ−S∈Θ−S ,θ

′
−S∈β−S(θ−S)

ui
(
y(θ′−S), (θS, θ−S)

)
ψi(θ−S, θ

′
−S)

>
∑

θ−S∈Θ−S ,θ
′
−S∈β−S(θ−S)

ui
(
f(θ′S, θ

′
−S), (θS, θ−S)

)
ψi(θ−S, θ

′
−S).
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The robust S monotonicity condition allows a coalition S ∈ S to dissolve a bad equilib-

rium by proposing a function in the S reward set. Briefly speaking, in various monotonicity

conditions under non-cooperative frameworks, when a deception profile is unacceptable, one

agent reverses his ranking between two outcomes: one reward outcome and one social choice

outcome, under two states. In our robust S monotonicity condition, one coalition switches

its ranking rather than one agent. In the literature, Hahn and Yannelis (2001)’s coalitional

Bayesian monotonicity condition under a given type space and Pasin (2009)’s coalitional

monotonicity condition under complete information have a similar feature.

It is easy to see that the robust S monotonicity condition is equivalent to the robust

monotonicity condition of Bergemann and Morris (2011).

When agents have quasilinear utility functions, the robust monotonicity condition im-

plies the robust S monotonicity condition for all S. To see this, suppose agents follow an

unacceptable deception profile. When the robust monotonicity condition is satisfied, there

exists an agent i who can benefit from proposing some y ∈ Yi[S]. By sufficiently decreasing

the transfer of each j 6= i in y to construct ŷ, one can see that the singleton whistle-blower

{i} ∈ S can profitably propose the S reward function ŷ to dissolve the unacceptable decep-

tion profile. Hence, robust S monotonicity condition is also satisfied.

The fact that robust monotonicity may be stronger than robust S monotonicity gives us

leeway to implement some social choice functions that are not robustly implementable. For

instance, the one in Example 2 does not satisfy robust monotonicity and fails to be robustly

implementable, but it satisfies robust S̄ monotonicity and is robustly S̄ implementable. This

observation may be surprising because it implies that robust monotonicity is not necessary

for robust S implementation in general (e.g., when S = S̄), although the Maskin monotonic-

ity condition is necessary for implementation in strong equilibrium in a complete information

setting (see Maskin (1978)). Under the robust monotonicity condition, given any bad decep-

tion profile, there should be a whistle-blower to dissolve the deception profile regardless of

his conjecture about the true and reported payoff types of all other agents. However, under

the robust S monotonicity condition, it suffices to have a coalition of agents who can dissolve

the bad deception profile regardless of their conjectures about agents out of the coalition.

Notice that the latter condition imposes no restriction on coalition members’ conjectures
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with respect to each other, which is why there might exist a coalition of whistle-blowers to

dissolve a bad deception profile but no singleton can play this role.

At last, we introduce a weak condition, the interior S reward property, to complete the

group of sufficient conditions.

Definition 9: A social choice function f satisfies the interior S reward property, if for

any coalition S such that there exists S̄ satisfying S ⊆ S̄ ∈ S, there exists a countable set

ŶS[S] ⊆ YS[S] such that:

(i) for all i ∈ S, θi ∈ Θi, and ψi ∈ ∆(Θ−i ×Θ−S), there exists y, ȳ ∈ ŶS[S] such that∑
θ−i∈Θ−i,θ′−S∈Θ−S

ui(ȳ(θ′−S), θ)ψi(θ−i, θ
′
−S) >

∑
θ−i∈Θ−i,θ′−S∈Θ−S

ui(y(θ′−S), θ)ψi(θ−i, θ
′
−S);

(ii) for any function y ∈ YS[S], sequence (yk ∈ ŶS[S])k=1,2,..., and vector (ρk)k=0,1,2,... ∈ ∆,

the function ρ0y +
∑

k=1,2,... ρ
kyk ∈ YS[S].

According to this property, whenever there exists S̄ such that S ⊆ S̄ ∈ S, there always

exists a countable set ŶS[S] ⊆ YS[S], such that for each i ∈ S, there are rankable functions

in ŶS[S]. Furthermore, for each y ∈ YS[S], every lottery over ŶS[S] ∪ {y} should still fall in

the S reward set YS[S].

5.2 Mechanism

Under the sufficient conditions in Section 5.1, the mechanism constructed for Theorem 1

cannot robustly S implement f : when all agents follow an unacceptable deception profile

and do not blow a whistle, the bad interim S equilibrium may not be dissolved even if S

is a coalition of whistle-blowers in the robust S monotonicity condition. This is because a

successful S reward function y ∈ YS[S] may not be in Yi for any i ∈ S. Hence, we propose a

new mechanism to fulfill the goal of robust S implementation. The difference between this

mechanism and the one in Theorem 1 is that we allow each i to propose an element of YS[S]

contingent on different S that he is a member of.
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Theorem 2: If a social choice function f satisfies the robust S incentive compatibility con-

dition, the robust S monotonicity condition, and the interior S reward property, then f is

robustly S implementable.

In the mechanism (M, g), each agent i reports a message mi = (m1
i ,m

2
i ,m

3
i ,m

4
i ) ∈

M1
i ×M2

i ×M3
i ×M4

i . The M1
i , M2

i , and M4
i components of the message space are identical

to those in Theorem 1. The third component m3
i ∈M3

i ≡
∏

S3i YS[S] is a vector of S reward

functions corresponding to different coalitions containing i. The partition of message space

is identical to that in Theorem 1.

Rule 1. If m ∈ M̄ , let the outcome of the mechanism be g(m) = f(m1).

Rule 2. If m ∈ M̂ , there exists a unique coalition S ⊆ I such that m ∈ M̂(S). Define

i∗[S] = minS, i.e., the agent with the smallest index who blows a whistle. If there exists

S̄ ∈ S such that S ⊆ S̄, we define S∗[S] = S; otherwise, let S∗[S] = {i∗[S]}. In the remainder

of this paragraph, we adopt notations i∗ and S∗ rather than i∗[S] and S∗[S] for simplicity.

Denote the component of m3
i∗ that is in YS∗ [S] by y. By the interior S reward property,

there exists a countable subset of YS∗ [S], denoted by ŶS∗ [S] = {y1, y2, ...}. When ŶS∗ [S] has

carnality K < ∞, define yk ≡ yK for all k > K. Then let the outcome g(m) be a lottery

of realization y(m1
−S∗) with probability

m4
i∗

m4
i∗+1

and of realization yk(m1
−S∗) with probability

0.5k

m4
i∗+1

for each k = 1, 2, ...

To prove that the mechanism (M, g) robustly S implements f , we relegate the analysis

to the Appendix and only provide a sketch here.

Claim 4 in the Appendix shows that under all belief structures, it is an interim S equi-

librium for agents to truthfully report payoff types without blowing a whistle. The robust

S incentive compatibility condition prevents a coalition from profitably manipulating payoff

types without leaving Rule 1. According to the definition of the S reward set, no coalition

in S has the incentive to trigger Rule 2 either.

Claim 5 shows that under all belief structures, it is never an interim S equilibrium for

some agent to blow a whistle. Otherwise, we can find an agent j and a type t∗j , such that

for all t−j ∈ T−j, the S reward functions proposed by t∗j are used to determine the outcome

allocations. In this case, we can identify a profitable unilateral deviation for type-t∗j agent j.
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Claim 6 shows that under every belief structure and in every interim S equilibrium,

agents should report according to an acceptable deception profile. Otherwise, some S ∈ S

can deviate by blowing whistles and proposing a profitable S reward function in YS[S].

By setting S = S̄, the above mechanism can also be used to prove Theorem 1. However,

we choose to present the simpler mechanism over there which can also be compared with the

one of Bergemann and Morris (2011) more easily.

When S = S, Theorem 2 provides sufficient conditions for robust implementation. By

focusing on a countable set of deterministic feasible outcomes X, Theorem 2 of Bergemann

and Morris (2011) proves that if f satisfies the robust monotonicity condition and an addi-

tional conditional no total indifference property, then f is robustly implementable. In the

Appendix, we present the conditional no total indifference property and show that the suf-

ficient conditions in their Theorem 2 imply ours. Hence, their Theorem 2 can be viewed as

a special case of our Theorem 2.

Corollary 1 (Theorem 2, Bergemann and Morris (2011)): Suppose the set of determin-

istic feasible outcomes X is countable. If a social choice function f satisfies the robust

monotonicity condition and the conditional no total indifference property, then f is robustly

implementable under all type spaces.

6 Concluding Remarks

This paper introduces coalition structures to study belief-free implementation. When the

mechanism designer does not know what the coalition pattern is, we provide sufficient con-

ditions to robustly coalitionally implement a social choice function under all type spaces and

belief revising rules. When she knows that agents play an interim S equilibrium, we present

sufficient conditions for robust S implementation. Robust S implementation provides new

insights on implementing some social choice functions that are not robustly implementable

under the non-cooperative framework.

In our paper, coalition patterns are exogenously given. Since there are social choice func-

tions that are not implementable under the non-cooperative framework but implementable
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under a cooperative framework, the mechanism designer may benefit from endogenously en-

gineering coalitions. Koray and Yildiz (2018) and Korpela et al. (2020) have introduced the

idea of designing rights structure or code of rights to Nash implementation problems. One

may consider extending their approach to benefit the mechanism designer in Bayesian im-

plementation or robust implementation problems. We leave this endogenous coalition design

exercise for future study.

A Appendix

Definition 10: Given a type space and a belief revising rule, a social choice function f

satisfies the interim coalitional incentive compatibility condition if there is no coalition

S and type profiles t∗S 6= t′S ∈ TS such that for all i ∈ S,∑
t−i∈T−i

ui

(
f
(
θ̂(t′S, t−S)

)
, θ̂(t∗S, t−S)

)
πi(t

∗
i )[t−i|t∗S\{i}]

>
∑

t−i∈T−i

ui

(
f
(
θ̂(t∗S, t−S)

)
, θ̂(t∗S, t−S)

)
πi(t

∗
i )[t−i|t∗S\{i}].

Lemma 1: If a social choice function f satisfies the interim coalitional incentive compati-

bility condition under all type spaces and all belief revising rules, then it satisfies the robust

coalitional incentive compatibility condition.

Proof. We prove by contrapositive. Suppose that f does not satisfy the robust coalitional

incentive compatibility condition, i.e., there exists a coalition S and payoff type profiles θ∗S 6=

θ′S ∈ ΘS such that for all i ∈ S, there exists θi−S ∈ Θ−S such that ui
(
f(θ′S, θ

i
−S), (θ∗S, θ

i
−S)
)
>

ui
(
f(θ∗S, θ

i
−S), (θ∗S, θ

i
−S)
)
. Consider any payoff type space (a type space where for all i ∈ I,

there is a one-to-one mapping between Ti and Θi) satisfying the following restriction: for all

i ∈ S and t∗i ∈ Ti with θ̂i(t
∗
i ) = θ∗i , πi(t

∗
i )[t−i] = 1 for the type profile t−i with payoff type

profile (θ∗S\{i}, θ
i
−S). For each i ∈ S, let t′i denote the type with payoff type θ′i. It is easy to

see that type-t∗S coalition S has the incentive to misreport t′S. Therefore, f does not satisfy

interim coalitional incentive compatibility. This is so under every belief revising rule.

Proof of Proposition 1. Suppose f is robustly coalitionally implemented by (M, g), but

does not satisfy robust coalitional incentive compatibility. By Lemma 1, there exists a type
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space and a belief revising rule under which there exist type profiles t∗S 6= t′S such that for

all i ∈ S,

∑
t−i∈T−i

ui

(
f
(
θ̂(t′S, t−S)

)
, θ̂(t∗S, t−S)

)
πi(t

∗
i )[t−i|t∗S\{i}]

>
∑

t−i∈T−i

ui

(
f
(
θ̂(t∗S, t−S)

)
, θ̂(t∗S, t−S)

)
πi(t

∗
i )[t−i|t∗S\{i}].

As f is fully implemented by (M, g) under the type space and the belief revising rule, there

exists an interim strong equilibrium σ such that g(σ(t)) = f(θ̂(t)) for all t ∈ T . Define a

constant strategy σ′i by σ′i(ti) = σi(t
′
i) for all ti ∈ Ti and i ∈ S. The strategy profile (σ′i)i∈S

makes type-t∗S coalition S strictly better off, a contradiction.

Definition 11: Given a type space and a belief revising rule, a social choice function f sat-

isfies the interim coalitional monotonicity condition if whenever a profile of mappings

(αi : Ti → Ti)i∈I is such that f
(
θ̂(t̄)) 6= f

(
θ̂(α(t̄))

)
for some t̄ ∈ T , there exists an agent

i ∈ I, a type t∗i ∈ Ti, and a function h : T → A such that

(i)
∑

t−i∈T−i

ui

(
h(α(t∗i , t−i)), θ̂(t

∗
i , t−i)

)
πi(t

∗
i )[t−i] >

∑
t−i∈T−i

ui

(
f
(
θ̂
(
α(t∗i , t−i)

))
, θ̂(t∗i , t−i)

)
πi(t

∗
i )[t−i];

(ii) for each coalition S 3 i and type profiles t′S, t
′′
S ∈ TS, there exists j ∈ S such that

∑
t−j∈T−j

uj

(
f
(
θ̂(t′′S, t−S)

)
, θ̂(t′′S, t−S)

)
πj(t

′′
j )[t−j|t′′S\{j}]

≥
∑

t−j∈T−j

uj
(
h(t′S, t−S), θ̂(t′′S, t−S)

)
πj(t

′′
j )[t−j|t′′S\{j}].

Lemma 2: If a social choice function f satisfies the interim coalitional monotonicity condi-

tion under all type spaces and all belief revising rules, then it satisfies the robust coalitional

monotonicity condition.

Proof. Suppose f satisfies interim coalitional monotonicity under all type spaces and all belief

revising rules, but robust coalitional monotonicity fails. Then, there exists an unacceptable

deception profile β, such that for all i ∈ I, θi ∈ Θi, and θ′i ∈ βi(θi), there exists ψi ∈

26



∆({(θ−i, θ′−i)|θ−i ∈ Θ−i, θ
′
−i ∈ β−i(θ−i)}) such that for all y ∈ Yi, it holds that

∑
θ−i∈Θ−i,θ′−i∈β−i(θ−i)

ui
(
y(θ′−i), θ

)
ψi(θ−i, θ

′
−i) ≤

∑
θ−i∈Θ−i,θ′−i∈β−i(θ−i)

ui
(
f(θ′), θ

)
ψi(θ−i, θ

′
−i). (1)

It is without loss of generality to assume that β in the previous paragraph satisfies

θi ∈ βi(θi) for all i ∈ I and θi ∈ Θi. To see this, we show case by case that the unacceptable

deception profile β̄ defined by β̄i(θi) = βi(θi) ∪ {θi} for all i ∈ I and θi ∈ Θi can replace

β in the previous paragraph. Case 1: for θi ∈ Θi, θ
′
i ∈ βi(θi) ⊆ β̄i(θi), there exists ψi ∈

∆({(θ−i, θ′−i)|θ−i ∈ Θ−i, θ
′
−i ∈ β−i(θ−i) ⊆ β̄−i(θ−i)}) such that whenever y ∈ Yi, expression

(1) is satisfied. Case 2: for each i ∈ I, θi ∈ Θi, and θ′i ∈ β̄i(θi)\βi(θi), θ′i has to be equal to

θi. We can arbitrarily pick θ′−i and let ψi be a distribution such that ψi(θ
′
−i, θ

′
−i) = 1. Then

for any y ∈ Yi, by the definition of Yi, the following inequality holds:

∑
θ−i∈Θ−i,θ′−i∈β̄−i(θ−i)

ui
(
y(θ′−i), θ

)
ψi(θ−i, θ

′
−i) ≤

∑
θ−i∈Θ−i,θ′−i∈β̄−i(θ−i)

ui
(
f(θ′), θ

)
ψi(θ−i, θ

′
−i).

With the information above, we construct a type set Ti = T 1
i ∪ T 2

i for each i ∈ I by

following Bergemann and Morris (2008). Then we will specify a belief revising rule.

Step 1. Define T 1
i . For each i ∈ I, define a bijection ξ1

i : T 1
i → {(θi, θ′i) : θi ∈ Θi, θ

′
i ∈

βi(θi)} so that type ti with ξ1
i (ti) = (θi, θ

′
i) has a payoff type θi and belief type:

πi(ti)[t−i] =

 ψi(θ−i, θ
′
−i) if t−i =

(
[ξ1
j ]
−1(θj, θ

′
j)
)
j 6=i ∈ T

1
−i;

0 elsewhere.

Step 2. Define T 2
i . Let the set T 2

i be a bijection to Θ under ξ2
i : T 2

i → Θ. Specifically,

for type ti ∈ T 2
i with ξ2

i (ti) = θ, let θ̂i(ti) = θi and the belief of ti be

πi(ti)[t−i] =

 1 if t−i =
(
[ξ1
j ]
−1(θj, θj)

)
j 6=i ∈ T

1
−i;

0 elsewhere.

Step 3. For each i ∈ I, define a mapping αi : Ti → Ti by:

αi(ti) =

 [ξ1
i ]
−1(θ′i, θ

′
i) if ti = [ξ1

i ]
−1(θi, θ

′
i) ∈ T 1

i ;

ti elsewhere.

Step 4. Define the belief revising rule. For each i ∈ I, ti ∈ Ti, S 3 i, and tS\{i} happening

with zero probability under distribution πi(ti), we specify the following belief revising rule:
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let the revised belief πi(ti)[tS\{i}, t−S|tS\{i}] be equal to the marginal belief πi(ti)[t−S] for all

t−S ∈ T−S. Meanwhile, let πi(ti)[t
′
S\{i}, t−S|tS\{i}] = 0 for all t′S\{i} 6= tS\{i} and t−S ∈ T−S.

Step 5. Yield a contradiction. As it is not true that f
(
θ̂(t)) = f

(
θ̂(α(t))

)
for all t ∈ T ,

by the interim coalitional monotonicity condition, there exists i ∈ I, t∗i ∈ Ti, and h : T → A

such that conditions (i) and (ii) in Definition 11 are satisfied. Define a function y : Θ−i → A

by y(θ−i) = h
(
αi(t

∗
i ),
(
[ξ1
j ]
−1(θj, θj)

)
j 6=i

)
for all θ−i ∈ Θ−i. According to condition (ii), by

having S go over every set S 3 i and t′′S go over every type profile in T 2
S , it is easy to verify

that y ∈ Yi. We also know that t∗i 6∈ T 2
i . Otherwise, the two conditions in Definition 11

would contradict with each other when S ≡ {i} given types in T 2
i expect other agents to

follow the profile of identity mappings under α−i. Thus, condition (i) implies that∑
θ−i∈Θ−i,θ′−i∈β−i(θ−i)

ui
(
y(θ′−i), θ

)
ψi(θ−i, θ

′
−i) >

∑
θ−i∈Θ−i,θ′−i∈β−i(θ−i)

ui
(
f(θ′), θ

)
ψi(θ−i, θ

′
−i),

a contradiction with expression (1). Hence, robust coalitional monotonicity holds.

Proof of Proposition 2. Suppose f is robustly coalitionally implemented by (M, g), but

fails to satisfy robust coalitional monotonicity. From Lemma 2, there exists some type space

and belief revising rule under which f does not satisfy interim coalitional monotonicity

although it is interim coalitionally implementable. Let σ∗ be an interim strong equilibrium

such that g
(
σ∗(t)

)
= f

(
θ̂(t)

)
for all t ∈ T . If under a profile of mappings (αi : Ti → Ti)i∈I ,

there exists t̄ ∈ T such that f
(
θ̂(t̄)) 6= f

(
θ̂(α(t̄))

)
, then σ∗ ◦α ≡ (σ∗i ◦αi)i∈I is not an interim

equilibrium by Definition 2. Hence, there exists i ∈ I, t∗i ∈ Ti, and σ′i : Ti →Mi such that

∑
t−i∈T−i

ui

(
g
(
σ′i(t

∗
i ), σ

∗
−i
(
α−i(t−i)

))
, θ̂(t∗i , t−i)

)
πi(t

∗
i )[t−i]

>
∑

t−i∈T−i

ui

(
g
(
σ∗
(
α(t∗i , t−i)

))
, θ̂(t∗i , t−i)

)
πi(t

∗
i )[t−i].

By defining h : T → A by h(t) = g
(
σ′i(t

∗
i ), σ

∗
−i(t−i)

)
for all t ∈ T , we have∑

t−i∈T−i

ui

(
h
(
α(t∗i , t−i)

)
, θ̂(t∗i , t−i)

)
πi(t

∗
i )[t−i] >

∑
t−i∈T−i

ui

(
f
(
θ̂
(
α(t∗i , t−i)

))
, θ̂(t∗i , t−i)

)
πi(t

∗
i )[t−i].

(2)

Since σ∗ is an interim strong equilibrium, for all coalition S 3 i with types t′′S ∈ TS,

deviating to (σ′i(t
∗
i ), σ

∗
S\{i}(t

′
S\{i})) is never profitable regardless of t′S\{i}. Therefore, there
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exists an agent j ∈ S such that∑
t−j∈T−j

uj

(
g
(
σ∗(t′′S, t−S)

)
, θ̂(t′′S, t−S)

)
πj(t

′′
j )[t−j|t′′S\{j}]

≥
∑

t−j∈T−j

uj

(
g
(
σ′i(t

∗
i ), σ

∗
−i(t

′
S\{i}, t−S)

)
, θ̂(t′′S, t−S)

)
πj(t

′′
j )[t−j|t′′S\{j}].

Since the outcome assigned by h is independent of i’s type, for all t′i ∈ Ti, we further have∑
t−j∈T−j

uj

(
f
(
θ̂(t′′S, t−S)

)
, θ̂(t′′S, t−S)

)
πj(t

′′
j )[t−j|t′′S\{j}]

≥
∑

t−j∈T−j

uj
(
h(t′S, t−S), θ̂(t′′S, t−S)

)
πj(t

′′
j )[t−j|t′′S\{j}]. (3)

Expressions (2) and (3) establish interim coalitional monotonicity, a contradiction.

Proof of Theorem 1. We prove that (M, g) robustly coalitionally implements f .

Claim 1: Under any type space and any belief revising rule, σ∗i (ti) = (θ̂i(ti), NB, ·, ·) for all

i ∈ I and ti ∈ Ti constitutes an interim strong equilibrium of (M, g).

Proof : We want to show that for any coalition S, realized type profile tS ∈ TS, and strategy

profile σS, σS is not a profitable deviation from σ∗S.

Case 1. Suppose σi(ti) = (·, NB, ·, ·) for all i ∈ S. By robust coalitional incentive

compatibility, σS is not profitable.

Case 2. Suppose there exists an non-empty subset S ⊆ S such that σi(ti) = (·, B, ·, ·)

for all i ∈ S and σi(ti) = (·, NB, ·, ·) for all i ∈ S\S. Define j ≡ minS. For each

t−S ∈ T−S, g(σS(tS), σ∗−S(t−S)) ∈ M̂(S) and thus the outcome is a compound lottery of

y(σ1
S\{j}(tS\{j}), θ̂−S(t−S)) and

∑
k=1,2,... 0.5

kyk(σ1
S\{j}(tS\{j}), θ̂−S(t−S)), where y ≡ σ3

j (tj) ∈

Yj and
∑

k=1,2,... 0.5
kyk ∈ Ŷj. By condition (ii) of the interior coalitional reward property,

σS is not profitable for S.

Claim 2: Under any type space and any belief revising rule, if σ is an interim equilibrium

of the mechanism (M, g), then σ(t) ∈ M̄ for all t ∈ T .

Proof : We prove by contrapositive. Suppose there exists t̄ ∈ T such that σ(t̄) 6∈ M̄ . Let j

be the agent with the smallest index for whom there exists t∗j ∈ Tj such that σ2
j (t
∗
j) = B.
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Notice that agent j is uniquely defined. We fix one type t∗j with σ2
j (t
∗
j) = B and will show

below that t∗j has a profitable deviation. Let θ∗j denote θ̂j(t
∗
j).

Denote Ŷj = {y1, y2, ...} and y = σ3
j (t
∗
j). For each t−j ∈ T−j, g(σ(t∗j , t−j)) is a lottery of re-

alization y(σ1
−j(t−j)) with probability

σ4
j (t∗j )

1+σ4
j (t∗j )

and of realization yk(σ1
−j(t−j)) with probability

0.5k

1+σ4
j (t∗j )

> 0 for k = 1, 2, ... The distribution ψj ∈ ∆({(θ−j, θ′−j)|θ−j ∈ Θ−j, θ
′
−j ∈ β−j(θ−j)})

defined by

ψj(θ−j, θ
′
−j) ≡

∑
θ̂−j(t−j)=θ−j ,σ1

−j(t−j)=θ
′
−j

πj(t
∗
j)[t−j]

is the probability that t−j has payoff type profile θ−j and misreports θ′−j. Thus, type-t∗j agent

j’s expected utility is equal to

σ4
j (t
∗
j)

1 + σ4
j (t
∗
j)

∑
θ−j∈Θ−j ,θ′−j∈β−j(θ−j)

uj
(
y(θ′−j), (θ

∗
j , θ−j)

)
ψj(θ−j, θ

′
−j)

+
1

1 + σ4
j (t
∗
j)

∑
θ−j∈Θ−j ,θ′−j∈β−j(θ−j)

∑
k=1,2,...

0.5kuj
(
yk(θ′−j), (θ

∗
j , θ−j)

)
ψj(θ−j, θ

′
−j).

We now define a deviating strategy σ′j based on two cases.

Case 1: suppose

∑
θ−j∈Θ−j ,θ′−j∈β−j(θ−j)

uj
(
y(θ′−j), (θ

∗
j , θ−j)

)
ψj(θ−j, θ

′
−j)

≤
∑

θ−j∈Θ−j ,θ′−j∈β−j(θ−j)

∑
k=1,2,...

0.5kuj(y
k(θ′−j), (θ

∗
j , θ−j))ψj(θ−j, θ

′
−j). (4)

By the interior coalitional reward property, there exist integers k′ 6= k′′ such that

∑
θ−j∈Θ−j ,θ′−j∈β−j(θ−j)

uj(y
k′(θ′−j), (θ

∗
j , θ−j))ψj(θ−j, θ

′
−j)

>
∑

θ−j∈Θ−j ,θ′−j∈β−j(θ−j)

uj(y
k′′(θ′−j), (θ

∗
j , θ−j))ψj(θ−j, θ

′
−j).

Thus, there must exist some k ≥ 1 such that

∑
θ−j∈Θ−j ,θ′−j∈β−j(θ−j)

uj
(
y(θ′−j), (θ

∗
j , θ−j)

)
ψj(θ−j, θ

′
−j)

<
∑

θ−j∈Θ−j ,θ′−j∈β−j(θ−j)

uj
(
yk(θ′−j), (θ

∗
j , θ−j)

)
ψj(θ−j, θ

′
−j).
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Type-t∗j agent j will be better off by deviating to σ′j defined by σ′j(t
∗
j) = (σ1

j (t
∗
j), σ

2
j (t
∗
j), y

k, σ4
j (t
∗
j))

and σ′j(tj) = σj(tj) for tj 6= t∗j .

Case 2: suppose expression (4) does not hold. Then t∗j is better off by deviating to σ′j

defined by σ′j(t
∗
j) = (σ1

j (t
∗
j), σ

2
j (t
∗
j), σ

3
j (t
∗
j), σ

4
j (t
∗
j) + 1) and σ′j(tj) = σj(tj) for tj 6= t∗j .

In both cases, σ is not an interim equilibrium.

Claim 3: Under any type space and any belief revising rule, if σ is an interim equilibrium

of (M, g), then g(σ(t)) = f(θ̂(t)) for all t ∈ T .

Proof : From Claim 2, g(σ(t)) = f(σ1(t)) for all t ∈ T . Suppose by way of contradiction

that there exists t̄ ∈ T such that g(σ(t̄)) 6= f(θ̂(t̄)). Define a deception βi by βi(θi) =⋃
{ti∈Ti|θ̂i(ti)=θi}{σ

1
i (ti)} for all i ∈ I and θi ∈ Θi. The deception profile β is unacceptable.

By robust coalitional monotonicity, there exists i ∈ I, θ∗i ∈ Θi, and θ′i ∈ βi(θ∗i ) such that

for any ψi ∈ ∆({(θ−i, θ′−i)|θ−i ∈ Θ−i, θ
′
−i ∈ β−i(θ−i)}), there exists y ∈ Yi such that∑

θ−i∈Θ−i,θ′−i∈β−i(θ−i)

ui
(
y(θ′−i), (θ

∗
i , θ−i)

)
ψi(θ−i, θ

′
−i)

>
∑

θ−i∈Θ−i,θ′−i∈β−i(θ−i)

ui
(
f(θ′i, θ

′
−i), (θ

∗
i , θ−i)

)
ψi(θ−i, θ

′
−i). (5)

Fix any type t∗i such that θ̂i(t
∗
i ) = θ∗i and σ1

i (t
∗
i ) = θ′i. Let the distribution ψi ∈ ∆({(θ−i, θ′−i)|θ−i ∈

Θ−i, θ
′
−i ∈ β−i(θ−i)}) be defined by

ψi(θ−i, θ
′
−i) ≡

∑
θ̂−i(t−i)=θ−i,σ1

−i(t−i)=θ
′
−i

πi(t
∗
i )[t−i].

Define a strategy σ′i by σ′i(t
∗
i ) ≡ (σ1

i (t
∗
i ), B, y,K

∗) and σ′i(ti) ≡ σi(ti) for all ti 6= t∗i , where

y satisfies expression (5) and K∗ > 0 is sufficiently large. Thus, for each t−i ∈ T−i,(
σ′i(t

∗
i ), σ−i(t−i)

)
∈ M̂({i}) and the outcome is sufficiently close to y(σ1

−i(t−i)) when K∗

is sufficiently large. According to expression (5), σ′i is profitable for t∗i , a contradiction.

In view of the three claims, (M, g) robustly coalitionally implements f .

Proof of Theorem 2. We prove that (M, g) defined in the text robustly S implements f .

Claim 4: Under any type space and any belief revising rule, σ∗i (ti) = (θ̂i(ti), NB, ·, ·) for all

i ∈ I and ti ∈ Ti constitutes an interim S equilibrium of (M, g).
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Proof : Fix any S ∈ S, tS ∈ TS, and σS. By robust S incentive compatibility, to show that

σS is not a profitable deviation for tS, it suffices to focus on σS for which there exists an

non-empty set S ⊆ S such that (σS(tS), σ∗−S(t−S)) ∈ M̂(S) for all t−S ∈ T−S. For simplicity,

denote the agent with the smallest index who blows a whistle, i∗[S], by i∗ in the remainder

of this claim. Denote the projection of σ3
i∗(ti∗) on YS[S] by y and the elements in ŶS[S]

by y1, y2, ... For each t−S ∈ T−S, the outcome g(σS(tS), σ∗−S(t−S)) is a lottery of realization

y(σ1
S\S(tS\S), θ̂−S(t−S)) with probability

σ4
i∗ (ti∗ )

σ4
i∗ (ti∗ )+1

and of realization yk(θ̂S\S(tS\S), θ̂−S(t−S))

with probability 0.5k

σ4
i∗ (ti∗ )+1

for k = 1, 2, ... By condition (ii) of the interior S reward property,

a lottery over {y} ∪ ŶS[S] is in YS[S] and thus σS is not a profitable deviation for tS.

Claim 5: Under any type space and any belief revising rule, if σ is an interim S equilibrium

of the mechanism (M, g), then σ(t) ∈ M̄ for all t ∈ T .

Proof : Suppose by way of contradiction that we do not have σ(t) ∈ M̄ for all t ∈ T . Let

j be the agent with the smallest index for whom there exists t∗j ∈ Tj such that σ2
j (t
∗
j) = B.

We fix one such type t∗j and will show that t∗j has a profitable deviation. Define θ∗j ≡ θ̂j(t
∗
j).

For each S 3 j, define T−j(S) ≡ {t−j ∈ T−j : ∃S̄ 3 j s.t. σ(t∗j , t−j) ∈ M̂(S̄), S∗[S̄] = S},

which is the collection of all t−j ∈ T−j such that the outcome is a lottery over y(σ1
−S(t−S))

and all yk(σ1
−S(t−S)), where y is the projection of σj(t

∗
j) on YS[S] and each yk ∈ ŶS[S].

Denote the measure of the set by φj(S) ≡
∑

t−j∈T−j(S) πj(t
∗
j)[t−j].

For any S 3 j such that φj(S) > 0, define a distribution ψj[S] ∈ ∆(Θ−j ×Θ−S) by

ψj[S](θ−j, θ
′
−S) ≡

∑
θ̂−j(t−j)=θ−j ,σ1

−S(t−S)=θ′−S ,t−j∈T−j(S) πj(t
∗
j)[t−j]

φj(S)
,

which is the probability that t−j has payoff type θ−j and t−S misreports θ′−S on conditional

that t−j ∈ T−j(S). Then, type-t∗j agent j’s expected utility is equal to

σ4
j (t
∗
j)

1 + σ4
j (t
∗
j)

∑
S3j

[
∑

θ−j∈Θ−j ,θ′−S∈Θ−S

uj
(
y(θ′−S), (θ∗j , θ−j)

)
ψj[S](θ−j, θ

′
−S)]φj(S)

+
1

1 + σ4
j (t
∗
j)

∑
S3j

[
∑

θ−j∈Θ−j ,θ′−S∈Θ−S

∑
k=1,2,...

0.5kuj(y
k(θ′−S), (θ∗j , θ−j))ψj[S](θ−j, θ

′
−S)]φj(S). (6)

We want to define a deviating strategy σ′j by following a case-by-case discussion.
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Case 1: suppose there exists S 3 j with φj(S) > 0 such that∑
θ−j∈Θ−j ,θ′−S∈Θ−S

uj
(
y(θ′−S), (θ∗j , θ−j)

)
ψj[S](θ−j, θ

′
−S)

≤
∑

θ−j∈Θ−j ,θ′−S∈Θ−S

∑
k=1,2,...

0.5kuj(y
k(θ′−S), (θ∗j , θ−j))ψj[S](θ−j, θ

′
−S). (7)

Fix one such S. Following a similar argument as in Claim 2, we can find some k such that∑
θ−j∈Θ−j ,θ′−S∈Θ−S

uj
(
y(θ′−S), (θ∗j , θ−j)

)
ψj[S](θ−j, θ

′
−S)

<
∑

θ−j∈Θ−j ,θ′−S∈Θ−S

uj
(
yk(θ′−S), (θ∗j , θ−j)

)
ψj[S](θ−j, θ

′
−S)

by the interior S reward property. In this case, let σ′j be identical to σj except that the

component of σ′3j(t
∗
j) corresponding to YS[S] is yk.

Case 2: if expression (7) does not hold for any S 3 j with φj(S) > 0. Let σ′j be identical

to σj except that σ′4j(t
∗
j) = σ4

j (t
∗
j) + 1.

It is easy to see that type t∗j becomes better off under σ′j. This implies that σ is not an

interim S equilibrium, a contradiction.

Claim 6: Under any type space and any belief revising rule, if σ is an interim S equilibrium

of (M, g), then g(σ(t)) = f(θ̂(t)) for all t ∈ T .

Proof : Suppose by way of contradiction that there exists t̄ ∈ T such that g(σ(t̄)) 6= f(θ̂(t̄)).

For each i ∈ I, define a correspondence βi the same way as in the proof of Claim 3. Then the

deception profile β is unacceptable. By the robust S monotonicity condition, there exists

S ∈ S, θS ∈ ΘS, and θ′S ∈ βS(θS) such that for any conjectures (ψi ∈ ∆({(θ−S, θ′−S)|θ−S ∈

Θ−S, θ
′
−S ∈ β−S(θ−S)}))i∈S, there exists y ∈ YS[S] such that∑

θ−S∈Θ−S ,θ
′
−S∈β−S(θ−S)

ui
(
y(θ′−S), (θS, θ−S)

)
ψi(θ−S, θ

′
−S)

>
∑

θ−S∈Θ−S ,θ
′
−S∈β−S(θ−S)

ui
(
f(θ′S, θ

′
−S), (θS, θ−S)

)
ψi(θ−S, θ

′
−S).

Fix any profile of types t∗S such that θ̂S(t∗S) = θS and σ1
S(t∗S) = θ′S. For all i ∈ S, define a

strategy σ′i by σ′i(t
∗
i ) = (σ1

i (t
∗
i ), B,m

3
i , K

∗) and σ′i(ti) = σi(ti) for all ti 6= t∗i , where the only
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restriction on m3
i ∈ M3

i is that its projection on YS[S] is y above. When K∗ is sufficiently

large, this deviation is profitable for S, a contradiction.

We thus have demonstrated that (M, g) robustly S implements f .

Definition 12: Given a social choice function f , for each i ∈ I and θ′−i ∈ Θ−i, define

Ri(θ
′
−i) ≡ {a ∈ A : ui

(
f(θ′′i , θ

′
−i), (θ

′′
i , θ
′
−i)
)
≥ ui

(
a, (θ′′i , θ

′
−i)
)
∀θ′′i ∈ Θi}.

The social choice function f is said to satisfy the conditional no total indifference

property if for all i, θi, θ
′
−i, and φi ∈ ∆(Θ−i), there are outcomes ā, a ∈ Ri(θ

′
−i) such that∑

θ−i∈Θ−i

ui
(
ā, (θi, θ−i)

)
φi(θ−i) >

∑
θ−i∈Θ−i

ui
(
a, (θi, θ−i)

)
φi(θ−i).

Proof of Corollary 1. Step 1. Suppose X is countable. We first prove that if f satisfies

the conditional no total indifference property, then the interior S reward property is satisfied.

For each i and θ′−i, the set Ri(θ
′
−i) is convex. Since agents adopt expected utilities to

evaluate lotteries, the set of extreme points of Ri(θ
′
−i), denoted by R∗i (θ

′
−i), is a subset of X.

Since X is countable, R∗i (θ
′
−i) is countable, and so is the following set:

Ŷi[S] ≡ {y : Θ−i → X|y(θ′−i) ∈ R∗i (θ′−i),∀θ′−i ∈ Θ−i}.

As Yi[S] is convex and Ŷi[S] ⊆ Yi[S], condition (ii) in the interior S reward property holds.

To establish condition (i) in the interior S reward property, we fix any i, θi, and

ψi ∈ ∆(Θ−i × Θ−i) for the remainder of Step 1. For each θ′−i ∈ Θ−i, let a distribution

φ̄i[θ
′
−i] ∈ ∆(Θ−i) be defined by φ̄i[θ

′
−i](θ−i) ≡

ψi(θ−i,θ′−i)∑
θ′′−i∈Θ−i

ψi(θ′′−i,θ
′
−i)

for all θ−i ∈ Θ−i whenever∑
θ′′−i∈Θ−i

ψi(θ
′′
−i, θ

′
−i) > 0; let φ̄i[θ

′
−i] ∈ ∆(Θ−i) be the uniform distribution instead when∑

θ′′−i∈Θ−i
ψi(θ

′′
−i, θ

′
−i) = 0. Given i, θi, by the conditional no total indifference property, for

each θ′−i ∈ Θ−i, there are outcomes ā[θ′−i, φ̄i[θ
′
−i]], a[θ′−i, φ̄i[θ

′
−i]] ∈ Ri(θ

′
−i) such that∑

θ−i∈Θ−i

ui(ā[θ′−i, φ̄i[θ
′
−i]], θ)φ̄i[θ

′
−i](θ−i) >

∑
θ−i∈Θ−i

ui(a[θ′−i, φ̄i[θ
′
−i]], θ)φ̄i[θ

′
−i](θ−i).

As agents adopt expected utilities, it is without loss of generality to assume that ā[θ′−i, φ̄i[θ
′
−i]],

a[θ′−i, φ̄i[θ
′
−i]] ∈ R∗i (θ′−i). Multiply both sides of the above inequality by

∑
θ′′−i∈Θ−i

ψi(θ
′′
−i, θ

′
−i)

and sum up over different θ′−i ∈ Θ−i. Then we have∑
θ−i∈Θ−i,θ′−i∈Θ−i

ui(ā[θ′−i, φ̄i[θ
′
−i]], θ)ψi(θ−i, θ

′
−i) >

∑
θ−i∈Θ−i,θ′−i∈Θ−i

ui(a[θ′−i, φ̄i[θ
′
−i]], θ)ψi(θ−i, θ

′
−i).
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Define ȳ(θ′−i) ≡ ā[θ′−i, φ̄i[θ
′
−i]] and y(θ′−i) ≡ a[θ′−i, φ̄i[θ

′
−i]] for all θ′−i ∈ Θ−i. It is easy to see

that ȳ, y ∈ Ŷi[S]. Hence, we have established condition (i) of the interior S reward property.

Step 2. We then prove Theorem 2 of Bergemann and Morris (2011).

Lemma 1 of Bergemann and Morris (2011) has proved that robust monotonicity implies

ex-post incentive compatibility. Hence, when the robust monotonicity condition is satisfied,

both the robust S incentive compatibility condition and the robust S monotonicity condition

hold. Taking into account our finding in Step 1, we know that whenever a social choice func-

tion satisfies robust monotonicity and conditional no total indifference, sufficient conditions

in our Theorem 2 hold under the minimal coalition pattern. By our Theorem 2, the social

choice function is robustly S implementable, i.e., f is robustly implementable.
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