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Abstract

A mechanism chooses an allocation of the resource to agents based on their reported

type. We discover and describe the set of incentive compatible mechanisms when a

monetary punishment to agents who misreport type is possible. This class depends on

the punishment function and the probability of punishment. It expands previous char-

acterizations of incentive compatible mechanisms when punishment was no available.

Furthermore, when the planner has the ability to select the punishment, the minimal

punishment necessary to achieve incentive compatibility and the corresponding class

of first-best mechanism is provided. For any punishment, optimal mechanism for the

planner are introduced.
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1 Introduction

Consider a planner interested in transmitting a divisible resource to agents (such as

money). Although the planner is not directly linked to the agents, it can do so via a group

of intermediaries. Intermediaries differ in their ability to transmit the resource. This ability

is represented by the total amount of the resource that an intermediary sends to the agents

per unit of resource received, as well as by the proportions in which every agent receives a

resource relative to another from a given intermediary. Thus, for instance, two intermediaries

might be able to reach different agents, and even when they reach the same group of agents,

they may transmit different amounts to the agents.

We study the case where the intermediaries’ abilities are private information.1 Therefore,

the planner uses a direct mechanism, where intermediaries report their abilities, which are

then used to determine the actual transmission rate to the agents, as well as the distribution

of the resource among the different intermediaries. In such cases, intermediaries might be

able to game the planner by misrepresenting their ability to transfer the resource to agents.

Therefore, incentive compatibility of the mechanism, in our case strategy-proofness, is a

desirable requirement.

Strategy-proofness is a very robust property that prevents intermediary to misrepresent

their ability regardless of the reports of other intermediaries. Restricting to strategy-proof

mechanisms might come with a high cost to the planner.2 In some settings, the planner

might be able to alleviate such a cost by enforcing truthful reporting by other means. Indeed,

consider the case of auditing, where the planner has the ability to audit the intermediaries in

the game (perhaps with some probability) and assign a punishment (expressed in monetary

terms) for the intermediaries who are found misreporting their ability. For a given set of

abilities, there is always a large enough punishment such that the intermediaries should

not feel compelled to misrepresent their preferences. Indeed, any punishment such that the

expected punishment is larger than the expected rewards gained by misrepresenting their

preferences satisfies that. Thus a natural generalization of strategy-proofness extends the

class of mechanisms that are strategy-proof when such a punishment are available for the

planner.

The paper introduces a generalization of strategy-proofness when the planner has the abil-

ity to monitor and punish the intermediaries for misrepresenting their preferences. Indeed,

1In our companion paper, Han and Juarez[15], we study the case where the abilities of the intermediaries
are public information. The planner solicits bids from intermediaries to the use of their links and applies this
information to select which intermediaries to contract for the transmission of the resource. The main result
of Han and Juarez[15] is the necessary and sufficient conditions for the existence of a free intermediation
equilibrium, where there is a perfect transmission of the resource to the agents as if there is no intermediation.

2This cost is typically measured in efficiency terms, but can also be measured in equity or other terms.
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in the domain of quasilinear preferences where money is available, we consider monetary

punishments that will depend on an arbitrary function h(αi, βi), where h(αi, βi) is the pun-

ishment paid by the intermediary represented by the difference between his true ability αi

and reported ability βi. A mechanism is h-strategy-proof if there is no incentive for any

intermediary to misreport under the punishments h. When the planner does not have the

ability to monitor the intermediaries, h = 0, our property boils down to the traditional

strategy-proofness. On the other hand, when h > 0 is large, the intermediaries will be pun-

ished a large amount h(αi, βi) and the amount of misreporting will be substantially reduced.

This allow us to capture all mechanisms, when h→∞.3

The main contributions of the paper are three-fold. First, it introduces a notion of

strategy-proofness with monitoring and punishment. Second, it introduces a new model of

resource transmission and intermediation in networks when the abilities of intermediaries are

incomplete information and characterizes the entire class of strategy-proof mechanisms when

monitoring and punishment are available to the planner. Furthermore, this paper studies

the minimal punishment function for a mechanism to be strategy-proof, and the punishment

function to achieve first best efficient allocation. On the other hand, the optimal mechanism

for the planner is discovered given an arbitrary punishment function.

1.1 Illustrative Example

To illustrate our mechanisms and main results, consider the example of a planner who is

connected to three intermediaries, who themselves are connected to two agents (see Figure

1). The planner is interested in transmitting I units of a resource to the agents, but can

only do so via the intermediaries. Intermediaries have different quality of intermediation,

represented by the proportion in which they transmit their share to the agents for every

unit of resource transmitted. In this case, the abilities of intermediaries are α1 = (0.7, 0.4),

α2 = (0.6, 0.6) and α3 = (0.5, 0.8), respectively.

In the absence of information, the planner will ask intermediaries to report their abilities

to transmit the resource and determine (a) the amount of resource allocated to every inter-

mediary for transmission to agents and (b) the sharing rate charged for every intermediary

to transmit at every link based on the information of report.4 The intermediary’s profit is

the difference between his true abilities to transmit the resource and his charged sharing

rates multiplied by the amount of resource allocated to him.

For instance, consider the traditional first price auction. When intermediaries report

3This is true for punishment functions h such that h(αi, αi) = 0 for all αi and h(αi, βi) = 0 for βi 6= αi.
4For instance, we can imagine the case where the planner might use a second price auction.
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Figure 1: A network with three intermediaries and two agents.

abilities (β1, β2, β3), the planner selects the intermediary with highest reported aggregate

ability to transmit all the resource with charged sharing rates si(β) = βi. This mechanism is

not strategy-proof. Indeed, when intermediaries report their true abilities (0.7, 0.4), (0.6, 0.6)

and (0.5, 0.8), intermediary 3 with aggregate ability 1.3 is selected to transmit all the resource

and the charged sharing rates equals his ability (0.5, 0.8). Thus, intermediary 3’s profit equals

0. This is not strategy-proof, because he can decrease his report to (0.5, 0.71), where he will

get a positive profit equal to [(0.5, 0.8)− (0.5, 0.71)] ∗ (I, I)T = 0.09I.

Now, suppose the planner is able to audit the intermediaries. Suppose that the planner

punishes the intermediaries based on the deviation from their true reports with punishment

function h(αi, βi) =
∑M

m=1 |βmi −αmi |. In such a mechanism, intermediaries have no incentive

to lie about their reports. Indeed, at the profile α above, when intermediary 3 reports

(0.5, 0.71) and planner finds that his true ability is (0.5, 0.8), the expected punishment on

intermediary 3 is (|0.5 − 0.5| + |0.8 − 0.71|) = 0.09. The expected payoff for intermediary

3 is (0.09 − 0.09)I = 0, the same as reporting β3 = α3. Thus, there is no incentive for

intermediary 3 to misreport, and first price auction is h-strategy-proof. The set of h-strategy-

proof mechanisms expands the set of strategy-proof mechanisms.

1.2 Overview of the Results

We introduce the resource transmission problem of the planner in Section 2 and strategy-

proof mechanisms in Section 3. We provide conditions for a mechanism to be h-strategy-

proof for arbitrary punishment function h, when the punishment function is differentiable5 at

any truthfully report point (Lemma 1). The class of 0-strategy-proof mechanisms coincide

with the class of strategy-proof mechanisms (Theorem 1). Thus, the class of h-strategy-

proof mechanisms is largely depending on h, and the comparative static analysis studied in

Proposition 1. Furthermore, we study the minimal punishment function for any mechanism

in Section 4. Proposition 2 provides the necessary and sufficient condition for minimal

5More general punishment functions are discussed in the Appendix.
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punishment function, Corollary 1 shows existence of minimal punishment function. We

characterize the first-best efficient allocation in Section 4.1. Theorem 2 shows that there

exists no symmetric, SP, budget balance and first-best efficient mechanism. The minimal

punishment function to achieve first-best efficiency is provided. Finally, Theorem 3 discovers

the optimal mechanism of any punishment function for the planner.

1.3 Applications

An application of our game theoretical model is the transmission of advertising money

in companies. A company looking to promote their product can use different media (the

intermediaries) to reach the advertising target of their product; such intermediaries include

TV channels, radio stations, Internet websites, and newspapers. The quality of the con-

nections is relevant because, within the media, there are different channels that target to

specific demographics of agents and may influence the planner’s objective differently. For

instance, two local TV stations based in the same city may be connected to all agents in the

city, but the audience may be more biased based on demographics or political preferences

—e.g. Fox News and CNN reach the same audience, but they target their programming to

attract more conservative or liberal viewers, respectively. Nowadays, the printed version of

newspapers are read heavily by older people instead of younger people, and the proportions

of older to younger readers are typically available to potential purchasers of advertisements.

Therefore, it is in the interest of the planner to choose the media channel that best aligns

with his preferences.

Alternatively, consider the case of government contracting. For instance, the allocation

of government’s money to people in need via charities. The government may decide to send

the money via charities that will charge an indirect cost for the use of their services. The

connections of the charities, as well as their quality, are exogenous information that the

planner cannot control, and they are typically taken into account when making a decision

on how to allocate the resources. For instance, charities heavily funded by the government

include UNICEF or the Red Cross. While both charities overlap in some of the agents that

they serve (e.g. children in need), they also have large difference in their recipients.6 The

quality of the connections of the charities is also important when picking a charity. For

instance, inefficiencies happen often in charities and universities, where every dollar spent

is often decreased due to indirect cost, which serves to pay for administration.7 Thus, the

6Thus, for instance, the Federal Emergency Management Agency may be more interested in allocating
money to the Red Cross, which distribute a large percentage of their resources to helping domestic citizens
affected by disasters, as opposed to UNICEF which helps children around the world.

7This factor in the quality of the charities is so important that all charities in the US are required by law
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planner should care about how their money is distributed to the agents and aligned with its

preferences. Our model looks at the case of complete information, which is also the case in

this example, as the priorities and activities of the charities are typically reported by them

in advance.8 As such, the planner can make an informed decision on how its money will

transmit by the charities chosen.

Finally, the problem has applications to network flow problems. For instance, when there

is groundwater that must be distributed to agents via private canals (intermediaries). The

planner can decide how to route the water to the canals, but once the water reaches the canal

it is distributed to the agents connected to these canals in some fixed proportions that may

vary between canals. Conveyance losses are typical in models and may depend on how far the

agents are from the source (Jandoc, Juarez, and Roumasset[17] study the optimal allocation

of water networks in the presence of these losses). The owners of the canals may charge the

planner for the use of their canals, and therefore the planner should consider the trade-offs

between allocating goods to cheap canals as opposed to more efficient but expensive canals.

The paper studies the case of exogenous quality of the intermediaries.

1.4 Related Literature

The literature on strategy-proofness when money is available has been widely explored.

Indeed, the traditional VCG mechanisms in Vickrey[29], Clarke[11], Groves[14] are strategy-

proof and efficient. However, one limitation of VCG mechanisms is that they are not budget

balance, which does not apply to our model.

The large literature on social choice has been concerned with non-manipulable mecha-

nisms, dating back from Arrow[1] and Gibbard[13], see Barberà[2] for an introduction to

strategy-proof social choice functions. Such studies include the case of strategy-proof social

choice functions in classical exchange economies (Barberà and Jackson[5]), matching with

contracts (Hatfield and Kojima[16]), house allocation with prices (Miyagawa[21]), cost shar-

ing (Moulin and Shenker[25], Moulin[24], Sprumont[27]), preference aggregation (Bossert

and Sprumont[8]), social choice (Barberà, Dutta and Sen[4]).

Barberà, Berga and Moreno[3] study group strategy-proof mechanisms, in a general set-

to report the total percentage amount spent in their causes, as opposed to administrative costs. For instance,
the current indirect costs for the Red Cross and UNICEF are 9.7% and 4.74%, respectively. Multiple online
websites exist that rank charities based on the indirect costs, among other metrics.

8The Red Cross publishes at the end of each year ‘its activities in the field and at the headquarters during
the coming year,’ which allow donors to make an informed decision on where the money will go. Earmarking
is typically not allowed in such big charities, as ‘experience shows that the more restrictive the earmarking
policy (whereby donors require that their funds be allocated to a particular region, country, program, project
or goods), the more limited the ICRC’s operational flexibility, to the detriment of the people that the ICRC
is trying to help.’
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ting that includes the provision of private good and matchings such as house allocation.

Moulin[23], Juarez[18] study group strategy-proof in cost sharing problems.

There is also strategy-proof mechanisms for restricted domain of preferences, such as

the class of single-peaked preferences (Moulin[22]). Our focus in the paper is in the entire

domain of quasilinear preferences, where the class of strategy-proof mechanisms that satisfy

desirable conditions tends to be small. Hence our work expands the class of strategy-proof

mechanisms that the planner can use.

There is also a more recent literature dealing with various relaxations and strengthening

of strategy-proof notions. There are approximately strategy-proof mechanisms in voting

(Birrell and Pass[7]), matching (Pathak and Sönmez[26]), and more generally, Carrol[9]

finds that local strategy-proof with single-crossing ordinal preferences implies full strategy-

proof. Obviously strategy-proof mechanisms in Li[19] refine the strategy-proof mechanisms

by requiring the strategy to be obviously dominant. Pathak and Sönmez[26] develops a

rigorous methodology to compare mechanisms based on their vulnerability to manipulation.

Unlike this literature on strategy-proofness, our notion of manipulation depends on the

punishment function h. This allows for a weaker notion of manipulation that expands the

class of strategy-proof mechanisms that a planner can use, hence providing more flexibility

when selecting mechanisms. Indeed, our more general version of strategy-proofness can be

easily adapted to these settings.

In contrast with the literature on strategy-proofness, our mechanisms are specifically

applied to a novel problem of resource transmission in a network. On this line of work,

there is only one closely related, our companion paper, Han and Juarez[15], which study the

strategic behavior of intermediaries in a more general resource transmission game. Unlike

that paper, our model with incomplete information does not restrict the type of mechanisms

to a first-price type of mechanism, instead, it characterizes a large class of mechanisms in a

more specific resource transmission game in a network.

Townsend[28] first studies costly verification in a principal-agent model with a risk-averse

agent. There is a growing interest in mechanism design problem with state verification, Ben-

Porath et al.[6] study the principal allocating an indivisible good among agents with an

ability to verify agents’ type costly, and they don’t allow transfer payments. They study

the principal’s trade-off between allocating the good more efficiently and incurring the cost

of verification, and find the optimal mechanism to be a favored agent mechanism, where a

pre-determined agent receives the good, unless another agent reports higher than threshold

and agent with highest bid will get the good, if his report is verified to be true. Erlan-

son and Kleiner[12] study similar problem of costly verification in collective choice problem.

Li[20] studies costly verification with limited punishment. On the other hand, Carroll and
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Egorov[10] studies the mechanism of minimal verification to elicit multidimensional infor-

mation fully by using a randomized verification strategy and allowing severe punishment.

However, we study the mechanism design problem with planner allocating divisible good

with report of multidimensional information, allowing exogenous probabilistic verification,

and study the minimal punishment as the transfer payments to induce the strategy-proof

for a mechanism and also to achieve the first-best allocation.

2 The Model

Each agent i ∈ N = {1, . . . , N} is endowed with a production function fi(θi, xi) ∈ RM
+

that generates an outcome RM
+ based on their type θi ∈ R+ and the amount of capital

investment xi ∈ R+. We assume that information is asymmetric, agents know their own

type but do not know others’.

A planner cares only about the outcome in RM
+ . He is endowed with 1 unit of capital

that can be used to invest among the agents to produce the outcome. We assume that

the planner does not know agents’ types. We study mechanisms where agents reveal their

type to the planner, who makes an allocation of the capital among agents and transfers to

outcomes based on their report. This is formalized below.

Definition 1 (Mechanism)

A mechanism φ = (x(·), t(·)) is a pair of functions (x(·), t(·)) such that

i. x : RN
+ 7→ RN

+ allocates the share of a resource to every agent based on the reported

type θ, and x(θ) = (x1(θ), . . . , xN(θ)), the amount xi(θ) ∈ R+ represents the resource

allocated to agent i.9

ii. t : RN
+ 7→ RN×M tax of the resource generated by the agents that the planner keeps.

Thus, for type θ and t(θ) = (t1(θ), . . . , tN(θ)), the vector ti(θ) ∈ RM
+ is the resource

charged by the planner to agent i.

The planner cares about
∑

i∈N ti(θ) ∈ RM . On the other hand, agents care about the

total resource generated that was not taken by the planner. For a vector of reports θ̃ =

(θ1, . . . , θN), and true ability of agent i equal to θi, his payment equals (fi(θi, xi(θ̃))−ti(θ̃))T1,

where 1 = (1, . . . , 1)M×1 is the unitarian vector. Assume the production function fi(θi, xi)

satisfies ∂2fi
∂θ∂x
≥ 0.

9x(θ) is fully differentiable except some points with measurement 0.
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Example 1 (Examples for fi, t, x)

1. Private Good Auctions: Agents have the ability to produce private goods in RM with

the production function fi(θi, xi), where θi is the ability of the agent and xi is the

investment of the government. In a mechanism, the government elicits their ability

and taxes the agents. A particular case of this, is for one good, where the first-price

and second-price auctions have been widely characterized (references).

2. Private Equity Investment: A private investor is endowed with a fixed level of capital.

Agents have the ability to produce private goods in RM with the production function

fi(θi, xi), where θi is the ability of the agent and xi is the investment of the private

investor. Investor receives some shares of the good produced by every agent.

3. Government Funding with Intermediation: Government is interested in delivering

goods to charities (intermediaries), who can produce goods based on their allocation

of resources. Charities may have different abilities.

4. Profit-sharing with Punishment: Goods can be produced by agents. Planner is able to

allocate time to different agents.

5.

1. (Auction) Consider the auction for an indivisible good, there are M aspects of the good.

For example, the buyers in an auction of a house care about the address, structures of

houses, environment of neighbors, distance to work, etc. They have different valuations

about the aspects of house. Buyer i’s valuation about the aspect m of the house is θmi .

x(θ) is the vector representing outcome of the auction, and xi(θ) = 1 means buyer i

wins in the auction and gets the good. fi(θi, xi(θ)) = [
∑M

m=1 θ
m
i ]xi(θ) is the utility of

buyer i given the outcome. ti(θ) is the payment of buyer to seller.

2. (Funding Allocation) Consider the science foundation allocates an amount of funding

to support projects of researchers. The decision for allocation of funding is based

on the research proposals. The researchers report their potential outputs of research

related to different areas, research team i has ability θi. The funding allocated to

team i is xi(θ). Given the funding support of xi(θ), the potential output of team i

is fi(θi, xi(θ)), ti(θ) is the requirement of final report by foundation. The elements of

production f ji (θi, xi(θ)) measures the contribution to field j, like economics, computer

science, mathematics, etc.

3. (Matching) Consider the two sided matching problem. Hospital wants to hire a doctor

from many candidates, the hospital cares about various ability of the doctor, includ-
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ing watching at night, surgery, medicine knowledge, etc. The information about these

abilities of doctors are reported in their resumes received by the hospital, ability of

agent i is θi. xi(θ) = 1 represent the doctor i is hired by the hospital, and fi(θi, xi(θ))

measures the maximal potential outputs of doctor i for each fields. ti(θ) is the require-

ment of tasks for the doctor by hospital. ti(θ) measures the hours of tasks needed to

be finished by the doctor.

The generality of a mechanism allows for a variety of properties not covered in previous

literature. Our analysis allows for some agents to be charged to only transmit resource to

some outcomes.

Example 2

The mechanism φ = (x(·), t(·)) is the

i. Equally-Sharing (ES): xi(θ) = 1
N

, ti(θ) = fi(θi,
1
N

), ∀i.

ii. Equally-Sharing rates (ESR): xi(θ) = f̄i(θi,1)∑N
i=1 f̄i(θi,1)

, tmi (θ) = minj∈N fjm(θj, 1), ∀i.

iii. Second price mechanism (SPM): x(θ) satisfies: there exists i, s.t. f̄i(θi, 1) =

maxn∈N f̄n(θn, 1) and xi(θ) = 1, ∀j 6= i, xj(θ) = 0. t(θ) satisfies: t̄i(θ) = maxj 6=i f̄j(θj, 1)

and t̄j(β) = f̄j(θj, 1), ∀j 6= i.

iv. First price mechanism (FPM): x(θ) satisfies: there exists i, s.t. f̄i(θi, 1) =

maxn∈N f̄n(θn, 1) and xi(θ) = 1, ∀j 6= i, xj(θ) = 0. t(θ) satisfies: t̄i(θ) = f̄i(θi, 1).

ES always allocates the resource equally through each agent. The sharing rates si(β)

equal to the production based on reported type fi(θi,
1
N

).

The ESR mechanism always allocates resource with the same transfer payment ti(β)

through all agents with the share equal to the ratio of agent i’s aggregate production f̄i(θi, 1)

over the aggregate production of transmission of all agents
∑N

i=1 f̄i(θi, 1).

The second price mechanism always allocates the resource through agent with highest ag-

gregate production and chooses the transfer payment ti(β) equal to second highest aggregate

production.

3 h-Strategy-Proof Mechanisms

A punishment function hi : R2
+ 7→ R, hi(a, b) can be interpreted as the punishment of

agent i to report b ∈ R+, if when the true ability of transmission is a ∈ R+. Assume there

is no punishment for truthful report, hi(a, b) = 0 if b = a.10 Assume h : R2N
+ 7→ RN is

10We do not assume that the punishment is negative, as will be illustrated below.
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the vector of punishment function, h(θ, θ′) = (h1(θ1, θ
′
1), . . . , hi(θi, θ

′
i), . . . , hN(θN , θ

′
N)). The

production function fi(θi, xi) ∈ RM
+ , assume f̄i(θi, xi) = fi(θi, xi)

T1, and t̄i(θ) = ti(θ)
T1, the

profit of agent i is ui(θ) = (fi(θi, xi)− ti(θ))T1 = f̄i(θi, xi)− t̄i(θ), which is aggregation over

output of production. For the strategy-proofness of mechanism, agents only care about the

difference of aggregate production and aggregate charge by planner.

Definition 2 (h-Strategy-Proof)

The mechanism φ = (x(·), t(·)) is h-strategy-proof (h-SP) if for any agent i and for any type

θi and report θ′i, there is

f̄i(θi, xi(θ))− t̄i(θ) ≥ f̄i(θi, xi(θ
′
i, θ−i))− t̄i(θ′i, θ−i)− hi(θi, θ′i),∀θi, θ′i, θ−i.

h-strategy-proof mechanisms can be understood in a way that planner has ability to

audit the report θ′i and finds out true value θi. Planner imposes a punishment hi(a, b) when

report and true value are different. The agents choose to report the ability of transmission

to maximize their expected profit.

Lemma 1 (Conditions for h− SP )

Consider a punishment function hi(·, ·) that is differentiable at each point hi(θ, θ) for θ > 0.11

A mechanism φ = (x(·), t(·)) is h-SP, then there exists a function Φ : RN
+ 7→ RN

+ such

that:

i. The aggregate transfer payment of agent i equals t̄i(θ) = f̄i(θi, xi(θ))− Φi(θ).

ii. For each i and θi, f̄iθ(θi, xi(θ)) + h′i−(θi) ≤ ∂Φi(θi,θ−i)
∂θi

≤ f̄iθ(θi, xi(θ)) + h′i+(θi) with

f̄iθ(θi, xi(θ)) = ∂f̄i(θi,xi(θ))
∂θi

, h′i+(θi) = limθ′i→θ
+
i

hi(θi,θi)−hi(θi,θ′i)
θi−θ′i

, h′i−(θi) = limθ′i→θ
−
i

hi(θi,θi)−hi(θi,θ′i)
θi−θ′i

.

From part i, the function

Φi(θ) = f̄i(θi, xi(θ))− t̄i(θ)

is the profit of agent i when he truthfully reports θ′i = θi at the profile θ. From part ii, the

profit function Φi is monotonic as θi increases.

These are local conditions of strategy-proof for deviation of θ to θ′. The conditions are

not sufficient for h-SP, and global conditions of strategy-proof are needed. The profit of

agent i is affected by aggregate production regardless specific dimension of production.

The h-strategy-proof condition f̄i(θi, xi(θ))−t̄i(θ) ≥ f̄i(θi, xi(θ
′
i, θ−i))−t̄i(θ′i, θ−i)−hi(θi, θ′i),

∀θi, θ′i, θ−i is equivalent with Φi(θ) − Φi(θ
′
i, θ−i) ≥ f̄i(θi, xi(θ

′
i, θ−i)) − f̄i(θ

′
i, xi(θ

′
i, θ−i)) +

11The more general case, when hi is not differentiable, will be discussed in Appendix.
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hi(θi, θi)−hi(θi, θ′i). If hi is differentiable, take the limit θ′i → θi, there is ∂Φi(θ)
∂θi

= ∂f̄i(θi,xi(θ))
∂θi

+

h′i(θi).

Theorem 1 (Ineffective Punishment Functions)

The following three conditions are equivalent:

i. A mechanism is 0-SP.

ii. For any punishment function hi(a, b), such that the derivative at the truthful report is

zero,12 h′i(θi) = 0 for any θi.

iii. There exists a function xi : RN
+ 7→ R+ non-decreasing in the first coordinate such that

for any θ: ∂Φi(θ)
∂θi

= ∂f̄i(θi,x(θ))
∂θi

+ h′i(θi).

There are two important consequences of Theorem 1. On one hand, it provides pre-

cise conditions for a mechanisms to be 0-SP, the traditional strategy-proof condition dis-

cussed in the literature. First, the allocation of the resource to an agent should depend

on his aggregate ability of production instead of specific ability of production. Second, the

charged share to an agent depend on the average allocation over all the abilities f̄i(θi, xi(θ))−∫ θ′i
0
f̄iθ(t, xi(t, θ−i))dt.

On the other hand, another important consequence of Theorem 1 is only the punishment

functions that at the margin have a positive punishment (i.e., for an arbitrary small devia-

tion) are effective. In other words, punishment function h whose derivative at the truthful

report is zero is ineffective, in the sense that h will generate exactly the same class as if there

is no punishment, the set of mechanisms in 0-SP.

There is a large number of functions that meet this condition. Moreover, if the punish-

ment function h(θ, θ′) = (h1(θ1, θ
′
1), . . . , hN(θN , θ

′
N)) approaches infinite, any mechanism is

strategy-proof.13

Proposition 1

For any punishment functions h, ĥ, s.t. h(θ, θ′) ≤ ĥ(θ, θ′), ∀θ, θ′ ∈ RM
+ . Then any h-SP

mechanism φ = (x(·), t(·)) is ĥ-SP14.

This proposition shows the result of comparative static analysis of h-SP mechanisms. As

the punishment function h increases, the set of h-SP mechanisms expands. The result is

consistent with intuition that punishment would decrease the incentives of agents to misre-

port.

12This happens, for instance, at the large class of polynomial punishment functions hi(θi, θ
′
i) = γ(θi−θ′i)k

for some k > 1.
13Any mechanism is ∞-SP.
14ĥ-SP here means the mechanism φ is h-SP for punishment function ĥ.
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The following remark shows the linear combination of punishment functions, which make

mechanisms h-SP, also guarantees the linear combination of the mechanisms to be h-SP.

Remark 1 (Convexity of Punishment Function h)

Suppose the mechanism φ = (x(·), t(·)) and φ̂ = (x̂(·), t̂(·)) satisfy x(θ) = x̂(θ) for any θ,

and φ is h-SP for punishment function h = (h1, . . . , hN), φ̂ is h-SP for punishment function

ĥ = (ĥ1, . . . , ĥN), then φ̃ = (x̃(·), t̃(·)) = λφ + (1 − λ)φ̂, for which x̃(θ) = x(θ) = x̂(θ),

and t̃(θ) = λt(θ) + (1 − λ)t̂(θ). Then φ̃ is h-SP for punishment function h̃, with h̃(θ, θ′) =

λh(θ, θ′) + (1− λ)ĥ(θ, θ′) for any θ,θ′.

4 Minimal Punishment Function

It is often the case that a mechanism to allocates goods and services is given whereas the

designer of the mechanism has the flexibility to design the punishment function h. In this

section, we ask the question: What is the class of punishment functions that makes a given

mechanism h-strategy-proof? The answer to this question is related to finding the minimal

punishment function h that makes a mechanisms h-SP.

For any mechanism φ = (x(·), t(·)), assume the aggregate transfer payment agent i to the

planner is t̄i(θ) =
∑M

j=1 tij(θ), and the profit function of agent i is vi : RN+1
+ 7→ R+. If type

of agent i is θi and reports of all agents are (θ′i, θ−i), the profit of agent i is vi(θi, θ
′
i, θ−i) =

f̄i(θi, xi(θ
′
i, θ−i)) − t̄i(θ

′
i, θ−i). The profit of agent i for truthful report is vi(θi, θi, θ−i) =

f̄i(θi, xi(θ))− t̄i(θ). So agent i has incentive to report truthfully if vi(θi, θ) ≥ vi(θi, θ
′
i, θ−i)−

hi(θi, θ
′
i), for any θi, θ

′
i, θ−i.

Definition 3 (Minimal Punishment Function)

For any mechanism φ = (x(·), t(·)), hmin
i : R2

+ 7→ R+ is minimal punishment function for agent

i, if for any punishment function h(θi, θ
′
i), such that φ is h-SP for agent i with punishment

hi, then hi(θi, θ
′
i) ≥ hmin

i (θi, θ
′
i), ∀θi, θ′i.

The following result shows that there exists a minimal punishment at every profile and

misreport in order to achieve strategy-proofness.

Proposition 2 (Minimal Punishment Function)

Consider the mechanism φ = (x(·), t(·)), the profit of agent i is vi(θi, θ
′
i, θ−i), v(θ, θ′) =

(v1(θ1, θ
′), . . . , vN(θN , θ

′)) when the true profile is θ and reported profile is θ′. The punishment

function h, which guarantees mechanism φ to be h-SP, satisfies: hi(θi, θ
′
i) ≥ hmin

i (θi, θ
′
i) =

maxθ′−i [vi(θi, θ
′)− vi(θi, θi, θ′−i)], for any θi, θ

′, i.

12



We can interpret the function hmin
i (θi, θ

′
i) = maxθ′−i [vi(θi, θ

′)−vi(θi, θi, θ′−i)] as the minimal

punishment that agent i needs to incur, when the true profile is θi but he actually reports

θ′i.

In particular, we note that the minimal punishment for a strategy proof mechanism

satisfies hi(θi, θ
′
i) = 0, for any θi, θ

′
i. Thus any strategy proof mechanism is h-SP. On the

other hand, if a mechanism is not strategy proof, the minimal punishment function for the

mechanism has to be non-zero.

Corollary 1 (Properties of Minimal Punishment Function hmin)

i. For any mechanism φ = (x(·), t(·)), there exists minimal punishment function hmin.

ii. If the mechanism is strategy proof, then hmin
i (θi, θ

′
i) = 0, for any θi, θ

′
i, i.

iii. If the mechanism is not strategy proof, then the minimal punishment function is

nonzero. In other words, there exists θi, θ
′
i, i, such that hmin

i (θi, θ
′
i) > 0.

The following example discusses the minimal punishment function for first price mecha-

nism and second price mechanism.

Example 3

Consider the first price mechanism φF = (xF , tF ), and second price mechanism φS = (xS, tS),

xS = xF satisfies: for any i, fi(θi, 1) < maxj∈N fj(θj, 1), xSi(θ) = 0. For any i, fi(θi, 1) =

maxj∈N fj(θj, 1), xSi(θ) = 1
k(θ)

, k(θ) is the number of agents with largest fi(θi, 1).

The transfer payment for first price mechanism is tF (θ) = (f1(θ1, 1), . . . , fN(θN , 1)), which

means the agents are charged at the level of production they report. For second price

mechanism, the transfer payment tSi(θ) = fi(θi, 1) for i with fi(θi, 1) ≤ maxj 6=i fj(θj, 1),

and tSi(β) = maxj 6=i fj(θj, 1) for i with fi(θi, 1) > maxj 6=i fj(θj, 1). The transfer payment

tS and allocation xS of second price mechanism satisfies t̄i(θ) = f̄i(θi, 1) − maxj 6=i fj(θj, 1),

thus, second price mechanism is strategy proof, so the minimal punishment function for the

second price mechanism is hi(θi, θ
′
i) = 0.

The minimal punishment function for first price mechanism is hi(θi, θ
′
i) = (fi(θi, 1) −

fi(θ
′
i, 1))+ with fi(θi, 1)− fi(θ′i, 1)+ = max{fi(θi, 1)− fi(θ′i, 1), 0}.
Consider a mechanism φ, which is linear combination of φF and φS, satisfies φ = εφF+(1−

ε)φS with ε ∈ [0, 1]. From Corollary 1, the minimal punishment function for the mechanism

φ is hmin
i (θi, θ

′
i) = ε(fi(θi, 1)− fi(θ′i, 1))+.

Example 4

Consider the equally sharing rule of resource allocation, xi(θ
′) = 1

N
, which means the plan-

ner always allocates 1
N

to each agent. The equally sharing mechanism φ1 in Example 2,
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satisfying ti(θ
′) = fi(θ

′
i, 1), is not strategy proof. The agent has higher profit report-

ing lower than the true ability of transmission. The h-SP condition requires hi(θi, θ
′
i) ≥

maxθ′−i [vi(θi, θ
′) − vi(θi, θi, θ

′
−i)], substitute allocation xi and transfer payment ti into the

inequality, hi(θi, θ
′
i) ≥

fi(θi,1)−fi(θ′i,1)

N
− 0, thus, hi(θi, θ

′
i) ≥

fi(θi,1)−fi(θ′i,1)

N
. The minimal pun-

ishment function hmin
i (θi, θ

′
i) = (

fi(θi,1)−fi(θ′i,1)

N
)+

The equally sharing strategy proof mechanism φ2 satisfies x2i(θ
′) = 1

N
and s2i(β) = 0.

0 = (0, . . . , 0)M×1. The minimal punishment function for this mechanism is hmin
2 = 0, but

the outcome will be 0.

Finally, notice that Example 4 shows the strategy proof mechanism may result in outcome

0. The goal of planner is to send resource to outcomes via agents, so the class of strategy

proof mechanisms may not be good in some circumstances, punishment based on verification

is necessary to achieve larger outcomes. The following section will discuss the preferences of

planner, how will the punishment help improving the outcome.

4.1 First-Best Efficiency

We need to emphasize that the planner does not care about agents, but only the outcomes.

The outcome of resource allocation y ∈ RM
+ satisfies y =

∑N
i=1 ti(θ

′), θ′ is the type reported

by agents. Assume planner’s preferences � over the outcome of resource allocation y is

monotonic, and there exists utility function u : RM
+ 7→ R to represent the preferences.

The following definition states the first best outcome from the perspective of planner.

Definition 4 (First Best Efficient (FBE))

Given the preferences of planner � and the utility function u : RM
+ 7→ R+. A mechanism φ is

first best efficient (FBE), if for any profile of agents θ, the outcome of resource allocation y

maximizes the planner’s utility, under the condition of individual rationality. The individual

rationality means that agents have nonnegative profit. If the preferences is strictly convex,

then there exists a unique resource allocation that maximizes planner’s utility given any

profile θ = (θ1, . . . , θN).

Given the type of production θ, the maximal utility ū(θ) equals maxx u(
∑N

i=1 fi(θi, xi)),

such that
∑N

i=1 xi = 1. Assume x̄ : RN
+ 7→ RN

+ is the allocation of resource among agents,

which maximizes planner’s utility when profile of agents are θ, x̄(θ) = (x̄1(θ), . . . , x̄N(θ)) =

arg maxx u(
∑N

i=1 fi(θi, xi)). Assume f̄iθ(θ, xi(θ)) > 0 for any xi(θ) > 0, which means if agent

i is allocated with positive resource, the marginal effect of type on aggregate production is

positive.
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Notice that FBE implies the planner allocates resource through agents optimally to

achieve maximal utility with the true type of production.

Given mechanism φ = (x(·), t(·)), and the type of production is θ, the utility of planner

is u∗(θ, φ) = u(
∑N

i=1 ti(θ)), when agents truthfully report their type θ′ = θ.

Theorem 2

Assume the preferences of the planner � is strongly monotonic, continuous, and there exists

utility function u : RM
+ 7→ R representing the preferences.

i. There is no SP, budget balance and first best efficient mechanism.

ii. For any FBE mechanism φ, the minimal punishment function hmin
i for φ to be h-SP

satisfies hmin
i (θi, θ

′
i) = maxc∈[0,1] f̄i(θi, c) − f̄i(θ

′
i, c). Any punishment function h that

implements a FBE mechanism if and only if hi(θi, θ
′
i) ≥ hmin

i (θi, θ
′
i) for any θi ≥ θ′i.

Theorem 2 shows there exists no mechanism satisfying symmetric, budget balance, 0-SP

and FBE. It also provides the condition of minimal punishment function for mechanism to

achieve the first best efficient. The minimal punishment function is the same with the one in

Example 3 to guarantee the first price mechanism to be h-SP, which is not surprising because

the first price mechanism is FBE for some special planner’s preferences. The following

example shows that the first price mechanism is the first best efficient when the outcome of

resource is perfect substitute for planner, while the second price mechanism is SP, but not

FBE.

Example 5

Consider the preferences of planner is perfect substitute and represented by utility function

u(y) =
∑M

i=1 yi. Then the first price mechanism φF is FBE but not SP, and the second price

mechanism φS is SP but not FBE.

When the planner only cares about the sum of outcomes, the first best outcome is

to allocate the resource through a agent with largest aggregate production f̄i(θi, 1) and

charge the sharing rates equal to his true ability of transmission. Assume the aggregate

production ranking from high to low is f̄1(θ1, 1) ≥ · · · ≥ f̄N(θN , 1), the maximal utility

ū(θ) = maxi∈N f̄i(θ
i, 1) = f̄1(θ1, 1).

Thus, the first price mechanism, which allocates all resource to agent i with largest

aggregate production f̄i(θi, 1) and transmit with resource equal to reported production. The

final allocation y = f̄1(θ1, 1) and utility u∗(θ, φF ) = f̄1(θ1, 1), which is FBE. However,

the second price mechanism, which is strategy proof, but it has to pay the agent i with

largest aggregate production f̄1(θ1, 1) −maxj 6=1 f̄j(θ
j, 1) as information rent, The planner’s
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utility u∗(θ, φS) = f̄2(θ2, 1). When f̄2(θ2, 1) < f̄1(θ1, 1), u∗(θ, φS) < ū(θ), the second price

mechanism can not achieve FBE.

This section shows that punishment is necessary to achieve the first best efficient for

the planner, and the minimal punishment function for first best efficient mechanism to be

h-SP coincides with the minimal punishment function for first price mechanism to be h-SP.

Verification and punishment could be used to expand the class of strategy proof mechanisms

and achieve higher efficiency for planner.

5 h-optimal Mechanism

Unlike Section 4, that fixes the mechanism and finds (minimal) punishment functions

that make it incentive compatible, in this section, we fix the punishment functions and find

mechanisms that are ‘optimal’ for such a punishment function.

Unlike Section 3, that focuses on characterizing the classes of h-SP mechanisms, in this

section we find the optimal mechanisms for an arbitrary set of preferences. Our main results

in this section shows that the optimal mechanism for the planner given an arbitrary punish-

ment function can be represented as a convex combination of two traditional mechanisms,

the first-price mechanism and the second-price mechanism, where the weight between these

mechanisms is dependent on the punishment function.

Definition 5

Consider an arbitrary monotonic preferences � of planner, and let h be an arbitrary pun-

ishment function. We say the h-SP mechanism φ∗ is h-optimal if for any h-SP mechanism

φ̄ with the same allocation rule x(·), we have that y∗(θ) � ȳ(θ) for any θ.

The allocation of resource to the planner is y(θ) =
∑N

i=1 ti(θ). Consider the mechanisms

with allocation rule x(θ) that allocates resource to agents with highest aggregate production,

second price mechanism φS is 0-SP and first price mechanism φF is h-SP for punishment

function hi(θi, θ
′
i) = maxc∈[0,1] |f̄i(θi, c) − f̄i(θ′i, c)|. The mechanism φλ = λφF + (1 − λ)φS,

which is the convex combination of first price mechanism φF and second price mechanism φS.

φλ is h-SP with punishment function hλi (θi, θ
′
i) = λmaxc∈[0,1] |f̄i(θi, c)− f̄i(θ′i, c)| as a convex

combination of punishment functions for φF and φS. Assume f̄−i(θ−i, 1) = maxj 6=i f̄j(θj, 1).

notes: if there is no feasibility constraint

notes: for any mechanism, x(·), t(·) could be equivalent with certain x̃(·), t̃(·)
for specific x̃
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Definition 6

Consider an arbitrary punishment function h, let function λhi (θ) ≤
∫ θi
θi(θ−i)

−h′i−(q)dq∫ θi
θi(θ−i)

f̄iθ(q,xi(q,θ−i))dq
, s.t.

θi. θi(θ−i) = sup{θi|xi(θi, θ−i) = 0}. Define the mechanism φh = λh(θ)φF + (1 − λh(θ))φS,

with xh(θ) = xS(θ) = xF (θ), and ti(θ) = λhi (θ)tFi(θ) + (1− λhi (θ))tSi(θ).

Consider mechanism φh with allocation rule xh(·), that planner allocates all resource to

agents with highest aggregate production, xh(θ) = xS(θ) = xF (θ). The resource charged

by planner is ti(θ) = λhi (θ)tFi(θ) + (1 − λhi (θ))tSi(θ). The resource charged in the first

price mechanism satisfies t̄Fi(θ) = f̄i(θi, xi(θ)), second price mechanism satisfies t̄Si(θ) =

f̄−i(θ−i, 1)xi(θ).

Then θi(θ−i) solves the f̄i(θi, 1) = maxj 6=i f̄j(θj, 1). For θi > θi(θ−i), xi(θ) = 1. λhi (θ)

satisfies λhi (θ) ≤
∫ θi
θi(θ−i)

−h′i−(q)dq∫ θi
θi(θ−i)

f̄iθ(q,1)dq
. Further, if the production is separable fi(θi, xi(θ)) =

θixi(θ), f̄iθ(θi, 1) = 1, λhi (θ) depends on the average marginal punishment of hi, λ
h
i (θ) ≤∫ θi

θi(θ−i)
−h′i−(q)dq

θi−θi(θ−i)
.

This mechanism selects the worst possible type for the planner to monitor, in relation

to punishment function h with profile θ. For profile θ, the mechanism φh = λh(θ)φF + (1−
λh(θ))φS allocates all resource to agent i with highest aggregate production f̄i(θi, 1), and

charge the resource λhi (θ)f̄i(θi, xi(θ)) + (1 − λhi (θ))f̄−i(θ−i, 1)xi(θ). It is worth noting λhi (θ)

depends on f̄i(θi, 1) and f̄−i(θ−i, 1).

Theorem 3

For an arbitrary punishment function h, the mechanism φh is h-optimal among mechanisms

that allocate to the agent with highest aggregate production.

If the production function satisfies constant return to scale fi(θi, xi(θ)) = xi(θ)fi(θi, 1),

the agent with maximal aggregate production is the same as one with maximal marginal

productivity ∂fi(θi,xi)
∂xi

.

The theorem characterizes the optimal h-SP mechanism for a specific monotonic allo-

cation rule x(θ). The optimality cannot be guaranteed in the general case. If there is no

feasibility constraint, the allocation rule that allocates all resource to agents with highest

aggregate production is h-optimal among all mechanisms.

Resource allocating to the agent with maximal aggregate production is necessary for the

result. See the following example.

Example 6

Suppose there is no punishment, that is hi(θi, θ
′
i) = 0. Consider the strategy-proof mech-

anisms. From Theorem 1, the strategy-proof mechanism satisfies ∂Φi(θi,θ−i)
∂θi

= f̄iθ(θi, xi(θ)),

which is equivalent with t̄i(θ) = f̄i(θi, xi(θ))−
∫ θi

0
f̄iθ(t, xi(t, θ−i))dt.
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Assume the production function is the same for all agents, fi(θi, xi(θ)) = f(θi, xi(θ)) =

θixi(θ) ∈ R, θi is the marginal product of agent i. Assume θ1 > θ2 · · · > θN , for second price

mechanism φS, the planner allocates all resource to agent 1 and charges θ2.

Consider another strategy-proof mechanism φ̂ = (x̂(·), t̂(·)), the allocation rule x̂(·) sat-

isfies x̂i(θ
′) =

1[θ2,θ1)(θ
′
i)∑N

i=1 1[θ2,θ1)(θ
′
i)

15, for θ′ with θ2 ≤ maxi∈N θ
′
i < θ1, and x̂(θ′) = xS(θ′) for other

θ′. In the mechanism φ̂, planner allocates resource equally to agents with report in [θ2, θ1)

if the maximal type is in [θ2, θ1), and allocate resource to agent with highest production in

other situation. Since φ̂ is strategy-proof, if θ2 ≤ maxi∈N θ
′
i < θ1, charge t̂i(θ

′) = θ2x̂i(θ
′)

for agents. If θ′ = θ, x̂1(θ′) = 1, and the charged resource t̂1(θ′) = θ1+θ2
2

> θ2 = tS1(θ′). If

θ′j = θj for j ≥ 3, and θ2 < θ′2 < θ′1 < θ1, the charged resource t̂1(θ′) = θ2 < θ′2 = tS1(θ′).

Thus, neither of the mechanisms are optimal for any SP mechanism.

Corollary 2 (Optimality of φλ)

i. The mechanism φλ is the unique hλ-optimal mechanism among the mechanisms that

allocate resource to the agent with maximal aggregate production.

ii. hλ is the minimal punishment function of the mechanism φλ.

Corollary 2 discusses the special case of punishment function hλi (θi, θ
′
i) = λi(θ)|f̄i(θi, 1)−

f̄i(θ
′
i, 1)|, and φλ = λφF + (1− λ)φS is hλ-optimal mechanism.

Corollary 3 (Optimality of second-price mechanism)

The second-price mechanism φS is h-optimal among mechanisms that allocate to the agent

with highest aggregate production for a punishment function h that satisfies either of the

following conditions:

i. The derivative of h equals to zero,
∂hi(θi,θ

′
i)

∂θi
|θ′i=θi = 0, for any θi. All polynomial

functions satisfy this.

ii. Any punishment function such that for each θi, there exists θ′i ∈ Uε(θi) in neighborhood

of θi with any ε > 0, such that hi(θi, θ
′
i) = 0. This includes, punishment functions that

do not punish small deviations.

The first result of Corollary 3 is a natural extension of the results in Theorem 1. The set

of strategy-proof mechanisms does not expand if the punishment function h has derivative 0,

thus, there is no h-SP mechanism, which allocates resource to agent with maximal aggregate

production, can transmit more resource than second price mechanism φS.

The second result shows if there exists small deviation without any punishment, then the

punishment function h does not improve the h-optimal mechanism.

151[θ2,θ1)(·) is indicator function.
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ii is a special case included in i, the condition could be extended to
h′i(θi)

f̄ ′iθ(θi,1)
= 0

Corollary 4 (Optimality of the first-price mechanism)

The first-price mechanism φF is optimal among mechanisms that allocate resource to the

agent with highest aggregate production for any punishment function h that satisfies: hi(θi, θ
′
i) ≥

max{f̄i(θi, 1)− f̄i(θ′i, 1), 0} for any θi, θ
′
i.

6 Extensions

6.1 Arbitrary preferences of the intermediaries

Note that we have been studying the case where agents care about the profit. If more

general preferences of the intermediaries are assumed, for instance, when intermediaries can

have any potential quasi-concave utilities over the allocation of the goods to agents, then

nothing is possible.

Proof: basically any potential slope is possible.

6.2 Specific min-preferences for the intermediaries

Consider the case where intermediaries have specific preferences, for instance, they case

about the min of their connections. Then, clearly, we might be able to get different mecha-

nisms.

7 Conclusion

This paper investigates the strategy-proof mechanisms for the problem of resource trans-

mission with intermediation on network. The mechanism requires the intermediaries to

report their quality of intermediation, transmits the resource according to the sharing rates

based on the report, and imposes punishment for misreporting.

This paper is a start to study the strategy-proof mechanisms with punishments, we dis-

cover and describe the sets of strategy-proof mechanisms with various punishment functions.

The conditions of strategy-proof mechanism, that require share of resource transmission and

sharing rates of intermediaries to satisfy, are provided. We also demonstrate the strategy-

proof, symmetric, budget balance mechanisms with three cases of punishment function. With

linear punishment function, the strategy-proof, symmetric, budget balance mechanisms re-

quire the sharing rule to depend only on the sum of quality of links. The minimal punishment
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function for a mechanism to be strategy-proof are discussed. On the other hand, given the

punishment function, the optimal mechanism for the planner is discovered.

The mechanism design approach in this paper is a complement to game theoretical ap-

proach. It studies how to make a plan providing incentives for intermediaries to report the

true quality of intermediation, rather than competing in the price charging for using their

links.

Appendix: Proofs

In order to prove Theorems and Corollaries, first introduce the follow Lemmas.

Proof of Lemma 1

Proof.

Part i. Given the mechanism φ = (x(·), s(·)), assume Φi(θ) = f̄i(θi, xi(θ))− t̄i(θ), which

represents the profit of agent i.

Part ii. Prove the result for h-SP mechanism, ∂Φi(θi,θ−i)
∂θi

= f̄iθ(θi, xi(θ))− h′i(θi).
For mechanism φ = (x(·), t(·)) to be h-SP, f̄i(θi, xi(θ)) − t̄i(θ) ≥ f̄i(θi, xi(θ

′
i, θ−i)) −

t̄i(θ
′
i, θ−i)− hi(θi, θ′i), ∀θi, θ′i, θ−i.
Φi(θ) = f̄i(θi, xi(θ))− t̄i(θ) is the profit of agent i when he truthfully reports his type θi,

and types of other agents are θ−i. Then the condition for h-strategy-proofness is equivalent

with Φi(θ) ≥ Φi(θ
′
i, θ−i) + f̄i(θi, xi(θ

′
i, θ−i))− f̄i(θ′i, xi(θ′i, θ−i))− hi(θi, θ′i), ∀θi, θ′i, θ−i.

For θ′i > θi,
Φi(θ)−Φi(θ

′
i,θ−i)

θi−θ′i
≤ f̄i(θi,xi(θ

′
i,θ−i))−f̄i(θ′i,xi(θ′i,θ−i))

θi−θ′i
+

hi(θi,θi)−hi(θi,θ′i)
θi−θ′i

.

For θ′i < θi,
Φi(θ)−Φi(θ

′
i,θ−i)

θi−θ′i
≥ f̄i(θi,xi(θ

′
i,θ−i))−f̄i(θ′i,xi(θ′i,θ−i))

θi−θ′i
+

hi(θi,θi)−hi(θi,θ′i)
θi−θ′i

.

If the profit function Φi, production function f̄i and punishment hi are differentiable,

take the limit θ′i → θi, there is ∂Φi(θi,θ−i)
∂θi

= f̄iθ(θi, xi(θ)) + h′i(θi).

For hi(θi, θ
′
i) ≥ 0, if hi is not differentiable, assume h′i+(θi) = limθ′i→θ

+
i

hi(θi,θi)−hi(θi,θ′i)
θi−θ′i

≥ 0

with θ′i > θi, and h′i−(θi) = limθ′i→θ
−
i

hi(θi,θi)−hi(θi,θ′i)
θi−θ′i

≤ 0 with θ′i < θi. Thus, f̄iθ(θi, xi(θ)) +

h′i−(θi) ≤ ∂Φi(θi,θ−i)
∂θi

≤ f̄iθ(θi, xi(θ)) + h′i+(θi).

Proof of Theorem 1

Proof.

Assume h′i(θi) =
∂hi(θi,θ

′
i)

∂θ′i
, θ = (θi, θ−i), f̄iθ(θi, xi(θ)) = ∂f̄i(θi,xi(θ))

∂θi
.

From Lemma 1, h-SP mechanism satisfies f̄iθ(θi, xi(θ))+h
′
i−(θi) ≤ ∂Φi(θi,θ−i)

∂θi
≤ f̄iθ(θi, xi(θ))+

h′i+(θi).

i. ⇒ iii.

For any mechanism φ = (x(·), t(·)) to be 0-SP, f̄i(θi, xi(θ)) − t̄i(θ) ≥ f̄i(θi, xi(θ
′
i, θ−i)) −

t̄i(θ
′
i, θ−i), equivalent with Φi(θ) ≥ Φi(θ

′
i, θ−i)+f̄i(θi, xi(θ

′
i, θ−i))−f̄i(θ′i, xi(θ′i, θ−i)), ∀θi, θ′i, θ−i.
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For θ′i > θi,
Φi(θ)−Φi(θ

′
i,θ−i)

θ′i−θi
≥ f̄i(θi,xi(θ

′
i,θ−i))−f̄i(θ′i,xi(θ′i,θ−i))

θ′i−θi
.

For θ′i < θi,
Φi(θ)−Φi(θ

′
i,θ−i)

θ′i−θi
≤ f̄i(θi,xi(θ

′
i,θ−i))−f̄i(θ′i,xi(θ′i,θ−i))

θ′i−θi
.

Take the limit θ′i → θi, there is ∂Φi(θi,θ−i)
∂θi

= f̄iθ(θi, xi(θ)).

ii. ⇒ iii.

For punishment function hi(θi, θ
′
i) with hi(θi, θ

′
i) = 0, the h-SP mechanism satisfies

∂Φi(θi,θ−i)
∂θi

= f̄iθ(θi, xi(θ))− h′i(θi) = f̄iθ(θi, xi(θ)).

iii. ⇒ i.

For mechanism φ, satisfies ∂Φi(θi,θ−i)
∂θi

= f̄iθ(θi, xi(θ)), we have Φi(θi, θ−i) =
∫ θi

0
f̄iθ(t, xi(t, θ−i))dt,

Φi(θ
′
i, θ−i) =

∫ θ′i
0
f̄iθ(t, xi(t, θ−i))dt. The planner charges agent i with t̄i(θ) = f̄i(θi, xi(θ)) −∫ θi

0
f̄iθ(t, xi(t, θ−i))dt.

Since ∂2f̄i
∂θ∂x
≥ 0, xi(θ) is non-decreasing in θi.

For any θi ≥ t ≥ θ′i, xi(t, θ−i) ≥ xi(θ
′
i, θ−i), f̄iθ(t, xi(t, θ−i)) ≥ f̄iθ(t, xi(θ

′
i, θ−i)).

Φi(θi, θ−i)−Φi(θ
′
i, θ−i) =

∫ θi
θ′i
f̄iθ(t, xi(t, θ−i))dt, and f̄i(θi, xi(θ

′
i, θ−i))− f̄i(θ′i, xi(θ′i, θ−i)) =∫ θi

θ′i
f̄iθ(t, xi(θ

′
i, θ−i))dt. Then we have Φi(θi, θ−i)−Φi(θ

′
i, θ−i) ≥ f̄i(θi, xi(θ

′
i, θ−i))−f̄i(θ′i, xi(θ′i, θ−i)),

which is equivalent with the 0-SP condition Φi(θi, θ−i) ≥ Φi(θ
′
i, θ−i) + f̄i(θi, xi(θ

′
i, θ−i)) −

f̄i(θ
′
i, xi(θ

′
i, θ−i)).

For any θi ≤ t ≤ θ′i, xi(t, θ−i) ≤ xi(θ
′
i, θ−i), f̄iθ(t, xi(t, θ−i)) ≤ f̄iθ(t, xi(θ

′
i, θ−i)).

Then
∫ θ′i
θi
f̄iθ(t, xi(t, θ−i))dt ≤

∫ θ′i
θi
f̄iθ(t, xi(θ

′
i, θ−i)), which means−Φi(θi, θ−i)+Φi(θ

′
i, θ−i) ≤

−f̄i(θi, xi(θ′i, θ−i))+f̄i(θ′i, xi(θ′i, θ−i)), equivalent with Φi(θi, θ−i) ≥ Φi(θ
′
i, θ−i)+f̄i(θi, xi(θ

′
i, θ−i))−

f̄i(θ
′
i, xi(θ

′
i, θ−i)).

iii. ⇒ ii.

From above, any mechanism φ satisfying ∂Φi(θi,θ−i)
∂θi

= f̄iθ(θi, xi(θ)) is 0-SP, Φi(θ) ≥
Φi(θ

′
i, θ−i) + f̄i(θi, xi(θ

′
i, θ−i)) − f̄i(θ

′
i, xi(θ

′
i, θ−i)), ∀θi, θ′i, θ−i. Then Φi(θ) ≥ Φi(θ

′
i, θ−i) +

f̄i(θi, xi(θ
′
i, θ−i))− f̄i(θ′i, xi(θ′i, θ−i))− hi(θi, θ′i), with hi(θi, θ

′
i) ≥ 0.

Proof of Proposition 1

Proof.

For any punishment function h and ĥ. h(θ, θ′) ≤ ĥ(θ, θ′), for any θ and θ′.

Any mechanism φ is h-SP, satisfies:

f̄i(θi, xi(θ))− t̄i(θ) ≥ f̄i(θi, xi(θ
′
i, θ−i))− t̄i(θ′i, θ−i)− hi(θi, θ′i), ∀θ, θ′i, i.

f̄i(θi, xi(θ
′
i, θ−i))− t̄i(θ′i, θ−i)− hi(θi, θ′i) ≥ f̄i(θi, xi(θ

′
i, θ−i))− t̄i(θ′i, θ−i)− ĥi(θi, θ′i).

Thus, f̄i(θi, xi(θ))− t̄i(θ) ≥ f̄i(θi, xi(θ
′
i, θ−i))− t̄i(θ′i, θ−i)− ĥi(θi, θ′i), ∀θ, θ′i, i.

The mechanism φ = (x(·), t(·)) is ĥ-SP.

Proof of Remark 1

Proof.
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φ is h-SP for punishment function h, so f̄i(θi, xi(θ))−t̄i(θ) ≥ f̄i(θi, xi(θ
′
i, θ−i))−t̄i(θ′i, θ−i)−

hi(θi, θ
′
i), ∀θ, θ′i, i.

φ̂ is h-SP for punishment function ĥ, so f̄i(θi, x̂i(θ))−¯̂ti(θ) ≥ f̄i(θi, x̂i(θ
′
i, θ−i))−

¯̂ti(θ
′
i, θ−i)−

ĥi(θi, θ
′
i), ∀θ, θ′i, i.

Then the linear combination of the two inequalities with weighted of λ and (1 − λ)

results λ[f̄i(θi, xi(θ))− t̄i(θ)] + (1−λ)[f̄i(θi, x̂i(θ))− ¯̂ti(θ)] ≥ λ[f̄i(θi, xi(θ
′
i, θ−i))− t̄i(θ′i, θ−i)−

hi(θi, θ
′
i)] + (1− λ)[f̄i(θi, x̂i(θ

′
i, θ−i))−

¯̂ti(θ
′
i, θ−i)− ĥi(θi, θ′i)], ∀θ, θ′i, i.

xi(θ) = x̂i(θ) and xi(θ
′
i, θ−i) = x̂i(θ

′
i, θ−i), so rearrange the inequality above, there is

f̄i(θi, xi(θ)) − λt̄i(θ) − (1 − λ)¯̂ti(θ) ≥ f̄i(θi, xi(θ
′
i, θ−i)) − λt̄i(θ

′
i, θ−i) − (1 − λ)¯̂ti(θ

′
i, θ−i) −

[λhi(θi, θ
′
i) + (1− λ)ĥi(θi, θ

′
i)], with xi(·) = x̂i(·) = x̃i(·), h̃(·) = λh(·) + (1− λ)ĥ(·).

It is equivalent with f̄i(θi, x̃i(θ))− ¯̃ti(θ) ≥ f̄i(θi, x̃i(θ
′
i, θ−i))− ¯̃ti(θ

′
i, θ−i)− h̃(θi, θ

′
i), ∀θ, θ′i, i.

Thus, φ̃ is h-SP for punishment function h̃.

Proof of Proposition 2

Proof.

A mechanism is h-SP if and only if vi(θi, θi, θ
′
−i) ≥ vi(θi, θ

′) − hi(θi, θ′i), for any θ′, θi. It

is equivalent with hi(θi, θ
′
i) ≥ vi(θi, θ

′)− vi(θi, θi, θ′−i), for any θ′, θi.

So if hi(θi, θ
′
i) ≥ maxθ′−i [vi(θi, θ

′)− vi(θi, θi, θ′−i)] for any θ′, θi, mechanism φ is h-SP.

On the other side, if hi(θi, θ
′
i) < maxθ′−i [vi(θi, θ

′) − vi(θi, θi, θ
′
−i)] for some θ′, θi. Then

there exists θ′−i, when intermediary i has ability of transmission θi, he will deviate to report

θ′i and achieve higher profit vi(θi, θ
′)− hi(θi, θ′i), such that mechanism is not h-SP.

Proof of Corollary 1

Proof.

i. By definition, the minimal punishment function hmin
i (θi, θ

′
i) = maxθ′−i [vi(θi, θ

′) −
vi(θi, θi, θ

′
−i)], for any θi, θ

′
i, θ
′
−i. We have vi(θi, θ

′) − vi(θi, θi, θ′−i) = f̄i(θi, xi(θ
′)) − t̄i(θ′) −

f̄i(θi, xi(θi, θ
′
−i)) + t̄i(θi, θ

′
−i).

Consider the condition of individual rationality for intermediary to participate, f̄i(θi, xi(θi, θ
′
−i)) ≥

t̄i(θi, θ
′
−i), so f̄i(θi, xi(θ

′)) − t̄i(θ
′) − f̄i(θi, xi(θi, θ

′
−i)) + t̄i(θi, θ

′
−i) ≤ f̄i(θi, xi(θ

′)) − t̄i(θ
′) ≤

f̄i(θi, xi(θ
′)).

Since xi(θ
′) ≤ 1, f̄i(θi, xi(θ

′)) ≤ f̄i(θi, 1) is bounded. vi(θi, θ
′) − vi(θi, θi, θ′−i) ≤ f̄i(θi, 1),

∀θi, θ′, the upper bound exists. Thus, there exists minimal punishment function hmin
i (θi, θ

′
i) =

maxθ′−i [vi(θi, θ
′)− vi(θi, θi, θ′−i)].

ii. Consider mechanism φ = (x(·), s(·)) is strategy proof. Then vi(θi, θ
′) ≤ vi(θi, θi, θ

′
−i),

for any θ′, θi. So maxθ′−i [vi(θi, θ
′) − vi(θi, θi, θ

′
−i)] ≤ 0 for any θ′i, θi. Then the minimal

punishment function hmin
i (θi, θ

′
i) = 0, for any θ′i, θi.
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iii. Consider mechanism φ = (x(·), s(·)) is not strategy proof, there exists θi, θ
′, such

that vi(θi, θi, θ
′
−i) < vi(θi, θ

′). Suppose hmin
i (θi, θ

′
i) = 0, for any θ′i, θi. Then hmin

i (θi, θ
′
i) = 0 <

vi(θi, θ
′)− vi(θi, θi, θ′−i), contradicts with the h-SP. So hmin

i is nonzero.

Proof of Theorem 2

Proof.

i. To prove there does not exist SP mechanism, such that it is FBE.

Assume mechanism φ = (x(·), t(·)) is SP. From Theorem 1, the profit Φi and production

function fi satisfies Given the allocation x(θ), the resource charged t(θ) of SP mechanism

satisfies Φi(θi, θ−i) =
∫ θi

0
f̄iθ(t, xi(t, θ−i))dt, and Φi(θi, θ−i) = f̄i(θi, xi(θ))− t̄i(θ). φ is strategy

proof, agents will report truthfully, θ′ = θ. The aggregate resource charged by planner is

t̄i(θ) = f̄i(θi, xi(θ))−
∫ θi

0
f̄iθ(t, xi(t, θ−i))dt.

Given mechanism φ, the resource allocation is
∑N

i=1 ti(θ).

By definition of FBE, ū(θ) = maxx u(
∑N

i=1 fi(θi, xi)), with
∑N

i=1 xi(θ) = 1. Thus, ū(θ) ≥
u(
∑N

i=1 fi(θi, xi)) for any mechanism with allocation rule x(·).
To prove there exists θ, such that

∑N
i=1 f̄i(θi, xi(θ)) >

∑N
i=1 t̄i(θ), which is equivalent

with
∑N

i=1

∫ θi
0
f̄iθ(t, xi(t, θ−i))dt > 0. Without loss of generality, assume for θ̃, xi(θ̃) > 0, and

allocation rule xi(t, θ−i) is monotonic in t. Let θ−i = θ̃−i, θi > θ̃i, then xi(t, θ−i) > 0 for any

t > θ̃i, f̄iθ(t, xi(t, θ−i)) > 0. Thus,
∫ θi

0
f̄iθ(t, xi(t, θ−i))dt ≥

∫ θi
θ̃i
f̄iθ(t, xi(t, θ−i))dt > 0.

The aggregate resource allocated to agents under mechanism φ is t̄i(θ) = f̄i(θi, xi(θ)) −∫ θi
0
f̄iθ(t, xi(t, θ−i))dt < f̄i(θi, xi(θ)), when type of agents is θ.

By definition of maximal utility ū(θ), ū(θ) ≥ u(
∑N

i=1 fi(θi, xi(θ)) > u(
∑N

i=1 ti(θ)). The

first inequality is from definition of maximal utility ū, and the second inequality comes from

strongly monotone of preferences.

So there is no symmetric, SP, budget balance, and FBE mechanism.

ii. Consider φ is FBE mechanism. If the transmission ability of agents are θ, and the

agents report truthfully about their ability of transmission, θ′ = θ. The first best allocation

of resource is x̄(θ). To achieve the fist best efficient, the charged resource ti(θ) should equal

to the true quality of production fi(θi, xi(θ)) for any agent allocated with positive resource

xi(θ) > 0.

Assume x(θ) = (x1(θ), . . . , xN(θ)) solves the utility maximization problem of planner

maxx u(
∑N

i=1 fi(θi, xi)) for any θ, the allocation of resource that maximizes planner’s utility

is ȳ(θ) =
∑N

i=1 fi(θi, xi(θ)). Suppose there exists i, the charged resource ti(θ) ≤ fi(θi, xi(θ)),

ti(θ) 6= fi(θi, xi(θ)) and xi(θ) > 0. Then the resource allocation y =
∑N

i=1 ti(θ) ≤ ȳ(θ)

and y 6= ȳ(θ). If the preferences of planner is strongly monotone, then u(y) < u(ȳ(θ)),

the fist best efficient will not be achieved. For FBE mechanism φ, the charged resource
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ti(θ) = fi(θi, xi(θ)), if xi(θ) > 0, θ′ = θ.

If xi(θ) = 0, fi(θi, xi(θ)) = 0. If xi(θ) > 0, ti(θ) = fi(θi, xi(θ)), we have vi(θi, θ) =

f̄i(θi, xi(θ))−t̄i(θ) = 0, and vi(θi, θ
′) = f̄i(θi, xi(θ

′))−t̄i(θ′) = f̄i(θi, xi(θ
′))−f̄i(θ′i, xi(θ′)), with

θ′−i = θ−i. Then vi(θi, θ
′)− vi(θi, θ) = f̄i(θi, xi(θ

′))− f̄i(θ′i, xi(θ′)). The minimal punishment

function for agent i is hmin
i (θi, θ

′
i) = maxθ′−i f̄i(θi, xi(θ

′))− f̄i(θ′i, xi(θ′)).
Since f̄iθ ≥ 0, f̄i(θi, xi(θ

′)) − f̄i(θ′i, xi(θ′)) ≤ 0 for any θ′i ≥ θi, the minimal punishment

hmin
i (θi, θ

′
i) = 0 for θ′i ≥ θi. The resource given to agent i is xi(θ

′) ∈ [0, 1]16, hmin
i (θi, θ

′
i) =

maxc∈[0,1] f̄i(θi, c)− f̄i(θ′i, c), for θ′i < θi.

From Proposition 2, any punishment function h that implements a FBE mechanism if

and only if hi(θi, θ
′
i) ≥ hmin

i (θi, θ
′
i) = maxc∈[0,1] f̄i(θi, c)− f̄i(θ′i, c) for any θ′i ≤ θi.

Proof of Theorem 3

Proof. Consider an arbitrary mechanism φ that is h-optimal, and always allocates the

full resource to the intermediary with the highest aggregate intermediation quality, so x =

xF = xS. Without loss of generality, assume that f̄1(θ1, 1) ≥ f̄2(θ2, 1) ≥ · · · ≥ f̄N(θN , 1),

x1(θ) = 1, charge of planner t̄1(θ) ≤ f̄1(θ1, 1).

The second price mechanism φS is strategy-proof, and the planner would charge agent i

resource t̄S1(θ) = f̄2(θ2, 1). So the h-optimal mechanism will transmit no less than f̄2(θ2, 1).

The optimal aggregate charging f̄1(θ1, 1) ≥ t̄1(θ) ≥ f̄2(θ2, 1), there exists λ1(θ) ∈ [0, 1],

s.t. t̄1(θ) = λ1(θ)f̄1(θ1, 1) + (1− λ1(θ))f̄2(θ2, 1). The mechanism φ can be written as φ(θ) =

λ(θ)φF (θ) + (1− λ(θ))φS(θ), for any θ.

By h-SP, f̄1(θ1, 1)− t̄1(θ) ≥ f̄1(θ1, x1(θ′1, θ−1))− t̄1(θ′1, θ−1)− h1(θ1, θ
′
1).

For any θ′1 satisfying f̄−1(θ−1, 1) ≤ f̄1(θ′1, 1) ≤ f̄1(θ1, 1), we have x1(θ′1, θ−1) = 1. The

condition of h-SP is equivalent with h1(θ1, θ
′
1) ≥ t̄1(θ)− t̄1(θ′1, θ−1).

Assume ti(θ) = λi(θ)fi(θi, 1)+(1−λi(θ))f−i(θ−i, 1), there is ti(θ
′
i, θ−i) = λi(θ

′
i, θ−i)fi(θ

′
i, 1)+

(1−λi(θ′i, θ−i))f−i(θ−i, 1). h-SP is equivalent with hi(θi, θ
′
i) ≥ λi(θ)f̄i(θi, 1)−λi(θ′i, θ−i)f̄i(θ′i, 1)+

f̄−i(θ−i, 1)(λi(θ
′
i, θ−i)− λi(θ)).

Take the limit θ′i → θi−, h′i(θi) ≥ (f̄i(θi, 1)− f̄−i(θ−i, 1))λ′i(θ) + λi(θ)f̄
′
iθ(θi, 1).

Based on h-SP, hi(θi, θ
′
i) ≥ t̄i(θ) − t̄i(θ

′
i, θ−i), for any θ′i with f̄−i(θ−i, 1) ≤ f̄i(θ

′
i, 1) ≤

f̄i(θi, 1). Assume function r : RN 7→ RN , r(θ) = (ri(θ−i))1≤i≤N , such that, f̄i(ri(θ−i), 1) =

f̄−i(θ−i, 1). t̄i(θ) ≤ t̄i(ri(θ−i), θ−i)+hi(θi, ri(θ−i)). For second price mechanism, t̄i(ri(θ−i), θ−i) =

f̄−i(θ−i, 1), then t̄i(θ) ≤ f̄−i(θ−i, 1) + hi(θi, ri(θ−i)).

t̄i(θ) = λi(θ)f̄i(θi, 1) + (1− λi(θ))f̄−i(θ−i, 1), then λi(θ)f̄i(θi, 1) + (1− λi(θ))f̄−i(θ−i, 1) ≤
f̄−i(θ−i, 1) + hi(θi, ri(θ−i)), λi(θ)(f̄i(θi, 1)− f̄−i(θ−i, 1)) ≤ hi(θi, ri(θ−i)).

16The range of xi(θ
′) could be restricted further under certain preferences of planner, in general case,

minθ′−i
xi(θ

′) ≤ xi(θ′) ≤ maxθ′−i
xi(θ

′).
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Hence, any h-SP mechanism that allocating resource to agent with highest aggregate

production would be charged not more than t̄i(θ) with λi(θ).

To prove the mechanism with t̄i(θ) is h-SP. If hi(a, b) is not increasing in scale of deviation

hi(a, c) ≤ hi(a, b) + hi(b, c), with a ≥ b ≥ c.

Moreover, φh is h-SP and allocates to agent with highest aggregate production. Then φh

is h-optimal among mechanisms with allocation rule xi(θ).

From Theorem1, h-SP mechanism satisfies f̄iθ(θi, xi(θ))+h
′
i−(θi) ≤ ∂Φi(θi,θ−i)

∂θi
≤ f̄iθ(θi, xi(θ))+

h′i+(θi).
∂Φi(θi,θ−i)

∂θi
= f̄iθ(θi, xi(θ)) + f̄ix(θi, xi(θ))

∂xi(θ)
∂θi
− ∂t̄i(θ)

∂θi
, then ∂t̄i(θ)

∂θi
≤ f̄ix(θi, xi(θ))

∂xi(θ)
∂θi
−

h′i−(θi).

hi(θi, θ
′
i) ≥ 0, and h′i−(θi) ≤ 0.

Then t̄i(θ) ≤
∫ θi

0
f̄ix(q, xi(q, θ−i))

∂xi(q,θ−i)
∂θi

− h′i−(q)dq.

For general allocation rule xi(θ), maximal charging is t̄i(θ) = f̄i(θi, xi(θ)), 0-SP charing

is f̄i(θi, xi(θ))−
∫ θi

0
f̄iθ(q, xi(q, θ−i))dq.

λi(θ)f̄i(θi, xi(θ))+(1−λi(θ))(f̄i(θi, xi(θ))−
∫ θi

0
f̄iθ(q, xi(q, θ−i))dq) ≤

∫ θi
0
f̄ix(q, xi(q, θ−i))

∂xi(q,θ−i)
∂θi

−
h′i−(q)dq.

There is λi(θ) ≤
∫ θi
0 f̄ix(q,xi(q,θ−i))

∂xi(q,θ−i)
∂θi

−h′i−(q)dq−f̄i(θi,xi(θ))+
∫ θi
0 f̄iθ(q,xi(q,θ−i))dq∫ θi

0 f̄iθ(q,xi(q,θ−i))dq
.∫ θi

0
f̄iθ(q, xi(q, θ−i))dq+

∫ θi
0
f̄ix(q, xi(q, θ−i))

∂xi(q,θ−i)
∂θi

dq =
∫ θi

0
∂f̄i(q,xi(q,θ−i))

∂θi
dq = f̄i(θi, xi(θ))−

f̄i(0, xi(0, θ−i)), f̄i(0, xi(0, θ−i)) = 0.

Thus, the inequality is equivalent with λi(θ) ≤
∫ θi
0 −h′i−(q)dq∫ θi

0 f̄iθ(q,xi(q,θ−i))dq
.

The inequality need to be modified, since when θi ≤ max θ−i, there is no incentive to

deviate and punishment is not effective, change the lower bound 0 to lower bound of θi.

θi(θ−i) = sup{θi|xi(θi, θ−i) = 0}.

λi(θ) satisfy λi(θ) ≤
∫ θi
θi(θ−i)

−h′i−(q)dq∫ θi
θi(θ−i)

f̄iθ(q,xi(q,θ−i))dq
.

For the mechanisms that allocate all resource to agent with highest aggregate production,

assume the production function fi(θi, xi(θ)) = θixi(θ), θi(θ−i) = maxj 6=i θj, f̄iθ(q, xi(q, θ−i)) =

xi(q, θ−i) = 1 for θi(θ−i) ≤ q ≤ θi.
∫ θi
θi(θ−i)

f̄iθ(q, xi(q, θ−i))dq = θi−θi(θ−i). If the punishment

function is linear, hi(θi, θ
′
i) = c|θi − θ′i| with c ∈ [0, 1], then −h′i−(q) = c. In this case,

λi(θ) ≤ c(θi−θi(θ−i))
θi−θi(θ−i)

= c.

Another way to write, from condition of h-SP, f̄iθ(θi, xi(θ)) + h′i−(θi) ≤ ∂Φi(θi,θ−i)
∂θi

≤
f̄iθ(θi, xi(θ)) + h′i+(θi).

∂Φi(θi,θ−i)
∂θi

= ∂f̄i(θi,xi(θ))
∂θi

− ∂t̄i(θ)
∂θi

≥ f̄iθ(θi, xi(θ)) + h′i−(θi). Then ∂t̄i(θ)
∂θi

≤ ∂f̄i(θi,xi(θ))
∂θi

−
f̄iθ(θi, xi(θ)) − h′i−(θi). For θi < θi(θ−i), f̄i(θi, xi(θ)) = 0 and t̄i(θ) = 0. Integral the

inequality from θi(θ−i) to θi, we have the constraint of aggregate charging by planner from

agent i. t̄i(θ) ≤ f̄i(θi, xi(θ))−
∫ θi
θi(θ−i)

f̄iθ(q, xi(q, θ−i))dq −
∫ θi
θi(θ−i)

h′i−(q)dq.
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Since h′i−(q) ≤ 0, the upper bound of charging by planner increases as the punishment

increase, the charging is no less than f̄i(θi, xi(θ))−
∫ θi
θi(θ−i)

f̄iθ(q, xi(q, θ−i))dq in 0-SP case.

Proof of Corollary 3

Proof.

To verify the punish function h in condition i and ii satisfy λhi (θ) = 0.

In condition i,
∂hi(θi,θ

′
i)

∂θi
|θ′i=θi = limθ′i→θi

hi(θi,θ
′
i)−hi(θi,θi)
θ′i−θi

= limθ′i→θi
hi(θi,θ

′
i)

θ′i−θi
= 0.

f̄iθ(θi, xi(θ)) = ∂f̄i(θi,xi(θ))
∂θi

, limθ′i→θi
f̄i(θ

′
i,1)−f̄i(θi,1)

θ′i−θi
= f̄iθ(θi, 1) > 0.

limθ′i→θi
hi(θi,θ

′
i)

f̄i(θ′i,1)−f̄i(θi,1)
=

h′i(θi)

f̄iθ(θi,1)
= 0. Thus, λhi (θ) = minθ′i

hi(θi,θ
′
i)

f̄i(θi,1)−f̄i(θ′i,1)
= 0, for any θ,

and φh = φS.

In condition ii, λhi (θ) = minθ′i
hi(θi,θ

′
i)

f̄i(θi,1)−f̄i(θ′i,1)
= 0 also satisfy for any θ, there is φh = φS.

From Theorem 3, the h-optimal mechanism is φS.

Proof of Corollary 4

Proof.

From Theorem 2, the minimal punishment function for the first price mechanism is

hi(θi, θ
′
i) = maxc∈[0,1] f̄i(θi, c)− f̄i(θ′i, c).

Since ∂2fi
∂θ∂x
≥ 0, maxc∈[0,1] f̄i(θi, c)− f̄i(θ′i, c) = f̄i(θi, 1)− f̄i(θ′i, 1).

Thus, when hi(θi, θ
′
i) ≥ f̄i(θi, 1)− f̄i(θ′i, 1), first price mechanism is h-strategy-proof.

To verify λhi (θ) = 1.

hi(θi, θ
′
i) ≥ f̄i(θi, 1)−f̄i(θ′i, 1), which means

hi(θi,θ
′
i)

f̄i(θi,1)−f̄i(θ′i,1)
≥ 1. λhi (θ) = minθ′i

hi(θi,θ
′
i)

f̄i(θi,1)−f̄i(θ′i,1)
.

From Theorem 3, the h-optimal mechanism is λhi (θ)φF + (1− λhi (θ))φS = φF .
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